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Abstract

We propose a fluctuation-type procedure for detecting breaks in spatial regions.

While such tests are common in the context of time series, it is not a priori clear

how to apply them to spatial data as there is no natural order of the observations.

We demonstrate how this order can be constructed from a spatial autoregressive

model. Once such an order is derived, standard time series results apply and break

points can be consistently identified.
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1. Introduction

Testing for structural changes in data generating processes has been a standard topic in

the statistical literature for a long time. This includes testing for parameter constancy in

cross-sectional regression models (e.g. Chow, 1960) as well as in time series models (e.g.

Brown et al., 1975). When applying such procedures it is necessary to group the data

into possible regimes. This is mostly achieved by some natural order. In a time series

regression, this is time. In a cross-sectional regression, this might be the size of some

regressor, for instance when estimating the income effect on consumption, it is likewise

natural to ask if the income effect is smaller for larger incomes.

However, there is no natural order of the data in spatial contexts. Anselin (1990) analyzes

the effect of neglected spatial dependencies on Chow-like tests for structural stability.

Here, the classification of the spatial units into different regimes is assumed to be known.

López et al. (2010) or Mur et al. (2010) identify different regimes by performing Lagrange

multiplier tests for different spatial classifications. Manly and Mackenzie (2000) and

Manly and Mackenzie (2003) propose CUSUM methods for environmental monitoring.

The present paper proposes a method for the ordering of spatial data and suggests a

fluctuation-type procedure for detecting structural changes in the model parameters.

Given that we are able to transform our spatial data into a sequence yi, i = 1, . . . , n,

we use CUSUM methods from the classical econometrics literature to detect structural

changes and change points in the mean of this series. The “virtual” transformation into

a ordered one-dimensional series guarantees spatially connected regions. Moreover, in

contrast to Chow-like tests, we do not have to assume the position of potential change

points to be known a priori.

The crucial point of course is to find a suitable transformation. Consequently, our second

contribution is a method for concretely performing such a transformation using spatial

autoregressive models. The basic idea is that the amount of spatial dependence in differ-

ent directions is captured by the spatial correlation parameters.

The paper is organized as follows. Section 2 presents asymptotic results (null distribution,
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consistency of the change point estimator, local power) for the change point test under

the assumption that an order has already been found. Section 3 presents methods how to

establish the order in the data. Section 4 provides simulation evidence for the procedures

and Section 5 concludes. The proofs of our theorems are deferred to the appendix.

2. The Model and Main Results

This section presents asymptotic results for our procedure to detect spatial changes given

that a spatial order is available.

2.1. Testing procedure and asymptotic null distribution For i = 1, . . . , n, let

yi ∈ Rd be a random vector of observations. The observations are taken at locations

l1, . . . , ln ∈ Rk in a k-dimensional space which is equipped with a distance measure

dij := d(li, lj). We maintain the following assumptions:

Assumption 1. a) yi = µi+εi with εi ∼ (0,Σ)∀ i = 1, . . . , n, where µi ∈ Rd is a constant

vector and Σ is a constant (d× d)-matrix of full rank.

b) For i = 1, . . . , n, li ∈ S where S is a compact subset of Rk.

c) For i, j = 1, . . . , n, i 6= j, εi and εj are independent.

Part (a) of Assumption 1 implies finite second moments of the observations, but does not

impose any additional restrictions on the distribution of the yi. We focus on changes in

the expectation of the yi, but in principle our procedure might also be extended to settings

where the µi are explained by covariates. Note that S, the space of locations, does not

depend on the sample size n. Consequently, the corresponding asymptotic concept can

be described as in-space-asymptotics rather than S growing with the sample size.

We want to test the null hypothesis of constant expectations across space, i.e.

H0 : µi = µj ∀ i, j = 1, . . . , n.

Let l0 be a starting point which need not coincide with one of the li’s. The locations
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are ordered with respect to their distance to the starting point such that l(i) denotes the

location with the i-th smallest distance to l0. Thus for l(i) we have that

i = ]{k ∈ {1, . . . , n} : dk0 ≤ di0}.

The observation taken at location l(i) shall be denoted by y{i}.

The idea for the test procedure is as follows: For j = 1, . . . , n, we successively estimate

µ from the j observations which are closest to the starting point:

µ̂j :=
1

j

j∑
i=1

y{i}.

Then, we compare these to the estimate µ̂n which is calculated from all observations.

The null hypothesis is rejected if the sequence of suitably scaled differences,

j√
n

Σ̂∗ (µ̂j − µ̂n) , (1)

fluctuates too much. The unbiased estimator for Σ,

Σ̂ =
1

n− 1

n∑
i=1

(yi − µ̂n) (yi − µ̂n)T ,

is calculated from all observations. Here, AT stands for the transpose of a vector of matrix

A and Σ̂∗ is a matrix for which Σ̂∗Σ̂Σ̂∗ = Id is fulfilled, e.g. Σ̂∗ = Σ̂−
1
2 . The weighting

factor j√
n

scales down differences where µ̂j is calculated only from few observations close

to the starting point.

For s ∈ [0, 1], (1) can be rewritten as

Wn(s) :=
[sn]√
n

Σ̂∗
(
µ̂[sn] − µ̂n

)
=

[sn]√
n

Σ̂∗

 1

[sn]

[sn]∑
i=1

y{i} −
1

n

n∑
i=1

y{i}

 , (2)

where [.] denotes the floor function.
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To derive the asymptotic null distribution of Wn(s), we impose an additional assumption.

Assumption 2. For i, j = 1, . . . , n, i 6= j, P (di0 = dj0) = 0.

Assumption 2 implies that there are no ties in the order of the locations with respect to

their distance to the starting point. This guarantees that in the sequence µ̂j, in each step

exactly one observation is added to calculate µ̂j which simplifies deriving the asymptotic

null distribution of (2). If the locations are random draws from a continuous distribution

in Rk, Assumption 2 is automatically fulfilled. It would be violated if the locations

formed a regular grid and l0 coincided with one of the grid points. In such a situation,

the problem of ties in the di0 can be circumvented by adding some noise to l0 so that the

new starting point is randomly drawn from a small neighborhood around the grid point.

As long as this new starting point does not lie on the connection between two grid points,

ties in the di0 can be avoided by this small shift of l0 and Assumption 2 is fulfilled.

The following proposition yields the asymptotic distribution of Wn.

Proposition 1. Under H0 and assumptions 1 and 2, for n→∞,

sup
s∈[0,1]

||Wn(s)|| d→ sup
s∈[0,1]

||Bd(s)||,

where
d→ stands for convergence in distribution, Bd(.) is a d-dimensional Brownian bridge

and ||.|| denotes Euclidian norm.

2.2. Detecting change points As far as deviations from the null hypothesis are

concerned, our main goal is to detect changes in the µi where the expectations are constant

in a surrounding area of the starting point l0, but different for locations with larger

distances from l0, e.g. alternatives of the form

H1 : µi =

 µ1, di0 ≤ d∗

µ2, di0 > d∗,
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for some d∗ ∈ R and µ1 6= µ2. Our main focus is to localize the change in expectations,

i.e. we want to estimate d∗. Let n1 be the number of observations which are taken at

locations with di0 ≤ d∗ and n2 = n− n1 be the corresponding number of observations at

locations with di0 > d∗.

Assumption 3.

lim
n→∞

n1

n
= s∗.

Assumption 3 uniquely relates d∗ to s∗ so that separation of S into the two subareas with

different expectations can be achieved by consistent estimation of s∗.

A natural estimator for s∗ is provided by the point where ||Wn(s)√
n
|| is largest:

ŝ = argmax
s∈[0,1]

||Wn(s)√
n
||. (3)

Theorem 1. Under assumptions 1, 2 and 3, for n→∞,

ŝ
P→ s∗.

Theorem 1 guarantees that the subarea around l0, where the µi are different from the

expectations in the rest of S, can consistently be identified from the data.

2.3. Local alternatives In this section, we derive the asymptotic distribution of our

test statistic under a sequence of local alternatives. This allows for a fine analysis of

how the test behaves under the alternative hypothesis. To this end we basically keep

the setting from the former sections with the only difference that the random variables

yi now form a triangular array yn1 , y
n
2 , . . . , y

n
n, thus depend on n, and modify Assumption

1.a to

Assumption 4. yni = µi + 1√
n
g
(
i
n

)
+ εi with εi ∼ (0,Σ)∀ i = 1, . . . , n, where Σ is a

constant (d× d)-matrix of full rank.

In the following, we oppress the additional index for simplicity.
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The function g is a bounded function which can be approximated by step functions and

which is not identically 0 such that the function

(∫ s

0

g(u)du− s
∫ 1

0

g(u)du

)

is different from 0 for at least one z ∈ [0, 1]. One particular example might be g(s) =

1{s≥ 1
2
} corresponding to a level shift in the middle of the sample. The rate 1√

n
with which

the local alternatives converge to the null hypothesis serves for deriving the asymptotic

result

Theorem 2. Under the sequence of local alternatives, assumptions 1.b, 1.c, 2 and 4, for

n→∞,

sup
s∈[0,1]

||Wn(s)|| d→ sup
s∈[0,1]

∣∣∣∣∣∣∣∣Bd(s) + Σ−1/2
(∫ s

0

g(u)du− s
∫ 1

0

g(u)du

)∣∣∣∣∣∣∣∣ .
The supremum is now taken over the stochastic process Bd(s) plus a deterministic func-

tion which depends on the variance-covariance matrix of yi and the function g.

As a byproduct of the local power analysis we can easily derive consistency of our test.

To this end, we rewrite the function g to g(s) = Mh(s) for a bounded function h and a

factor M . The function h represents the structural form of the alternative, whereas M

captures its amplitude.

Corrolary 1. Let PH1(M) be the rejection probability for given M under the alternative.

Let δ > 0. Then there is a M0 such that

PH1(M) > 1− δ

for all M > M0.

This means that local rejection probabilities become arbitrarily large as structural changes

are increasing.
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3. Spatial distances

Section 2 shows that standard results about breakpoint detection in the time series liter-

ature carry over to the spatial context. A central ingredient in our analysis is the order of

locations with respect to their distance to the starting point. In the time series context,

the observations are taken at different points in time so that the time line provides a

natural order. In our spatial context however, observations are taken at points in Rk so

that there is no unequivocal order of the observations. This section presents several ways

how the locations can be ordered.

An obvious way is provided by standard distance measures like Euclidean distance ||li−l0||

or, more generally, a weighted p-norm of the difference between li and l0,

(
k∑
j=1

∣∣∣[A(li − l0)]j
∣∣∣p)

1
p

, (4)

with a weighting matrix A ∼ (k × k) and a positive scalar p. Many different distance

measures are covered by (4). Still, in practical applications the question arises which

one of these measures should be used. Hence, in the following subsection we present an

alternative approach to obtain an order of the locations.

3.1. Spatial autoregressive modeling The spatial autoregressive approach for ob-

taining an order of the locations does not require prior knowledge of the shape of regions,

but uses the data to order the locations. To this end, a spatial autoregressive model with

different kinds of spatial dependencies is fit to the observations. Each of the spatial de-

pendencies represents dependence in one direction: vertical, horizontal or diagonal. The

shape of regions is then determined by the amount of the different spatial dependencies

in the data: For example, large horizontal dependence produces regions with large hori-

zontal extent. Different combinations of the spatial dependencies correspond to regions

of different shapes so that this flexible approach covers many different possible shapes

instead of assuming one particular shape a priori.
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We first illustrate this procedure for the case of one-dimensional observations (d = 1) and

two-dimensional locations (k = 2) on a regular grid. Thereafter, some generalizations are

discussed. The model is a spatial autoregressive model with

y = ρ1W1y + ρ2W2y + ρ3W3y + ρ4W4y + ε, (5)

where y is the n-vector of observations, Wj, j = 1, 2, 3, 4, are (n × n)-dimensional spa-

tial weighting matrices, ε is an n-dimensional vector of innovations with E(ε) = 0 and

Cov(ε) = σ2
εIn and the scalar parameters ρ1, ρ2, ρ3 and ρ4 have to be estimated from

the data. Each row and column of the spatial weighting matrices represents one of the

locations. In each row of Wj the nonzero elements correspond to those locations which

are direct neighbors in the respective direction. For example, in W1, the element in row

m and column p is nonzero if location lp is a direct horizontal neighbor of lm as illustrated

in the upper left part of Figure 1.

● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ●

W1

● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ●

W2

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ●

W3

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ●

W4

●

●

Figure 1: Spatial dependencies in four different directions

Accordingly, the elements W2,mp are nonzero if lp is a vertical neighbor of lm and the
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nonzero elements of W3 and W4 correspond to neighbors in one of the diagonal directions,

respectively. Finally, the matrices Wj are row-standardized such that the row sums are

equal to one. This way the so called spatial lags ρjWjy capture dependencies in four

different directions. The idea to get an order of the locations is motivated by the fact

that the amount of spatial dependence in the four directions is determined by the ρj.

A large value for ρ1 e.g. corresponds to strong horizontal dependence and will produce

regions with large horizontal extent. The formal implementation arranges locations in

terms of correlations to the starting point. Note that (5) leads to

Cov(y) = σ2
ε(In−ρ1W1−ρ2W2−ρ3W3−ρ4W4)

−1(In−ρ1W T
1 −ρ2W T

2 −ρ3W T
3 −ρ4W T

4 )−1.

(6)

This matrix is well-defined if

(ρ1, ρ2, ρ3, ρ4) ∈ U := {(ρ1, ρ2, ρ3, ρ4)||ρ1|+ |ρ2|+ |ρ3|+ |ρ4| < 1}

so that we use the parameter restriction given by U in the following.

The unknown parameters ρj can be estimated by generalized method of moments (GMM).

Since

E(εTWjε) = tr(σ2
εWj) = 0,

GMM-estimates for the ρj are given by

(ρ̂1, ρ̂2, ρ̂3, ρ̂4)
T = argmin

(ρ1,ρ2,ρ3,ρ4)∈U

∑4
j=1

[
yT (In − ρ1W1 − ρ2W2 − ρ3W3 − ρ4W4)

T

Wj(In − ρ1W1 − ρ2W2 − ρ3W3 − ρ4W4)y]2 .

Note that the variance parameter σ2
ε need not be known to calculate the ρ̂j. These

estimates are plugged into (6) to obtain an estimate for Cov(y) (apart from the scalar

factor σ2
ε), which can then be standardized to an estimate for Cor(y). In the final step,

the locations are ordered with respect to their estimated correlation to l(1) such that the
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observation with the highest correlation to l(1) attains l(2) and the observation with the

smallest correlation is located at l(n).

3.2. Some generalizations To complement this section we shortly discuss general-

izations to (i) more than one-dimensional observations, (ii) more than two-dimensional

locations and (iii) situations where the locations do not form a regular grid.

In the case of d-dimensional observations (d > 1), the spatial autoregressive model (5) can

be formulated separately for each of the d components, respectively. The GMM-estimates

for the ρj are then given by

(ρ̂1, ρ̂2, ρ̂3, ρ̂4)
T = argmin

(ρ1,ρ2,ρ3,ρ4)∈U

∑d
r=1

∑4
j=1

[
yTr (In − ρ1W1 − ρ2W2 − ρ3W3 − ρ4W4)

T

Wj(In − ρ1W1 − ρ2W2 − ρ3W3 − ρ4W4)yr]
2 ,

where yr ∼ (n×1) contains the respective rth components of the yi. Note that the spatial

dependence parameters as well as the spatial weighting matrices remain constant over r

in order to provide one unique order of the locations.

A generalization to more than two-dimensional locations (k > 2) is equally straightfor-

ward - it only leads to more than four directions of spatial dependence. In the case of

k = 3, if the locations formed a regular grid, there would be 13 different directions leading

to 13 different weighting matrices and dependence parameters, respectively. Although the

number of different directions grows rapidly with k, the flexible approach remains man-

ageable for larger k. Note that k will rarely exceed 2 in practical applications.

If the locations do not form a regular grid, specification of the weighting matrices Wj

gets slightly more involved. There might be no “perfect” direct neighbors like in figure

1 so that one has to be more generous to determine neighbors. The following way seems

promising. Suppose we are looking for e.g. a horizontal neighbor to the starting point

l0, but there is no location which exactly lies horizontal to l0. We suggest to consider

locations as horizontal neighbors to l0, if they are on the one hand close to l0 (measured
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e.g. by Euclidean distance) and are on the other hand at least approximately horizontal to

l0. The latter can be measured by the angle between the difference li− l0 and the required

direction. This angle should be close to zero or 180 degrees. A formal implementation

could determine all locations with angles in (−5, 5) or (175, 185) degrees and select from

these the neighbor as the location with smallest Euclidean distance to l0. To further refine

this approach, one could allow for different weights in the spatial weighting matrices Wj

such that neighbors get higher weights if the angle is especially close to 0 and Euclidean

distance is small. That way one could give more weight to perfect neighbors than to

approximate neighbors.

4. Simulation Study

4.1. Setting We simulate the effectiveness of the spatial fluctuation test to detect

subareas with different expectations. The locations form a regular nx× ny grid on [0, 1]2

and the starting point is l0 = (0.5 + π/(n2
xny), 0.5− e/(nxn2

y)) which guarantees a unique

order of the locations. The locations are ordered with respect to one of the following

distance measures:

(I) Euclidean distances di0 = (li,1 − l0,1)2 + (li,2 − l0,2)2

(II) elliptical distances di0 = (li,1 − l0,1)2 + 5(li,2 − l0,2)2 − 4(li,1 − l0,1)(li,2 − l0,2)

(III) weighted city block distances di0 = 4|li,1 − l0,1|+ |li,2 − l0,2|

(IV) spatial distances di0 = 1− Cor(yi, y{1}) with ρ1 = 0.2, ρ2 = 0.2, ρ3 = 0.2, ρ4 = 0.

For each of the four settings, observations are drawn from N(5, 1) for di,0 > d∗ and

N(10, 1) for di,0 ≤ d∗, with d∗ = 0.15 in (I), d∗ = 0.2 in (II), d∗ = 1 in (III) and d∗ = 0.999

in (IV). The different values for d∗ ensure reasonable amounts for the respective inner and

outer areas. In each setting, we perform the spatial fluctuation test with four different

assumptions for the distance measures: the three distances according to (I), (II) and

(III) and fourthly the alternative approach described in the last section where the order

of locations is estimated from the data. This way we can assess accuracy for true distances

as well as for cases where wrong distances are used. In the fourth approach, we do not

12



apply the parameter constellation of (IV) but separately estimate the ρj from the data in

each replication. Since we are not interested in rejection probabilities in the first place, we

do not specify a fixed significance level α. Instead, out major interest is to assess whether

the procedure is able to classify locations into subareas. For each estimation approach,

the realizations of (3) provide an estimate for d∗ and thus partition the locations into

two areas: an outer area (corresponding to locations with di0 > d̂∗) and an inner area of

locations which are closer to the starting point.

We choose nx = ny = 15 and 1000 replications for each setting. For a given location

and each of the four approaches, the percentage of replications where the location is

regarded as belonging to the subarea around l0 describes how accurate the partitioning

into subareas works. Optimal values of these percentages would be equal to one for

locations with true distances di,0 ≤ d∗ and equal to zero for locations with di,0 > d∗.

4.2. Results Table 1 shows the resulting misclassification rates, i.e., the absolute devi-

ations of the simulated percentages from the optimal values, averaged over all locations.

estimation approach
true distance (I) (II) (III) spatial

(I) Euclidean 0.004 0.280 0.180 0.043
(II) elliptical 0.257 0.004 0.396 0.199
(III) weighted city block 0.187 0.421 0.009 0.133
(IV) spatial 0.131 0.408 0.248 0.050

Table 1: Misclassification rates

Each row of Table 1 stands for one kind of true distances (I) to (IV) which was used

to generate the data. The corresponding simulated misclassification rates for the four

different estimation approaches are given in the columns. If the true distances are used,

misclassification rates are very small for true distances (I) to (III) (less than one percent).

For true spatial distances (IV), the misclassification rate is higher. This is due to the

fact that here, instead of simply employing the true distances, the order of the locations

is estimated from the data in each replication.
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Figure 2: Identification of subareas, true distances Euclidean

If estimation relies on the wrong kind of distances, misclassification rates are much higher.

This is caused by the fact that the assumed kind of distances determines the shape of

regions which can be identified. For example, when Euclidean distances are used, the

regions will always be circles so that elliptical areas cannot be identified. The highest

misclassification rate results for true weighted city block distances when estimation relies

on elliptical distances. The last column of Table 1 gives the misclassification rates for the

spatial approach. Here, the order of locations does not follow a given kind of distances

but is deduced from the data as explained in the last section. This leads to medium mis-

classification rates which are higher than in the optimal case (when the true distances are

used), but always lower than in the other cases where wrong distances are assumed. We

conjecture that the spatial approach provides some flexibility which of course is inferior to

cases where true distances are used, but superior to cases where wrong distances are as-

sumed to be true ones. Comparing the numbers in the last column to each other suggests

that it is easier for the spatial approach to detect circles than ellipses or diamonds.

Figures 2, 3, 4 and 5 illustrate the performance of the different approaches.
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Figure 3: Identification of subareas, true distances elliptical
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Figure 4: Identification of subareas, true distances weighted city block
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Figure 5: Identification of subareas, true distances spatial

For each of the locations, Figure 2 displays the percentage of the 1000 repetitions in

which the location is classified into the inner subarea if the true distances are Euclidean.

These percentages are represented by different shades of gray, where dark shades of gray

correspond to high percentages. Locations which have been allocated to the inner region

in all of the repetitions appear black, locations which have never been allocated to the

inner region are not visible (white). The true border between the two subareas is displayed

as a solid line which is given by a circle for Euclidean distances. The upper left panel

of the Figure shows how well the partitioning works if the true Euclidean distances are

used. On the contrary, the results are not satisfactory if elliptical or city block distances

are used because this way the circles cannot be identified. The lower right panel of the

Figure shows that the spatial approach works reasonably well.

Figures 3, 4 and 5 illustrate the results for the cases where the true distances are elliptical

and weighted city block, respectively. Again, the partitioning of locations into subareas

is nearly perfect if the respective true distances are used. When the estimation approach

makes use of wrong distances, the method fails to identify the true subareas since it
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forces the inner subarea to be of a given shape. The lower right panel of the Figures

shows the results for the spatial approach which does not require a priori knowledge of

the distances. It seems to be some sort of compromise since it provides more flexibility

in terms of subarea shapes although the results do not get close to the optimal results

when true distances are used. These results conform to the last column of Table 1. It is

interesting to see that there seems to be some tendency of the spatial approach to detect

bulgy areas. Consequently, it performs better when the true area is a circle whereas it

has more difficulties to detect narrow structures like ellipses or diamonds. Still, it seems

to be superior to approaches where wrong distances are used.

5. Summary and Discussion

This paper provides statistical procedures how to detect changes in spatial structures.

One key point is the transformation of spatial data, measured at different points in

space, into a one-dimensional “line” on which classical econometric procedures can be

applied. A promising approach to provide a reasonable transformation is the use of

spatial autoregressive models with the objective to order the data points with respect to

their correlation determined by the spatial autocorrelation parameters.

Another key point is the choice of the starting point l0. The theory presented in this paper

bases on the assumption that this point is known and indeed, there is a natural choice

in some applications, e.g. if one is concerned with weather forecasts. If the statistician

considers a certain city, he might be interested in the size of the region around this city

in which the temperature can be considered as constant. In this case, the particular city

would be the natural starting point.

If there is no natural candidate, it is possible to choose the point in which the estimated

centered Mahalanobis distance (yi − µ̄n)T Σ̂−1(yi − µ̄n) is maximal. Of course, such a

choice will then affect the nominal size of the fluctuation test, but not the resulting

spatial regions.

For ease of exposition, we focused on spatial changes in the mean in this paper. Basically,
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one might also be interested in changes of other parameters, e.g. in the degree of spa-

tial dependence. We leave it as a task for further research to address these issues in detail.
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References

Anselin, L. (1990): “Spatial Dependence and Spatial Structural Instability in Applied

Regression Analysis,” Journal of Regional Science, 30(2), 185–207.

Bai, J. and P. Perron (1998): “Estimating and testing linear models with multiple

structural changes,” Econometrica, 66, 47–78.

Brown, R., J. Durbin, and J. Evans (1975): “Techniques for Testing the Constancy

of Regression Relationships over Time,” Journal of the Royal Statistical Society B, 37,

149–163.

Chow, G. (1960): “Tests of Equality Between Sets of Coefficients in Two Linear Re-

gressions,” Econometrica, 28(3), 591–605.
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A. Páez, R. Buliung, J. L. Gallo, and S. Dall’erba, Springer, Heidelberg, Dordrecht,

London and New York.

Manly, B. and D. Mackenzie (2000): “A cumulative sum type of method for envi-

ronmental monitoring,” Environmetrics, 11(2), 151–166.

——— (2003): “CUSUM environmental monitoring in time and space,” Environmental

and Ecological Statistics, 10, 231–247.

18
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6. Appendix section

Proof of Proposition 1

With Assumption 1 and 2 and an application of the functional central limit theorem

and Slutzky’s theorem, Wn(·) converges weakly against Bd(·). An application of the

continuous mapping theorem then yields the proposition. �

Proof of Theorem 1

This follows from the fact that, with Assumptions 1–3, Wn(s)√
n

uniformly converges against

the function

W (s) =


s · (1− s∗) · (µ1 − µ2) s ≤ s∗

−s · s∗ · (µ1 − µ2) + s∗ · (µ1 − µ2) s > s∗

whose absolute maximum is equal to s∗, compare the argument in Bai and Perron (1998),

p. 77. �

Proof of Theorem 2

The proof follows the arguments of the proof of Proposition 1 with the additional argu-

ment

sup
s∈[0,1]

∣∣∣∣∣∣ 1n
[sn]∑
i=1

g

(
i

n

)∣∣∣∣∣∣→n→∞

∫ s

0

g(u)du

from e.g. Ploberger et al. (1989). �

Proof of Corollary 1

This follows from the fact that the test statistic becomes arbitrarily large for sufficient

large M . �
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