Data Mining on Ice
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Abstract In an atmospheric neutrino analysis for IceCube’s 59-string configuration,
the impact of detailed feature selection on the performance of machine learning
algorithms has been investigated. Feature selection is guided by the principle of
maximum relevance and minimum redundancy. A Random Forest was studied as an
example of a more complex learner. Benchmarks were obtained using the simpler
learners k-NN and Naive Bayes. Furthermore, a Random Forest was trained and
tested in a 5-fold cross validation using 3.5 x 10* simulated signal and 3.5 x 10*
simulated background events.

1 Introduction

The IceCube neutrino telescope [4] was completed in December 2010 at the geo-
graphic South Pole. There are 5160 Digital Optical Modules (DOMs) mounted on
86 vertical cables (strings) forming a three dimensional array of photosensors. The
spatial distance between individual strings is 125 m. IceCube strings are buried at
depths between 1450 m and 2450 m corresponding to an instrumented volume of
1 km?>. The spacing of individual DOMs on a string is 17 m [4, 6, 12].

A low energy extension called DeepCore [6, 12] is installed in the center of the de-
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tector. The IceTop [15] air shower array is located on top of the in-ice part of the
detector.

Atmospheric neutrinos are produced in extended air showers where cosmic rays
interact with nuclei of the Earth’s atmosphere. Within these interactions mainly pi-
ons and kaons are produced which then subsequently decay into muons and neutri-
nos [9]. Atmospheric neutrinos can be distinguished from an astrophysical flux by
their much softer energy spectrum which follows a power law Z—%a mo < E —3719].
The measurement of the atmospheric neutrino spectrum, however, is hindered by a
dominant background of atmospheric muons also produced in cosmic ray air show-
ers. Although the detector is shielded by the antarctic ice cap, atmospheric muons
enter the detector due to their high energies. A rejection of atmospheric muons can
be achieved by selecting upward going tracks only since the Earth is opaque to
muons. However, a small fraction of atmospheric muons is still misreconstructed as
upward going.

For the starting point of this analysis (the so called Level 3) where many advanced
reconstruction algorithms have already been run and the dominant part of the at-
mospheric muons has already been removed, we expect Npqer == 9.699 X 10° back-
ground events and Ny, ~ 1.418 X 10* signal events in 33.28 days of IceCube in
the 59-string configuration. This corresponds to a signal to background ratio of
R = 1.46 x 1073, Approximately 2600 reconstructed attributes where available at
Level 3.

The remaining background of atmospheric muons can further be reduced by apply-
ing straight cuts [1] or by the use of machine learning algorithms [2]. The low signal
to background ratio in combination with the large number of attributes available at
Level 3 makes this task well suited for a detailed study within the scope of machine
learning. The selection of a subset of attributes is as important as the test of different
classification algorithms if we want to obtain good results.

Since Boosted Decision Trees have already been used successfully in atmospheric
neutrino analyses [2], we tested a Random Forest [5] as an example for a more so-
phisticated algorithm. Benchmarks were obtained using k-NN and Naive Bayes.

2 Feature Selection and event classification

Prior to our studies precuts where applied on vy jeri; > 0.19 and 0z.,;;;, > 88° in or-
der to further reject the muonic background. Furthermore, we reduced the number of
attributes entering our final attribute selection by hand exluding attributes that were
known to be useless, redundant or a source of a potential bias. This preselection of
attributes reduced the number of attributes entering the final selection to 477. This
reduced the required memory and computing time dramatically.

A Maximum Relevance Minimum Redundancy (MRMR) [7, 13] algorithm embed-
ded within the FEATURE SELECTION EXTENSION [14] for RAPIDMINER [11] was
used for feature selection. Simulated events from CORSIKA [8] were used as back-
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Fig. 1 Stability estimation for the MRMR Feature Selection depicting the Jaccard and Kuncheva’s
index. The stability of the feature selection goes into saturation as the number of attributes in-
creases. For a number of attributes > 20 both stability measures lie well above 0.9. One should
note that both indices reach the maximum of 1.0 if only one attribute is selected indicating that
there is one single best attribute for the separation of signal and background.

ground. Simulated events from the IceCube neutrino generator NUGEN were used as
signal. The machine learning environment RAPIDMINER [11] was used throughout
the study.

2.1 Feature Selection Stability

It is quite important that the feature selection given one part of the data does not
differ too much from the selection given another part of the data. The ideal is, that
for all parts of the data, the same features were selected. In this case the feature
selection operator is called “’stable”. Stability is measured in terms of the Jaccard
index, for instance.

Figure 1 depicts the stability of MRMR. The FEATURE SELECTION STABILITY
VALIDATION, also included in the FEATURE SELECTION EXTENSION for RAPID-
MINER, was used to estimate the stability. Within the FEATURE SELECTION STA-
BILITY VALIDATION, MRMR was run in a 10-fold cross validation which itself was
located in a loop that increased the number of attributes to be considered by MRMR
by one per iteration.

The Jaccard index is depicted by triangles, whereas squares represent Kuncheva’s
index [10]. The calculation of the stability was carried out by computing the pair-
wise average of all subsets drawn in the cross validation.

Figure 1 shows that the stability of the feature selection rises rapidly as the number
of attributes increases. For a number of attributes 7 ipures = 10, the stability of the
MRMR selection becomes saturated and is well above 0.9 for a number of attributes
exceeding 20. One should note that both indices reach their maximum value of 1.0
if only one attribute is considered. That means there is one single best attribute for
the separation of signal and background in IceCube. This does not say that this sin-
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Fig. 2 Performance of the MRMR selection for 3 different learners (Random Forest, Naive Bayes,
k-NN). In (a) and (b) the fractions of true and false positives are shown as a function of the number
of attributes. Random Forest and Naive Bayes have a comparable performance with respect to false
positives. With respect to true positives, however, the Random Forest outperformes Naive Bayes
as well as k-NN with £ = 5. In (c¢) and (d) accuracy and precision are shown as a function of the
number of attributes. Random Forest performs better than Naive Bayes and k-NN with k = 5.

gle best attribute is sufficient for the separation task, but that it is a feature found
relevant in the majority parts of the data. Figure 1 clearly shows that MRMR can be
considered stable on IceCube Monte Carlo simulations if the considered number of
attributes in the selection is 14 ipures = 20.

2.2 Performance

Figure 2 shows the performance of Naive Bayes, k-NN and a Random Forest after an
MRMR selection as a function of the number of attributes. All learners were trained
and evaluated in a 10-fold cross validation using 10* signal and 10* background
events respectively. For k-NN a weighted vote and a mixed Euclidean distance was
used. The number of neighbors for k-NN was chosen to k = 5. The Random Forest
was trained using the Random Forest from the RAPIDMINER Weka package. The
number of trees ny,..; Was matched to the number of attributes n4s ipyres i €very
iteration such that ;s = 10 X Nsribuses-
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Fig. 3 Attributes, which are correlated with at least one other attribute were excluded prior to the
MRMR selection, if their correlation coefficient p exceeded a certain value (x-axis). The depen-
dence of the performance on this removement was studied. The performance is best for p = 0.95.
The differences compared to p = 0.9, however, are negligible but show smaller errorbars which
indicates a higher stability of the forest.

Figure 2 (a) shows the fraction of false positives as a function of the number of at-
tributes. One finds that the fraction of false positives rises rapidly if the number of
attributes becomes < 10. While for the Naive Bayes classifier a minimum is reached
around naripures =~ 18 the values continue to decrease for the Random Forest. For k-
NN a minimum around 744 ipures == 18 is reached as well. The shape of the ongoing
curve, however, behaves differently from that observed for the Naive Bayes case. It
rises much steeper. For k-NN the process stopped at . ipures = 25 as the required
memory exceeded the available resources.

Figure 2 (b) depicts the number of true positives as a function of the number of
attributes. For k-NN and Random Forest the curve rises rapidly and reaches a satu-
ration around n4s,ipures > 10. For Naive Bayes a peak is found at ns,ipyes = 5. For
Nasributes > O the number of true positives decreases. A similar behavior was found
for accuracy and precision shown in figure 2 (c) and (d) respectively.

A comparison of the performance of all three learners shows that the use of a Ran-
dom Forest in an IceCube analysis is justified by the better performance compared
to that of more simple classifiers.

2.3 Removing further correlations

A visual inspection of the attributes selected by MRMR revealed that some of the
features selected were still highly correlated. The dependence of the performance of
Random Forest on this correlation was investigated. As a consequence a correlation
filter was applied. Within this filter one of two attributes is removed prior to MRMR
if their correlation coefficient exceeds a user specified value. The correlation co-
efficient was varied in order to investigate the dependence of the performance of
Random Forest on this coefficient.

All forests were trained and evaluated using a 10-fold cross validation with 10* sim-
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Fig. 4 a): Output of the Random Forest after a 5-fold cross validation. Two peaks are observed at
s = 0.0 and s = 1.0 with the first one being mainly background and the second one mainly signal.
b): Output of the Random Forest scaled to the number of signal and background events expected
in real data. Again two peaks are observed with the signallike peak being significantly smaller due
to the small signal to background ratio.

ulated signal events and 10* simulated background events. The results are depicted
in figure 3. Figure 3 (a) shows that the fraction of false positives decreases as the
correlation coefficient p of the removed attributes increases. A minimum is reached
at p = 0.95. The fraction of false positives for p = 0.9, however, shows only a neg-
ligible deviation from the minimum but a much smaller error bar indicating a more
stable performance of the forest.

From figure 3 (b) one finds that the fraction of true positives increases as the cor-
relation of the removed attributes incereases reaching a maximum at p = 0.95. The
fraction of true positives for p = 0.9 shows only small deviations from the optimum
value but again a smaller error bar. This indicates a more stable performance of the
forest.

Taking into account the negligible deviations from the optimum for both measures
in figure 3 and the more stable performance one finds that attributes with p > 0.9
should be removed prior to an MRMR selection.

2.4 Training and Testing a Random Forest

As a result of our previous investigations, a Random Forest was trained and tested
using the attributes derived in MRMR feature selection. The training and testing
was carried out in a 5-fold cross validation using 3.4 x 10° simulated background
events and 3.4 x 107 simulated signal events. The number of trees in the forest was
chosen to 7y.es = 500. To prevent overfitting the number of events used for training
was chosen to 28000 signal and background events respectively.

The outcome of the testing is presented in figure 4 where figure 4 (a) depicts the
signalness assigned to individual events by the forest. Figure 4 (a) shows two peaks
of the signalness s. The first peak around s = 0.0 can be associated with background
events whereas the peak at s = 1.0 can be associated with signal events.

Figure 4 (b) on the other hand shows the signalness of the individual events scaled
to the expected number of signal and background events in real data. Again, two
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peaks are found at s = 0.0 and at s = 1.0 where the peak at s = 1.0 is significantly
smaller due to the low signal to background ratio.

By applying an additional cut on the signalness the number of background events in
the final sample can be reduced while the purity of the neutrino sample increases.
A couple of cuts on the signalness where applied and the remaining background as
well as the purity of the final sample was computed. The outcome of this calcula-
tion is presented in table 1. The number of background events was computed in a
rather conservative estimate using the upper limit of the errorbar calculated in the
cross validation. Table 1 tells us that a purity well above P = 95% can routinely
be achieved. Note, that for s > 0.998 and s = 1.000 the expected number of signal
events is > 3000 and > 3800.

In addition, so far no optimization procedure was carried out on the Random Forest.
By doing so in the near future we hope to achieve even better.

However, we would like to note that these numbers were calculated on the basis of
Monte Carlo simulations only and might be subject to changes when applying the
procedure on real data. Changes in event numbers for signal and background might
occur due to data MC mismatches or due to uncertainties in the atmospheric neu-
trino flux.

Cut Est. Back. Ev.  Est. Sig. Ev. Est. Pur. [%]
0.900 311 5079 94.2
0.992 263 4864 94.9
0.994 215 4606 95.5
0.996 139 4271 96.8
0.998 118 3804 97.0
1.000 77 3017 97.5

Table 1 Estimated number of signal and background as well as the estimated purity after an appli-
cation of cuts on the signalness. The number of background events was calculated rather conser-
vative using the upper limit of the error bars.

3 Summary and Outlook

We studied the influence of a detailed feature selection using the MRMR algorithm
on the training of multivariate classifiers within an atmospheric neutrino analysis
for the IceCube detector. Naive Bayes, k-NN with k = 5 and a Random Forest were
investigated.

We find that the MRMR feature selection can be considered stable if the number of
attributes considered iS nasripures = 20. We also studied the influence of removing
correlated attributes prior to the MRMR selection on the performance of the Ran-
dom Forest. We find that the most stable performance could be achieved if attributes

with p > 0.9 are removed before running the MRMR algorithm. The optimum per-
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formance was found if attributes with p > 0.95 were removed prior to MRMR. The
difference in performance compared to p > 0.9, however, is negligible.

A Random Forest was trained using 500 trees and 3.4 x 107 simulated signal and
3.4 x 10° simulated background events in a 5-fold cross validation. We find that pu-
rities above 95% can be achieved depending on the signalness cut. It was shown that
the number of neutrinos can exceed 3000 from ~ 14000 at Level 3. These numbers
have, however, been evaluated using Monte Carlo simulations only and might be
subject to changes. The changes might be due to data MC mismatches and uncer-
tainties in the atmospheric neutrino flux.
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