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Abstract

Background: An important application of high dimensional gene expression measurements is the risk prediction

and the interpretation of the variables in the resulting survival models. A major problem in this context is the

typically large number of genes compared to the number of observations (individuals). Feature selection

procedures can generate predictive models with high prediction accuracy and at the same time low model

complexity. However, interpretability of the resulting models is still limited due to little knowledge on many of

the remaining selected genes. Thus, we summarize genes as gene groups defined by the hierarchically structured

Gene Ontology (GO) and include these gene groups as covariates in the hazard regression models. Since

expression profiles within GO groups are often heterogeneous, we present a new method to obtain subgroups

with coherent patterns. We apply preclustering to genes within GO groups according to the correlation of their

gene expression measurements.

Results: We compare Cox models for modeling disease free survival times of breast cancer patients. Besides

classical clinical covariates we consider genes, GO groups and preclustered GO groups as additional genomic

covariates. Survival models with preclustered gene groups as covariates have similar prediction accuracy as

models built only with single genes or GO groups.

Conclusions: The preclustering information enables a more detailed analysis of the biological meaning of

covariates selected in the final models. Compared to models built only with single genes there is additional
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functional information contained in the GO annotation, and compared to models using GO groups as covariates

the preclustering yields coherent representative gene expression profiles.

Background

We present prediction models for survival times built from high dimensional gene expression data. The

challenge is to construct models that are complex enough to have high prediction accuracy but that at the

same time are simple enough to allow biological interpretation. Univariate approaches use single genes as

covariates in survival time models, whereas multivariate models perform dimension reduction through gene

selection (see, e.g., [1]). In addition, the combination of clinical data and gene expression data is a hot

topic of research [2,3] and is included in our model building procedure. Analysis of the prognostic index [4]

and the Brier Score [5, 6] can be used to assess the predictive performance of the models.

Here, we present models with higher interpretability by combining genes to gene groups (e.g. biological

processes) and then using these groups as covariates in the survival models. The hierarchically ordered

’GO groups’ (Gene Ontology) are particularly suitable [7]. The Gene Ontology (GO) project provides

structured, controlled vocabularies and classifications according to molecular and cellular biology. The

current ontologies of the GO project are biological process, molecular function, and cellular component.

These three areas are considered rather independent of each other and we make use of the biological process

ontology.

A problem when relating gene groups with gene expression profiles is that the genes in each gene group

may have different expression profiles: interesting subgroups may not be detected due to heterogeneous or

anti-correlated expression profiles within one gene group. We propose to cluster the expression profiles of

genes in every gene group and preselect relevant clusters (preclustering).

For statistical analysis, the Cox regression model [8] is a well-known method for modeling censored survival

data. It can be used for identifying covariates that are significantly correlated with survival times. Due to

the high-dimensional nature of microarray data we cannot obtain the parameter estimates directly with the

Cox log partial likelihood approach. However, we can combine the Cox model with selection and shrinkage

procedures and compare the prediction performance of the obtained models. Based on these models

statistical selection procedures are applied. Univariate selection and forward selection have been shown to

have problematic performance in highdimensional settings. Therefore we do not show their results in this

work. We focus on presenting the results for ridge regression [9] and lasso regression [10,11] as shrinkage
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methods. Note that lasso regression is a variable selection method as well.

In order to integrate the clinical information and microarray data in survival models properly, it is a

common approach to handle the clinical covariates as unpenalized mandatory variables [3, 12]. In addition

to the genomic information, clinical covariates like age, tumor size and tumor stage may be important

predictors for survival times of patients. These approaches show that the combination of genomic and

clinical information may also improve predictions.

Our aim is the combination of methods for survival prediction with biological a priori knowledge. On real

gene expression data sets we evaluate the potential of including preclustered gene groups as covariates in

survival models. Models built with gene groups alone have equal or decreased prediction accuracy since

many genes are not yet annotated to their corresponding functions. However, we will show that after

adding the preclustering information to the gene groups the resulting models have improved

interpretability while prediction performance remains stable.

In the next chapter we introduce the methods for analyzing survival data, for preclustering genes, for

model selection, and for evaluating the prediction accuracy of the resulting survival models. Then we

present and discuss results on two real gene expression data sets.

Methods

We first present the notation, the Cox model and how the covariates are defined that are used in the Cox

models - especially the preclustering Algorithm is presented. Then we describe the log partial likelihood

concept derived for the Cox model and introduce model selection/shrinkage methods. Since most methods

for dimension reduction or shrinkage require the selection of a tuning parameter that determines the

amount of shrinkage, finally, we describe how to choose the tuning parameter for each method.

Cox model

In the following, we assume that we have a sample size of n patients, and a (possibly right-censored)

survival time for the response. In order to cope with censored survival times data we use the Cox model,

also known as proportional hazards regression model [8]. Cox suggested that the risk of an event (e.g.

cancer recurrence, death or any date of interest) at time t for a patient with given covariate vector

x = (x1, ..., xp) is modeled as

h (t | x) = h0(t) exp (β′x), (1)
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where h0(·) is an arbitrary baseline hazard function and β = (β1, ..., βp) a vector of regression coefficients.

In the classical setting with n > p, the regression coefficients are estimated by maximizing the log partial

likelihood

l (β) =

n∑
i=1

δi

β′xi − log

 ∑
j∈R(ti)

exp (β′xj)

 . (2)

For patient i, this expression contains the possibly censored failure time ti, the (non-censoring-)indicator δi

(equal to 1 if ti is a true survival time and to 0 if it is censored) and the vector of gene (or summarized

gene group) expression values xi.

Further, R(ti) is the risk set at time ti; this is the set of all patients who have not yet failed nor been

censored. The value of β′xi is called prognostic index or risk score of patient i.

Definition of covariates

In the following, we assume that the data consists of two different categories of covariates

(I) clinical covariates Z = (Z1, ..., Zq): e.g. tumor size, tumor grade, age

(II) genomic covariates X = (X1, ..., Xp): gene expression values of single genes or combined gene

expression values for gene groups.

For a detailed analysis we consider three different types of Cox models. We start with the simple model

using only the clinical covariates

h(t | Z) = h0(t) exp (γ′Z). (3)

The second model consists of p genomic covariates X = (X1, ..., Xp). In our genetic regression models we

use single genes, gene groups as well as preclustered gene groups as covariates. A gene group must be

appropriately summarized in order to obtain one representative value for each individual (patient). We

summarize the gene expression measurements from all genes belonging to one GO group or cluster via the

first principle component of all genes that belong to this gene group. In the following we will consider three

types of genomic models:

(i) genes

(ii) groups

(iii) preclustered GO groups.
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In the last step, we combine the genomic models with the clinical model, which can be written as

h(t | X,Z) = h0(t) exp (β′X + γ′Z) (4)

Due to the small number of clinical covariates, the shrinkage and dimension reduction procedures will only

be applied to the genomic covariates.

Preclustering with PAM

In order to find K homogeneous subgroups of genes within one GO group containing N genes, we use the

partitioning around medoids (PAM) cluster analysis (cf. [13]). The PAM procedure is based on the search

for K representative genes, the medoids, among the N genes to be clustered. To achieve the goal of finding

K medoids that minimize the sum of dissimilarities of the genes to their closest medoid

N∑
i=1

min
j=1,...,K

d(i, j), (5)

where d(i, j) is the dissimilarity of the ith and jth gene, the two following steps are carried out iteratively

until convergence, starting with K sequentially selected genes as initial solution:

1. build: Select sequentially K initial clusters and assign each gene to its closest medoid.

2. swap: Minimize the objective function (5) by switching medoids with other genes of the same cluster.

To find correlated subgroups, the dissimilarity

d(i, j) = 1− Cor(xi, xj)

of the ith and jth gene with the gene expressions xi and xj is based on their Pearson correlation. This

yields small dissimilarities between positively correlated genes and large values for negatively correlated

genes, respectively.

The number of clusters K for the PAM algorithm has to be chosen in advance. To find tight clusters of

highly correlated genes, [14] suggest using the Intra Cluster Correlation:

ICC =
2

n(n− 1)

∑
i

Ci.

Here, the values Ci are the elements of the lower triangle of the correlation matrix of the Nj genes within a

single cluster. The maximum mean ICC among the K = 2, . . . , N − 1 possible cluster configurations

corresponds to the optimal number of clusters within one GO group.
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Methods for dimension reduction

For comparing our results to those being published in the literature, we make use of the following two most

established and successful shrinkage procedures: L1 (lasso) and L2 (ridge) penalized regression. Univariate

and forward stepwise selection do not produce satisfactory results for our high dimensional settings. We

have compared these two methods in our analysis, and in agreement with previous results from Boevelstad

et al. [4, 12] prediction performance was always worse (data not shown). We present the methods for the

model containing clinical and genomic information.

L1 (lasso) and L2 (ridge) penalized estimation methods shrink the estimates of the regression coefficients

towards zero relative to the maximum likelihood estimates. Both methods are similar in nature, but the

results of L1 and L2 penalization can be very different. We perform the penalization only on the

high-dimensional genomic covariates, the clinical covariates are handled as unpenalized mandatory

variables.

The lasso shrinks the regression coefficients toward zero by penalizing the absolute values instead of their

squares. The penalized log partial likelihood thus becomes l(β, γ)− λ
∑p

j=1 |βj | [11].

Ridge regression [9] shrinks the regression coefficients by imposing a penalty on their squared values. The

regression coefficients are estimated by maximizing the penalized log partial likelihood l(β, γ)− λ
∑p

j=1 β
2
j ,

where λ
∑p

j=1 β
2
j is the penalty term and l(β, γ) is given by (2). Applying an L2 penalty tends to result in

many small but non-zero regression coefficients, whereas penalizing with the absolute values has the effect

that many regression coefficients are shrunk exactly to zero. Thus the lasso also is a variable selection

method.

We applied both methods using the R package penalized [15]. In both methods the tuning parameter λ

controls the amount of shrinkage and is obtained again by cross-validation.

Choosing the tuning parameter

The model complexity of the prediction methods depends on a tuning parameter λ. We use M -fold

cross-validation as proposed by [16] for estimating λ. The M -fold cross-validated log partial likelihood

(CVPL) is given by

CVPL (λ) =

M∑
m=1

[
l
(
β̂m(λ), γ̂m

)
− lm

(
β̂m(λ), γ̂m

)]
, (6)

where l(β, γ) denotes the log partial likelihood given in (2) and lm(β, γ) the log partial likelihood when the

mth fold (m = 1, ...,M) is left out.
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The difference of the two terms compared in the formula is that in the right term the likelihood is

evaluated without the mth fold, and on the left side it is evaluated with all patients. In both cases the

parameters β and γ are estimated without the mth fold. The estimate of β and γ when the mth fold is left

out is denoted by β̂m and γ̂m. The optimal value of λ is chosen to maximize the sum of the contributions

of each fold to the log partial likelihood.

Evaluation

Next we describe how we evaluate the prediction performance of the models. We make use of three

different model evaluation criteria. The whole procedure is applied to two well-known data sets. The basic

idea is to split the data into a training set for model fitting and a test set for model evaluation, i.e. for

determining the prediction performance. It is important to note that we have to consider several splits of

the data into training and test sets due to the extreme dependence of the results on such a split (cf. [4,17]).

Evaluation Procedure

In order to obtain a fair comparison of the prediction methods, we divide the data 100 times at random in

a training and test set at the ratio of 2 : 1. After computing the optimal tuning parameter λ̂train by 10-fold

cross-validation using the training data, we estimate the regression coefficients β̂train and γ̂train on the

whole training data set. For each split into training data and test data, we calculate on the test set the

three evaluation criteria explained in the next subsections. The results are compared with the help of

boxplots and prediction error curves.

Logrank Test

We assign patients to subgroups based on their prognosis, into one with good and one with bad prognosis.

If the prognostic index β̂xi + γ̂zi of patient i is higher, the survival time is expected to be shorter. For this

reason, a patient i in the test set is assigned to the high-risk group if its prognostic index is above the

median of all prognostic indices calculated on the test set. We apply a logrank test on the two prognostic

groups and use the p-value as an evaluation criterion for the usefulness of the grouping. Boevelstad [4]

points out that a disadvantage of this criterion is that it does not consider the ranking of the patients

within the groups and it may not be biologically meaningful.
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Prognostic Index

The prognostic index β̂xi + γ̂zi is used as a single continuous covariate in a Cox model. We fit the model

hi(t | xi, zi) = h0(t) exp
(
α
(
β̂xi + γ̂zi

))
. Using the likelihood ratio test, we test the null hypothesis α = 0

versus α 6= 0 and assess the prediction performance with the obtained p-value. A small p-value indicates

ability of the prognostic index to discriminate between short and long survivors.

Brier Score

The prediction performance can also be assessed based on the (integrated) Brier Score that was introduced

by [5] in survival context. The consistent estimate of the expected Brier Score BS(t) is defined as a

function of time t > 0 by

BS(t) =
1

n

n∑
i=1

[
Ŝ(t | Xi, Zi)

2 · 1(ti ≤ t ∧ δi = 1)

Ĝ(ti)
(7)

+
(1− Ŝ(t | Xi, Zi))

2 · 1(ti > t)

Ĝ(t)

]
,

where Ŝ(· | Xi, Zi) stands for the estimated survival for patient i and Ĝ denotes the Kaplan-Meier estimate

of the censoring distribution. The estimation of Ŝ(· | Xi, Zi) is performed via the Breslow estimator of the

cumulative baseline hazard function (see, e.g., [18], Chapter 8.8). Good predictions at time t are reflected

by small Brier Scores. Note that the Brier Score BS(t) is dependent on the point in time t. The integrated

Brier Score IBS, given by

IBS =
1

t∗

∫ t∗

0

BS(t)dt, (8)

is a score for the average prediction performance for all time points in the interval [0, t∗]. In accordance

with [6], we calculate the IBS for the two data sets for t∗ = 10 years due to high censoring after 10 years of

survival.

Results

For investigating the relationship between microarray gene expression data and censored survival data, we

analyze two published breast cancer data sets with the methods described above. In this section, we

present the results for the evaluation procedure applied to these two data sets. Standard approaches focus

on single genes as covariates [1, 4, 19]. We integrate additional biological knowledge by building models

with preclustered GO groups as covariates. In order to assess the merit of this approach, we also present

results for models using only genes or only GO groups as explanatory variables and combine the genomic
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information with the clinical data. In order to obtain a fair comparison of models with different types of

genomic covariates, we only use those genes that are annotated to GO groups. We have to consider several

splits of the data into training and test set due to the dependence of the results on such a split. We first

present detailed results for one specific random split, then we present comprehensive results summarizing

100 random splits.

At this point we want to highlight that the proposed methods are computationally intensive. Due to the

nested cross-validation procedure for obtaining the optimal tuning parameter λ and the preclustering

approach, we performed all computations on the LiDOng high performance computing cluster of TU

Dortmund University with 432 nodes and up to 64 GB RAM per node. The calculation takes several weeks

to accumulate all results for one high dimensional data set.

Data sets

The Dutch breast cancer (DBC) data set is a subset of the original data set with 24 885 gene

expression measurements from n = 295 women with breast cancer [20]. After data pre-processing as

proposed by [21] our analysis is performed with 1 890 genes, that are annotated to at least one GO group,

according to the biological process ontology. We obtained the data from the website

https://www.msbi.nl/dnn/People/Houwelingen.aspx. In total, there are 5 560 GO groups to which at least

one of these genes is annotated. The mean number of genes included in these GO groups is approximately

17 genes, 90% of all GO groups contain at most 30 genes. For 79 patients an event was observed. The

clinical covariates are age, size, nodes and grade.

The Mainz cohort (MC) study consists of n = 200 node-negative breast cancer patients who were

treated at the Department of Obstetrics and Gynecology of the Johannes Gutenberg University Mainz

between the years 1988 and 1998 [22]. All patients underwent surgery and did not receive any systemic

therapy in the adjuvant setting. Gene expression profiling of the patients’ RNA was performed using the

Affymetrix HG-U133A array, containing 22 283 probe sets, and the GeneChip System. The normalization

of the raw data was done using RMA from the Bioconductor package affy. The raw .cel files are deposited

at the NCBI GEO data repository with accession number GSE11121. For covariates in the survival models,

17 834 genes and 8 587 GO groups are available. The mean number of genes included in these GO groups is

approximately 102 genes, 90% of all GO groups contain at most 146 genes. There have been 47 events

observed. The clinical data covers age at diagnosis, tumor size and grade as well as the estrogen receptor

status.
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Exemplary analysis: One split into training and test data

We apply the model selection methods and three evaluation criteria to one specific random split of the

Mainz cohort study into training and test data. Model building and evaluation are performed as explained

in the evaluation procedure section. We split the 200 breast cancer patients into training set and test set,

where 2/3 of the patients (in this case 133) are assigned to the training set and 1/3 (here 67) to the test

set. We use the training data for estimating the tuning parameter λ̂train and the regression coefficients

β̂train and γ̂train and the test data for evaluation. Table 1 shows the results for the two prediction methods,

using genes, GO groups, or preclustered gene groups as covariates.

This example indicates that the predictive performance of models built with GO groups alone and of

models with preclustered GO groups is comparable with classical models using only genes as covariates.

The p-values for model assessment are similar, but in addition, we have more information in the final

model; annotations of preclustered GO groups can help clinicians to investigate the selected genes

according to their biological function.

For illustration of the results presented in Table 1 we show Kaplan-Meier curves for two prognostic groups

of patients derived by dividing all patients according to the median prognostic index of the patients in the

test set. Here we used lasso regression for model selection and the logrank test for evaluation. We compare

models with genes, GO groups, and preclustered GO groups as covariates (see Figure 1).

For all three types of genomic covariates the two prognostic groups are clearly separated on the test data,

with significant differences in overall survival (p < 0.02) between the high-risk group and the low-risk

group. The separation between the two groups is best when using a model containing preclustered GO

groups (p = 0.0092).

Comprehensive analysis: 100 splits into training and test data

We have observed high variability of the chosen tuning parameters and the parameter estimates depending

on the split into training and test data. In order to quantify which covariates are consistently selected in

different splits and how stable the evaluation measures are, we calculated results for 100 random splits and

compared the selected genes and GO groups.

In Figures 2 (DBC) and 3 (MC), we present boxplots for the results for the two cancer data sets, after

applying the evaluation procedure for lasso and ridge regression for each of the three types of genomic

covariates (genes, GO groups, preclustered GO groups). Results for the clinical model are presented as a

reference.

10



Rows of the plots correspond to two model evaluation criteria, the prognostic index and the Integrated

Brier Score, and the columns correspond to two types of models: the genomic model and the genomic

model with clinical covariates. Results for the logrank test are nearly the same as for the prognostic index

and therefore not shown here. In each plot we show the results for the two model selection methods. The

p-values for the prognostic index are shown on the − log10 scale, thus a value of 2, e.g., corresponds to a

p-value of 0.01. Small values for the integrated Brier Score correspond to good prediction performance. For

both evaluation criteria in all plots the horizontal line at the median indicates the reference model

containing only clinical information.

The following main statements can be deduced from the plots:

• Lasso regression with preclustered GO groups has the best prediction performance for the DBC data

set, see the median of the p-values across 100 splits in Figure 2. In the Mainz cohort study, we see

the same result for the genomic model using the Brier Score for evaluation (see Figure 3).

• Methods using GO groups or preclustered GO groups as covariates perform in general as well as

models using only genes.

• The prognostic index and the Brier Score yield similar results.

• It is noticeable that for the MC study and prognostic index as performance measure the model using

only genomic information is worse than the clinical model (Figure 3, upper left), but the

clinical-genomic model is comparable to the clinical model.

The optimal tuning parameter varies considerably between the splits. The interquartile range for the

number of chosen covariates for L1 regression and for all three different types of covariates ranges

approximately from 5 to 12 for the Mainz cohort study and from 3 and 20 for the DBC data set (see

Figure 4). There is a higher variance on the number of chosen covariates for the DBC data set.

Next, we have a closer look at the run of the curves of the Brier Score over time for L1 models with

preclustered GO groups in comparison to the other models. Prediction error curves [5, 23] (averaged values

for the Brier Score calculated at each time point for 100 splits) for models with the three different types of

genomic covariates are shown in Figure 5 and 6 for the DBC data set and the MC study, respectively. The

performance of the clinical model serves as reference. For both data sets, the model with preclustered GO

groups has in comparison with the clinical model a better prediction performance over time. The
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preclustered models outperform the clinical models, starting at four years for the DBC data set and at

three years for the MC study. The other two genomic models are also inferior to the preclustered models.

Furthermore, we investigate which preclustered groups are most frequently selected across all 100 splits.

Table 2 contains the numbers of the most frequently selected covariates, the corresponding GO groups with

GO IDs [7] and further information concerning the medoid gene, the cluster size and the annotation for the

GO groups that are helpful for the biologist. We observe that most of the chosen cluster are subgroups of

large GO groups and consist of more 100 genes. The value of the effect indicates whether a high value of

the corresponding covariate has an increasing (+1) or decreasing (−1) influence on patients’ risk to die.

For a detailed analysis of the effects the boxplots in Figure 7 show the variation of the estimated regression

coefficients in the cox regression model for the most frequently chosen clusters, represented via medoid

genes. First of all, the direction of the effect among all splits into training and test data is stable. From

this it follows that a detected cluster has a consistent effect on patients’ survival - either positive or

negative. The first two clusters (from GO:0043170 and GO:0007049) shown in Table 2 are chosen in more

than 80 percent of the splits into training and test data. Their parameter estimates are negative, i.e. high

expression values of the included genes lead to reduced risk to die and thus to longer survival.

Discussion

The typical challenge when relating survival times to gene expression measurements is a relatively small

number of individuals compared to a large number of predictors. In this case the use of classical approaches

is not possible. In accordance with [4], the lasso regression method seems most suitable and promising: its

prediction performance is slightly better compared to ridge regression and the solution is sparse. [4] and [12]

show that ridge regression performs better than all the other methods. In our analysis, ridge regression

leads in general to comparable but not better results compared to the lasso. However, an important

disadvantage of this method is that it does not select variables. We observe relevant differences between

high-risk and low-risk patients, but there are too many genes or GO groups to be further investigated.

The preclustering approach is beneficial concerning prediction performance in the lasso setting and leads to

comparable results in the other models. However, a main benefit of preclustering is that we detect genes

with similar expression patterns and that these gene subgroups are correlated with survival. In addition,

we can have a detailed view on the GO groups containing the preclustered subgroups. Table 2 shows that

the cluster sizes as well as the corresponding GO groups are quite large. However, in this case the selection

of the top 4 clusters is quite stable. For gaining further biological insight a more detailed analysis of the
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composition of these clusters is required and promising.

In terms of the Brier Score, we showed that the prediction performance of models using clinical, genomic or

both information is comparable. It seems that these different kind of covariates contain an overlap of

information for predicting survival.

Conclusions

Our comparative study shows that different model selection procedures can be used to identify genes and

(preclustered) GO groups related to survival outcomes and to build models for predicting survival times of

future patients.

The integration of GO groups is useful, since they contain aggregated information of biological function

and thus are often more informative than single genes. It is encouraging that in terms of prediction

performance, our results obtained with (preclustered) GO groups as predictors are comparable to those

using only genes as predictors. Thus the potentially improved interpretability makes these models with GO

groups competitive. We demonstrated that this result holds true also for models using GO groups and not

only genes. Our agenda in the present work was:

• Constructing models with a relatively small subset of relevant covariates that are enriched with

additional gene group information in terms of the Gene Ontology.

• Presenting a new approach of preclustering genes from one functional group due to different

expression profiles within one GO group.

• Comparing prediction rules for the three types of covariates (genes, gene groups, preclustered gene

groups).

• Adding clinical information and comparing the results to single use of genomic data.

The next step for improving our models is to integrate more detailed information concerning the

hierarchically structured gene ontology. For coping with high correlations between GO groups one can

follow the approach of [24] where correlations between neighboring GO groups in the GO graph are

iteratively removed. Finally, in future projects, the biological interpretation of the identified gene groups

will include not only the interpretation of the (preclustered) GO groups according to overall function, but

it is also helpful to take a closer look at the single genes contained in these gene groups.
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Figures
Figure 1 - Kaplan-Meier curves for the high-risk and low-risk groups

Kaplan-Meier curves for the high-risk and low-risk groups defined by the estimated prognostic indices of

the 67 patients in the test data set, the cutoff is defined as the median prognostic index on the test data.

Genes, GO groups, and preclustered GO groups are used as covariates, respectively, and lasso regression is

applied as model selection method.

Figure 2 - Results: Dutch breast cancer data set

The boxplots show results for lasso and ridge regression applied to 100 training/test splits for genes, GO

groups, and preclustered GO groups for the Dutch breast cancer data set. P -values of the prognostic index

are presented on − log10 scale. A small value of a criterion corresponds to a good prediction performance.

The Brier Scores are calculated for 10 years follow-up. Small values of the Integrated Brier Score

correspond to good prediction performance. L1 =̂ lasso regression, L2 =̂ ridge regression.

Figure 3 - Results: Mainz cohort study

The boxplots show results for lasso and ridge regression applied to 100 training/test splits for genes, GO

groups, and preclustered GO groups for the Mainz cohort study. P -values of the prognostic index are

presented on − log10 scale. A small value of a criterion corresponds to a good prediction performance. The

Brier Scores are calculated for 10 years follow-up. Small values of the Integrated Brier Score correspond to

good prediction performance. L1 =̂ lasso regression, L2 =̂ ridge regression.

Figure 4 - Number of selected covariates

Boxplots showing the number of selected covariates for lasso regression, 100 training/test splits, models

with genes, GO groups and preclustered GO groups, applied to the Mainz cohort study (MC) and the

Dutch breast cancer data set (DBC).
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Figure 5 - Prediction error curves: Dutch breast cancer data set

Prediction error curves for the DBC data set for L1 evaluation procedure. We show averaged values for the

Brier Score calculated at each time point for 100 splits for models with the three different types of genomic

covariates and the clinical model. A better prediction performance leads to lower curves.

Figure 6 - Prediction error curves: Mainz cohort study

Prediction error curves for the MC for L1 evaluation procedure. We show averaged values for the Brier

Score calculated at each time point for 100 splits for models with the three different types of genomic

covariates and the clinical model. A better prediction performance leads to lower curves.

Figure 7 - Variation of estimated regression coefficients

Boxplots show variation of estimated regression coefficients in the cox regression model for the most

frequently chosen clusters from Table 2, represented via medoid genes.

Tables
Table 1 - One random split into training and test data for the Mainz cohort study

Results for the two prediction methods using (i) genes, (ii) GO groups, and (iii) preclustered GO groups.

For ridge regression, nearly all covariates are kept in the model since parameter estimates are unlikely to

get shrunken exactly to 0. LR =̂ logrank test, PI =̂ prognostic index, IBS =̂ Integrated Brier Score, sel.cov

=̂ number of selected covariates.

Method Covariates pLR pPI pIBS λ sel.cov
L1 genes 0.0190 0.0017 0.1042 11.72 19
L1 GO 0.0176 0.0018 0.1103 10.75 16
L1 clustered 0.0092 0.0002 0.0830 28.53 5
L2 genes 0.0098 0.0003 0.0877 5112.08 17834
L2 GO 0.0541 0.0097 0.1022 11749.16 6530
L2 clustered 0.0690 0.0006 0.0896 96499.04 31229

Table 2 - Top 10 selected covariates for preclustered GO-groups according to 100 splits into training
and test data

Names are GenBank IDs for the medoid genes and GO IDs for GO groups [7]. The first column

corresponds to the selected number for the covariate across 100 splits into training and test data for L1

regression on the Mainz cohort study. The value of the effect indicates whether the covariate has an

increasing(+1) or decreasing (−1) effect on patients’ risk to die.
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count GO effect medoid clustersize annotation
85 GO:0043170 −1 209258 s at 410 macromolecule metabolic process
81 GO:0007049 −1 210052 s at 222 cell cycle
74 GO:0050896 +1 211908 x at 102 response to stimulus
52 GO:0032501 +1 212195 at 310 multicellular organismal process
40 GO:0032501 +1 210935 s at 362 multicellular organismal process
21 GO:0050794 +1 210417 s at 312 regulation of cellular process
18 GO:0043170 −1 211693 at 434 macromolecule metabolic process
18 GO:0050896 +1 204118 at 230 response to stimulus
16 GO:0006952 +1 203535 at 27 defense response
15 GO:0042221 −1 219140 s at 39 response to chemical stimulus
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