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(JProf. Dr. Gregor N. F. Weiß)

3



Contents

1 Introduction 10

2 Testing of changes in joint tail probabilities 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The test and its asymptotic null distribution . . . . . . . . . . . . . . . 17

2.3 Finite sample properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Base case scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Empirical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.A Copulas: functional forms and simulation methods . . . . . . . . . . . . 25

2.B Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Constancy test under weak dependence 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Testing for constancy under i.i.d. assumption . . . . . . . . . . . . . . . 30

3.3 Testing for constancy under a mixing assumption . . . . . . . . . . . . 33

3.4 The asymptotic power of the test . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Local Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Finite sample properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Size of test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 The power of the test . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Empirical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4



3.A Appendix: Proof Theorem 1 and 2 . . . . . . . . . . . . . . . . . . . . . 50

4 Optimal bandwidth selection 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 The copula constancy test . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Long run variance estimation . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 conventional HAC estimates . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Fixed-b asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Optimal bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Expansion of the limit distribution . . . . . . . . . . . . . . . . . 70

4.4.2 Expansion of the finite sample distribution . . . . . . . . . . . . 75

4.4.3 Optimal bandwidth rule . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Finite sample properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Empirical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.B Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.C Additional figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 An overall copula constancy test 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 An overall copula constancy test . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Finite sample properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Empirical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 MSCI stock index . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.2 US stock index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.B Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusion and Further Research 112

5



List of Tables

2.1 Relationship between the joint probability and the copula parameters 23

2.2 Maximum likelihood estimates for Malaysia and Hong-Kong . . . . . . 25

2.3 Copula constancy test for Malaysia and Hong-Kong . . . . . . . . . . . 26

2.4 Clayton Copula with structural breaks in dependence . . . . . . . . . . 27

2.5 Gaussian Copula with structural breaks in correlation . . . . . . . . . . 28

3.1 Size of squares test using no HAC estimator and a HAC estimator

based on a Bartlett kernel with bandwidth γ1T and γ2T , respectively. . 41

3.2 Size of squares test using no HAC estimator and a HAC estimator

based on a Bartlett kernel with bandwidth γ2T . . . . . . . . . . . . . . 42

3.3 Power of squares test against the fixed alternative (3.6). . . . . . . . . 43

3.4 Maximum Likelihood Estimates and Goodness-of-Fit statistics of a

GARCH(1,1) model with skewed student-t innovations. . . . . . . . . . 45

3.5 Quantile constancy test based on quantics . . . . . . . . . . . . . . . . . 46

3.6 Copula constancy test for the US, UK, France, Germany and Japan . 47

4.1 Coefficients of corrected critical values using the approximation of

Zhang (2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Simulated loss for the bandwidth rule based on the weighted sum of

errors. Case I: Clayton copula and Bartlett kernel . . . . . . . . . . . . 82

4.3 Simulated loss for the bandwidth rule based on the weighted sum of

squared errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Simulated loss for the bandwidth rule based on the weighted sum of

errors. Case II: Clayton copula and QS kernel . . . . . . . . . . . . . . 84

6



4.5 Simulated loss for the bandwidth rule based on the weighted sum of

errors. Case III: Gaussian copula and Bartlett kernel . . . . . . . . . . 84

4.6 Copula constancy test statistics using fixed-b critical values . . . . . . 86

5.1 Size of overall copula constancy test . . . . . . . . . . . . . . . . . . . . 104

5.2 Power of overall copula constancy test. Case I: Clayton copula . . . . 105

5.3 Overall copula constancy test statistics of the MSCI series . . . . . . . 106

5.4 Maximum likelihood estimates of US stock indices . . . . . . . . . . . . 107

5.5 Copula constancy test statistics of US stock indices . . . . . . . . . . . 108

5.6 Power of overall copula constancy test. Case II: Gaussian copula . . . 111

7



List of Figures

1.1 Construction of bivariate gaussian density using copulas . . . . . . . . 11

1.2 Joint density using Gaussian, Clayton and Gumbel copula . . . . . . . 12

2.1 Partial sum process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Rejection frequency versus number of breaks . . . . . . . . . . . . . . . 21

2.3 Rejection frequency versus number of observations . . . . . . . . . . . . 23

4.1 Size and power of the copula constancy test using standard and fixed-b

critical values (positive serial correlation). . . . . . . . . . . . . . . . . . 81

4.2 Size and power of the copula constancy test using standard and fixed-b

critical values (negative serial correlation). . . . . . . . . . . . . . . . . 82

4.3 Expansion of limit distribution . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Simulated and 3rd order corrected critical values . . . . . . . . . . . . . 98

8



Acknowledgement

First, I would like to thank Walter Krämer for being my supervisor. His enthusiasm

for econometrics is amazing and I am very thankful for his support. I also thank

Gregor Weiß for being my supervisor and for the interesting discussions about copulas.

The questions asked by Wolfgang Leininger greatly improved my dissertation.

In addition, I thank my colleagues at the TU Dortmund. In particular, I would like

to thank Dominik Wied for being my co-author on several projects and my colleagues,

Alesia Khudnitskaya, Editha Lockow, Matthias Arnold and Sebastian Voß, for the

great time in Raum 119.

The financial support of the Ruhr Graduate School has been gratefully acknowl-

edged. I thank my cohort members, Claudia Burgard, Frauke Dobnik, Regina Flake,

Jonas Keil, Klemens Keldenich and Marcus Klemm for the collaboration during my

first year in Essen, Vivien Procher for coordinating everything and Barbara Schilde

for arranging all flights to the conferences that I was able to visit.

I would like to thank Siem Jan Koopman and Marius Ooms, from the Vrije Univer-

siteit Amsterdam, for introducing me to the field of econometrics, and their support

when I told them to continue my academic career.

Many thanks to my family. Pa, ma, Erik: Dit was zeker niet gelukt zonder jullie

steun. Bedankt voor alles.

Thanks also to Chrisantha Blei and Christoph Kalka for the support in Essen and

for improving my German. And last but definitely not least, I would like to thank

Eddy Chan, Jie Chen, Herman Baars, Jacqueline Kerkvliet, Michiel van Dijk, Peter
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Chapter 1

Introduction

In financial econometrics we are often confronted with the measurement of the depen-

dence between random variables and the construction of joint distribution functions.

Consider for instance a risk manager who has to calculate the Value at Risk (VaR) of a

portfolio consisting of several assets. Under the assumption that the asset returns are

jointly normally distributed and given the linear correlation between the assets, the

calculation of the portfolio VaR is straightforward (see e.g. Rosenberg and Schuer-

mann (2004)). It is however well known that asset returns are not described very well

by the normal distribution. In particular, they exhibit volatility clustering and the

tails are fatter compared to the normal distribution (see e.g. Cont (2001)). Given

some more elaborate specification for the returns, the question arises how to con-

struct the joint distribution given the marginal distributions. Moreover, are marginal

distributions and linear correlations sufficient to describe the joint distribution?

As another example, consider two countries and suppose that a market in one

country is subject to a shock. To fix ideas, consider Thailand and Indonesia during the

East Asian Crisis of 1997. On June 1 1997 the Thai market dropped and two months

later the Thai and Indonesian market declined simultaneously (Forbes and Rigobon

(2002, p.2242)). The question arises if there are so-called contagion effects. That

is, does the inter-dependence between the two countries significantly increase after

the shock? Moreover, if there does not exists a ”correlation breakdown”, does this

imply that there are no contagion effects (see Forbes and Rigobon (2002), Rodriguez

10



CHAPTER 1. INTRODUCTION 11

(2007))?

Copulas provide a natural way to construct joint distribution functions and to

measure dependence between random variable. Sklar’s theorem states that the joint

distribution, F12, of two random variables X1 and X2 can be written in terms of the

marginal distributions, Fi(x) ∶= P (Xi ≤ x), i= 1,2, and a copula function C such that

F12(x1, x2) = C(F1(x1), F2(x2)). (1.1)

If F1 and F2 are continuous, then C is unique (Nelson (2006)). The copula C basically

couples the marginals together and, since Fi describes the marginal behaviour, we can

interpret C as the dependence function.

As a corollary of the previous theorem, we have for the joint density f12 that

f12(x1, x2) = c(F1(x1), F2(x2)) ⋅ f1(x1) ⋅ f2(x2),

where c is the density of the copula and fi are the marginal densities, i = 1,2. To

illustrate this, suppose that the portfolio in the first example above consists of two

standard normally distributed assets. Then, by the previous theorem, there exist a

so-called Gaussian copula such that the portfolio is bivariate normally distributed.

Figure 1.1 shows respectively the density of the Gaussian copula, the bivariate Gaus-

sian density and the corresponding contour plot.
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Figure 1.1: Construction of bivariate Gaussian density using copulas
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Instead of using a Gaussian copula we can also pick another function C (which

does have to satisfy certain mathematical properties, see e.g. Nelson (2006)). It is

possible to choose this function such that the linear correlation remains the same, let

say 0.7 (like Patton (2006)). Figure 1.2 shows the contour plots of the resulting joint

density functions. The dissimilarities between the density functions clearly indicate

that knowledge of the marginal distributions and the linear correlations between the

assets is insufficient to uniquely describe the joint distribution function.

−2 0 2

−
2

0
2

X

Y

Normal

−2 0 2

−
2

0
2

X

Y

Clayton

−2 0 2
−

2
0

2

Gumbel

X
Y

Figure 1.2: Joint density using Gaussian, Clayton and Gumbel copula. Marginals
are standard normal and copula parameter is chosen such that the linear correlation
equals 0.7.

Let ξi(τi) denote the τi quantile of Xi. Equation (1.1) can be rewritten as

C(τ1, τ2) = F12(ξ1(τ1), ξ2(τ2)) = P (X1 ≤ ξ1(τ1),X2 ≤ ξ2(τ2)).

Hence, the copula C gives the probability that both random variables takes values

below their marginal τi-quantiles (see Harvey (2010)).

As pointed out above, the copula is the dependence function between the random

variables. It is in fact a joint distribution function with uniform marginals. This

function is invariant under strictly increasing transformations. Scale-invariant mea-

sures of dependence, such as Kendall’s tau and Spearman’s rho can be expressed

as function of the copula. Another dependence concept frequently used in financial

econometrics is tail dependence. Contrary to the Gaussian copula, the Clayton and
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Gumbel copulas can be tail dependent. In financial econometrics there exists con-

siderable evidence that asset returns are lower tail dependent (see e.g. Longin and

Solnik (2001)). Hence, the Clayton copula is often used in the literature.

In the second example above, we are interested in a change in the dependence

structure. From the previous discussion it should be clear that solely examining

linear correlations is insufficient; we would like to know if there is a change in the

copula. The importance of changes in copulas is clear; changes in the dependence

structure affect the VaR of a portfolio. Hence, investors would like to re-allocate their

assets and risk managers have to adjust their capital buffer to cover unexpected losses.

The extent to which a change is also economically significant has been analyzed by

e.g. Patton (2004).

Changes in copulas have mainly been analyzed in a (semi-)parametric framework.

Such an approach requires the functional form of the copula and often a specification

for the transition of the copula over time. Jondeau and Rockinger (2006) consider

changes in the dependence between four different stock indices. They propose a semi-

parametric approach in which they partition the unit square in different quadrants

and let the copula parameter depend on the location of the past realization in the unit

square. The null hypothesis of a constant copula corresponds to the case that each

part of the unit square has the same copula parameter. They compare their approach

with two time-varying parameter specifications in which they explicitly describe the

transition of the copula parameters over time. Alternative time-varying parameter

specifications can be found in Patton (2006) and Creal et al (2008). Instead of

modeling changes in the copula parameter, Rodriguez (2007) considers changes in

the functional form of the copula. Here, the copula is a weighted average of three

copulas where the weights depend on the state of the economy.

Dias and Embrechts (2004) propose a generalized likelihood ratio test which re-

quires the estimation of the copula. The critical values of the test depend on the

chosen copula but can be approximated using independent Brownian Bridges. In em-

pirical applications the true copula is generally unknown and hence the application

of the test requires some goodness-of-fit tests to validate the chosen copula.

Giacomini et al (2009) propose to model the copula parameter using a local change
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point procedure. Their method partitions the time interval such that the copula

parameter is constant on each interval. To examine if a particular interval contains

a change point they apply a likelihood ratio test. Hence, the procedure depends on

the chosen copula function.

To examine possible changes in the copula, Harvey (2010) proposes a binary fil-

tering approach. Unlike the majority of the papers cited above, the purpose is here

is not to provide a model for the copula. The filter returns the predicted value of

the copula given the past observations. Plotting the filtered series against time might

indicate possible changes. This method does not depend on a chosen copula function

but the drawback is of course that this is not a formal test.

In this thesis I introduce a nonparametric test that examines if a copula is constant

over time. In the second chapter I show that under the assumption of independent

and identically distributed (i.i.d.) variables the test outperforms a copula constancy

test recently proposed in the literature provided that there are multiple breaks in the

sample1.

In time series analysis, the i.i.d. assumption is often violated and hence the ques-

tion arises under what kind of dependence assumption we can derive the asymptotic

distribution. In chapter 32, I characterize dependence using a strong mixing assump-

tion. Such an assumption states, loosely speaking, that if the time separation between

two events in the series increases (to infinity), than the events behave independent.

In other words, the events are asymptotically independent. I show in the second

chapter that under a suitable strong mixing assumption I can still derive the limiting

distribution.

An important difference between the test described in chapter 2 and 3 concerns

the estimation of the long run variance. If there exist serial correlation between the

1Chapter 2 is based on Krämer and Van Kampen (2011), A simple nonparametric test for struc-
tural change in joint tail probabilities, Economics Letters 110(3), pp.245-247. Krämer set up the
manuscript. Van Kampen did most of the programming work and provided clear contributions to
the theoretical part.

2Chapter 3 is based on Van Kampen and Wied (2010), A non-parametric constancy test for
copulas under weak dependence. Tech. Rep. 36/10, Fakultät Statistik, Universität Dortmund. The
idea has been developed together. Van Kampen set up the theoretical results and did most of the
programming work. Wied provided numerous improvements and additional theoretical results. The
paper has been submitted for publication.
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observations we should replace the long run variance by a heteroskedasticity and

autocorrelation consistent (HAC) estimate. The standard approach in the literature

is to construct such an estimate using a kernel function that depends on a particular

bandwidth parameter. To obtain a consistent estimate, the bandwidth should increase

with the sample size at a suitable rate. In chapter 3, I make an assumption on the

kernel and bandwidth such that this is indeed the case

In chapters 2 and 3 I propose to compare the test with the critical value obtained

from the asymptotic distribution. I show that such a strategy results in size distortions

in small samples. To improve the finite sample performance of the test, I replace the

long run variance by an inconsistent estimate. Such an estimate introduces additional

variability which might improve the finite sample properties. I show in chapter 43

that the resulting asymptotic distribution depends on the kernel and bandwidth. The

question arises how to select the bandwidth parameter such that the power of the

test is high and the size distortion of the test is low. In the spirit of Sun, Phillips

and Jin (2008), I develop a bandwidth rule which minimizes a weighted average of

the type I and II errors.

The previous test only examines the constancy of the copula in a particular point.

The properties of the test (e.g. power) depend on the chosen point. Since it is

unclear at which point we should apply the test, current practice is to apply the test

to several points. In Chapter 54 I introduce a new test for examining the constancy

of the complete copula function. This test does not require the a priori selection of a

particular point. The asymptotic distribution of test depends on the copula. Hence,

the critical values are simulated using a bootstrap algorithm.

3Chapter 4 is written without coauthors. I would like to thank, however, Walter Krämer and
Dominik Wied for providing suggestions that clearly improved the paper.

4Chapter 5 has been added to Van Kampen and Wied (2010). The idea has been developed
together. Wied set up the theoretical results. Van Kampen provided clear contributions to this and
did most of the programming work. The paper has been submitted for publication.



Chapter 2

A simple nonparametric test for

structural change in joint tail

probabilities1

We propose a new test against a change in the probability of multivariate tail events.

The test is based on partial sums of a suitably defined indicator function and de-

tects multiple changes in joint tail probabilities better than a previously suggested

competitor.

2.1 Introduction

In 2008, all major stock markets in the world fell by roughly 30% to 40%. The year

before there were likewise some extreme events but there was no global downturn.

The question arises whether such a downturn can be explained by chance or whether

there was a structural change in joint tail probabilities sometime in between.

Campbell et al. (2002, 2008) and Forbes and Rigobon (2002) investigated possible

changes in the dependence structure between stock returns. It is important to distin-

guish this from the concept of asymmetric dependence as examined by Ang and Chen

(2002), Fortin and Kuzmicz (2002), De Melo Mendez (2005) and Sun et al. (2008).

1This chapter is based on Krämer and Van Kampen (2011), Economics Letters 110(3), pp.245-
247.

16



CHAPTER 2. TESTING OF CHANGES IN JOINT TAIL PROBABILITIES 17

They showed that joint stock returns exhibit larger dependence in the lower than in

the upper tail. In this chapter we address the former issue.

In this chapter we propose a new test against a change in the probability of

multivariate tail events. Following Busetti and Harvey (2011), we base our test on

joint exceedances of certain quantiles of the marginal distributions. Instead of using

sums of squares of a normalized indicator function, we propose two alternative test

statistics. The first is based on the maximum of cumulative sums of the indicator

variables, in the spirit of Ploberger and Krämer (1992). The second uses the range of

the cumulative sums. We show via Monte Carlo simulation that no test is uniformly

superior to the others. While the sums of squares version is more likely to detect

gradual or continuous changes in probabilities, the max test and the range test are

more successful with abrupt changes. None of the tests requires prior knowledge as

to when a structural change occurs.

2.2 The test and its asymptotic null distribution

Following Busetti and Harvey (2011), we let ξ(τ) denote the τ -quantile of some

univariate probability distribution. To avoid unnecessary notational complications,

we consider continuous distributions only, so ξ(τ) is uniquely defined. For a bivariate

series y1t and y2t, t = 1, . . . , T , let ξ̂1(τ1) and ξ̂2(τ2) denote the respective empirical

quantiles, and let CT (τ1, τ2) be the proportion of observation where y1t and y2t are

less than or equal to ξ̂1(τ1) and ξ̂2(τ2), respectively. CT (τ1, τ2) is an estimator of

P (y1t ≤ ξ̂(τ1), y2t ≤ ξ̂(τ2)), which is assumed constant under our null hypothesis.

Note that this probability is given by the true copula and, therefore, our test may

be viewed as a procedure to check the constancy of a copula at a given point. For

simplicity, we let τ1 = τ2 = τ from now on.

The basic input of our test is what Busetti and Harvey (2011) call the bivariate

τ -quantic

BIQ(yt, ξ̂(τ)) = CT (τ1, τ2) − I(yt, ξ̂(τ)), t = 1, . . . , T, (2.1)

where I(.) is the indicator function taking the value 1 if y1t ≤ ξ̂1(τ1) ∧ y2t ≤ ξ̂2(τ2),
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and 0 otherwise. By definition, the BIQ(yt, ξ̂(τ)) add to zero, and their partial sums

should not deviate too much from zero if P (y1t ≤ ξ̂1(τ), y2t ≤ ξ̂2(τ)) remains constant

across the sample. However, if the probability increases at t = t1, then BIQ(yt, ξ̂(τ))
will tend to be positive up to t1 and negative from t1 onwards. Therefore, the cu-

mulated sum of the BIQ(yt, ξ̂(τ)) will move away from zero farther than can be

expected under the null hypothesis. This is illustrated in the second panel of figure

2.1. Alternatively, in case the probability decreases at t = t1, the cumulative sum

decreases up to t1 and increases afterwards.
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Figure 2.1: Partial sum process.

This motivates our choice of test statistic, which is a suitably normalized version

of

max
t=1,...,T

∣
t

∑
i=1
BIQ(yi, ξ̂(τ))∣ .

We show below that, under the null and whenever the events (y1t ≤ ξ̂(τ), y2t ≤ ξ̂(τ))
and (y1s ≤ ξ̂(τ), y2s ≤ ξ̂(τ)) are independent for all t ≠ s, the stochastic process

1√
TCT (τ, τ)(1 −CT (τ, τ))

⎡⎢⎢⎢⎢⎣

[rT ]

∑
i=1

BIQ(yi, ξ̂(τ))
⎤⎥⎥⎥⎥⎦

0 ≤ r ≤ 1 (2.2)

tends in distribution to a Brownian Bridge as T →∞, so the limiting null distribution

of
1√

TCT (τ, τ)(1 −CT (τ, τ))
max

t=1,...,T
∣

t

∑
i=1
BIQ(yi, ξ̂(τ))∣
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is identical to that of the Kolmogorov-Smirnov test (see Ploberger and Krämer

(1992)). Some useful critical values are 1.22 (α=10%), 1.36 (α=5%) and 1.63 (α=1%),

where α denotes the significance level.

The right panel of figure 2.1 illustrates the case when the probability P (y1t ≤
ξ̂(τ), y2t ≤ ξ̂(τ)) increases at t = t1 and subsequently decreases to its original level at

t = t2. This motivates an alternative test statistic based on the range of the cumulative

sums, as in Krämer and Schotman (1992). In this case, the test statistic is

1√
TCT (τ, τ)(1 −CT (τ, τ))

[ max
t=1,...,T

t

∑
i=1
BIQ(yi, ξ̂(τ)) − min

t=1,...,T

t

∑
i=1
BIQ(yi, ξ̂(τ))] ,

where the asymptotic null distribution is given by

P (X ≤ x) = 1 + 2
∞
∑
k=1
(1 − 4k2x2) exp(−2k2x2),

see e.g. Kennedy (1976). Some useful critical values are 1.620 (α = 10%), 1.747
(α = 5%) and 2.001 (α = 1%).

Of course, other functionals of the BIQ(yi, ξ̂(τ)) such as the sum of absolute

values might also be used as test statistics, but we focus here on the performance of

the maximum and the range statistic (as compared to the sum of squares statistic

proposed by Busetti and Harvey (2011)).

Convergence in Distribution

The convergence in distribution to a Brownian Bridge of (2.2) can be seen by first

considering

Q(yi, ξ(τ)) = C(τ, τ) − I (y1t ≤ ξ1(τ), y2t ≤ ξ2(τ)) . (2.3)

This is an i.i.d. sequence with zero expectation, finite higher moments of all orders

and variance σ2 = C(τ, τ)(1−C(τ, τ)), so, by standard results from probability theory

(see e.g. Billingsley (1986))

1√
Tσ2

[rT ]

∑
i=1

Q(yi, ξ(τ))
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tends in distribution to a standard Wiener Process and

1√
Tσ2

[rT ]

∑
i=1

BIQ(yi, ξ(τ))

tends in distribution to a Brownian Bridge. The convergence to a Brownian Bridge of

(2.2) then follows from the fact that CT (τ, τ)(1−CT (τ, τ)) is consistent for σ2 = p(1−p)
and

sup
r∈[0,1]

RRRRRRRRRRR

1√
Tσ2

[rT ]

∑
i=1

BIQ(yi, ξ̂(τ)) −
1√
Tσ2

[rT ]

∑
i=1

BIQ(yi, ξ(τ))
RRRRRRRRRRR

p→ 0. (2.4)

A formal proof of the latter, under weaker conditions, can be found in section 3.

2.3 Finite sample properties

2.3.1 Base case scenario

Following Busetti and Harvey (2011), we examine the performance of the proposed

tests using simulated values from the Clayton copula. We explicitly analyze the effect

of multiple breaks in the copula parameter. The results in this section are generated

using Ox (see Doornik (2005)).

Suppose that there are m breakpoints denoted by t1, . . . , tm. Let θj denote cop-

ula parameter on segment j = 1, . . . ,m + 1. The bivariate time series y1t and y2t,

t = tj−1 + 1, . . . , tj are drawn from a Clayton copula C(u, v; θj) with parameter θj.

In our base case scenario, we simulate 50000 replications of time series consisting of

2520 observations. Note that this is much higher than the series simulated by Busetti

and Harvey (2011) (between 200 and 400 observations). In the simulation we restrict

the number of copula parameters such that θ1 ≡ θ2k+1 and θ2 ≡ θ2k, k = 0,1, . . .. Intu-
itively, the series consist of periods of low dependence and periods of high dependence.

Finally, we apply the test statistics to the 0.05, 0.1, 0.25 and 0.50 quantile.

Table 2.4 (in section 2.B) shows the rejection frequencies for 2 and 3 intervals.

Note that the squares test outperforms the maximum and range tests if there is a

single break in the copula parameter. However, the power of our test is higher in the
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case of two structural breaks, and the test based on the range outperforms the test

based on the maximum.

2.3.2 Sensitivity analysis

The following paragraphs provide some robustness checks with respect to the obtained

rejection frequencies. In particular, we investigate the sensitivity of the rejection

frequencies with respect to the number of breaks, the number of observations and the

copula type.

Number of breaks

To analyze the effect of the number of breaks on the rejection frequency (given a

fixed sample size of 2520 observations) we perform simulations up to 9 breaks. To

examine the effect of the magnitude of the break and the particular quantile, we

give the results for a relatively high and low quantile and a relatively high and low

break in the copula parameter. Figure 2.2 shows the results for an increase, at the

odd-numbered break points, in the Clayton copula parameter.
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Figure 2.2: Rejection frequency versus number of breaks for a clayton copula with
θ1 = 1. Results obtained using 50.000 replications of 2520 observations.
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The following two results should be clear: First, the rejection frequency decreases

as the number of breaks increases. Note that if the number of breaks increases the

deviations of the cumulative sums from zero are more likely to be smaller (see Figure

2.1). Therefore, given a fixed sample size, it becomes more difficult for the test to

reject the null hypothesis and the power of the test will be lower. Second, the range

test performs better if there are an even number of breaks. This result is mainly

due to the setup of the simulation. Given an odd number of breaks the cumulative

sums remain almost everywhere positive (negative) given an increase (decrease) in

the probability at odd numbered break points and a decrease (increase) at the even

numbered break points. This is due to the fact that, in our simulation setup, all

intervals have equal length and the magnitude in the increase of the copula parameter

is equal to the magnitude of the decrease in the copula parameter.

Number of observations

The previous result depends on the assumed sample size of 2520 observations. Figure

2.3 shows the sensitivity of the rejection frequency if we adjust the sample size while

holding the number of breaks fixed. That is, in case of 1 break in three samples

consisting of 250, 500 and 750 observations, the breaks points are at t = 125, t = 250
and t = 375, respectively.

The upper panels show the results for the case of 1 break. We focus on the cases

that the parameter and quantile are both relatively low and the case that they are

both relatively high. Combining different quantiles and parameters (as in Figure 2.2)

gives similar results. From the upper panels of figure 2.3 we conclude that the square

test outperforms the other two tests. The lower panels show that the range tests

outperforms the other two tests if there are two breaks. These results are robust with

respect to the number of observations.

Copula type

The previous analysis took the Clayton copula as the benchmark copula. The question

that arises is to what extent the results depend on the copula type. Therefore, we

also examine the performance for the Gaussian bivariate distribution. The parameter

values are taken from Busetti and Harvey (2011). Table 2.5 (in section 2.B) shows
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Figure 2.3: Rejection frequency versus number of observations for a Clayton copula
with θ1 = 1. Results obtained using 5.000 replications.

that the range test again outperforms the square test if there are two breaks in the

sample.

To improve the comparability between the results of the Clayton and Gaussian

copula we might set the magnitude of break such that it is the same for both copulas.

Table 2.1 shows the relationship between the probability of the 0.25-quantile and the

parameters of the Gaussian and Clayton copula.

Table 2.1: Relationship between the joint probability and the copula parameters

C(0.25,0.25) Gaussian Clayton
0.10 0.34112 0.36484
0.12 0.49797 0.62063
0.14 0.63595 0.94584
0.16 0.75363 1.38176
0.18 0.84964 2.01544
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If for a given quantile τ , the initial probability and the change in the probability

of a particular quadrant are the same, the resulting rejection frequency is also the

same. For example, the power of test is similar for a change in the Gaussian copula

from 0.34112 to 0.75363 as a change in the Clayton copula parameter from 0.36484 to

1.38176, if we evaluate the test at the 0.25-quantile. If we evaluate the test at τ ≠ 0.25
this is not true. We abstain from a detailed analysis.

2.4 Empirical application

We illustrate our tests for the Kuala Lumpur stock exchange in Malaysia and the

Hang-Seng index in Hong-Kong. The data have been obtained from EconStats and

consist of daily observations from December, 8, 1993 through May, 19, 2009. The

corresponding return series is calculated as yt = 100 × log(xt/xt−1), where xt denotes
the index at time t = 1, . . . , T . In the analysis below we keep all dates at which both

return series are observed. This reduces the sample of Malaysia and Hong-Kong from

respectively, 3809 and 3831 observations, to 3679 observations.

For each series we estimate an AR(1)-GARCH(1,1) model with Student-t innova-

tions:

yt = µ + ϕyt−1 + εt
εt = ztσt

σ2
t = ω + αε2t−1 + βσ2

t−1,

where zt is Student-t with υ degrees of freedom (to be estimated from the data).

Table 2.3 shows the parameter estimates. Note that α + β is close to one for Hong-

Kong and slightly exceeds one for Malaysia. To examine the sensitivity of our results

we also estimated a GARCH model with Gaussian disturbances and an IGARCH

model in which we explicitly restricted α + β = 1. Based on the AIC criteria, we

see that the model with Gaussian disturbances performs less good but the resulting

IGARCH model behaves similar as the original model. Choudhry (1995) found similar

parameter values for some European stock markets. As also pointed out by him,

α+β = 1 basically implies that shocks persists indefinitely on the conditional variance.
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Table 2.2: Maximum likelihood estimates for Malaysia and Hong-Kong

Hong-Kong GARCH(1,1)-T IGARCH(1,1)-T GARCH(1,1)-N IGARCH(1,1)-N
µ 0.059*** 0.059*** 0.057*** 0.057***
ϕ 0.035** 0.035** 0.051*** 0.051***
ω 0.012*** 0.010*** 0.018*** 0.014***
α 0.063*** 0.065*** 0.077*** 0.080***

β 0.935*** 0.935(NA) 0.919*** 0.920(NA)

ν 7.445*** 7.230***
AIC 3.566 3.565 3.594 3.594

Malaysia GARCH(1,1)-T IGARCH(1,1)-T GARCH(1,1)-N IGARCH(1,1)-N
µ 0.021 0.021 0.037** 0.038**
ϕ 0.145*** 0.145*** 0.173*** 0.173***
ω 0.017*** 0.017*** 0.015*** 0.017***
α 0.143*** 0.140*** 0.144*** 0.139***
β 0.860*** 0.860*** 0.861*** 0.861***
ν 5.317*** 5.417***
AIC 2.904 2.904 2.977 2.976

Significance levels: 1% (***), 5% (**) and 10% (*); NA = not available.

Subsequently, the different tests are applied to the standardized empirical innova-

tion series. Since the standardized residuals still contain serial correlation, we replaced

the variance of the BIQ series by a long-run estimator with 9 lags. The number of

lags is based on the bandwidth rule b = 4(T /100)1/4. Table 2.3 shows that only the

maximum and the range test are able to reject the null hypothesis at the 5% level for

some quantiles.

2.A Copulas: functional forms and simulation meth-

ods

We follow the simulation methods proposed in Cherubini et al. (2004, p181). This

appendix is solely included to facilitate the replication of the simulation study in

section 2.3.
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Table 2.3: Test statistics based on standardized innovations of an AR(1)-
(I)GARCH(1,1)-T model and a long run variance estimate based on 9 lags. Sig-
nificance is denoted by the superscripts 1% (a), 5% (b) and 10% (c).

resid. GARCH(1,1)-T resid. IGARCH(1,1)-T
τ squares cusum range squares cusum range
0.1 0.299 1.370** 2.027*** 0.290 1.370** 2.027***
0.25 0.207 1.231* 1.638* 0.188 1.182 1.633*
0.5 0.416* 1.378** 2.069*** 0.416* 1.378** 2.069***
0.75 0.072 0.627 1.168 0.063 0.598 1.117
0.9 0.135 0.863 1.190 0.154 0.904 1.230

Gaussian copula

The Gaussian copula is given by

C(u1, u2) = ΦXY (Φ−1(u1),Φ−1(u2);ρ),

where ΦXY is the bivariate normal distribution with linear correlation parameter ρ

and Φ is the standard (univariate) distribution function. We can simulate a pair (u1,

u2) of observations as follow: First, construct a pair (v1, v2) = Rz where R is the

lower triangular matrix such that RR′ equals the correlation matrix and z = (z1, z2)′

with zi simulated from the standard normal distribution. Second, we have (u1, u2) =
(Φ(v1),Φ(v2)).

Clayton copula

The Clayton copula is given by

C(u, v) = (u−θ + v−θ − 1)−1/θ.

A pair (u1, u2) of observations can be obtained using the conditional sampling method.

The idea is to simulate a pair (u1, v2) from the uniform distribution on [0,1] and set

u2 = C−1u1
(v2) where Cu1(v2) ∶= P (V ≤ v2∣U = u1) and C−1u1

(⋅) is the inverse function.

For the Clayton copula we have

u2 = (u−θ1 (v
−θ/(θ+1)+1
2 ))

−1/θ
.
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2.B Tables

Table 2.4: Clayton Copula with structural breaks in dependence: empirical rejection
frequencies (T=2520, Rep = 50000, θ1 = 1)
m test τ θ2 1 2.5 7.5 15

0.05 0.05 0.35 0.68 0.76
1 Squares 0.10 0.05 0.57 0.93 0.96

0.25 0.05 0.83 1.00 1.00
0.50 0.05 0.81 1.00 1.00

0.05 0.04 0.33 0.67 0.75
1 Maximum 0.10 0.05 0.56 0.93 0.97

0.25 0.05 0.83 1.00 1.00
0.50 0.05 0.81 1.00 1.00

0.05 0.04 0.22 0.53 0.61
1 Range 0.10 0.04 0.42 0.85 0.92

0.25 0.04 0.72 1.00 1.00
0.50 0.04 0.69 1.00 1.00

0.05 0.05 0.06 0.13 0.16
2 Squares 0.10 0.05 0.10 0.33 0.42

0.25 0.05 0.21 0.79 0.91
0.50 0.05 0.20 0.91 0.99

0.05 0.05 0.09 0.19 0.23
2 Maximum 0.10 0.05 0.16 0.42 0.51

0.25 0.05 0.30 0.84 0.93
0.50 0.05 0.29 0.94 0.99

0.05 0.04 0.19 0.46 0.53
2 Range 0.10 0.04 0.36 0.78 0.86

0.25 0.04 0.62 0.99 1.00
0.50 0.04 0.58 1.00 1.00

0.05 0.05 0.11 0.20 0.24
3 Squares 0.10 0.05 0.17 0.37 0.45

0.25 0.05 0.29 0.74 0.86
0.50 0.05 0.27 0.88 0.97

0.05 0.04 0.10 0.20 0.24
3 Maximum 0.10 0.04 0.17 0.41 0.49

0.25 0.05 0.31 0.81 0.90
0.50 0.05 0.29 0.92 0.98

0.05 0.04 0.08 0.15 0.17
3 Range 0.10 0.04 0.12 0.33 0.41

0.25 0.04 0.24 0.78 0.89
0.50 0.05 0.23 0.92 0.99
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Table 2.5: Gaussian Copula with structural breaks in correlation: empirical rejection
frequencies (T=2520, Rep = 50000, θ1 = 0.5)
m test τ θ2 0.10 0.25 0.50 0.75 0.90

0.05 0.59 0.29 0.05 0.40 0.87
1 Squares 0.10 0.84 0.46 0.05 0.57 0.97

0.25 0.96 0.63 0.05 0.72 1.00
0.50 0.92 0.56 0.05 0.69 0.99

0.05 0.56 0.26 0.04 0.37 0.87
1 Maximum 0.10 0.83 0.44 0.05 0.56 0.97

0.25 0.96 0.62 0.05 0.72 1.00
0.50 0.92 0.55 0.05 0.68 1.00

0.05 0.38 0.16 0.03 0.25 0.76
1 Range 0.10 0.70 0.31 0.04 0.42 0.93

0.25 0.91 0.48 0.04 0.59 0.99
0.50 0.84 0.42 0.04 0.55 0.98

0.05 0.13 0.09 0.05 0.06 0.24
2 Squares 0.10 0.20 0.11 0.05 0.10 0.46

0.25 0.36 0.13 0.05 0.16 0.68
0.50 0.30 0.11 0.05 0.15 0.62

0.05 0.17 0.10 0.04 0.09 0.31
2 Maximum 0.10 0.29 0.14 0.04 0.15 0.54

0.25 0.48 0.20 0.05 0.23 0.75
0.50 0.41 0.17 0.05 0.22 0.71

0.05 0.24 0.11 0.03 0.22 0.69
2 Range 0.10 0.54 0.22 0.04 0.36 0.88

0.25 0.82 0.38 0.04 0.50 0.97
0.50 0.75 0.33 0.04 0.45 0.96

0.05 0.16 0.10 0.05 0.12 0.30
3 Squares 0.10 0.27 0.13 0.05 0.16 0.47

0.25 0.44 0.19 0.05 0.23 0.65
0.50 0.37 0.16 0.05 0.21 0.63

0.05 0.13 0.08 0.04 0.11 0.31
3 Maximum 0.10 0.28 0.12 0.04 0.16 0.51

0.25 0.49 0.19 0.04 0.24 0.72
0.50 0.41 0.17 0.05 0.22 0.70

0.05 0.09 0.05 0.03 0.08 0.23
3 Range 0.10 0.21 0.09 0.04 0.12 0.42

0.25 0.40 0.14 0.04 0.18 0.67
0.50 0.33 0.13 0.05 0.17 0.64



Chapter 3

A non-parametric constancy test

for copulas under weak

dependence1

This chapter extends some recently proposed tests which examine if a copula is con-

stant over time. The i.i.d. assumption underlying these tests is relaxed by imposing

strong mixing conditions.

3.1 Introduction

In econometric applications dependence measures such as linear correlations often

change over time. A fortiori, the same applies to copulas. Patton (2006) and Jon-

deau and Rockinger (2006) examine if a time-varying copula model represents the

dependence structure of the data better than a time-invariant copula. A serious

drawback of their approach is that the results might depend on the choice of the

functional form of the copula and the way the copula is allowed to change over time.

Recently, Busetti and Harvey (2011) and Krämer and Van Kampen (2011) pro-

posed a nonparametric test to examine whether a copula is constant over time. The

nonparametric test avoids the specification of a specific functional form as well as

1This chapter is based on Van Kampen and Wied (2010)

29
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the specification of a transition mechanism. The test is based on the stationarity

test of De Jong et al. (2007), who modified the original KPSS test (see Kwiatkowski

et al. (1992)) by using indicators for whether the data is below or above the median

instead of using deviations from the mean. Busetti and Harvey (2007) constructed

a quantile constancy test which generalizes the previous idea for arbitrary quantiles.

The underlying idea of the copula constancy test is to use the fact that a (bivariate)

copula C(τ1, τ2) gives the probability that the each of random variables takes values

below their τi-quantile, i = 1,2, and to construct suitable indicators for this event.

This idea can easily be extended to more than two dimensions.

The copula constancy test has been developed under the assumption that the

observations are independent and identically distributed. This assumption is often

violated in empirical applications. Kwiatkowski et al. (1992) and De Jong et al. (2007)

constructed their tests under the assumption that the observations are strong mixing,

thereby allowing for weak dependence.

In this paper we likewise relax the i.i.d. assumption underlying the copula con-

stancy test by imposing strong mixing conditions. The resulting test is consistent

against the alternative of a single structural break. We also show that the test has

the same asymptotic null distribution for filtered observations. This result is useful

if the marginal distributions are changing over time.

3.2 Testing for constancy under i.i.d. assumption

Consider the bivariate i.i.d. series {yt}Tt=1 with yt = (y1t, y2t). Let ξi(τi) be the τi-

quantile of yit where τi ∈ (0,1), i = 1,2. The copula C(t)(τ1, τ2) gives the probability

that each variable takes values below or equal to its τi-quantile

C(t)(τ1, τ2) = P (y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2)).
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We examine if this probability changes over time. The hypothesis pair is

H0 ∶ C(t)(τ1, τ2) = C(τ1, τ2) for all t = 1, . . . , T

H1 ∶ C(t)(τ1, τ2) ≠ C(t+1)(τ1, τ2) for some t ∈ {1, . . . , T − 1},

where C(τ1, τ2) is a time-invariant copula.

The test is based on indicators of the event {y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2)}. Let I(⋅)
be the indicator function taking the value 1 if the event between brackets is true and

zero otherwise. Define

I(yt, ξ(τ)) ∶= I(y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2))

and let CT (τ1, τ2) ∶= T −1∑T
t=1 I(yt, ξ(τ)) be the empirical copula. Note that under

the null hypothesis I(yt, ξ(τ)) is a Bernoulli variable with probability C(τ1, τ2) and
thus Qt ∶= Q(yt, ξ(τ)) ∶= C(τ1, τ2) − I(yt, ξ(τ)) has expectation zero and variance

C(τ1, τ2)(1 −C(τ1, τ2)).
Define ST (r) ∶= 1/

√
T ∑[rT ]t=1 Qt, r ∈ [0,1] and [rT ] denotes the integer part of rT .

Then, using a functional central limit theorem (FCLT), we have

ST (⋅)
dÐ→ σB(⋅), (3.1)

where σ2 = C(τ1, τ2)(1 −C(τ1, τ2)) and B denotes a Brownian motion.

Replacing C(τ1, τ2) by its empirical estimate CT (τ1, τ2) gives, using the terminol-

ogy of Busetti and Harvey (2011), the bivariate τ−quantics

BIQ(yt, ξ(τ)) ∶= CT (τ1, τ2) − I(yt, ξ(τ)).

Note that these are the mean deviations of Qt, i.e. BIQ(yt, ξ(τ)) = Qt − T −1∑T
t=1Qt.

Therefore, for S̃T (r) ∶= 1/
√
T ∑[rT ]t=1 BIQ(yt, ξ(τ)) we have

S̃T (⋅)
dÐ→ σV (⋅),
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where V (r) ∶= B(r) − rB(1) denotes a Brownian Bridge.

The BIQ(yt, ξ(τ)) are unobserved since they depend on the population quantile

ξ(τ). Let ξ̂(τ) denote the sample quantile, let ĈT (τ1, τ2) ∶= T −1∑T
t=1 I(yt, ξ̂(τ)) be the

empirical copula based on the sample quantiles and let BIQ(yt, ξ̂(τ)) = ĈT (τ1, τ2) −
I(yt, ξ̂(τ)) be the corresponding bivariate τ -quantics. Define

ŜT (r) ∶= 1/
√
T
[rT ]

∑
t=1

BIQ(yt, ξ̂(τ)). (3.2)

Then Busetti and Harvey (2011) show that

sup
r∈[0,1]

∣ŜT (r) − S̃T (r)∣
pÐ→ 0.

The copula constancy tests are different functionals of ŜT (⋅). Using the continuous
mapping theorem we obtain the asymptotic distribution under the null hypothesis.

The test based on the squares is given by

1

T 2σ̂2
iid

T

∑
t=1
(

t

∑
j=1
BIQ(yj, ξ̂(τ)))

2

,

where σ̂2
iid ∶= ĈT (τ1, τ2)(1 − ĈT (τ1, τ2)) is the estimate of σ2. The test is distributed

as Cramér-von Mises and some useful critical values are 0.743 (1%), 0.461 (5%) and

0.347 (10%).

Krämer and Van Kampen (2011) propose complementary tests based on the max-

imum and the range of ŜT (⋅)

1√
T σ̂iid

max
t=1,...,T

∣
t

∑
j=1
BIQ(yj, ξ̂(τ))∣

1√
T σ̂iid

[ max
t=1,...,T

t

∑
j=1
BIQ(yj, ξ̂(τ)) − min

t=1,...,T

t

∑
j=1
BIQ(yj, ξ̂(τ))] .

Some useful critical values for the maximum test are 1.63 (1%), 1.36 (5%), 1.22 (10%)

and for the range test are 2.001 (1%), 1.747 (5%) and 1.620 (10%).
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3.3 Testing for constancy under a mixing assump-

tion

In this section we relax the i.i.d. assumption by imposing strong mixing conditions.

For i = 1,2, the sequence {yit}∞t=−∞ is said to be strong-mixing if limm→∞ α(m) = 0,
where

α(m) ∶= sup
t

sup
A∈Ft

−∞,B∈F∞t+m
∣P (A ∩B) − P (A)P (B)∣

and, F t
−∞ and F∞t+m are sigma-fields based on respectively (. . . , yi,t−1, yit) and

(yi,t+m, yi,t+m+1, . . .), see e.g. Davidson (1994, p.209). So a strong mixing sequence

satisfies asymptotic independence.

To construct a copula constancy test, we adopt similar assumptions as in De Jong

et al. (2007).

Assumption 3.1.

1. The observations yit are strictly stationary and ξi is the unique population

quantile of yit.

2. yit is strong mixing with mixing coefficient α(m) = O(m−p/(p−2)) for some finite

p > 2 (see remark (i)).

3. yt − ξ has a continuous joint density f12(u1, u2) in a neighborhood [−η, η]2 of 0

for some η > 0, and inf(u1,u2)∈[−η,η]2 f12(u1, u2) > 0.

4. Long run variance σ2 ∈ (0,∞).

Remark:

(i) Application of a FCLT for mixing variables requires that yit is Lp − boundend,
E∣yit∣p <∞, for some finite p > 2 (see Davidson 1994, p.482).

(ii) The bound on the mixing coefficients is required to establish Lemma 1 in

De Jong et al. (2007). This restriction allows, for example, for ARMA pro-

cesses with Gaussian innovations, see Withers (1981). Lindner (2009, Theorem
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8) gives conditions such that GARCH processes are strong mixing. The copula

constancy tests is, however, subject to size distortions if the series are serially

correlated or exhibit stochastic volatility patterns (see discussion below).

(iii) The joint density f12(u1, u2) can written as

f(u1, u2) = c(F1(u1), F2(u2))f1(u1)f2(u2),

where fi(⋅) and Fi(⋅) are respectively the marginal density and distribution

of yit − ξi, and c(⋅, ⋅) is the copula density. Assumption 3.1.3 is satisfied if

c(F1(u1), F2(u2)) and fi(ui), i = 1,2, are nonzero and continuous for (u1, u2) ∈
[−η, η]2. Note that we do not require that the copula density is continuous on

its complete domain [0,1]2.

Under Assumption 3.1, ST (⋅) satisfies a functional central limit theorem. Provided

T −1E(∑T
t=1Qt)2 → σ2 with 0 < σ2 < ∞, we have ST (⋅)

dÐ→ σB(⋅), see e.g. Corollary

29.7 of Davidson (1994). In addition

S̃T (⋅)
dÐ→ σV (⋅). (3.3)

The HAC estimator, σ̄2, for σ2 is given by

σ̄2 = T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT ) ⋅Qt ⋅Qs, (3.4)

where the bandwidth, γT , and the kernel, k(⋅), satisfy the following conditions:

Assumption 3.2.

1. k(⋅) satisfies ∫
∞
−∞ ∣ψ(w)∣dw <∞, where

ψ(w) = (2π)−1∫
∞

−∞
k(x) exp(−iwx)dw.

2. k(⋅) is continuous at all but a finite number of points, k(x) = k(−x), ∣k(x)∣ ≤ l(x)
where l(x) is non-increasing and ∫

∞
0 ∣l(x)∣dx <∞, and k(0) = 1.
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3. γT →∞ and γT /T → 0 as T →∞.

Remark:

(i) Assumption 2 ensures that the variance estimate remains nonnegative. The

Bartlett, Parzen, Tukey-Hanning and Quadratic Spectral kernels satify this

assumption. The truncated kernel does not satify this assumption, see De Jong

and Davidson (2000).

(ii) The bandwith rate of Assumption 2.3 is similar to the one in De Jong et al.

(2007) and Andrews (1991).

The HAC estimate (3.4) is not feasible since Qt depends on the true unobserved

copula C(τ1, τ2) and on the population quantile ξ(τ). Replacing C(τ1, τ2) by the

empirical copula CT (τ1, τ2) and ξ(τ) by the sample quantile ξ̂(τ) gives the feasible

HAC estimator

σ̂2 = T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT ) ⋅BIQ(yt, ξ̂(τ)) ⋅BIQ(ys, ξ̂(τ)). (3.5)

We make the following assumption on the empirical quantile process.

Assumption 3.3.
√
T (ξ̂i(τ) − ξi(τ)) = Op(1), for i = 1,2.

Remark: Assumption 3.3 follows from asymptotic normality of
√
T (ξ̂i(τ) − ξi(τ)).

Sufficient conditions for asymptotic normality are given by Koenker (2005, p.71-72)

for the i.i.d. case, De Jong et al. (2007) for the strong mixing case (but only for

τ = 0.5) and Sun and Lahiri (2006) for the general strong mixing case.

Theorem 3.1 establishes the result of the previous section for the case where the

observations are strong mixing. The proof is given in 3.A.

Theorem 3.1. Under Assumptions 3.1, 3.2 and 3.3

ŜT (⋅)
dÐ→ σV (⋅)

and σ̂2
pÐ→ σ2.
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Busetti and Harvey (2011) show that the test is subject to size distortions if the

marginal distributions are changing over time. This is, for instance, the case if the

series exhibit stochastic volatility. A solution is to use the standardized observations

yit(θ̂T ) ∶= xit/hit(θ̂T ) where xit are the observations, h2it(θ̂T ) is an estimate of the

conditional volatility and θ̂T is an q × 1 vector of parameter estimates of the true

population parameter, θ0, at sample size T . This approach is only legitimate if we

can substitute yt(θ0) by yt(θ̂T ) and σ2
t (θ0) by σ2

t (θ̂T ) in Theorem 3.1.

Since marginal distributions can also change for reasons other than stochastic

volatility, we extend Theorem 3.1 to the general case where yt(θ) depends on a pa-

rameter vector θ ∈ Θ, and where Θ denotes the compact parameter space. Let ξ(θ, τ)
denote the quantile function of yt(θ) and let ŜT (θ, ⋅) be as ŜT (⋅) but with yt replaced
by yt(θ).

We impose the following additional assumption:

Assumption 3.4.

1.
√
T (θ̂T − θ0) = Op(1).

2. For ε > 0 and finite constants cy,ε, cξ > 0, supθ∈Θ ∣∂y(θ)/∂θ∣ < cy,ε with probability

1 − ε and supθ∈Θ ∣∂ξ(θ, τ)/∂θ∣ < cξ.

3. yt(θ)−ξ(θ, τ) has a continuous differentiable joint density f12(u1, u2) in a neigh-

borhood [−η, η]2 of 0 for some η > 0, and inf(u1,u2)∈[−η,η]2 f12(u1, u2) > 0.

4. γT →∞ and γT /
√
T → 0 as T →∞.

Remark:

(i) Assumption 3.4.1 follows from asymptotic normality of
√
T (θ̂T − θ0) which

is satisfied for GARCH models estimated by maximum likelihood (see e.g.

Gouriéroux (1997, p.44)).

(ii) Suppose the volatility hit(θ) (in the example of the main text) is estimated

using a GARCH model. Then Assumption 3.4.2 is satisfied if ∂hit(θ)/∂θ exist

and the volatility is unequal to zero. Existence of ∂hit(θ)/∂θ is also imposed to

obtain the asymptotic variance-covariance matrix.
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(iii) Assumption 3.4.4 strengthens the rate of the bandwidth parameter. Andrews

(1991) points out that optimal growth rates of γT (in terms of a MSE criterion)

are typically less than o(T 1/2). Imposing o(T 1/2) can therefore be regarded as

a mild requirement.

Theorem 3.2. Under Assumptions 3.1, 3.2, 3.3 and 3.4 we have

ŜT (θ̂T , ⋅)
dÐ→ σV (⋅)

and σ̂2(θ̂T )
pÐ→ σ2.

An application of the continuous mapping theorem after Theorem 3.1 or 3.2 gives

the same tests as established in the i.i.d. case.

3.4 The asymptotic power of the test

3.4.1 Consistency

We consider first a fixed alternative of a single break in the copula at some fraction

z∗ ∈ (0,1) of the sample. Let C(τ1, τ2) and C∗(τ1, τ2) be two different bivariate

copulas. The copulas C(τ1, τ2) and C∗(τ1, τ2) may come from the same family but

should then have different parameter values.

The hypothesis pair is

H0 ∶ C(t)(τ1, τ2) = C(τ1, τ2)

H1 ∶ C(t)(τ1, τ2) = (1 − g(t, T ))C(τ1, τ2) + g(t, T )C∗(τ1, τ2), (3.6)

where g(t, T ) = 0 for t/T ≤ z∗ and g(t, T ) = ω for t/T > z∗, ω ∈ (0,1].
Define

Q1(yt, ξ(τ)) ∶= (1 − g(t, T ))C(τ1, τ2) + g(t, T )C∗(τ1, τ2) − I(yt, ξ(τ)).
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Theorem 3.3. Provided that T −1E (∑T
t=1Q

1(yt, ξ(τ)))
2 → σ2

1 for σ2
1 ∈ (0,∞), the

copula constancy tests are consistent against the alternative (3.6).

Remark:

(i) Note that under the fixed alternative (3.6), the variance of the terms in the

partial sum process changes over time.

(ii) In the special case where observations are i.i.d. the condition stated in the

theorem is clearly satisfied since

T −1E (
T

∑
j=1
Q1(yj, ξ(τ)))

2

= z∗C(τ1, τ2)[1 −C(τ1, τ2)] + (1 − z∗)C1(τ1, τ2)[1 −C1(τ1, τ2)],

where C1(τ1, τ2) ∶= (1 − ω)C(τ1, τ2) + ωC∗(τ1, τ2).

3.4.2 Local Alternatives

Next consider a sequence of local alternatives

(1 − g(t, T ))C(τ1, τ2) + g(t, T )C∗(τ1, τ2), (3.7)

where g(t, T ) ∶ [0, T ]×R+ → (0,1) is defined as g(t, T ) = T −1/2h(t/T ) for some function

h(t/T ) satisfying supx h(x) < ∞. Berg and Quessy (2009) use a similar setup to

analyze the asymptotic behavior of goodness of fit tests for copulas.

UnderH1 the copula (weight) depends on the sample size T . Hence, to analyze the

local power of the test we should formally work with triangular arrays ytT = {yitT}i=1,2,
t = 1,2, . . . , T , T ∈ N. For notational simplicity, the partial sums ŜT are like before

but implicitly depending on ytT instead of yt.

By making use of a functional central limit theorem for triangular arrays we are

able to show the limiting behavior of the test under the sequence of local alternatives

(3.7).
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Theorem 3.4. Under local alternatives (3.7)

ŜT (⋅)
dÐ→ σ1V (⋅) + [C(τ1, τ2) −C∗(τ1, τ2)] (∫

(⋅)

0
h(s)ds − (⋅)∫

1

0
h(s)ds)

and σ̂2
pÐ→ σ2

1.

This shows that the copula constancy test is inconsistent against local alternatives

(3.7) but does converge to a fixed limit.

3.5 Finite sample properties

In this section we examine the finite sample properties of the test. The results are

generated using Ox (see Doornik (2005)) and the G@RCH package of Laurent and

Peters (2006).

3.5.1 Size of test

To examine the size of the test, we simulate 50000 replications of 500 observations

from the following Copula-ARMA-GARCH model

xit = θ1xi,t−1 + εi,t + θ2εi,t−1
εit = hitε

†
it (3.8)

h2it = θ3 + θ4ε2it + θ5h2i,t−1,

where ε†
it = Φ−1(uit), Φ(⋅) denotes the univariate normal CDF and ut = (u1t, u2t) is

simulated from a copula C with parameter such that Kendall’s tau equals 0.25.

For the ARMA (and GARCH) recursion, we simulate 1000 additional observa-

tions and discard these afterwards. We examine the properties of the test using a

Clayton, Gaussian and Student copula where we assume that the latter has 4 degrees

of freedom. Following Kwiatkowski et al. (1992), we use the Bartlett window with re-

spectively bandwidth rules γ1T = [4(T /100)1/4] and γ2T = [12(T /100)1/4] to calculate

the HAC estimator of the variance.
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First, we consider the size of the test if the DGP is not subject to stochastic

volatility (i.e. θ3 = 1, θ4 = 0 and θ5 = 0). Table 3.1 shows that the size of the test

is close to its nominal value for the i.i.d. case (i.e. θ1 = θ2 = 0) but it exceeds the

nominal value if there exists serial correlation in the data and we do not use a HAC

estimator. If serial correlation is high then, even if we use a HAC estimator, there

are still size distortions. As long as the data is not independently distributed, the

size based on γ2T is closer to its nominal value. These results are robust among the

different copulas.

Second, to illustrate the effect of stochastic volatility we set θ1 = θ2 = 0 and let

θ4 and θ5 take positive values. Table 3.2 shows the size of the test as applied to

the original data and without HAC estimator. We also give the results for filtered

data yit(θ̂) = xit/hit(θ̂), where θ̂ = (θ̂3, θ̂4, θ̂5)′ are the ML estimates. In summary,

we have that the test is subject to size distortions if the DGP contains stochastic

volatility. Filtering as well as the use of a long-run variance estimator reduces the

size distortions. The results based on filtered data are clearly better but we should

take into account that in practice the GARCH model might be misspecified.

3.5.2 The power of the test

We consider the power of the test against the fixed alternative (3.6). We assume that

C and C∗ are from the same copula family with copula parameter corresponding to

Kendall’s tau = 0.25 and to Kendall’s tau = 0.1, 0.5 and 0.75, respectively. The break

point fraction z∗ takes the values 0.3, 0.5 and 0.7 and the break magnitude ω takes

the values 0, 0.5 and 1. Note that ω = 0 implies that the copula is time-invariant and

ω = 1 corresponds to a standard structural break in the copula parameter.

Table 3.3 shows that the power is highest if the break occurs around half of the

sample (z∗ = 0.5). The power increases in w and in Kendall’s tau value of C∗. This

is also expected since in both cases the deviation between the copula under the null

and alternative hypothesis increases.
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3.6 Empirical application

Next, we consider stock returns from the US, UK, France, Germany and Japan. The

dataset is provided by MSCI and consists of monthly returns from January, 1970

through November, 2009. Longin and Solnik (2001) consider a similar dataset but

observed at a different period (January, 1959 through December, 1996).

We model the marginal distributions using a GARCH (1,1) model with Gaussian,

Student and Skewed-Student distributed innovations. The model is like (3.8) but the

mean equation only contains a constant term and no lag values. In addition, the inno-

vations ε†
t are modelled for each series using a Gaussian, Student or Skewed-Student

distribution. All parameters are estimated using maximum likelihood. Using the

AIC information criterium, we selected the GARCH model with skewed-student dis-

tributed innovations for all countries (except Japan; see below). The disturbances are

from a symmetric student distribution if the logarithm of the asymmetry parameter

(as reported in Table 3.4) equals 0, see Laurent and Peters (2006).

Table 3.4 contains the parameter estimates. For Japan we report the model with

standard student distributed innovations, since the asymmetry parameter is insignif-

icant. In summary, all reported coefficients are significant at the 5% level except

the constant for Germany and θ3 for the UK and Japan. The θ4 parameter for the

UK is only significant at the 10% level. The result for the UK might be affected by

the severe spike in January 1975. Including a dummy variable in the mean equation

improved the model. The results for the copula constancy test (not reported here)

are almost the same as the ones below.

We apply the Ljung-Box test to the standardized residuals as well as the squared

standardized residuals. For all countries we do not reject the null of no serial corre-

lation for the squared standardized residuals. For France, Germany and Japan the

standardized residuals are serial correlated. As long as the dependence structure sat-

isfies the mixing assumption made in section 3.3, Theorem 3.2 allows us to apply the

copula constancy test to the standardized innovations.

Since quantiles can also change for reasons different from stochastic volatility, we

perform the quantile constancy test proposed by Busetti and Harvey (2007). Table 3.5
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Table 3.4: Maximum Likelihood Estimates and Goodness-of-Fit statistics of a
GARCH(1,1) model with skewed student-t innovations.

US UK France Germany Japan
const(mean) 0.566∗∗∗ 0.665∗∗∗ 0.599∗∗ 0.386∗ 0.643∗∗∗

θ3 1.027∗∗ 1.502 3.756∗∗∗ 2.333∗∗ 0.517
θ4 0.124∗∗∗ 0.143∗ 0.159∗∗∗ 0.156∗∗∗ 0.090∗∗

θ5 0.831∗∗∗ 0.815∗∗∗ 0.745∗∗∗ 0.783∗∗∗ 0.901∗∗∗

log(assym) -0.220∗∗∗ -0.232∗∗∗ -0.261∗∗∗ -0.199∗∗∗ -
Tail 7.512∗∗∗ 5.474∗∗∗ 10.101∗∗ 6.918∗∗∗ 5.778∗∗∗

AIC 5.731 6.033 6.319 6.181 6.117
Q(1) 0.735 0.238 7.955 4.245 8.572

(0.391) (0.626) (0.005) (0.039) (0.003)
Q(2) 0.813 1.439 8.092 4.865 10.364

(0.666) (0.487) (0.017) (0.088) (0.006)
Q(3) 1.321 1.448 9.381 5.452 12.491

(0.724) (0.694) (0.025) (0.142) (0.006)
Q(6) 8.059 6.930 12.284 8.149 13.147

(0.234) (0.327) (0.056) (0.227) (0.041)
Q(12) 10.357 9.754 19.428 14.140 18.726

(0.585) (0.637) (0.079) (0.292) (0.095)
Q2(1) 0.114 0.345 0.150 0.191 0.165

(0.735) (0.557) (0.698) (0.662) (0.685)
Q2(2) 0.561 0.405 0.775 0.586 0.497

(0.755) (0.817) (0.679) (0.746) (0.780)

The table shows the parameter estimates of the GARCH(1,1) model with skewed student distributed

innovations. For Japan we report the GARCH(1,1) with student distributed innovations. Signifi-

cance levels denoted by: 1%(∗∗∗),5%(∗∗),10%(∗).
The statistics below the parameters are the Akaike Information Criteria (AIC) and the Ljung-Box

statistics for serial correlation with p-values indicated in brackets (H0 ∶ no serial correlation). Q

and Q2 refer to the Ljung-Box statistic based on the standardized innovations and the squared

standardized innovations, respectively.
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shows that the GARCH (1,1) model performs reasonably well for all countries except

Japan. For Japan we detect some time-varying behavior at the lower quantiles (at

the 5% and 1% level). It is reasonable that results of the copula constancy tests for

Japan are affected by this. Since the purpose of this section is solely to illustrate the

effect of stochastic volatility we will not analyze more advanced models for Japan.

Table 3.5: quantile constancy test based on quantics. Significance levels denoted by:
1%(∗∗∗),5%(∗∗),10%(∗)

quantile US UK France Germany Japan
0.10 0.112 0.084 0.076 0.162 0.583**
0.25 0.128 0.150 0.081 0.115 0.831***
0.50 0.436* 0.135 0.287 0.190 0.355*
0.75 0.126 0.080 0.362* 0.340 0.394*
0.90 0.107 0.655** 0.172 0.134 0.131

We apply the copula constancy test to the original return series as well as to the

standardized residuals of the GARCH(1,1) models. Table 3.6 shows that we clearly

reject the null hypothesis for some country pairs at the 5% significance level if we

apply the test to the return series and we do not use a HAC estimate. In particular,

the range test provides strong evidence against the null hypothesis. However, if we

make use of a HAC estimator then we are hardly able to reject the null hypothesis

at the 5% level. Applying the test to filtered observations gives a similar result. This

example, therefore, clearly illustrates the importance of controlling for changes in the

marginal distributions.

Finally, we would like to emphasize that we should not conclude that this implies

that for some country pairs the copula is time-invariant. Besides the fact that failing

to reject the null hypothesis does not imply that the null hypothesis is true, we can

indeed reject the null hypothesis if we consider other events than {y1t ≤ ξ1(τ1), y2t ≤
ξ2(τ2)}. In particular, using the Quadrant Association Test of Busetti and Harvey

(2011) (which is based on the same idea but uses the events {y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2)}
as well as {y1t > ξ1(τ1), y2t > ξ2(τ2)}) we obtain, even if we control for stochastic

volatility, strong evidence against the null hypthesis.
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3.A Appendix: Proof Theorem 1 and 2

The proof of Theorem 1 and 2 follows the one of De Jong et al. (2007). We extend

their proof in two ways. First, in our case the indicator series depends on a vector

series instead of a scalar series. Second, the indicator series depends on a parameter

vector θ which needs to be estimated.

The structure of the proof is the following: Lemma 1 shows uniform convergence

for some specific terms that occur in the proof of Theorem 1. To proof Lemma

1, we show pointwise convergence and stochastic equicontinuity in Lemma 2 and 3,

respectively.

Lemma 3.5. Write yt = yt(θ0) and ξ(τ) = ξ(θ0, τ). For M > 0, we have under

Assumption 3.1

sup
ϕ∈[−M,M]2

sup
r∈[0,1]

T −1/2
[rT ]

∑
t=1
∣dt(ϕ) −E[dt(ϕ)]∣

pÐ→ 0,

where

dt(ϕ) = I(yt, ξ(τ) + ϕT −1/2) − I(yt, ξ(τ)). (3.9)

Proof. The parameter space of ϕ is compact since it is closed and bounded. Compact-

ness implies that it is also totally bounded (see e.g. Davidson (1994, Theorem 5.5)).

Therefore, using Davidson (1994, Theorem 21.9) and noting that [−M,M]2 is dense

in the parameter space itself, it is sufficient to show that supr∈[0,1] T
−1/2∑[rT ]t=1 ∣dt(ϕ)−

E[dt(ϕ)]∣
pÐ→ 0 for each ϕ ∈ [−M,M]2 and that the sequence {supr∈[0,1] T

−1/2∑[rT ]t=1

∣dt(ϕ) − E[dt(ϕ)]∣, T = 1,2, . . .} is stochastically equicontinuous. Lemma 3.6 proves

pointwise convergence and Lemma 3.7 proves stochastic equicontinuity.

Lemma 3.6. Let M > 0. Then, under Assumption 3.1, for each ϕ ∈ [−M,M]2

sup
r∈[0,1]

T −1/2
[rT ]

∑
t=1
∣dt(ϕ) −E[dt(ϕ)]∣

pÐ→ 0.

Proof. First, it is sufficient to show that E supr∈[0,1]( T −1/2∑
[rT ]
t=1 ∣dt(ϕ)−E[dt(ϕ)]∣)2 →

0 for T →∞.
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Second, for p > 2 (see remark below Assumption 3.1) and i = 1,2 we have that

I(yit ≤ ξi(τi)) is strong mixing of size −p/(p − 2), because the indicator function I(⋅)
is a measurable function (Theorem 3.27, Davidson (1994, p.53)) and every measur-

able transformation of yit is also strong mixing with the same size as yit (Theo-

rem 14.1, Davidson (1994, p.210)). Using the same arguments, I(yt, ξ(τ)) = I(y1t ≤
ξ1(τ1))I(y2t ≤ ξ2(τ2)) is measurable (Theorem 3.33, Davidson (1994, p.56)) and thus

also strong mixing with size −p/(p−2). This implies that we can make use of Lemma

1 in De Jong et al. (2007).

Let F (⋅, ⋅) denote the joint distribution of y1t−ξ1(τ1) and y2t−ξ2(τ2) and let F ′i (⋅, ⋅)
denote the derivative with respect to argument i = 1,2.

Take ϕ ∈ [−M,M]2 arbitrary. For all η > 0 (as in Assumption 1.3) there exists

a T0 such that MT −1/2 ≤ η for all T ≥ T0. For T ≥ T0, we obtain using Lemma 1 of

De Jong et al. (2007) and for some constants c1 > 0, c2 > 0 and c3 > 0,

E sup
r∈[0,1]

⎛
⎝
T −1/2

[rT ]

∑
t=1
∣dt(ϕ) −E[dt(ϕ)]∣

⎞
⎠

2

≤ c1T
−1

T

∑
t=1
∥I(yt, ξ(τ) + ϕT −1/2) − I(yt, ξ(τ))∥2p

≤ c2T
−1

T

∑
t=1
(F (MT −1/2,MT −1/2) − F (−MT −1/2,−MT −1/2))2/p

≤ c3( sup
(a1,a2)∈[−η,η]2

F ′1(a1, a2)(2MT −1/2)

+ sup
(a3,a4)∈[−η,η]2

F ′2(a3, a4)(2MT −1/2))
2/p

, (3.10)

where the last inequality follows using the mean value theorem. Since F ′i (⋅, ⋅), i = 1,2,
is finite under assumption 1, letting T →∞ gives the required result.

Lemma 3.7. The sequence {supr∈[0,1] T
−1/2∑[rT ]t=1 ∣dt(ϕ) −E[dt(ϕ)]∣, T = 1,2, . . .} on

the metric space ([−M,M]2, ρ) with ρ(ϕ, ϕ̈) = ∣ϕ1 − ϕ̈1∣ + ∣ϕ2 − ϕ̈2∣ is stochastically

equicontinuous.
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Proof. Define

vT (ϕ) ∶= sup
r∈[0,1]

T −1/2
[rT ]

∑
t=1
∣dt(ϕ) −E[dt(ϕ)]∣.

We have to show (see Davidson (1994, p.336)) that for all ε > 0 there exists a δ > 0
such that

lim sup
T→∞

P ( sup
ϕ∈[−M,M]2

sup
ϕ̈∈Bρ(ϕ,δ)

∣vT (ϕ) − vT (ϕ̈)∣ ≥ ε) < ε,

where Bρ(ϕ, δ) = {ϕ̈ ∶ ϕ̈ ∈ [−M,M]2, ρ(ϕ, ϕ̈) < δ}.
Write {ϕ, ϕ̈ ∶ ∣ϕi − ϕ̈i∣ < δ} ∶= {ϕ, ϕ̈ ∈ [−M,M]2 ∶ ∣ϕ1 − ϕ̈1∣ < δ, ∣ϕ2 − ϕ̈2∣ < δ}. Then

sup
ϕ∈[−M,M]2

sup
ϕ̈∈Bρ(ϕ,δ)

∣vT (ϕ) − vT (ϕ̈)∣ ≤ sup
ϕ,ϕ̈∶∣ϕi−ϕ̈i∣<δ

∣vT (ϕ) − vT (ϕ̈)∣ .

Subsequently, we have using the same arguments as in Lemma 2 of De Jong et al.

(2007) that

P ( sup
ϕ∈[−M,M]2

sup
ϕ̈∈Bρ(ϕ,δ)

∣vT (ϕ) − vT (ϕ̈)∣ ≥ ε)

≤ o(1) + 2I
⎛
⎝

sup
ϕ,ϕ̈∶∣ϕi−ϕ̈i∣<δ

T −1/2
T

∑
j=1
∣Edj(ϕ) −Edj(ϕ̈)∣ > ε/4

⎞
⎠
.

Therefore, it is sufficient to show equicontinuity of T −1/2∑T
j=1 ∣Edj(ϕ) −Edj(ϕ′)∣.

For all M > 0 and for all η > 0 (as in Assumption 1.3) we can find an index in the

sequence, T , such that MT −1/2 ≤ η. Therefore,

sup
ϕ,ϕ̈∶∣ϕi−ϕ̈i∣<δ

T −1/2
T

∑
j=1
∣Edj(ϕ) −Edj(ϕ̈)∣

= sup
ϕ,ϕ̈∶∣ϕi−ϕ̈i∣<δ

T −1/2
T

∑
j=1
∣F (ϕ1T

−1/2, ϕ2T
−1/2) − F (ϕ̈1T

−1/2, ϕ̈2T
−1/2)∣

≤ sup
ϕ,ϕ̈∶∣ϕi−ϕ̈i∣<δ

T −1/2
T

∑
j=1
( sup
(a1,a2)∈[−η,η]2

F ′1(a1, a2)∣ϕ1T
−1/2 − ϕ̈1T

−1/2∣

+ sup
(a3,a4)∈[−η,η]2

F ′2(a3, a4)∣ϕ2T
−1/2 − ϕ̈2T

−1/2∣)
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≤ δ ( sup
(a1,a2)∈[−η,η]2

F ′1(a1, a2) + sup
(a3,a4)∈[−η,η]2

F ′2(a3, a4)) . (3.11)

Since F ′i (⋅, ⋅) is finite under assumption 1, selecting δ sufficiently small gives the

required result.

Proof of Theorem 3.1:

Define ϕ∗ ∶= T 1/2(ξ̂(τ) − ξ(τ)) and dt(ϕ) as in (3.9). Then

1

T 1/2

[rT ]

∑
t=1

BIQ(yt, ξ̂(τ)) (3.12)

= 1

T 1/2

[rT ]

∑
t=1

BIQ(yt, ξ(τ)) −
1

T 1/2

[rT ]

∑
t=1

dt(ϕ∗) +
[rT ]
T

1

T 1/2

T

∑
t=1
dt(ϕ∗)

= 1

T 1/2

[rT ]

∑
t=1

BIQ(yt, ξ(τ)) −
1

T 1/2

[rT ]

∑
t=1
(dt(ϕ∗) −E[dt(ϕ∗)])

+ [rT ]
T

1

T 1/2

T

∑
t=1
(dt(ϕ∗) −E[dt(ϕ∗]) .

Under Assumption 3.3 we have that for all ϵ > 0 there exits a M > 0 such that

P (∣ϕ∗∣ ≥ M) ≤ ϵ. Therefore, using Lemma 1 and the triangle inequality the second

and third term converge uniformly in probability to zero.

It remains to show that σ̂2
pÐ→ σ2. Define the HAC estimate based on the empirical

copula and the population quantiles as

σ̃2 ∶= T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT ) ⋅BIQ(yt, ξ(τ)) ⋅BIQ(ys, ξ(τ)). (3.13)

The proof consists of two steps. First we show that σ̂2
p→ σ̃2. Subsequently, we

show that σ̃2 is asymptotically equivalent to σ̄2.

Step 1 : Write

BIQ(yt, ξ̂(τ)) = BIQ(yt, ξ(τ)) − at + bT , (3.14)



CHAPTER 3. CONSTANCY TEST UNDER WEAK DEPENDENCE 54

where at ∶= [dt(ϕ∗) −E(dt(ϕ∗))] and bT ∶= 1
T ∑

T
k=1[dk(ϕ∗) −Edk(ϕ∗)]. Then

σ̂2 = T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT )(BIQ(yt, ξ(τ)) − at + bT )(BIQ(ys, ξ(τ)) − as + bT ).

The cross products, except the ones consisting of BIQ(yt, ξ̂(τ)) ⋅BIQ(ys, ξ̂(τ)), con-
verge to zero using arguments as in De Jong et al. (2007).

Step 2 : Note that −BIQ(ys, ξ(τ)) are the OLS residuals of regressing I(yt, ξ(τ)) on
a constant. These residuals (as function of the parameter vector) satisfy Assumption

B and C in Andrews (1991). Hence, his Theorem 1b gives the required result.

The following lemmas are used to prove Theorem 2. The structure of the proof

is similar to Theorem 1. Lemma 3.8 shows uniform convergence of some terms that

occur in the proof of Theorem 2 below. To prove Lemma 3.8, we show pointwise

convergence in Lemma 3.9 and stochastic equicontinuity in Lemma 3.10.

Lemma 3.8. For M > 0 and N > 0 we have under Assumption 3.1 and 3.4

sup
r∈[0,1]

sup
ϕ∈[−M,M]2

sup
ζ∈Υ

T −1/2
[rT ]

∑
t=1
∣d∗t (ϕ, ζ) −E[d∗t (ϕ, ζ)]∣

pÐ→ 0,

where Υ ∶= {ζ ∈ [−N,N]q ∶ θ0 + ζT −1/2 ∈ Θ} and

d∗t (ϕ, ζ) = I[yt(θ0 + ζT −1/2), ξ(θ0 + ζT −1/2, τ) + ϕT −1/2]

−I[yt(θ0), ξ(θ0, τ)].

Proof. Write d∗t (ϕ, ζ) = d
†
t(ϕ, ζ) + dt(ϕ), where

d†
t(ϕ, ζ) = I[yt(θ0 + ζT −1/2), ξ(θ0 + ζT −1/2, τ) + ϕT −1/2]

−I[yt(θ0), ξ(θ0, τ) + ϕT −1/2]

and dt(ϕ) as defined in (3.9).
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Using the triangle inequality

T −1/2
[rT ]

∑
t=1
∣d∗t (ϕ, ζ) −E[d∗t (ϕ, ζ)]∣

≤ T −1/2
[rT ]

∑
t=1
∣d†

t(ϕ, ζ) −Ed
†
t(ϕ, ζ)∣ + T −1/2

[rT ]

∑
t=1
∣dt(ϕ) −Edt(ϕ)∣ .

Since the second part converge uniformly to zero by Lemma 3.5, it is sufficient to prove

that the first part converge uniformly to zero as well. Like Lemma 3.5, it is sufficient to

show that for each (ϕ, ζ) ∈ [−M,M]2×Υ, supr∈[0,1] T
−1/2∑[rT ]t=1 ∣d

†
t(ϕ, ζ) −Ed

†
t(ϕ, ζ ∣

pÐ→
0 and that the sequence {supr∈[0,1] T

−1/2∑[rT ]t=1 ∣d
†
t(ϕ, ζ) −Ed

†
t(ϕ, ζ)∣ , T = 1,2, . . .} is

stochastically equicontinuous. Lemma 3.9 proves pointwise convergence and Lemma

3.10 proves stochastic equicontinuity.

Lemma 3.9. Let M > 0 and N > 0. Then, under Assumption 3.1 and 3.4, for each

(ϕ, ζ) ∈ [−M,M]2 × [−N,N]q

sup
r∈[0,1]

T −1/2
[rT ]

∑
t=1
∣d†

t(ϕ, ζ) −Ed
†
t(ϕ, ζ)∣

pÐ→ 0.

Proof. By Lemma 1 in De Jong et al. (2007) and the mean value theorem we have

for some points θ∗1 and θ∗2 , constants c1 > 0, c2 > 0 and c3 > 0, and p as defined in

Assumption 3.1

E sup
r∈[0,1]

RRRRRRRRRRR
T −1/2

[rT ]

∑
t=1

d†
t(ϕ, ζ) −Ed

†
t(ϕ, ζ)

RRRRRRRRRRR

≤ c1T −1
T

∑
t=1

⎛
⎝
E∣I[yt(θ0 + ζT −1/2), ξ(θ0 + ζT −1/2, τ) + ϕT −1/2]

− I[yt(θ0), ξ(θ0, τ) + ϕT −1/2]∣
p⎞
⎠

2/p
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= c1T −1
T

∑
t=1

⎛
⎝
E
RRRRRRRRRRR
I[yt(θ0) +

∂yt
∂θ
∣
θ∗1

⋅ ζT −1/2,

ξ(θ0, τ) +
∂ξ

∂θ
∣
θ∗2

⋅ ζT −1/2 + ϕT −1/2]

− I[yt(θ0), ξ(θ0, τ) + ϕT −1/2]
RRRRRRRRRRR

p
⎞
⎠

2/p

≤ c2T −1
T

∑
t=1
(F ([M + c3N]T −1/2, [M + c3N]T −1/2)

− F (−[M + c3N]T −1/2,−[M + c3N]T −1/2))
2/p

.

The last expression converges to zero as T → ∞ using the same arguments as in

Lemma 2.

Lemma 3.10. The sequence {supr∈[0,1] T
−1/2∑[rT ]t=1 ∣d

†
t(ϕ, ζ) −Ed

†
t(ϕ, ζ)∣ , T = 1,2, . . .}

on the metric space ([−M,M]2 × [−N,N]q, ρ) with ρ((ϕ, ζ), (ϕ̈, ζ̈)) = ∣ϕ1 − ϕ̈1∣ + ∣ϕ2 −
ϕ̈2∣ +∑q

j=1 ∣ζj − ζ̈j ∣ is stochastically equicontinuous.

Proof. Using the same arguments as in Lemma 3.7, it is sufficient to establish stochas-

tic equicontinuity of T −1/2∑T
j=1 ∣Ed

†
j(ϕ, ζ) −Ed

†
j(ϕ̈, ζ̈)∣, where ϕ̈ ∈ Bρ(ϕ, δϕ) and ζ̈ ∈

Bρ(ζ, δζ) and with scalars δϕ > 0, δζ > 0 .

Define the q × 1 vectors

c∗j ∶= −
∂yj(θ)
∂θ

∣
θ0

+
∂ξj(θ, τj)

∂θ
∣
θ0

j = 1, . . . , T

and let F ′i and F ′′ik denote, respectively, the first and second derivative of F with

respect to argument i and k where i, k ∈ {1,2}. Using the mean value theorem and a
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first order Taylor expansion

T −1/2
T

∑
j=1
∣Ed†

j(ϕ, ζ) −Ed
†
j(ϕ̈, ζ̈)∣

= T −1/2
T

∑
j=1
∣F(T −1/2ζ ′c∗j + ϕ1T

−1/2, T −1/2ζ ′c∗j + ϕ2T
−1/2) − F (ϕ1T

−1/2, ϕ2T
−1/2)

− {F (T −1/2ζ̈ ′c∗j + ϕ̈1T
−1/2, T −1/2ζ̈ ′c∗j + ϕ̈2T

−1/2) − F (ϕ̈1T
−1/2, ϕ̈2T

−1/2)}∣

= T −1/2
T

∑
j=1
∣T −1/2ζ ′c∗j [F ′1(ϕ1T

−1/2, ϕ2T
−1/2) + F ′2(ϕ1T

−1/2, ϕ2T
−1/2)] +O(T −1)

− {T −1/2ζ̈ ′c∗j [F ′1(ϕ̈1T
−1/2, ϕ̈2T

−1/2) + F ′2(ϕ̈1T
−1/2, ϕ̈2T

−1/2)] +O(T −1)}∣

≤ sup
j=1,...,T

∣ζ ′c∗j ∣ ⋅ ∣F ′1(ϕ1T
−1/2, ϕ2T

−1/2) + F ′2(ϕ1T
−1/2, ϕ2T

−1/2)

− F ′1(ϕ̈1T
−1/2, ϕ̈2T

−1/2) − F ′2(ϕ̈1T
−1/2, ϕ̈2T

−1/2)∣

+ sup
j=1,...,T

∣(ζ ′ − ζ̈ ′) ⋅ c∗j ∣ ⋅ ∣F ′1(ϕ̈1T
−1/2, ϕ̈2T

−1/2) + F ′2(ϕ̈1T
−1/2, ϕ̈2T

−1/2)∣ +O(T −1/2)

≤ sup
j=1,...,T

∣ζ ′c∗j ∣ ⋅ {∣F ′′11(b1, b2) + F ′′21(b3, b4)∣ ⋅ ∣ϕ̈1T
−1/2 − ϕ1T

−1/2∣

+ ∣F ′′12(b1, b2) + F ′′22(b3, b4)∣ ⋅ ∣ϕ̈2T
−1/2 − ϕ2T

−1/2∣}

+ sup
j=1,...,T

∣(ζ ′ − ζ̈ ′) ⋅ c∗j ∣ ⋅ ∣F ′1(ϕ̈1T
−1/2, ϕ̈2T

−1/2) + F ′2(ϕ̈1T
−1/2, ϕ̈2T

−1/2)∣ +O(T −1/2),

where (b1, b2) and (b3, b4) are points between (ϕ1T −1/2, ϕ2T −1/2) and (ϕ̈1T −1/2, ϕ̈2T −1/2).
Under Assumption 3.4, F ′i , F

′′
ik and c

∗
j are bounded, so that for some constants c1 and

c2

T −1/2
T

∑
j=1
∣Ed†

j(ϕ, ζ) −Ed
†
j(ϕ̈, ζ̈)∣ ≤ c1T

−1/2δϕ + c2δζ +O(T −1/2).

Selecting δϕ and δζ sufficiently small completes the proof.
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Proof of Theorem 3.2

Using ϕ∗ = T 1/2(ξ̂(τ) − ξ(τ)) and ζ∗ = T 1/2(θ̂T − θ0), write

1√
T

[rT ]

∑
t=1

BIQ(yt(θ̂T ), ξ̂(θ̂, τ))

= 1

T 1/2

[rT ]

∑
t=1

BIQ(yt(θ0), ξ(θ0, τ)) −
1

T 1/2

[rT ]

∑
t=1

d∗t (ϕ∗, ζ∗) −E[d∗t (ϕ∗, ζ∗)]

+ [rT ]
T

1

T 1/2

T

∑
t=1
d∗t (ϕ∗, ζ∗) −E[d∗t (ϕ∗, ζ∗)].

Following Davidson (1994, Theorem 21.6), the second and third term converge to

zero if (a) θ̂T
p→ θ0 and (b) it converge uniformly. We have consistency by assumption

and by selecting M and N sufficiently large we have, using the same arguments as

Theorem 3.1, uniform convergence by Lemma 3.8.

It remains to show that σ̂2(θ̂) is asymptotically equivalent to σ2. Write

σ̂2(θ̂T ) − σ2 = (σ̂2(θ̂T ) − σ̂2) + (σ̂2 − σ2) .

The last part converges to zero by Theorem 3.1. It is sufficient to show that

∣σ̂2(θ) − σ̂2∣ pÐ→ 0.

Write

BIQ(yt(θ̂T ), ξ̂(θ̂T , τ)) = BIQ(yt(θ0), ξ(θ0, τ)) − [d∗t (ϕ∗, ζ∗) −E(d∗t (ϕ∗, ζ∗))]

+ 1

T

T

∑
k=1
[d∗k(ϕ∗, ζ∗) −E(d∗k(ϕ∗, ζ∗))]

=∶ BIQ(yt(θ0), ξ(θ0, τ)) − at(θ̂T ) + bT (θ̂T ). (3.15)
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Using the definition of the HAC estimator (3.5) and equations (3.14) and (3.15)

∣σ̂2(θ̂T ) − σ̂2∣ (3.16)

= ∣T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT ){(BIQ(yt(θ0), ξ(θ0, τ)) − at(θ̂T ) + bT (θ̂T ))

× (BIQ(ys(θ0), ξ(θ0, τ)) − as(θ̂T ) + bT (θ̂T ))

− (BIQ(yt(θ0), ξ(θ0, τ)) − at + bT )(BIQ(ys(θ0), ξ(θ0, τ)) − as + bT )}∣.

We show that the difference of the cross-products converge to zero. Write

∣T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT ){at(θ̂T )as(θ̂T ) − atas}∣

= ∣T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT ) (3.17)

× {1
2
(at(θ̂T ) + at)(as(θ̂T ) − as) +

1

2
(at(θ̂T ) − at)(as(θ̂T ) + as)}∣.

For constants c1 > 0 and c2 > 0, we have

∣T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT )

1

2
(at(θ̂T ) − at)(as(θ̂T ) + as)∣

≤ c1∣T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT (at(θ̂T ) − at)∣

≤ c2∣T −1/2
T

∑
t=1
(at(θ̂T ) − at) × T −3/2

T

∑
j=1
k(j/γT )∣

= Op(γ/
√
T ),

because the first term is op(1) by Lemma 3.8. Using the same idea for the first term

in (3.17) gives the required result.
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In addition,

∣T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT ){b2T (θ̂T ) − b2T}∣

= ∣T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT ){(bT (θ̂T ) + bT )(bT (θ̂T ) − bT )}∣

≤ c1∣bT (θ̂T ) − bT ∣ ⋅ T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT )

≤ c2T −1/2∣bT (θ̂T ) − bT ∣ ⋅ T −1/2
T

∑
j=−T

k(j/γT ),

where T −1/2∣bT (θ̂T ) − bT ∣ = op(1) by Lemma 3.8.

The other cross products in (3.16) follow a similar argument.

Proof of Theorem 3.3

Define the bivariate τ -quantics corresponding to the alternative hypothesis (3.6) as

BIQ1(yt, ξ(τ)) ∶= Q1(yt, ξ(τ)) −
1

T

T

∑
j=1
Q1(yj, ξ(τ)).

Then

BIQ(yt, ξ(τ)) = BIQ1(yt, ξ(τ)) +∆C ⋅ [g(t, T ) −
1

T

T

∑
j=1
g(j, T )], (3.18)

where ∆C ∶= C(τ1, τ2) −C∗(τ1, τ2). In addition,

1/(
√
T )
[rT ]

∑
t=1

BIQ(yt, ξ(τ))

= 1/(
√
T )
[rT ]

∑
t=1

BIQ1(yt, ξ(τ)) +∆C ⋅ ω
[z∗T ]√
T
([rT ]
T
− 1) . (3.19)

Provided that T −1E (∑T
t=1Q

1(yt, ξ(τ)))
2 → σ2

1 for σ2
1 ∈ (0,∞), we have under the

alternative hypothesis that the first term on the right hand side is Op(1) and the last

term Op(
√
T ) for r ≠ 1.
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Note that we used the population quantiles ξ(τ) instead of the sample quantiles

ξ̂(τ). Therefore, it remains to show that under the alternative hypothesis

sup
r∈[0,1]

RRRRRRRRRRR

1√
Tσ2

[rT ]

∑
t=1

BIQ(yt, ξ̂(τ)) −
1√
Tσ2

[rT ]

∑
t=1

BIQ(yt, ξ(τ))
RRRRRRRRRRR

p→ 0. (3.20)

Recall that we showed this, under the null hypothesis, in Theorem 3.1.

So again we rewrite 1/(
√
T )∑[rT ]t=1 BIQ(yt, ξ̂(τ)) like (3.12). Note, however, that

under the alternative the joint distribution F (⋅, ⋅) depends on time t. The application

of Lemma 3.5, 3.6 and 3.7 is not allowed since the proof of the latter two makes use

of the fact that F (⋅, ⋅) is constant over time. We can, however, adjust the proof by

replacing F (⋅, ⋅) by Ft(⋅, ⋅) and adding supt to equations (3.10) and (3.11).

We now show that σ̂2 is Op(
√
T ) under the alternative. From (3.5) and (3.18)

σ̂2 = T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT ) {BIQ1(yt, ξ̂(τ)) + g̃t}{BIQ1(ys, ξ̂(τ)) + g̃s} ,

where g̃t ∶=∆C ⋅ [g(t, T ) − 1
T ∑

T
j=1 g(j, T )]. Then

∣σ̂2 − σ2
1 ∣ = ∣T −1

T

∑
t=1

T

∑
s=1
k((t − s)/γT ){BIQ1(yt, ξ̂(τ))BIQ1(ys, ξ̂(τ)) (3.21)

− BIQ1(yt, ξ̂(τ))g̃t −BIQ1(ys, ξ̂(τ))g̃s + g̃tg̃s −Q1(yt, ξ(τ))Q1(ys, ξ(τ))∣}.

Note that

∣T −1
T

∑
t=1

T

∑
s=1
k((t − s)/γT )g̃tg̃s∣ ≤ c1∣T −1

T

∑
t=1

T

∑
j=−T

k(j/γT )∣

= c1∣
√
T
γT√
T

T

∑
j=−T

k(j/γT )∣

=
√
TOp(γT /

√
T )

is Op(
√
T ) since γT /

√
T → 0 as T →∞ under assumption 2. The other cross products

require similar arguments and thus σ̂2 is Op(
√
T ).

Combining the previous results we have that the tests are Op(
√
T ). In other words,
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the square, maximum and range statistics defined in section 3.2 become infinity large

as T → ∞, and thus the probability that the test statistic exceeds the critical value

goes to 1 as T →∞.

Proof of Theorem 3.4

The asymptotic distribution follows from (3.18) and the FCLT. Setting g(t/T ) =
T −1/2h(t/T ) in (3.21) gives ∣σ̂2−σ2

1 ∣ = op(1) using arguments as in the proof of Theorem

3.



Chapter 4

Optimal Bandwidth Selection in

Robust Copula Constancy Tests

4.1 Introduction

In this chapter we consider a new copula constancy tests that performs better in

finite samples compared to the recently proposed copula constancy test of Busetti

and Harvey (2011). The difference between our test and the existing test concerns

the estimation of the long-run variance. The conventional approach is to replace the

long run variance by a heteroskedasticity and autocorrelation consistent (HAC) vari-

ance estimate and to construct such an estimate using a kernel-based approach (see

Den Haan, and Levin (1997) for an overview). The kernel depends on a bandwidth

parameter, γT , which should grow slower than the sample size, T , to obtain consis-

tent estimates. Kiefer and Vogelsang (2002, 2005) construct inconsistent estimates

by setting bandwidth equal or proportional to the sample size, i.e. γT = bT with

b ∈ (0,1]. The idea is that the additional variability, due to the inconsistency of the

estimate, might improve the size of the test (see also Jansson (2004)). Phillips, Sun

and Jin (2006, 2007) introduce an alternative class of inconsistent estimates that are

based on exponentiated kernel functions with bandwidth equal to sample size.

The copula constancy test follows from ideas established by De Jong et al. (2007)

63
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for the indicator KPSS test. Setting the bandwidth equal to the sample size is some-

what problematic in the stationarity test proposed by Kwiatkowski et al. (1992), since

their test becomes inconsistent for a fixed b (see Kiefer and Vogelsang (2002), Müller

(2005)). Amsler et al. (2009) show, however, that the resulting asymptotic theory

provides a better approximation to the finite sample distribution of the statistic.

The remainder of this chapter is structured as follows. First, we introduce the

copula constancy test based on the contracted kernel and give the nonstandard asymp-

totic distribution. Subsequently, we derive the optimal bandwidth rule. Finally, we

examine the performance of the test and bandwidth rule using simulations and we

illustrate them using an empirical application of MSCI stock returns.

4.2 The copula constancy test

Let yt = {yit}2i=1 be a bivariate time series, t = 1, . . . , T and let ξ(τ) = (ξ1(τ1), ξ2(τ2))
denote the vector of marginal τi-quantiles, τi ∈ (0,1), i = 1,2. The copula C(t)(τ1, τ2)
gives the probability that y1t takes values below its τ1-quantile and y2t takes values

below its τ2-quantile

C(t)(τ1, τ2) = P (y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2)).

We examine the constancy of the copula in the point (τ1, τ2) (see section 3). The

hypothesis pair is given by

H0 ∶ C(t)(τ1, τ2) = C(τ1, τ2)

H1 ∶ C(t)(τ1, τ2) = [1 − h(t/T )T −1/2]C(τ1, τ2) + h(t/T )T −1/2C∗(τ1, τ2), (4.1)

where C(τ1, τ2) and C∗(τ1, τ2) are two different time-invariant copulas and

h(t/T ) =
⎧⎪⎪⎨⎪⎪⎩

0 if t/T ≤ z∗

δ if t/T > z∗,

with jump magnitude δ ∈ (0,1] and time fraction z∗ ∈ (0,1).
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Busetti and Harvey (2011) and Krämer and Van Kampen (2011) propose copula

constancy tests based on the partial sums of an indicator series that takes the value

one if the event {y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2)} occurs and zero otherwise.

Let I(⋅) denote the indicator function and define

It ∶= I(y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2)),

Qt ∶= Q(yt, ξ(τ)) ∶= C(τ1, τ2) − It,

BIQt ∶= BIQ(yt, ξ(τ)) ∶= Qt − T −1
T

∑
i=1
Qt.

Then BIQt = CT (τ1, τ2) − It where CT (τ1, τ2) = T −1∑T
t=1 It is the empirical copula.

We define B̂IQt as BIQt above but using the sample quantiles ξ̂(τ) instead of the

population quantiles ξ(τ). In addition, write

ST (r) ∶=
1√
T

[Tr]

∑
t=1

Qt, r ∈ [0,1].

We make the following assumption:

Assumption 1.

ST (r)
dÐ→ σB(r) r ∈ [0,1],

where σ2 = limT→∞E (T −1/2∑T
t=1Qt)

2
denotes the long run variance and B denotes

Brownian Motion.

Under Assumption 1

1/(
√
T )
[Tr]

∑
t=1

BIQt
dÐ→ σV (r) r ∈ [0,1], (4.2)

where V (r) ∶= B(r) − rB(1) denotes a Brownian Bridge. Van Kampen and Wied

(2010) provide lower level conditions under which assumption 1 is satisfied (see also

section 3). Furthermore, they show that (4.2) also holds for the partial sums of B̂IQt.

The copula constancy tests are functionals of the partial sum process. Following
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Busetti and Harvey (2011), we consider the test statistic

ηT (σ2) ∶= 1

T 2σ̂2

T

∑
t=1
(

t

∑
j=1
B̂IQtj)

2

, (4.3)

where σ̂2 is a consistent estimate of the long run variance σ2. Krämer and Van Kam-

pen (2011) proposed complementary tests based on the maximum and the range of

the partial sum process in (4.2).

Under H0 we have

ηT (σ̂2) dÐ→ ∫
1

0
V (r)2dr.

Under the local alternative (4.1) we have

ηT (σ̂2) dÐ→ ∫
1

0
[V (r) + 1

σ1
{C(τ1, τ2) −C∗(τ1, τ2)}

× (∫
r

0
h(s)ds − r∫

1

0
h(s)ds)]

2

dr,

where σ2
1 = limT→∞E (T −1/2∑T

t=1[C(t)(τ1, τ2) − It])
2
.

The present chapter is concerned with the implications that different estimates of

σ2 have on the properties of the test.

4.3 Long run variance estimation

4.3.1 conventional HAC estimates

The HAC estimate of σ2 is given by

σ̃2 = T −1
T

∑
i=1

T

∑
j=1
k((i − j)/γT ) ⋅Qi ⋅Qj, (4.4)

where k(⋅) is a kernel function and γT is the bandwidth parameter. Some examples

for k(⋅) are the Bartlett, Parzen and Quadratic Spectral (QS) kernels, which are given
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by

kBT (x) =
⎧⎪⎪⎨⎪⎪⎩

1 − ∣x∣ for ∣x∣ ≤ 1
0 otherwise

kPR(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − 6x2 + 6∣x∣3 for 0 ≤ ∣x∣ ≤ 1/2
2(1 − ∣x∣)3 for 1/2 ≤ ∣x∣ ≤ 1
0 otherwise

kQS(x) =
25

12π2x2
(sin(6πx/5)

6πx/5
− cos(6πx/5)) ,

see e.g. Priestley (1981) for a complete discussion of these kernels.

Andrews (1991) and De Jong and Davidson (2000) provide conditions under which

(4.4) is a consistent estimate for σ2. In particular, they require that γT /T → 0 as

γT → ∞ and T → ∞. Andrews (1991) showed that the QS kernel is preferred to

the other kernels mentioned above, in the sense that it minimizes the asymptotic

mean square error (MSE) of the estimate of the long run variance. In the context

of hypothesis testing, the use of the mean square error as optimality criterion is

somewhat questionable. In particular, it might be possible that deviations in σ̂2 from

σ2 are partially offset by the deviations between the finite sample distribution and

the limit distribution.

Note that the estimate (4.4) is not feasible since Qt relies on the true unobserved

copula C(τ1, τ2) and on the population quantile ξ(τ). Therefore, we replace C(τ1, τ2)
by the empirical copula CT (τ1, τ2) and ξ(τ) by its sample estimate ξ̂(τ). The feasible
HAC estimator is given by

σ̂2 = T −1
T

∑
i=1

T

∑
j=1
k((i − j)/γT ) ⋅ B̂IQi ⋅ B̂IQj. (4.5)

Van Kampen and Wied (2010) show consistency of (4.5) for γT = o(T ).
In line with the KPSS stationarity test, the copula constancy test is subject to

size distortions if yit is highly autocorrelated. Kiefer and Vogelsang (2002, 2005)

and Phillips, Sun and Jin (2006, 2007) argued that the use of inconsistent estimates
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results in tests with better size performance.

4.3.2 Fixed-b asymptotics

Kiefer and Vogelsang (2002, 2005) proposed a HAC estimator based on kernels that

have bandwidth equal or proportional to sample size, i.e. γT = bT , b ∈ (0,1]. Equiv-

alently, we could define the kernel as kb ∶= k(x/b) with bandwidth equal to sample

size. The kernel kb is referred to as a contracted kernel (Phillips, Sun and Jin (2007)).

Kiefer and Vogelsang (2005) show that HAC estimates based on kb are inconsistent

for fixed b and regression t-tests based on these estimates have a nonstandard limiting

distribution.

Let σ̂2
kb

be the estimate (4.5) based on the kernel kb. The limit distribution under

the null hypothesis follows immediately from arguments as in Theorem 1 of Amsler

et al. (2009):

ηT (σ̂2
kb
) dÐ→ ∫

1

0
V (r)2drΞ−1b ,

where Ξb is defined as follows:

(i) if k(x) is twice continuously differentiable everywhere

Ξb ∶= −
1

b2 ∫
1

0
∫

1

0
k′′ (r − s

b
)V (r)V (s)drds;

(ii) if k(x) = 0 for ∣x∣ ≥ 1, k(x) is twice continuously differentiable everywhere except

possibly at ∣x∣ = 1 and k′(1) = limh→0
k(1)−k(1−h)

h

Ξb ∶= −
1

b2∬∣r−s∣≤b
k′′ (r − s

b
)V (r)V (s)drds + 2

b
k′(1)∫

1−b

0
V (r)V (r + b)dr;

(iii) if k(x) is equal to the Bartlett kernel

Ξb ∶=
2

b
[∫

1

0
V (r)2dr − ∫

1−b

0
V (r)V (r + b)dr] .

An example of a kernel that satisfies (i) is the QS kernel. The Parzen kernel

satisfies (ii). Note that the distribution is nonstandard and depends on the choice
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of the kernel and the value of b. Amsler et al. (2009) provide critical values for the

Bartlett kernel and the QS kernel.

From Van Kampen and Wied (2010) we have that the test is inconsistent against

the local alternative (4.1). Following Amsler et al. (2009) we only use fixed-b critical

values to improve the finite sample properties of the test and we select b using con-

ventional bandwidth rules. Given a finite sample of size T , empirical researchers have

to select a fixed bandwidth value, γT , which can be related to b by b = γT /T . Amsler

et al. (2009) show for the KPSS stationarity test that using the fixed-b critical values

corresponding to such a b reduces size distortions. Using their line of reasoning a

similar result can the be obtained for the copula constancy test.

Given the bandwidth rules γT (m) = int[m(T /100)1/4], m = 0,4,12,25 and 50,

they choose m such that the size distortion of the test using conventional as well as

fixed-b critical values falls below some specific threshold. It is, however, completely

unclear if such a rule is optimal. Therefore, we derive an optimal bandwidth rule in

section 4.4.

Finally, we would like to mention that an alternative copula constancy test can be

obtained using the exponentiated kernels considered in Phillips, Sun and Jin (2006,

2007). These kernels are defined as

kρ(x) ∶= kρ(x), (4.6)

with bandwidth equal to sample size

Phillips, Sun and Jin (2006, 2007) show that taking ρ fixed results in an incon-

sistent HAC estimate while taking ρ → ∞ as T → ∞ results in a consistent HAC

estimate. Let σ̂2
ρ denote the HAC estimate of σ2. Then for fixed ρ we have

σ̂2
ρ

dÐ→ σ2 (∫
1

0
∫

1

0
kρ(r − s)dV (r)dV (s)) . (4.7)

From (4.2) and (4.7) we obtain

ηT (σ̂2
kρ
) dÐ→ ∫

1

0
V (r)2dr (∫

1

0
∫

1

0
kρ(u − s)dV (u)dV (s))

−1
. (4.8)
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Here, it is not immediately obvious how to select ρ using the approach in Amsler,

Schmidt and Vogelsang (2009). For comparison purposes it might be useful to relate

the values of ρ and b to each other using a first order expansion of the kernel around

the origin. We leave the application of exponentiated kernels as a topic for further

research.

4.4 Optimal bandwidth selection

Sun, Phillips and Jin (2008) suggest to select b by minimizing a weighted average

of the type I and type II error. An optimal rule for ρ using this approach has been

derived in Sun, Phillips and Jin (2010). The idea is to make suitable expansions of

the limit and finite sample distributions and express the size distortion and power of

the test using these expansions. Subsequently, they minimize a weighted average of

the type I and type II error. In this section we derive a similar rule for the copula

constancy test.

We assume that the kernel satisfies Assumption 2 in Sun, Phillips and Jin (2008).

This assumption ensures that the kernel is positive semidefinite and sufficiently smooth.

The Bartlett, Parzen and QS kernels considered before satisfy this assumption.

4.4.1 Expansion of the limit distribution

Lemma 1 shows that the numerator of the limit distribution can be written as an

infinite weighted sum of (noncentral) χ2
1 distributed variables.

Lemma 1.

ηT (σ̂2
b)

dÐ→ (
∞
∑
n=1
[q1,n(ζn + q4,n)2] + q∞)Ξ−1b , (4.9)

where ζn are i.i.d. N(0,1) distributed variables and

(i) under H0 we have q1,n = (nπ)−2, q2,n = 0 and q∞ = 0.

(ii) under H1 we have q1,n = (πn)−2, q4,n = −21/2a sin(nπz∗)/(nπz∗) and q∞ ∶=
limp→∞ qp ∶= limp→∞ [a2(13z∗

2 − 2
3z
∗ + 1

3) −∑
p
n=1 q

2
4,n], with constant a = σ−11 δz∗×

[C(τ1, τ2) −C∗(τ1, τ2)].
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We approximate the infinite sums in (4.9) by the sum of the first p terms. Durbin

and Knott (1972) considered a similar approximation.

Let Fδ(z) ∶= P ([∑p
n=1{q1,n(ζn + q4,n)2} + qp]Ξ−1b ≤ z) be the limit distribution and

let Gδ(⋅) denote the cdf of ∑p
n=1[q1,n(ζn+q4,n)2], which is a weighted sum of noncentral

χ2
1(q24,n) distributed random variables with noncentrality parameter q24,n, n = 1, . . . , p.

Theorem 2 provides an asymptotic expansion of Fδ(z) around Gδ(z).

Theorem 2.

Fδ(z) = Gδ(z − qp) + [c2G′′δ (z − qp)z2 − c1G′δ(z − qp)z]b

− [G′δ(z − qp)zc3 −
1

2
G′′δ (z − qp)z2(2c4 − c21) +G′′′δ (z − qp)z3c1c2]b2

+ o(b2), (4.10)

where

c1 = ∫
∞

−∞
k(x)dx c2 = ∫

∞

−∞
k2(x)dx

c3 = ∫
∞

−∞
k(x)∣x∣dx c4 = −∫

∞

−∞
k2(x)∣x∣dx.

Note that the expansion only depends on the copula through the weights and

noncentrality parameters of the noncentral χ2
1 distributions. We conjecture that the

expansions derived in this section are, more generally, applicable to tests (with con-

sistent variance estimates) which are distributed as a weighted sum of noncentral

χ2
1 distributed variables. For example, the expansion of the limit distribution of the

regression F-test in Sun, Phillips and Jin (2008) can be obtained as a special case.

The expansion (4.10) allows us to obtain an analytical expression for the critical

values of the nonstandard limit distribution. Following Sun, Phillips and Jin (2008),

we define the second-order corrected critical value as the critical value that is correct

to O(b) and the third-order corrected critical value as the critical value that is correct

to O(b2). Let D(⋅) = G0(⋅). For given level α, define zα ∈ R+ such that D(zα) = 1 − α
and define zα,b ∈ R+ such that F0(zα,b) = 1 − α.
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Corollary 3. The second-order corrected critical values are given by

zα,b = zα + k1b + o(b)

and the third-order corrected critical values are given by

zα,b = zα + k1b + k2b2 + o(b2),

where

k1 = −
1

D′(zα)
[D′′(zα)z2αc2 −D′(zα)zαc1] (4.11)

and

k2 = −
1

D′(zα)
[ −D′(zα)zαc3 +

1

2
D′′(zα)z2α(2c4 − c21) −D′′′(zα)z3αc1c2

+[c2D′′′(zα)z2α + 2c2D′′(zα)zα − c1D′′(zα)zα − c1D′(zα)]k1

+1
2
D′′(zα)k21]. (4.12)

To obtain feasible estimates for the coefficients (4.11) and (4.12), we need closed-

form expressions for the distribution D(⋅) and its derivatives. In general, these are not

available. We propose two solutions. First, numerical values for the distribution can

be obtained using the approach proposed by Imhof (1961). Subsequently, numerical

differentiation gives the values for D′(⋅) and D′′(⋅). Second, we can approximate the

distribution using more conventional distributions. An overview of approximating the

distribution can be found in Ullah (2004, chapter 3). Here, we consider the following

approximation proposed by Zhang (2005):

Gδ(z) ≈ P (χ2
dχ
≤ (z − bχ)/aχ) =∶ G̃δ(f(z)), (4.13)

where χ2
dχ

is gamma distributed with parameters αg ∶= dχ/2 and 1/2, f(z) = (z−aχ)/bχ
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and

aχ =
∑p

n=1 q
3
1,n(1 + 3q24,n)

∑p
n=1 q

2
1,n(1 + 2q24,n)

, (4.14)

bχ =
p

∑
n=1

q1,n(1 + q24,n) −
{∑p

n=1 q
2
1,n(1 + 2q24,n)}2

∑p
n=1 q

3
1,n(1 + 3q24,n)

(4.15)

and

dχ =
{∑p

n=1 q
2
1,n(1 + 2q22,n)}3

{∑p
n=1 q

3
1,n(1 + 3q22,n)}2

. (4.16)

The first approach requires the numerical evaluation of some complex integral.

We regard this as infeasible for standard empirical work. Therefore, we only use the

numerical approach to validate the approximation based on the gamma distribution.

For corollary 4 below, we define

w1 ∶=
1

aχ
[
αg − 1
f(zα)

− 1

2
] (4.17)

and

w2 ∶=
1

a2χ
[
(αg − 1)(αg − 2)

f(zα)2
−
αg − 1
f(zα)

+ 1

4
] . (4.18)

Corollary 4. The coefficients (4.11) and (4.12) based on the gamma approximation

(4.13) are given by

k1 = c1zα −w1c2z
2
α

and

k2 = (c3 + c21)zα + (c21 − c4 − 3c1c2)w1z
2
α

+ 2c22w
2
1z

3
α + [w1w2 −

1

2
w3

1] c22z4α.

Table 4.1 gives the values of k1 and k2 for several kernels. The coefficients are

relatively stable for different values of p.
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Table 4.1: Coefficients of corrected critical values using the approximation of Zhang
(2005)

Bartlett Parzen QS
α p k1 k2 k1 k2 k1 k2

50 0.874 1.395 0.686 0.907 1.224 3.010
0.1 100 0.874 1.394 0.686 0.906 1.224 3.009

1000 0.874 1.394 0.687 0.906 1.225 3.008
50 1.339 2.080 1.056 1.356 1.894 4.507

0.05 100 1.340 2.078 1.057 1.355 1.894 4.505
1000 1.340 2.077 1.057 1.355 1.895 4.502

We can obtain the corrected critical values derived in Sun, Phillips and Jin (2008)1

from Corollary 4. In that case we have p = 1 and c1,n = 1. Hence, the coefficients

of the gamma approximation are aχ = 1, bχ = 0 and dχ = 1. In other words, the

approximation is exact. Furthermore, from equations (4.17) and (4.18) we have that

w1 = −1/2z−1α − 1/2 and w2 = 3/4z−2α + 1/2z−1α + 1/4. Substituting in Corollary 4 gives

k1 = (c1 +
1

2
c2) zα +

1

2
c2z

2
α,

k2 = (
1

2
c21 +

3

2
c1c2 +

3

16
c22 + c3 +

1

2
c4)

+ (−1
2
c21 +

3

2
c1c2 +

9

16
c22 +

1

2
c4) z2α +

5

16
c22z

3
α −

1

16
c22z

4
α.

Finally, to facilitate the derivation of the optimal bandwidth below, we write the

expansion of Theorem 2 also in terms of the gamma distribution.

Fδ(z) = A1,δ +A2,δb +A3,δb
2 + o(b2), (4.19)

1Note that z2α in Sun, Phillips and Jin (2008) corresponds to zα in this chapter. Furthermore,
we found a small error in their Theorem 1 and Corollary 2. To correct their results it is sufficient to
replace c4 by 2c4 and to replace c1 by c21 in the coefficient of z4α. This has been confirmed by one of
the authors.
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where

A1,δ = G̃δ(f(z − qp)),

A2,δ = c2G̃
′′
δ (f(z − qp))(f ′(z − qp))2z2 − c1G̃′δ(f(z − qp))f ′(z − qp)z

and

A3,δ = −[G̃′δ(f(z − qp))f ′(z − qp)zc3 −
1

2
G̃′′δ (f(z − qp))(f ′(z − qp))2z2(2c4 − c21)

+ G̃′′′δ (f(z − qp))[f ′(z − qp)]3z3c1c2].

Here we used that f ′′(⋅) and f ′′′(⋅) are zero.

4.4.2 Expansion of the finite sample distribution

In this section we develop an expansion of the finite sample distribution FT,δ(z) ∶=
P (ηT (σ̂2

b) ≤ z). Define
et = C(t)(τ1, τ2) − It (4.20)

and

dt =
t

∑
j=1
[CT (τ1, τ2) −C(j)(τ1, τ2)]. (4.21)

Then after some algebraic calculations which are given in the proof of Lemma 5 below:

T

∑
t=1
(

t

∑
j=1
(CT − Ij))

2

= e′V e + 2e′d† + cd, (4.22)

with e = (e1, . . . , eT )′, V = {T + 1 −max(s, t)}s,t=1,...,T , d† = (∑T
j=1 dj,∑T

j=2 dj, . . . , dT )
′

and cd = ∑T
t=1 d

2
t .

We make the following assumption (see Sun, Phillips and Jin (2008)):

Assumption 2. et is a mean zero covariance-stationary ARMA process with NID

innovations ηt and ∑∞h=−∞ h2∣Γh∣ <∞, where Γh = Eetet−h.

The ARMA assumption allows us to rewrite the long run variance of et in terms
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of the long run variance of ηt: σ2
e = g(θ)σ2

η were g(θ) is a function of the ARMA

parameter vector θ. For example, in case of an AR(p) specification we have g(θ) ∶=
1/(1 −∑p

i=1 θi)2, see e.g. Sul, Phillips and Choi (2005).

Let σ2
e,T = Var(T −1/2∑

T
t=1 et) and let σ2

η,T denotes variance of the error terms. Note

that σ2
e,T and g(θ)σ2

η,T are asymptotically the same but might be different in finite

samples. For example, in the case of an AR(1) model we have for n = 100, and

θ = 0.0,0.3 and 0.7, that the ratio σ2
e,T /(g(θ)σ2

η,T ) is respectively 1.0, 0.99 and 0.97.

Define Γ
1/2
0 = QD1/2Q′ where D denotes the diagonal matrix of eigenvalues of Γ0

and Q is the matrix of corresponding eigenvectors. Then

e′V e = e′Γ
−1/2
0 Γ

1/2
0 V Γ

1/2
0 Γ

−1/2
0 e

= e′Γ
−1/2
0 PP ′Γ

1/2
0 V Γ

1/2
0 PP ′Γ

−1/2
0 e

= ẽ′Λẽ, (4.23)

where ẽ = P ′Γ−1/20 e, P an orthogonal matrix of eigenvectors of Γ
1/2
0 V Γ

1/2
0 such that

P ′Γ
1/2
0 V Γ

1/2
0 P = Λ and Λ = diag(λ1, . . . , λT ) with λ1, . . . , λT the corresponding eigen-

values (see Ullah (2004, p.53)).

The following lemma follows from (4.22) and (4.23):

Lemma 5. The finite sample distribution can be written as

FT,δ(z) = P (
T

∑
t=1
λ̃t(ẽt + d̃t/λ̃t)2 ≤

T

∑
t=1
d̃2t /λ̃t − cd) , (4.24)

where λ̃t = λt − TzςbT g̃(θ), with ςbT = σ̂2
b /σ2

e,T , d̃ = (d̃1, . . . , d̃T )′ = P ′Γ
1/2
0 d† and g̃(θ) =

g(θ) ⋅ σ2
e,T /(g(θ)σ2

η,T ) = σ2
e,T /σ2

η,T .

As in the previous section, we will approximate the distribution of the weighted

sum of χ2
1 distributed variables using the approach of Zhang (2005). Let

H̃T,δ(z, ςbT ) ∶= G̃T,δ(fT (z, ςbT );αg,T (ςbT )) ∶= P (χ2
dT (ςbT ) ≤ fT (ςbT ))

be the gamma approximation of the true distribution with parameters αg,T (ςbT ) =
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dT (ςbT )/2 and 1/2, and let

fT (z, ςbT ) = (
T

∑
t=1
d̃2t /λ̃t(ςbT ) − cd − bT (ςbT )) /aT (ςbT ).

Here, aT (ςbT ), bT (ςbT ) and dT (ςbT ) are defined as in (4.14), (4.15) and (4.16) but with

weights and noncentrality parameter as in (4.24).

For Theorem 6 below, let q be the Parzen characteristic exponent defined by

q =max{q0 ∶ q0 ∈ Z+, gq0 = lim
x→0

1 − k(x)
∣x∣q0

<∞}

and

dqT = σ−2e,T

∞
∑

h=−∞
∣h∣qE(etet−h).

For the Bartlett, Parzen and QS kernel we have (q, gq) = (1,1), (2,6) and (2,1.421),

respectively (see Andrews (1991)). The value of dqT can be obtained using a plug-

in estimate. For example, if et follows an AR(1) process et = ϕet−1 + ηt with ηt ∼
NID(0, σ2

η), then (as T →∞) dqT = 2ϕ/(1−ϕ2) if q = 1 and dqT = 2ϕ/(1−ϕ)2 if q = 2.
If et follows an MA(1) process et = ηt + θηt−1 then dqT = 2θ/(1+ θ)2 for q = 1,2. In the

expressions for dqT we substitute the estimates for ϕ and θ.

Let H̃ ′T,δ and H̃ ′′T,δ be the first and second derivative of H̃T,δ(z, ςbT ) with respect

to ςbT . Theorem 6 gives the expansion of FT,δ(z) around H̃T,δ(⋅, ⋅).

Theorem 6.

FT,δ(z) = B1,δ +B2,δb − gqdqTB3,δ(bT )−q + o(b + (bT )−q) +O(T −1), (4.25)

where

B1,δ = H̃T,δ(z; 1),

B2,δ = c2H̃
′′
T,δ(z, µb) − c1H̃ ′T,δ(z,1),

B3,δ = H̃ ′T,δ(z; 1).
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Given the expansion of the limit distribution (4.19) and the expansion of the finite

sample distribution (4.25), we can derive the size distortion and the power of the test

against the local alternative (4.1).

Corollary 7.

(i) The size distortion of the test based on second order critical values is given by

1 − FT,0(zα,b) − α = −(B1,0 −A1,0) − (B2,0 −A2,0)b + gqdqTB3,0(bT )−q

+ o(b + (bT )−q) +O(T −1).

(ii) The power of the test based on second order critical values is given by

1 − FT,δ(zα,b) = 1 −B1,δ −B2,δb + gqdqTB3,δ(bT )−q + o(b + (bT )−q) +O(T −1).

4.4.3 Optimal bandwidth rule

We follow Sun, Phillips and Jin (2008, 2010) to find the optimal parameter b by

balancing the type I and type II error probabilities. The analytical expressions for

the type I and II errors follow from the size distortion and the power.

The type I error is given by

eIT = α − (B1,0 −A1,0) − (B2,0 −A2,0)b + gqdqTB3,0(bT )−q (4.26)

and the type II error is given by

eIIT = B1,δ +B2,δb − gqdqTB3,δ(bT )−q. (4.27)

We define the loss function

L(b; δ, T, zα) =
wT (δ)

1 +wT (δ)
eIT +

1

1 +wT (δ)
eIIT , (4.28)

where wT (δ) is a function that determines the relative weight on the type I and type

II error probabilities.
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We consider a single alternative δ and write wT = wT (δ). Assume that dqT > 0,
which is true if the series exhibit positive serial correlation. Minimizing the resulting

loss function with respect to b gives the optimal bandwidth rule

b = {
qgqdqT (wTB3,0 −B3,δ)
B2,δ −wT (B2,0 −A2,0)

}
1

q+1

T −q/(q+1). (4.29)

Note that the bandwidth rule goes to zero, as T → ∞, at the same rate as the

bandwidth rule developed in Sun, Phillips and Jin (2008). This is due to the fact that

we used the same order for the expansion of the limit and finite sample distributions

as in their paper. The major difference is that, in our case, the scaling factor depends

explicitly on the difference between the coefficients Ai and Bi of the expansion of the

limit and finite sample distribution.

Before we examine the finite sample properties of the resulting bandwidth rule,

we have to make a few remarks. First, the optimal bandwidth rule (4.29) does not

exist for each weight wT . In particular, we found that the term in curly brackets

might become negative. In the simulation study below we set the bandwidth equal

to zero if this happens.

Second, the second-order approximations of the finite-sample and limit distribu-

tion do not fully reflect the true distributions (see the discussion below). This results

in some counterintuitive behaviour for the type I and II error, and the weights. In

particular, for weights wT ≥ 10 we observe that higher weights result in smaller values

for b. Following, Sun, Phillips and Jin (2008) we will use weights wT ∈ [10,40] in our

empirical example. For these weights the decline in b turns out to be small.

Finally, in the next section we also show that the loss function (4.28) has the

disadvantage that it might be optimal to choose the conventional bandwidth γT suf-

ficiently large. In that case the power of the test is low. To correct for this behavior

we might consider the sum of squares of the errors as an alternative loss function

L′(b; δ, T, zα) =
wT (δ)

1 +wT (δ)
[eIT ]2 +

1

1 +wT (δ)
[eIIT ]2. (4.30)
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We also tried to minimize this loss function with respect to b. The first order con-

ditions are a third order polynomial for which we don’t have an explicit solution. In

the next section we will solely use this loss function to compare fixed-b asymptotic

with the conventional approach.

4.5 Finite sample properties

In this section we examine the size and the power of the copula constancy tests for

finite samples of size T = 100. We simulate observations from a Clayton copula and

subsequently transform the values using the inverse normal distribution function.

Let εit denote the resulting series. The observations are constructed as yit = ρiyit−1 +
εit. The HAC estimator is based on the Bartlett kernel. Following Amsler et al.

(2009), we consider bandwidth rules γT (m) = integer[m(T /100)1/4], m = 1,2, . . ..

The conventional bandwidth rules analysed by Amsler et al. (2009) are m = 0,4,12,25
and 50.

Figure 4.1 and 4.2 show the size and power of the test. In line with the results for

the KPSS test, the use of fixed-b critical values in combination with sufficiently high

bandwidth values results in a clear reduction of the size distortion. We do not observe

this behaviour for the standard critical values. However, selecting higher bandwidth

values reduces the power of the test.

Amsler et al. (2009) select a conventional bandwith rule m ∈ {0,4,12,25,50} such
that the size distortion of the test, using standard as well as fixed-b critical value,

falls below some threshold (say 0.1). Given the selected bandwidth rule, it is clear

from the lower panels in figure 4.1 and 4.2 that the power of the test under fixed-b

critical values is higher.

This approach of examining the test under fixed-b critical values versus conven-

tional critical values is somewhat questionable if there is serial correlation in the

data. From figure 4.1 it is clear that for fixed value m, the power as well as the

size distortion of the test are higher if we use fixed-b critical values and select the

bandwidth sufficiently small. Hence, to obtain the same level of size distortion we

have to select higher bandwidth values for the test based on fixed-b critical values
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Figure 4.1: Size and power of the copula constancy test using standard and
fixed-b critical values. The horizontal axis shows m for bandwith rule γT (m) =
integer[m(T /100)1/4] and the vertical axis shows the rejection frequency. DGP: Clay-
ton copula with Kendall’s tau 0.25 under H0 and 0.75 in second half of the sample
under H1. Bartlett kernel, #rep = 20000.

compared to the test based on standard critical values. Comparison based on single

values m ∈ {0,4,12,25,50} seems therefore unreasonable. Furthermore, it is not nec-

essary to restrict m to be in the subset {0,4,12,25,50} and, therefore, the question

arises if there exists a value of m which is optimal in some sense. Moreover, we can

ask if bandwidth rules of the form γT (m) = integer[m(T /100)1/4] are optimal at all.

The finite sample evidence presented above clearly emphasizes the need for the

optimal bandwidth rules described in section 4.4. To examine the performance of the

fixed-b critical values in combination with the optimal bandwidth rule we simulate

the average loss (4.28) and compare it to the loss based on standard critical values

and conventional bandwidth rules.

Table 4.2 shows the simulated loss. The loss using fixed-b critical values is gen-

erally higher than the loss using standard critical values. Furthermore, in case of

fixed-b critical values we only select values m > 0 if the weight assigned to the type

I error is sufficiently high. The new bandwidth rule performs reasonable compared
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Figure 4.2: Size and power of the copula constancy test using standard and
fixed-b critical values. The horizontal axis shows m for bandwith rule γT (m) =
integer[m(T /100)1/4] and the vertical axis shows the rejection frequency. DGP: Clay-
ton copula with Kendall’s tau 0.25 under H0 and 0.75 in second half of the sample
under H1. Bartlett kernel, #rep = 20000.

to the loss based on fixed-b critical values. It does, however, not always attain the

minimum value and it does not always outperform the conventional bandwidth rules.

We emphasize that in practice it might be unclear which value of m to choose and

selecting m too small results in higher loss values.

Table 4.2: Loss (4.28) based on 5000 replications and T = 100. Clayton copula;
Bartlett kernel; τ1 = τ2 = 0.25.
w ρ1,ρ2 γT (0) γT (4) γT (12) γT (25) b(0) b(4) b(12) b(25) b∗

0.0 0.114 0.109 0.105 0.093 0.114 0.112 0.116 0.120 0.109
10 0.3 0.148 0.120 0.109 0.093 0.148 0.123 0.122 0.124 0.122

0.7 0.342 0.163 0.117 0.095 0.342 0.169 0.135 0.132 0.136
0.0 0.066 0.058 0.049 0.029 0.066 0.062 0.066 0.067 0.057

40 0.3 0.105 0.067 0.052 0.028 0.105 0.071 0.069 0.068 0.069
0.7 0.327 0.115 0.059 0.030 0.327 0.122 0.080 0.075 0.080

The fact that for conventional bandwidth rules it becomes optimal to select high
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bandwidth values is somewhat questionable. To address this issue we consider the

weighted sum of squared errors as loss criterion. Table 4.3 shows the results. The

loss obtained using fixed-b critical values is now somewhat lower compared to the loss

base on conventional critical values.

Table 4.3: Loss (4.30) based on 5000 replications. Clayton copula; Bartlett kernel;
τ1 = τ2 = 0.25.

w ρ1, ρ2 γT (0) γT (4) γT (12) γT (25) b(0) b(4) b(12) b(25)
0.0 0.057 0.060 0.068 0.086 0.057 0.059 0.061 0.068

10 0.3 0.057 0.066 0.074 0.087 0.057 0.065 0.068 0.073
0.7 0.121 0.070 0.078 0.089 0.121 0.070 0.074 0.079
0.0 0.017 0.017 0.019 0.023 0.017 0.017 0.018 0.020

40 0.3 0.021 0.019 0.020 0.023 0.021 0.019 0.020 0.021
0.7 0.108 0.026 0.022 0.024 0.108 0.027 0.023 0.023

Based on the simulation evidence provided in Table 4.2 and 4.3 we conclude that

the use of fixed-b critical values is useful if we consider a loss criterion based on the

sum of squared errors. In case of a simple sum, the optimal bandwidth rule performs

reasonable compared to the standard fixed-b results. It does, however, not always

outperform the conventional bandwidth rules.

To examine the sensitivity of our results, we also performed the previous simula-

tion using a QS kernel instead of a Bartlett kernel. Table 4.4 provides the results.

The results are in line with the ones obtained using a Bartlett kernel; the optimal

bandwidth rule performs reasonable compared to the loss based on fixed-b critical

values but does not always outperform the loss based on conventional bandwidth

rules.

To examine the sensitivity of our results with respect to the copula, we replace the

Clayton copula by a Gaussian copula. In line with previous simulations we consider

jumps in Kendall’s tau from 0.25 to 0.75. Table 4.5 provides the results. The results

are similar to ones for the Clayton copula.
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Table 4.4: Loss (4.28) based on 5000 replications. Clayton copula; QS kernel; τ1 =
τ2 = 0.25.
w ρ1,ρ2 γT (0) γT (4) γT (12) γT (25) b(0) b(4) b(12) b(25) b∗

0.0 0.114 0.111 0.109 0.129 0.114 0.113 0.118 0.133 0.108
10 0.3 0.148 0.120 0.113 0.117 0.148 0.122 0.123 0.123 0.121

0.7 0.342 0.155 0.112 0.106 0.342 0.159 0.120 0.111 0.128
0.0 0.066 0.060 0.054 0.068 0.066 0.063 0.066 0.073 0.056

40 0.3 0.105 0.066 0.055 0.055 0.105 0.069 0.068 0.062 0.068
0.7 0.327 0.105 0.052 0.042 0.327 0.109 0.062 0.047 0.070

Table 4.5: Loss (4.28) based on 5000 replications. Gaussian copula; Bartlett kernel;
τ1 = τ2 = 0.25.
w ρ1,ρ2 γT (0) γT (4) γT (12) γT (25) b(0) b(4) b(12) b(25) b∗

0.0 0.115 0.112 0.104 0.093 0.115 0.113 0.115 0.120 0.109
10 0.3 0.148 0.122 0.111 0.095 0.148 0.126 0.121 0.119 0.122

0.7 0.330 0.158 0.116 0.097 0.330 0.164 0.135 0.125 0.131
0.0 0.066 0.061 0.048 0.029 0.066 0.063 0.064 0.066 0.058

40 0.3 0.106 0.070 0.054 0.031 0.106 0.075 0.068 0.063 0.070
0.7 0.315 0.110 0.058 0.032 0.315 0.116 0.081 0.067 0.075

4.6 Empirical application

To illustrate the use of fixed-b critical values and the new bandwith rule, we consider

MSCI stock returns from the US, UK, France, Germany and Japan. The dataset

consists of monthly returns from January, 1970 through November, 2009. Longin and

Solnik (2001) consider a similar dataset but observed at a different period (January,

1959 through December, 1996).

In chapter 3 (see also Van Kampen and Wied (2010)) we give a detailed analysis

of the estimation of the marginal distributions and the application of the copula

constancy test. In summary, we will use the standardized residuals from a GARCH

(1,1) model with skewed-distributed innovations for the US, UK, France and Germany.

For Japan we estimate a GARCH(1,1) with student-t distributed innovations.
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We assume in the calculation of the optimal bandwidth rule that under the al-

ternative hypothesis, Kendall’s tau increases by 0.2. Subsequently, we transform

Kendall’s tau to the parameter of the Clayton copula. Under the null hypothesis,

Kendall’s tau corresponds to the empirical estimate of Kendall’s tau. Note that the

optimal bandwidth also depends on the confidence level α. In the analysis below we

assume, as usual, that α = 0.05. To examine the sensitivity of our results, we take

weights w = 10 and w = 40.
Table 4.6 shows the test statistics where b is calculated using conventional band-

width rules and using the optimal bandwidth rule. The values of b corresponding to

γT (4) and γT (12) are 0.010 and 0.035, respectively. The optimal bandwidth values

are zero or close to zero. This makes sense since the amount of serial correlation is

quite low. Note also that the optimal bandwidth is rather insensitive to chosen values

for w.

The results suggest that the bandwidth rule γT (12) from the previous chapter, is

relatively high. Although the final result are mainly in line with the results of chapter

3, we do however find some additional evidence that the copula is not constant over

time; we also reject the null hypothesis for the country pair France-Germany.

To examine the sensitivity of our results, we also calculated the optimal bandwith

rule for the alternative hypothesis that Kendall’s tau increases by 0.4. This, however,

did not change the results significantly.

4.7 Conclusion

This chapter introduces a new copula constancy test which is based on an inconsistent

estimate of the long run variance. The resulting distribution is nonstandard and

depends on the bandwidth parameter b. In the spirit of Sun, Phillips and Jin (2008),

we derived an optimal bandwidth rule that minimizes a weighted average of the type I

and type II error probabilities. Monte Carlo simulations suggest that the new copula

constancy test improves the finite sample properties of the test if we consider a sum

of squared errors as loss criterion. The new bandwidth rule performs reasonable but

does not always attain the minimum loss value. We conjecture that this is due the
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Table 4.6: Copula constancy test statistics using fixed-b critical values. bT (⋅) refers
to the test with b calculated using the convential bandwith rule γT (⋅) and b∗T (w = ⋅)
refers to the test calculated via the optimal bandwidth rule using weight w. The value
in brackets gives the optimal value of b and ** denotes that we are able to reject H0

at the 5% level.
Country Pair τ bT (4) bT (12) b∗T (w = 10) b∗T (w = 40)
US - UK 0.10 0.380 0.322 0.339 [0.000] 0.342 [0.000]

0.25 0.144 0.126 0.138 0.142
0.50 0.224 0.167 0.242 0.242

US - France 0.10 0.490** 0.382 0.379 [0.000] 0.387 [0.000]
0.25 0.211 0.204 0.223 0.223
0.50 0.188 0.149 0.150 0.156

US - Germany 0.10 0.571** 0.408 0.418 [0.022] 0.426 [0.019]
0.25 0.243 0.242 0.242 0.243
0.50 0.226 0.174 0.202 0.207

US - Japan 0.10 0.176 0.165 0.165 [0.000] 0.165 [0.000]
0.25 0.272 0.252 0.241 0.241
0.50 0.164 0.128 0.133 0.138

UK - France 0.10 0.240 0.197 0.197 [0.023] 0.201 [0.020]
0.25 0.077 0.070 0.072 0.074
0.50 0.568** 0.426 0.532** 0.543**

UK - Germany 0.10 0.496** 0.391 0.406 [0.000] 0.420 [0.000]
0.25 0.203 0.199 0.193 0.192
0.50 0.420 0.305 0.381 0.395

UK - Japan 0.10 0.284 0.256 0.256 [0.028] 0.262 [0.025]
0.25 0.404 0.325 0.342 0.360
0.50 0.523** 0.407 0.420 0.430

France - Germany 0.10 0.687** 0.554 0.561** [0.033] 0.569** [0.029]
0.25 0.231 0.266 0.258 0.253
0.50 0.302 0.241 0.248 0.268

France - Japan 0.10 0.358 0.323 0.320 [0.021] 0.321 [0.018]
0.25 0.316 0.308 0.314 0.311
0.50 0.183 0.163 0.162 0.161

Germany - Japan 0.10 0.572** 0.510 0.507** [0.017] 0.503** [0.015]
0.25 0.503** 0.449 0.515** 0.510**
0.50 0.221 0.202 0.199 0.201
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insufficient approximation of the finite sample and limit distributions (see also the

remarks at the end of section 4.4.3).

A point for further research concerns the order of the expansions of the distribution

functions. Comparing the approximations with the simulated values shows that the

difference for the Bartlett kernel is large if b → 1 (see Appendix 4.C). Although the

limit theorems still hold for b→ 0, the second (and third) order critical values require

improvement.
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4.A Proofs

Proof of Lemma 1:

Under H1 ∶ C(t)(τ1, τ2) = [1 − h(t/T )T −1/2]C(τ1, τ2) + h(t/T )T −1/2C∗(τ1, τ2) we have

ηT (σ̂2
b)

d→ ∫
1

0
[V (r) + f(r, δ)]2drΞ−1b , (4.31)

where

f(r, h) ∶= σ−11 [C(τ1, τ2) −C∗(τ1, τ2)] (∫
r

0
h(s)ds − r∫

1

0
h(s)ds) . (4.32)

When we have a single break at z∗ of magnitude δ then

∫
r

0
h(s)ds =

⎧⎪⎪⎨⎪⎪⎩

0 if r ≤ z∗

δ(r − z∗) it r > z∗
and r∫

1

0
h(s)ds = r(1 − z∗)δ.

Hence,

f(r, h) = f(r, δ) =
⎧⎪⎪⎨⎪⎪⎩

σ−11 [C(τ1, τ2) −C∗(τ1, τ2)]δr(z∗ − 1) if r ≤ z∗

σ−11 [C(τ1, τ2) −C∗(τ1, τ2)]δz∗(r − 1) if r > z∗,
(4.33)

where we rewrite f(r, h) as f(r, δ) to explicitly reflect the dependence on δ.

Substituting in (4.31) gives

ηT (σ̂2
b)

d→ [∫
z∗

0
[V (r) + (1 − 1/z∗)ar]2dr + ∫

1

z∗
[V (r) + ar − a]2dr]Ξ−1b , (4.34)

where a ∶= σ−11 [C(τ1, τ2) −C∗(τ1, τ2)]δz∗.
From Gikhman and Skorokhod (2004, p230) we have that

V (r) =
√
2
∞
∑
n=1

ζn
sinnπr

nπ
, (4.35)

where ζn is a sequence of independent standard normal distributed variables.
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Using (4.35) it can be shown that

∫
1

0
V (r)2dr =

∞
∑
n=1

ζ2n(nπ)−2 (4.36)

∫
y

x
rV (r)dr =

√
2
∞
∑
n=1

ζn(nπ)−2{ − y cos(nπy) + x cos(nπx)

+ (nπ)−1 sin(nπy) − (nπ)−1 sin(nπx)}

∫
y

x
V (r)dr =

√
2
∞
∑
n=1

ζn(nπ)−2{ − cos(nπy) + cos(nπx)},

where the formal proof of (4.36) can found in Kac and Siegert (1947).

Therefore,

ηT (σ̂2
b)

d→ (
∞
∑
n=1
[q1,nζ2n + q2,nζn] + q3)Ξ−1b , (4.37)

where q1,n = (πn)−2, q2,n ∶= −23/2a(nπ)−2 sin(nπz∗)/(nπz∗) and q3 ∶= a2(13z∗
2− 2

3z
∗+ 1

3).
Under H0 we have that q1,n = (πn)−2 and q2,n = q3 = 0.
Factor the polynomial as

q1,nζ
2
n + q2,nζn = q1,n(ζn + q4,n)2 − (q2,n/(2q1,n))2, (4.38)

where q4,n = q2,n/(2q1,n) = −21/2a sin(nπz∗)/(nπz∗). Then

ηT (σ̂2
b)

d→ (
∞
∑
n=1
[q1,n(ζn + q4,n)2 + q∞]) , (4.39)

where

q∞ ∶= lim
p→∞

qp ∶= lim
p→∞
{q3 −

p

∑
n=1

q24,n)} . (4.40)

Proof of Theorem 2:

Below, we refer to Sun, Phillips and Jin (2008) as SPJ (2008).

Define µb ∶= E(Ξb) and αm ∶= E(Ξb − µb)m, m = 1,2, . . .. From SPJ (2008, eq.

A.55, A.57, A.58) we have

µb = 1 − ∫
1

0
∫

1

0
kb(r − s)drds (4.41)
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and

α2 = 2(∫
1

0
kb(r − s)drds)2 + 2∫

1

0
∫

1

0
k2b(r − s)drds

− 4∫
1

0
∫

1

0
∫

1

0
kb(r − p)kb(r − q)drdpdq.

Furthermore, SPJ (2008, eq. A.64, A.65 and A.67) show that

∫
1

0
∫

1

0
kb(r − s)drds = bc1 + b2c3 + o(b2) (4.42)

∫
1

0
∫

1

0
k2b(r − s)drds = bc2 + b2c4 + o(b2)

∫
1

0
∫

1

0
∫

1

0
kb(r − p)kb(r − q)drdpdq = c21b

2.

Hence,

α2 = 2bc2 + 2b2(c4 − c21) + o(b2). (4.43)

Note that the result for α2, stated in SPJ (2008,eq. A.69) is incorrect.

Also (see SPJ (2008, eq.A.55))

α3 = o(b2), (4.44)

α4 = O(b3). (4.45)

Hence,

Fδ(z) ∶= P ((
p

∑
n=1
[q1,n(ζn + q4,n)2] + qp)Ξ−1b < z)

= E{Gδ(zΞb − qp)}

= E{Gδ(zµb − qp) +G′δ(zµb − qp)z(Ξb − µb) +
1

2
G′′δ (zµb − qp)z2(Ξb − µb)2

+ 1

6
G′′′δ (zµb − qp)z6(Ξb − µb)3 +

1

24
G
(4)
δ (zµ

∗
b − qp)z8(Ξb − µb)4},

with µ∗b between Ξb and µb.
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Using (4.44) and (4.45)

Fδ(z) = Gδ(zµb − qp) +
1

2
G′′δ (zµb − qp)z2α2 + o(b2)

= Gδ(z − qp) +G′δ(z − qp)z(µb − 1) +
1

2
G′′δ (z − qp)z2(µb − 1)2

+ 1

6
G′′′δ (zµ∗∗b − qp)z3(µb − 1)3 +

1

2
{G′′δ (z − qp)z2α2

+ G′′′δ (z − qp)(µb − 1)z3α2 +
1

2
G
(4)
δ (zµ

∗∗∗
b − qp)(µb − 1)2z4α2} + o(b2),

with µ∗∗b and µ∗∗∗b between µb and 1.

Finally, using (4.41) and (4.43)

Fδ(z) = Gδ(z − qp) +G′δ(z − qp)z(−bc1 − b2c3) +
1

2
G′′δ (z − qp)z2(−bc1)2

+ 1

2
{G′′δ (z − qp)z2(2bc3 + 2b2(c4 − c21)) +G′′′δ (z − qp)z3(−2b2c1c2)} + o(b2)

= Gδ(z − qp) + [c2G′′δ (z − qp)z2 − c1G′δ(z − qp)z]b

− [G′δ(z − qp)zc3 −
1

2
G′′δ (z − qp)z2(2c4 − c21) +G′′′δ (z − qp)z3c1c2]b2 + o(b2).

Proof of Corollary 3:

This follows immediately from results already established in Sun, Phillips and Jin

(2008) and the correction stated above; proof included to make the document self-

contained.

Under H0, we obtain

F0(zα,b) = D(zα,b) + [−D′(zα,b)zα,bc1 +D′′(zα,b)z2α,bc2]b

+ [−D′(zα,b)zα,bc3 +
1

2
D′′(zα,b)z2α,b(2c4 − c21) −D′′′(zα,b)z3α,bc1c2]b2 + o(b2)

= D(zα) +D′(zα)(zα,b − zα) +
1

2
D′′(zα)(zα,b − zα)2

+ [−D′(zα)zαc1 +D′′(zα)z2αc2]b

+ [−D′′(zα)zαc1(zα,b − zα) −D′(zα)c1(zα,b − zα)

+ D′′′(zα)z2αc2(zα,b − zα) + 2D′′(zα)zαc2(zα,b − zα)]b

+ [−D′(zα)zαc3 +
1

2
D′′(zα)z2α(2c4 − c21) −D′′′(zα)z3αc1c2]b2 + o(b2), (4.46)
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where we anticipated that zα,b = zα+k1b+k2b2+o(b2), i.e. higher order terms in (4.46)

are o(b2).
Using D(zα) = 1 − α and F0(zα,b) = 1 − α

0 = D′(zα)(zα,b − zα) +
1

2
D′′(zα)(zα,b − zα)2

+ [−D′(zα)zαc1 +D′′(zα)z2αc2]b + [−D′′(zα)zαc1 −D′(zα)c1
+ D′′′(zα)z2αc2 + 2D′′(zα)zαc2](zα,b − zα)b

+ [−D′(zα)zαc3 +
1

2
D′′(zα)z2α(2c4 − c21) −D′′′(zα)z3αc1c2]b2 + o(b2)

= D′(zα)k1b +
1

2
D′′(zα)k21b2 +D′(zα)k2b2

+ [−D′(zα)zαc1 +D′′(zα)z2αc2]b

+ [−D′′(zα)zαc1 −D′(zα)c1 +D′′′(zα)z2αc2 + 2D′′(zα)zαc2]k1b2

+ [−D′(zα)zαc3 +
1

2
D′′(zα)z2α(2c4 − c21) −D′′′(zα)z3αc1c2]b2 + o(b2).

Solve for k1 with k2 = 0 (i.e. obtain second order critical values)

0 =D′(zα)k1b + [−D′(zα)zαc1 +D′′(zα)z2αc2]b

⇔ k1 = −
1

D′(zα)
[D′′(zα)z2αc2 −D′(zα)zαc1]. (4.47)

Solve for k2 with k1 given in (4.47) already correcting all terms linear in b

0 = 1

2
D′′(zα)k21b2 +D′(zα)k2b2

+ [−D′′(zα)zαc1 −D′(zα)c1 +D′′′(zα)z2αc2 + 2D′′(zα)zαc2]k1b2

+ [−D′(zα)zαc3 +
1

2
D′′(zα)z2α(2c4 − c21) −D′′′(zα)z3αc1c2]b2

⇔ k2 = −
1

D′(zα)
[ −D′(zα)zαc3 +

1

2
D′′(zα)z2α(2c4 − c21) −D′′′(zα)z3αc1c2

+[c2D′′′(zα)z2α + 2c2D′′(zα)zα − c1D′′(zα)zα

−c1D′(zα)]k1 +
1

2
D′′(zα)k21]. (4.48)
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Proof of Corollary 4:

We have (note that D̃′(x) is the density of the gamma distribution with parameters

αg and 1/2)

D̃′(x) ∶= 2−αg

Γ(αg)
xαg−1 exp(−1

2
x),

D̃′′(x) = [(αg − 1)/x − 1/2] D̃′(x),

D̃′′′(x) = [(αg − 1)(αg − 2)/x2 − (αg − 1)/x + 1/4] D̃′(x)

and

f(x) ∶= (x − bχ)/aχ, f ′(x) = 1/aχ, f ′′(x) = 0, f ′′′(x) = 0.

Hence, the derivatives of D(x) = D̃(f(x)) are given by

D′(x) = D̃′(f(x))f ′(x) = D̃′(f(x))/aχ
D′′(x) = D̃′′(f(x))(f ′(x))2 + D̃′(f(x))f ′′(x)

= [(αg − 1)/f(x) − 1/2] D̃′(f(x))/a2χ
D′′′(x) = D̃′′′(f(x))(f ′(x))3 + 3D̃′′(f(x))f ′(x)f ′′(x) + D̃′(f(x))f ′′′(x)

= [(αg − 1)(αg − 2)/f(x)2 − (αg − 1)/f(x) + 1/4] D̃′(f(x))/a3χ.

Furthermore,

D′′(x)
D′(x)

= [(αg − 1)/f(x) − 1/2] /aχ

and

D′′′(x)
D′(x)

= [(αg − 1)(αg − 2)/f(x)2 − (αg − 1)/f(x) + 1/4] /a2χ.
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The coefficients k1 and k2 follow then from (4.47) and (4.48)

k1 = −
1

aχ
[(αg − 1)/f(x) − 1/2] z2αc2 + zαc1

= c1zα −w1c2z
2
α (4.49)

and

k2 = (c3 + c21)zα + [−
1

2
(2c4 − c21) − 3c1c2 +

1

2
c21]w1z

2
α

+ 2c22w
2
1z

3
α + (w1w2 −

1

2
w3

1)c22z4α. (4.50)

Proof of Lemma 5:

Using (4.20) and (4.21) we obtain

T

∑
t=1
(

t

∑
j=1
(CT − Ij))

2

=
T

∑
t=1
(dt +

t

∑
j=1
ej)

2

=
T

∑
t=1
(

t

∑
j=1
ej)

2

+ 2
T

∑
t=1
(dt

t

∑
j=1
ej) +

T

∑
t=1
d2t

=
T

∑
t=1
(

t

∑
j=1
ej)

2

+ 2
T

∑
t=1
(et

T

∑
j=t
dj) +

T

∑
t=1
d2t

=
T

∑
t=1

T

∑
s=1
[T + 1 −max(s, t)]eset + 2

T

∑
t=1
(et

T

∑
j=t
dj) +

T

∑
t=1
d2t

=∶ e′V e + 2e′d† + cd.

From (4.23) we have e′V e = ẽΛ′ẽ. Hence, the finite sample distribution is given by

FT,δ(z) ∶= P
⎛
⎝

1

σ̂2
bT

2

T

∑
t=1
(

t

∑
j=1
(CT − Ij))

2

≤ z
⎞
⎠

= P ( 1

σ2
e,TT

2
{

T

∑
t=1
λtẽ

2
t + 2

T

∑
t=1
d̃tẽt + cd} ≤ zσ̂2

b /σ2
e,T)

= P (
T

∑
t=1
[λt − Tz(σ̂2

b /σ2
e,T )g̃(θ)]ẽ2t + 2

T

∑
t=1
d̃tẽt + cd ≤ 0)
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= P (
T

∑
t=1
λ̃t(ẽt + d̃t/λ̃t)2 ≤ d̃2t /λ̃t − cd) ,

where λ̃t = λt − Tz(σ̂2
b /σ2

e,T )g̃(θ).
Proof of Theorem 6:

Let µbT ∶= E(ςbT ) and αm,T ∶= E(ςbT − µbT )m, m = 1,2,3,4. Like Lemma 3 in SPJ

(2008) (see also their eq. A.91) we have

µbT = µb − (bT )−qqqdqT (1 + o(1)) +O(T −1) (4.51)

and

α2,T = 2bc2(1 + o(1)) +O(T −1), (4.52)

α3,T = O(b2) +O(T −1)

α4,T = O(b2) +O(T −1).

Then

FT,δ(z) = E [H̃T,δ(z; ςbT )]

= E[H̃T,δ(z;µbT ) + H̃ ′T,δ(z;µbT )(ςbT − µbT )

+ 1

2
H̃ ′′T,δ(z;µbT )(ςbT − µbT )2] + o(b)

(4.52)= H̃T,δ(z;µbT ) +
1

2
H̃ ′′T,δ(z;µbT ) ⋅ 2bc2 + o(b) +O(T −1)

= H̃T,δ(z;µb) + H̃ ′T,δ(z;µbT )(µbT − µb) + H̃ ′′T,δ(z;µb)bc2 + o(b) +O(T −1).

We have

H̃T,δ(z;µb) = H̃T,δ(z; 1) + H̃ ′T,δ(z; 1)(µb − 1) + o(b)
(4.41),(4.42)= H̃T,δ(z; 1) − bc1H̃ ′T,δ(z; 1) + o(b)
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and

H̃ ′T,δ(z;µb)(µbT − µb)
(4.51)= −gqdqT H̃ ′T,δ(z; 1)(bT )−q(1 + o(1)) + o(b) +O(T −1).

Hence,

FT,δ(z) = H̃T,δ(z; 1) − bc1H̃ ′T,δ(z; 1) − gqdqT H̃ ′T,δ(z; 1)(bT )−q

+ H̃ ′′T,δ(z;µb)bc2 + o(b + (bT )−q) +O(T −1)

=∶ B1,δ +B2,δb − gqdqTB3,δ(bT )−q + o(b + (bT )−q) +O(T −1). (4.53)

Proof of Corollary 7:

The size distortion is given by

1 − FT,0(zα,b) − α
(4.53)= 1 −B1,0 −B2,0b + gqdqTB3,0(bT )−q − α + o(b + (bT )−q) +O(T −1)

= F0(zα,b) −B1,0 −B2,0b + gqdqTB3,0(bT )−q + o(b + (bT )−q) +O(T −1)
(4.10)= A1,0 −B1,0 + (A2,0 −B2,0)b + gqdqTB3,0(bT )−q + o(b + (bT )−q) +O(T −1).

The power is given by

1 − FT,δ(zα,b)
(4.53)= 1 −B1,δ −B2,δb + gqdqTB3,δ(bT )−q + o(b + (bT )−q) +O(T −1).

4.B Additional results

Proof (result SPJ (2008) from corollary 4):

If p = 1 and c1,n = 1 for n = 1 then it follows immediately that aχ = 1, bχ = 0 and

dχ = 1. Hence, w1 = −1
2z
−1
α − 1

2 and w2 = 3
4z
−2
α + 1

2z
−1
α + 1

4 . So that

k1
(4.49)= c1zα − (−

1

2
z−1α −

1

2
)c2z2α

= c1zα +
1

2
c2zα +

1

2
c3z

2
α
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and

k2
(4.50)= zα(c3 + c21) + z2α[−

1

2
(c4 − c21) − 3c1c2 +

1

2
c21] ⋅ [−

1

2
z−1α −

1

2
]

+ z3α[2c22(
1

4
z−2α +

1

2
z−1α +

1

4
)] + z4α{[−

1

2
z−1α −

1

2
] ⋅ [3

4
z−2α +

1

2
z−1α +

1

4
]

+ − 1

2
[−1

8
z3α −

1

4
z−2α −

1

8
z−1α −

1

8
z−2α −

1

4
z−1α −

1

8
]}c22

= zα[c3 + c21 +
1

4
(c4 − c21) +

3

2
c1c2 −

1

4
c21 +

1

2
c22]

+ z2α[
1

4
(c4 − c21) +

3

2
c1c2 −

1

4
c21 + c22]

+ z3α
1

2
c22 + z4α{−

3

8
z−3α −

1

4
z−2α −

1

8
z−1α −

3

8
z−2α −

1

4
z−1α −

1

8

+ 1

16
z−3α +

1

8
z−2α +

1

16
z−1α +

1

16
z−2α +

1

8
z−1α +

1

16
}c22

= zα[c3 +
1

2
c21 +

1

4
c4 +

3

2
c1c2 +

3

16
c22] + z2α[

1

4
c4 −

1

2
c21 +

3

2
c1c2 +

9

16
c22]

+ 5

16
z3α −

1

16
c22z

4
α.

Proof (optimal b):

For the loss function L (sum of errors) we have

∂L

∂b
= 0 ⇔ B2,δ −wT (B2,0 −A2,0) − q{wTB3,0 −B3,δ}qqdqT b−q−1T −q = 0

⇔ b−q−1 =
B2,δ −wT (B2,0 −A2,0)

qqqdqT{wTB3,0 −B3,δ}T −q

⇔ b = {
qgqdqT{wTB3,0 −B3,δ}
B2,δ −wT (B2,0 −A2,0)

}
1

q+1

T −
q

q+1 .
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4.C Additional figures
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Figure 4.3: Expansion of limit distribution. Probability (y-axis) against bandwidth
parameter b (x-axis).
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Figure 4.4: Simulated and 3rd order corrected critical values. Critical value (y-axis)
against bandwidth parameter b (x-axis).



Chapter 5

A nonparametric overall copula

constancy test∗

In this chapter we introduce a new test that examines the constancy of

the copula on the complete unit square. To test has a nonstandard limit

distribution. We propose a bootstrap procedure to obtain the critical val-

ues. We show in a simulation study that the test performs good compared

to some recent proposed tests.

5.1 Introduction

Recently, Busetti and Harvey (2011) and Krämer and Van Kampen (2011) pro-

pose several tests to examine the constancy of the copula in a particular point

(τ1, τ2) ∈ [0,1]2. In this chapter we construct an overall copula constancy test which

does not require the a priori selection of a point (τ1, τ2). Like the aforementioned

authors we base our test on the partial sums of suitable indicator variables. The

test has a nonstandard asymptotic distribution that differs from the point tests. To

obtain critical values we use the bootstrap method proposed by Inoue (2001). A

short simulation study shows that our test outperforms a recently proposed test that

examines changes in Spearman’s rankcorrelation but is not uniformly better as the

∗This chapter is based on Van Kampen and Wied (2010).
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point test. To illustrate our test, we apply it to the MSCI stock returns of the US,

UK, France, Germany and Japan. In addition, we consider several US stock indices.

For several pairs we are able to reject the hypothesis of a constant copula.

5.2 An overall copula constancy test

Let yt be a bivariate series of observations and let ξ(τ) = (ξ1(τ1), ξ2(τ2)) denote

the marginal τi-quantiles, i = 1,2. Like the point tests, we base our overall copula

constancy test on the partial sums of the bivariate τ -quantics

BIQ(yt, ξ(τ)) = CT (τ1, τ2) − I(yt, ξ(τ)),

where

I(yt, ξ(τ)) = I(y1t ≤ ξ1(τ1), y2t ≤ ξ2(τ2))

and CT (τ1, τ2) = T −1∑T
t=1 I(yt, ξ(τ)).

The idea of the overall copula constancy test is to summarize the information at

the unit square by taking the maximum over all points (τ1, τ2). Note that we could

also consider other functional forms (see discussion below) to construct an overall

copula constancy test.

Define

ST (r, τ) ∶=
1√
T

[rT ]

∑
t=1

BIQ(yt, ξ(τ)) τ ∈ [0,1]2, r ∈ [0,1].

In the previous chapters we took τ = τ 0 fixed and considered the weak convergence of

the random function ST (r) ≡ ST (τ 0, r) to a Brownian bridge. These random functions

are in the function space, D([0,1]), of functions that are right continuous but may

have discontinuities on the left. In this chapter, we do not fix τ and ST (r, τ) is a

random function in D([0,1]d+1) with d the dimension of the vector yt. For sake of

simplicity we assume d = 2, but all arguments below also hold for higher dimensions.

We make the following assumption:
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Assumption 5.1.

(i) {yit} is strong mixing with mixing coefficients that satisfy, for some γ ∈ (0,2),

∞
∑
j=1
j2α(j)γ/(4+γ).

(ii) {yit} is a strictly stationary process.

Assumption 5.1(i) is similar to Inoue (2001). Recall that the point tests require

that the mixing coefficients are α(m) = O(m−p/(p−2)) for p > 2. This implies that

∑∞m=1α(m)
1
ϕ0 <∞ for 0 < ϕ0 < p/(p− 2). Hence, Assumption (i) for the overall copula

constancy test is stronger.

Assumption (ii) is required for Theorem 2.1 in Inoue (2001), see the proof in the

Appendix.

To obtain the asymptotic null distribution of our test we need an invariance princi-

ple for the multivariate rank process as defined in Appendix 5.A. Rüschendorf (1976)

derives this under the assumption that the copula has continuous partial derivatives.

More recently, Bücher and Volgushev (2011) provide an invariance principle without

this condition. This is important since many copulas (such as the Clayton and Gum-

bel copula) do not have continuous derivatives in the corner points, see e.g. Segers

(2010).

The following theorem gives the asymptotic null distribution of our test:

Theorem 5.1. Under Assumption 5.1

sup
0≤r≤1

sup
τ∈[0,1]2

∣ST (⋅, ⋅)∣
dÐ→ sup

0≤r≤1
sup

τ∈[0,1]2
∣A0(⋅, ⋅)∣ =∶ Z, (5.1)

where

A0(r, τ) ∶= V0(r, τ) − rV0(1, τ),

with V0(r, τ) an almost surely continuous, centered Gaussian process whose covariance
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structure is given by

E[V0(r, τ)V0(r′, τ ′)] =

min(r, r′)
∞
∑
j=∞

E[I(yt, ξ(τ))I(yt+j, ξ(τ ′)) −C(τ1, τ2)C(τ ′1, τ ′2)].

After some rewriting it can be shown that the test is basically the weighted

Kolmogorov-Smirnov test presented in Inoue (2001). The difference between his pa-

per and our paper is that the indicator functions in our case depend on an estimated

quantity ξ̂(τ) instead of a known quantity.

The process V0(r, τ) is referred to as a Kiefer process. The challenge is the deriva-

tion of critical values of the random variable Z. For this, we use the bootstrap method

of Inoue (2001) (which is based on Hansen (1996)). Analogously we search for a simu-

lation version of the test statistic, i.e. a process that converges to V0(⋅, ⋅) conditioned
on the data when T and the so called block length l converge to ∞. This will be the

process

V ∗T (r, τ, ω) =
1√
T

[rT ]−l+1

∑
t=1

zt
t+l−1
∑
i=t

BIQ(yt, ξ̂(τ)), (5.2)

where zt are NID(0,1/l) random variables and ω denotes the particular sample, such

that more formally yit(ω) denotes the realization of a random variable. For notational

convenience, we keep the simplified notation yit.

With a modification of Theorem 2.3 in Inoue (2001) (see Appendix 5.A) we get

V ∗T (⋅, ⋅, ω)
dÐ→ V0(⋅, ⋅) ω − almost surely. (5.3)

Hence, a simulated version of the test becomes

1√
T

[rT ]−l+1

∑
t=1

zt
t+l−1
∑
i=t

BIQ(yt, ξ̂(τ)) − r
1√
T

T−l+1
∑
t=1

zt
t+l−1
∑
i=t

BIQ(yt, ξ̂(τ)). (5.4)

Let J denote the number of simulation replications. The following procedure can

then be used to examine the overall constancy of the copula:
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1. Calculate the test statistic (5.1).

2. For j = 1, . . . , J , draw z
(j)
t from N(0,1/l) and calculate the test statistic (5.4)

using z
(j)
t .

3 Calculate the 1−α quantile of J simulated test statistics. If the resulting value

is larger than the original test statistic, reject H0.

Finally, an interesting complementary approach to the test proposed above is to

make use of the relationship between dependence measures such as Spearman’s ρ and

the copula (see Nelson (2006, chapter 5)). Fluctuation tests for Spearman’s ρ, such

as the one proposed in Wied et al. (2010), can be written as a properly scaled integral

(with respect to τ) of the partial sums of the BIQ values as well and can so be viewed

as an alternative way to analyze if the copula is constant.

In the next section we examine the finite sample properties of our test using Monte

Carlo simulations. We show that the overall copula constancy test of Theorem 5.1

outperforms the rankcorrelation test of Wied et al. (2010) if there are simple shifts in

the copula parameter.

5.3 Finite sample properties

To examine the properties of the test in finite samples, we simulate observations from

a Clayton copula with parameter ψ = 1. The marginals follow a AR(1) process with

parameter ϕi, i = 1,2, and standard normal distributed innovations. We consider

samples of size T = 500 and 1000. The number of bootstrap replications is set at

199 and the number of Monte Carlo simulations is set at 1000. For computational

reasons, we evaluate the test on a subset of points in the unit square. That is, we

construct a grid [1/T,1]2 with step size 1/10, and take the maximum over these points.

To examine the sensitivity of the block length parameter we choose l = 10,30,50.

For comparison purposes we also report the results for the rankcorrelation test of

Wied et al. (2010) based on the Bartlett kernel and conventional bandwidth rules

γT (m) = int[m(T /100)1/4], m = 0,4,12. The rankcorrelation test and point test are

based on 5000 replications.
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Table 5.1 shows the size of the test. In case the series are independent, we have

to choose relative low values of l to make the test of appropriate size. If the se-

ries are serial correlated we need higher values of l. For the Spearman test we need

higher bandwidth values if the series are serial correlated. Since block lengths in the

maximum test and bandwidth values in the Spearman test represent different quan-

tities, comparing changes in block length values with changes in bandwidth values is

somewhat difficult. It should however be clear that, using conventional block length

values and bandwidth rules, the size of the Spearman test is much more sensitive

with respect to the bandwidth rule than the size of the maximum test is with respect

to the block length.

Table 5.1: Size of maximum and Spearman’s rankcorrelation test. Nominal size is
0.05.

Maximum Spearman
T ϕ1 ϕ2 l = 10 l = 30 l = 50 γT (0) γT (4) γT (12)
500 0.0 0.0 0.045 0.029 0.023 0.038 0.049 0.097

0.3 0.3 0.059 0.036 0.028 0.198 0.061 0.072
0.5 0.5 0.080 0.041 0.037 0.444 0.100 0.065
0.7 0.7 0.114 0.045 0.032 0.770 0.187 0.062

1000 0.0 0.0 0.048 0.040 0.029 0.044 0.047 0.083
0.3 0.3 0.058 0.040 0.032 0.213 0.058 0.068
0.5 0.5 0.079 0.043 0.034 0.450 0.084 0.060
0.7 0.7 0.125 0.059 0.044 0.800 0.142 0.062

To examine the power of the test we include one or two breaks in the sample such

that each interval is of equal length (last interval is slightly shorter in case of 500

observations and 2 breaks). We assume that the observations are serially uncorrelated

(ϕ1 = ϕ2 = 0) and set l = 10 in the maximum test and γT (0) = 0 in the Spearman test.

Table 5.2 shows the results for a shift of ψ = 1 to respectively 2.5, 7.5 and 15

(values taken from Busetti and Harvey (2011)). The test has good power in case of 1

break. In line with the point tests, we see that the power of the test decreases with

the number of breaks and increases with the sample size.

Our test outperforms the Spearman test in the simulation study but is not uni-

formly better as the point tests. In particular, our test outperforms the point test at
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τ = 0.10 but not at τ = 0.5.

Table 5.2: Power of maximum test (l = 10), Spearman based test (γT (0) = 0) and the
point test evaluated at τ = 0.1 and τ = 0.5, respectively. Copula = Clayton; Nominal
size = 0.05.

#breaks T ψ1 ψ2 Maximum Spearman τ = 0.1 τ = 0.5
1 500 1 2.5 0.154 0.110 0.154 0.239

7.5 0.588 0.237 0.317 0.721
15 0.788 0.280 0.351 0.834

1000 1 2.5 0.298 0.186 0.269 0.422
7.5 0.920 0.459 0.570 0.947
15 0.986 0.530 0.643 0.984

2 500 1 2.5 0.062 0.053 0.039 0.058
7.5 0.114 0.074 0.049 0.149
15 0.164 0.082 0.058 0.208

1000 1 2.5 0.094 0.074 0.055 0.086
7.5 0.271 0.134 0.096 0.348
15 0.390 0.158 0.119 0.529

To examine the sensitivity of our results, we also performed the analysis using a

Gaussian copula. Under the null hypothesis the Gaussian copula parameter equals

0.5 and under the alternative the copula parameter jumps to 0.1, 0.25, 0.75 and 0.9,

respectively. These parameter values are in line with Busetti and Harvey (2011).

Table 5.6 (in Appendix 5.B) presents the results. The results are mainly in line

with the results of the Clayton Copula. However, we observe sometimes slightly

higher rejection frequencies for the Spearman’s test, compared to the maximum test,

if there is a decrease in Gaussian copula parameter.

5.4 Empirical applications

In this section we consider two applications to illustrate our test. First, we apply

the test to MSCI series analyzed in the previous chapter. Second, we consider return

series of the Dow-Jones, NYSE and S&P 500. These US series are also analyzed in

Inoue (2001).
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5.4.1 MSCI stock index

We illustrate the test using the MSCI return series analyzed in the previous chapters.

Again, we apply the test to the raw return series and the standardized innovations of

the GARCH(1,1) model (see section 3.6 for details).

To determine l, note that Kendall’s tau falls between 0.2 and 0.5 and the first

autocorrelation coefficient between 0.0 and 0.2. Therefore, it is reasonable to select

low values for the blocklength l. For computational reasons, we evaluate the test on

a subset of points in the unit square. That is, we construct a grid [1/T,1]2 with step

size 10/T , and take the maximum over these points. Table 5.3 presents the resulting

p-values. The results are mainly in line with results of the point test; for most of the

series we are not able to reject the null hypothesis.

Table 5.3: P-values of the overall copula constancy test applied to the original return
series and the standardized innovations of the GARCH model.

original return series standardized innovations
countries l = 10 20 30 40 10 20 30 40

US - UK 0.080 0.221 0.296 0.347 0.362 0.422 0.568 0.558
US - France 0.101 0.176 0.276 0.251 0.070 0.131 0.236 0.191
US - Germany 0.035 0.080 0.156 0.236 0.151 0.276 0.347 0.382
US - Japan 0.050 0.151 0.156 0.186 0.106 0.241 0.241 0.296
UK - France 0.010 0.030 0.075 0.116 0.020 0.055 0.095 0.146
UK - Germany 0.070 0.196 0.251 0.296 0.166 0.307 0.327 0.372
UK - Japan 0.035 0.055 0.090 0.090 0.055 0.146 0.126 0.121
France - Germany 0.090 0.146 0.226 0.271 0.116 0.171 0.261 0.347
France - Japan 0.050 0.080 0.075 0.131 0.090 0.186 0.276 0.266
Germany - Japan 0.020 0.050 0.075 0.111 0.156 0.266 0.307 0.342

5.4.2 US stock index

In our second application, we applied the test to the Dow-Jones, NYSE and S&P

stock index, which are also analyzed in Inoue (2001). The time series consists of the

Wednesday returns from 1973 through 1996 (1252 observations). We know that the

test is subject to size distortions if the series exhibit stochastic volatility patterns.

Therefore, we estimate a GARCH(1,1) model and apply the test to the standardized

innovations. Table 5.4 shows the maximum likelihood estimates of a GARCH (1,1)
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model with Gaussian, Student and skewed-student distributed innovations. Based on

the AIC, we select the GARCH model with skewed-student distributed innovations.

The Ljung-Box statistics in table 5.4 shows that we cannot reject the null hy-

pothese of no serial correlation. Hence, we select the block-length l in the overall test

and bandwidth rule γT (m) in the point test relatively low.

Table 5.5 gives the results of the copula constancy test. The results provide

some evidence that the dependence function between the series is not constant over

time. In line with simulation study, we see that the results of the point test heavily

depend on the chosen quantile. The results of the Spearman tests are in line with our

overall constancy test. An application of the quantile constancy test of Busetti and

Harvey (2007) shows that the lower quantiles are not constant over time. The results

presented above are likely affected by this. A point for further research might be to

investigate the application of different models for the marginal distribution.

Table 5.5: Copula constancy test statistics for the standardized residuals of a
GARCH(1,1) model with skewed-student distributed innovations.Significance levels:
1% (***), 5% (**) and 10% (*).

DJ-NYSE DJ-S&P500 NYSE-S&P500
overall l = 10 0.005 0.000 0.030
(p-values) l = 20 0.000 0.000 0.045

l = 30 0.000 0.000 0.050
l = 40 0.000 0.005 0.030

point τ = 0.10 0.820*** 0.837*** 0.646**
τ = 0.25 1.390*** 1.572*** 0.865***
τ = 0.50 0.672** 0.701** 0.425*
τ = 0.75 0.173 0.155 0.047
τ = 0.90 0.145 0.162 0.338

Spearman γT (0) 1.678*** 1.738*** 1.548**
γT (4) 1.707*** 1.792*** 1.577**



CHAPTER 5. AN OVERALL COPULA CONSTANCY TEST 109

5.A Proofs

Proof of Theorem 5.1

Define the multivariate sequential empirical process

VT (r, τ) ∶=
1√
T

[rT ]

∑
t=1
(I(yt, ξ(τ)) −C(τ1, τ2))

and the multivariate rank order process

LT (r, τ) ∶=
1√
T

[rT ]

∑
t=1
(I(yt, ξ̂(τ)) −C(τ1, τ2)).

Note that

1√
T

[rT ]

∑
t=1

BIQ(yt, ξ̂(τ)) =
[rT ]
T

LT (1, τ) −LT (r, τ) =∶ −AT (r, τ).

Since VT
d→ V0 (Theorem 2.1 in Inoue (2001)), condition 3.1 in Bücher and Volgushev

(2011) is satisfied, and we have from their corollary 3.3a that

AT
d→ A0(⋅, ⋅).

Finally, using the continuous mapping theorem, we have

max
0≤r≤1

max
τ∈[0,1]2

RRRRRRRRRRR

1√
T

[rT ]

∑
t=1

BIQ(yt, ξ̂(τ))
RRRRRRRRRRR

d→max
0≤r≤1

max
τ∈[0,1]2

∣A0(r, τ)∣ .

Proof equation (5.3)

Let CT (τ1, τ2;ω) denote the empirical copula based on yt(ω) and let Fi,T denote the

marginal distributions, i = 1,2. Define

V ∗∗T (r, τ, ω) ∶=
1√
T

[rT ]−l+1

∑
t=1

zt
t+l−1
∑
i=t
(I(yt(ω), ξ(τ)) −CT (τ1, τ2;ω))



CHAPTER 5. AN OVERALL COPULA CONSTANCY TEST 110

and note that

V ∗T (r, τ, ω) = V ∗∗T (r, (F1,T ○ ξ̂(τ1), F2,T ○ ξ̂(τ2)), ω).

Theorem 2.3 in Inoue (2001) gives

V ∗∗T (⋅, ⋅, ω)
d→ V0(⋅, ⋅) ω − almost surely. (5.5)

Hence,

sup
r,τ
∣V ∗T (r, τ, ω) − V0(r, τ, ω)∣

≤ sup
r,τ
∣V ∗∗T (r, (F1,T ○ ξ̂(τ1), F2,T ○ ξ̂(τ2)), ω)

− V0(r, (F1,T ○ ξ̂(τ1), F2,T ○ ξ̂(τ2)), ω)∣

+ sup
r,τ
∣V0(r, (F1,T ○ ξ̂(τ1), F2,T ○ ξ̂(τ2)), ω) − V0(r, τ, ω)∣

is op(1) by (5.5) and the uniform convergence of ξ̂(⋅) to ξ(⋅).
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5.B Additional results

Table 5.6: Power of maximum test, Spearman’s rankcorrelation test and the point
test evaluated at τ = 0.1 and τ = 0.5, respectively. Copula = Gausssian; Nominal size
= 0.05.

#breaks T ψ1 ψ2 Maximum Spearman τ = 0.1 τ = 0.5
1 500 0.5 0.1 0.219 0.239 0.230 0.310

0.25 0.109 0.114 0.131 0.144
0.75 0.138 0.102 0.146 0.184
0.9 0.389 0.219 0.394 0.496

1000 0.5 0.1 0.420 0.435 0.443 0.562
0.25 0.179 0.179 0.203 0.251
0.75 0.288 0.185 0.273 0.336
0.9 0.748 0.401 0.671 0.799

2 500 0.5 0.1 0.086 0.082 0.088 0.083
0.25 0.048 0.056 0.068 0.062
0.75 0.053 0.053 0.038 0.059
0.9 0.091 0.073 0.046 0.096

1000 0.5 0.1 0.105 0.142 0.104 0.118
0.25 0.069 0.079 0.076 0.073
0.75 0.073 0.068 0.052 0.072
0.9 0.166 0.118 0.110 0.199



Chapter 6

Conclusion and Further Research

In the second chapter of this thesis we introduce a new copula constancy test. The

test is based on a suitable indicator series. The test outperforms a recently proposed

test of Busetti and Harvey (2011) if there are two breaks in the sample. The power

of the test increases if the sample size increases but decreases if the number of breaks

increases. To illustrate the test we apply it to a long time series of the stock indices of

Hong Kong and Malaysia. The time series is characterized by several high volatility

periods (East Asian crisis and the recent financial crisis). The proposed test indicates

that the copula is not constant over time.

The test developed in chapter 2 assumes that the observations are independent and

identically distributed. This assumption is often violated in the time series literature.

In the third chapter we show that the asymptotic null distribution of the test remains

the same under a suitable weak dependence (strong mixing) assumption.

The test is, however, subject to size distortions if the time series exhibits serial

correlation and stochastic volatility patterns. Current practice suggests to apply the

tests to the standardized residuals of some ARMA/GARCH model. We provide in

chapter 3 sufficient conditions under which this is allowed.

To illustrate the importance of controlling for stochastic volatility patterns, we

apply the tests to time series of the MSCI stock index of the US, UK, France, Germany

and Japan. Our results show that if we do not control for stochastic volatility patterns,

we often reject the null hypothesis of a constant copula. Application of the tests to
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the residual series shows that we are often not able to reject the null hypothesis.

Although we can of course not conclude that the copula is constant, it illustrates the

importance of controlling for changes in the marginal distributions.

The disadvantage of filtering, as suggested above, is that the resulting model might

be misspecified. In particular, the residuals might be serially correlated. To control

for this, the long run variance of the test can be replaced by some heteroscedasticity

and autocorrelation consistent estimate. In chapter 4 we improve the finite sample

performance of the test by replacing the long run variance by an inconsistent estimate.

We construct this estimate using a kernel based approach. The resulting asymptotic

distribution of the test depends on the kernel and a bandwidth parameter. A simu-

lation study shows that this approach improves the finite sample performance of the

test, for a loss criterion based on the sum of squares of the type I and II errors.

Since the asymptotic distribution depends on the bandwidth parameter, the ques-

tion arises if we can select this parameter such that it minimizes the loss function.

To this extend we approximate the finite sample and limit distribution to construct

a new bandwidth rule. The resulting bandwidth rule performs better in some special

cases but is not uniformly better. A reason for this is that the second order approxi-

mations do not fully reflect the true distributions. Especially, in case of the Bartlett

kernel the difference is too large.

A drawback of the proposed tests is that they solely examine the constancy of the

copula in a particular point. In chapter 5 we construct an overall copula constancy

test. The test is based on the same partial sum process as the point test but examines

the maximum deviation on the complete unit square. To obtain the critical values of

the test we use a bootstrap algorithm. A simulation study shows that the test has

nontrivial power. As before, the power decreases if the number of breaks increases.

We also show that the test outperforms a recently proposed test that examines the

constancy of Spearman’s rankcorrelation coefficient.

The previous chapters provide a clear contribution to the current string of litera-

ture but still some important questions remain.
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Functionals of partial sums

In the fifth chapter we show how to examine the overall constancy of a copula. The

proposed test considers the maximum of the partial sum process at several points in

the unit square. More generally, we could have used other functionals of the same

process. Wied et al. (2010) consider e.g. the integral which can then be related to

dependence measures such as Spearman’s rho. We conjecture that a similar test can

be derived for Kendall’s tau.

Optimal copula constancy tests

The question remains to what extend the developed tests are optimal against a par-

ticular alternative. For example, against the alternative that the copula follows a

mixture of copulas with a break in the weights. Optimality can then be defined in

terms of some weighted average power criterion. That is, we assign weights (proba-

bilities) to different alternatives and we maximize the weighted average of the power

functions (see Andrews and Ploberger (1994), Andrews, Lee and Ploberger (1996)).

Finite sample performance

The bandwidth rule developed in chapter 4 only outperforms the conventional band-

width rule in some special case but is not generally better. A reason for this is that

the second order approximations are insufficient to fully describe the limit and finite

sample distribution. An interesting topic for further research might therefore be to

derive a bandwidth rule under higher order approximations.

The use of fixed-b critical values shows good performance for the loss function

based on the sum of squared errors. An alternative method to improve the finite

sample performance of the test might be to bootstrap the critical values. The question

arises which method is the most favorable one.

Finally, the question remains which kernel function is optimal. Andrews (1991)

showed that under an asymptotic mean square error criterion we should use the

quadratic spectral kernel. It is unclear if this result still holds under the weighted

sum of (squared) errors criterion of chapter 4.
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