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Abstract

We propose a monitoring procedure to test for the constancy of the correlation
coefficient of a sequence of random variables. The idea of the method is that a
historical sample is available and the goal is to monitor for changes in the correlation
as new data become available. We introduce a detector which is based on the
first hitting time of a CUSUM-type statistic over a suitably constructed threshold
function. We derive the asymptotic distribution of the detector and show that the
procedure detects a change with probability approaching unity as the length of the
historical period increases. The method is illustrated by Monte Carlo experiments
and the analysis of a real application with the log-returns of the Standard & Poor’s

500 (S&P 500) and IBM stock assets.
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1. INTRODUCTION

The correlation coefficient is the most widely used method to measure dependence be-
tween a sequence of two random variables. In the particular case of financial time series,
the analysis of the correlations between returns are very important in risk management.
Indeed, there is compelling empirical evidence that the correlation structure of financial
returns cannot be assumed to be constant over time, see e.g. Longin and Solnik (1995) and
Krishan et al. (2009). Consequently, in periods of financial crisis, investors are extremely
concerned about changes on correlations because in such periods, the correlation often
increases, a phenomenon which is referred to as “Diversification Meltdown” (Campbell
et al., 2008).

In order to construct an adequate model and to forecast future data, structural stability
is a key point. Testing for structural stability has recently become one of the principal
objectives of statistical analysis. There are two distinctly different approaches to tackle
this problem. On the one hand, the main goal of retrospective procedures is to look
for the presence of change points given an historical dataset of fixed size. On the other
hand, the main goal of sequential detection procedures is to detect as soon as possible
the presence of a change point once new data become available. This article is concerned
with the latter kind of procedures. We adopt the framework in Chu et al. (1996) in which
a historical sample is available and the goal is to monitor for a change point as new
data become available. In particular, we analyze the case of changes in the correlation
structure of a sequence of random variables. Other papers analyzing related problems
under this framework are Chu et al. (1996), Horvéth et al. (2004), Aue et al. (2006), Aue
et al. (2009) and Aue et al. (2011), among others.

The paper is organized as follows. Section 2 proposes a monitoring procedure for de-
tecting a correlation change and presents its asymptotic properties under the null and
alternative hypothesis as well. Section 3 analyzes the finite sample properties of the
proposed procedure via Monte Carlo experiments. Section 4 illustrates the procedure by

analyzing log-returns of the S&P 500 and IBM stock assets. Finally, all proofs are given



in an appendix.

2. THE MONITORING PROCEDURE

Let (X, Y;), for t € Z, be a sequence of bivariate random variables with finite 4-th

moments and correlation
_ Cov(X,,Y))
V/Var(X;)Var(Y;)

Pt

We are interested in the hypothesis of correlation stability of the sequence. For that,
assume that we have observed a sequence of the bivariate random vector (X;,Y;) of size
m. Since we are interested in sequentially monitoring whether or not the correlation
coefficient remain stable over time, we require that the correlation is constant over the

historical period of length m, i.e.:
Assumption 1. p; = ... = p,,, where m is a positive integer.

Although Assumption 1 may appear a strong assumption, in practice, if a sufficient
amount of historical data is available, it can be analyzed with the retrospective change
point method proposed by Galeano and Wied (2012). Given the results of this procedure,
one can make necessary adjustments to ensure correlation stability. Now, we want to test

the null hypothesis given by:

Hy:pr=...=pm =Pmy1=-...

versus the alternative H; that p; changes at some t > m + 1, i.e.

Hi 3" >1:p1=...=pm= .. = Pimik—1 F Ptk = Pmakitl = -

where k* is referred to as the change point and is assumed unknown.

Denote with pl the empirical correlation coefficient calculated from the observations k to



[ with k < [, given by:

b= S (X = X)) (Y, = Vi)
ko - J—
\/Zylf:k(Xt - Xk,l)Q\/ng:k(Yt —Y5,)?

where Yk;,l = ﬁ Zi:k X; and ?k,l = ﬁ Zi:k Y;. The sequential procedure is based
on the detector:
k

Vie = D\/—% (Pl —p") , k €N, (1)

where D is an estimator which is calculated from the first m observations and is given in
the appendix, see also Wied et al. (2011). We stop and declare Hy to be invalid at the
first time k such that the detector V}, exceeds the value of a scaled threshold function w,

therefore yielding the stopping rule:

Tm:min{k§[mT]:]Vk\>c«w(%>}, (2)

where T is a positive constant, ¢ is a suitably chosen constant such that under Hy,
lim,,, oo P(7 < 00) = «, with @ € (0,1), and w is a positive and continuous function.
Here, we write 7, < oo to indicate that the monitoring has been terminated during
the testing period, i.e., the detector Vi has crossed the boundary ¢ - w(k/m) for some
k < [mT]. We write 7,, = oo if the detector has not crossed the boundary during the
testing period (compare Aue et al., 2011). Note that the stopping time 7, need not be
the change point; in fact the change point might be before 7,,. Some comments on the
issue of estimating the change point once this has been detected will be given at the end
of this section.

For deriving asymptotic results under Hj,, some additional assumptions are necessary.

The next three assumptions correspond to (Al), (A2) and (A3) in Wied et al. (2011).

Assumption 2. For

/
U = (Xg —E(X?), Y2-E(Y?), X;—EX), Yi—EY), XY;— E(Xth))
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P Y/
and S; == ) ;,_, Uy, we have

1
lim E (—SmS;n> =: Dy (finite and positive definite).
m

m—r0o0

Assumption 3. The r-th absolute moments of the components of Uy are uniformly

bounded for some r > 2.

Assumption 4. The vector (Xy,Y;) is Lo-NED (near-epoch dependent) with size —"—

r—27

where r from 3, and constants (¢;),t € Z, on a sequence (V;),t € Z, which is a-mizing of

size 9* 1= — 5, i.e.

(X0 Y2) = E((X0 YD oWty Vel < ety
with lim;_,., v; = 0, such that
cr < 2||Ui]2

with Uy from Assumption 3 and the Lao-norm || - ||o.

Furthermore, we impose a stationarity condition. This condition might be slightly relaxed
to allow for some fluctuations in the first and second moments (see A4 and A5 in Wied
et al., 2011), but for ease of exposition and because the procedure would keep exactly

the same we stick to this notation.
Assumption 5. (X,,Y)),t € Z, is weak-sense stationary.
Our main result is then:

Theorem 1. Under Hy, Assumptions 1, 2, 3, 4 and 5 and for any T > 0,

Vim. b
limP(Tm<oo)—limP<sup|[—M>c)—P(supm>c), (3)

m—00 m—00 0<b<T U)(b) 0<b<T 'Z,U(b)

where G(+) is a mean zero Gaussian process with covariance E(G(k)G(l)) = min(k, ) +kl.
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Theorem 1 establishes the asymptotic behavior of the monitoring procedure based on
the stopping rule 7,,, in Eq. (2). Following Aue et al. (2011), the limiting probability
in Eq. (3) can be written in an alternative way that allows for finite sample statistical
inference. First, it is easy to see that {G (b) : b€ [0,T]} =4 {W (b) + b€ : b€ [0,T]},
where {W (b) : b > 0} is a standard Brownian Motion independent of the standard Gaus-
sian random variable . Then, it is also easy to see that {W (b) + 0 :b € [0,T]} =4
{1+0)W (b/(1+0b)):be[0,T]} just by comparing their covariance structures. There-

fore,

|G(D)] 1+0b < b )
— = w ) 4
OilblgT w(b) I oilblgT w (b) 1+0b (4)

Eq. (4) leads to an obvious choice of the threshold function: take w (b) = 1 4 b, because

v ()]

With this expression, quantiles of interest can be easily simulated with Monte Carlo

in this case:
|G (b
sup —->+ =4 Ssup
o<b<r w(b) " o<b<T

methods. However, once there occurs a change point, it is very important to quickly
detect it. Therefore, we consider a kind of generalization of this threshold function,

previously considered in Horvath et al. (2004), which is given by:

w®) =40 (115) Q

1
5

where 0 < v < Note that, if a correlation change occurs soon after the historical
dataset, then, choosing v as large as possible, the stopping rule 7,, will stop nearly
instantaneously. Note that v = 1/2 is excluded, since Hy would else be rejected with
probability one regardless whether it is true or not because of the law of the iterated
logarithm for Brownian Motions at zero, see Aue et al. (2009). Using the threshold
function in Eq. (5) and calling u = b/ (1 + b), Eq. (4) leads to:

sp 1GO1_ gy L), (6)

o<b<r w(b) 0<us< T U



Finally, calling s = u (T'+ 1) /T and taking into account that W (u) has the same covari-

ance structure as /1= W (s), Bq. (6) transforms into:

NI

aw_,( 1y, 1
prm— —_— _W ) 7
s w \irr) S E el (7)

Therefore, under the conditions in Theorem 1:

, T o\ 1
n%l_r)nOOP(Tm <o0)=P (H—T> 06;121 87|W(s)| > c

and Monte Carlo simulations can be used to obtain the constant ¢ («) such that:

o (T 3 1
<1+—T) s L) > cla) ) = a,

for any o € (0,1). In this way, the probability of a false change point is approximately «
if m is large enough.

For a local power analysis, we impose the assumption

Assumption 6. (X, Y;),t € Z, is weak-sense stationary with the difference that Cov(X;,Y;) =
\/ng (%) with a bounded function g which is can be approximated by step functions such
that g(z) =0,z € [0,1], and flTH lg(2)]|dz > 0.

Theorem 2 yields consistency of the monitoring procedure. Therefore, a correlation

change will be detected with high probability if the historical period is large enough.

Theorem 2. Under a sequence of local alternatives, Assumptions 1, 2, 3, 4, 5 and 6 and

for any T > 0,
Vim.
lim P(7, < c0) = lim P(sup M>c> :P(sup M>c>,
m—00 m—00 0<b<T w(b) 0<b<T ’U}(b)

where G(+) is a mean zero Gaussian process with covariance E(G(k)G(l)) = min(k,1) +

1

kl and h(b) = H( " g(2)dz —b- fol g(z)dz) for a constant H depending on the data
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generating process.

Once the presence of a correlation change is detected, an estimate of its location is
provided by using the statistic proposed in Wied et al. (2011). The estimate of the

change point is k= argmax D, ~with
1<j<Tm—1

g

D, =D
m \/ﬁ

Pt = o (8)

Note that we do not use the historical period to compute the value of the statistic D,
but only the observations from m+1 to m+7,, —1. Monte Carlo experiments have shown
that the inclusion of the historical period severely distorts the estimates of the change

point location. A theoretical analysis of this estimator is out of the scope of this paper.

3. SIMULATIONS

In this section, we report the results of the Monte Carlo experiments that we have per-
formed to assess the finite sample performance of the proposed monitoring procedure. In
all the experiments, we consider three different values of the parameter ~ of the threshold
function w(t) in Eq. (5), v = 0, 0.25 and 0.45. Figure 1 shows the plot of the three
threshold functions considered. Note that the larger values of 7, the smaller the values
of w(t). The threshold function with v = 0.45 is expected to allow for a quick detection
of early change points. On the other hand, we consider four different values of the size
of the historical sample, m = 250, 500 and 1000. Note that these values are specially
designated for financial returns in which we can consider large historical samples. Finally,
we consider four values of the parameter T, T'= 0.5, 1, 2 and 4. Note that these values
cover a large number of sample sizes of the generated bivariate series which is given by
n = m + [I'm]. For instance, for m = 500, the sample sizes of the series generated are

750, 1000, 1500 and 2500, respectively.

Figure 1 goes around here



First, we obtain critical values to apply the monitoring procedure for the different values
considered of v and T'. Table 1 shows the critical values at level & = 0.05 based on 10000
standard Brownian Motion processes approximated on a grid of 10000 equispaced points
in the interval [0,1]. Note that the critical values increases with 7" and/or with ~ as

expected.
Table 1 goes around here

Second, in order to obtain empirical sizes of the monitoring procedure, we generate 1000
bivariate series (X, Y;), for t = 1,...,n, and any choice of 7, T" and m, as follows.
Initially, we generate two series (f(t, ﬁ), for t = 1,...,n, independently, following the
GARCH(1, 1) models given by:

)N(t =V hl,t€1,t

his = 0.01 4 0.05X2 , 4 0.8h1 4,

and,

372 =V h2,t€2,t

hoy = 0.01 +0.1Y2, +0.75hy, 4

respectively, where €;, and €;; are standard Gaussian distributed. Then, we transform
the bivariate series <)Zt, )N/t> into (X;,Y;) by multiplying each value of the pair ()N(t, fﬁ)
with ¥1/2 where ¥ is a square symmetric matrix with ones in the main diagonal and with
p = 0.5 outside the main diagonal. Then, the correlation between X; and Y; is p = 0.5.
Afterwards, for each simulated dataset, we apply the monitoring procedure from time
m + 1 until time n, with level @ = 0.05. Table 2 reports the simulated empirical sizes for
the monitoring procedure based on the detector V). In most cases, the simulated empirical

sizes slightly exceed the nominal sizes, specially for v = 0.45. However, empirical and
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nominal sizes get closer as m increases which is reasonable based on the results in section
2. Also, larger empirical sizes are found as v gets larger and m is small. Therefore, if
a correlation change is expected to occur not shortly after the historical period and we
want to minimize the type I error, the choice of the threshold function with v = 0 appears
to be appropriate. However, if a correlation change is expected to occur shortly after the
historical period and we want to detect it as soon as possible even if false change point

can happen, it is better the threshold function with v = 0.45.

Table 2 goes around here

Third, in order to estimate the power of the monitoring procedure, the Monte Carlo
setup is similar to the one described previously, but the series are generated with a single
change point in the correlation at two different positions k = [0.05m7T] and k = [0.5mT],
in which p = 0.5 increases to p = 0.75. Therefore, the first m observations have the same
correlation coefficient, that changes after k observations of the monitoring time. The first
change point is at the initial 5% of the monitoring time, so that it is specially designated to
estimate the power of the procedure in situations in which the change point occurs shortly
after the historical period. The second change point is at the middle of the monitoring
time, so that it is specially designated to estimate the power of the procedure in situations
in which the change point does not occur shortly after the historical period. Tables 3,
4,5, 6,7 and 8 show the results for the three possible values of the v parameter, v = 0,
0.25 and 0.45, and the two possible change points, k = [0.05m7] and k = [0.5mT|. These
tables show the empirical power of the procedure and a summary of both, the empirical
stopping time distribution and the estimated change points, including the quartiles, the
mean, the standard deviation and the coefficient of variation. The tables show that the
power increases with m and it can be large except in cases in which m and T" are small.
Besides, the power for early changepoints is larger than the power for changes at the

middle of the monitoring period. Regarding the empirical stopping time distribution, if
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a change occurs shortly after the beginning of the monitoring period, then the threshold
function with v = 0.45 have the shortest detection delay time. However, for a change
point at the middle of the monitoring period with m = 250 and m = 500, the first
quartiles of the empirical stopping times with v = 0.45 are very small indicating that
is more likely to falsely detect a correlation change even before it occurred. On the
other hand, regarding the change point estimates, we can observe that the estimates of
the change point at the beginning of the monitoring period are upward biased, while
the estimates of the change point at the middle of the monitoring period are downward
biased. However, in both cases, the bias reduces substantially if m and/or 7" increases. In
any case, the precision of the change point detection estimate is quite acceptable specially
when the power is large.

In summary, if the bivariate series is going to be monitored for a long time and the
type I error is to be avoided, or if a change in the correlation is expected to occur not
shortly after the beginning of monitoring period, the threshold function with v = 0 may
be a good choice. However, if the focus is to detect a change point in the correlation
as soon as possible, even if a false change point is accepted, and if the change point is
expected to occur shortly after the beginning of monitoring period, then it is better to
use v = 0.45. Alternately, the threshold function with v = 0.25 appears to be a good

compromise between the previous frameworks.

Table 3 goes

Table 4 goes

Table 5 goes

Table 6 goes

Table 7 goes

Table 8 goes

around here

around here

around here

around here

around here

around here
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4. REAL DATA EXAMPLE

In this section, we apply the proposed monitoring procedure discussed in section 2 to
a real data example. Galeano and Wied (2012) analyzed the log-return series of two
U.S. assets: the Standard & Poors 500 Index and the IBM stock using a posteriori
change point tests. In particular, Galeano and Wied (2012) considered the sample period
starting from January 2, 1997 to December 31, 2010 consisting of n = 3524 observations,
that are plotted in Figure 2. The binary segmentation procedure proposed in that paper
detected a first change point at August 19, 1999 (observation number 664), that can be
associated with the collapse of the dot-com bubble started at the end of the 1990s and
the beginning of the 2000s, and a second change point at November 12, 2007 (observation
number 2734), that can be associated with the beginning of the Global Financial Crisis
around the end of 2007, which is considered by many economists the worst financial crisis

since the Great Depression of the 1930s.

Figure 2 goes around here

Here, we apply the proposed monitoring procedure as follows. The analysis in Galeano
and Wied (2012) indicated that the correlations between both log-returns remained con-
stant for the period starting from January 2, 1997 to August 19, 1999. Then, we use the
log-returns from January, 2, 1997 until May, 28, 1999, as the historical period, i.e., we
take m = 607. If no correlation changes are found after n —m = 2917 observations (then,
T = 4.8056) the procedure would be terminated. Otherwise, a change point is detected
and a new historical period is defined with m = 607. Then, the monitoring procedure is
applied again in a similar fashion. The results of our analysis are summarized in Table 9
for the three threshold functions with v = 0, 0.25 and 0.45, for which the corresponding
critical values at 5% level are 2.0510 for v = 0, 2.2630 for v = 0.25, and 2.7435 for
v = 0.45, respectively. The proposed procedure with the three values of the threshold

functions detects four change points sequentially. Regarding the first hitting times, the

12



procedure with v = 0.45 has the shortest detection delay time whereas the procedure
with v = 0 the longest. This is in accordance with the Monte Carlo experiments in
section 3. Regarding the estimated change points, the procedure with the three values
gives very similar estimates. Indeed, the first and the last detected change points coincide
with the ones given in Galeano and Wied (2012). Finally, Table 10 shows the empirical
correlations between the Standard & Poors 500 and IBM log-returns in the periods given
by the monitoring procedure. As it can be seen, there are substantial differences between

correlations at different periods.

Table 9 goes around here

Table 10 goes around here
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A. APPENDIX

A.1. The scalar D from the test statistic in Eq. (1)

The scalar D from our test statistic in Eq. (1) based on observations from t = 1, ...

can be written as
- PN PN N
D = (FiD31 + FyD35 + F3D33) "2

where

/

D3,1E11 + D3,2E21 + D3,357731
(F1 FQ F3> = D3,1E12 + 153,2EA22 + D3,3E32 )
D3,1 El3 + ﬁ3,2E23 + b3,3E33

Eu = Dl,n — 4ﬂxD1,13 + 4/13;151,33»

By = Ey = Dy 1o — 21, D1 95 — Qﬂyﬁl,m + 4/19:/%[71,34,

E22 = D1,22 - 4ﬂyD1,24 + 4/132/D1,44,

By = B3 = —/lyﬁ1,13 + Qﬂxﬂybm:«: — ﬂxﬁl,m + 2/136151,34 + D1,15 — Qﬂwﬁ1,357
By = B3y = —ﬂyﬁl,zs. + QﬂxﬂyﬁLM — /L;D1,24 + 2/1;151,34 + D1,25 - QﬂyD1,45a

E33 = ﬂzbl,% + 2ﬂmﬂybl,34 - 2/fbyf71,35 + ﬂiﬁ1,44 + ﬁ1,55 - QﬂxD1,45,

s T

A A A A ~ A t—u
Dy, = Di31 Diga Diss Diga Digss :sz( S )V;fvu/’

t=1 u=1
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1=z, |zl <1

k(l’): )
0, otherwise
_ N 1o, A 16 -
- - Y ~—3 Ty ~—3
MmZXmMy:Yr,DM:—— — 0, , D32 =—-— gy ;D33 =
2 0y, 2 0, 20y

and

5-2 = (XQ)T’ - (XT)275-§ = (Yz)r - (}_/;“)276-3031 = (XY) - X’r‘ r-

This is the same expression as in Appendix A.1 in Wied et al. (2011).

A.2. Proofs
Proof of Theorem 1
The proof mainly bases on the fact that for given ¢ < d, constants ey, e; not depending

on m and m — oo the process

Alm-d] = m-d pmde
D \/ﬁ ( [m-c]+e1 pl)

converges in distribution to the process W (b) — W (a) with W(-) being a standard Brow-
nian Motion. This result anon is a minor generalization of Lemma 3 in Wied et al.

(2011).
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With it, we obtain, for 0 < b < T, that

L m bl 4+ 2 7 tim. -

V[m.bHQ D% (pmi[l e P1 )

A [m . b] + 2 Am+[m.b}+2 A [m M b] + 2 ~

DI i ) - DI g
T mt1 p1 NG (P1" — p1)

converges to the process (W(b+ 1) — W(1)) —b-W(1) = W(b+1) — (b+ 1) - W(1).
Applying the continuous mapping theorem and calculating the covariance structure of
the limit process proves the result. [ |
Proof of Theorem 2

The proof uses the same arguments as Theorem 1 and mainly bases on the fact that for

given ¢ < d, constants ey, e; not depending on m and m — oo the process

alm-dl —[m-d mae

D \/m ( [m~c]—|—e12 - pl)
converges in distribution to the process W (b) — W(a) + f;g(z)dz with W (-) being a
standard Brownian Motion. This result anon is a minor generalization of arguments used
in Theorem 2 in Wied et al. (2011). The constant H is then the limit of D under the

null hypothesis, compare the proof of Theorem 2 in Wied et al. (2011). |
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Figure 1: Threshold functions for different values of ~

Threshold functions

20

15

1.0

05

— gamma=0
..... gamma=0.25
......... gamma=0.45
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|

Table 1: Critical values.
T ~v=0 =020 v=045
0.5 | 1.2870  1.8001 2.6282
1 | 1.5578 1.9924 2.6844
1.8158 2.1684 2.7215
4 | 1.9980 2.2467 2.7660

(]

Table 2: Empirical sizes.

T | m=250 m=>500 m = 1000
0.5 0.059 0.058 0.050
vy=0 1 0.077 0.069 0.061
0.066 0.054 0.057
4 0.063 0.071 0.060
0.5 0.075 0.079 0.047
v=0.25] 1 0.075 0.064 0.057
0.087 0.063 0.052
4 0.073 0.077 0.064
0.5 0.169 0.125 0.109
v=0.45| 1 0.174 0.136 0.116
2 0.164 0.138 0.109
4 0.161 0.128 0.106
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Figure 2: Log-retuns of S&P 500 and IBM indexes
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Table 9: Results of the monitoring procedure for three values of v (EFHT stands for empirical
first hitting times).

=0 v =10.25 v =0.45

EFHT Est. changepoints EFHT Est. changepoints EFHT Est. changepoints

984 665 (1999/08/20) 808 682 (1999/09/15) 772 682 (1999/09/15)
1580 1399 (2002/07/25) 1554 1399 (2002/07/25) 1529 1399 (2002/07/25)
2222 2196 (2005/09/22) 2209 2053 (2005/03/01) 2208 2053 (2005/03,/01)
3014 2936 (2008/09/02) 2945 2733 (2007/11/09) 2890 2733 (2007/11,/09)

Table 10: Empirical correlations at different periods.
Period =0 =025 =045
1 0.6274  0.6237 0.6237

2 0.5245  0.5264 0.5264
3 0.7249  0.7410 0.7410
4 0.6033  0.5364 0.5364
5 0.8021  0.7800 0.7800
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