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1 Introduction

Liquidity risk is of major concern to both investors and portfolio managers. Especially in
times of market turmoil, overall market liquidity can dry up forcing investors to exit positions
at increased cost. Consequently, investors prefer assets which are either liquid (see Amihud
and Mendelson, 1986; Brennan and Subrahmanyam, 1996; Liu, 2006) or are least not exposed
to systematic decreases in liquidity (Acharya and Pedersen, 2005; Sadka, 2006). While the
finance literature has long been concerned with liquidity risk and market microstructure
(Demsetz, 1968; Stoll, 1978; Amihud and Mendelson, 1980), the recent financial crisis has
renewed interest in both the modeling of liquidity risk and in the analysis of its driving
factors (see e.g. Cornett et al., 2011; Dick-Nielsen et al., 2012).

Although early empirical and theoretical studies on liquidity have concentrated on in-
dividual securities, the analysis of comovements in liquidity among individual stocks has
become a corner stone of the microstructure literature starting with the seminal papers
by Chordia et al. (2000), Hasbrouck and Seppi (2001) and Huberman and Halka (2001).
Since then, studies on the commonality in liquidity have unanimously found clear empiri-
cal evidence for strong comovements in liquidity as proxied, e.g., by the bid-ask spreads of
individual stocks. The determinants driving this commonality in liquidity, however, have
remained relatively unknown until the recent study by Karolyi et al. (2012). They find that
commonality in liquidity is positively correlated with high market volatility. In addition,
liquidity commonalities were particularly strong during the Asian crisis and the recent fi-
nancial crisis underlining the necessity of taking liquidity risk into account in multivariate
risk modeling.

The incorporation of liquidity risk into the measurement of market risk has been a re-
curring topic in the risk management literature since the onset of the Value-at-Risk (VaR)
concept as a de-facto industry standard. Although standard VaR lacks a rigorous con-
sideration of liquidity risk, several extensions to certain forms of Liquidity-Adjusted VaRs

(L-VaR) have been proposed in the literature (see e.g. Berkowitz, 2000; Bangia et al., 2002;



Qi and Ng, 2009). Parallel to the study of liquidity-adjusted risk measures, the availability of
tick-by-tick data has enabled researchers to measure the liquidity of stocks at an ultra-high
frequency (Chordia et al., 2000; Engle, 2000). While the increase in the speed of trading and
the widespread availability of transaction data have led to an increase in the importance of
intraday risk analysis (Dionne et al., 2009; Gourieroux and Jasiak, 2010), the modeling of
intraday stock returns and bid-ask spreads is severely hampered by the irregular spacing of
such data. Econometric research has thus concentrated on deriving appropriate models for
the duration between transactions (Engle and Russell, 1998), for the estimation of intraday
volatility (Andersen et al., 2000, 2003) and for the estimation of intraday risk measures
(Giot, 2005; Dionne et al., 2009).

The econometrics literature includes several studies which focus on modeling and fore-
casting multivariate intraday stock returns or multivariate bid-ask spreads (see e.g. Engle
and Russell, 1998; Breymann et al., 2003; Heinen and Rengifo, 2007; GroB-Klufimann and
Hautsch, 2011; Li and Poon, 2011). Up to date, however, no study has analyzed the joint
distribution of intraday returns and bid-ask spreads of multiple stocks. Although stock
returns are known to be leptokurtic and non-normally distributed with time-varying depen-
dence (see e.g. Longin and Solnik, 1995), and bid-ask spreads are known to comove across
markets, little is known about the dependence (and consequently possible comovements)
between liquidity and returns of different stocks.

In addition, the multivariate modeling of bid-ask spreads has so far been a purely econo-
metric exercise with no connection to the rich literature on liquidity commonality.! Further-
more, there exist only few studies on the estimation of VaR from intraday data (Dionne
et al., 2009) and, to the best knowledge of the authors, no work on multivariate liquidity-

adjusted portfolio-VaR. Our paper tries to link the research on liquidity commonality and

L As stated by Heinen and Rengifo (2007), extending the standard Autogressive Conditional Duration
(ACD) model of Engle and Russell (1998) to more than one time series has proven to be quite difficult.
Considering the numerous problems one encounters when trying to model multivariate count data, it is,
however, not surprising that studies such as the one by Heinen and Rengifo (2007) focus on the econometric
side of the problem.



on the estimation of multivariate portfolio-VaR from high frequency data.

Therefore, we propose a multivariate econometric model based on vine copulas for esti-
mating and forecasting liquidity-adjusted risk measures for multivariate stock portfolios and
apply the proposed model on returns and bid-ask spreads reconstructed from high frequency
data. We start our analysis by performing a variety of diagnostic tests on the dependence
structure between intraday stock returns and quoted bid-ask spreads for selected companies
on the NASDAQ 100 in 2009.2 These preliminary tests provide us with ample empirical
evidence of not only strong linear correlation but also strong tail dependence between bid-
ask spreads across individual stocks. We then turn to modeling the marginal behavior of
stock returns and bid-ask spreads by the use of GARCH processes and the Autoregres-
sive Conditional Double Poisson model, respectively (Heinen, 2003; Grof-Klufimann and
Hautsch, 2011). As the dependence structure between intraday stock returns and bid-ask
spreads stemming from different companies has not been analyzed before in the literature,?
our dependence model is required to be able to capture a wide range of possible linear and
non-linear dependencies. We therefore resort to the concept of vine copulas (Heinen and
Valdesogo, 2008; Aas et al., 2009) to model the dependence structure between the returns
and bid-ask spreads of multiple stocks. Based on our estimated multivariate model for re-
turns and bid-ask spreads, we then forecast and backtest several types of liquidity-adjusted
risk measures to illustrate the superiority of our proposed method.

The contributions of this study relative to the existing literature on liquidity commonality
and liquidity risk management are significant and numerous. While previous studies on
the commonality in liquidity have documented strong positive linear correlation between

measures of liquidity, this study is the first to find empirical evidence for a strong non-linear

20bviously, other measures of liquidity could have also been used. The majority of studies in the risk
management literature, however, regularly employs the quoted bid-ask spread to measure liquidity (see e.g.
Berkowitz, 2000; Bangia et al., 2002).

3The relationship between the returns and the bid-ask spread of the same company, on the other hand,
is well documented, see e.g. Amihud and Mendelson (1986) who find that average portfolio risk-adjusted
returns increase with their bid-ask spread with the slope of the return-spread relationship decreasing with
the spread.



dependence in the form of significant tail dependence as well. This paper is also the first
to integrate our understanding of liquidity commonality into the estimation and forecasting
of liquidity-adjusted risk measures. In addition, this paper constitutes the first multivariate
model for the joint distribution of the returns and bid-ask spreads of multiple stocks. Finally,
our paper adds to the fastly growing literature on the use of vine copulas in risk management
and asset pricing applications making full use of the vines’ flexibility.

The results presented in this paper show that the proposed multivariate model for bid-
ask spreads and intraday returns performs exceptionally well in forecasting liquidity-adjusted
portfolio losses. While losses are adequately bounded below by our liquidity-adjusted VaR
forecasts, our models are not too conservative and thus prevent investors like, e.g., banks
from reserving unnecessary risk capital buffers.

The remainder of this article is structured as follows. Section 2 presents the econometric
methodology. Section 3 discusses the empirical study as well as the results. Concluding

remarks are given in Section 4.

2 Econometric methodology

The purpose of this section is to outline the econometric models for intraday bid-ask
spreads and returns, their multivariate dependence structure as well as liquidity-adjusted
intraday VaR.

We start with the models for intraday spreads and returns which form the fundamental

building blocks of the VaR models described later.

2.1 The Autoregressive Conditional Double Poisson Model

Loosely speaking, liquidity can be seen as the ability of a market to allow for immediate
trading even large amounts to minimal costs without causing remarkable price movements;

hence, liquidity risk results from the difference between transaction and market price.



Kyle (1985) provides a formal definition and introduces three components of liquidity includ-
ing tightness, depth and resiliency; according to Amihud and Mendelson (1986), a natural
measure of liquidity (or rather liquidity risk) is the spread between the bid and ask prices.
Bangia et al. (2002) classify liquidity risk into exogenous liquidity risk which arises from the
general conditions of a market and is equal to all participants and endogenous liquidity risk
which refers to the volume of individual trading positions and which is idiosyncratic.

The bid-ask spread has become a key parameter in modeling financial data and captures

the costs of immediate trading, which can be explained by the liquidity suppliers’ purchasing
at the bid and selling at a higher ask price in order to recoup their own costs. Empirical
properties like intraday seasonalities, linear dependence and commonalities are given in the
context of the data description in section 3.
Statistically, bid-ask spreads belong to the class of discrete count data, because they count
the number of ticks between bid and ask prices. To accurately model time series of count
data measured at high frequency, there are two important aspects to consider: on the one
hand the model has to cope with the issues of discreteness and serial dependence, on the
other hand its estimation procedure has to be tractable for a large number of observations.
Following GroB-Kluimann and Hautsch (2011), we drop the traditional approaches reviewed
by Cameron and Trivedi (1998), MacDonald and Zucchini (1997) and McKenzie (2003)
because of their complex estimation procedures and adopt the Autoregressive Conditional
Double Poisson Model (ACDP hereafter) that belongs to the class of observation-driven
models and is based on the Autoregressive Conditional Poisson Model (ACP) introduced by
Rydberg and Shephard (1999).4

Since the Poisson distribution is a natural starting point for counts (see Heinen, 2003),
the ACP assumes that the counts follow a Poisson distribution with an autoregressive mean.

Extending this approach, the ACDP uses the Double Poisson distribution as proposed by

4Further details of the ACDP model are explained in Heinen (2003), Fokianos et al. (2009) and Ferland
et al. (2006).



Efron (1986) instead and allows for a more flexible modeling of the spreads.” To provide
a mathematical description of this model we start with some notations: let M, N,d € N
denote the number of trading days in the sample, the number of observations per day and
the number of stocks, respectively, and let I,.J, K be index sets given by I := [1, M| NN,
J:=[0,N—1]NNg and K := [1,d] NN, where Ny := NU{0}. Further, let Ny, N; € NU{0}
with No < Ny and let Z := {Ny =ng < n; < ... < ny_1 < N1} be a partition of [Ny, V]
with equidistant points n; € Ny (j € J) in ascending order and norm Az, denoting the
time grid of observation points for the sample days.® Let Aﬁ ; and ijj denote the (best) bid
and the (best) ask price (respectively) and Sf; := A}, — B}, the quoted bid-ask spread of
stock k closest to time n; € Z, realized at the i-th trading day (i € I,k € K). Moreover,
let DPois(), ) be the Double Poisson distribution (Efron, 1986) and F}; the information
available on the series of stock k up to and including time n; of the i-th day.” Let L denote
the lag operator defined by Lbefj = Sf:j_b for b € Z and let two lag polynomials ®; and
Uy, be given as & (L) := >0 _ ¢k L™ and Wi(L) := >P_ ¥L" where p,q € Ny refer to
the order of the process and the coefficients are restricted by ¢, >0, m =1, ..., q as well as
PE>0,n=1,..,p

Then, the ACDP(p, q) process {S};};es is defined by

SENFE_1 ~ DPois(AL, k),

2,5—1

NS = cp 4+ Op(L)SE; + Wi(L)A]

Z?]’

where i € I,k € K and ¢, > 0.8

The ACDP assumes the conditional distribution of the spread to be Double Poisson. The

®Since the (Double) Poisson distribution is defined on N U {0}, all prices and spreads are expressed as
multiples of ticks, i.e. multiples of the minimum tick size which equals 0.01 US-Dollar cent.

6The interval [Ny, N1] refers to the observed trading hours; Z is equal to each stock and trading day of
the sample.

"Hence, FF . considers (i — 1)N + (j + 1) spread observations (of stock k).

0]
8Note that we have LbSﬁj = Szk—l,NH—b and Lb/\ﬁj = /\f—LNH—b incase of j <b< N +j.

6



conditional probability mass function of S{fj is then given by

Vil
1 exp(—=D)1' [ exp(1)A};
P(Sﬁfj = mﬁj,%) = ck(Aﬁj,yk) 2 exp(_%A;fj) (“ ) ( z J ,leNy, (2)

where Efron (1986) suggests the following expression for the constant ¢ (Af;,vi):

1 1 — v 1
—— =1+ 1+ . 3
Ck()‘f,ja%) 12)‘4'{,]"7% ( Aﬁj%’c) 3)

He deduces expressions for the mean and variance of the Double Poisson as well, and we

have

k

AF
Frk ] =2 4
2,7 1] Vi ( )

k | Tk k k
so the ACDP model can generate both conditional overdispersion (in case of 7, < 1) and
conditional underdispersion (in case of v, > 1).

Assuming p = g = 1, Heinen (2003) characterizes the unconditional distribution by yielding
formulas for the unconditional mean and variance which are given by
L E[SE] (01— (¢F+ 1)’ + 1)

]=——* __ and Var[sF] = —. =~ >R [SE].

E[SF] =
Sl = 1= =5 T (6} + 1)

,J

Hence, the expression for the unconditional mean is identical to the mean of an ARMA

process and the unconditional distribution exhibits overdispersion in the case of v, < 1,

1= (14982 +ob 2
1—(ph+yh)2

Furthermore, as stated by Heinen (2003) and shown by Ferland et al. (2006), the ACP model

whereas vy, > leads to underdispersion.

yields covariance stationary and strictly stationary solutions if 7 _ ¢F +>°7_ | wf < 1
because of (4) this holds for the ACDP model as well.

The ACDP model is straightforwardly estimated by maximum likelihood, where the log



likelihood can be calculated for each stock k € K using (1) and is given by

1 AL
log £(0 Z Z <log n )\k]’,yk)) + 3 log (k) — ’yk)\ﬁj + ’ykaj (1 + log (S’“]>>> ;
]

el jed

(6)

where 0 := (ck, Ty eees 1/)1, e qﬁllj)T contains all the parameters of the autoregressive con-

ditional intensity.”

2.2 Modeling intraday returns with GARCH processes

In order to model intraday mid price returns we adopt the model of Giot (2005) who
applies different specifications of GARCH models to deseasonalized returns to capture their
intraday volatility dynamics. Before presenting the mathematical basics of this model, we

Ak
g denote the

extend our notations introduced in the preceding section: let Pf] =
mid price of stock & closest to time n; € Z at the i-th day (i € I,j € J,k € K) and
RE; :=log (PF;) —log (P},

i 1) the raw log returns associated with two adjacent mid prices.

According to Giot (2005), intraday volatility can be modeled by standard volatility models
after taking into account the strong intraday seasonality pattern of volatility documented by
Andersen and Bollerslev (1997). Following Giot (2005) we assume a deterministic seasonality
in the intraday volatility and compute the deseasonalized log returns 7“ - from the raw log

returns as

9We omitted the term Sk (log (Sk ) ) log (Sf;j!) in the expression for the log likelihood because it
is independent of 6 and vamshes in the score.



where & ]’“ is the deterministic pattern of the intraday volatility of stock k for the time interval

[n;—1,n;] given by the expected volatility conditioned on time-of-day and computed as
1
ff:mZ(Rﬁj)Q,jeJ,keK. (8)
icl

Having filtered the intraday seasonalities, we apply a standard GARCH(1,1) model with
normally distributed innovations to capture the dynamics of the intraday returns.

Hence, the model for the intraday returns used in the framework of this article is given by

k
_ Ri,j
- )
&

9
rig = g bl v

ko k([ k 2.k k1 k
hi; = wi+ay (e8;21) iy + BUhi o,

k
Tij

where py, is the expected return, gﬁj ~ 1ID N(0,1), wp > 0,af > 0 and B¥ > 0 for

1el,je J ke K.

2.3 Joint modeling of returns and liquidity with vine copulas

We now turn to the task of modeling the joint distribution of (deseasonalized) mid price

returns rﬁ and bid-ask spreads Sfj of several stocks.'® The model should therefore be able

J
to capture the dependence between the mid price returns, the commonalities between the
spreads and a possible dependence between returns and spreads.

In order to model the joint distribution of returns and spreads, we follow in the footsteps
of Nolte (2008) who models the price changes, transaction volumes, bid-ask spreads and
intertrade durations of single stocks by the use of a parametric copula. In contrast to his

work, however, we extend this idea to the modeling of the returns and spreads of multiple

stocks and employ a D-vine model to deal with the increase in dimensionality and to allow

0Note that d stocks thus require a distributional model in 2d dimensions.



for a more flexible modeling.

In the statistics literature, several papers starting with Joe (1996, 1997), Bedford
and Cooke (2001, 2002) and Whelan (2004) have proposed models based on hierarchical
Archimedean copulas and vine copulas (sometimes referred to as pair-copula constructions,
PCC) to model high-dimensional joint distributions. The seminal work by Aas et al. (2009)
introduced vine copulas to the field of risk management and spurred a surge in empirical
applications of vine copulas (see Chollete et al., 2009; Heinen and Valdesogo, 2008; Aas
and Berg, 2009; Min and Czado, 2010, 2011). For our purpose in this study, vine copulas
are especially appropriate for two reasons: first, vine copulas allow the modeling of high-
dimensional distributions. Second, vine copulas are composed of bivariate building blocks
(called pair-copulas) with each bivariate pair-copula capturing the conditional dependence
between two variables. As the dependence structure between returns and spreads is presum-
ably quite complex, this flexibility allows us to model each bivariate pair of returns and/or
spreads separately. We quickly review the definition and major properties of vine copulas
below.!!

Consider a d-dimensional random vector X = (Xj,...,X,) with joint density function
f(z1,...,x24) and distribution function F(zy,...,z4). According to Bedford and Cooke
(2001), the joint density f can be expressed as a product of the marginal densities and

a set of conditional bivariate copulas. More precisely, we have

d d—1d—j
F&) =TT TTTT o (Flagla, o aim), Flajale, . xm) (10)
k=1 J=1i=1

with bivariate conditional copulas ¢; it jji+1,...i+j—1 Which are referred to as pair-copulas. The
decomposition given above is known as a canonical or C-vine and is only one of several ways

the density can be split up.'? Then, for a d-dimensional density, there exist d!/2 different

1A rigorous treatment of vine copulas and their properties can be found in Joe (1996) and Bedford and
Cooke (2001, 2002).

12The decompositions described here are special cases of the more general regular vines which are described
e.g. in Brechmann and Czado (2011).

10



C-vines depending on the initial sorting of the d random variables. As each of the d(d—1)/2
bivariate pair-copula can be chosen from a different parametric copula family, a vine copula
model is considerably more flexibile than a traditional d-dimensional copula model.

Different compositions of the density f are given by the so-called D-vines defined as

d d—1d—j
f(x) = H f(zx) H H CisitflitLniti—1 (B (Ti|Tig1, o Tijo1), F(Tigj|Tis, o Tijo1))
k=1 j=1i=1

(11)
Again, for a d-dimensional density there are d!/2 different possible decompositions.

The estimation of a vine’s parameters via Maximum-Likelihood is straightforward and
is explained in detail in Aas et al. (2009). The selection of the d(d — 1)/2 parametric
pair-copulas, on the other hand, is a much more delicate task requiring the use of either
goodness-of-fit tests (Aas et al., 2009) or model selection criteria like Akaike’s Information
Criterion (AIC; Diffimann et al., 2012). Here, we follow Brechmann and Czado (2011) and
Difimann et al. (2012) and employ AIC for selecting the best-fitting vine copula model.

Then, let eﬁ ; be the residuals of the GARCH processes for the mid-price returns and let
Sy, be the bid-ask spreads of the k-th stock (k € K). We then follow Nikoloulopoulos et al.
(2012) and model the joint distribution of the GARCH innovations instead of the returns
themselves yielding the 2d-dimensional model

X = (5}73»,...,5%,5}7]»,...,5%) (12)
for the joint distribution of the returns and spreads.!® The marginals are modeled as nor-
mally distributed and Double Poisson distributed, respectively, thus the spread marginals
exhibit a discrete distribution which causes some complications in regard to the applicability
of the theoretical framework underlying the use of copulas. A pivotal requirement within this

framework is the availability of the Probability Integral Transformation Theorem (PITT) of

I3Note that we only consider unconditional copulas in this work due to the already large number of
parameters that need to be estimated. As we reestimate each model after forecasting 24 observations, the
negative effect of using an unconditional model for the dependence structure should, however, be neglectable.

11



Fisher (1932) which states that the probability integral transform (PIT) of a random vari-
able under its marginal distribution is distributed uniformly on [0; 1]. The PITT, however,
only holds for continuous distributions and does not apply in case of discretely distributed
marginals. To overcome this difficulty we use the continuousation approach described in

Heinen and Rengifo (2007) and introduce the continuoused spread variable
Sf] = Sfj + (U -1),
where U is uniformly distributed on [0; 1]. The PIT of gfj is given by
Ekg(gfj) =U- ‘F;kj(sf]) + (1 - U) ’ F;kg(sfg - 1) (13)

and follows a Uniform distribution on [0; 1], where Ffj and F}'; denote the cumulative dis-

tribution functions of S'Zk] and SF

. 14 k . .
ij» respectively.’* We now replace the S; in (12) by their

continuoused versions and adopt the 2d-dimensional model

X: <€,}7j,...’ng’sij’...’sgj> (14)
for the joint distribution of the returns and the spreads.!® In this way, we capture the com-
plete dependence structure of returns and spreads and ensure that the theoretical conditions
for the use of copulas are met as well.
As a model for the dependence structure, we employ a 2d-dimensional D-vine copula. We
argue that the D-vine is the best suited vine model for our purposes as it permits us to first
model the dependence structure between the bid-ask spreads and returns separately. The
conditional dependence between spreads and returns are modeled during later stages of the

model estimation. An example for a D-vine with four variables (spreads and returns of two

stocks) is illustrated in Figure 1.

A formal proof can be found in Brockwell (2007).
15Note that continuousation does not alter the dependence between the marginals.

12



— insert Figure 1 here —

As one can see from Figure 1, the specific sorting of the variables allows us to first model
the dependence between the (in this case two) spreads and the returns unconditionally (the
nodes on level T2). On the next level of the vine, we model the conditional dependence
between the spreads and returns of the same stock given information on the spreads or
returns of the remaining stock. Finally, on the last layer T4 of the vine, the cross-dependence
between the returns on the first and the spreads of the second stock are modeled given the

remaining two variables.

2.4 Liquidity-adjusted intraday VaR

Having dealt with the models for the intraday spreads and returns as well as their mul-
tivariate dependence structure, we now present the different risk measures which are used
in our empirical study concentrating on the liquidity-adjusted intraday VaR (L-IVaR). We
present three different models including the model proposed by Bangia et al. (2002), the
model suggested by Heude and Wynendaele (2001) and a model based on liquidity-adjusted
returns each of which uses the information provided by the models previously presented in

a particular way:.

2.4.1 The L-IVaR model of Bangia et al. (BDSS, 2002)

As stated in section 2.1, we are interested in modeling the exogenous liquidity risk which
is a result of general market characteristics and relevant for all market participants. Since
(exogenous) liquidity risk arises from the deviation of transaction prices from market prices
and can be measured by the bid-ask spread, Bangia et al. (2002) propose a methodology
that incorporates exogenous liquidity risk into VaR by considering the spread as well as its
volatility and adding an exogenous cost of liquidity component (COL) to standard VaR.

In terms of our notations and adjusted to an intraday horizon, their model for the L-IVaR

13



of the k-th stock in time n; of the i-th day takes the following form:

L—IVaRﬁj = szj . [(1 — exp <\/§Mk — Z1-at/ hﬁjﬁf)) + % (rgk + Sa‘78> ) (15)

where 2;_, denotes the 1 —a quantile of the standard normal distribution, ,.S* describes the

average relative spread and s, and oy refer to the a quantile and standard deviation of the

. . . . . Sk =
relative spread distribution; thereby the relative spread is defined as rSf:j = 5 and Sk
i

results from averaging rSffj over ¢ and j.

Hence, the first summand in (15) is given by

IVaRﬁj = Pfj . <1 — exp <\/¥Mk — Z1_a\ /hfjff)) (16)

and yields the standard IVaR of the intraday mid prices that result from the model for the
intraday returns described in section 2.2.16

The second summand is defined as
COLF. = L Pr . (,5% + 17
wj gl (+ 5a0s) (17)

and describes the exogenous cost of liquidity which incorporates the (exogenous) liquidity
risk and considers both the relative spread and its volatility.!”

The total risk is thus split up into price and liquidity risk and (15) takes the simple form
L-IVaR}; = IVaR}; + COL}. (18)

Thus, the L-IVaR proposed by Bangia et al. (2002) adjusts the mid price to price and

liquidity risk in an intuitive way; in order to compute the L-IVaR at the portfolio level for

6Note that following Giot (2005) we use the /& j’“ factor to re-introduce the seasonality component of the

intraday volatility (which was removed prior to modeling the intraday returns via GARCH).
17_S* serves as a normalizing device providing comparability and s, can be interpreted as a scaling factor
for the volatility to cover a% of the spread situations (see Bangia et al., 2002).

14



an equally weighted portfolio consisting of d stocks, we can simply sum up the adjusted mid

prices of the single stocks according to their weights and get

d
PF-L-IVaR{, = = > " L-IVaR} . (19)
k=1

SN

This model, however, faces some drawbacks: on the one hand there are problems in estimat-
ing the scaling factor, if there is no spread distribution specified, because the spread distri-
bution is far from normal; on the other hand the way price and liquidity risk are aggregated
asstimes extreme events in returns and extreme events in spreads to happen simultaneously.'
In the next section we present a model proposed due to Heude and Wynendaele that is based
on the same idea as the one by Bangia et al. but which aims at rectifying the drawbacks of

the latter.

2.4.2 The L-IVaR model of Heude and Wynendaele (HW, 2001)

The model approach by Heude and Wynendaele (2001) is also based on the idea of adjust-
ing the mid price to price risk and (exogenous) liquidity risk, but takes into consideration
the drawbacks of the model proposed by Bangia et al. (2002). Using our notations, the

model can be summarized as follows:

»S* 1 _
L—IVaRfJ = sz] . {(1 — (1 - ) - exp <\/§7’“uk — zlaw/hf’jfjl-ﬁ) + 5 (TSfJ — Sk)] )

(20)

The first summand of (20) is given by

2ty Bty (1= 250 ) o (fehe = 20 fi,6) 1)

18Note that Bangia et al. (2002) assume a perfect correlation between (exogenous) liquidity risk and
VaR, which leads to an overestimation of the L-IVaR; Heude and Wynendaele (2001), however, evidence
that most of the extreme events in spreads occur when the return is around its mean.
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and describes the basic IVaR adjusted to liquidity, where the VaR concept is directly applied
to a theoretical bid obtained from the mid prices adjusted by half the average spread. In
this way, the joint impact of price and (exogenous) liquidity risk is captured in a single
expression. '’

The second summand is defined as

1 _
3 P - (+8; =+ S¥) (22)

and considers the dynamic aspect of the liquidity factor by comparing the immediate relative
spread with the average relative spread. If the former exceeds the later, this component will
increase the VaR number (and reduce it in the opposite case).

Hence, the model proposed by Heude and Wynendaele builds on the same idea as the model
suggested by Bangia et al. (2002) but improves some of its drawbacks.? In the next section,
we present a third approach for measuring L-IVaR which is based on liquidity-adjusted

returns.

2.4.3 Estimating L-IVaR from liquidity-adjusted returns (AR)

The L-IVaR models presented in the previous sections are based on certain adjustments
of the mid price to introduce (exogenous) liquidity risk in VaR. The approach based on
liquidity-adjusted returns, however, arises from an appropriate adjustment for the returns
and is grounded on the idea of incorporating (exogenous) liquidity risk into returns and
applying the standard VaR to these modified returns.

Since trading costs reduce realized returns and due to the capacity of relative spreads as

9This is in contrast to Bangia et al. (2002), who split up this joint impact into two components.

20Heude and Wynendaele (2001) extend the expression in (20) and incorporate the endogenous liquidity
risk by integrating the quantities liquidated. We are interested in the exogenous liquidity risk and therefore
keep the term in (20).

16



normalizing devices (Bangia et al., 2002), we adjust the returns in the following way:

Rk _ L1 gk Sk
k. %) 2070 _ k )
wyrly = =2 =l - 2L (23)
3 2,/¢&;

where Riﬁ ; and rff ; denote the raw and the deseasonalized return (as in section 2.2), respec-
tively, and i € I,j € J, k € K.*! Hence, (23) yields the (deseasonalized) return after taking

into consideration costs of liquidation, i.e. the effectively realized return.??

k
(K

L—IVaRﬁj = Pfj - [1 — exp <\/§]]-“,uk:,adj Fadj d1-a/ adjhﬁjgjl'g>} ; (24)

where [t adj;adj hf, j and ,qj¢1—« characterize the distribution of the liquidity-adjusted returns

Applying the VaR concept to ,q7; ;, we define

and denote the mean, volatility and the 1 — o quantile.?

In order to produce a PF-L-IVaR based on this approach that can be used as a benchmark
(or rather an upper bound) for the models proposed by Bangia et al. (2002) and Heude and
Wynendaele (2001), we use equation (19) and simply sum up the L-IVaRs of the individual

stocks in our portfolio according to their portfolio weights.

3 Empirical study

3.1 Data

Our empirical study is based on high-frequency data from the National Association of
Securities Dealers Automated Quotations (NASDAQ) provided by the database LOBSTER.
Over the years, NASDAQ has emerged as a fully computerized, web-based trading plat-

form which provides systems that link all of the liquidity suppliers in a given stock together

21 Amihud and Mendelson (1986) use a similar adjustment and call (23) the spread-adjusted return.

22We implement the adjustment prior to eliminating the intraday seasonality and attach the trading costs
to the raw returns.

23The distribution of adjrif ; integrates the dependence structure between the stocks considered.
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allowing for competitive and efficient trading. Among the market participants, there are
over 30 market makers (dealers) providing liquidity by always being willing to trade at their
bid and ask prices posted into the NASDAQ network at all times.?* LOBSTER is an online
limit order book generating tool providing NASDAQ order book data developed at Hum-
boldt University, Berlin. It reconstructs the full limit order book on the basis of raw message
data (i.e. orders as they were submitted by market participants and recorded by the market
organizers) and yields an efficient matching algorithm.
LOBSTER is connected to a storage facility containing over 5 TB of NASDAQ’s ITCH mes-
sages which only include limit order messages, whereas other messages such as imbalance
data events and administrative messages have been cleaned out. For arriving limit order
submissions, it records order 1D, limit price, quantity and trade direction in the order pool;
for arriving cancellation or execution messages, the system firstly finds the corresponding
limit order submission by comparing the order IDs, then records the remaining non-executed
size (or deletes the order from the pool in case of a remaining size equal to zero), and finally
updates the limit order book by changing the size and price on the associated ask and bid
price level.?
In our empirical study we apply the econometric models presented in the previous section
to five stocks selected from the NASDAQ 100 for the period between January and February
2009.25 Our preliminary diagnostics on the correlation and the tail dependence between the
stocks’ liquidity and log returns are based on the full year of 2009.

We include the intraday data of Alexion (NASDAQ ticker symbol ALXN), Amazon
(AMZN), Apple (AAPL), Baidu (BIDU) and Google (GOOG) in our sample. The selected
companies allow us to model a portfolio consisting of competing firms (e.g. Baidu and

Google) as well as companies possibly offering ample opportunity to diversify (Alexion and

Apple).

24Hence, the NASDAQ Stock Market is organized as a multiple dealers market with a quote-driven system,
where the order flow is fragmented across these dealers (see Chan et al. (1995)).

ZFor a more detailed description see the Technical Report on http://lobster.wiwi.hu-berlin.de/Lobster//.

26The NASDAQ 100 includes 100 of the largest non-financial companies listed on the NASDAQ.
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In order to yield equidistantly time-spread observations, we re-sample the non-regularly
time-spaced data along a pre-specified time grid, where we consider the realized bid-ask
spreads and mid price returns closest to the observation points of the grid. We assume the
distance between two observation points to equal five minutes and thus compute spreads
and returns as end points of five minute long intervals.?” Furthermore, we exclude the pre-
market and after-market trading hours as well as the first and last three five-minute intervals
of the regular market hours, because, due to the characteristics and specific conditions on
the NASDAQ), these periods possess different dynamics and could bias our estimates of
intraday seasonality. Hence, we consider the period from 9:45 a.m. to 3:45 p.m. and have
71 observation points per day.?®

For the preliminary analysis of illiquidity-return commonality, we employ the data for
the full year of 2009 yielding a sample size of 17,537 intraday observations at five minute
intervals. For the estimation and forecasting of L-IVaR, we use the first 20 trading days in
January 2009 as our in-sample (1,420 observations) and the following 5 trading days (355
observations) as our out-of-sample.

We construct an equally weighted portfolio and model the five spreads and the five log
returns of the stocks considered. Each spread and each return is firstly modeled univariately
according to the models in 2.1 and 2.2, respectively. In the next step we model the multivari-
ate dependence structure of this portfolio and estimate a 10-dimensional vine copula model
via Maximum-Likelihood with the pair-copulas being selected using AIC as the selection
criterion. Finally, we calculate forecasts for the liquidity-adjusted intraday VaR based on
simulated portfolio values.

Descriptive statistics on the data sample used in our risk management application are

presented in Table 1.

— insert Table 1 here —

2TRegarding the returns this means that we choose the mid prices closest to the observation points of the
grid and calculate the returns on the basis of these five-minute mid prices.

28Note that we need two adjacent observation points for the computation of the returns so that we get
71 observation out of 72 five-minute intervals.
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Histograms of the bid-ask spreads and log mid price returns of all five stocks in our

sample are presented in Figure 2.
— insert Figure 2 here —

The descriptive statistics for the bid-ask spreads given in Panel (a) of Table 1 show that
the mean liquidity/illiquidity varies considerably across the five companies in our sample
portfolio with mean spreads ranging from 2.2317 cents (Apple) to 25.6606 cents (Google).
Furthermore, the upper panels in Figure 2 underline the notion that all spreads exhibit
skewed empirical distributions. Additionally, we can see from Panel (b) in Table 1 that the
five stocks possess the usual stylized characteristics of negligible mean log returns and non-
normally distributed returns with a weakly skewed distribution (see also the lower panels in
Figure 2).

In the next section, we try to explore in greater detail the relationship between liquidity
and asset returns across the companies in our sample to provide anecdotal evidence of cross-

market liquidity-return comovements.

3.2 Anecdotal evidence of liquidity-return commonality

As a simple first step, we start our empirical investigation by reporting anecdotal evidence
on the relationship between liquidity and asset returns. Here, we are especially interested in
documenting the dependence between the log returns on mid prices and bid-ask spreads of
stocks traded on the NASDAQ. As a preliminary analysis, we plot the illiquidity against the
returns on selected stocks in our sample to document the systematic relationship between

the two.
— insert Figure 3 here —

Figure 3 illustrates the time variation in the log returns and bid-ask spreads of all firms

in our sample. The figure depicts time series plots of the bid-ask spreads in the upper
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panels (a-c) and (g-i) and corresponding plots for the log returns in the lower panels (d-
f) and (j-1). To illustrate the trend of both the spreads and returns, the intraday data
measured at five-minute intervals are averaged over 50 interval windows yielding trend lines
highlighted in color in Figure 3. The time series plots show that, in some cases, spikes
in the bid-ask spreads coincide with negative returns thus supporting the common finding
of Chordia et al. (2000), Amihud (2002) and Acharya and Pedersen (2005) that liquidity
comoves with contemporaneous returns. Furthermore, bid-ask spreads seem to comove as
well, as can be seen from panels (a,c,h,i) around intervals 800-900. Although these first
results constitute only anecdotal evidence, we can already see that the joint distribution of
spreads and returns could be systematically characterized by extreme liquidity commonality,
spread-return comovements as well as extreme comovements of stock returns.

Further exploring this conjecture, we estimate the linear (unconditional) correlations
between returns and spreads for the 5 companies in our sample which are later used in our
risk management application based on our full sample of 17,537 observations for the full

year of 2009. The results are given in Table 2.
— insert Table 2 here —

The three panels in Table 2 present the correlation coefficients between bid-ask spreads,
log returns and correlations between returns and spreads, respectively. Panel (a) in Table
2 provides strong evidence of a commonality in liquidity between the five companies. With
the exception of the correlations between the pharmaceutical company Alexion and the IT
companies Apple and Baidu, all pairs of companies exhibit strong positive correlations be-
tween their bid-ask spreads (ranging from 0.0434 to 0.6029). Confirming the second stylized
fact on financial asset returns, Panel (b) underlines the common finding that stock returns
are positively correlated with results ranging from 0.2069 to 0.6698 (Apple vs. Google).
These extremely high positive correlations are not surprising, however, as our sample period

covers the onset and climax of the recent financial crisis in 2009. Consequently, our results
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are symptomatic of the often cited “correlation breakdown” during times of financial market
turmoil.

Turning to the correlations between liquidity and returns, Panel (c¢) in Table 2 weakly
supports our first impression from Figure 3 that liquidity comoves with contemporaneous
returns as the spreads and returns of the same company (main diagonal in bold type) are
weakly negatively correlated. More interestingly, Panel (c) presents evidence for a weak
correlation between the spreads and returns of different companies. Again, we can see that
liquidity comoves with returns across firms for most firm-pairs with spread-return correlations
ranging from 9.24% (Alexion-Google) to —16.75% (Apple-Baidu).

The correlation analysis in Table 2 stresses the fact that the dependence between liquidity
and returns needs to be taken into account when forecasting liquidity-adjusted measures of
risk by means of a joint distributional model. However, non-linear and extreme dependence
between spreads and returns could be present in addition to the found linear dependence thus
possibly requiring the use of flexible copula models (instead of a purely Gaussian model).
We therefore complement our correlation analysis by estimating the lower and upper tail
dependence between the bid-ask spreads and returns of the companies in our sample using
a nonparametric estimator (see Schmidt and Stadtmiiller, 2006, for details of the estimator
and its asymptotic properties).?® Results on the tail dependence between spreads and returns

are presented in Tables 3 and 4.
— insert Tables 3 and 4 here —

As can be seen from Panels (a) and (b) in Tables 3 and 4, both the bid-ask spreads
as well as the log returns of the stocks in our sample are characterized by strong upper
and lower tail dependence. Hence, liquidity commonality is not only manifested in a linear
correlation between bid-ask spreads and returns, but also in strong tail dependence between

the liquidity of different assets.

29By using a nonparametric estimator, we circumvent the error-prone problem of choosing a parametric
copula family just for estimating the tail dependence coefficients.
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Panels (c¢) in Tables 3 and 4 report the estimated coefficients of lower and upper tail
dependence between the spreads and returns of the firms in our sample. The results provide
ample evidence of a strongly nonlinear relationship between liquidity and returns of not
only the same asset, but also between the liquidity and returns of different firms’ stocks.
Interestingly, the upper tail dependence between spreads and returns seems to be more
pronounced than the lower tail dependence. It thus seems that extreme increases in illiquidity
are accompanied by an extreme rise in the risk premia in contemporaneous returns. Extreme
increases in liquidity, on the other hand, do not coincide with extreme downward movements
in returns as can be seen from the coefficients of lower tail dependence which are regularly
lower than the corresponding coefficients of upper tail dependence.

This finding is also confirmed by an analysis of the time-variation of lower and upper
tail dependence. The results of this analysis are presented in Figure 4 which shows the
time-variation of both tail dependence coefficients estimated nonparametrically from rolling
windows of 300 observations based on our full sample of 17,537 intraday data points for all

five stocks we consider.

— insert Figure 4 here —

The time series plots in Figure 4 show that upper tail dependence (red lines) between the
bid-ask spreads and the log returns of the five individual stocks is systematically higher than
lower tail dependence (see e.g. Panel (a) in Figure 4). In line with corresponding results on
diurnal returns, both lower and upper tail dependence seems to be strongly time-varying.

In summary, both the dependence structure between the spreads and returns of indi-
vidual stocks as well as the dependence between cross-market illiquidity and returns seem
to be highly nonlinear and characterized by a high degree of tail dependence. Even more
importantly, from an investor’s point of view, neglecting the strong cross-market tail de-
pendence between illiquidity and asset returns could lead to severely biased estimates of

portfolio liquidity risk.

23



Our choice of a flexible vine copula model for the joint distribution of spreads and returns
which accounts for possible tail dependence between the variables thus seems to be well

justified.

3.3 Results on L-IVaR estimation and forecasting

Using the intraday data for our portfolio consisting of five stocks, we forecast the portfolio
L-IVaR according to the three models presented above. The marginals are modeled using the
desribed GARCH and ACDP models. As candidate parametric copulas, we use the Gaussian,
Student’s t, Clayton, Frank, Gumbel, Joe, BB1, BBS8, Survival Clayton and Survival BB8
copulas. We employ in-samples with sizes of 1,420 observations at five minute intervals and
forecast the following 23/24 observations.® The in-sample is then shifted forward and the
next 23/24 observations are forecasted using the reestimated models. From each estimated
model, we simulate 1,000 portfolio returns and bid-ask spreads from which we calculate the
portfolio 5%-L-IVaR via Monte Carlo simulation.

Results on the estimated coefficients of the marginal models averaged over all 15 reesti-

mations (5 days x 3 forecasting periods) are presented in Table 5.
— insert Table 5 here —

The average estimated coefficients show that, on average, all marginal fits include a
pronounced autoregressive component as expressed by the parameters ¢} and ¥ of the
ACDP and GARCH model, respectively. Moreover, the average parameter estimates show
that both underdispersion (Amazon and Apple) as well as high overdispersion (e.g., Google)
is fitted with the ACDP models. In unreported model diagnostics tests, we use the tests of
Box and Pierce (1970) and Ljung and Box (1978) to check the hypothesis that there is no
autocorrelation left in the standardized residuals of the GARCH marginals. The unreported

results for the 15 reestimations show that the hypothesis of no autocorrelation cannot be

300ur out-of-sample consists of five days with 71 intraday observations each. Each day is split up into
three forecasting periods of length 24 and 23 for the last period on that day, respectively.
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rejected at the 5% level for any of the fitted marginal GARCH models. Corresponding results

k _\k.
for Ljung-Box and Box-Pierce tests on the Pearson residuals Sl 6 the ACDP models

(Heinen and Rengifo, 2007) additionally confirm the good fit of the ACDP model for the
bid-ask spreads.

Table 6 presents results on the percentages of parametric copula families which were

selected as the first 24 of the overall 45 pair-copulas in our 15 reestimations.
— insert Table 6 here —

The percentages given in Table 6 show that the vast majority of pair-copulas are selected
from the Gaussian, Clayton and Frank families. Interestingly, the Student’s t copula is
selected in only few instances strikingly contrasting the usual finding in multivariate market
risk modeling that the Student’s t copula provides the optimal fit for financial market data
(see Breymann et al., 2003). Moreover, Table 6 underlines the notion that the modeling of
a high-dimensional portfolio consisting of bid-ask spreads and returns requires the increased
flexibility of a vine copula model as most bivariate pair-copulas are chosen from more than
one parametric copula family.

Turning to the L-IVaR forecasts, Figure 5 presents a comparison between the realized
liquidity-adjusted profits and losses for our 5-dimensional portfolio in the out-of-sample and
corresponding simulated L-IVaR forecasts computed by the three models presented above.
The three panels in Figure 5 present the comparisons of the L-IVaR forecasts computed from
the BDSS model (Panel (a)), the HW model (b) and the L-IVaR computed from adjusted
returns (c¢). Panel (d) combines all three model forecasts and realized P/L in a single plot
to highlight the differences between the models’ forecasts. The beginning of each of the five
days in our our out-of-sample is marked with a dashed vertical line.

The plots in Figure 5 give ample evidence of the three different models’ ability to predict
the portfolio’s L-IVaR. Although the L-IVaR estimates stay relatively close to the realized

losses on the portfolio, the L-IVaR forecasts are exceeded in only 3 cases for the BDSS
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model, in 4 cases for the HW model and just once for the L-IVaR model based on adjusted
returns. These out-of-sample results stress the finding that our multivariate model performs
exceptionally well in forecasting L-IVaR. At the same time, our forecasts are not too con-
servative thus preventing e.g. banks from reserving too much risk capital. Furthermore, it
is interesting to note that our L-IVaR models fully capture the increased seasonal volatility
of intraday spreads and returns during the first hour of daily trading as shown by the steep
decrease in both portfolio losses and L-IVaR forecasts after each turn-of-the-day (dashed
vertical lines).

Panel (d) in Figure 5 finally shows that all three different models for forecasting L-IVaR
produce comparable results. Results on the number of L-IVaR exceedances show that the
BDSS and HW models (3 and 4 exceedances, respectively) do not differ while the L-IVaR
model based on liquidity-adjusted returns (1 exceedance) which we use as a benchmark seems
to be slightly too conservative.

To formally test the adequacy of these out-of-sample L-IVaR forecasts, we follow the vast
majority of studies in quantitative risk management and employ the test of Conditional Cov-
erage proposed by Christoffersen and Pelletier (2004) on the forecasts of our three models.?!
The results show that both the BDSS model (p-value 0.3660, test statistic 0.4195) as well as
the HW model (p-value 0.7121, test statistic 0.5135) cannot be rejected at the 10% level. As
already seen from the number of L-IVaR exceedances which was too conservative, the model
based on adjusted returns (p-value 0.0590, test statistic 0.5081) is rejected at the 10% level

and cannot be rejected only at the 5% level.

4 Conclusion

Liquidity risk has rarely received more attention than during the past few years following

the recent subprime and sovereign debt crises. In this paper, we propose a multivariate

31The test of Conditional Coverage tests for the correct number as well as serial independence of VaR-
exceedances. Details of this likelihood ratio test and its properties can be found in Christoffersen and Pelletier
(2004). The test’s p-values are computed via parametric bootstrap with 5,000 simulations.
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model that incorporates the joint modeling of liquidity as well as market price risk in a flexi-
ble copula-based distributional model. We propose to model the joint distribution of bid-ask
spreads and log returns of a stock portfolio by using Autoregressive Conditional Double Pois-
son and GARCH processes for the marginals and vine copulas for the dependence structure.
Using intraday data from the NASDAQ, we incorporate the measurement of commonalities
in liquidity and comovements of stocks and bid-ask spreads into the forecasting of three
types of liquidity-adjusted Value-at-Risk.

To the best knowledge of the authors, this is the first study to document anecdotal
evidence of strong extreme comovements in liquidity and strong tail dependence between
bid-ask spreads and log returns across firms. Motivated by this finding, we employ an
extremely flexible vine copula model to capture the diverse dependence structures between
intraday bid-ask spreads and log returns. We then use this multivariate model to forecast
the liquidity-adjusted intraday VaR of a five-dimensional portfolio.

Our findings clearly show that the proposed multivariate model for bid-ask spreads and
intraday returns performs exceptionally well in forecasting liquidity-adjusted portfolio losses.
While losses are adequately bounded below by our liquidity-adjusted VaR forecasts, our
models are not too conservative and thus prevent investors like, e.g., banks from reserving
unnecessary risk capital buffers. These results are confirmed in a formal backtesting based
on the models’ conditional coverage.

Further research should concentrate on generalizing the anecdotal evidence of the found
nonlinear dependence between liquidity and asset returns. Furthermore, the relationship
between liquidity and asset returns of different firms needs to be analyzed in greater de-
tail. The results from our vine copula modeling underline the notion that cross-firm depen-
dence between liquidity and asset returns needs to be taken into account when forecasting
liquidity-adjusted VaRs. In a bottom-up approach to VaR modeling, the idiosyncratic and
macroeconomic factors driven this form of commonality would need to be identified. We

intend to address these questions in future research.
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Figure 1: Four-dimensional example of a D-vine. The variables represent the intraday
bid-ask spreads and the mid-price returns of two stock, respectively. Each edge in layers
T1-T3 (nodes in layers T2-T4) corresponds to a bivariate pair-copula.
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(a) Lower and upper tail dependence between spreads and returns: Alexion (b) Lower and upper tail dependence between spreads and returns: Amazon

LTD/UTD
LTD/UTD

LTD/UTD
LTD/UTD

LTD/UTD

Figure 4: Time evolution of the tail dependence between spreads and returns. The
figure shows the time evolution of the coefficients of lower (black line) and upper tail depen-
dence (red line) between the intraday bid-ask spreads and the log returns computed from
the intraday mid prices. The coefficients of lower and upper tail dependence are estimated
from rolling windows of 300 data points using the nonparametric estimator of Schmidt and
Stadtmiiller (2006). The sample period is January 1, 2009 - December 31, 2009 and taken
from the LOBSTER database containing tick-by-tick data for all companies listed on the
NASDAQ.
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