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Abstract

We propose a monitoring procedure to test for the constancy of the correlation

coefficient of a sequence of random variables. The idea of the method is that a

historical sample is available and the goal is to monitor for changes in the correlation

as new data become available. We introduce a detector which is based on the

first hitting time of a CUSUM-type statistic over a suitably constructed threshold

function. We derive the asymptotic distribution of the detector and show that the

procedure detects a change with probability approaching unity as the length of the

historical period increases. The method is illustrated by Monte Carlo experiments

and the analysis of a real application with the log-returns of the Standard & Poor’s

500 (S&P 500) and IBM stock assets.
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1. Introduction

The correlation coefficient is the most widely used method to measure dependence be-

tween a sequence of two random variables. In the particular case of financial time series,

the analysis of the correlations between returns are very important in risk management.

Indeed, there is compelling empirical evidence that the correlation structure of financial

returns cannot be assumed to be constant over time, see e.g. Longin and Solnik (1995) and

Krishan et al. (2009). Consequently, in periods of financial crisis, investors are extremely

concerned about changes on correlations because in such periods, the correlation often

increases, a phenomenon which is referred to as “Diversification Meltdown” (Campbell

et al., 2008).

In order to construct an adequate model and to forecast future data, structural stability

is a key point. Testing for structural stability has recently become one of the principal

objectives of statistical analysis. There are two distinctly different approaches to tackle

this problem. On the one hand, the main goal of retrospective procedures is to look

for the presence of change points given an historical dataset of fixed size. On the other

hand, the main goal of sequential detection procedures is to detect as soon as possible

the presence of a change point once new data become available. This article is concerned

with the latter kind of procedures. We adopt the framework in Chu et al. (1996) in which

a historical sample is available and the goal is to monitor for a change point as new

data become available. In particular, we analyze the case of changes in the correlation

structure of a sequence of random variables. Other papers analyzing related problems

under this framework are Chu et al. (1996), Horváth et al. (2004), Aue et al. (2006), Aue

et al. (2009) and Aue et al. (2011), among others.

The paper is organized as follows. Section 2 proposes a monitoring procedure for de-

tecting a correlation change and presents its asymptotic properties under the null and

alternative hypothesis as well. Section 3 analyzes the finite sample properties of the

proposed procedure via Monte Carlo experiments. Section 4 illustrates the procedure by

analyzing log-returns of the S&P 500 and IBM stock assets. Finally, all proofs are given
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in an appendix.

2. The monitoring procedure

Let (Xt, Yt), for t ∈ Z, be a sequence of bivariate random variables with finite 4-th

moments and correlation

ρt =
Cov(Xt, Yt)√
Var(Xt)Var(Yt)

.

We are interested in the hypothesis of correlation stability of the sequence. For that,

assume that we have observed a sequence of the bivariate random vector (Xt, Yt) of size

m. Since we are interested in sequentially monitoring whether or not the correlation

coefficient remain stable over time, we require that the correlation is constant over the

historical period of length m, i.e.:

Assumption 1. ρ1 = . . . = ρm, where m is a positive integer.

Although Assumption 1 may appear a strong assumption, in practice, if a sufficient

amount of historical data is available, it can be analyzed with the retrospective change

point method proposed by Galeano and Wied (2012). Given the results of this procedure,

one can make necessary adjustments to ensure correlation stability. Now, we want to test

the null hypothesis given by:

H0 : ρ1 = . . . = ρm = ρm+1 = . . . .

versus the alternative H1 that ρt changes at some t ≥ m+ 1, i.e.:

H1 : ∃k∗ ≥ 1 : ρ1 = . . . = ρm = . . . = ρm+k∗−1 6= ρm+k∗ = ρm+k∗+1 = . . . ,

where k∗ is referred to as the change point and is assumed unknown.

Denote with ρ̂lk the empirical correlation coefficient calculated from the observations k to
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l with k < l, given by:

ρ̂lk =

∑l
t=k(Xt −Xk,l)(Yt − Y k,l)√∑l

t=k(Xt −Xk,l)2
√∑l

t=k(Yt − Y k,l)2

where Xk,l = 1
l−k+1

∑l
t=kXt and Y k,l = 1

l−k+1

∑l
t=k Yt. The sequential procedure is based

on the detector:

Vk = D̂
k√
m

(
ρ̂m+k
m+1 − ρ̂m1

)
, k ∈ N, (1)

where D̂ is an estimator which is calculated from the first m observations and is given in

the appendix, see also Wied et al. (2011). We stop and declare H0 to be invalid at the

first time k such that the detector Vk exceeds the value of a scaled threshold function w,

therefore yielding the stopping rule:

τm = min

{
k ≤ [mT ] : |Vk| > c · w

(
k

m

)}
, (2)

where T is a positive constant, c is a suitably chosen constant such that under H0,

limm→∞ P(τm < ∞) = α, with α ∈ (0, 1), and w is a positive and continuous function.

Here, we write τm < ∞ to indicate that the monitoring has been terminated during

the testing period, i.e., the detector Vk has crossed the boundary c · w(k/m) for some

k ≤ [mT ]. We write τm = ∞ if the detector has not crossed the boundary during the

testing period (compare Aue et al., 2011). Note that the stopping time τm need not be

the change point; in fact the change point might be before τm. Some comments on the

issue of estimating the change point once this has been detected will be given at the end

of this section.

For deriving asymptotic results under H0, some additional assumptions are necessary.

The next three assumptions correspond to (A1), (A2) and (A3) in Wied et al. (2011).

Assumption 2. For

Ut :=

(
X2
t − E(X2

t ), Y 2
t − E(Y 2

t ), Xt − E(Xt), Yt − E(Yt), XtYt − E(XtYt)

)′
4



and Sj :=
∑j

t=1 Ut, we have

lim
m→∞

E

(
1

m
SmS

′
m

)
=: D1 (finite and positive definite).

Assumption 3. The r-th absolute moments of the components of Ut are uniformly

bounded for some r > 2.

Assumption 4. The vector (Xt, Yt) is L2-NED (near-epoch dependent) with size − r−1
r−2 ,

where r from 3, and constants (ct), t ∈ Z, on a sequence (Vt), t ∈ Z, which is α-mixing of

size φ∗ := − r
r−2 , i.e.

||(Xt, Yt)− E ((Xt, Yt)|σ(Vt−l, . . . , Vt+l))||2 ≤ ctvl

with liml→∞ vl = 0, such that

ct ≤ 2||Ut||2

with Ut from Assumption 3 and the L2-norm || · ||2.

Furthermore, we impose a stationarity condition. This condition might be slightly relaxed

to allow for some fluctuations in the first and second moments (see A4 and A5 in Wied

et al., 2011), but for ease of exposition and because the procedure would keep exactly

the same we stick to this notation.

Assumption 5. (Xt, Yt), t ∈ Z, is weak-sense stationary.

Our main result is then:

Theorem 1. Under H0, Assumptions 1, 2, 3, 4 and 5 and for any T > 0,

lim
m→∞

P(τm <∞) = lim
m→∞

P

(
sup

0≤b≤T

|V[m·b]+2|
w(b)

> c

)
= P

(
sup

0≤b≤T

|G(b)|
w(b)

> c

)
, (3)

where G(·) is a mean zero Gaussian process with covariance E(G(k)G(l)) = min(k, l)+kl.
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Theorem 1 establishes the asymptotic behavior of the monitoring procedure based on

the stopping rule τm in Eq. (2). Following Aue et al. (2011), the limiting probability

in Eq. (3) can be written in an alternative way that allows for finite sample statistical

inference. First, it is easy to see that {G (b) : b ∈ [0, T ]} =d {W (b) + bξ : b ∈ [0, T ]},

where {W (b) : b ≥ 0} is a standard Brownian Motion independent of the standard Gaus-

sian random variable ξ. Then, it is also easy to see that {W (b) + bξ : b ∈ [0, T ]} =d

{(1 + b)W (b/ (1 + b)) : b ∈ [0, T ]} just by comparing their covariance structures. There-

fore,

sup
0≤b≤T

|G(b)|
w(b)

=d sup
0≤b≤T

1 + b

w (b)
W

(
b

1 + b

)
. (4)

Eq. (4) leads to an obvious choice of the threshold function: take w (b) = 1 + b, because

in this case:

sup
0≤b≤T

|G(b)|
w(b)

=d sup
0≤b≤T

∣∣∣∣W (
b

1 + b

)∣∣∣∣ .
With this expression, quantiles of interest can be easily simulated with Monte Carlo

methods. However, once there occurs a change point, it is very important to quickly

detect it. Therefore, we consider a kind of generalization of this threshold function,

previously considered in Horváth et al. (2004), which is given by:

w (b) = (1 + b)

(
b

1 + b

)γ
, (5)

where 0 ≤ γ < 1
2
. Note that, if a correlation change occurs soon after the historical

dataset, then, choosing γ as large as possible, the stopping rule τm will stop nearly

instantaneously. Note that γ = 1/2 is excluded, since H0 would else be rejected with

probability one regardless whether it is true or not because of the law of the iterated

logarithm for Brownian Motions at zero, see Aue et al. (2009). Using the threshold

function in Eq. (5) and calling u = b/ (1 + b), Eq. (4) leads to:

sup
0≤b≤T

|G(b)|
w(b)

=d sup
0≤u≤ T

T+1

1

uγ
|W (u)|. (6)
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Finally, calling s = u (T + 1) /T and taking into account that W (u) has the same covari-

ance structure as
√

T
1+T

W (s), Eq. (6) transforms into:

sup
0≤b≤T

|G(b)|
w(b)

=d

(
T

1 + T

) 1
2
−γ

sup
0≤s≤1

1

sγ
|W (s)|. (7)

Therefore, under the conditions in Theorem 1:

lim
m→∞

P(τm <∞) = P

((
T

1 + T

) 1
2
−γ

sup
0≤s≤1

1

sγ
|W (s)| > c

)

and Monte Carlo simulations can be used to obtain the constant c (α) such that:

P

((
T

1 + T

) 1
2
−γ

sup
0≤s≤1

1

sγ
|W (s)| > c (α)

)
= α,

for any α ∈ (0, 1). In this way, the probability of a false change point is approximately α

if m is large enough.

For a local power analysis, we impose the assumption

Assumption 6. (Xt, Yt), t ∈ Z, is weak-sense stationary with the difference that Cov(Xt, Yt) =

1√
m
g
(
t
m

)
with a bounded function g which is can be approximated by step functions such

that g(z) = 0, z ∈ [0, 1], and
∫ T+1

1
|g(z)|dz > 0.

Theorem 2 yields consistency of the monitoring procedure. Therefore, a correlation

change will be detected with high probability if the historical period is large enough.

Theorem 2. Under a sequence of local alternatives, Assumptions 1, 2, 3, 4, 5 and 6 and

for any T > 0,

lim
m→∞

P(τm <∞) = lim
m→∞

P

(
sup

0≤b≤T

|V[m·b]+2|
w(b)

> c

)
= P

(
sup

0≤b≤T

|G(b) + h(b)|
w(b)

> c

)
,

where G(·) is a mean zero Gaussian process with covariance E(G(k)G(l)) = min(k, l) +

kl and h(b) = H
(∫ b+1

1
g(z)dz − b ·

∫ 1

0
g(z)dz

)
for a constant H depending on the data
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generating process.

Once the presence of a correlation change is detected, an estimate of its location is

provided by using the statistic proposed in Wied et al. (2011). The estimate of the

change point is k̂ = arg max
1≤j≤τm−1

Dτm with

Dτm := D̂
j
√
τm

∣∣ρ̂m+j
m+1 − ρ̂m+τm−1

m+1

∣∣ . (8)

Note that we do not use the historical period to compute the value of the statistic Dτm

but only the observations from m+1 to m+τm−1. Monte Carlo experiments have shown

that the inclusion of the historical period severely distorts the estimates of the change

point location. A theoretical analysis of this estimator is out of the scope of this paper.

3. Simulations

In this section, we report the results of the Monte Carlo experiments that we have per-

formed to assess the finite sample performance of the proposed monitoring procedure. In

all the experiments, we consider three different values of the parameter γ of the threshold

function w(t) in Eq. (5), γ = 0, 0.25 and 0.45. Figure 1 shows the plot of the three

threshold functions considered. Note that the larger values of γ, the smaller the values

of w(t). The threshold function with γ = 0.45 is expected to allow for a quick detection

of early change points. On the other hand, we consider four different values of the size

of the historical sample, m = 250, 500 and 1000. Note that these values are specially

designated for financial returns in which we can consider large historical samples. Finally,

we consider four values of the parameter T , T = 0.5, 1, 2 and 4. Note that these values

cover a large number of sample sizes of the generated bivariate series which is given by

n = m + [Tm]. For instance, for m = 500, the sample sizes of the series generated are

750, 1000, 1500 and 2500, respectively.

Figure 1 goes around here
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First, we obtain critical values to apply the monitoring procedure for the different values

considered of γ and T . Table 1 shows the critical values at level α = 0.05 based on 10000

standard Brownian Motion processes approximated on a grid of 10000 equispaced points

in the interval [0, 1]. Note that the critical values increases with T and/or with γ as

expected.

Table 1 goes around here

Second, in order to obtain empirical sizes of the monitoring procedure, we generate 1000

bivariate series (Xt, Yt), for t = 1, . . . , n, and any choice of γ, T and m, as follows.

Initially, we generate two series
(
X̃t, Ỹt

)
, for t = 1, . . . , n, independently, following the

GARCH(1, 1) models given by:

X̃t =
√
h1,tε1,t

h1,t = 0.01 + 0.05X̃2
t−1 + 0.8h1,t−1

and,

Ỹt =
√
h2,tε2,t

h2,t = 0.01 + 0.1Ỹ 2
t−1 + 0.75h2,t−1

respectively, where ε1,t and ε2,t are standard Gaussian distributed. Then, we transform

the bivariate series
(
X̃t, Ỹt

)
into (Xt, Yt) by multiplying each value of the pair

(
X̃t, Ỹt

)
with Σ1/2 where Σ is a square symmetric matrix with ones in the main diagonal and with

ρ = 0.5 outside the main diagonal. Then, the correlation between Xt and Yt is ρ = 0.5.

Afterwards, for each simulated dataset, we apply the monitoring procedure from time

m+ 1 until time n, with level α = 0.05. Table 2 reports the simulated empirical sizes for

the monitoring procedure based on the detector Vk. In most cases, the simulated empirical

sizes slightly exceed the nominal sizes, specially for γ = 0.45. However, empirical and
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nominal sizes get closer as m increases which is reasonable based on the results in section

2. Also, larger empirical sizes are found as γ gets larger and m is small. Therefore, if

a correlation change is expected to occur not shortly after the historical period and we

want to minimize the type I error, the choice of the threshold function with γ = 0 appears

to be appropriate. However, if a correlation change is expected to occur shortly after the

historical period and we want to detect it as soon as possible even if false change point

can happen, it is better the threshold function with γ = 0.45.

Table 2 goes around here

Third, in order to estimate the power of the monitoring procedure, the Monte Carlo

setup is similar to the one described previously, but the series are generated with a single

change point in the correlation at two different positions k = [0.05mT ] and k = [0.5mT ],

in which ρ = 0.5 increases to ρ = 0.75. Therefore, the first m observations have the same

correlation coefficient, that changes after k observations of the monitoring time. The first

change point is at the initial 5% of the monitoring time, so that it is specially designated to

estimate the power of the procedure in situations in which the change point occurs shortly

after the historical period. The second change point is at the middle of the monitoring

time, so that it is specially designated to estimate the power of the procedure in situations

in which the change point does not occur shortly after the historical period. Tables 3,

4, 5, 6, 7 and 8 show the results for the three possible values of the γ parameter, γ = 0,

0.25 and 0.45, and the two possible change points, k = [0.05mT ] and k = [0.5mT ]. These

tables show the empirical power of the procedure and a summary of both, the empirical

stopping time distribution and the estimated change points, including the quartiles, the

mean, the standard deviation and the coefficient of variation. The tables show that the

power increases with m and it can be large except in cases in which m and T are small.

Besides, the power for early changepoints is larger than the power for changes at the

middle of the monitoring period. Regarding the empirical stopping time distribution, if
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a change occurs shortly after the beginning of the monitoring period, then the threshold

function with γ = 0.45 have the shortest detection delay time. However, for a change

point at the middle of the monitoring period with m = 250 and m = 500, the first

quartiles of the empirical stopping times with γ = 0.45 are very small indicating that

is more likely to falsely detect a correlation change even before it occurred. On the

other hand, regarding the change point estimates, we can observe that the estimates of

the change point at the beginning of the monitoring period are upward biased, while

the estimates of the change point at the middle of the monitoring period are downward

biased. However, in both cases, the bias reduces substantially if m and/or T increases. In

any case, the precision of the change point detection estimate is quite acceptable specially

when the power is large.

In summary, if the bivariate series is going to be monitored for a long time and the

type I error is to be avoided, or if a change in the correlation is expected to occur not

shortly after the beginning of monitoring period, the threshold function with γ = 0 may

be a good choice. However, if the focus is to detect a change point in the correlation

as soon as possible, even if a false change point is accepted, and if the change point is

expected to occur shortly after the beginning of monitoring period, then it is better to

use γ = 0.45. Alternately, the threshold function with γ = 0.25 appears to be a good

compromise between the previous frameworks.

Table 3 goes around here

Table 4 goes around here

Table 5 goes around here

Table 6 goes around here

Table 7 goes around here

Table 8 goes around here
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4. Real data example

In this section, we apply the proposed monitoring procedure discussed in section 2 to

a real data example. Galeano and Wied (2012) analyzed the log-return series of two

U.S. assets: the Standard & Poors 500 Index and the IBM stock using a posteriori

change point tests. In particular, Galeano and Wied (2012) considered the sample period

starting from January 2, 1997 to December 31, 2010 consisting of n = 3524 observations,

that are plotted in Figure 2. The binary segmentation procedure proposed in that paper

detected a first change point at August 19, 1999 (observation number 664), that can be

associated with the collapse of the dot-com bubble started at the end of the 1990s and

the beginning of the 2000s, and a second change point at November 12, 2007 (observation

number 2734), that can be associated with the beginning of the Global Financial Crisis

around the end of 2007, which is considered by many economists the worst financial crisis

since the Great Depression of the 1930s.

Figure 2 goes around here

Here, we apply the proposed monitoring procedure as follows. The analysis in Galeano

and Wied (2012) indicated that the correlations between both log-returns remained con-

stant for the period starting from January 2, 1997 to August 19, 1999. Then, we use the

log-returns from January, 2, 1997 until May, 28, 1999, as the historical period, i.e., we

take m = 607. If no correlation changes are found after n−m = 2917 observations (then,

T = 4.8056) the procedure would be terminated. Otherwise, a change point is detected

and a new historical period is defined with m = 607. Then, the monitoring procedure is

applied again in a similar fashion. The results of our analysis are summarized in Table 9

for the three threshold functions with γ = 0, 0.25 and 0.45, for which the corresponding

critical values at 5% level are 2.0510 for γ = 0, 2.2630 for γ = 0.25, and 2.7435 for

γ = 0.45, respectively. The proposed procedure with the three values of the threshold

functions detects four change points sequentially. Regarding the first hitting times, the
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procedure with γ = 0.45 has the shortest detection delay time whereas the procedure

with γ = 0 the longest. This is in accordance with the Monte Carlo experiments in

section 3. Regarding the estimated change points, the procedure with the three values

gives very similar estimates. Indeed, the first and the last detected change points coincide

with the ones given in Galeano and Wied (2012). Finally, Table 10 shows the empirical

correlations between the Standard & Poors 500 and IBM log-returns in the periods given

by the monitoring procedure. As it can be seen, there are substantial differences between

correlations at different periods.

Table 9 goes around here

Table 10 goes around here
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“Sequential testing for the stability of high frequency portfolio betas,” Econometric

Theory, forthcoming, doi: 10.1017/S0266466611000673.
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Wied, D., W. Krämer, and H. Dehling (2011): “Testing for a change in correlation

at an unknown point in time using an extended functional delta method,” Econometric

Theory, forthcoming, doi: 10.1017/S0266466611000661.

14



A. Appendix

A.1. The scalar D̂ from the test statistic in Eq. (1)

The scalar D̂ from our test statistic in Eq. (1) based on observations from t = 1, . . . , r

can be written as

D̂ = (F̂1D̂3,1 + F̂2D̂3,2 + F̂3D̂3,3)
− 1

2

where

(
F̂1 F̂2 F̂3

)
=


D̂3,1Ê11 + D̂3,2Ê21 + D̂3,3Ê31

D̂3,1Ê12 + D̂3,2Ê22 + D̂3,3Ê32

D̂3,1Ê13 + D̂3,2Ê23 + D̂3,3Ê33


′

,

Ê11 = D̂1,11 − 4µ̂xD̂1,13 + 4µ̂2
xD̂1,33,

Ê12 = Ê21 = D̂1,12 − 2µ̂xD̂1,23 − 2µ̂yD̂1,14 + 4µ̂xµ̂yD̂1,34,

Ê22 = D̂1,22 − 4µ̂yD̂1,24 + 4µ̂2
yD̂1,44,

Ê13 = Ê31 = −µ̂yD̂1,13 + 2µ̂xµ̂yD̂1,33 − µ̂xD̂1,14 + 2µ̂2
xD̂1,34 + D̂1,15 − 2µ̂xD̂1,35,

Ê23 = Ê32 = −µ̂yD̂1,23 + 2µ̂xµ̂yD̂1,44 − µ̂xD̂1,24 + 2µ̂2
yD̂1,34 + D̂1,25 − 2µ̂yD̂1,45,

Ê33 = µ̂2
yD̂1,33 + 2µ̂xµ̂yD̂1,34 − 2µ̂yD̂1,35 + µ̂2

xD̂1,44 + D̂1,55 − 2µ̂xD̂1,45,

D̂1 =



D̂1,11 D̂1,12 D̂1,13 D̂1,14 D̂1,15

D̂1,21 D̂1,22 D̂1,23 D̂1,24 D̂1,25

D̂1,31 D̂1,32 D̂1,33 D̂1,34 D̂1,35

D̂1,41 D̂1,42 D̂1,43 D̂1,44 D̂1,45

D̂1,51 D̂1,52 D̂1,53 D̂1,54 D̂1,55


=

r∑
t=1

r∑
u=1

k

(
t− u
δr

)
VtVu

′,
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Vt =
1√
r
U∗∗∗t , δr = [log r],

U∗∗∗t =

(
X2
t − (X2)r Y 2

t − (Y 2)r Xt − X̄r Yt − Ȳr XtYt − (XY )r

)′
,

k(x) =


1− |x|, |x| ≤ 1

0, otherwise

,

µ̂x = X̄r, µ̂y = Ȳr, D̂3,1 = −1

2

σ̂xy
σ̂y
σ̂−3x , D̂3,2 = −1

2

σ̂xy
σ̂x

σ̂−3y , D̂3,3 =
1

σ̂xσ̂y

and

σ̂2
x = (X2)r − (X̄r)

2, σ̂2
y = (Y 2)r − (Ȳr)

2, σ̂xy = (XY )r − X̄rȲr.

This is the same expression as in Appendix A.1 in Wied et al. (2011).

A.2. Proofs

Proof of Theorem 1

The proof mainly bases on the fact that for given c < d, constants e1, e2 not depending

on m and m→∞ the process

D̂
[m · d]− [m · c]√

m
(ρ̂

[m·d]+e2
[m·c]+e1 − ρ1)

converges in distribution to the process W (b)−W (a) with W (·) being a standard Brow-

nian Motion. This result anon is a minor generalization of Lemma 3 in Wied et al.

(2011).

16



With it, we obtain, for 0 ≤ b ≤ T , that

V[m·b]+2 = D̂
[m · b] + 2√

m

(
ρ̂
m+[m·b]+2
m+1 − ρ̂m1

)
= D̂

[m · b] + 2√
m

(
ρ̂
m+[m·b]+2
m+1 − ρ1

)
− D̂ [m · b] + 2√

m
(ρ̂m1 − ρ1)

converges to the process (W (b + 1) − W (1)) − b · W (1) = W (b + 1) − (b + 1) · W (1).

Applying the continuous mapping theorem and calculating the covariance structure of

the limit process proves the result. �

Proof of Theorem 2

The proof uses the same arguments as Theorem 1 and mainly bases on the fact that for

given c < d, constants e1, e2 not depending on m and m→∞ the process

D̂
[m · d]− [m · c]√

m
(ρ̂

[m·d]+e2
[m·c]+e1 − ρ1)

converges in distribution to the process W (b) − W (a) +
∫ b
a
g(z)dz with W (·) being a

standard Brownian Motion. This result anon is a minor generalization of arguments used

in Theorem 2 in Wied et al. (2011). The constant H is then the limit of D̂ under the

null hypothesis, compare the proof of Theorem 2 in Wied et al. (2011). �
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Figure 1: Threshold functions for different values of γ

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

2.0

Threshold functions

t

w(
t)

gamma=0
gamma=0.25
gamma=0.45

Table 1: Critical values.
T γ = 0 γ = 0.25 γ = 0.45
0.5 1.2870 1.8001 2.6282
1 1.5578 1.9924 2.6844
2 1.8158 2.1684 2.7215
4 1.9980 2.2467 2.7660

Table 2: Empirical sizes.
T m = 250 m = 500 m = 1000
0.5 0.059 0.058 0.050

γ = 0 1 0.077 0.069 0.061
2 0.066 0.054 0.057
4 0.063 0.071 0.060

0.5 0.075 0.079 0.047
γ = 0.25 1 0.075 0.064 0.057

2 0.087 0.063 0.052
4 0.073 0.077 0.064

0.5 0.169 0.125 0.109
γ = 0.45 1 0.174 0.136 0.116

2 0.164 0.138 0.109
4 0.161 0.128 0.106
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Figure 2: Log-retuns of S&P 500 and IBM indexes
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Table 9: Results of the monitoring procedure for three values of γ (EFHT stands for empirical
first hitting times).

γ = 0 γ = 0.25 γ = 0.45
EFHT Est. changepoints EFHT Est. changepoints EFHT Est. changepoints

984 665 (1999/08/20) 808 682 (1999/09/15) 772 682 (1999/09/15)
1580 1399 (2002/07/25) 1554 1399 (2002/07/25) 1529 1399 (2002/07/25)
2222 2196 (2005/09/22) 2209 2053 (2005/03/01) 2208 2053 (2005/03/01)
3014 2936 (2008/09/02) 2945 2733 (2007/11/09) 2890 2733 (2007/11/09)

Table 10: Empirical correlations at different periods.
Period γ = 0 γ = 0.25 γ = 0.45

1 0.6274 0.6237 0.6237
2 0.5245 0.5264 0.5264
3 0.7249 0.7410 0.7410
4 0.6033 0.5364 0.5364
5 0.8021 0.7800 0.7800
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