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Abstract: We analyze two-phase flow in highly heterogeneous media.
Problems related to the degeneracy of the permeability coefficient
functions are treated with a new concept of weighted solutions. Instead
of the pressure variables we formulate the problem with the weighted
pressure function ψ, which is obtained as the product of permeability
and pressure. We perform the homogenization limit and obtain effective
equations in the form of a two-scale limit system. The nonlinear effective
system is of the classical form in the non-degenerate case. In the
degenerate case, the two-scale system uses again a weighted pressure
variable. Our approach allows to work without the global pressure
function. Even though internal interfaces are included, our approach
provides the homogenization limit without any smallness assumptions
on permeabilities or capillary pressures.
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1 Introduction

Flow problems in porous media are usually modelled with time dependent partial
differential equations. Unsaturated media are often described with the Richards
equation, if two immiscible fluids must be modelled, then the two-phase flow system
is commonly used.

1.1 Two-phase flow in porous media

We consider two immiscible fluids, one is denoted with a subscript w, the other with
a subscript n. In the following, we use an index j that stands for either w or n, the
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letters are chosen in view of applications where one fluid is wetting, the other is non-
wetting. The saturations of the two fluids are denoted by sw and sn, the pressures of
the two fluids by pw and pn, the negative fluxes by qw and qn. The description of the
porous material consists in the choice of three coefficient functions: two permeability
functions ktotj and one capillary pressure function pc. We write the two-phase flow
system as

∂tsj = ∇ · qj in Ω, for j = w, n (1.1)

qj = ktotj (sj)∇pj in Ω, for j = w, n (1.2)

sw + sn = 1, pw − pn ∈ pc(sw) in Ω, (1.3)

where we neglected the dependence on the time variable t ∈ [0, T ) in all equations
and unknowns. We wrote the system in such a way that it contains the six unknowns
sj , pj, qj (of which the fluxes are vector valued) and six equations (1.1)–(1.3) (of
which (1.2) is vector valued). The equations are for incompressible fluids, gravity is
neglected, porosity and densities are normalized.

In many applications, one assumes a multiplicative decomposition of the total
permeability as ktotj (x, s) = Kj(x)kj(s), into an absolute permeability Kj that de-
pends only on the position x, and a relative permeability kj that depends only on the
saturation s. We will make a similar, but slightly less restrictive assumption below,
assuming that the relative permeability depends on macrosscopic position and on the
saturation, but that it is, microscopically, piecewise constant.

Physically correct models for unsaturated media require the use of a multi-valued
capillary pressure function in (1.3). This is a consequence of the fact that in re-
gions without wetting fluid (sw = 0), the non-wetting pressure pn can be increased
arbitrarily; the analogous reasoning applies for sw = 1. We note that, even in the
multi-valued setting, we can define a saturation function Θ = p−1

c : R → [0, 1], and
the second relation of (1.3) may be written in the form sw = Θ(pw − pn). In this
formulation, we have to deal with flat parts in the monotone function Θ. A crucial
consequence is the following: in regions with sw = 0, a wetting pressure pw is physi-
cally not well-defined. Mathematically, we read relation (1.2) in regions with sw = 0
as the statement that also the negative flux qw must vanish.

Our approach uses ideas from [25]. The fundamental observation is that, even
though pw is not well defined globally, the product ψw := kwpw is well defined by
setting ψw = 0 whenever kw = 0. In the corresponding concept of weighted solutions,
we use the quantity ψw instead of the pressure pw.

1.2 Modelling of heterogeneous media

We use a parameter ε > 0 to describe the small length-scale of the heterogeneity of the
porous medium. We consider periodic media and denote the unit cell by Y = [0, 1)n,
always imposing periodicity conditions on the cell boundaries. Oscillations of the
coefficient functions Kj, kj and pc are prescribed by functions

Kj ∈ L∞(Ω× Y,R), (1.4)

kj : Ω× Y × [0, 1] → [0,∞) is given as kj(x, y, s) = kmj (x, s) for y ∈ Ym (1.5)

for M functions kmj : Ω× [0, 1] → R, m = 1, . . . ,M.
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pc : Y × [0, 1] → R is given as pc(y, s) = pmc (s) for y ∈ Ym (1.6)

for M functions pmc : [0, 1] → R, m = 1, . . . ,M.

Here, we decomposed the unit cell in subdomains as Y =
⋃M

m=1 Ȳm, such that the
open subsets Ym are pairwise disjoint. The number M ∈ N denotes the number of
different materials that are distributed in a fine mixture. We emphasize the important
restriction in the above setting: the capillary pressure coefficient does not vary in an
arbitrary fashion in y, but a y-independent coefficient function pmc is used in the
subdomain corresponding to Ym. To describe the heterogeneous material, we use

Kε
j (x) := Kj

(

x,
x

ε

)

, kεj (x, s) := kj

(

x,
x

ε
, s
)

, pεc(x, s) := pc

(x

ε
, s
)

. (1.7)

1.3 Related literature

Due to its importance in practical applications, there is a vast literature on flow
problems in porous media. If the medium is completely saturated by one fluid, the
flow is described by Darcy’s law and incompressibility, and no deep mathematical
theory must be used. When two immiscible phases are present in the medium, but
one of the fluids need not be modelled (a constant pressure can be assumed), then
one uses Richards equation. In this equation, existence questions are interesting
due to the degeneracy of the permeability, see e.g. [3, 25, 27]. When both phases
must be modelled, one typically uses the two-phase flow system that we investigate
here. Again, the degenerate permeabilites make existence results intricate, compare
[13, 14, 20]. Usually, existence results use the global pressure as an additional variable.
The global pressure is defined in such a way that it solves an elliptic equation and
estimates on the global pressure can be exploited in the further analysis. Nevertheless,
there are situations in which the global pressure is of very limited use; this is the case
e.g. in problems with hysteresis [6, 19] and in problems with outflow boundary
conditions [4, 21, 24].

Homogenization. The homogenization problem for two-phase flow equations re-
ceives considerable attention. This is due to the fact that the limit problem has
qualitatively new features and can, in particular, include the double porosity model.
This model was investigated in [11] with formal calculations and with mathematical
rigour in [10] and [28]. A stochastic setting has been studied in [9] in the nonde-
generate case and the problem with hysteresis has been studied in [6], again in the
nondegenerate case.

A consequence of a degenerate ellipticity coefficient is that no uniform bounds for
the pressure gradients in L2-spaces are available. This problem is often treated with
the help of the global pressure function, a tool of limited use in a setting with internal
interfaces. As a consequence, the above quoted homogenization results are restricted
to cases in which some smallness assumption is satisfied. In [8], this is an explicit
smallness assumption concerning the jump of the global pressure, see their inequality
(4.20). In [10], the smallness is imposed by using a permeability of order ε2 in one
of two media. We want to emphasize that this assumption is physically justified
in many situations. In [28], more general permeabilities in the second medium are
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studied. The author uses the scaling ε̟ and treats all cases with ̟ > 0. In short,
we may say that our works extends [28] to the case ̟ = 0.

Finally, we mention [5] for a homogenization study in the compressible case. In
that contribution, no y-dependence of the coefficients λw(s) or ρg(p) is permitted.

2 Problem description and solution concepts

2.1 Domain and boundary conditions

Let Ω ⊂ R
n be bounded with Lipschitz boundary. Let Σj ⊂ ∂Ω be Dirichlet bound-

aries with positive n− 1-dimensional measure, let Γj ⊂ ∂Ω be Neumann boundaries
such that Σj ∩ Γj = ∅, Σ̄j ∪ Γ̄j = ∂Ω. As boundary conditions we impose a no-flux
condition for fluid j on Γj , and the Dirichlet condition pj−Uj = 0 on Σj for two given
functions Uj ∈ H1(Ω). We furthermore assume that initial values Sj ∈ L2(Ω, [0, 1])
are given with Sw + Sn = 1 and such that p̃c(Sw) ∈ L∞(Ω).

2.2 Assumptions on the coefficients

Permeabilities. We assume that, for numbers 0 < c0 < C0 < ∞, and j = w, n,
there holds, independent of x and y,

c0 ≤ Kj ≤ C0, kj ≤ C0, kn ≥ c0, (2.1)

kw(0) = 0, kw(s) > 0 strictly monotone with (2.2)

0 ≤ ∂skw(s) ≤ C0

√

kw(s) ∀s ∈ (0, 1]. (2.3)

The strict positivity assumption kn ≥ c0 on the non-wetting permeability allows us
to concentrate here on the degeneracy in s = 0, which simplifies notation.

We will derive the two-scale limit system first in the non-degenerate case. In this
case we assume that also the second relative permeability is bounded from below,

kw ≥ c0. (2.4)

Capillary pressure. We assume that, for 0 < c1, there holds, for every index m

p̃mc ∈ C1([0, 1),R), pmc (s) =

{

{p̃mc (s)} for s > 0

(−∞, p̃mc (0)] for s = 0,
(2.5)

c1 ≤ ∂sp̃
m
c on [0, 1) , p̃mc (s) → ∞ for s→ 1. (2.6)

We remark that the second assumption in (2.6) introduces a slightly asymmetric be-
havior, but our assumption is in accordance with experimental data. It simplifies the
notation in the following since it helps to concentrate the analysis to the degeneracy
at the point s = sw = 0.

We furthermore introduce a mild regularity assumption on the product Ψ = k · pc
as follows. For every m ≤ M and y ∈ Ym, after an extension to boundary points, the
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Figure 1: Sketch of two strictly monotone and multi-valued pc-curves. The curve
on the left is p1c(s) for subdomain m = 1 and on the right is p2c(s) for subdomain
m = 2. The entry pressures are ordered such that max p2c(0) > max p1c(0), the multi-
valued functions satisfy pmc (0) = (−∞,max pmc (0)]. The transformation map Φ̃2,1 =
(p2c)

−1 ◦ p1c is continuous on [0, 1].

maps

Ψ(x, y, .) : [0, kw(x, y, 1)) → R, κ 7→ κ · p̃c(k−1
w (κ))

Ψ,
∂

∂κ
Ψ :

⋃

(x,y)∈Ω̄×Ȳm

(x, y)× [0, kw(x, y, 1)) → R are continuous. (2.7)

Under our other assumptions, (2.7) is satisfied e.g. for polynomials kw. Indeed, let us
assume that ∂s[log(kw(s))] extends continuously to s = 0 with positive values. Then
(2.7) follows from ∂κΨ(κ) = p̃c(s) + κ∂sp̃c(s)(∂skw(s))

−1 for s ∈ (0, 1) and κ = kw(s).

Interface condition maps. In order to encode interface conditions, we addition-
ally introduce transformation functions as follows. By relabeling if necessary, we may
assume in the following without loss of generality that the entry pressures max pmc (0)
are ordered, max(pmc (0)) ≤ max(pm

′

c (0)) for every pair 1 ≤ m,m′ ≤M with m′ < m,
the argument of the maximum is an interval of the form (−∞, ρ] (cf. Figure 1). For
all pairs m′ < m we introduce the transformation maps

Φ̃m,m′(x, .) := (pmc (x, .))
−1 ◦ pm′

c (x, .) : [0, 1] → [0, 1], (2.8)

Φm,m′(x, .) := kmw (x, .) ◦ Φ̃m,m′(x, .) ◦ (km′

w (x, .))−1 . (2.9)

The maps are defined such that the following holds. If x is a point on ∂Ωε
m ∩ ∂Ωε

m′

and both pressure functions pw and pn are continuous, then the two traces smw (x) and
sm

′

w (x) of the wetting saturation satisfy smw (x) = Φ̃m,m′(x, sm
′

w (x)). The other trans-
formation map Φm,m′ maps the permeability value of one side to the corresponding
permeability value of the other side. We assume that, for all m′ < m,

Φm,m′ ,
∂

∂κ
Φm,m′ :

⋃

(x,y)∈Ω̄×Ȳm

(x, y)× [0, kw(x, y, 1)] → R are continuous. (2.10)
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2.3 Solutions in heterogeneous media

Our aim is to study solutions of the two-phase flow system (1.1)–(1.3) for the oscil-
latory coefficients of (1.4)–(1.6). For a given length scale ε > 0 we hence study the
following system of equations.

∂ts
ε
j = ∇ · qεj in Ω for j = w, n (2.11)

qεj = Kε
j k

ε
j (s

ε
j)∇pεj in Ω for j = w, n (2.12)

sεw + sεn = 1, pεw − pεn ∈ pεc(s
ε
w) in Ω, (2.13)

where we omitted once more the dependence on t ∈ [0, T ). We start our analysis by
giving a precise description of our solution concept in the non-degenerate case.

Definition 2.1 (Strong solutions). We say that the six functions (sεj , p
ε
j , q

ε
j ) are a

strong solution to system (2.11)–(2.13) if the following holds. The functions are of
the classes

sεj ∈ L∞(Ω× (0, T ); [0, 1]), qεj ∈ L2(Ω× (0, T );Rn), pεj ∈ L2(0, T ;H1(Ω)), (2.14)

relation (2.11) holds in the distributional sense and both relations (2.12) and (2.13)
hold pointwise almost everywhere.

The above choice of function spaces already encodes interface conditions at inter-
nal boundaries. Relation (2.11) contains, in a weak form, a continuity condition for
the fluxes, the H1(Ω) condition for pressures encodes, in a weak form, a continuity
of the pressures across interfaces.

Proposition 2.1 (Existence of strong solutions in the non-degenerate case). Let the
assumptions (2.1)–(2.6) on the coefficients be satisfied, in particular, we assume with
(2.4) the non-degeneracy of the permeability of the wetting fluid. For a domain, initial
and boundary data as described above, there exists a strong solution to the two-phase
flow system (2.11)–(2.13). With a constant C which depends only on the initial and
boundary data, there holds an estimate

∑

j∈{w,n}

∫ T

0

∫

Ω

kεj (s
ε
j)|∇pεj |2 ≤ C. (2.15)

Proof. We derive the a priori estimate (2.15) in section 4.1, see inequality (4.2).
The inequality implies, in the non-degenerate case, an estimate for both pressure
functions, pεj ∈ L2(0, T ;H1(Ω)).

The existence result is classical, see [13, 20]. It can be derived, e.g., with a
discretization scheme exploiting an a priori estimate of the form (2.15) for the ap-
proximate solutions.

Definition 2.2 (Weighted solutions). We say that the six functions (sεj, q
ε
j , p

ε
j) provide

a weighted solution to system (2.11)–(2.13) if the following holds. The capillary
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pressure inclusion holds as an equality, pεw −pεn = p̃εc(s
ε
w) and s

ε
w+ sεn = 1 hold almost

everywhere, on the M open disjoint subdomains Ωε
m the functions are of the class

sεj ∈ L∞(Ω× (0, T ); [0, 1]), qεj ∈ L2(Ω× (0, T );Rn), (2.16)

pεn ∈ L2(0, T ;H1(Ω)), pεw ∈ L2(Ω× (0, T );R), (2.17)

kεw(s
ε
w)|Ωε

m
, ψε

w := kεw(s
ε
w)p

ε
w|Ωε

m
∈ L2(0, T ;H1(Ωε

m)), (2.18)

the conservation law (2.11) holds in the distributional sense, the negative flux relation
(2.12) for j = n holds almost everywhere. Instead of (2.12) for j = w we demand
that

qεw = Kε
w (∇[kεw(s

ε
w)p

ε
w]−∇[kεw(s

ε
w)]p

ε
w) (2.19)

holds in each open subdomain Ωε
m. In order to encode continuity of the pressure pw

across interfaces, we additionally demand

tracem(k
ε
w(s

ε
w)) = Φm,m′(x, tracem′(kεw(s

ε
w))) (2.20)

on ∂Ωε
m′ ∩ ∂Ωε

m with m′ < m. Here tracem denotes the trace from the interior of Ωε
m.

We note that the regularity assumption (2.18) on kεw(s
ε
w) allows to evaluate the

traces in (2.20). Furthermore we observe that in (2.19) the right hand side vanishes
almost everywhere in the set {(x, t) : kεw(s

ε
w(x, t)) = 0}. This follows from Stam-

pacchia’s lemma since both functions kεwp
ε
w and kεw of which gradients are evaluated,

vanish on this set. In this sense, in regions with a vanishing wetting saturation, we
impose a vanishing flux, but we do not select a value for the wetting pressure.

Proposition 2.2 (Existence of weighted solutions in the degenerate case). Let as-
sumptions (2.1)–(2.3) and (2.5)–(2.10), but not necessarily (2.4). For a sequence
δ ց 0 let kδw → kw be an approximation of the permeability in C0([0, 1],R) such that
(2.1)–(2.6) hold for kδw and with kδw ≥ δ. Let sδj , q

δ
j , and p

δ
j be solutions to the corre-

sponding non-degenerate problem. We assume that a uniform bound ‖pδj‖L∞(ΩT ) ≤ C
is satisfied for both pressure functions.

Under these conditions, there exists a subsequence δ → 0 and limit functions sj,
qj, and pj which are a weighted solution to the degenerate two-phase flow system
(2.11)–(2.13) with coefficient kw.

Since our interest here regards the homogenization procedure, we do not inves-
tigate conditions that guarantee the boundedness of the pressures. From a physical
point of view, for bounded pressure values along the boundaries, one will always ex-
pect a boundedness of the pressures in the interior. Regarding mathematical proofs
of the boundedness assumption we mention that in [21] uniform bounds are derived
with the help of maximum principles.

Proof. We omit the index ε which stands for the small scale size. Instead, the solu-
tions carry an index δ which stands for the non-degenerate approximation.

Solutions to the non-degenerate two-phase flow system (2.11)–(2.13) satisfy the
pressure bounds of (2.15) as noted before in Proposition 2.1. Additionally, under
the assumption of uniform L∞-bounds on the pressure function, with a constant C
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depending only on initial and boundary data and this uniform bound, there holds an
estimate

∫ T

0

∫

Ωε
m

|∇(kδw(s
δ
w))|2 +

∫ T

0

∫

Ωε
m

|∇ψδ
w|2 ≤ C. (2.21)

for every m ≤ M . This estimate is shown in section 4.2, see inequality (4.3).
We can therefore choose a subsequence and limit functions such that, in the limit

δ → 0,

pδn → pn in L2(ΩT ), qδj ⇀ qj in L
2(ΩT ), (2.22)

ψδ
w ⇀ ψw, k

δ
w ⇀ kw in H1(Ωm

T ), sδj → sj in L
2(ΩT ). (2.23)

In this list, all convergences are a direct consequence of the a priori estimates, with
the exception of the last convergence, which follows from the strong convergence of
kδw = kδw(s

δ
w). In particular, the limit equations are in the appropriate function spaces

as demanded in (2.16)–(2.18) and sw + sn = 1 is satisfied.
We now define pw := pn + p̃c(sw). The strong limit ψw satisfies ψw = kwpw by the

strong convergence of kδw. We exploit here that we can define the pressure value pw
arbitrarily on the set where kw = ψw = 0 holds. On the remaining set we have the
strong convergence sδj → sj and hence pδw ∈ pδn+pc(s

δ
w) → pn+ p̃c(sw) = pw pointwise

almost everywhere.
The distributional relation (2.11) holds in the limit δ → 0 since derivatives com-

mute with distributional limits. Furthermore, (2.12) for j = n holds by the strong
convergence of kδn. The interface condition (2.20) is satisfied for the approximate
solutions (δ > 0) and continues to hold in the limit δ → 0 due to the weak H1(Ωm

T )
convergence of the permeabilities.

It remains to verify (2.19). We start from the strong relation (2.12) which we
write with the product rule of H1-functions as

qδw = Kw(∇ψδ
w − pδw ∇kδw)

The difficulty in this expression is that we have only the weak convergences for both
pδw and ∇kδw. We can argue as follows. We multiply the relation with kδw, such that
weak limits exist for both sides,

kwqw ↼ kδwq
δ
w = Kw(k

δ
w∇ψδ

w − ψδ
w ∇kδw)⇀ Kw(kw∇ψw − ψw ∇kw)

in L2(ΩT ). On the set of points (x, t) with kw(x, t) > 0, we divide by kw(x, t) and
obtain the pointwise relation (2.19). For the remaining set with kw(x, t) > 0 we have
already observed that the right hand side of (2.19) vanishes almost everywhere by
the lemma of Stampacchia. The flux function is the weak limit of qδw = kδw∇pδw =
√

kδw ·
√

kδw∇pδw where the factor
√

kδw∇pδw is bounded in L2(ΩT ). This provides
qw = 0 on the set with kw(x, t) = 0 and hence (2.19) also on this set.

3 Main homogenization results

We study a sequence ε = εi → 0 and a corresponding family of solutions (sεj , p
ε
j, q

ε
j )

to system (2.11)–(2.13). In the case of a non-degenerate relative permeability kw we
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study a family of strong solutions and obtain for their two-scale limits the two-scale
limiting problem (ND) described in Definition 3.1. In the case of a degenerate relative
permeability kw we study weighted solutions and obtain the limiting system (D)
described in Definition 3.2. The limiting problems (ND) and (D) coincide formally,
but the formulation of problem (D) is taylored to the fact that the pressures need
not have gradients of class L2.

3.1 The limit problem in the non-degenerate case

Definition 3.1 (Strong limit problem in the non-degenerate case). We denote the
following two-scale problem as problem (ND). We seek for eight functions sj,0(x, y),
pj,0(x), pj,1(x, y), qj,0(x, y) in the function spaces

pj,0 ∈ L2(0, T ;H1(Ω)), sj,0 ∈ L∞(Ω× Y × (0, T ); [0, 1]), (3.1)

pj,1 ∈ L2((0, T )× Ω;H1
per(Y )), qj,0 ∈ L2(Ω× Y × (0, T );Rn). (3.2)

The equations are

∂t −
∫

Y

sj,0(x, y) dy = ∇x · −
∫

Y

qj,0(x, y) dy, (3.3)

qj,0(x, y) = Kj(x, y)kj(x, y, sj,0(x, y)) (∇xpj,0(x) +∇ypj,1(x, y)), (3.4)

∇y · qj,0(x, y) = 0, (3.5)

sw,0(x, y) + sn,0(x, y) = 1, (3.6)

pw,0(x)− pn,0(x) ∈ pc(x, y, sw,0(x, y)). (3.7)

We demand (3.3) in the distributional sense on Ω × (0, T ) and the other relations
pointwise almost everywhere.

Concerning the solvability of the limit problem (ND), we remark that the eight
unknowns can, formally, be related to the eight equations. Relation (3.7) allows
to reconstruct sw,0(x, y) from the pressures pj,0(x). In turn, relation (3.6) provides
sn,0(x, y). The negative fluxes qj,0(x, y) are given by (3.4) and we regard (3.5) as an
elliptic equations for pj,1(x, y)). With this reasoning, we have seen that (3.4)–(3.7)
can determine all other quantities from the two macroscopic pressures pj,0(x). If this
is the case, the two macroscopic equations (3.3) have the structure

∂t Sj(pw,0(x), pn,0(x)) = ∇x · Fj(pw,0(x), pn,0(x),∇xpw,0(x),∇xpn,0(x))

for some functions Sj and Fj . In the one-dimensional case, the above arguments can
be made precise, see the effective one-dimensional system (5.7) in section 5.

Theorem 1 (Non-degenerate homogenization). Let the domain Ω, the time-interval
[0, T ], the boundary conditions Uj and the initial conditions Sj be as described above.
Let the coefficients satisfy assumptions (2.1)–(2.6), hence, in particular, the non-
degeneracy condition (2.4). Let pεj, s

ε
j, q

ε
j be a family of strong solutions to the

two-phase flow system (2.11)–(2.13) and let pj,0, pj,1, sj,0, and qj,0 be two-scale limit
functions. Then the limit functions satisfy the two-scale limit system (ND) as de-
scribed in Definition 3.1.

We note that the definition of the two-scale limit functions is made precise in
(4.9)–(4.12). The theorem is shown in subsection 4.3.
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3.2 The limit problem in the degenerate case

Definition 3.2 (Weighted limit problem in the degenerate case). We denote the fol-
lowing two-scale problem as problem (D). The unknowns are seven functions sj,0(x, y),
qj,0(x, y), pj,0(x), pn,1(x, y) as in the non-degenerate case, with function spaces as in
(3.1)–(3.2). Two further unknowns are ψw,1(x, y) and kw,1(x, y) in the space

ψw,1|Ym
, kw,1|Ym

∈ L2((0, T )× Ω;H1(Ym)).

We use kj,0(x, y) := kj(x, y, sj,0(x, y)) and ψw,0(x, y) := kw,0(x, y)pw,0(x) as abbrevia-
tions. The system replacing (3.3)–(3.7) is, for j = w, n,

∂t −
∫

Y

sj,0(x, y) dy = ∇x · −
∫

Y

qj,0(x, y) dy, (3.8)

qn,0(x, y) = Kn(x, y)kn,0(x, y) (∇xpn,0(x) +∇ypn,1(x, y)), (3.9)

qw,0(x, y) = Kw(x, y)(∇xψw,0(x) +∇yψw,1(x, y)

− pw,0(x)[∇xkw,0(x, y) +∇ykw,1(x, y)])
(3.10)

∇y · qj,0(x, y) = 0, (3.11)

sw,0(x, y) + sn,0(x, y) = 1, (3.12)

pw,0(x)− pn,0(x) = p̃c(x, y, sw,0(x, y)). (3.13)

Since ψw,1 may jump across material interfaces, equation (3.10) is understood as a
distributional equation in each subdomain Ym. To encode continuity of the wetting
pressure in orders 0 and 1 we demand

tracem(kw,0) = Φm,m′(tracem′(kw,0)) on ∂Ym ∩ ∂Ym′ (3.14)

tracem(kw,1) =
∂

∂κ
Φm,m′(tracem′(kw,0)) · tracem′(kw,1) on ∂Ym ∩ ∂Ym′ (3.15)

for every pair 1 ≤ m′ < m ≤ M , traces are with respect to the variable y in Ym.
While ψw,1(x, y) is only a replacement of pw,1(x, y), the additional scalar unknown

kw,1(x, y) must be determined from the additional equation

ψw,1(x, y) =
∂

∂κ
Ψ(kw,0(x, y)) · kw,1(x, y)

+ pn,0(x)kw,1(x, y) + kw,0(x, y)pn,1(x, y),
(3.16)

where we used the function Ψ of assumption (2.7).

We recall that the function Ψ = id · (p̃c ◦ k−1
w ) of assumption (2.7) maps a perme-

ability value kw to the corresponding capillary pressure contribution of ψw. Relation
(3.16) should be regarded as the first order variant of the pressure condition (3.13).
The functions ψw,0 and ψw,1 will appear as the two-scale limits

ψε
w := kεwp

ε
w

2
⇀ ψw,0, ψw,0 : Ω× Y → R, (3.17)

∇ψε
w

2
⇀ ∇xψw,0 +∇yψw,1, ψw,1 : Ω× Y → R. (3.18)
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Theorem 2 (Homogenization in the degenerate case). Let the domain Ω, the time-
interval [0, T ], the boundary conditions Uj and the initial conditions Sj be as described
above with Ωm

ε connected for all m. Let the coefficients satisfy assumptions (2.1)–
(2.3) and (2.5)–(2.10), but not necessarily (2.4). Let sεj, q

ε
j , p

ε
j be a family of weighted

solutions of the two-phase flow system (2.11)–(2.13). We assume that the pressures
pεj are uniformly bounded in L∞.

Let sj,0, qj,0, and pj,0 be two-scale limit functions in L2(Ω × Y × (0, T )). Then
these limit functions satisfy, with an appropriate choice of three additional unknowns
pn,1(x, y), ψw,1(x, y), and kw,1(x, y), the two-scale limit system (D) as described in
Definition 3.2.

Theorem 2 on the degenerate homogenization result is shown in subsection 4.4.
We assume in the above theorem the connectedness of all subdomains Ωm

ε . This
is done for ease of notation, it is possible to extend the result to the case when only
one subdomain is connected, but in this case one has to assume that the connected
domain is the best conducting medium. Conditions on the capillary pressures must
insure in such a case that the control of the pressure in the connected subdomain
provides a control for all pressure functions. Technically, our assumptions make the
theorem applicable in the case of multiple subdomains only in three space dimensions.

3.3 Formal equivalence of the solution concepts

We want to include in this subsections two observations on the formal equivalence of
different formulations of the limit system. Our first observation regards the compar-
ison of the degenerate limit system (D) and the non-degenerate limit system (ND).

Lemma 3.1. We consider a solution to the degenerate homogenized problem (D) and
assume the additional regularity property that pw,1 := pn,1 + ∂κ(p̃c ◦ k−1

w )(sw,0)kw,1 is
in the function space as given in (3.2). Then, the solution to the degenerate problem
(D) provides also a solution to problem (ND).

Proof. We observe that the set of non-degenerate equations (3.3)–(3.7) coincides ex-
actly with the set of degenerate equations (3.8)–(3.13), with the only exeption that
(3.4) for j = w is replaced by (3.10). We therefore only have to verify (3.4) for
qw,0(x, y).

With the function pw,1 := pn,1 + ∂κ(p̃c ◦ k−1
w )(sw,0)kw,1 we calculate

∇yψw,1
(3.16)
= ∂κΨ(kw,0) · ∇ykw,1 + pn,0∇ykw,1 + kw,0∇ypn,1

=
(

p̃c(sw,0) + kw,0 ∂κ(pc ◦ k−1
w )(sw,0)

)

· ∇ykw,1 + pn,0∇ykw,1 + kw,0∇ypn,1
(3.13)
= pw,0∇ykw,1 + kw,0

(

∂κ(p̃c ◦ k−1
w )(sw,0)∇ykw,1 +∇ypn,1

)

= pw,0∇ykw,1 + kw,0∇ypw,1 .

We can investigate the expression for qw,0 in (3.10). We use the product rule and
insert the above calculation to obtain

∇xψw,0 +∇yψw,1 − pw,0[∇xkw,0 +∇ykw,1]

= ∇xkw,0 pw,0 + kw,0∇xpw,0 + kw,0∇ypw,1 +∇ykw,1 pw,0 − pw,0[∇xkw,0 +∇ykw,1]

= kw,0 [∇xpw,0 +∇ypw,1] ,
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which confirms (3.4). We emphasize that the calculation is done for each subdo-
main Ym separately, in the subdomains vanishes the gradient ∇ykj,0(x, y) identically
because of our structural assumptions in (1.5)–(1.6).

In the non-degenerate case, the equation (3.16) could be written in the following
more intuitive and more symmetric form, using four new auxiliary variables pw,1(x, y),
kn,1(x, y) and sj,1(x, y). We emphasize that, due to the degeneracy of the problem, the
meaning of these auxiliary variables cannot necessarily be made precise and system
(3.19)–(3.22) has only formal character.

kj,1(x, y) = ∂skj(sj,0(x, y))sj,1(x, y) for j = w, n, (3.19)

ψw,1(x, y) = pw,0(x)kw,1(x, y) + kw,0(x, y)pw,1(x, y) (3.20)

sw,1(x, y) + sn,1(x, y) = 0, (3.21)

pw,1(x, y)− pn,1(x, y) = ∂sp̃c(x, y, sw,0(x, y))sw,1(x, y). (3.22)

Our next observation regards the formal equivalence of the degenerate limit system
(D) with the symmetric formulation of (3.19)–(3.22).

Lemma 3.2. Let the four functions kj, ∂skj, ∂spc : [0, 1] → R be continuous and
positive and let sw,0 be bounded from below by a positive number. Then equation
(3.16) is equivalent to the five equations (3.19)–(3.22), which include the four auxiliary
variables sj,1, kn,1, and pw,1.

Proof. Let kj,1, pj,1 and sj,1 be a solution of system (3.19)–(3.22). We evaluate with
k = kw(s) the derivative of Ψ as ∂κΨ(k) = p̃c(s)+kw∂sp̃c(s)(∂skw(s))

−1 and calculate
for the right hand side of (3.16)

∂κΨ(kw,0) · kw,1 + pn,0kw,1 + kw,0pn,1

=
(

p̃c(sw,0) + kw,0 ∂sp̃c(sw,0)(∂skw(sw,0))
−1
)

· kw,1 + pn,0kw,1 + kw,0pn,1
(3.19)
= pw,0kw,1 + kw,0 ∂sp̃c(sw,0)sw,1 + kw,0pn,1

(3.22)
= pw,0kw,1 + kw,0(pw,1 − pn,1) + kw,0pn,1

= pw,0 kw,1 + kw,0 pw,1
(3.20)
= ψw,1.

We have thus obtained (3.16). We emphasize that we have used also the macro-
relation (3.13).

For the other implication we start with a solution of (D), in particular, kw,1 satisfies
(3.16). We define sw,1 with (3.19) for j = w, then sn,1 with (3.21), kn,1 with (3.19)
for j = n, and finally pw,1 with (3.22). It remains to check for these quantities that
relation (3.20) is satisfied. This follows with the same calculation as above.

4 Proofs

4.1 Energy estimates for the pressure

Energy estimates are obtained by using pεj − Uj as a test-function in (2.11), where
Uj is the function that provides the boundary data. We add the equations for j = w
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and j = n. This provides

∑

j∈{w,n}

∫

Ω

pεj ∂ts
ε
j +

∑

j∈{w,n}

∫

Ω

∇pεj ·Kε
j k

ε
j (s

ε
j)∇pεj

=
∑

j∈{w,n}

∫

Ω

∇pεj ·Kε
j k

ε
j (s

ε
j)∇Uj +

∑

j∈{w,n}

∫

Ω

∂ts
ε
jUj .

(4.1)

On the right hand side we use the Cauchy-Schwarz inequality, exploiting Uj ∈ H1(Ω)
and the boundedness Kj, kj ≤ C0 to find

∣

∣

∣

∣

∫

Ω

∇pεj ·Kε
j k

ε
j (s

ε
j)∇Uj

∣

∣

∣

∣

≤ C

(
∫

Ω

Kε
j k

ε
j (s

ε
j)|∇pεj |2

)1/2

.

With the Young inequality, this term can be absorbed into the second sum of the left
hand side. For the further treatment of the first sum on the left hand side of (4.1),
we use the algebraic relations of (2.13). The saturation relation sεn+ sεw = 1 provides
∂ts

ε
n = −∂tsεw. Exploiting additionally the capillary pressure relation, we find

∑

j∈{w,n}
pεj ∂ts

ε
j = (pεw − pεn)∂ts

ε
w = pεc(s

ε
w)∂ts

ε
w =

d

dt
[P ε

c (s
ε
w)] ,

where we used the family of primitive functions P ε
c with ∂sP

ε
c (x, s) = pεc(x, s). The

monotonicity and boundedness from below of pεc in s implies that the primitives P ε
c

with the normalization P ε
c (s = 0) = 0 are all bounded from below. Together with

our assumption on the initial values Sj, we obtain the boundedness of the first sum
on the left hand side of (4.1). Since the functions Kε

j were assumed to be strictly
positive, we obtain the a priori estimate

∑

j∈{w,n}

∫ T

0

∫

Ω

kεj (s
ε
j)|∇pεj |2 ≤ C (4.2)

with C depending on initial and boundary values, but not on ε.

4.2 A priori estimates for kw and ψw.

The fundamental observation for the definition of weighted solution is the following
H1-bound for the two quantities kεw := kεw(s

ε
w) and ψ

ε
w := kεwp

ε
w,

∫ T

0

∫

Ωε
m

|∇kεw|2 +
∫ T

0

∫

Ωε
m

|∇ψε
w|2 ≤ C. (4.3)

In order to obtain (4.3), we first write sεw with the help of (2.13) as sεw = (pεc)
−1(pεw −

pεn), such that the gradient satisfies, due to the strict monotonicity assumption (2.6),

|∇sεw|2 =
∣

∣

∣

∣

1

∂spεc(s
ε
w)

(∇pεw −∇pεn)
∣

∣

∣

∣

2

≤ 1

c21
|∇pεw −∇pεn|2 .
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This estimate allows to calculate with property (2.3)

|∇kεw|2 = |∂skεw(sεw)|2 |∇sεw|2 ≤ C2
0k

ε
w(s

ε
w)|∇sεw|2

≤ (C0/c1)
2kεw(s

ε
w)|∇pεw −∇pεn|2 ≤ 2(C0/c1)

2kεw(s
ε
w)(|∇pεw|2 + |∇pεn|2).

The non-degeneracy of the non-wetting permeability in (2.1) and the boundedness of
the wetting permeability allow to conclude from estimate (4.2) the boundedness of
integrals over kεw(s

ε
w)|∇pεn|2. Therefore, estimate (4.2) implies the a priori bound

∫ T

0

∫

Ω

|∇kεw|2 ≤ C. (4.4)

Based on this observation, we can now calculate for ψε
w = kεwp

ε
w in the case that

pεw is uniformly bounded

∫ T

0

∫

Ω

|∇ψε
w|2 ≤ C

∫ T

0

∫

Ω

(|∇kεw|2 + kεw|∇pεw|2) ≤ C (4.5)

by (4.2) and (4.4).

4.3 Two-scale limits and proof in the non-degenerate case

We use two-scale convergence as described in [1]; the (weak) two-scale convergence

uε
2
⇀ u allows to extract εY -periodic behavior of the sequence of functions uε = uε(x)

and encodes it in the function u = u(x, y) with y ∈ Y . We furthermore use strong
two-scale convergence as was investigated e.g. in [22, 29].

Definition 4.1. We say that a sequence uε ∈ L2(Ω) is strongly two-scale convergent
to u ∈ L2(Ω× Y ), iff

uε
2
⇀ u and ‖uε‖L2(Ω) → ‖u‖L2(Ω×Y ). (4.6)

We note that, just as in the case of two-scale convergence, the concept can be
transferred directly to space-time domains ΩT , in which the fine-scale expansion is
performed only in the spatial parameters x ∈ Ω and not in the time variable t ∈ [0, T ].
Below, we always treat the time variable as a parameter and omit dependences on t.

An equivalent definition of strong two-scale convergence can be given as follows.

A sequence uε
2
⇀ u is strongly two-scale convergent, if, for every (weakly) two-scale

convergent sequence vε
2
⇀ v, there holds

lim
ε→0

∫

Ω

uε(x)vε(x) dx =

∫

Ω

∫

Y

u(x, y)v(x, y) dy dx. (4.7)

The full strength of strong two-scale convergence becomes clear with the following

result. Let uε
2
⇀ u be a strongly two-scale convergent sequence. Then there holds

lim
ε→0

∥

∥

∥
uε(x)− u

(

x,
x

ε

)
∥

∥

∥

L2(Ω)
= 0. (4.8)
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We note that, in the setting of [29], a Caratheodory property of the limit function
u is assumed in the derivation of (4.8). On the other hand, no such assumptions are
necessary for the Lebesgue measure setting in [22]; nevertheless, the authors of the
latter work emphasize that also the appropriate choice of a space of test-functions is
important. Vice versa, property (4.8) also implies the strong two-scale convergence,
hence (4.8) can be used as a characterization of strong two-scale convergence.

In the proofs of our main theorems below we will use the following facts.

Lemma 4.1 (Piecewise H1-bounds, strong two-scale convergence, nonlinear func-
tions). Let Ym ⊂ Y and Ωε

m = Ω ∩⋃

k ε(k + Ym) be subdomains such that every Ωε
m

is a connected Lipschitz-subdomain of Ω.
(i) Let uε be a bounded sequence in H1(Ωε

m), we identify uε with its trivial exten-
sion setting uε = 0 in Ω \ Ωε

m such that we may also write uε ∈ L2(Ω). Then, along
a subsequence and for a limit function u ∈ L2(Ω, H1(Ym)), the sequence uε converges
strongly in two scales to u.

(ii) Let the sequence uε
2
⇀ u be strongly two-scale convergent and let q : R → R be

a Lipschitz continuous function. We consider vε := q ◦ uε ∈ L2(Ω) and v := q ◦ u ∈
L2(Ω× Y ). Then there holds the strong two-scale convergence vε

2
⇀ v.

(iii) Let the sequence uε : Ω → [a, b] have values in the interval [a, b]. Let q :
[a, b] → R be a continuous nonlinear function, continuously differentiable on (a, b)
with q′ > 0 and q′ bounded on every interval [a + δ, b] with δ > 0. Then the strong

two-scale convergence uε
2
⇀ u implies the strong two-scale convergence vε → v for

vε = q ◦ uε and v = q ◦ u.
In item (iii) we think, e.g., of a square-root function, q(ξ) =

√
ξ, q : [0, 1] → [0, 1].

Sketch of proof for Lemma 4.1. Property (i) is a fact that is used in various forms for
homogenization problems in domains with holes. Early contributions use extension
operators and require regular subdomains. For the statement above we refer to the
approach of [2].

Regarding (ii) it suffices to calculate with the Lipschitz constant Cq of the function
q and with property (4.8)

∫

Ω

∣

∣

∣
vε(x)− v

(

x,
x

ε

)
∣

∣

∣

2

≤ C2
q

∫

Ω

∣

∣

∣
uε(x)− u

(

x,
x

ε

)
∣

∣

∣

2

→ 0.

This shows property (4.8) for the sequence vε and the function v and thus the strong
two-scale convergence of vε.

To check property (iii), we assume without loss of generality a = 0. We introduce,
for the arbitrarily small parameter δ > 0, the set of good points Gε,δ = {x ∈ Ω :
uε(x) ≤ 2δ and u(x, x/ε) ≤ 2δ}; loosely speaking, both uε and the limit function
are small on this set. Secondly, we use the set of points Hε,δ = {x ∈ Ω : uε(x) ≥
δ and u(x, x/ε) ≥ δ}, where both functions uε and u are large. The two sets do not
necessarily cover Ω, since one function may be small while the other is large. We
introduce the corresponding “bad” sets B1

ε,δ := {x ∈ Ω : uε(x) ≥ 2δ and u(x, x/ε) ≤
δ} and B2

ε,δ := {x ∈ Ω : uε(x) ≤ δ and u(x, x/ε) ≥ 2δ}. Estimate (4.8) for strongly
two-scale convergent sequences implies for the bad sets the smallness in measure,
|Bl

ε,δ| → 0 for ε→ 0, any δ > 0, l = 1 and l = 2.
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For points x ∈ Gε,δ we exploit the fact that both vε = q(uε(x)) and v(x, x/ε) =
q(u(x, x/ε)) are close to q(0). For points x ∈ Hε,δ we use the argument of (ii),
exploiting the Lipschitz continuity of q : [a+ δ, b] → R with constant Cq,δ. With the
indicated decomposition of the domain we calculate

∫

Ω

∣

∣

∣
vε(x)− v

(

x,
x

ε

)
∣

∣

∣

2

≤ 2

∫

Gε,δ

(|vε(x)− q(0)|2 + |v(x, x/ε)− q(0)|2)

+ C2
q,δ

∫

Hε,δ

∣

∣

∣
uε(x)− u

(

x,
x

ε

)
∣

∣

∣

2

+ C|B1
ε,δ|+ C|B2

ε,δ|.

The right hand side is arbitrarily small if we choose first δ > 0 small enough to obtain
smallness of the first integral, and then ε > 0 small in order to have smallness of the
second integral and of the measures of the bad sets.

Due to the characterization in (4.8), this implies the strong two-scale convergence
of the sequence vε.

Proof of Theorem 1. We study here the non-degenerate case, i.e. we assume that
the positivity assumption kj ≥ c0 of (2.4) is satisfied for both fluids j = w and
j = n. In this case, the a priori estimate (4.2) provides uniform estimates for both
pressure functions pεj ∈ L2(0, T ;H1(Ω)). Due to the strict monotonicity of pc in the
variable s, these estimates carry over, in each subdomain Ωε

m, to uniform estimates
for sεw(x) = (pmc )

−1(pεw(x) − pεn(x)) ∈ H1(Ωε
m). We can therefore extract two-scale

limits which read, omitting the time dependence in all expressions,

pεj
2
⇀ pj,0 , pj,0 : Ω → R, (4.9)

∇pεj
2
⇀ ∇xpj,0 +∇ypj,1 , pj,1 : Ω× Y → R, (4.10)

sεj
2
⇀ sj,0 , sj,0 : Ω× Y → R, (4.11)

qεj
2
⇀ qj,0 , qj,0 : Ω× Y → R

n. (4.12)

All two-scale convergences are with respect to the L2-norm. Item (i) of Lemma
4.1 implies the strong two scale convergence in (4.9) and (4.11). In particular, we
have now defined the eight variables of (3.1)–(3.2). It remains to verify the relations
(3.3)–(3.7).

The weak limits of sεj and q
ε
j are recovered as the averages of the two-scale limits,

sεj ⇀ −
∫

Y

sj,0(x, y) dy, qεj ⇀ −
∫

Y

qj,0(x, y) dy,

hence (3.3) follows by taking the weak limit in (2.11).
In order to derive (3.4), we first observe that (2.12) implies

(Kε
j k

ε
j(s

ε
j))

−1qεj = ∇pεj
2
⇀ ∇xpj,0 +∇ypj,1 . (4.13)

On the left hand side, the factor qεj converges (weakly) in two-scales, see (4.12). In
the other factor, we exploit the strong two scale convergence of sεj , non-degeneracy
of kεj and item (ii) of Lemma 4.1, to conclude the strong two scale convergence of

(Kε
j k

ε
j (s

ε
j))

−1 2
⇀ (Kj(x, y)kj(x, y, sj,0(x, y)))

−1.
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To be more precise, we use, in this conclusion, item (ii) of Lemma 4.1 M times,
separately for each subdomain. With the help of property (4.7) of strong two-scale
convergence one easily deduces the (weak) two-scale convergence of the product,
(Kε

j k
ε
j (s

ε
j))

−1qεj on the left hand side of (4.13), converges in two scales to the function
(Kj(x, y)kj(x, y, sj,0(x, y)))

−1qj,0(x, y). This provides (3.4).
We next want to verify (3.5), namely that the distribution ∇y · qj,0 vanishes. By

(2.11), for an arbitrary function φ ∈ C∞
c (Ω × Y × (0, T ),R) and the corresponding

oscillatory function φε(x, t) = φ(x, x/ε, t) there holds

〈∇y · qj,0〉 (φ) =
∫ T

0

∫

Ω

∫

Y

qj,0(x, y, t)∇yφ(x, y, t)

= lim
ε→0

∫ T

0

∫

Ω

qεj ε∇φε = lim
ε→0

∫ T

0

∫

Ω

sεj ε∂tφ
ε = 0.

Relations (3.6) and (3.7) are immediate consequences of the algebraic conditions
in (2.13). For the limit consideration leading to the nonlinear term in (3.7) we exploit,
as in the derivation of (3.4), the strong two-scale convergence of sεw to sw,0.

This concludes the proof of Theorem 1.

4.4 Proof in the degenerate case

Proof of Theorem 2. In the degenerate case we consider, in addition to the primal
variables of saturations sεj and pressures pεj , the wetting permeability kεw = kεw(s

ε
w)

and the weighted pressure ψε
w = kεwp

ε
w as dependent variables.

Due to the H1 estimates on subdomains, obtained in (4.3), we find two-scale limits

kεw
2
⇀ kw,0, kw,0 : Ω× Y → R, (4.14)

∇kεw
2
⇀ ∇xkw,0 +∇ykw,1, kw,1 : Ω× Y → R, (4.15)

and analogous limits for ψε
w = kεwp

ε
w. Item (i) of Lemma 4.1 implies the strong

two-scale convergence of kεw to kw,0 and of ψε
w to ψw,0.

Step 1. Consequences of the strong two-scale convergence. The saturation variable
sεw is related to the permeability through the algebraic relation kεw = kεw(s

ε
w). Item

(iii) of Lemma 4.1 is applicable and it implies the strong two-scale convergence sεw
2
⇀

sw,0. Additionally, the lemma provides the characterization of the limit, kw,0(x, y) :=
kw(x, y, sw,0(x, y)). Similarly, the strong two-scale convergence of kεw implies also
relation ψw,0(x, y) := kw,0(x, y)pw,0(x, y) for the product term. The fact that pw,0(x, y)
is independent of y in each subdomain Ym follows from the y-independence of kw,0 and
ψw,0 in each subdomain. Once the trace relation (3.14) is established, we conclude
that p̃c(sw,0) is without jumps at interfaces and (3.13) for pw,0(x, y) implies that the
latter is indeed independent of y ∈ Y .

For the non-degenerate second phase, (4.2) provides the strong two-scale conver-
gence of pεn. With these first observations, we can now conclude the strong two-scale
convergence of the wetting pressures pεw. For this step to work, it is important to
make a choice in the definition of the wetting pressure in the region with vanishing
saturation. We made this choice by demanding the equality pεw − pεn = p̃εc(s

ε
w) in
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Definition 2.2 and, accordingly, the equality in (3.13). The properties of the function
p̃εc allow to use item (iii) of Lemma 4.1 and to conclude from pεw − pεn = p̃εc(s

ε
w) the

strong two-scale convergence pεw
2
⇀ pw,0(x, y) = pn,0(x) + p̃c(x, y, sw,0(x, y)), and, in

particular, (3.13).

Step 2. Further limit equations. We have to verify the remaining equations of the
system (3.8)–(3.16). Relations (3.8)–(3.12) with the exeption of (3.10) follow exactly
as in the non-degenerate case, exploiting again the strong two-scale convergence of
sεw.

Relation (3.10) must be derived from the flux relation in the weighted solution
setting, i.e. (2.19). This relation reads

(Kε
w)

−1qεw = ∇ψε
w − (∇kεw)pεw .

The strong two-scale convergence of the pressure pεw → pw,0(x, y) found in Step 1
allows to take the two-scale limit in the product term and we find (3.10).

The jump conditions (3.14) and (3.15) follow from (2.20), which provides

tracem(k
ε
w) = Φm,m′(x, tracem′(kεw)) .

The piecewise H1-bound for kεw and the trace theorem allow to transfer this relation
to the two-scale limit.

Finally, the relation between ψw,1 and kw,1 of (3.16) follows from the definition of
Ψ(κ) = κ p̃c(k

−1
w (κ)) in (2.7), which allows to write

ψε
w = kεwp

ε
w = Ψ(kεw) + kεwp

ε
n ,

and hence also

∇ψε
w = ∂κΨ(kεw)∇kεw +∇kεw pεn + kεw ∇pεn .

We take the two scale limit of both sides, exploiting the strong two-scale convergence
of kεw and the pressure pεn. A comparison with the x-gradient of the zero-order limit
relation ψw,0(x, y) = kw,0(x, y)pw,0(x, y) = Ψ(kw,0(x, y)) + kw,0(x, y)pn,0(x) provides
that the y-gradients of both sides in (3.16) coincide. Upon changing ψw,0(x, y) by an
additive constant, we conclude (3.16). Hence, Theorem 2 is shown.

5 Effective model in a one-dimensional case

As an example for the non-degenerate limit problem of Definition 3.1, we study in this
section the one-dimensional situation. We investigate a setting that had been treated
before in [12, 15, 16, 26]. Setting the space dimension to n = 1, we use Y = [−1, 1)
as a periodicity cell, set Kj := 1, and choose, for x ∈ Ω = (−L, L), permeability and
capillary pressure as periodically oscillating functions by setting

kj(x, y, s) =

{

k+j (x, s) for y ∈ [0, 1)

k−j (x, s) for y ∈ [−1, 0)
, p̃c(y, s) =

{

p̃+c (s) for y ∈ [0, 1)

p̃−c (s) for y ∈ [−1, 0)
.
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Our aim is to investigate the non-degenerate limit problem of Definition 3.1 in this
case. To simplify further, we assume that pw,0(x) − pn,0(x) = p̃c(x, y, sw,0(x, y))
holds as an equality in (3.7). This one-dimensional setting has been also studied in
[16], where an effective system has been suggested by formal asymptotics, the correct
effective system has been derived in [15], again by formal asymptotics, and it has been
verified analytically in [26]. Regarding existence results and, in particular, interface
conditions, we refer to [7, 12].

5.1 Effective system in one space dimension

Omitting once more the time dependence, the unknowns in (3.1)–(3.2) are pj,0(x),
sj,0(x), pj,1(x, y), qj,0(x, y). Relation (3.5) implies that qj,0(x, y) = qj,0(x) is indepen-
dent of y. Furthermore, (3.7) yields that sw,0(x, y) is independent of y in the interval
(−1, 0) and in the interval (0, 1). We can therefore abbreviate sw,0(x, y) = sw,±(x) =
s±(x) for ±y > 0, from (3.6) we know that the non-wetting saturation can be recov-
ered as sn,0(x, y) = sn,±(x) = 1 − s±(x) for ±y > 0. Our last structural observation
is that (3.4) yields for the effective pressure gradient ∂xpj,0(x)+ ∂ypj,1(x, y) = vj,±(x)
for ±y > 0. After these reductions, we have as unknowns

pj,0(x) and sj,0(x) := −
∫

sj,0(x, y) dy as macroscopic variables, and

s±(x), vj,±(x) as auxiliary variables describing microscopic properties.

In order to find a one-dimensional two-phase flow system, we have to express the
six variables s±(x) and vj,±(x) by the macroscopic variables. From the definition of
sj,0(x) and relation (3.7) we obtain

s+ + s− = 2sw,0(x), (5.1)

p̃+c (s+) = p̃−c (s−). (5.2)

Given sw,0(x), this system can be solved for s± = s±(x) due to the monotonicity
of p̃c. The facts that pj,1(x, y) is periodic and that the left hand side in (3.4) is
y-independent, imply

vj,+ + vj,− = 2∂xpj,0(x), (5.3)

k+j (x, sj,+(x)) vj,+ = k−j (x, sj,−(x)) vj,−. (5.4)

Given ∂xpj,0(x), this system can be solved for vj,± = vj,±(x) by positivity of the
factors k±j . We have thus seen that the six equations (5.1)–(5.4) determine the six
auxiliary variables.

The macroscopic equations (3.3) can now be written in a compact form. We can
reconstruct the saturations from the pressures with the two maps Sw and Sn,

Sj : Ω× R
2 → R, Sn := 1− Sw,

Sw : (x, pw, pn) 7→
1

2
(p̃+c (x, .))

−1(pw − pn) +
1

2
(p̃−c (x, .))

−1(pw − pn).
(5.5)
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With the saturation sw,0(x) = Sw(x, pw, pn), we can define the flux functions as

Fj : Ω× R
2 × R

2 → R,

(x, pw, pn, δpw, δpn) 7→ k+j (x, sj,+(x)) vj,+
(5.6)

where the quantities sw,±(x) = s±(x), sn,±(x) = 1 − sw,±(x) and vj,±(x) are calcu-
lated from (5.1)–(5.4) with sw,0(x) = Sw(x, pw, pn) and with ∂xpj,0(x) = δpj. The
macroscopic effective two-phase flow equations (3.3) for (pw(x, t), pn(x, t)) now read

∂t Sj(x, pw(x), pn(x)) = ∂x Fj(x, pw(x), pn(x), ∂xpw(x), ∂xpn(x)) (5.7)

for j = w and j = n.

The above reduction can be compared directly with the procedure in [26]. Our
equations (5.1)–(5.2) coincide with equations (3.1) and (3.2) of [26], except that we
write here s± instead of u± for saturation values. Our equation (5.3) relates to the
geometric slope condition (3.6) of [26], our flux continuity (5.4) relates to the flux
continuity (3.5) of [26]. In the contribution at hand we have chosen not to exploit
the fact that the total flux is constant and given by the boundary condition. Instead,
we stick with two effective equations, using the two indices j = w and j = n, which
makes the effective system more symmetric and more similar to the original system.
As a consequence, we can avoid the additional unknowns u±,x(x) of [26] in the set of
microscopic variables.

5.2 One-dimensional numerical experiment

In order to validate the homogenized system (5.1)–(5.7), we consider the one dimen-
sional trapping test problem introduced in section 4.1 of [16], and section 4 of [15].
The test problem investigates the permeabilities and capillary pressures

kj(x, y, s) =

{

k+krj(s) for y ∈ [0, 1)

k−krj(s) for y ∈ [−1, 0)
, p̃c(y, s) =

{

1√
k+
J(s) for y ∈ [0, 1)

1√
k−
J(s) for y ∈ [−1, 0)

with

k− = 0.5, k+ = 1.0, krw(s) = (1− s)2, krn(s) = (s)2, J(s) =
1√
1− s

,

where s now denotes the saturation of the non-wetting phase. We consider the prob-
lem in Ω = (−1, 1) with initial saturation s = 1, the total flux at the inflow boundary
(x = −1) equals one, and the saturation boundary datum at the inflow boundary is
s(−1) = 0 for all times.

For numerical purposes, we rewrite the two equations of (5.7) in a global flux
formulation. Subtracting and adding the equations for both phases, we obtain

2∂t Sn = ∂x (Fn −Fw), 0 = ∂x (Fn + Fw) . (5.8)

The second equation of (5.8) yields the x-independence of the total flux. Since the
total flux at the inflow is prescribed as 1, the second equation of (5.8) provides
Fn + Fw = 1.
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Figure 2: One-dimensional trapping effect. The graph shows saturation distributions
at a fixed time instance. The solid line shows the result of a detailed simulation with
80 periodicity cells. The dashed line shows its averages over one period, the dotted
line shows the solution of the homogenized problem.

It remains to solve the first equation of (5.8), the conservation law for the macro-
scopic saturation, where the fluxes are determined by (5.6). This homogenized global
flux formulation coincides with the effective model that was derived formally in [15]. A
formal distinction is that the definition of the effective macroscopic capillary pressure,
given here through equation (5.5), is expressed in terms of the microscopic variables
in [15]. However, taking into account (5.1)–(5.2), it is clear that both definitions
coincide.

The numerical results shown in Figures 2 and 3 are obtained with an explicit
upwind finite volume approximation of the homogenized system (5.1)–(5.7), based on
the global flux formulation. Obviously, they are in agreement with the results for the
effective model from [15]. In particular, Figure 2 illustrates the oil-trapping effect of
the fine scale simulation with 80 periodic cells. The zoom in of Figure 3 shows a close
to perfect matching between the numerical solution of the homogenized equation on
a coarse grid with 640 grid cells with the cell-averaged fine scale simulation obtained
on a fine grid with 3200 cells. In both cases grid convergence is ensured with the
chosen mesh sizes.

We emphasize that we present here fine-scale simulations and calculations for the
effective system, not the results of numerical multi-scale methods. The work at hand
opens the way to investigate, in a direct comparison, numerical multi-scale methods
for two-phase flow in porous media as developed, e.g., in [17, 18, 23].
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Figure 3: A zoom of the graphs of Figure 2.

6 Conclusions

Using the concept of weighted solutions, we have derived a rigorous homogenization
result for degenerate two phase flow in porous media. Our result covers multiple space
dimensions and the situation in which no scaling law is assumed between the local
permeability values. Our contribution therefore closes a gap in the homogenization
analysis of two phase flow in porous media that was left open in [28], where one of the
local media coefficients was supposed to scale with ε̟, ̟ > 0. In the one dimensional
case, the resulting homogenized system coincides with the effective model that was
formally derived in [15] and rigorously obtained in [26]. In this sense, our result can
be regarded as a generalization of [26] to the multi-dimensional case.
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2011-02 Stefan Jäschke, Karl Friedrich Siburg and Pavel A. Stoimenov
Modelling dependence of extreme events in energy markets using tail copulas



2011-01 Ben Schweizer and Marco Veneroni
The needle problem approach to non-periodic homogenization

2010-16 Sebastian Engelke and Jeannette H.C. Woerner
A unifying approach to fractional Lévy processes
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Confined elastic curves
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