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turns of a stock portfolio by using Autoregressive Conditional Double Poisson and GARCH

processes for the marginals and vine copulas for the dependence structure. By estimating

the joint multivariate distribution of both returns and bid-ask spreads from intraday data,

we incorporate the measurement of commonalities in liquidity and comovements of stocks

and bid-ask spreads into the forecasting of three types of liquidity-adjusted Value-at-Risk

(L-IVaR). In a preliminary analysis, we document strong extreme comovements in liquidity

and strong tail dependence between bid-ask spreads and log returns across the firms in our

sample thus motivating our use of a vine copula model. Furthermore, the backtesting results

for the L-IVaR of a portfolio consisting of five stocks listed on the NASDAQ show that the

proposed models perform well in forecasting liquidity-adjusted intraday portfolio profits and

losses.

Keywords: Liquidity; Commonality; Vine Copulas; liquidity-adjusted intraday Value-

at-Risk.

JEL Classification Numbers: C58, C53, G12, G14.

∗Address: Corresponding author; Otto-Hahn-Str. 6a, D-44227 Dortmund, Germany, telephone: +49 231
755 4608, e-mail: gregor.weiss@tu-dortmund.de. Support by the Collaborative Research Centers “Statis-
tical Modeling of Nonlinear Dynamic Processes” (SFB 823) at TU Dortmund University and “Economic
Risk” (SFB 649) at Humboldt University Berlin of the German Research Foundation (DFG) is gratefully
acknowledged. We thank Janina Mühlnickel and Janet Gabrysch for outstanding research assistance.



1 Introduction

Liquidity risk is of major concern to both investors and portfolio managers. Especially in

times of market turmoil, overall market liquidity can dry up forcing investors to exit positions

at increased cost. Consequently, investors prefer assets which are either liquid (see Amihud

and Mendelson, 1986; Brennan and Subrahmanyam, 1996; Liu, 2006) or are least not exposed

to systematic decreases in liquidity (Acharya and Pedersen, 2005; Sadka, 2006). While the

finance literature has long been concerned with liquidity risk and market microstructure

(Demsetz, 1968; Stoll, 1978; Amihud and Mendelson, 1980), the recent financial crisis has

renewed interest in both the modeling of liquidity risk and in the analysis of its driving

factors (see e.g. Cornett et al., 2011; Dick-Nielsen et al., 2012).

Although early empirical and theoretical studies on liquidity have concentrated on in-

dividual securities, the analysis of comovements in liquidity among individual stocks has

become a corner stone of the microstructure literature starting with the seminal papers

by Chordia et al. (2000), Hasbrouck and Seppi (2001) and Huberman and Halka (2001).

Since then, studies on the commonality in liquidity have unanimously found clear empiri-

cal evidence for strong comovements in liquidity as proxied, e.g., by the bid-ask spreads of

individual stocks. The determinants driving this commonality in liquidity, however, have

remained relatively unknown until the recent study by Karolyi et al. (2012). They find that

commonality in liquidity is positively correlated with high market volatility. In addition,

liquidity commonalities were particularly strong during the Asian crisis and the recent fi-

nancial crisis underlining the necessity of taking liquidity risk into account in multivariate

risk modeling.

The incorporation of liquidity risk into the measurement of market risk has been a re-

curring topic in the risk management literature since the onset of the Value-at-Risk (VaR)

concept as a de-facto industry standard. Although standard VaR lacks a rigorous con-

sideration of liquidity risk, several extensions to certain forms of Liquidity-Adjusted VaRs

(L-VaR) have been proposed in the literature (see e.g. Berkowitz, 2000; Bangia et al., 2002;
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Qi and Ng, 2009). Parallel to the study of liquidity-adjusted risk measures, the availability of

tick-by-tick data has enabled researchers to measure the liquidity of stocks at an ultra-high

frequency (Chordia et al., 2000; Engle, 2000). While the increase in the speed of trading and

the widespread availability of transaction data have led to an increase in the importance of

intraday risk analysis (Dionne et al., 2009; Gourieroux and Jasiak, 2010), the modeling of

intraday stock returns and bid-ask spreads is severely hampered by the irregular spacing of

such data. Econometric research has thus concentrated on deriving appropriate models for

the duration between transactions (Engle and Russell, 1998), for the estimation of intraday

volatility (Andersen et al., 2000, 2003) and for the estimation of intraday risk measures

(Giot, 2005; Dionne et al., 2009).

The econometrics literature includes several studies which focus on modeling and fore-

casting multivariate intraday stock returns or multivariate bid-ask spreads (see e.g. Engle

and Russell, 1998; Breymann et al., 2003; Heinen and Rengifo, 2007; Groß-Klußmann and

Hautsch, 2011; Li and Poon, 2011). Up to date, however, no study has analyzed the joint

distribution of intraday returns and bid-ask spreads of multiple stocks. Although stock

returns are known to be leptokurtic and non-normally distributed with time-varying depen-

dence (see e.g. Longin and Solnik, 1995), and bid-ask spreads are known to comove across

markets, little is known about the dependence (and consequently possible comovements)

between liquidity and returns of different stocks.

In addition, the multivariate modeling of bid-ask spreads has so far been a purely econo-

metric exercise with no connection to the rich literature on liquidity commonality.1 Further-

more, there exist only few studies on the estimation of VaR from intraday data (Dionne

et al., 2009) and, to the best knowledge of the authors, no work on multivariate liquidity-

adjusted portfolio-VaR. Our paper tries to link the research on liquidity commonality and

1As stated by Heinen and Rengifo (2007), extending the standard Autogressive Conditional Duration
(ACD) model of Engle and Russell (1998) to more than one time series has proven to be quite difficult.
Considering the numerous problems one encounters when trying to model multivariate count data, it is,
however, not surprising that studies such as the one by Heinen and Rengifo (2007) focus on the econometric
side of the problem.

2



on the estimation of multivariate portfolio-VaR from high frequency data.

Therefore, we propose a multivariate econometric model based on vine copulas for esti-

mating and forecasting liquidity-adjusted risk measures for multivariate stock portfolios and

apply the proposed model on returns and bid-ask spreads reconstructed from high frequency

data. We start our analysis by performing a variety of diagnostic tests on the dependence

structure between intraday stock returns and quoted bid-ask spreads for selected companies

on the NASDAQ 100 in 2009.2 These preliminary tests provide us with ample empirical

evidence of not only strong linear correlation but also strong tail dependence between bid-

ask spreads across individual stocks. We then turn to modeling the marginal behavior of

stock returns and bid-ask spreads by the use of GARCH processes and the Autoregres-

sive Conditional Double Poisson model, respectively (Heinen, 2003; Groß-Klußmann and

Hautsch, 2011). As the dependence structure between intraday stock returns and bid-ask

spreads stemming from different companies has not been analyzed before in the literature,3

our dependence model is required to be able to capture a wide range of possible linear and

non-linear dependencies. We therefore resort to the concept of vine copulas (Heinen and

Valdesogo, 2008; Aas et al., 2009) to model the dependence structure between the returns

and bid-ask spreads of multiple stocks. Based on our estimated multivariate model for re-

turns and bid-ask spreads, we then forecast and backtest several types of liquidity-adjusted

risk measures to illustrate the superiority of our proposed method.

The contributions of this study relative to the existing literature on liquidity commonality

and liquidity risk management are significant and numerous. While previous studies on

the commonality in liquidity have documented strong positive linear correlation between

measures of liquidity, this study is the first to find empirical evidence for a strong non-linear

2Obviously, other measures of liquidity could have also been used. The majority of studies in the risk
management literature, however, regularly employs the quoted bid-ask spread to measure liquidity (see e.g.
Berkowitz, 2000; Bangia et al., 2002).

3The relationship between the returns and the bid-ask spread of the same company, on the other hand,
is well documented, see e.g. Amihud and Mendelson (1986) who find that average portfolio risk-adjusted
returns increase with their bid-ask spread with the slope of the return-spread relationship decreasing with
the spread.
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dependence in the form of significant tail dependence as well. This paper is also the first

to integrate our understanding of liquidity commonality into the estimation and forecasting

of liquidity-adjusted risk measures. In addition, this paper constitutes the first multivariate

model for the joint distribution of the returns and bid-ask spreads of multiple stocks. Finally,

our paper adds to the fastly growing literature on the use of vine copulas in risk management

and asset pricing applications making full use of the vines’ flexibility.

The results presented in this paper show that the proposed multivariate model for bid-

ask spreads and intraday returns performs exceptionally well in forecasting liquidity-adjusted

portfolio losses. While losses are adequately bounded below by our liquidity-adjusted VaR

forecasts, our models are not too conservative and thus prevent investors like, e.g., banks

from reserving unnecessary risk capital buffers.

The remainder of this article is structured as follows. Section 2 presents the econometric

methodology. Section 3 discusses the empirical study as well as the results. Concluding

remarks are given in Section 4.

2 Econometric methodology

The purpose of this section is to outline the econometric models for intraday bid-ask

spreads and returns, their multivariate dependence structure as well as liquidity-adjusted

intraday VaR.

We start with the models for intraday spreads and returns which form the fundamental

building blocks of the VaR models described later.

2.1 The Autoregressive Conditional Double Poisson Model

Loosely speaking, liquidity can be seen as the ability of a market to allow for immediate

trading even large amounts to minimal costs without causing remarkable price movements;

hence, liquidity risk results from the difference between transaction and market price.
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Kyle (1985) provides a formal definition and introduces three components of liquidity includ-

ing tightness, depth and resiliency; according to Amihud and Mendelson (1986), a natural

measure of liquidity (or rather liquidity risk) is the spread between the bid and ask prices.

Bangia et al. (2002) classify liquidity risk into exogenous liquidity risk which arises from the

general conditions of a market and is equal to all participants and endogenous liquidity risk

which refers to the volume of individual trading positions and which is idiosyncratic.

The bid-ask spread has become a key parameter in modeling financial data and captures

the costs of immediate trading, which can be explained by the liquidity suppliers’ purchasing

at the bid and selling at a higher ask price in order to recoup their own costs. Empirical

properties like intraday seasonalities, linear dependence and commonalities are given in the

context of the data description in section 3.

Statistically, bid-ask spreads belong to the class of discrete count data, because they count

the number of ticks between bid and ask prices. To accurately model time series of count

data measured at high frequency, there are two important aspects to consider: on the one

hand the model has to cope with the issues of discreteness and serial dependence, on the

other hand its estimation procedure has to be tractable for a large number of observations.

Following Groß-Klußmann and Hautsch (2011), we drop the traditional approaches reviewed

by Cameron and Trivedi (1998), MacDonald and Zucchini (1997) and McKenzie (2003)

because of their complex estimation procedures and adopt the Autoregressive Conditional

Double Poisson Model (ACDP hereafter) that belongs to the class of observation-driven

models and is based on the Autoregressive Conditional Poisson Model (ACP) introduced by

Rydberg and Shephard (1999).4

Since the Poisson distribution is a natural starting point for counts (see Heinen, 2003),

the ACP assumes that the counts follow a Poisson distribution with an autoregressive mean.

Extending this approach, the ACDP uses the Double Poisson distribution as proposed by

4Further details of the ACDP model are explained in Heinen (2003), Fokianos et al. (2009) and Ferland
et al. (2006).
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Efron (1986) instead and allows for a more flexible modeling of the spreads.5 To provide

a mathematical description of this model we start with some notations: let M,N, d ∈ N

denote the number of trading days in the sample, the number of observations per day and

the number of stocks, respectively, and let I, J,K be index sets given by I := [1,M ] ∩ N,

J := [0, N − 1]∩N0 and K := [1, d]∩N, where N0 := N∪{0}. Further, let N0, N1 ∈ N∪ {0}
with N0 < N1 and let Z := {N0 = n0 < n1 < ... < nN−1 ≤ N1} be a partition of [N0, N1]

with equidistant points nj ∈ N0 (j ∈ J) in ascending order and norm ΔZ , denoting the

time grid of observation points for the sample days.6 Let Aki,j and B
k
i,j denote the (best) bid

and the (best) ask price (respectively) and Ski,j := Aki,j − Bk
i,j the quoted bid-ask spread of

stock k closest to time nj ∈ Z, realized at the i-th trading day (i ∈ I, k ∈ K). Moreover,

let DPois(λ, γ) be the Double Poisson distribution (Efron, 1986) and Fk
i,j the information

available on the series of stock k up to and including time nj of the i-th day.7 Let L denote

the lag operator defined by LbSki,j := Ski,j−b for b ∈ Z and let two lag polynomials Φk and

Ψk be given as Φk(L) :=
∑q

m=1 φ
k
mL

m and Ψk(L) :=
∑p

n=1 ψ
k
nL

n, where p, q ∈ N0 refer to

the order of the process and the coefficients are restricted by φm > 0, m = 1, ..., q as well as

ψkn > 0, n = 1, ..., p.

Then, the ACDP(p, q) process {Ski,j}j∈J is defined by

Ski,j|Fk
i,j−1 ∼ DPois(λki,j, γk),

λki,j = ck + Φk(L)S
k
i,j +Ψk(L)λ

k
i,j ,

(1)

where i ∈ I, k ∈ K and ck > 0.8

The ACDP assumes the conditional distribution of the spread to be Double Poisson. The

5Since the (Double) Poisson distribution is defined on N ∪ {0}, all prices and spreads are expressed as
multiples of ticks, i.e. multiples of the minimum tick size which equals 0.01 US-Dollar cent.

6The interval [N0, N1] refers to the observed trading hours; Z is equal to each stock and trading day of
the sample.

7Hence, Fk
i,j considers (i − 1)N + (j + 1) spread observations (of stock k).

8Note that we have LbSk
i,j = Sk

i−1,N+j−b and Lbλk
i,j = λk

i−1,N+j−b in case of j < b ≤ N + j.
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conditional probability mass function of Ski,j is then given by

P(Ski,j = l|λki,j, γk) = ck(λ
k
i,j, γk) · γ

1
2
k exp(−γkλki,j)

exp(−l)ll
l!

(
exp(1)λki,j

l

)γkl

, l ∈ N0, (2)

where Efron (1986) suggests the following expression for the constant ck(λ
k
i,j, γk):

1

ck(λki,j, γk)
= 1 +

1− γk
12λki,jγk

(
1 +

1

λki,jγk

)
. (3)

He deduces expressions for the mean and variance of the Double Poisson as well, and we

have

E
[
Ski,j
∣∣Fk

i,j−1

]
= λki,j and Var

[
Ski,j
∣∣Fk

i,j−1

]
=
λki,j
γk
, (4)

so the ACDP model can generate both conditional overdispersion (in case of γk < 1) and

conditional underdispersion (in case of γk > 1).

Assuming p = q = 1, Heinen (2003) characterizes the unconditional distribution by yielding

formulas for the unconditional mean and variance which are given by

E
[
Ski,j
]
=

ck
1− (φk1 + ψk1 )

and Var
[
Ski,j
]
=

1

γk
· E
[
Ski,j
]
(1− (φk1 + ψk1 )

2 + φk,21 )

1− (φk1 + ψk1)
2

≥ E
[
Ski,j
]
.

(5)

Hence, the expression for the unconditional mean is identical to the mean of an ARMA

process and the unconditional distribution exhibits overdispersion in the case of γk ≤ 1,

whereas γk >
1−(φ1+ψk

1 )
2+φk,21

1−(φk1+ψ
k
1 )

2 leads to underdispersion.

Furthermore, as stated by Heinen (2003) and shown by Ferland et al. (2006), the ACP model

yields covariance stationary and strictly stationary solutions if
∑q

m=1 φ
k
i +

∑p
n=1 ψ

k
j < 1;

because of (4) this holds for the ACDP model as well.

The ACDP model is straightforwardly estimated by maximum likelihood, where the log
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likelihood can be calculated for each stock k ∈ K using (1) and is given by

logL(θ, γk) =
∑
i∈I

∑
j∈J

(
log
(
ck(λ

k
i,j, γk)

)
+

1

2
log (γk)− γkλ

k
i,j + γkS

k
i,j

(
1 + log

(
λki,j
Ski,j

)))
,

(6)

where θ :=
(
ck, φ

k
1, ..., φ

k
q , ψ

k
1 , ..., ψ

k
p

)�
contains all the parameters of the autoregressive con-

ditional intensity.9

2.2 Modeling intraday returns with GARCH processes

In order to model intraday mid price returns we adopt the model of Giot (2005) who

applies different specifications of GARCH models to deseasonalized returns to capture their

intraday volatility dynamics. Before presenting the mathematical basics of this model, we

extend our notations introduced in the preceding section: let P k
i,j :=

Ak
i,j+B

k
i,j

2
denote the

mid price of stock k closest to time nj ∈ Z at the i-th day (i ∈ I, j ∈ J, k ∈ K) and

Rk
i,j := log

(
P k
i,j

)− log
(
P k
i,j−1

)
the raw log returns associated with two adjacent mid prices.

According to Giot (2005), intraday volatility can be modeled by standard volatility models

after taking into account the strong intraday seasonality pattern of volatility documented by

Andersen and Bollerslev (1997). Following Giot (2005) we assume a deterministic seasonality

in the intraday volatility and compute the deseasonalized log returns rki,j from the raw log

returns as

rki,j =
Rk
i,j√
ξkj

, (7)

9We omitted the term Sk
i,j

(
log
(
Sk
i,j

)− 1
)− log

(
Sk
i,j !
)
in the expression for the log likelihood because it

is independent of θ and vanishes in the score.
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where ξkj is the deterministic pattern of the intraday volatility of stock k for the time interval

[nj−1, nj] given by the expected volatility conditioned on time-of-day and computed as

ξkj =
1

|I|
∑
i∈I

(
Rk
i,j

)2
, j ∈ J, k ∈ K. (8)

Having filtered the intraday seasonalities, we apply a standard GARCH(1, 1) model with

normally distributed innovations to capture the dynamics of the intraday returns.

Hence, the model for the intraday returns used in the framework of this article is given by

rki,j =
Rk
i,j√
ξkj

,

rki,j = μk + εki,j

√
hki,j,

hki,j = ωk + αk1
(
εki,j−1

)2
hki,j−1 + βk1h

k
i,j−1,

(9)

where μk is the expected return, εki,j ∼ IID N (0, 1), ωk > 0, αk1 ≥ 0 and βk1 ≥ 0 for

i ∈ I, j ∈ J, k ∈ K.

2.3 Joint modeling of returns and liquidity with vine copulas

We now turn to the task of modeling the joint distribution of (deseasonalized) mid price

returns rki,j and bid-ask spreads Ski,j of several stocks.
10 The model should therefore be able

to capture the dependence between the mid price returns, the commonalities between the

spreads and a possible dependence between returns and spreads.

In order to model the joint distribution of returns and spreads, we follow in the footsteps

of Nolte (2008) who models the price changes, transaction volumes, bid-ask spreads and

intertrade durations of single stocks by the use of a parametric copula. In contrast to his

work, however, we extend this idea to the modeling of the returns and spreads of multiple

stocks and employ a D-vine model to deal with the increase in dimensionality and to allow

10Note that d stocks thus require a distributional model in 2d dimensions.
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for a more flexible modeling.

In the statistics literature, several papers starting with Joe (1996, 1997), Bedford

and Cooke (2001, 2002) and Whelan (2004) have proposed models based on hierarchical

Archimedean copulas and vine copulas (sometimes referred to as pair-copula constructions,

PCC) to model high-dimensional joint distributions. The seminal work by Aas et al. (2009)

introduced vine copulas to the field of risk management and spurred a surge in empirical

applications of vine copulas (see Chollete et al., 2009; Heinen and Valdesogo, 2008; Aas

and Berg, 2009; Min and Czado, 2010, 2011). For our purpose in this study, vine copulas

are especially appropriate for two reasons: first, vine copulas allow the modeling of high-

dimensional distributions. Second, vine copulas are composed of bivariate building blocks

(called pair-copulas) with each bivariate pair-copula capturing the conditional dependence

between two variables. As the dependence structure between returns and spreads is presum-

ably quite complex, this flexibility allows us to model each bivariate pair of returns and/or

spreads separately. We quickly review the definition and major properties of vine copulas

below.11

Consider a d-dimensional random vector X = (X1, . . . , Xd) with joint density function

f(x1, . . . , xd) and distribution function F (x1, . . . , xd). According to Bedford and Cooke

(2001), the joint density f can be expressed as a product of the marginal densities and

a set of conditional bivariate copulas. More precisely, we have

f(x) =
d∏
k=1

f(xk)
d−1∏
j=1

d−j∏
i=1

cj,j+1|1,...,j−1(F (xj |x1, . . . , xj−1), F (xj+i|x1, . . . , xj−1)) (10)

with bivariate conditional copulas ci,i+j|i+1,...,i+j−1 which are referred to as pair-copulas. The

decomposition given above is known as a canonical or C-vine and is only one of several ways

the density can be split up.12 Then, for a d-dimensional density, there exist d!/2 different

11A rigorous treatment of vine copulas and their properties can be found in Joe (1996) and Bedford and
Cooke (2001, 2002).

12The decompositions described here are special cases of the more general regular vines which are described
e.g. in Brechmann and Czado (2011).

10



C-vines depending on the initial sorting of the d random variables. As each of the d(d−1)/2

bivariate pair-copula can be chosen from a different parametric copula family, a vine copula

model is considerably more flexibile than a traditional d-dimensional copula model.

Different compositions of the density f are given by the so-called D-vines defined as

f(x) =

d∏
k=1

f(xk)

d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1(F (xi|xi+1, . . . , xi+j−1), F (xi+j|xi+1, . . . , xi+j−1)).

(11)

Again, for a d-dimensional density there are d!/2 different possible decompositions.

The estimation of a vine’s parameters via Maximum-Likelihood is straightforward and

is explained in detail in Aas et al. (2009). The selection of the d(d − 1)/2 parametric

pair-copulas, on the other hand, is a much more delicate task requiring the use of either

goodness-of-fit tests (Aas et al., 2009) or model selection criteria like Akaike’s Information

Criterion (AIC; Dißmann et al., 2012). Here, we follow Brechmann and Czado (2011) and

Dißmann et al. (2012) and employ AIC for selecting the best-fitting vine copula model.

Then, let εki,j be the residuals of the GARCH processes for the mid-price returns and let

Ski,j be the bid-ask spreads of the k-th stock (k ∈ K). We then follow Nikoloulopoulos et al.

(2012) and model the joint distribution of the GARCH innovations instead of the returns

themselves yielding the 2d-dimensional model

X =
(
ε1i,j, . . . , ε

d
i,j, S

1
i,j, . . . , S

d
i,j

)
(12)

for the joint distribution of the returns and spreads.13 The marginals are modeled as nor-

mally distributed and Double Poisson distributed, respectively, thus the spread marginals

exhibit a discrete distribution which causes some complications in regard to the applicability

of the theoretical framework underlying the use of copulas. A pivotal requirement within this

framework is the availability of the Probability Integral Transformation Theorem (PITT) of

13Note that we only consider unconditional copulas in this work due to the already large number of
parameters that need to be estimated. As we reestimate each model after forecasting 24 observations, the
negative effect of using an unconditional model for the dependence structure should, however, be neglectable.
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Fisher (1932) which states that the probability integral transform (PIT) of a random vari-

able under its marginal distribution is distributed uniformly on [0; 1]. The PITT, however,

only holds for continuous distributions and does not apply in case of discretely distributed

marginals. To overcome this difficulty we use the continuousation approach described in

Heinen and Rengifo (2007) and introduce the continuoused spread variable

S̃ki,j := Ski,j + (U − 1) ,

where U is uniformly distributed on [0; 1]. The PIT of S̃ki,j is given by

F̃ k
i,j(S̃

k
i,j) = U · F k

i,j(S
k
i,j) + (1− U) · F k

i,j(S
k
i,j − 1) (13)

and follows a Uniform distribution on [0; 1], where F̃ k
i,j and F

k
i,j denote the cumulative dis-

tribution functions of S̃ki,j and S
k
i,j, respectively.

14 We now replace the Ski,j in (12) by their

continuoused versions and adopt the 2d-dimensional model

X̃ =
(
ε1i,j, . . . , ε

d
i,j, S̃

1
i,j, . . . , S̃

d
i,j

)
(14)

for the joint distribution of the returns and the spreads.15 In this way, we capture the com-

plete dependence structure of returns and spreads and ensure that the theoretical conditions

for the use of copulas are met as well.

As a model for the dependence structure, we employ a 2d-dimensional D-vine copula. We

argue that the D-vine is the best suited vine model for our purposes as it permits us to first

model the dependence structure between the bid-ask spreads and returns separately. The

conditional dependence between spreads and returns are modeled during later stages of the

model estimation. An example for a D-vine with four variables (spreads and returns of two

stocks) is illustrated in Figure 1.

14A formal proof can be found in Brockwell (2007).
15Note that continuousation does not alter the dependence between the marginals.
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— insert Figure 1 here —

As one can see from Figure 1, the specific sorting of the variables allows us to first model

the dependence between the (in this case two) spreads and the returns unconditionally (the

nodes on level T2). On the next level of the vine, we model the conditional dependence

between the spreads and returns of the same stock given information on the spreads or

returns of the remaining stock. Finally, on the last layer T4 of the vine, the cross-dependence

between the returns on the first and the spreads of the second stock are modeled given the

remaining two variables.

2.4 Liquidity-adjusted intraday VaR

Having dealt with the models for the intraday spreads and returns as well as their mul-

tivariate dependence structure, we now present the different risk measures which are used

in our empirical study concentrating on the liquidity-adjusted intraday VaR (L-IVaR). We

present three different models including the model proposed by Bangia et al. (2002), the

model suggested by Heude and Wynendaele (2001) and a model based on liquidity-adjusted

returns each of which uses the information provided by the models previously presented in

a particular way.

2.4.1 The L-IVaR model of Bangia et al. (BDSS, 2002)

As stated in section 2.1, we are interested in modeling the exogenous liquidity risk which

is a result of general market characteristics and relevant for all market participants. Since

(exogenous) liquidity risk arises from the deviation of transaction prices from market prices

and can be measured by the bid-ask spread, Bangia et al. (2002) propose a methodology

that incorporates exogenous liquidity risk into VaR by considering the spread as well as its

volatility and adding an exogenous cost of liquidity component (COL) to standard VaR.

In terms of our notations and adjusted to an intraday horizon, their model for the L-IVaR

13



of the k-th stock in time nj of the i-th day takes the following form:

L-IVaRk
i,j = P k

i,j ·
[(

1− exp
(√

ξkj μk − z1−α
√
hki,jξ

k
j

))
+

1

2

(
rS̄

k + sασs
)]
, (15)

where z1−α denotes the 1−α quantile of the standard normal distribution, rS̄
k describes the

average relative spread and sα and σs refer to the α quantile and standard deviation of the

relative spread distribution; thereby the relative spread is defined as rS
k
i,j :=

Sk
i,j

P k
i,j

and rS̄
k

results from averaging rS
k
i,j over i and j.

Hence, the first summand in (15) is given by

IVaRk
i,j = P k

i,j ·
(
1− exp

(√
ξkj μk − z1−α

√
hki,jξ

k
j

))
(16)

and yields the standard IVaR of the intraday mid prices that result from the model for the

intraday returns described in section 2.2.16

The second summand is defined as

COLki,j =
1

2
· P k

i,j ·
(
rS̄

k + sασs
)

(17)

and describes the exogenous cost of liquidity which incorporates the (exogenous) liquidity

risk and considers both the relative spread and its volatility.17

The total risk is thus split up into price and liquidity risk and (15) takes the simple form

L-IVaRk
i,j = IVaRk

i,j + COLki,j. (18)

Thus, the L-IVaR proposed by Bangia et al. (2002) adjusts the mid price to price and

liquidity risk in an intuitive way; in order to compute the L-IVaR at the portfolio level for

16Note that following Giot (2005) we use the
√
ξkj factor to re-introduce the seasonality component of the

intraday volatility (which was removed prior to modeling the intraday returns via GARCH).
17

rS̄
k serves as a normalizing device providing comparability and sα can be interpreted as a scaling factor

for the volatility to cover α% of the spread situations (see Bangia et al., 2002).
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an equally weighted portfolio consisting of d stocks, we can simply sum up the adjusted mid

prices of the single stocks according to their weights and get

PF-L-IVaRd
i,j =

1

d

d∑
k=1

L-IVaRk
i,j . (19)

This model, however, faces some drawbacks: on the one hand there are problems in estimat-

ing the scaling factor, if there is no spread distribution specified, because the spread distri-

bution is far from normal; on the other hand the way price and liquidity risk are aggregated

assumes extreme events in returns and extreme events in spreads to happen simultaneously.18

In the next section we present a model proposed due to Heude and Wynendaele that is based

on the same idea as the one by Bangia et al. but which aims at rectifying the drawbacks of

the latter.

2.4.2 The L-IVaR model of Heude and Wynendaele (HW, 2001)

The model approach by Heude and Wynendaele (2001) is also based on the idea of adjust-

ing the mid price to price risk and (exogenous) liquidity risk, but takes into consideration

the drawbacks of the model proposed by Bangia et al. (2002). Using our notations, the

model can be summarized as follows:

L-IVaRk
i,j := P k

i,j ·
[(

1−
(
1− rS̄

k

2

)
· exp

(√
ξkj μk − z1−α

√
hki,jξ

k
j

))
+

1

2

(
rS

k
i,j −r S̄

k
)]
.

(20)

The first summand of (20) is given by

P k
i,j − P k

i,j ·
(
1− rS̄

k

2

)
· exp

(√
ξkj μk − z1−α

√
hki,jξ

k
j

)
(21)

18Note that Bangia et al. (2002) assume a perfect correlation between (exogenous) liquidity risk and
VaR, which leads to an overestimation of the L-IVaR; Heude and Wynendaele (2001), however, evidence
that most of the extreme events in spreads occur when the return is around its mean.
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and describes the basic IVaR adjusted to liquidity, where the VaR concept is directly applied

to a theoretical bid obtained from the mid prices adjusted by half the average spread. In

this way, the joint impact of price and (exogenous) liquidity risk is captured in a single

expression.19

The second summand is defined as

1

2
· P k

i,j ·
(
rS

k
i,j −r S̄

k
)

(22)

and considers the dynamic aspect of the liquidity factor by comparing the immediate relative

spread with the average relative spread. If the former exceeds the later, this component will

increase the VaR number (and reduce it in the opposite case).

Hence, the model proposed by Heude and Wynendaele builds on the same idea as the model

suggested by Bangia et al. (2002) but improves some of its drawbacks.20 In the next section,

we present a third approach for measuring L-IVaR which is based on liquidity-adjusted

returns.

2.4.3 Estimating L-IVaR from liquidity-adjusted returns (AR)

The L-IVaR models presented in the previous sections are based on certain adjustments

of the mid price to introduce (exogenous) liquidity risk in VaR. The approach based on

liquidity-adjusted returns, however, arises from an appropriate adjustment for the returns

and is grounded on the idea of incorporating (exogenous) liquidity risk into returns and

applying the standard VaR to these modified returns.

Since trading costs reduce realized returns and due to the capacity of relative spreads as

19This is in contrast to Bangia et al. (2002), who split up this joint impact into two components.
20Heude and Wynendaele (2001) extend the expression in (20) and incorporate the endogenous liquidity

risk by integrating the quantities liquidated. We are interested in the exogenous liquidity risk and therefore
keep the term in (20).
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normalizing devices (Bangia et al., 2002), we adjust the returns in the following way:

adjr
k
i,j :=

Rk
i,j − 1

2 r
Ski,j√

ξkj

= rki,j − rS
k
i,j

2
√
ξkj

, (23)

where Rk
i,j and r

k
i,j denote the raw and the deseasonalized return (as in section 2.2), respec-

tively, and i ∈ I, j ∈ J, k ∈ K.21 Hence, (23) yields the (deseasonalized) return after taking

into consideration costs of liquidation, i.e. the effectively realized return.22

Applying the VaR concept to adjr
k
i,j, we define

L-IVaRk
i,j := P k

i,j ·
[
1− exp

(√
ξkj μk,adj +adj q1−α

√
adjhki,jξ

k
j

)]
, (24)

where μk,adj,adj h
k
i,j and adjq1−α characterize the distribution of the liquidity-adjusted returns

and denote the mean, volatility and the 1− α quantile.23

In order to produce a PF-L-IVaR based on this approach that can be used as a benchmark

(or rather an upper bound) for the models proposed by Bangia et al. (2002) and Heude and

Wynendaele (2001), we use equation (19) and simply sum up the L-IVaRs of the individual

stocks in our portfolio according to their portfolio weights.

3 Empirical study

3.1 Data

Our empirical study is based on high-frequency data from the National Association of

Securities Dealers Automated Quotations (NASDAQ) provided by the database LOBSTER.

Over the years, NASDAQ has emerged as a fully computerized, web-based trading plat-

form which provides systems that link all of the liquidity suppliers in a given stock together

21Amihud and Mendelson (1986) use a similar adjustment and call (23) the spread-adjusted return.
22We implement the adjustment prior to eliminating the intraday seasonality and attach the trading costs

to the raw returns.
23The distribution of adjr

k
i,j integrates the dependence structure between the stocks considered.
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allowing for competitive and efficient trading. Among the market participants, there are

over 30 market makers (dealers) providing liquidity by always being willing to trade at their

bid and ask prices posted into the NASDAQ network at all times.24 LOBSTER is an online

limit order book generating tool providing NASDAQ order book data developed at Hum-

boldt University, Berlin. It reconstructs the full limit order book on the basis of raw message

data (i.e. orders as they were submitted by market participants and recorded by the market

organizers) and yields an efficient matching algorithm.

LOBSTER is connected to a storage facility containing over 5 TB of NASDAQ’s ITCH mes-

sages which only include limit order messages, whereas other messages such as imbalance

data events and administrative messages have been cleaned out. For arriving limit order

submissions, it records order ID, limit price, quantity and trade direction in the order pool;

for arriving cancellation or execution messages, the system firstly finds the corresponding

limit order submission by comparing the order IDs, then records the remaining non-executed

size (or deletes the order from the pool in case of a remaining size equal to zero), and finally

updates the limit order book by changing the size and price on the associated ask and bid

price level.25

In our empirical study we apply the econometric models presented in the previous section

to five stocks selected from the NASDAQ 100 for the period between January and February

2009.26 Our preliminary diagnostics on the correlation and the tail dependence between the

stocks’ liquidity and log returns are based on the full year of 2009.

We include the intraday data of Alexion (NASDAQ ticker symbol ALXN), Amazon

(AMZN), Apple (AAPL), Baidu (BIDU) and Google (GOOG) in our sample. The selected

companies allow us to model a portfolio consisting of competing firms (e.g. Baidu and

Google) as well as companies possibly offering ample opportunity to diversify (Alexion and

Apple).

24Hence, the NASDAQ Stock Market is organized as a multiple dealers market with a quote-driven system,
where the order flow is fragmented across these dealers (see Chan et al. (1995)).

25For a more detailed description see the Technical Report on http://lobster.wiwi.hu-berlin.de/Lobster/.
26The NASDAQ 100 includes 100 of the largest non-financial companies listed on the NASDAQ.
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In order to yield equidistantly time-spread observations, we re-sample the non-regularly

time-spaced data along a pre-specified time grid, where we consider the realized bid-ask

spreads and mid price returns closest to the observation points of the grid. We assume the

distance between two observation points to equal five minutes and thus compute spreads

and returns as end points of five minute long intervals.27 Furthermore, we exclude the pre-

market and after-market trading hours as well as the first and last three five-minute intervals

of the regular market hours, because, due to the characteristics and specific conditions on

the NASDAQ, these periods possess different dynamics and could bias our estimates of

intraday seasonality. Hence, we consider the period from 9:45 a.m. to 3:45 p.m. and have

71 observation points per day.28

For the preliminary analysis of illiquidity-return commonality, we employ the data for

the full year of 2009 yielding a sample size of 17, 537 intraday observations at five minute

intervals. For the estimation and forecasting of L-IVaR, we use the first 20 trading days in

January 2009 as our in-sample (1, 420 observations) and the following 5 trading days (355

observations) as our out-of-sample.

We construct an equally weighted portfolio and model the five spreads and the five log

returns of the stocks considered. Each spread and each return is firstly modeled univariately

according to the models in 2.1 and 2.2, respectively. In the next step we model the multivari-

ate dependence structure of this portfolio and estimate a 10-dimensional vine copula model

via Maximum-Likelihood with the pair-copulas being selected using AIC as the selection

criterion. Finally, we calculate forecasts for the liquidity-adjusted intraday VaR based on

simulated portfolio values.

Descriptive statistics on the data sample used in our risk management application are

presented in Table 1.

— insert Table 1 here —
27Regarding the returns this means that we choose the mid prices closest to the observation points of the

grid and calculate the returns on the basis of these five-minute mid prices.
28Note that we need two adjacent observation points for the computation of the returns so that we get

71 observation out of 72 five-minute intervals.
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Histograms of the bid-ask spreads and log mid price returns of all five stocks in our

sample are presented in Figure 2.

— insert Figure 2 here —

The descriptive statistics for the bid-ask spreads given in Panel (a) of Table 1 show that

the mean liquidity/illiquidity varies considerably across the five companies in our sample

portfolio with mean spreads ranging from 2.2317 cents (Apple) to 25.6606 cents (Google).

Furthermore, the upper panels in Figure 2 underline the notion that all spreads exhibit

skewed empirical distributions. Additionally, we can see from Panel (b) in Table 1 that the

five stocks possess the usual stylized characteristics of negligible mean log returns and non-

normally distributed returns with a weakly skewed distribution (see also the lower panels in

Figure 2).

In the next section, we try to explore in greater detail the relationship between liquidity

and asset returns across the companies in our sample to provide anecdotal evidence of cross-

market liquidity-return comovements.

3.2 Anecdotal evidence of liquidity-return commonality

As a simple first step, we start our empirical investigation by reporting anecdotal evidence

on the relationship between liquidity and asset returns. Here, we are especially interested in

documenting the dependence between the log returns on mid prices and bid-ask spreads of

stocks traded on the NASDAQ. As a preliminary analysis, we plot the illiquidity against the

returns on selected stocks in our sample to document the systematic relationship between

the two.

— insert Figure 3 here —

Figure 3 illustrates the time variation in the log returns and bid-ask spreads of all firms

in our sample. The figure depicts time series plots of the bid-ask spreads in the upper
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panels (a-c) and (g-i) and corresponding plots for the log returns in the lower panels (d-

f) and (j-l). To illustrate the trend of both the spreads and returns, the intraday data

measured at five-minute intervals are averaged over 50 interval windows yielding trend lines

highlighted in color in Figure 3. The time series plots show that, in some cases, spikes

in the bid-ask spreads coincide with negative returns thus supporting the common finding

of Chordia et al. (2000), Amihud (2002) and Acharya and Pedersen (2005) that liquidity

comoves with contemporaneous returns. Furthermore, bid-ask spreads seem to comove as

well, as can be seen from panels (a,c,h,i) around intervals 800-900. Although these first

results constitute only anecdotal evidence, we can already see that the joint distribution of

spreads and returns could be systematically characterized by extreme liquidity commonality,

spread-return comovements as well as extreme comovements of stock returns.

Further exploring this conjecture, we estimate the linear (unconditional) correlations

between returns and spreads for the 5 companies in our sample which are later used in our

risk management application based on our full sample of 17, 537 observations for the full

year of 2009. The results are given in Table 2.

— insert Table 2 here —

The three panels in Table 2 present the correlation coefficients between bid-ask spreads,

log returns and correlations between returns and spreads, respectively. Panel (a) in Table

2 provides strong evidence of a commonality in liquidity between the five companies. With

the exception of the correlations between the pharmaceutical company Alexion and the IT

companies Apple and Baidu, all pairs of companies exhibit strong positive correlations be-

tween their bid-ask spreads (ranging from 0.0434 to 0.6029). Confirming the second stylized

fact on financial asset returns, Panel (b) underlines the common finding that stock returns

are positively correlated with results ranging from 0.2069 to 0.6698 (Apple vs. Google).

These extremely high positive correlations are not surprising, however, as our sample period

covers the onset and climax of the recent financial crisis in 2009. Consequently, our results
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are symptomatic of the often cited “correlation breakdown” during times of financial market

turmoil.

Turning to the correlations between liquidity and returns, Panel (c) in Table 2 weakly

supports our first impression from Figure 3 that liquidity comoves with contemporaneous

returns as the spreads and returns of the same company (main diagonal in bold type) are

weakly negatively correlated. More interestingly, Panel (c) presents evidence for a weak

correlation between the spreads and returns of different companies. Again, we can see that

liquidity comoves with returns across firms for most firm-pairs with spread-return correlations

ranging from 9.24% (Alexion-Google) to −16.75% (Apple-Baidu).

The correlation analysis in Table 2 stresses the fact that the dependence between liquidity

and returns needs to be taken into account when forecasting liquidity-adjusted measures of

risk by means of a joint distributional model. However, non-linear and extreme dependence

between spreads and returns could be present in addition to the found linear dependence thus

possibly requiring the use of flexible copula models (instead of a purely Gaussian model).

We therefore complement our correlation analysis by estimating the lower and upper tail

dependence between the bid-ask spreads and returns of the companies in our sample using

a nonparametric estimator (see Schmidt and Stadtmüller, 2006, for details of the estimator

and its asymptotic properties).29 Results on the tail dependence between spreads and returns

are presented in Tables 3 and 4.

— insert Tables 3 and 4 here —

As can be seen from Panels (a) and (b) in Tables 3 and 4, both the bid-ask spreads

as well as the log returns of the stocks in our sample are characterized by strong upper

and lower tail dependence. Hence, liquidity commonality is not only manifested in a linear

correlation between bid-ask spreads and returns, but also in strong tail dependence between

the liquidity of different assets.

29By using a nonparametric estimator, we circumvent the error-prone problem of choosing a parametric
copula family just for estimating the tail dependence coefficients.
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Panels (c) in Tables 3 and 4 report the estimated coefficients of lower and upper tail

dependence between the spreads and returns of the firms in our sample. The results provide

ample evidence of a strongly nonlinear relationship between liquidity and returns of not

only the same asset, but also between the liquidity and returns of different firms’ stocks.

Interestingly, the upper tail dependence between spreads and returns seems to be more

pronounced than the lower tail dependence. It thus seems that extreme increases in illiquidity

are accompanied by an extreme rise in the risk premia in contemporaneous returns. Extreme

increases in liquidity, on the other hand, do not coincide with extreme downward movements

in returns as can be seen from the coefficients of lower tail dependence which are regularly

lower than the corresponding coefficients of upper tail dependence.

This finding is also confirmed by an analysis of the time-variation of lower and upper

tail dependence. The results of this analysis are presented in Figure 4 which shows the

time-variation of both tail dependence coefficients estimated nonparametrically from rolling

windows of 300 observations based on our full sample of 17, 537 intraday data points for all

five stocks we consider.

— insert Figure 4 here —

The time series plots in Figure 4 show that upper tail dependence (red lines) between the

bid-ask spreads and the log returns of the five individual stocks is systematically higher than

lower tail dependence (see e.g. Panel (a) in Figure 4). In line with corresponding results on

diurnal returns, both lower and upper tail dependence seems to be strongly time-varying.

In summary, both the dependence structure between the spreads and returns of indi-

vidual stocks as well as the dependence between cross-market illiquidity and returns seem

to be highly nonlinear and characterized by a high degree of tail dependence. Even more

importantly, from an investor’s point of view, neglecting the strong cross-market tail de-

pendence between illiquidity and asset returns could lead to severely biased estimates of

portfolio liquidity risk.
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Our choice of a flexible vine copula model for the joint distribution of spreads and returns

which accounts for possible tail dependence between the variables thus seems to be well

justified.

3.3 Results on L-IVaR estimation and forecasting

Using the intraday data for our portfolio consisting of five stocks, we forecast the portfolio

L-IVaR according to the three models presented above. The marginals are modeled using the

desribed GARCH and ACDP models. As candidate parametric copulas, we use the Gaussian,

Student’s t, Clayton, Frank, Gumbel, Joe, BB1, BB8, Survival Clayton and Survival BB8

copulas. We employ in-samples with sizes of 1, 420 observations at five minute intervals and

forecast the following 23/24 observations.30 The in-sample is then shifted forward and the

next 23/24 observations are forecasted using the reestimated models. From each estimated

model, we simulate 1, 000 portfolio returns and bid-ask spreads from which we calculate the

portfolio 5%-L-IVaR via Monte Carlo simulation.

Results on the estimated coefficients of the marginal models averaged over all 15 reesti-

mations (5 days × 3 forecasting periods) are presented in Table 5.

— insert Table 5 here —

The average estimated coefficients show that, on average, all marginal fits include a

pronounced autoregressive component as expressed by the parameters ψk1 and βk1 of the

ACDP and GARCH model, respectively. Moreover, the average parameter estimates show

that both underdispersion (Amazon and Apple) as well as high overdispersion (e.g., Google)

is fitted with the ACDP models. In unreported model diagnostics tests, we use the tests of

Box and Pierce (1970) and Ljung and Box (1978) to check the hypothesis that there is no

autocorrelation left in the standardized residuals of the GARCH marginals. The unreported

results for the 15 reestimations show that the hypothesis of no autocorrelation cannot be

30Our out-of-sample consists of five days with 71 intraday observations each. Each day is split up into
three forecasting periods of length 24 and 23 for the last period on that day, respectively.
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rejected at the 5% level for any of the fitted marginal GARCH models. Corresponding results

for Ljung-Box and Box-Pierce tests on the Pearson residuals
Sk
i,j−λki,j√

λk
i,j
γk

of the ACDP models

(Heinen and Rengifo, 2007) additionally confirm the good fit of the ACDP model for the

bid-ask spreads.

Table 6 presents results on the percentages of parametric copula families which were

selected as the first 24 of the overall 45 pair-copulas in our 15 reestimations.

— insert Table 6 here —

The percentages given in Table 6 show that the vast majority of pair-copulas are selected

from the Gaussian, Clayton and Frank families. Interestingly, the Student’s t copula is

selected in only few instances strikingly contrasting the usual finding in multivariate market

risk modeling that the Student’s t copula provides the optimal fit for financial market data

(see Breymann et al., 2003). Moreover, Table 6 underlines the notion that the modeling of

a high-dimensional portfolio consisting of bid-ask spreads and returns requires the increased

flexibility of a vine copula model as most bivariate pair-copulas are chosen from more than

one parametric copula family.

Turning to the L-IVaR forecasts, Figure 5 presents a comparison between the realized

liquidity-adjusted profits and losses for our 5-dimensional portfolio in the out-of-sample and

corresponding simulated L-IVaR forecasts computed by the three models presented above.

The three panels in Figure 5 present the comparisons of the L-IVaR forecasts computed from

the BDSS model (Panel (a)), the HW model (b) and the L-IVaR computed from adjusted

returns (c). Panel (d) combines all three model forecasts and realized P/L in a single plot

to highlight the differences between the models’ forecasts. The beginning of each of the five

days in our our out-of-sample is marked with a dashed vertical line.

The plots in Figure 5 give ample evidence of the three different models’ ability to predict

the portfolio’s L-IVaR. Although the L-IVaR estimates stay relatively close to the realized

losses on the portfolio, the L-IVaR forecasts are exceeded in only 3 cases for the BDSS
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model, in 4 cases for the HW model and just once for the L-IVaR model based on adjusted

returns. These out-of-sample results stress the finding that our multivariate model performs

exceptionally well in forecasting L-IVaR. At the same time, our forecasts are not too con-

servative thus preventing e.g. banks from reserving too much risk capital. Furthermore, it

is interesting to note that our L-IVaR models fully capture the increased seasonal volatility

of intraday spreads and returns during the first hour of daily trading as shown by the steep

decrease in both portfolio losses and L-IVaR forecasts after each turn-of-the-day (dashed

vertical lines).

Panel (d) in Figure 5 finally shows that all three different models for forecasting L-IVaR

produce comparable results. Results on the number of L-IVaR exceedances show that the

BDSS and HW models (3 and 4 exceedances, respectively) do not differ while the L-IVaR

model based on liquidity-adjusted returns (1 exceedance) which we use as a benchmark seems

to be slightly too conservative.

To formally test the adequacy of these out-of-sample L-IVaR forecasts, we follow the vast

majority of studies in quantitative risk management and employ the test of Conditional Cov-

erage proposed by Christoffersen and Pelletier (2004) on the forecasts of our three models.31

The results show that both the BDSS model (p-value 0.3660, test statistic 0.4195) as well as

the HW model (p-value 0.7121, test statistic 0.5135) cannot be rejected at the 10% level. As

already seen from the number of L-IVaR exceedances which was too conservative, the model

based on adjusted returns (p-value 0.0590, test statistic 0.5081) is rejected at the 10% level

and cannot be rejected only at the 5% level.

4 Conclusion

Liquidity risk has rarely received more attention than during the past few years following

the recent subprime and sovereign debt crises. In this paper, we propose a multivariate

31The test of Conditional Coverage tests for the correct number as well as serial independence of VaR-
exceedances. Details of this likelihood ratio test and its properties can be found in Christoffersen and Pelletier
(2004). The test’s p-values are computed via parametric bootstrap with 5, 000 simulations.
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model that incorporates the joint modeling of liquidity as well as market price risk in a flexi-

ble copula-based distributional model. We propose to model the joint distribution of bid-ask

spreads and log returns of a stock portfolio by using Autoregressive Conditional Double Pois-

son and GARCH processes for the marginals and vine copulas for the dependence structure.

Using intraday data from the NASDAQ, we incorporate the measurement of commonalities

in liquidity and comovements of stocks and bid-ask spreads into the forecasting of three

types of liquidity-adjusted Value-at-Risk.

To the best knowledge of the authors, this is the first study to document anecdotal

evidence of strong extreme comovements in liquidity and strong tail dependence between

bid-ask spreads and log returns across firms. Motivated by this finding, we employ an

extremely flexible vine copula model to capture the diverse dependence structures between

intraday bid-ask spreads and log returns. We then use this multivariate model to forecast

the liquidity-adjusted intraday VaR of a five-dimensional portfolio.

Our findings clearly show that the proposed multivariate model for bid-ask spreads and

intraday returns performs exceptionally well in forecasting liquidity-adjusted portfolio losses.

While losses are adequately bounded below by our liquidity-adjusted VaR forecasts, our

models are not too conservative and thus prevent investors like, e.g., banks from reserving

unnecessary risk capital buffers. These results are confirmed in a formal backtesting based

on the models’ conditional coverage.

Further research should concentrate on generalizing the anecdotal evidence of the found

nonlinear dependence between liquidity and asset returns. Furthermore, the relationship

between liquidity and asset returns of different firms needs to be analyzed in greater de-

tail. The results from our vine copula modeling underline the notion that cross-firm depen-

dence between liquidity and asset returns needs to be taken into account when forecasting

liquidity-adjusted VaRs. In a bottom-up approach to VaR modeling, the idiosyncratic and

macroeconomic factors driven this form of commonality would need to be identified. We

intend to address these questions in future research.
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Figure 1: Four-dimensional example of a D-vine. The variables represent the intraday
bid-ask spreads and the mid-price returns of two stock, respectively. Each edge in layers
T1-T3 (nodes in layers T2-T4) corresponds to a bivariate pair-copula.
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(a) Lower and upper tail dependence between spreads and returns: Alexion

Tick

LT
D

/U
T

D

0 5000 10000 15000

0.
0

0.
2

0.
4

0.
6

(b) Lower and upper tail dependence between spreads and returns: Amazon

Tick

LT
D

/U
T

D

0 5000 10000 15000

0.
0

0.
2

0.
4

0.
6

(c) Lower and upper tail dependence between spreads and returns: Apple
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(d) Lower and upper tail dependence between spreads and returns: Baidu
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Figure 4: Time evolution of the tail dependence between spreads and returns. The
figure shows the time evolution of the coefficients of lower (black line) and upper tail depen-
dence (red line) between the intraday bid-ask spreads and the log returns computed from
the intraday mid prices. The coefficients of lower and upper tail dependence are estimated
from rolling windows of 300 data points using the nonparametric estimator of Schmidt and
Stadtmüller (2006). The sample period is January 1, 2009 - December 31, 2009 and taken
from the LOBSTER database containing tick-by-tick data for all companies listed on the
NASDAQ.
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