Technical Report

Energy-Efficient
GPS-Based Positioning in
the Android Operating
System

Jochen Streicher, Olaf Spinczyk

03/2011

technische universitat _ Verfiigbarkeit von
dortmund Information durch Analyse unter

Ressourcenbeschrankung



Part of the work on this technical report has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 "Providing
Information by Resource-Constrained Analysis", project A1.

Speaker: Prof. Dr. Katharina Morik

Address: TU Dortmund University
Joseph-von-Fraunhofer-Str. 23
D-44227 Dortmund

Web: http://sfb876.tu-dortmund.de


http://sfb876.tu-dortmund.de

Abstract

We present our ongoing collaborative work on EnDroid, an energy-efficient
GPS-based positioning system for the Android Operating System. FEnDroid is
based on the EnTracked positioning system, developed at the University of Aarhus,
Denmark. We describe the current prototypical state of our implementation and
present our experiences and conclusions from preliminarily evaluating EnDroid on
the Google Nexus One Smartphone. Although the preliminary results seem to sup-
port the approach, there are still several open questions, both at the application
interface, as well as at the hardware management level.

1 Introduction

Today’s smartphones exhibit a multitude of environment sensing possibilities, allowing a
plethora of context-oriented applications to provide a rich user experience. One particular
type of context-aware applications are location-based applications (LBAs) that have to
be provided with the phone’s absolute position to fulfill their tasks. Examples of such
applications are geo-based information applications 1] or proximity and social networking
applications [10, 7] just to mention a few. Some of these applications actually require
continuous high-accuracy location updates, like those focusing on traffic [5] or healthcare.

With limitations, a smartphone can determine its current position using the mobile net-
work or WiFi. However a lot of LBAs need more location information that is more
accurate than the position calculated by GSM signal triangulation. WiFi-based posi-
tioning may yield good results when done indoors or in dense urban areas, but performs
poorly in less densely inhabited areas, where it might not be available at all [3]. For
outdoor positioning in suburban or rural areas, the global positioning system (GPS) is
the option of choice, when it comes to accuracy. However, GPS is by far the most power-
consuming positioning method and also one of the most power-hungry components even
in modern smartphones [2]. As battery life is probably the scarcest resource on these
devices, mobile phone owner’s tend to switch off GPS positioning entirely when they do
not need it explicitly, which is in fact a roadblock for the widespread use of emerging
location-based applications [9].

Usually, mobile operating systems give their applications some limited possibilities to
reduce positioning costs. This ranges from simply choosing a less power-consuming, but
also less accurate location provider (like GSM-based positioning) to more fine-grained
parameters, like the demanded frequency of position updates from the GPS. However,
the influence of those parameters on actual power consumption and the resulting quality
of the positioning service also depends not only on various external conditions, but also
on the specific hardware executing the application. We do not believe that application
developers should be responsible for optimizing application’s for every possible device.
Rather, we believe that this should be part of the system software.

Thus, our goals can be structured as follows: 1.) Location-based Applications should be
able to state their demanded quality parameters (e.g., the accuracy) directly, instead of
wildly guessing tuning parameters. 2.) The phone owner should not have to manually
deactivate location sensing in favor of longer battery life.



The rest of this report is outlined as follows: Section 2 gives a short survey about exist-
ing work on energy-efficient positioning. The system we are using for our current work,
EnTracked, is discussed briefly in Section 3. The current interface of Android’s position-
ing framework is summarized in Section 4, while Section 5 describes the integration of
EnTracked into Android. Section 6 presents an excerpt of our ongoing (preliminary) eval-
uation, while Section 7 discusses current problems and future work. Section 8 concludes
the report.

2 Energy-Efficient Positioning

Various methods have been proposed to reduce the power consumption of location sens-
ing, while still being able to guarantee adherence to given accuracy requirements. One
possibility is to concentrate on demanded accuracy alone, while assuming robust values
for changing context, like the current speed and the inherent position uncertainty of the
current GPS fix. Several adaption techniques have been proposed, ranging from the sub-
stitution of GPS, in favor of less power-demanding location providers, to finer-grained
parameters like the frequency used to get location updates from the GPS.

Incorporating context information allows more aggressive adaption and, thus, less power
consumption. Context information includes the error estimation of the obtained positions
and information about the phone’s movement state, but can also include static or history-
based knowledge, like typical routes, maps of signal qualities and observed accuracies for
given providers. Context information also provides further adaption methods like sensing
supression. Besides the aforementioned techniques, power-consumption for positioning
can also be reduced by inter-device cooperation, for example, by distributing an obtained
GPS fix via low-power communication to nearby devices.

Zhuang et al. use data from the acceleration sensor, to suppress location sensing when
the device is not moving. They furthermore keep a continuously updated map containing
information about the network-based location accuracy. Using this map, they proactively
substitute the GPS with network-based positioning, wherever this is possible [11].

EnLoc [4] schedules different location providers while trying to maintain a demanded av-
erage accuracy. For this purpose it also incorporates the habitual mobility of the phone
owner to predict locationts. Bluetooth-based localization is considered as an additional
location provider in the a-Loc positioning system /8], which uses a provider scheduling
algorithm based on cost- and accuracy-models for location providers. They furthermore
try to dynamically infer an application’s accuracy requirements. For example, they use
the spatial density of a specific type of interesting locations (e.g., restaurants) as an
input therefore, when one of these locations has to be found. Besides the already intro-
duced concepts of fix interval adaption and GPS availability mapping, RAPS [9] also
implements inter-device cooperation via Bluetooth.

While the work of Zhuang and also a-Loc were implemented on top of Android, none of
the existing approaches were actually integrated into the operating system.



3 Entracked

EnTracked focuses solely on GPS-based positioning. It uses dynamically changing context
as well as a static power model of the device to schedule GPS fixes in an energy-efficient
way, while maintaining a given location accuracy. The accuracy is provided as the max-
imum allowed distance dj;,,;; between the current position belief and the phone’s actual
position. While this section just gives a brief summary on EnTracked’s principles, the
original EnTracked publication [6] provides a detailed technical introduction.

3.1 QoS- and Context-Driven GPS Scheduling

When a GPS fix is obtained, various contextual information is used to determine when
the next absolute position is required in order to maintain the demanded accuracy of
the current position belief. The location information obtained from today’s GPS devices
usually contains also information about the uncertainty ugpg of the position. Together
with the time since the last GPS position fix tgpgs and a robust speed estimation v,
derived from GPS data, the following error model inspired by Farell et al. for the current
time ¢ is formed:

€model = UGps + (ttaps)Vest (1)

Given the accuracy requirement dj;,;;, the time until the next location information has
to be acquired can then be inferred using Equation 2.

tlimit _ dlimit — €model (2)
Vest

Optionally, EnTracked first detects if the device is moving and, if this is not the case,
skips the above calculations and puts the device into still mode. In still mode, continuous
motion detection takes place to re-trigger actual location sensing when the device is
moving again. The motion detection works by sampling the acceleration sensor every
50ms for about 1.2s, and then computes their per-axis variance. If that variance is above
a certain threshold, EnTracked decides that the device has started moving again and
leaves still mode. If that is not the case, the device can sleep again for 3 seconds. In
still mode, the GPS operates with extremely low frequency, with an interval of 5 minutes
between position fixes.

3.2 Device Modeling

The exact point in time, when the next position fix has to be available, is not yet sufficient.
The time to fir (TTF) the GPS needs to obtain a position fix after being switched on,
depends on the length of the preceding period of inactivity. The reason is that GPS chips
usually stay in tracking mode for a certain time, after being switched off, which enables
them to serve possibly following requests much faster than after a “cold” start. Once the



tracking mode is left, calculation the position again needs more time. Staying in tracking
mode, after being switched off also means that the phone’s power consumption does not
instantly return to the level it was before activating the GPS.

Therefore, EnTracked accurate model of the timing and the energetic behavior of the
GPS device in order to determine 1.) whether it is beneficial to switch off the GPS
device until the next position fix and 2.) when it has to be switched on again, so as to
obtain the next location information in time.

4 Positioning in Android

The positioning API in Android is callback-based: Applications interested in the phone’s
location can register for being informed when new location information is available. Either
for a single update or for continuous updates. Applications requesting continuous updates
can control their frequency in two ways simultaneously: Firstly, by specifying a minimum
interval between subsequent location updates and, secondly, by specifying a minimum
distance the phone has to travel before the application is told about the new location.

If an application registers for GPS-based location updates, the interval parameter di-
rectly influences the frequency of actual GPS position fixes. Thus, an application can
save energy by increasing this value. If several applications requested periodic location
updates, the smallest of all interval parameters is used. The distance parameter does not
have an effect on the frequency of GPS fixes at all, but rather just decides whether the
corresponding application is told about a freshly obtained position.

Applications can further lower the cost of location sensing by choosing a less expensive
provider like WiFi or the mobile network. This can be done either explicitly or implic-
itly, by specifying prioritized coarse criteria regarding the levels of accuracy (5 different
settings) and power consumption (3 different settings).

5 EnDroid

The idea for EnDroid was to leave the decision about fix intervals entirely to the existing
EnTracked system. To be able to easily integrate updates from the ongoing work on
EnTracked itself, we decided to keep the existing Python code base. As Android is
essentially Linux-based, it is also able to run a Python interpreter natively. However, the
Android API and all its services like positioning and sensor access are not accessible from
Python. Furthermore EnTracked needs exclusive control over the GPS configuration,
which is not even available for Android applications. Thus, EnDroid consists of an
algorithmic part, the Head, running in a Python VM and a control part, the Body, residing
in in the application framework that also contain’s Android’s positioning subsystem,
the Location Manager. An overview of EnDroid’s positioning system, its components
and their communication paths, is depicted in Figure 1, which will be explained in the
remainder of this section.



Dalvik VM Dalvik VM Dalvik VM

Application Application === | |SL4A Service ﬁ
; TCP
( X G
Android IPC
© | Location Manager
: : thod call
% S I .................... : Sensor method calls
i Manager
S || network . 9
: location providers Python VM
Android Application Framework i Head

i native libraries /
i Linux kemel

Figure 1: The current EnDroid architecture and its communication paths (bigger and
darker means more overHead).

5.1 Android API Access

To be able to use the acceleration sensor via the Android API, we use the scripting
layer for android (SL4A) application', which provides an Android API facade for several
scripting languages. The language-independent core consists of an Android service that
listens for incoming RPCs (remote procedure calls) from scripts on a local TCP port.
These RPCs are encoded as a JSON string containing a method name and respective
parameters, which loosely correspond to Android API calls. After reception of an RPC,
the service invokes the corresponding method of the Android API. If that method has a
return value, it is transported back to the script via the same mechanism.

On the script side resides a corresponding RPC interface. In the case of Python, this is
an object that sends an RPC when one of its methods is called. When the SL4A service
receives asynchronous responses from Android, like it is the case with location or sensor
updates, their data is stored in an event buffer. Scripts can fetch events from this buffer
via an according RPC call. This call can optionally block if no event is available, allowing
the script to wait for an event without using the CPU.

Thttp://code.google.com/p/android-scripting/



5.2 Exclusive GPS Management

Every request for location updates by Android applications is handled and being kept
track of by the Location Manager, which is also responsible for distributing obtained
location information to these applications. The Location Manager further keeps track
of available location providers and decides which providers to use in order to fulfill the
request parameters (criteria, interval and distance).

The EnDroid Body intercepts requests from applications to the location manager in
order to be informed about the current positioning requrements. Currently, this is just
the information if the GPS is needed at all. Furthermore, it has to control the GPS
location provider. The GPS location provider’s interface is, apart from the various types
of status update it reports, quite simple. The Location Manager can request a single fix,
activate and deactivate location tracking and adjust the fix interval.

The communication with the Head is again performed by a TCP channel, which is more
of a quick hack than a design decision. However, this channel is currently used only for
GPS and alarm commands (Head to Body) and location information (Body to Head),
which are sent with relatively low frequency (< 1Hz). The amount this channel adds to
the total energy consumption should therefore be negligible.

The alarm command is used to wake up the Head after a certain time. As the Head is
just a port of EnTracked, it performs GPS scheduling like it did on its original platform,
the Nokia N series: 1.) enable the GPS, 2.) receive a position fix, 3.) disable the GPS,
4.) sleep for the calculated time, and 5.) request the next position fix. When a process
“sleeps”, it tells the operating system to be omitted from CPU scheduling for a certain
time. When that time is up, the process takes part again in CPU scheduling. In Android,
however, it may sleep for a much longer time, since Android suspends when this is not
explicitly prevented. This is unlike desktop Linux systems, which only go into suspend
mode (also known as suspend to RAM) when this is explicitly requested. This means, if
the Head simply executes the first four of the five steps stated above, GPS tracking may
stall completely for a long time.

However, if an application requests periodic GPS fixes in an unmodified Android, the
device may suspend between the fixes, but does wake up when the inter-fix time has
elapsed.

Modern GPS chips schedule periodic position updates on their own, and wake up the
CPU, when a they have obtained a position fix. If the GPS chip is not capable of
scheduling, the location manager makes use of the alarm manager, which arms a special
hardware timer that is able to wake the device from suspend mode.

Therefore, to ensure this behavior, the Head sends an alarm command to the Body and
waits for an answer on the TCP channel after switching off the GPS. The Body uses an
alarm to resume device operation at the given time and sends its answer to the Head.

Apart from the need of an alarm, disabling the GPS after every fix is generally not very
smart, as we thereby restrict the chip’s own energy-saving possibilities. Therefore we
extended the Body such that the Head can alternatively specify an interval instead of
switching the GPS off and on again.



6 Preliminary Evaluation

We performed some preliminary measurements to get an impression as to whether the
EnDroid approach is beneficial at all in terms of power consumption. This must not be
taken for granted since the original measurements were performed on an older generation
of smartphones and with EnTracked just being an application and not an operating
system part.

6.1 Measurement Method

Our evaluation was done entirely on a Google Nezus One (N1) smartphone, running as
well an original and an EnDroid variant of Android 2.3.5. If not stated otherwise, Radio
(2G/3G) was disabled, while WiFi was enabled and being associated with an access point
in order to enable AGPS communication.?

A convenient way to obtain indicative power measurements is the internal sensor of the
N1 battery. It provides values for current, averaged current, voltage and battery charge
level. These values are updated approximately every 50 seconds. The sensor readings
are quantized in steps of 4.886mV for Voltage, 67 tA for current and averaged current,
and 1.6mAh for the charge level. Their actual precision is unknown to us, but they are
known to be influenced by temperature. In summary, the coarse temporal and spatial
resolution, the temperature sensitivity, probably also the precision in general, and the
general variability of battery characteristics over time render the internal sensor readings
hardly suited for an extensive evaluation.

However, since many of the measurements had to be performed outside, in an environment
hardly suited for expensive measurement hardware, we decided to base the preliminary
comparisons on the internal measurements.

To compute the approximate average power consumption during a certain time inter-
val, we tried two different methods. The first one calculates the approximate average
power consumption P’ based on the voltage and average current readings. The second
one, which we assumed to be more robust, calculates the approximate average power
consumption P based on the voltage and battery charge level readings.

From the battery sensor readings, we used the charge level, represented by QF(t), the
voltage, represented by UP(t) and the averaged current, represented by I”(t). Since the
readings are not updated continuously, these functions are defined as right-continuous
step functions.

2Modern GPS chips are usually capable of Assisted GPS (AGPS). When a position fix is requested
from an AGPS-capable chip, it first connects to an AGPS server and downloads an almanach, which
contains information about current satellite positions. Using this information, the first position fix can
be obtained in seconds instead of minutes.



6.1.1 Calculation Based on Average Current Readings

For the calculation based on the average current reading, we calculate the approximate
energy consumed in an interval [t,; 1]

t

W (s t1]) = / OB @) IB(1)dt (3)

to

The approximate power is the calculated as follows:

P (fasti) = 7 W/ (ot ()

6.1.2 Calculation based on Battery Charge Level Readings

For the discharge-based calculation, we do not use the sensor reading for average current,
but rather define the average current in a given time interval [a; b] as:

19(a;8]) = Q%(b) — Q®(a) (5)

Unfortunatly, since the readings are not updated continuously, this is not valid for arbi-
trary intervals [a;b]. Therefore, we define a function 7" that splits a given time interval
into the subintervals between sensor updates, with the set S being defined as the set of
all points in time that correspond to a new charge level reading.

T([to;tr]) = [z, min{ylly € SUt Ay > x})ll € SU{to}) (6)

The energy consumed in an interval [t,; 1], based on the charge state readings, is approx-
imated as:

1

W[ty 1) = > 1) [ Ut ™)
) J

ti —to J=T([tost1]

The approximate average power, based on the battery charge level reading, is then cal-
culated as follows:

POty 1]) = WO ([to; 1)) (8)

t1 — 1o

Of course, an additional error is introduced, if ¢, or ¢; are not in S.
6.2 Measurements
For the measurements, we developed a simple application that requests periodic location

updates with a given fix interval, and writes them to the internal SD card. Additionally,
the current battery sensor readings are written.

8



For the Android-based measurements we tried different fix intervals. We compared these
to EnDroid with manual GPS scheduling, both with movement detection disabled (MS)
and and enabled (MD), but also with chip-based scheduling (CS). The combination of
chip scheduling and movement detection is not implemented yet. The desired accuracy
(distance limit) for EnTracked was always 50m. The experiments were run either outside
or inside, near a window.

Since one of our goals is to eliminate the need for manually switching the GPS off when
it is actually not required, we are especially interested in the power consumption during
still periods. Table 1 shows the average current values obtained from these measurements
with the N1 being in different motion states. However, these figures are to be understood
only tentatively, since several experiment parameters that should have been under explicit
control were not, e.g., temperature, battery charge state and possibly disrupting WiFi
signals. Furthermore, we performed no assessment regarding the actually resulting posi-
tioning error, as it was done in the original EnTracked paper. A few of the measurements
were indeed obtained simultaneously (those with *), underlying almost identical external
conditions, both with fully charged batteries. For the other two non-still scenarios, the
same route was taken for every system variant.

The figures obtained by the charge-level-based calculation are in black, while those ob-
tained by the average-power-based calculation have blue color. The figures obtained by
the charge-level-based method obviously make less sense, since there is no reason why the
inside measurements should be better than those performed outside. The quality of the
GPS signals is expected to be better outside and, thus, the power consumption should be
lower. A follow-up experiment showed, that the charge state reading is, in fact, strongly
influenced by temperature. Measuring the charge level while letting the phone cool down
outside, and warming it up back inside, resulted in a rising charge level reading, while
the battery was actually discharging.

6.3 Results

Although being tentative, the results seem to indicate that EnDroid can, in fact, prolong
battery life. Given the demanded maximum distance error 50m, assuming a walking
speed of 27 and a worst-case GPS positioning error of 30m, the interval between GPS
position fixes has to be no larger then 10s, according to Equation 2. EnDroid adapts the
interval according to the actual GPS positioning accuracy, which may be much better.

Furthermore, we learned that chip-based scheduling probably yields better results than
manual scheduling. However, with rapidly changing fix intervals, like it is the case when
the phone transitions between different movement states, the actual position fixes often
arrived with several seconds delay. This, however, invalidates the robustness assessment
performed in the original EnTracked paper. The results also indicate that the energy
savings gained by motion detection and still mode are currently almost negligible. To
allow the phone’s user to be oblivious to whether GPS is activated or not, while the loca-
tion does not change, we should come close to the energy consumption in the suspended
state, which is consumes about 20mW on the Nexus One under the conditions stated at
the beginning and about 17mW when WiF1i is switched off.



Android

EnDroid (50m)

1s | 2s | 3s | 5s [ 10s | 15s | 20s | 30s | 40s || cs | ms | mD
425 272 317 | 347 | 233
still, inside (20°C)
421 276 298 | 346 | 231
. ) 674 | 573 476 | 338 | 359 | 298 | 275 | 229 || 288 | 364 | 372
still, outside (6°C)
527 | 428 374 | 313 | 326 | 284 | 241 181 262 | 253 | 234
437 262
walking, outside (15°C)*
395 245
549 437
walking, outside (15°C)*
497 359
571 550 539
driving, car (6°C)
452 411 416
243 224
walking, outside (15°C)
322 161

Table 1: Average power consumption in mW for different configurations and scenarios.

Further investigation showed that, during the acceleration measurement phase, the phone
consumed 300mW. After experimenting with lower sampling frequencies, we discovered a
lower bound at 200mW, which stems from SL4A always requesting the highest sampling
rate (which is 20Hz in this case) and just filtering afterwards. The additional 100mW

result in fact from the communication mechanism between SL4A and Python.

6.4 Future Evaluation

As soon as the remaining issues are resolved, we plan to perform a much more exten-
sive evaluation of our system. This will include a much a better coverage of hardware
platforms, tracking parameters, and scenarios as well as measurement accuracy and com-

parability. Furthermore the resulting positioning error will be evaluated.

7 Discussion and Future Work

7.1 Positioning API

Up to now, we just examined whether the adaption of location sensing according to given
quality parameters is beneficial. We used one of these parameters, namely accuracy (or

10




distance limit) and specified it globally, per experiment. In the future, however, the
applications should specify their positioning quality requirements.

7.1.1 State of The Art

To get an impression of the potential energy savings gained by dynamically specified
accuracy requirements, we first want use information from the existing API utilization as
much as possible. For example, the minimum distance parameter of Android’s positioning
API could be interpreted as a distance limit.

However, since the location updates in Android are in fact also a wake-up mechanism for
Android applications we have to be careful about 1.) altering the application’s behavior
this way and 2.) measuring actually the energy savings caused by the smaller wake-up
frequency and thus the smaller CPU utilization.

Therefore, we want to investigate existing location-based applications, whether they use
the distance parameter at all, and if they do whether they use it as a wake-up mechanism
and or perform energy-intensive operations as a response to the position update.

7.1.2 API Evolution

Obviously, the existing positioning API is not optimally suited to enable application-
directed adaption for energy-efficient positioning. On of our later goals is to come up with
a better API that clearly separates the concerns of wakeup frequency and accuracy and
encourages application developers to specify requirements for both of them independently.

Also, we want to investigate allowing finer-grained possibilities of specifying positioning
accuracy. Up to now, we regarded only the maximum allowed distance error (or worst-
case distance error) as a positioning quality requirement. However, applications might
instead or additionally have requirements regarding the average distance error, which was
considered in [4/. Other applications might have requirements regarding the worst case
distance error, while still being fine if their position belief violates this requirement for a
certain percentage of time. The potential for further reduction of power-consumption by
utilizing such finer-grained requirements for GPS scheduling is yet to be determined.

7.2 Under the Hood

Although EnDroid can reduce the power consumed by GPS, especially when the device is
not moving, there are still unresolved issues regarding the hardware device management.

7.2.1 GPS Interface

We believe that there is further optimization potential in the decision when and under
which circumstances AGPS data should be downloaded. However. looking at the Android
sources, it seems that the decision when to download AGPS data is entirely done by the
chip or at least a proprietary driver. An additional idea we want to investigate is to

11



utilize Mobile Station Assisted AGPS (MSA) for the some of the low-frequency position
fixes during motion detection. Using MSA, the chip does not infer its position on its
own, but rather sends all available data on current GPS signals to the AGPS server. The
AGPS server then calculates the position and sends it back to the chip.

While we learned that chip-based GPS scheduling generally uses less power than manual
scheduling and works well for fixed or only slightly altered intervals, it seems to be
not very well suited for rapidly adaptive scheduling like EnDroid does with changing
transportation modes and speeds. However, we need to do more experiments to get a
better understanding of this problem. As a possible solution, we could resort to manual
scheduling when the interval decreases too much. Another, probably better solution,
would be adapting the interval in advance, before the next fix arrives.

7.2.2 Motion Detection

Regarding the motion detection, it became clear that the current SL4A-based implemen-
tation is not very efficient. However, even a native Android implementation consumes
200mW when performing the measurements while holding a wakelock.? Yet, it is not clear
that the power drain is caused mainly by the sensor, since simply holding a wakelock and
doing nothing else already consumes about 80mW. The wakelock has to be held, because
otherwise Android would suspend between the single acceleration measurements. Trying
to replace the wakelock with alarms between the measurements resulted in too long time
intervals between the measurements (up to 200ms). Since the motion detection is crucial
for our second goal as stated in Section 1, we will have to come up with a much less
power-draining implementation. However, 80mW seem to be the lower bound for this.

8 Conclusion

We presented an overview on the current state of EnDroid, our energy-efficient positioning
system for Android. While tentative results suggest the validity of the approach, a
more extensive evaluation is needed. There are still unresolved issues, regarding the
application’s interface as well as the hardware device management. We take these issues
also as hint that positioning should be an integral part of the operating system rather
than an application or middleware just set on top of it.

References

[1] Y. Cai and T. Xu. Design, analysis, and implementation of a large-scale real-time
location-based information sharing system. In Proceeding of the 6th international
conference on Mobile systems, applications, and services, pages 106—117. ACM, 2008.

3A wakelock is an operating system abstraction that can, amongst other things, prevent Android
from suspending.

12



2]

3]

4]

[5]

[6]

17l

18]

19]

[10]

[11]

Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-
phone. In Proceedings of the 2010 USENIX conference on USENIX annual technical
conference, USENIXATC’10, page 21, Berkeley, CA, USA, 2010. USENIX Associa-
tion.

Y.C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm. Accuracy characterization
for metropolitan-scale wi-fi localization. In Proceedings of the 3rd international con-
ference on Mobile systems, applications, and services, pages 233-245. ACM, 2005.

I. Constandache, S. Gaonkar, M. Sayler, R.R. Choudhury, and L. Cox. Enloc:
Energy-efficient localization for mobile phones. In INFOCOM 2009, IEEE, pages
2716-2720. IEEE, 2009.

J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. The
pothole patrol: using a mobile sensor network for road surface monitoring. In ACM
MobiSys, 2008.

M.B. Kjeergaard, J. Langdal, T. Godsk, and T. Toftkjeer. Entracked: energy-efficient
robust position tracking for mobile devices. In Proceedings of the 7th international
conference on Mobile systems, applications, and services, pages 221-234. ACM, 2009.

Axel Kiipper and Georg Treu. Efficient proximity and separation detection among
mobile targets for supporting location-based community services. SIGMOBILE Mob.
Comput. Commun. Rev., 10:1-12, July 2006.

K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy aware local-
ization for mobile devices. Proceedings of ACM MobiSys 10, 2010.

J. Paek, J. Kim, and R. Govindan. Energy-efficient rate-adaptive gps-based position-
ing for smartphones. In Proceedings of the 8th international conference on Mobile
systems, applications, and services, pages 299-314. ACM, 2010.

R. Schmohl and U. Baumgarten. The contextual map-a context model for detecting
affinity between contexts. In MOBILe Wireless Middle WARE: Operating Systems
and Applications. Second International Conference, Mobilware 2009, Berlin, Ger-
many, April 28-29, 2009. Revised Selected Papers, volume 7, page 171. Springer
Verlag, 2009.

Z. Zhuang, K.H. Kim, and J.P. Singh. Improving energy efficiency of location sens-
ing on smartphones. In Proceedings of the 8th international conference on Mobile
systems, applications, and services, pages 315-330. ACM, 2010.

13



	Introduction
	Energy-Efficient Positioning
	Entracked
	QoS- and Context-Driven GPS Scheduling
	Device Modeling

	Positioning in Android
	EnDroid
	Android API Access
	Exclusive GPS Management

	Preliminary Evaluation
	Measurement Method
	Calculation Based on Average Current Readings
	Calculation based on Battery Charge Level Readings

	Measurements
	Results
	Future Evaluation

	Discussion and Future Work
	Positioning API
	State of The Art
	API Evolution

	Under the Hood
	GPS Interface
	Motion Detection


	Conclusion

