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NONCENTRAL LIMIT THEOREM AND THE BOOTSTRAP FOR

QUANTILES OF DEPENDENT DATA

MARTIN WENDLER, OLIMJON SH. SHARIPOV

Abstract. We will show under minimal conditions on di�erentiability and
dependence that the central limit theorem for quantiles holds and that the
block bootstrap is weakly consistent. Under slightly stronger conditions, the
bootstrap is strongly consistent. Without the di�erentiability condition, quan-
tiles might have a non-normal asymptotic distribution and the bootstrap might
fail.

1. Limit Behaviour of Quantiles

Let (Xn)n∈Z be a stationary sequence of real-valued random variables with dis-
tribution function F and p ∈ (0, 1). Then the p-quantile tp of F is de�ned as

tp := F−1 (p) := inf
{
t ∈ R

∣∣F (t) ≥ p
}

and can be estimated by the empirical p-quantile, i.e. the dnp e-th order statistic

of the sample X1 . . . , Xn. This also can be expressed as the p-quantile F−1n (p)
of the empirical distribution function Fn (t) := 1

n

∑n
i=1 1Xi≤t. It is clear that

F−1n (p) is greater than tp i� Fn (tp) is smaller than p. In the case of independent
random variables, this converse behaviour was exploited by Bahadur [3] to show
that the asymptotic behaviour of the quantile F−1n (p) and the empirical distribution
function Fn at the point tp is the same under the condition that F is di�erentiable
twice in a neighborhood of tp. Ghosh [7] established a weak form of the Bahadur
representation, only assuming that F is di�erentiable once in tp. He showed that

F−1n (p)− tp =
p− Fn (tp)
f (tp)

+Rn,

where f = F ′ is the derivative of the distribution function and Rn = oP

(
n−

1
2

)
.

As noticed by Lahiri [12], the condition that F is di�erentiable is also necessary
for the central limit theorem for F−1n (p). Ghosh and Sukhatme [9] and de Haan
and Taconis-Haantjes [10] investigated the noncentral limit theorem for F−1n (p), if
F is not di�erentiable, but regular varying. We will extend their results to strongly
mixing random variables.

There is a broad literature on the Bahadur representation for strongly mixing
data. Babu and Singh [2] proved such a representation under an exponentially fast
decay of the strong mixing coe�cients, this was weakened by Yoshihara [21], Sun
[18] and Wendler [20] to a polynomial decay of the strong mixing coe�cients. All
these articles deal with the case that F is di�erentiable.
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De�nition 1.1. Let (Xn)n∈Z be a stationary process. Then the strong mixing
coe�cients are de�ned as

(1) α(k) := sup
{
|P [AB]− P [A]P [B]| : A ∈ Fn1 , B ∈ F∞n+k, n ∈ Z

}
where F la is the σ-�eld generated by random variables Xa, . . . , Xl. We say that
(Xn)n∈Z is strongly mixing if limk→∞ α(k) = 0.

For further information on strong mixing and a detailed description of the other
mixing assumptions, see Bradley [5].

Theorem 1. Let (Xn)n∈Z be a stationary, strongly mixing sequence of random
variables with distribution function F , such that for a ρ > 0

F (tp + h)− F (tp) =M |h|ρ sgn(h) + o(|h|ρ)
as h→ 0 and

∑∞
n=1 α(n) <∞. Then

F−1n (p)− tp =
(
|p− Fn (tp) |

M

) 1
ρ

sgn (p− Fn(tp)) +Rn,

where Rn = oP (n
− 1

2ρ ).

For the special case ρ = 1 (di�erentiablilty), we get Lemma 5.1 of Sun and
Lahiri [19] (central limit theorem for F−1n (p)), as Fn (tp) is asymptotically normal
by Theorem 1.6 of Ibragimov [11].

Corollary 1. If the assumptions of Theorem 1 hold with ρ = 1, then
√
n(F−1n (p)−

tp) is asymptotically normal.

In the other case, we get a noncentral limit theorem:

Corollary 2. If the assumptions of Theorem 1 hold with ρ 6= 1, then n
1
2ρ (F−1n (p)−

tp) converges in distribution to C|W |
1
ρ sgn(W ), where C is a constant and W is a

normal random variable.

2. Block Bootstrap for Quantiles

The statistical inference for quantiles is a di�cult task, many methods rely on
estimates of the unknown density. An alternative method is the Bootstrap. Bickel
and Freedman [4] established the consistitency of the Bootstrap for quantiles for
independent data, more work on this topic was done by Ghosh et. al [8] and Babu
[1].

For dependent data, normal approximation becomes even more di�cult, but
there is up to our knowledge only one article about the bootstrap for quantiles
under dependence: Sun and Lahiri [19] have shown the strong consistency of the
bootstrap under strong mixing. We will establish a weak Bahadur representation
for the bootstrap version of the quantile and will conclude that the bootstrap is
weakly consistent for ρ = 1 and inconsistent for ρ 6= 1.

There are di�erent ways to resample blocks, for example the circular block boot-
strap or the moving block bootstrap (for a detailed description of the di�erent
bootstrapping methods see Lahiri [13]). We consider the circular block bootstrap
introduced by Politis and Romano [15]. Instead of the original sample of n observa-
tions with an unknown distribution, construct new samples X?

1 , . . . , X
?
bl as follows:

Extend the sample X1, . . . , Xn periodically by Xi+n = Xi, choose blocks of l = ln
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consecutive observations of the sample randomly and repeat that b = bnl c times
independently: For j = 1, . . . , n, k = 0, . . . , b− 1

P ?
(
X?
kl+1 = Xj , . . . , X

?
(k+1)l = Xj+l−1

)
=

1

n
,

where P ? is the bootstrap distribution conditionally on (Xn)n∈N, E
? and Var? are

the conditional expectation and variance. For the circular block bootstrap version
of the sample mean, Radulovi¢ [16] has established weak consistency under very
weak conditions.
F ?n(t) =

1
bl

∑bl
i=1 1{X?i ≤t} denotes the Bootstrap version of the empirical distri-

bution function and F ?−1n (p) the p-quantile of the bootstrap sample.

Theorem 2. Let (Xn)n∈Z be a stationary, strongly mixing sequence of random
variables with distribution function F , such that for a ρ > 0 and M 6= 0

F (tp + h)− F (tp) =M |h|ρ sgn(h) + o(h)

as h→ 0 and
∑∞
n=1 α(n) <∞. Furthermore, choose the block length in such a way

that 1
l +

l
n → 0. Then

F ?−1n (p)− tp =
(
|p− F ?n (tp) |

M

) 1
ρ

sgn(p− F ?n (tp)) +R?n,

where R?n = oP (n
− 1

2ρ ).

Note that we do not center F ?−1n (p) with respect to the bootstrapped expecta-
tion, but with respect to the true quantil tp. With the help of this theorem, we get
weak consistency respectively inconsistency of the bootstrap:

Corollary 3. If the assumptions of Theorem 2 hold with ρ = 1 and additionally
limn→∞Var[

√
nFn(tp)] > 0, then

sup
t∈R

∣∣P ? (F ?−1n (p)− F−1n (p) ≤ t
)
− P

(
F−1n (p)− tp ≤ t

)∣∣ n→∞−−−−→ 0

in probability.

Corollary 4. If the assumptions of Theorem 2 hold with ρ 6= 1 and additionally
limn→∞Var[

√
nFn(tp)] > 0, then

sup
t∈R

∣∣P ? (F ?−1n (p)− F−1n (p) ≤ t
)
− P

(
F−1n (p)− tp ≤ t

)∣∣ n→∞−−−−→ Zρ

in distribution, where Zρ is a non-degenerate (non-constant) random variable.

We also want to establish the almost sure consistency and we need slightly
stronger conditions on the mixing coe�cients and the block length:

Theorem 3. Let (Xn)n∈Z be a stationary, strongly mixing sequence of random
variables with distribution function F which is di�erentiable in tp. We assume that
the mixing coe�cients satisfy α(n) = O(n−1−ε) for an ε > 0. Furthermore, choose
the block length in such a way that for some constants C1, C2, ε1 > 0

C1n
ε1 ≤ ln ≤ C2n

1−ε1

and for all k ∈ N
l2k = l2k+1 = . . . = l2k+1−1.
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Then

F ?−1n (p)− F−1n (p) =
Fn(tp)− F ?n (tp)

f(tp)
+R?n,

where R?n = o?P (n
− 1

2 ) almost surely.

With this Bahadur-Ghosh representation and Theorem 2.4 of Shao and Yu [17],
the strong consistency of the bootstap follows easily:

Corollary 5. If the assumptions of Theorem 3 hold and limn→∞Var[
√
nFn(tp)] >

0, then

sup
t∈R

∣∣P ? (F ?−1n (p)− F−1n (p) ≤ t
)
− P

(
F−1n (p)− tp ≤ t

)∣∣ n→∞−−−−→ 0

almost surely.

Compared to Theorem 3.1 of Sun and Lahiri [19], our assumptions on the mixing
coe�cient α(n), on the distribution function F and on the block length l are weaker.

3. Proofs

In the proofs, C denotes an arbitrary constant, which may have di�erent values
from line to line and may depend on several other values, but not on n ∈ N. We
use the following lemma proved by Ghosh [7]:

Lemma 3.1. Let (Vn)n∈N and (Wn)n∈N be two sequences of random variables,
such that

(1) the sequence (Wn)n∈N is tight,
(2) For all k ∈ R and ε > 0

lim
n→∞

P (Vn ≤ k,Wn ≥ k + ε) = 0

lim
n→∞

P (Vn ≥ k + ε,Wn ≤ k) = 0.

Then Vn −Wn → 0 in probabality as n→∞.

Proof of Theorem 1. The proof follows the ideas of Ghosh [7]. We set g(x) =
|x|ρ sgn(x) and Wn = g−1(

√
n(p − Fn(tp))). By Theorem 1.6 of Ibragimov [11],√

n(p− Fn(tp)) converges to a normal limit and thus (Wn)n∈N is tight. We de�ne

Vn = n
1
2ρ (F−1n (p)− tp) and Zt,n = g−1(

√
n(F (tp+

t

n
1
2ρ
)−Fn(tp+ t

n
1
2ρ
))). We have

that by the de�nition of the generalized inverse

{Vn ≤ t} =
{
p ≤ Fn(tp +

t

n
1
2ρ

)

}
= {Zt,n ≤ tn}

where tn := g−1(
√
n(F (tp+

t

n
1
2ρ
)− p)). By our assumptions on F , for all t ∈ R we

have that tn → t as n → ∞. We assumed that
∑∞
k=1 α(k) ≤ ∞. By a well-known

covaraince inequality Cov

(
1{tp<X1≤tp+ t

n
1
2ρ

},1{tp<Xk≤tp+ t

n
1
2ρ

}

)
≤ 4α(k − 1), so
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we have that

E

(√
n

(
p− Fn(tp)− F (tp +

t

n
1
2ρ

) + Fn(tp +
t

n
1
2ρ

)

))2

≤ 2

∞∑
k=1

∣∣∣∣Cov(1{tp<X1≤tp+ t

n
1
2ρ

},1{tp<Xk≤tp+ t

n
1
2ρ

}

)∣∣∣∣
≤ 2

bn
1
4 c∑

k=1

Var

(
1{tp<X1≤tp+ t

n
1
2ρ

}

)
+ 8

∞∑
k=bn

1
4 c

α(k)

≤ 2n
1
4

∣∣∣∣F (tp + t

n
1
2ρ

)− p
∣∣∣∣+ 8

∞∑
k=bn

1
4 c

α(k)
n→∞−−−−→ 0,

so
√
n(p−Fn(tp)−F (tp+ t

n
1
2ρ
)+Fn(tp+

t

n
1
2ρ
))→ 0 in probability and consequently

Zt,n −Wn → 0 in probability as n→∞, Lemma 3.1 completes the proof. �

We omit the proof of the Corollaries 1 and 2, as we think they are obvious.

Proof of Theorem 2. We will use a similar method as in the proof of Theorem 1.
We de�ne

W ?
n := g−1

(√
bl(p− F ?n(tp))

)
,

V ?n := (bl)
1
2ρ (F−1n (p)− tp),

Z?t,n := g−1
(√

bl(F (tp +
t

n
1
2ρ

)− F ?n(tp +
t

n
1
2ρ

))

)
Note that

√
bl(Fn(tp) − F ?n(tp)) converges to a normal limit by Theorem 2 of

Radulovi¢ [16], so the sequence (
√
bl((p− Fn(tp)) + (Fn(tp)− F ?n(tp)))n∈N is tight

and consequently the sequence (W ?
n)n∈N is also tight. It remains to show for any

t ∈ R that Z?t,n −W ?
n → 0 in probability as n → ∞. By the construction of the

circular block bootstrap E?F ?n(t) = Fn(t), so

EE?
(√

bl

(
F (tp +

t

n
1
2ρ

)− F ?n(tp +
t

n
1
2ρ

)− p+ F ?n(tp)

))2

=EE?
(√

bl

(
Fn(tp +

t

n
1
2ρ

)− F ?n(tp +
t

n
1
2ρ

)− Fn(tp) + F ?n(tp)

))2

+ E

(√
bl

(
F (tp +

t

n
1
2ρ

)− Fn(tp +
t

n
1
2ρ

)− p+ Fn(tp)

))2

.

In the proof of Theorem 1, we have already shown that the second summand con-
verges to zero. For the �rst summand, we conclude from the conditional indepen-
dence of the resampled blocks and the de�nition of empirical distribution function

EE?
(√

bl

(
Fn(tp +

t

n
1
2ρ

)− F ?n(tp +
t

n
1
2ρ

)− Fn(tp) + F ?n(tp)

))2

= lEE?

(
Fn(tp +

t

n
1
2ρ

)− 1

l

l∑
i=1

1{X?i ≤tp+
t

n
1
2ρ

} − Fn(tp) +
1

l

l∑
i=1

1{X?i ≤tp}

)2

.
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With probability 1
n , we have (X?

1 , . . . , X
?
l ) = (Xj+1, . . . , Xj+l) (with Xi = Xi−n

for i > n), so

lEE?

(
Fn(tp +

t

n
1
2ρ

)− 1

l

l∑
i=1

1{X?i ≤tp+
t

n
1
2ρ

} − Fn(tp) +
1

l

l∑
i=1

1{X?i ≤tp}

)2

=
l

n

n∑
j=1

E

(
Fn(tp +

t

n
1
2ρ

)− 1

l

l∑
i=1

1{Xj+1≤tp+ t

n
1
2ρ

} − Fn(tp) +
1

l

l∑
i=1

1{Xj+i≤tp}

)2

≤ 2lE

(
Fn(tp +

t

n
1
2ρ

)− F (tp +
t

n
1
2ρ

)− Fn(tp) + F (tp)

)2

+ 2lE

(
Fl(tp +

t

n
1
2ρ

)− F (tp +
t

n
1
2ρ

)− Fl(tp) + F (tp)

)2

.

These two summands converge to 0 as in the proof of Theorem 1, which completes
the proof. �

Proof of Corollary 3. By Theorem 2 of Radulovi¢ [16]

sup
t∈R

∣∣P ? (√n(Fn(tp)− p) ≤ t)− P (Y ≤ t)
∣∣ n→∞−−−−→ 0

and

sup
t∈R

∣∣∣P ? (√bl(F ?n(tp)− Fn(tp)) ≤ t)− P (Y ≤ t)
∣∣∣ n→∞−−−−→ 0

in probability for some normal random variable Y . Furthermore by Theorems 1
and 2

F−1n (p)− tp =
p− Fn (tp)

M
+Rn

and

F ?−1n (p)− F−1n (p) =
(
F ?−1n (p)− tp

)
−
(
F−1n (p)− tp

)
=
p− F ?n (tp)

M
− p− Fn (tp)

M
+R?n −Rn =

Fn (tp)− F ?n (tp)

M
+R?n −Rn,

where Rn = oP (n
− 1

2 ) and R?n = oP (n
− 1

2 ). So we can conclude that

sup
t∈R

∣∣P ? (F ?−1n (p)− F−1n (p) ≤ t
)
− P

(
F−1n (p)− tp ≤ t

)∣∣
≤ sup

t∈R

∣∣∣∣P ? (√bl(F ?−1n (p)− F−1n (p)) ≤ t
)
− P

(
−Y
M
≤ t
)∣∣∣∣

+ sup
t∈R

∣∣∣∣P ? (√n(Fn (p)− tp) ≤ t)− P (− YM ≤ t
)∣∣∣∣ n→∞−−−−→ 0

in probability. �

Proof of Corollary 4. By Theorems 1 and 2, we have that

F ?−1n (p)− F−1n (p) = g−1(p− F ?n (tp))− g−1(p− Fn (tp)) +Rn +R?n
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with Rn +R?n = oP (n
− 1

2ρ ), so

sup
t∈R

∣∣∣P ? (n 1
2ρ (F ?−1n (p)− F−1n (p)) ≤ t

)
−P ?

(
g−1(
√
n(p− F ?n (tp)))− g−1(

√
n(p− Fn (tp))) ≤ t

)∣∣ n→∞−−−−→ 0

in probability. Furthermore

sup
t∈R

∣∣∣P (n 1
2ρ (F−1n (p)− tp) ≤ t

)
− P

(
g−1(
√
n(p− Fn (tp))) ≤ t

)∣∣∣ n→∞−−−−→ 0.

So we have to investigate

sup
t∈R

∣∣P ? (g−1(√n(p− F ?n (tp)))− g−1(
√
n(p− Fn (tp))) ≤ t

)
−P

(
g−1(
√
n(p− Fn (tp))) ≤ t

)∣∣
n→∞−−−−→ sup

t∈R

∣∣P (g−1(W1 +W2)− g−1(W2) ≤ t|W2

)
− P

(
g−1(W1) ≤ t

)∣∣ =: Zρ

in distribution, where W1 and W2 are two independent normal random variables.
As the functions x → g−1(x + y) − g−1(y) and x → g−1(x) are not identical for
y 6= 0, this random variables is not 0. �

Proof of Theorem 3. We de�ne an = 2k for the k ∈ N such that 2k ≤ n < 2k+1.

W̃n :=
1
√
an

n∑
i=1

(
Fn(tp)− 1{X?i ≤tp}

)
,

Z̃t,n :=
1
√
an

n∑
i=1

(
Fn(tp +

t
√
an

)− 1{X?i ≤tp+ t√
an
} − Fn(tp) + 1{X?i ≤tp}

)
.

Following the arguments of the proof of Theorem 1, we only have to show that
the sequence (W̃n)n∈N is tight and that Z̃t,n → 0 in bootstrap probability for all
t ∈ R almost surely. Note that by Theorem 2.4 of Shao and Yu [17], (

√
n(Fn(tp)−

F ?n(tp)))n∈N is almost surely asymptotically normal and thus (W̃n)n∈N is tight.
First note that by the construction of the bootstrap random variables, the sum-

mands of Z̃t,n are independent conditional on X1, . . . , Xn when the indices i lie
in di�erent blocks. Additionally, the random variables are centered in bootstrap
probability and the sequence of blocks are stationary for �xed n. So

E?
(
Z̃t,n

)2
= b n

ln
c 1
an

Var?

[
ln∑
i=1

(
Fn(tp +

t
√
an

)− 1{X?i ≤tp+ t√
an
} − Fn(tp) + 1{X?i ≤tp}

)]
.

Recall that the bootstrap random variablesX?
1 , . . . , X

?
l take the valuesXj , . . . , Xj+l−1

for j = 1, . . . , n with probability 1
n and that we have to set Xj = Xj−n for j > n.
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So we have the following upper bound for the bootstrap variance:

Var?

[
ln∑
i=1

(
Fn(tp +

t
√
an

)− 1{X?i ≤tp+ t√
an
} − Fn(tp) + 1{X?i ≤tp}

)]

≤ 1

n

n∑
j=1

 max
m=1,...,l

j+m−1∑
i=j

(
Fn(tp +

t
√
an

)− 1{Xi≤tp+ t√
an
} − Fn(tp) + 1{Xi≤tp}

)2

≤ 2
1

n

n∑
j=1

 max
m=1,...,l

j+m−1∑
i=j

(
F (tp +

t
√
an

)− 1{Xi≤tp+ t√
an
} − F (tp) + 1{Xi≤tp}

)2

+ 2l2n

(
Fn(tp +

t
√
an

)− F (tp +
t
√
an

)− Fn(tp) + F (tp)

)2

.

To show the convergence of the bootstrap variance, we now need moment bounds
for the maximum of the partial sums. By Davydov's inequality [6], we have that

Cov
(
1{X1≤tp+ t√

an
} − 1{X1≤tp},1{X1+k≤tp+ t√

an
} − 1{X1+k≤tp}

)
≤ Cα

2
2+ε (k)(

t
√
an

)
ε

2+ε ,

as |F (tp)− F (tp + h)| ≤ C|h|. By standard calculations

E

(
m∑
i=1

(
F (tp +

t
√
an

)− 1{Xi≤tp+ t√
an
} − F (tp) + 1{Xi≤tp}

))2

≤ 2m

∞∑
k=1

Cα
2

2+ε (k)(
t
√
an

)
ε

2+ε ≤ Cma−
ε

4+ε
n .

We obtain the following maximal inequality by Theorem 3 of Móricz [14]

E

(
max

m=1,...,l

m∑
i=1

(
F (tp +

t
√
an

)− 1{Xi≤tp+ t√
an
} − F (tp) + 1{Xi≤tp}

))2

≤ Cl log2 la−
ε

4+ε
n .

To simplify the notation, we set

Yn(i) := F (tp +
t
√
an

)− 1{Xi≤tp+ t√
an
} − F (tp) + 1{Xi≤tp}
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By the Chebyshev inequality

∞∑
k=1

P ( max
n=2k,...,2k+1−1

Z̃t,n ≥ δ)

≤ 1

δ2

∞∑
k=1

E

 max
n=2k,...,2k+1−1

b n
ln
c 1
an

2

n

n∑
j=1

 max
m=1,...,l

j+m−1∑
i=j

Yn(i)

2


+
1

δ2

∞∑
k=1

E

 max
n=2k,...,2k+1−1

b n
ln
c 2
an
l2n

(
1

n

n∑
i=1

Yn(i)

)2


≤ 1

δ2

∞∑
k=1

8
1

l2k
E

(
max

m=1,...,l

m∑
i=1

Yn(i)

)2

+
1

δ2

∞∑
k=1

4
l2k

a2
2k
E

(
max

m=1,...,2k+1−1

m∑
i=1

Yn(i)

)2

≤ C
∞∑
k=1

log2(l2k)a
− ε

4+ε

2k
+ C

∞∑
k=1

log2(a2k)a
− ε

4+ε

2k
<∞.

With the Borel-Cantelli-lemma, we have that Z̃t,n converges to 0 almost surely for
all t ∈ R and the proof is complete. �
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