
Feature Selection for
High-Dimensional Data with

RapidMiner

Te
ch

ni
ca

lR
ep

or
t Sangkyun Lee, Benjamin

Schowe, and Viswanath
Sivakumar

01/2011

technische universität

dortmund

Part of the work on this technical report has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 "Providing
Information by Resource-Constrained Analysis", project C1.

Speaker: Prof. Dr. Katharina Morik
Address: TU Dortmund University

Joseph-von-Fraunhofer-Str. 23
D-44227 Dortmund

Web: http://sfb876.tu-dortmund.de

http://sfb876.tu-dortmund.de

Abstract

Feature selection is an important task in machine learning, reducing dimension-
ality of learning problems by selecting few relevant features without losing too much
information. Focusing on smaller sets of features, we can learn simpler models from
data that are easier to understand and to apply. In fact, simpler models are more
robust to input noise and outliers, often leading to better prediction performance
than the models trained in higher dimensions with all features. We implement sev-
eral feature selection algorithms in an extension of RapidMiner, that scale well
with the number of features compared to the existing feature selection operators in
RapidMiner.

1

Contents
Page

1 Introduction 3

2 Filter Feature Selection Methods 6
2.1 Univariate Filters . 6

2.1.1 Pearson’s Correlation . 6
2.1.2 F -Statistic . 6
2.1.3 Mutual Information . 7
2.1.4 Welch’s t-Test . 7
2.1.5 Significance Analysis for Microarrays (SAM) 7

2.2 Multivariate Filters . 8
2.2.1 Prediction Analysis for Microarrays (PAM) 8
2.2.2 Correlation-Based Feature Selection (CFS) and Minimum Redun-

dancy Maximum Relevance (MRMR) 9
2.2.3 Fast Correlation-Based Filter (FCBF) 10
2.2.4 Backward Elimination via Hilbert-Schmidt Independence Criterion

(BAHSIC) . 11
2.2.5 Dense Relevant Attribute Group Selector (DRAGS) 12
2.2.6 Consensus Group Stable Feature Selector (CGS) 13

3 Wrapper Feature Selection Methods 14
3.1 Recursive Feature Elimination using SVM (SVM-REF) 14

4 Embedded Feature Selection Methods 15
4.1 Least Angle Regression (LASSO and LARS) 15

5 Stable Feature Selection Methods 16
5.1 Stability Measures . 16
5.2 Ensemble Methods . 17

6 Utility Operators 18

7 Experiments 19
7.1 Performance Improvement . 19
7.2 Filter and Wrapper Approaches . 19
7.3 Benchmark of Multivariate Filter Methods 21
7.4 Stable Feature Selection . 22

8 Conclusion 22

2

1 Introduction

Feature selection is a task of identifying relevant subsets of features for making accurate
prediction. The number of features translates to the dimensionality of data, and high
dimensionality makes data mining challenging in several aspects:

• The higher the dimension is, the more complicated models are typically required to
fit the data, that are harder to comprehend for human eyes.

• A larger number of samples is required to produce statistically stable learning mod-
els in higher dimension. For instance, a binary classification task in p dimensional
space would require O(2p) samples to learn a PAC hypothesis without any inductive
bias (Mitchell, 1997).

• High dimensionality often entails high variance, leading to unstable learning out-
comes. (Saeys et al., 2008; Kalousis et al., 2007).

• More computation is required to deal with larger dimensions.

Feature selection provides effective ways to discover relevant features for many learning
tasks. Using only the relevant features, we can perform data mining in reduced spaces,
thereby producing more stable learning models (which often leads to more accurate pre-
diction) in shorter time. Such models are also easier to understand and to apply.

Types of Feature Selection Methods There are many feature selection algorithms with
numerous ways to measure relevance and redundancy of features and with different com-
putational requirements. We broadly categorize them into three types:

• Filter Methods: Filters select features by ranking them according to certain scoring
schemes. They are also known as the variable ranking methods, which are simple
and scale well with dimensions and the number of samples. There exist two types of
filters, univariate andmultivariate. Univariate filters treat each feature individually,
whereas multivariate filters take care of interactions among features. Examples :
t-test and correlation-based filters (univariate); MRMR (multivariate) (Ding and
Peng, 2003).

• Wrapper Methods: A wrapper assesses subsets of features against a certain useful-
ness criterion using a given predictor. Subset selection is performed separately from
training, and thus any off-the-shelf machine learning algorithm can be used as a
predictor. Exact subset search is known to be NP-hard, but a wide range of subset
search strategies can be adopted, including best-first, branch-and-bound, simulated
annealing, genetic algorithms (for a review, see Kohavi and John (1997)). Among
these, greedy search strategies are computationally advantageous and robust against
overfitting, which comes in two flavors: forward selection and backward elimination.
Forward selection methods incorporate features progressively into growing subsets,
whereas backward elimination methods start from all features and progressively
eliminate the least promising ones (Guyon and Elisseeff, 2003). Examples : genetic
algorithms (Mierswa and Wurst, 2006) and SVM-RFE (Guyon et al., 2002).

3

• Embedded Methods: Embedded methods are similar to the wrapper approaches,
finding subsets of features by optimizing certain goodness criteria. However, em-
bedded methods perform feature selection as a part of training, not separately to
it as in wrappers. Therefore we can make better use of training data, since no sep-
arate validation set is needed to evaluate subsets; also, training can be done much
faster since we can avoid training a predictor again from scratch for every subset.
Examples : LASSO (Tibshirani, 1996) and `1-regularized logistic regression (Ng,
2004).

We note that there are two different goals in feature selection: to achieve concise rep-
resentation of the data (unsupervised feature selection), or to make efficient predictions
(supervised feature selection). Clustering and matrix factorization algorithms can be used
for unsupervised feature selection, which tends to be more robust to overfitting than the
supervised counterpart. In this paper we focus on supervised feature selection. Please
refer to Guyon and Elisseeff (2003) for more discussion on unsupervised cases.

Redundancy of Features: Somewhat contrary to our intuition, it is not trivial to deter-
mine “redundancy” of features. We present some examples that are illustrated in Guyon
and Elisseeff (2003):

• Independent and identically distributed features are not always redundant.

• Perfect correlation between features means that they are truly redundant, since no
additional information is gained by adding the other. However, when the correlation
is not perfect, even very high correlation (or anti-correlation) does not always mean
that the features are redundant.

Also, when we have many features, it is very tempting to reduce their number by first
applying a filter method before considering more complicated approaches. However, one
could potentially lose some important features in that way, since:

• A feature that is completely useless by itself can provide significant performance
gain when taken with others.

• Two features that are useless by themselves can be useful together.

In this paper we describe the feature selection methods that we implement in an extension
of RapidMiner, called the Feature Selection Extension. We implement feature selection
algorithms that are preferable for the cases where the number of features is large. For
this reason we exclude the wrapper approaches from our consideration, except for the
SVM-REF (Guyon et al., 2002) because of its popularity in bioinformatics.

This paper is built up as follows. In Section 2, 3, 4, we discuss the filter, the wrapper,
and the embedded feature selection approaches in turn. The idea of obtaining stable
feature sets is presented in Section 5, which is especially important when we have only
small samples; we provide an ensemble method to select stable feature subsets. Some
utility functions are introduced in Section 6, which can help speed up performing feature
selection. Finally we present some numerical experiments illustrating the benefits of our
software in Section 7.

4

Terminology and Notations The terms features, attributes, and variables are regarded
to have the same meaning. We use the symbols xk ∈ Rp and yk ∈ R to denote an input
feature vector and its label respectively, for the k-th instance in a data set, k = 1, 2, . . . , n.
We use xk(i) ∈ R to denote the i-th feature of the input vector xk for i = 1, 2, . . . , p, and
x(i) ∈ Rn to represent the i-th feature vector of the n examples. For a finite set C, we
denote by |C| the cardinality of the set C. When the samples are from two categories, we
denote the sets of sample indices belong to each category by P and N . Finally we show
the names of software objects/operators in small capitals.

5

2 Filter Feature Selection Methods

We present the filter feature selection methods that we implement in our software.

2.1 Univariate Filters

Univariate filters rank features according to certain scoring schemes treating each feature
individually, and thus simple and fast, although selected features may not produce the
most accurate prediction. Scoring functions have to be chosen depending on data types,
i.e., whether the features and the label have numerical (continuous) or nominal (discrete)
values. Also, scoring functions may produce statistics in different scales, therefore it is
desirable to normalize features when a data set contains both nominal and numerical
features (Ding and Peng, 2003; Hall, 2000).

In the following, we describe the scoring functions in such ways to measure the relevance
of a feature with respect to the class label. Note that the same definitions can be used to
measure redundancy between two features, by replacing the label with another feature.

2.1.1 Pearson’s Correlation

When both the feature and the label are numerical, we measure the linear dependency
of them by Pearson’s correlation coefficient, which can be estimated by

R(i) =

n∑
k=1

[xk(i)− x̄(i)][yk − ȳ]√
n∑
k=1

[xk(i)− x̄(i)]2

√
n∑
k=1

[yk − ȳ]2

. (1)

Here x̄(i) := 1
n

∑n
k=1 xk(i) and ȳ := 1

n

∑n
k=1 yk. The value of R(i)2 represents the fraction

of the total variation around the mean ȳ that is explained by the linear relation between
the i-th feature and the labels (Guyon and Elisseeff, 2003). The features with high R(i)2

values are chosen as relevant features.

2.1.2 F -Statistic

When the feature is numerical but the label has one of C different nominal values, we
can compute the F -statistic of them as follows:

F (i) :=

C∑
c=1

|Gc|(x̄c(i)− x̄(i))2/(C − 1)

C∑
c=1

∑
k∈Gc

(xk(i)− x̄c(i))2/(n− C)

, (2)

where Gc is the partition of sample indices {1, 2, . . . , n} that belongs to the group indexed
by c, and x̄c(i) := 1

|Gc|
∑

k∈Gc xk(i). This statistic represents the ratio of the variance

6

between groups and the average variance within the groups. Higher values imply larger
relevance.

2.1.3 Mutual Information

If both the feature and the label are nominal-valued, we use the mutual information to
measure the shared information between two random variables (a feature and the label):

MI(i) =
∑
x(i)

∑
y

P(X = x(i), Y = y) log
P(X = x(i), Y = y)

P(X = x(i))P(y)
,

where x(i) and y represent the realizations of the i-th feature and the label in data,
respectively. Higher values imply larger relevance.

Operator: Pearson’s correlation, F -statistic, and mutual information scoring functions
are implemented in the operator Weight by Maximum Relevance. It creates the
scores of given features, choosing a suitable scoring function for the type of the data.

2.1.4 Welch’s t-Test

Welch’s t-test is a generalization of Student’s t-test for the cases when the variance of two
sample populations are not equal (Sawilowsky, 2002). The t-statistic of the i-th feature
for testing the difference of two sample means (corresponding to the two classes denoted
by P and N) in Welch’s test is defined by

t(i) :=
x̄P(i)− x̄N (i)√

1
|P|
∑
k∈P

[xk(i)− x̄P(i)]2 + 1
|N |
∑
k∈N

[xk(i)− x̄N (i)]2
, (3)

where x̄P(i) := 1
|P|
∑

k∈P xk(i) and x̄N (i) := 1
|N |
∑

k∈N xk(i).

Operator: The Weight by Welch-test operator computes the p-value of each fea-
ture using two-sided, two-sample Welch’s t-test. (This operator is implemented by Miriam
Bützken.) Features with smaller p-values are preferred for selection. The degree of free-
dom values are estimated from data.

2.1.5 Significance Analysis for Microarrays (SAM)

For high dimensional microarray data in bioinformatics, Tusher et al. (2001) suggested
the Significance Analysis for Microarrays (SAM) to identify genes with significant changes
in their expression, assimilating a set of gene-specific t-tests. To measure gene-specific
fluctuations, SAM defines relative difference measure d(i) for the i-th gene as follows:

d(i) :=
x̄P(i)− x̄N (i)

si + s0
,

7

where x̄P(i) and x̄N (i) are the average levels of expression of gene i corresponding to the
groups P and N , respectively. The si in the denominator represents the gene-specific
scatter which is defined by

si :=

√√√√ |P|+ |N |
|P||N |(|P|+ |N | − 2)

(∑
k∈P

[xk(i)− x̄P(i)]2 +
∑
k∈N

[xk(i)− x̄N (i)]2

)
.

The parameter s0 is chosen to make the variance of d(i) independent of gene expression.

Operator: The SAM is implemented in the Weight by SAM operator, which returns
the magnitude of the relative difference values for genes.

2.2 Multivariate Filters

Multivariate filters take the interaction among features into account, in order to overcome
the restriction of univariate filters that only consider individual effects of features. We
present several methods in chronological order.

2.2.1 Prediction Analysis for Microarrays (PAM)

The Prediction Analysis for Microarrays (PAM) (Tibshirani et al., 2002) is a method
of shrunken centroids, performing feature selection and classification using the nearest
centroids.

Suppose that Gc ⊂ {1, 2, . . . , n} denotes the sample indices belong to the class c, for
c = 1, 2, . . . , C. Then the centroid for class c is defined by x̄c := 1

|Gc|
∑

k∈Gc xk, which is
the mean expression vector of class c. The overall centroid is defined by x̄ := 1

n

∑n
k=1 xk.

PAM shrinks the class centroids toward the overall centroid, after standardizing each gene
by within-class standard deviation, to give higher weight to genes with stable expression
within the samples of the same class. This is done by computing the standardized distance
between the centroid of class c to the overall centroid for gene i:

dc(i) :=
x̄c(i)− x̄(i)

mc(si + s0)

where si is the pooled within-class standard deviation for gene i:

s2i :=
1

n− |Gc|

C∑
c=1

∑
k∈Gc

(xk(i)− x̄c(i))
2, mc :=

√
1/|Gc|+ 1/n.

The value of s0 is set to the median value of the si values over genes, which is introduced
to avoid large dc(i) values arising by chance from genes with low expression levels. The
expression above can be rewritten as

x̄c(i) = x̄(i) +mc(si + s0)dc(i).

8

PAM shrinks each dc(i) toward zero via soft thresholding, i.e., dc(i)′ := sign(dc(i)) max{|dc(i)|−
∆, 0}, producing shrunken centroids:

x̄c(i)
′ = x̄(i) +mc(si + s0)dc(i)

′.

The shrinkage parameter ∆ > 0 is provided by users. For gene i, if dc(i) is shrunken
to zero for all classes c = 1, 2, . . . , C, then the gene is considered to be removed, since
the centroid for gene i becomes the overall centroid x̄(i), the same for all classes, and no
longer contributes to the nearest-centroid computation.

Test examples are classified using the nearest shrunken centroid. For an example x, the
decision function is defined for class c,

δc(x) :=

p∑
i=1

x(i)− x̄c(i)
′

(si + s0)2
− 2 log πc,

where the second term is a correction based on the class prior probability πc, which can
be estimated by π̂c = |Gc|/n. The class c that gives the smallest δc(x) becomes the
prediction outcome.

Operator: PAM is implemented in the Shrunken Centroids / PAM - Prediction
Analysis for Microarrays operator. The operator requires numerical inputs, and
outputs the original ExampleSet, an AttributeWeights object, a Prediction-
Model and the class weights. The weight of an attribute contains the number of classes
for which the attribute is relevant, i.e., the number of classes for which the class cen-
troid of the attribute does not match the overall centroid. The class weight contains the
distance dc(i) values of i-th feature for each class c.

2.2.2 Correlation-Based Feature Selection (CFS) and Minimum Redundancy Maximum
Relevance (MRMR)

The Correlation-Based Feature Selection (CFS) (Hall, 2000) and the Minimum Redun-
dancy Maximum Relevance (MRMR) (Ding and Peng, 2003) methods perform a se-
quential forward search, evaluating features with a correlation based or an information
theoretic measure, respectively. They iteratively augment the set of chosen features S,
adding the best feature according to a quality criterion Q in each iteration:

S` = S`−1 ∪

{
arg max

i∈{1,2,...,p}\S`−1

Q(i)

}
, ` ≥ 1,

with S0 = ∅, where Q(i) is either the difference

QMID(i) = Relevance(i)− 1

`

∑
j∈S`

Redundancy(i, j)

or the ratio between relevance and average pairwise redundancy of a feature:

QMIQ(i) =
Relevance(i)

1
`

∑
j∈S` Redundancy(i, j)

.

9

The Relevance(·) and Redundancy(·, ·) functions automatically map to one of the scoring
functions (1), (2) or (3), depending on the types of provided data (nominal/numerical).

Operator: The operator Select by MRMR / CFS implements these algorithms.
Additionally, the operator has an option to produce stabilized selection results via a fast
ensemble technique discussed later in Section 5, which bootstraps the selection process
for e times to decrease the variance of the results. The operator returns the original
ExampleSet and an AttributeWeights object where the weights of selected features
are set to one, and the rest are set to the zero value.

Remarks: The QMID and QMIQ functions are used in other operators as well. For in-
stance, the operators Performance (MRMR) and Performance (CFS) use the
two functions to evaluate feature subsets, possibly in a Optimize Selection loop. The
Performance (MRMR) operator also provides relevance and redundancy information
as separate outputs, so that users can perform multi-objective optimization. To avoid
multiple evaluations for the same features, users can create an MRMR-Cache object
using the MRMR Cache Creator.

2.2.3 Fast Correlation-Based Filter (FCBF)

The Fast Correlation-Based Filter (FCBF) (Lei Yu, 2004) consists of two steps, one for
choosing relevant features, and the other for removing redundant ones from the subset
selected in the previous step.

To evaluate the relevance and the redundancy of features, FCBF uses the symmetrical
uncertainty (SU) measure, which is the information gain of a random variable X provided
by another random variable Y , normalized by the summation of their entropy values, i.e.,

SU(X, Y) := 2
H(X)−H(X|Y)

H(X) +H(Y)
.

The SU value of one indicates perfect correlation between features, whereas the value of
zero represents independence of them. We can define the relevance of the i-th feature
with respect to the class c by SU(i, c), and the redundancy between two features indexed
by i and j by SU(i, j). FCBF first choose all features that have relevance values higher
than a pre-defined threshold (between 0 and 1). Then, among the selected features,
FCBF removes redundant ones that have approximate Markov blankets in the remaining
features. For two relevant features indexed by i and j, the j-th feature is defined to form
an approximate Markov blanket for the i-th feature if and only if SU(j, c) ≥ SU(i, c) and
SU(i, j) ≥ SU(i, c).

Operator: This approach is implemented in FCBF - Fast Correlation Based
Filter operator. The operator takes nominal inputs, and outputs the original in-
put ExampleSet, an ExampleSet with only the selected attributes, and an At-
tributeWeights object. (Users can discretize their inputs using the Discretize by

10

Entropy operator in RapidMiner if necessary.) A threshold parameter is used to
determine the relevance of features.

2.2.4 Backward Elimination via Hilbert-Schmidt Independence Criterion (BAHSIC)

The Backward Elimination via Hilbert-Schmidt Independence Criterion (BAHSIC) (Song
et al., 2007a,b) considers feature selection using a relevance statistic defined in the Hilbert
space, which can be estimated efficiently with a small number of samples.

Let us consider two domains X and Y where we draw samples and labels respectively.
Given feature mappings φ : X → H and ψ : Y → H′, we define a cross-covariance
operator Cxy : H′ → H between feature maps, that is,

Cxy = Exy{(φ(x)− Ex[φ(x)])⊗ (ψ(y)− Ey[ψ(y)])}

where ⊗ is the tensor product. The square of the Hilbert-Schmidt norm of the cross-
covariance operator (HSIC), ‖Cxy‖2HS, is then used to evaluate the relevance of a feature
x to the label y. Given samples Z = {(x1, y1), . . . , (xn, yn)}, an unbiased estimate of
HSIC can be computed by

HSIC(H,H′, Z) =
1

n(n− 3)

[
tr(KL) +

1TK11TL1

(n− 1)(n− 2)
− 2

n− 2
1TKL1

]
,

where K and L are kernel matrices with zero diagonals, computed by Kij = (1 −
δij)〈φ(xi), φ(yj)〉 and Lij = (1 − δij)〈ψ(yi), ψ(yj)〉 (δij = 1 if i = j, and zero other-
wise). When all kernel entries are bounded by one almost everywhere, we can show
that the gap between the estimate and the true value is bounded by 8

√
log(2/δ)/n with

probability at least 1− δ, for n ≥ 1 and δ > 0.

Feature selection is performed by backward elimination, starting with all features and
removing features progressively. In each iteration, the algorithm removes features of a
pre-specified fraction such that if they are removed, the HSIC evaluated on the remain-
ing features will be maximized. The algorithm repeats this process until there will be
no features left, adding the removed features to a list in order. The most recently added
feature in this list provide the most relevant ones. Optionally, the parameters for the in-
put/output kernels can be optimized in each elimination step by grid search, to maximize
the HSIC score on the current set of remaining features.

Operator: The operator Backward Elimination via Hilbert-Schmidt Indepen-
dence Criterion implements this algorithm. The operator requires numerical input
(the Nominal to Numerical in RapidMiner can be used if required, making sure
that ‘include special attributes’ is checked to include labels). The operator outputs the
original input ExampleSet, an ExampleSet with only the selected attributes, and
an AttributeWeights object, which contains the ranks of features according to their
relevance if the ranks are higher than a specified value; otherwise the weights are set to
zero.

11

Remarks: The operator supports liner, radial, polynomial, neural, anova, epachnenikov,
Gaussian combination and multi-quadratic kernels. It also supports multi-label Exam-
pleSets. The parameters kernelx type and kernely type denote the kernels to be
used for the features and the labels respectively. Depending on the types of kernels, users
can specify kernel parameter values or let the parameters be optimized by grid search
within a specified range.

2.2.5 Dense Relevant Attribute Group Selector (DRAGS)

The Dense Relevant Attribute Group Selector (DRAGS) (Yu et al., 2008) finds all rele-
vant features without removing highly correlated ones. This is done by identifying dense
feature regions using the kernel density estimation (known as the Parzen window), select-
ing the dense regions that are relevant for classification. This helps improve the stability
of feature selection in terms of input and dimension sampling.

To identify the dense feature regions, for given samples {x1,x2, . . . ,xn} ⊂ Rp, we consider
the corresponding feature vectors f1, f2, . . . , fp in the n-dimensional sample space. We
search for the modes (peaks) of the kernel density estimators given by

p̂(f) =
1

phn

p∑
i=1

K

(
f − fi
h

)
,

where h is a fixed bandwidth. The modes of p̂ correspond to the roots of∇p̂(f) = 0, which
can be found efficiently by the mean shift procedure (Cheng, 1995) without estimating
the density. The procedure produces a sequence estimated peaks c1, c2, . . . by

cj+1 =

∑p
i=1 fiK

(
cj−fi
h

)
∑p

i=1K
(

cj−fi
h

) , j = 1, 2,

This sequence converges to a limit point if the kernel K satisfies mild conditions. (Ex-
amples of such kernels include a flat kernel K(f) that returns 1 if ‖f‖ ≤ λ or 0 otherwise
for a given λ > 0, and the Gaussian kernel.) DRAGS computes all peaks starting from
each feature vector, merging two peaks if their distance is closer than h.

After identifying all unique peaks representing dense regions, DRAGS clusters each fea-
ture vector to a peak that is closer than h in distance. (After this step, the groups with
low density can be discarded optionally.) Then the groups are ranked by the average
correlation of the features in each group to the class label. One representative feature is
chosen from each group, which has the maximal correlation to the class label.

Operator: This selection method is implemented in the Dense Relevant Attribute
Group Selector operator. It requires numerical inputs, which are normalized inside
of the operator. (The Nominal to Numerical operator in RapidMiner can be used
if necessary). The operator outputs the original ExampleSet, an ExampleSet with
only the selected attributes and an AttributeWeights object. The weights of the
most relevant features in each group contains their ranks, while the weights of the rest

12

are set to zero. The operator also returns a set of indicator weight vectors that represents
the clustering of attributes into dense groups: in each weight vector, a weight is set to one
(or two, if it is the most relevant in the group) if the corresponding attribute is clustered
to the group associated with the vector; otherwise it is set to the zero value.

Remarks: The parameter kernel type determines the types of kernels to be used: the
flat and the Gaussian kernel are supported. The parameter eps is used to declare the
convergence of the mean shift procedure.

2.2.6 Consensus Group Stable Feature Selector (CGS)

The Consensus Group Stable Feature Selection (CGS) (Loscalzo et al., 2009) is an ex-
tension of the DRAGS algorithm in Section 2.2.5, based on the same idea of identifying
dense feature groups. However, CGS is designed to overcome two major limitations of
DRAGS: the fact that density estimation of features can be unreliable due to the short-
age of samples, where a large enough number is required to observe feature correlation,
and the fact that some relevant features can be ignored if they reside in relatively sparse
feature groups.

To form consensus groups, CGS first identifies all dense feature groups from bootstrapped
training samples, creating the similarity matrix of features W as follows:

Wij :=
the number of times the features i and j are grouped together

the number of bootstrapping trials
.

Then an agglomerative hierarchical clustering is performed onW to find consensus feature
groups. Average linkage is used when merging clusters, to reduce the effect of outliers.
Merging continues until there is no feature groups with an average similarity value larger
than 0.5.

Feature selection is performed by choosing a representative feature from each consensus
group which is closest to the group center. Then the relevance of the representatives are
computed in terms of the correlation to the class label.

Operator: The Consensus Group Stable Feature Selector operator provides
the CGS algorithm. It requires numerical inputs, and outputs the original ExampleSet,
an ExampleSet with only the selected attributes, and an AttributeWeights object.
The weights of the top relevant attributes contain their ranks, while the rest are set zero.
The operator also returns the clustering of attributes into dense groups in the same way
as DRAGS.

Remarks: In addition to the parameters of DRAGS, the CGS operator has the pa-
rameter number of subsampling, denoting the number of bootstrapping trials, and the
sample ratio parameter which determines the number of training samples in each boot-
strapping trial.

13

3 Wrapper Feature Selection Methods

In this section we discuss one wrapper approach, the SVM-REF (Guyon et al., 2002).
Other traditional wrapper approaches can be implemented using the existing operators
in RapidMiner, but they do not scale well for high dimensions due to their intensive
computational requirements.

3.1 Recursive Feature Elimination using SVM (SVM-REF)

The Support Vector Machines (SVMs) (Vapnik, 1998) find decision functions with large
margins by solving the following minimization problem. The solutions of the minimization
are typically very dense, since the `2-norm in the objective tends to distribute weights
over all dimensions.

arg min
(β,β0)∈Rp+1,ξ≥0

1

2
||β||22 + C

n∑
i=1

ξi s.t. yi(〈β,xi〉+ β0) ≥ 1− ξi, i = 1, 2, . . . , n.

Therefore, it is hard to find important attributes by simply discarding the components
with small magnitude in a solution. Instead, we can use a refined strategy called the
Recursive Feature Elimination (SVM-RFE) (Guyon et al., 2002). SVM-RFE works in an
iterative fashion, starting with the index set of all features S = {1, 2, . . . , p}:

1. A linear SVM is trained on the features with indices in S, resulting in β.

2. A fraction or a fixed number of features j ∈ S with small |βj| is removed from S.

3. If |S| ≤ k for a threshold value k, stop. Otherwise repeat from the step 1.

Note that the SVM can be replaced with other learning algorithms in this scheme.

Operator: We implemented two RFE operators in RapidMiner. The operator Select
by Recursive Feature Elimination with SVM is an implementation of SVM-RFE,
using the linear SVM code jMySVM, with a fixed parameter C for all iterations. To
specify a different C value for each SVM round, or to use alternative learning algorithms,
one can use the operator Recursive Feature Elimination. It contains a subprocess
which can be filled with a chain of operators producing AttributeWeights objects.

14

4 Embedded Feature Selection Methods

Embedded feature selection methods make use of linear decision models such as f(x) =
〈x, β〉 + β0, where β ∈ Rp and β0 ∈ R are the coefficients of a model. Training such
models, we obtain the coefficients that capture the importance of corresponding variables
by their magnitude, while the number of nonzero coefficients is controlled by sparsity-
inducing norms such as the `1 norm.

4.1 Least Angle Regression (LASSO and LARS)

The least absolute selection and shrinkage operator (LASSO) (Tibshirani, 1996) produces
sparse coefficient vectors β using the following `1 regularization problem,

min
β∈Rp,β0

1

n

n∑
k=1

(yk − xTk β − β0)2, ‖β‖1 ≤ t.

Note that if we omit the offset term β0, then we have to standardized the input vectors.

The least angle regression (LARS) (Efron et al., 2004) algorithm provides stepwise regres-
sion models, as well as the solutions of LASSO with some modifications. Starting with
β = 0, each iteration of LARS increases the coefficients whose corresponding features
have the highest correlation with the target, until all coefficients have non-zero values.

Figure 1 shows the changes of solution coefficients for LASSO and LARS, for the Diabetes
data set (http://www.stanford.edu/~hastie/Papers/LARS/).

Operator: The LARS - Least Angle Regression operator implements both LASSO
and LARS algorithms. Once a model is trained for a given threshold value, we can extract
the weights of features that correspond to another threshold value, or the nonzero weights
whose number is no more than a specified value, by using the LARS - Change Model
Parameters operator.

15

http://www.stanford.edu/~hastie/Papers/LARS/

5 Stable Feature Selection Methods

An important question in feature selection is how to obtain feature subsets that are robust
to sample variation (Saeys et al., 2008; Kuncheva, 2007; Meinshausen and Bühlmann,
2010). We discuss the stability of feature selection, introducing an ensemble approach we
implement for RapidMiner to provide robust feature sets.

5.1 Stability Measures

The stability of a feature selection method can be measured by the similarity of feature
subsets chosen by using different samples. We introduce two of such measures, the Jaccard
index and Kuncheva’s index.

Jaccard Index: The Jaccard index (Saeys et al., 2008) of two feature subsets Fa and Fb
defined as follow:

SJ(Fa, Fb) =
|Fa ∩ Fb|
|Fa ∪ Fb|

.

The index is one if the two sets are identical, and the zero value if there is no feature
shared by the two sets.

Kuncheva’s Index: Kuncheva’s index (Kuncheva, 2007) is defined for two subsets Fa
and Fb of the same size k, taking into account the number of entire features p:

SK(Fa, Fb) =
|Fa ∩ Fb| − k2

p

k − k2

p

(4)

Least Absolute Selection and Shrinkage Operator

AGE SEX BMI BP S1 S2 S3 S4 S5 S6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

|beta|

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

b
et

a_
i

Least Angle Regression

AGE SEX BMI BP S1 S2 S3 S4 S5 S6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

|beta|

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

b
et

a_
i

Figure 1: The coefficients in the solutions of LASSO and LARS on the Diabetes data set.

16

This index is one if the two sets are identical, and some negative value larger than −1 if
there is no index shared by the two sets.

In both measures, the stability of more than two feature sets is computed by the average
of all pairwise stability indices.

Operator: The stability of a feature selection method can be measured the Feature
Selection Stability Validation operator. The operator applies the specified selec-
tion method repeatedly on input samples (created by bootstrapping or cross-validation) of
the original ExampleSet, and computes the stability values of resulting feature subsets.
It can also compare the correlation of the associated coefficient vectors.

5.2 Ensemble Methods

Ensemble methods, in general, make use of multiple instance of learning methods to
obtain better collective prediction than what can be expected from individual ones. We
can extend this idea for feature selection, to improve the stability of feature selection
as well as the predictive power of the selected features (Saeys et al., 2008; Kalousis
et al., 2007; Meinshausen and Bühlmann, 2010). For RapidMiner we implement the
approach developed in SFB 876, by Schowe and Morik (2010). This method runs a
specified feature selection algorithm over bootstrap samples of input points, producing a
consensus set of features combining different feature via ranking, weight thresholding, or
simple summation.

Operator: The Ensemble Feature Selection provides a meta-operator that can be
filled with any feature selection method. The specified method is then applied repeatedly
to bootstrap samples, similarly to the Feature Selection Stability Validation
operator.

Remarks: The AttributeWeights object of each feature selection run is combined to
a consensus Attribute Weights object in three ways. (i) The top-k method counts
how many times a feature has been selected in the top k features of each run. Then
the k features with the highest count are returned. Users can also specify the minimum
count required for each feature to be selected. (ii) The geq-w method works in similar
fashion, counting how many times a feature received a weight greater than or equal to
the specified value threshold. (iii) Finally, the accumulate-weights option simply adds
up the weights over all iterations.

17

6 Utility Operators

In this section we introduce various utility operators implemented to help feature selection
or model building tasks, simplifying the application of lengthy sub-processes or macros.

Select top k features: The Select Top Features operator takes an AttributeWeights
object as an input, and selects the top k or the top p percent entries in magnitude of
the weight vector. The weight values of chosen entries are set to one, and the others are
set to the zero value. This operator can be used inside of the Wrapper-Validation
operator, for instance.

Log performance: The Loop and Average operator in RapidMiner allows logging
of a single performance measure. To allow multiple performance measures for logging,
we implement the Make Performance Loggable operator which can be attached
to any Loop and Average operator. Our operator returns a PerformanceVector
object which contains the measurements, along with their counts, mean, variance, and
standard deviation values.

Convert Weights To Ranking: The Convert Weights to Ranking operator sorts
the weights of features and replaces the weight values with their ranks. The magnitude
of the weights or their signed values can be used for sorting.

Rank by Selection: The Rank by Selection operator extracts the intermediate rank-
ing information of iterative feature selection procedures. The operator repeatedly runs
the feature selection method specified by users as a subprocess.

Replace Missing Values: The Replace Missing Values (with offset) operator
is an extension of the Replace Missing Values operator in RapidMiner, allowing
users to specify an offset for the values to be filled in missing entries. This can be used
to distinguish the missing entries from the entries with maximum observed values, when
we fill the missing entries with the maximum values.

18

7 Experiments

We present illustrative examples using our feature selection operators.

7.1 Performance Improvement

To demonstrate the benefit of feature selection in terms of prediction performance, we
compare three learning models: Random Forest, Naive Bayes (NB), and One Nearest
Neighbor (1NN). We compare these methods with and without feature selection, where
feature selection is performed by the MRMR algorithm in Section 2.2.2.

Figure 2 shows the result for the colon data set1 (Alon et al., 1999) (n = 62, p =
2000). We use five settings: two simple models with feature selection (NB+MRMR
and 1NN+MRMR) and without feature selection (NB and 1NN), and the Random For-
est without feature selection (Random Forest). We can easily find two facts: feature
selection can improve the performance of learning models, and thus simpler models with
feature selection can be used instead of complicated ones without feature selection.

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0 5 10 15 20 25 30 35 40 45 50

NB + MRMR

NB

1NN + MRMR

1NN

Random Forest

Figure 2: Comparison of learning models with and without feature selection, on the colon
data set (n = 62, p = 2000). The x-axis represents the number of chosen features, and
the y-axis shows the corresponding prediction accuracy values.

7.2 Filter and Wrapper Approaches

Now we show the potential benefits of our feature selection operators over the existing
ones in RapidMiner. For comparison, we select features using four different approaches:

• A wrapper implemented using the Forward Selection operator and the Naive
Bayes learner in RapidMiner, with ten fold cross validation.

1Available at http://genomics-pubs.princeton.edu/oncology/affydata/index.html

19

http://genomics-pubs.princeton.edu/oncology/affydata/index.html

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10 20 30 40 50 60 70 80 90 100

Forward Selection

SAM

SVM-RFE

MRMR

(a) Naive Bayes

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0 10 20 30 40 50 60 70 80 90 100

Forward Selection

SAM

SVM-RFE

MRMR

(b) 1NN

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

Forward Selection

SAM

SVM-RFE

MRMR

(c) SVM

Figure 3: Classification accuracy (y-axis) of three learners, Naive Bayes, 1NN, and SVM,
using the features selected by using four different strategies. The x-axis represents the
number of chosen features.

Figure 4: Runtime (y-axis, log-scale) of the different selection methods dependent on the
number of selected features (x-axis).

• Three feature selection methods we implement, a univariate filter using the SAM
statistic, a multivariate filter (MRMR), and a wrapper (SVM-RFE).

We compare the prediction performance of the four feature sets obtained by the above
settings, on our miRNA expression data set with 67 examples and 302 features (not
publicly available), where predictions are made by three learning algorithms, the Native
Bayes, the One Nearest Neighbor (1NN), and the SVM.

Figure 3 shows the prediction accuracy of the three learning methods using the four fea-
ture selection approaches, where Figure 4 reports their runtime in seconds (log scale). The
results suggest that our new feature selection methods (SAM, MRMR, and SVM-REF)
lead to better prediction performance overall, even though they require much shorter
computation time, than the existing methods in RapidMiner. (As shown in Figure 4,
the computation time of Forward Selection can be reduced using another search
strategy Optimize Selection (Evolutionary) in RapidMiner, but it is still much
slower than ours.)

20

7.3 Benchmark of Multivariate Filter Methods

To compare the multivariate filter approaches presented in Section 2.2, we perform a
small benchmark using three public data sets summarized in Table 1. We test the pre-
diction accuracy of the Naive Bayes classifier using the feature sets obtained by PAM,
FCBF, BAHSIC, DRAGS, and CGS filter methods. (Note that in the original paper
of PAM (Tibshirani et al., 2002) the nearest centroid was used as the classifier, not the
Naive Bayes. Their prediction performance were similar, but the Naive Bayes produced
smaller feature sets in our experiments.)

The results are summarized in Table 2. The parameters of the filter methods that de-
termine the number of features to be selected are optimized by grid search, using the
Optimize Parameters (Grid) operator in RapidMiner, evaluating performance in
each grid point by ten fold cross validation using the Wrapper-X-Validation opera-
tor in RapidMiner. The stability of feature selection is measured by the Jaccard index
introduced in Section 5, for the COLON data set. The number of selected features in
each setting is shown in square brackets.

The workflows for the experiments are available at http://www.myexperiment.org/
users/17770/workflows. The actual RapidMiner processes, results (attribute weights,
performance and parameter sets), and the logs of experiments can be downloaded from
http://www.myexperiment.org/files/537.html.

Table 1: The benchmark data sets for testing multivariate filter approaches.

Name Examples Attributes Classes Source
COLON 62 2000 2 http://www.cs.binghamton.edu/~lyu/KDD08/data/colon-std.arff

SRBCT 63 2308 4 http://www.cs.binghamton.edu/~lyu/KDD08/data/srbct-std.arff

SONAR 208 61 2 RapidMiner sample repository

Table 2: The best cross validation prediction accuracy (standard deviation in parentheses)
of the Naive Bayes classifier using the features selected by multivariate filter approaches
on the benchmark data sets. Stability is measured by the Jaccard index on the COLON
data set. The number of selected features is shown in square brackets.

PAM FCBF BAHSIC DRAGS CGS All Features

COLON 85.7 (14.2) 86.9 (10.0) 79.3 (12.3) 84.3 (15.3) 85.5 (13.8) 55.0 (15.3)
[6] [5] [100] [91] [46] 2000

SRBCT 98.3 (5.0) 98.3 (5.0) 96.7 (6.7) 87.4 (14.8) 90.2 (16.9) 93.3 (11.1)
[40] [40] [100] [250] [210] 2308

SONAR 74.1 (6.2) 65.4 (9.7) 72.7 (11.2) 70.1 (12.6) 70.2 (9.1) 66.9 (7.3)
[3] [10] [11] [5] [5] 61

Stability 0.571 0.253 0.536 0.270 0.311 1.0

21

http://www.myexperiment.org/users/17770/workflows
http://www.myexperiment.org/users/17770/workflows
http://www.myexperiment.org/files/537.html
http://www.cs.binghamton.edu/~lyu/KDD08/data/colon-std.arff
http://www.cs.binghamton.edu/~lyu/KDD08/data/srbct-std.arff

7.4 Stable Feature Selection

We use the ensemble feature selection method in Section 5 to show its stability profile over
different numbers of subsampling. In Figure 5 we compare the stability of two methods
in terms of Kuncheva’s index, the MRMR and an ensemble of MRMR (using ten-fold
cross validation subsampling). We selected features with different sizes in the range of
[0, 50] from the colon data set (Alon et al., 1999).

Figure 5: Stability of the MRMR and an ensemble of the MRMR, measured by
Kuncheva’s index (y-axis), for the different sizes of selected features (x-axis).

8 Conclusion

We presented an extension to RapidMiner which provides feature selection algorithms
favorable for high-dimensional data. The operators implementing these algorithms usu-
ally performs much faster than the wrapper approaches that can be constructed combining
the existing RapidMiner operators. We also provide operators implementing stability
measures and an ensemble feature selection algorithm, to provide effective means to ob-
tain robust feature sets.

Acknowledgements

The feature selection extension software (version 1.1.4) for RapidMiner is developed
by Benjamin Schowe and Viswanath Sivakumar, and part of this work is based on their
reports and the experiment results therein.

22

References
U. Alon, N. Barkai, D. A. Notterman, K. Gishdagger, S. Ybarradagger, D. Mackdagger,
and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of
tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the
National Academy of Sciences of the United States of America, 96(12):6745–6750, June
1999.

Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(8):790–799, 1995.

C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene
expression data. In Proceedings of the Computational Systems Bioinformatics, pages
523–528, 2003.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of
Statistics, 32:407, 2004.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Machine Learning, 46:389–422, 2002.

M. A. Hall. Correlation-based feature selection for discrete and numeric class machine
learning. In ICML, pages 359–366, 2000.

A. Kalousis, J. Prados, and M. Hilario. Stability of feature selection algorithms: a study
on high-dimensional spaces. Knowledge and Information Systems, 12(1):95–116, 2007.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence,
97(1-2):273–324, 1997.

L. I. Kuncheva. A stability index for feature selection. In Proceedings of the 25th con-
ference on Proceedings of the 25th IASTED International Multi-Conference: artificial
intelligence and applications, pages 390–395, 2007.

H. L. Lei Yu. Efficient feature selection via analysis of relevance and redundancy. Journal
of Machine Learning Research, 5:1205–1224, Oct 2004.

S. Loscalzo, L. Yu, and C. Ding. Consensus group based stable feature selection. In Pro-
ceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 567–576, 2009.

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(4), 2010.

I. Mierswa and M. Wurst. Information preserving multi-objective feature selection for
unsupervised learning. In Proceedings of the 8th annual conference on Genetic and
evolutionary computation, GECCO ’06, pages 1545–1552, 2006.

23

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

A. Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. In
Proceedings of 21st International Conference on Machine Learning, 2004.

Y. Saeys, T. Abeel, and Y. V. de Peer. Robust feature selection using ensemble feature
selection techniques. In W. Daelemans, B. Goethals, and K. Morik, editors, Machine
Learning and Knowledge Discovery in Databases, European Conference, ECML/PKDD
2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part II, volume 5212 of
Lecture Notes in Computer Science, pages 313–325. Springer, 2008. ISBN 978-3-540-
87480-5.

S. Sawilowsky. Fermat, schubert, einstein, and behrens-fisher: The probable difference
between two means when σ1 6= σ2. Journal of Modern Applied Statistical Methods, 1
(2):461 – 472, 2002.

B. Schowe and K. Morik. Fast-ensembles of minimum redundancy feature selection. In
M. R. Oleg Okun and G. Valentini, editors, Supervised and Unsupervised Ensemble
Methods and their Applications - SUEMA 2010, ECML/PKDD 2010 Workshop, pages
11–22, 2010. URL http://suema10.dsi.unimi.it.

L. Song, J. Bedo, K. M. Borgwardt, A. Gretton, and A. Smola. Gene selection via the
bahsic family of algorithms. Bioinformatics, 23(13):i490–i498, 2007a.

L. Song, A. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo. Supervised feature
selection via dependence estimation. In Proceedings of the 24th international conference
on Machine learning, ICML ’07, pages 823–830, 2007b.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society (Series B), 58:267–288, 1996.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple cancer
types by shrunken centroids of gene expression. Proceedings of the National Academy
of Sciences, 99(10):6567–6572, May 2002.

V. G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied
to the ionizing radiation response. Proceedings of the National Academy of Sciences of
the United States of America, 98(9):5116–5121, 2001.

V. Vapnik. Statistical Learning Theory. Wiley, Chichester, GB, 1998.

L. Yu, C. Ding, and S. Loscalzo. Stable feature selection via dense feature groups.
In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 803–811, 2008.

24

http://suema10.dsi.unimi.it

	Introduction
	Filter Feature Selection Methods
	Univariate Filters
	Pearson's Correlation
	F-Statistic
	Mutual Information
	Welch's t-Test
	Significance Analysis for Microarrays (SAM)

	Multivariate Filters
	Prediction Analysis for Microarrays (PAM)
	Correlation-Based Feature Selection (CFS) and Minimum Redundancy Maximum Relevance (MRMR)
	Fast Correlation-Based Filter (FCBF)
	Backward Elimination via Hilbert-Schmidt Independence Criterion (BAHSIC)
	Dense Relevant Attribute Group Selector (DRAGS)
	Consensus Group Stable Feature Selector (CGS)

	Wrapper Feature Selection Methods
	Recursive Feature Elimination using SVM (SVM-REF)

	Embedded Feature Selection Methods
	Least Angle Regression (LASSO and LARS)

	Stable Feature Selection Methods
	Stability Measures
	Ensemble Methods

	Utility Operators
	Experiments
	Performance Improvement
	Filter and Wrapper Approaches
	Benchmark of Multivariate Filter Methods
	Stable Feature Selection

	Conclusion

