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Abstract

In this paper we consider the problem of constructing optimal designs for models with

a constant coefficient of variation. We explore the special structure of the information

matrix in these models and derive a characterization of optimal designs in the sense of

Kiefer and Wolfowitz (1960). Besides locally optimal designs, Bayesian and standardized

minimax optimal designs are also considered. Particular attention is spent on the problem

of constructing D-optimal designs. The results are illustrated in several examples where

optimal designs are calculated analytically and numerically.

Keyword and Phrases: optimal design; heteroscedasticity; constant coefficient of variation; poly-

nomial regression

AMS Subject Classification: 62K05

1 Introduction

Nonlinear regression models are widely used to describe the relation between several variables [see

Seber and Wild (1989), Ratkowsky (1983, 1990)]. In many applications the data is heteroscedas-

tic, which means that the variability of the response varies with the predictor. A substantial
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simplification arises under the additional assumption of a constant coefficient of variation, which

is a natural and popular one in engineering, medicine and various other fields of applications [see

e.g. Chen et al. (1997) for a very prominent example in microarray analysis]. The purpose of the

present paper is the construction of optimal designs for regression models with additive errors

and a constant coefficient of variation.

In the general nonlinear regression model the problem of constructing optimum experimental

designs for these models has found considerable interest in the literature. Early work has been

done by Chernoff (1953) who introduced the concept of locally optimal designs. These designs

require an initial guess of the unknown parameters of the model and are used as benchmarks

for many commonly used designs. Locally optimum designs for nonlinear models have been

discussed by numerous authors [see Ford et al. (1992), Box and Lucas (1959), Haines (1993),

Haines (1995), Biedermann et al. (2006), López-Fidalgo and Wong (2002), Dette et al. (2004)

among many others]. Most of the relevant literature discusses the design problem under the

additional assumption of a constant variance. A systematic approach to optimal design problems

for heteroscedastic regression models was first given by Atkinson and Cook (1995), who derived

the necessary information matrices in the case where the variance as well as the mean depend

on the parameters of the model and the explanatory variables. These authors mainly discuss the

D-optimality criterion which was also investigated by Dette and Wong (1996) for a polynomial

regression model with exponentially increasing variance functions. More recent work on this

topic can be found in Fang and Wiens (2000), Atkinson (2008) or Dette and Holland-Letz (2009).

However - to the best knowledge of the authors - optimal designs for nonlinear regression models

with an additive error structure and a constant coefficient of variation have not been studied in

the literature.

In Section 2 we introduce the necessary notation, derive the information matrix in regression

models with a constant coefficient of variation and give a brief introduction into the theory

of optimal approximate design. Particular attention is paid to the case of normally distributed

responses, but the methodology can easily be transferred to other distributions.We discuss locally

optimal designs in the sense of Chernoff (1953) and robust design strategies as introduced in

Chaloner and Larntz (1989) and Dette (1997). Section 3 is devoted to the characterization of

optimal designs by equivalence theorems in the sense of Kiefer and Wolfowitz (1960). Finally, in

Sections 4 and 5 the general results are illustrated in several examples. In particular we present

cases where the optimal designs for nonlinear regression models with a constant coefficient of

variation can be calculated explicitly. We also discuss a few widely used nonlinear regression

models for which efficient and optimal designs can be determined numerically.
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2 Fisher information and optimal designs

For regression modeling under the assumption of constant coefficient of variation µ(x, θ)/σ(x, θ)

we have in principle two possibilities. On the one hand we may assume that the errors in the

model are multiplicative (and the observations being positive). In this case we can assume

their distribution to be Gamma or lognormal [see Firth (1988) for a discussion] and we may

end up with a generalized linear regression model for which numerous general results in optimal

design are available [cf. Ford et al. (1992)]. Particularly Burridge and Sebastiani (1994) have

concentrated on the constant coefficient of variation case and provide comparisons of D-optimal

with some standard factorial designs.

On the other hand a model with additive errors allows more freedom in specification (e.g. also

for negative observations), but has to our knowledge not been treated in the literature so far.

Furthermore we investigate designs efficient for full maximum likelihood estimators in contrast

to the quasi likelihood approach which is typically employed in generalized linear models.

2.1 Heteroscedastic nonlinear regression models

Consider first the common nonlinear regression model where at a point x a response Y is observed

with

E[Y |x] = µ(x, θ) , Var[Y |x] = σ2(x, θ)(2.1)

and θ ∈ Rk denotes the vector of unknown parameters. Note that we do not exclude the

case, where µ and σ2 depend on different subsets of the parameter vector, that is θ = (θ1, θ2),

µ(x, θ) = µ(x, θ1); σ2(x, θ) = σ2(x, θ2). We assume that n observations Y1, . . . , Yn are available

under experimental conditions x1, . . . , xn ∈ X , where X denotes the design space. We define

µθ = (µ(x1, θ), . . . , µ(xn, θ))
T as the vector of the expected responses and

Σθ = diag(σ2(x1, θ), . . . , σ
2(xn, θ))(2.2)

as the covariance matrix of the random vector Y = (Y1, . . . , Yn)T . Throughout this paper we

assume that the responses at different experimental are independent and normally distributed

(other distributions could be investigated by similar methods). Using this additional assumption

the Fisher information of Y is given by the k × k matrix

I =
dµTθ
dθ

Σ−1
θ

dµθ
dθ

+
1

2

dΣθ

dθ

T

Σ−2
θ

dΣθ

dθ
.(2.3)
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Following Kiefer (1974) an approximate experimental design is a discrete probability measure

with masses w1, . . . , wm at points x1, . . . , xm ∈ X . These points define the distinct experimental

conditions at which observations have to be taken and w1, . . . , wm > 0,
∑m

j=1wj = 1 are positive

weights representing the proportions of total observations taken at the corresponding points [see

Silvey (1980); Pukelsheim (2006)]. If n observations can be taken a rounding procedure is applied

to obtain integers nj from the not necessarily integer valued quantities wjN , and nj observations

are taken at experimental condition xj (j = 1, . . . s) [see Pukelsheim and Rieder (1992)]. The

analogue of the Fisher information matrix for an approximate design is given by the matrix

M(ξ, θ) =

∫
X
I(x, θ)dξ(x)(2.4)

where

I(x, θ) =
1

σ2(x, θ)

(
∂µ(x, θ)

∂θ

)T
∂µ(x, θ)

∂θ
+

1

2σ4(x, θ)

(
∂σ2(x, θ)

∂θ

)T
∂σ2(x, θ)

∂θ
(2.5)

denotes the Fisher information at the point x [see also Atkinson and Cook (1995)]. Consequently,

an optimal (approximate) design minimizes an appropriate (convex) functional, say Φ, of the

asymptotic covariance matrix M−1(ξ, θ), and there are numerous criteria which can be used for

discriminating between competing designs [see Silvey (1980) among many others].

In this paper we will mainly concentrate on optimal designs for estimating linear combinations

of the parameter θ. To be precise, let p > −1 and let K denote a k × s matrix of rank s ≤ k,

then a design ξ∗ is called locally Φp-optimal for estimating KT θ if ξ∗ minimizes

Φp(ξ, θ) = (tr((KTM−1(ξ, θ)K)p))1/p(2.6)

among all designs satisfying range(K) ⊂ range(M(ξ, θ)) [see Kiefer (1974) or Pukelsheim (2006)].

Optimal designs with respect to the criteria (2.6) have been studied by numerous authors in the

case of heteroscedastic data for which the Fisher information in (2.5) reduces to

I(x, θ) =
1

σ2
(
∂µ(x, θ)

∂θ
)T
∂µ(x, θ)

∂θ
.

2.2 Constant coefficient of variation

We now specialize the nonlinear regression model (2.1) to our case of interest. To be precise, let

θ = (αT , τ), where α ∈ Rd, τ ∈ R+ and d + 1 = k. We assume that the regression function µ

only depends on the parameter α and the standard deviation is proportional to the mean, that

is

µ(x, θ) = µ(x, α); σ(x, θ) = τµ(x, α).(2.7)
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A straightforward calculation yields

∂µ(x, θ)

∂θ
=

(∂µ(x, α)

∂α
, 0
)
∈ Rd+1,(2.8)

∂σ2(x, θ)

∂θ
=

(
2τ 2∂µ(x, α)

∂α
µ(x, α), 2τµ2(x, α)

)
∈ Rd+1,

and consequently we obtain for the Fisher information in (2.5)

1

τ 2

 (1+2τ2)
(
∂µ(x,α)
∂α

)T
∂µ(x,α)
∂α

µ2(x,α)
2τ

∂µ(x,α)
∂α

µ(x,α)

2τ

(
∂µ(x,α)
∂α

)T
µ(x,α)

2

 .(2.9)

Note that these expressions only depend on the logarithmic derivative ∂
∂α

log µ(x, α). Conse-

quently, a particular simplification occurs for exponential models of the form

µ(x, α) = eη(x,α),(2.10)

for which the Fisher information in (2.9) reduces to

I(x, θ) =
1

τ 2

(
(1 + 2τ 2)

(∂η(x,α)
∂α

)T ∂η(x,α)
∂α

2τ ∂η(x,α)
∂α

2τ
(
∂η(x,α)
∂α

)T
2

)
.(2.11)

Note that the resulting optimal designs with respect to the criteria (2.6) are locally optimal in the

sense of Chernoff (1953), because they require a specification of the unknown parameters. There

are many situations where such preliminary knowledge is available, such that the application of

locally optimal designs is well justified [a typical example are phase II dose finding trials, see Dette

et al. (2008)]. However, the most important application of locally optimal designs is their use as

benchmarks for commonly proposed designs. Moreover, they are the basis for more sophisticated

design strategies, which require less precise knowledge about the model parameters, such as

sequential, Bayesian or standardized minimax optimality criteria [see Chaloner and Verdinelli

(1995) and Dette (1997) among others]. Optimal designs with respect to the latter criteria are

called robust designs.

To be precise, let ξ∗θ denote the locally Φp-optimal design and assume that the experimenter can

specify a set Θ of possible parameters of the model. A design ξ∗M is called standardized minimax

Φp-optimal if it minimizes

ΦMM(ξ) = max
{ Φp(ξ, θ)

Φp(ξ∗θ , θ)

∣∣∣ θ ∈ Θ
}

(2.12)

among all designs ξ satisfying

range(K) ⊂ range(M(ξ, θ)) for all θ ∈ Θ.(2.13)
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Similarly, a design ξ∗B is called Bayesian Φp-optimal if and only if it minimizes∫
Θ

log Φp(ξ, θ)π(dθ)(2.14)

among all designs satisfying (2.13), where π denotes a prior distribution for the parameter θ.

3 Optimality conditions

In this section we will derive checking conditions for the optimality of a given design. For this

purpose observe that the Fisher Information in (2.5) can be represented in the form

I(x, θ) =
2∑
j=1

fj(x, θ)f
T
j (x, θ),(3.1)

where the vectors f1 and f2 are given by

(3.2) f1(x, θ) =
1

σ(t, θ)

(
∂µ(t, θ)

∂θ

)T
; f2(x, θ) =

1√
2σ2(t, θ)

(
∂σ2(t, θ)

∂θ

)T
,

respectively. The following result gives an equivalence theorem, which can be used to check the

optimality of a candidate design.

Theorem 3.1 The design ξ∗ minimizes the criterion (2.6) if and only if there exist a generalized

inverse of the matrix M(ξ, θ), such that the inequality

d(x, θ, ξ) =

{
1

σ2(x, θ)

∂µ(x, θ)

∂θ
GK(KTM−(ξ∗, θ)K)p−1KTG

(∂µ(x, θ)

∂θ

)T
+

1

2σ4(x, θ)

∂σ2(x, θ)

∂θ

×GK(KTM−(ξ∗, θ)K)p−1KTG
(∂σ2(x, θ)

∂θ

)T}(
tr(KTM−(ξ∗, θ)K)p

)−1

≤ 1(3.3)

is satisfied for all x ∈ X . Moreover, if ξ∗ is locally Φp-optimal there is equality in (3.3) for all

support points of the optimal design.

Proof. For fixed θ consider the set

M = {M(ξ, θ) | ξ ∈ Ξ} ⊂ Rp×p

of all information matrices of the form (2.4), where Ξ denote the set of all approximative designs

on X and I(x, θ) is given by (3.1) and (3.2). M is obviously convex and it follows from Theorem
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7.19 in Pukelsheim (2006) that the design ξ∗ is locally Φp–optimal if and only if there exists a

generalized inverse, say G, of the matrix M(ξ∗, θ) such that the inequality

tr(AGK(KTM−(ξ∗, θ)K)p−1KTG) ≤ tr(KTM−(ξ∗, θ)K)p

holds for all A ∈ M, where there is equality for any matrix A ∈ M which minimizes

((KTM−(ξ∗, θ)K)p)1/p in the set M. Note that the family M is the convex hull of the set{
f1(x, θ)fT1 (x, θ) + f2(x, θ)fT2 (x, θ)

∣∣ x ∈ X} ,
where f1 and f2 are defined in (3.2). Therefore the assertion of Theorem 3.1 follows by a standard

argument of optimal design theory [see e.g. Silvey (1980)]. 2

The following theorem gives a corresponding result for Bayesian and standardized minimax

optimality criterion and can be obtained by a combination of arguments presented in the proof

of Theorem 3.1 with the results in Dette et al. (2007). The details are omitted for the sake of

brevity.

Theorem 3.2

(a) A design ξ∗B is Bayesian Φp-optimal if and only if the inequality

u(x) =

∫
Θ

d(x, ξ∗B, θ)π(dθ) ≤ 1(3.4)

holds for all x ∈ X , where the function d is defined in (3.3). Moreover, in this case there

is equality in (3.4) for all support points of the design ξ∗B.

(b) The design ξ∗M is standardized minimax Φp-optimal if and only if there exists a prior π∗ on

the set {
θ ∈ Θ

∣∣∣ Φp(ξ
∗
M , θ)

Φp(ξ∗θ , θ)
= ΦMM(ξ∗M)

}
,

such that the inequality ∫
Θ

d(x, ξ∗M , θ)π
∗(dθ) ≤ 1(3.5)

holds for all θ ∈ Θ. Moreover, in this case there is equality in (3.5) for all support points

of the design ξ∗M .
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Note that in the model with a constant coefficient of variation the function d in condition (3.3)

of Theorem 3.1 reduces to

d(x, θ, ξ) =
1

τ 2µ2(x, α)

{(∂µ(x, θ)

∂α
, 0
)
GK(KTM−(ξ∗, θ)K)p−1KTG

(∂µ(x, θ)

∂α
, 0
)T

+2
(
τ
∂µ(x, α)

∂α
, µ(x, α)

)
GK(KTM−(ξ∗, θ))p−1KTG

(
τ
∂µ(x, α)

∂α
, µ(x, α)

)T}
.(3.6)

In particular, the choice K = Id+1, p = 0 corresponds to the estimation of all parameters and

the D-optimality criterion and we obtain

d(x, θ, ξ) =
1

τ 2µ2(x, α)

{(
τ
∂µ(x, α)

∂α
, 0
)
M−1(ξ, θ)

(
τ
∂µ(x, α)

∂α
, 0
)T

(3.7)

+2
(
τ
∂µ(x, α)

∂α
, µ(x, α)

)
M−1(ξ, θ)

(
τ
∂µ(x, α)

∂α
, µ(x, α)

)T}
.

4 Locally D-optimal designs

In this section, we investigate D-optimal designs for nonlinear regression models with a constant

coefficient of variation. We consider first a common exponential model and then concentrate on

two models, which are widely used in applications, namely the Michaelis-Menten model

(4.1) µ1(x, θ) =
α1x

α2 + x

and the EMAX model

(4.2) µ2(x, θ) = α0 +
α1x

α2 + x
,

where x ∈ X = [x`, xu] ⊂ R+
0 . Some applications of the Michaelis-Menten model can be found in

Johansen (1984), Cornish-Browden (1995) or López et al. (2000) among many others. Usually

the function µ1 represents the velocity of a chemical reaction, the parameter α1 ≥ 0 denotes the

maximum velocity, the predictor x reflects the concentration of a substrate and the parameter

α2 ≥ 0 is the half-saturated constant, the concentration, where the velocity is half-maximal.

Various applications of the EMAX model (4.2) in pharmaceutical or toxicological studies have

been discussed by Danesi et al. (2002); Chien et al. (2005); Blake et al. (2008) among others.

In model (4.2) the parameter α0 ≥ 0 usually represents the response at placebo, α1 ≥ 0(≤ 0) is

the maximum achievable increase (decrease) above the placebo response and α2 ≥ 0 is the dose

which produces 50% of the effect.
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4.1 Exponential models

But consider first the common exponential regression model

µ(x, α) = e
∑d−1
j=0 αjx

j

(4.3)

where x ∈ [a, b] ⊂ R. Optimal designs for special cases of the model (4.3) (more precisely the case

d = 2) have been discussed in the literature under the assumption of a homoscedastic error [see

Mukhopadhyaya and Haines (1995), Dette and Neugebauer (1997), Han and Chaloner (2003),

Dette et al. (2006)]. In this section we derive analytic expressions for optimal designs in these

models with a constant coefficient of variation. The following result shows that in this case the

D-optimal designs can be determined explicitly for any degree of the polynomial in (4.3).

Theorem 4.1 The D-optimal design for the exponential regression model (4.3) on the interval

[a, b] with a constant coefficient of variation puts equal masses at the points

xj =
(b− a)sj + b+ a

2
; j = 1, . . . , d

where s1, . . . , sd are the roots of the polynomial (x2 − 1)L′d−1(x) and Ld−1(x) is the Legendre

polynomial of degree d−1 orthogonal with respect to the Lebesgue measure on the interval [−1, 1].

Proof. Observing the representation (2.10) we have η(x, α) =
∑d−1

j=0 αjx
j and it follows from

(2.11) that the information matrix of a given design ξ can be represented as

M(ξ, θ) =
1

τ 2

(
(1 + 2τ 2)M(ξ) 2τm(ξ)

2τmT (ξ) 2

)
,(4.4)

where the matrix M(ξ) and the vector m(ξ) are given by

M(ξ) = (ci+j)
d−1
i,j=0; m(ξ) = (ci)

d−1
i=0 ,(4.5)

respectively, and

ci = ci(ξ) =

∫ b

α

xdξ(x); i = 0, 1, . . .

denote the ith moment of the design ξ. Observing that mT (ξ) coincides with the first row of the

matrix M(ξ) it follows that M−1(ξ)m(ξ) = (1, 0, . . . , 0)T ∈ Rd and we obtain for the determinant

of the matrix M(ξ, θ) the representation

det(M(ξ, θ)) = (1 + 2τ 2)d · det(M(ξ)) · det
(

2− 4τ 2

1 + 2τ 2
mT (ξ)M−1(ξ)m(ξ)

)
(4.6)

= 2(1 + 2τ 2)d−1detM(ξ).
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Consequently, the D-optimal design in a constant coefficient of variation model with mean (4.3)

can be obtained by maximizing the determinant of the matrix M(ξ). Observing the representa-

tion of the matrix M(ξ) in (4.5) it follows that the optimal design coincides with the D-optimal

design in a homoscedastic polynomial regression model of degree d − 1. This design has been

determined by Hoel (1958) and the assertion of Theorem 4.1 follows. 2

4.2 Michaelis Menten model

For the Michaelis Menten model (4.1) with a constant coefficient of variation the gradient of the

expected response is given by

∂

∂α
µ1(x, α) =

x

x+ α2

(
1,− α1

x+ α2

)
and consequently the Fisher information at the point x ∈ [x`, xu] reduces to

I1(x, θ) =
1

τ 2

 (1 + 2τ 2)

(
1
α2
1

− 1
α1(x+α2)

− 1
α1(x+α2)

1
(x+α2)2

)
2τ

(
1
α1

− 1
x+α2

)
2τ
(

1
α1
− 1

x+α2

)
2

 ∈ R3×3.(4.7)

Note that in a model with a constant coefficient of variation the expectation and variance of the

response at x = 0 vanishes, and consequently we assume without loss of generality x` > 0. The

following result specifies the locally D-optimal design

Theorem 4.2 The locally D-optimal design for the Michaelis Menten model with a constant

coefficient of variation has equal masses at the points xu and x`.

Proof. For the D-optimality criterion in a model with a constant coefficient of variation we

obtain from the equivalence Theorem 3.1 and (3.7) the condition

1

τ 2

1

µ2
1(x, α)

∂

∂α
µ1(x, α)M11(ξ, θ)

( ∂

∂α
µ1(x, α)

)T
(4.8)

+
2

τ 2µ2
1(x, α)

(
τ
∂

∂α
µ1(x, α), µ1(x, α)

)
M−1

1 (ξ, θ)
(
τ
∂

∂α
µ1(x, α), µ1(x, α)

)T
≤ 3

for all x ∈ [x`, xu], where M11(ξ, θ) denotes the upper 2× 2 block of the matrix

M1(ξ, θ) =

∫ xu

x`

I1(x, θ)dξ(x)(4.9)
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and the Fisher information I1(x, θ) is defined in (4.7). It is easy to see that all terms in (4.8)

and (4.9) depend only on the expression

∂

∂α
µ1(x, α)/µ1(x, α) =

( 1

α1

,− 1

x+ α2

)
and therefore we introduce the transformation

z =
1

x+ α2

and the induced design space Z = [z1, z2] = [ 1
xu+α2

, 1
x`+α2

]. The corresponding candidate for

the D-optimal design has equal masses at the points z1 and z2 and after a straightforward but

tedious calculation the checking condition (4.8) reduces to

4z2 + 3z2
1 − 2z1z2 + 3z2

2 − 4z(z1 + z2)

(z1 − z2)2
=

4(z − z1)(z − z2) + 3(z1 − z2
2)

(z1 − z2)2
≤ 3

Because this inequality is obviously satisfied for all z ∈ [z1, z2] the assertion of Theorem 4.2

follows. 2

4.3 EMAX model

For the EMAX model (4.2) with a constant coefficient of variation we assume that α0 + x` > 0

(if x` = α` = 0 the variance at the left boundary point vanishes) and obtain

∂

∂α
µ2(x, α)/µ2(x, α) =

(
α0 +

α1x

α2 + x

)−1(
1,

x

α2 + x
,− α1x

(α2 + x)2

)T
.(4.10)

In general optimal designs cannot be found explicitly. Nevertheless, the following result estab-

lishes that Φp-optimal designs for the EMAX model with a constant coefficient of variation are

always supported at at most 3 points.

Theorem 4.3 Any locally Φp-optimal design for the EMAX model with a constant coefficient of

variation is supported at at most 3 points. Moreover, if a locally Φp-optimal design is supported

at 3 points, the boundary points x` and xu of the design space must be support points.

Proof. We introduce the transformation

z =
α1x

α2 + x
(4.11)
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and the induced design space Z = [z`, zu], where z` = α1x`/(α2 + x`), zu = α1xu/(α2 + xu).

Then the gradient of the logarithm of the response in (4.10) can be represented as

(α0 + z)−1
(

1,
z

α1

,
z(z − α1)

α1α2

)T
= B(α0 + z)−1(1, z, z2)T(4.12)

for some appropriate non-singular 3 × 3 matrix B. Consequently, it follows from (3.7) that the

design ξ∗ is Φp-optimal if and only if the inequality

(α0 + z)−2
{

(1, z, z2, 0)D1(ξ, θ)(1, z, z2, 0)T + (1, z, z2, α0 + z)D2(ξ, θ)(1, z, z2, α0 + z)T
}
≤ 3

holds for all z ∈ Z, where D1(ξ, θ) and D2(ξ, θ) denote appropriate matrices which do not

depend on the variable z ∈ Z but on the coefficient τ . Now it is easy to see that this inequality

is equivalent to the inequality

P4(z, ξ, θ) ≤ 0

for all z ∈ Z, where P4 is an appropriate polynomial of degree 4. Therefore the assertion follows

by a simple counting argument of the roots of the derivative of P4(z, ξ, θ) with their corresponding

multiplicities. 2

For a general p > −1 the Φp-optimal design has to be determined numerically. However, for the

D-optimality criterion (i.e. p = 0) an explicit solution is available, which is given in the following

result.

Theorem 4.4 The locally D-optimal design for the EMAX model on the interval [x`, xu] with a

constant coefficient of variation has equal masses at the 3 points x`, xu and

x∗ =
−α0α

2
2 + x`xu(α0 + α1) +

√
(α2 + x`)(α2 + xu)(α0α2 + x`(α1 + α0))(α0α2 + xu(α1 + α0))

α0(2α2 + x` + xu) + α1(α2 + x` + xu)
.

Proof. By Theorem 4.3 the D-optimal design is supported at 3 points including the boundary

points x` and xu. Note that the standard argument for calculating the weights of the D-optimal

design is not applicable here because we have 3 support points but the information matrix is

a 4 × 4 matrix. For this purpose we use the transformation (4.11) and obtain for the Fisher

information (2.9)

I(x, θ) =
1

τ 2

(∂µ2(x, α)

∂α
/µ2(x, α), 0

)(∂µ2(x, α)

∂α
/µ2(x, α), 0

)T
+ 2
(∂µ2(x, α)

∂α
/µ2(x, α),

1

τ

)(∂µ2(x, α)

∂α
/µ2(x, α),

1

τ

)T
=

1

τ 2
B̃(k(z), 0))(k(z), 0))T )B̃T + 2B̃(k(z), 1/τ)(k(z), 1/τ)T B̃T

=
1

τ 2
B̃Ĩ(z, α0)B̃T

12



where k(z) = (1/(α0 + z), z/(α0 + z), z2/(α0 + z))T , the 4× 4 block-diagonal matrix B̃ is given

by

B̃ =

(
B 0

0 1

)
,

B is defined in (4.12) and the Fisher information on the space Z = [z`, zu] is defined by

Ĩ(z, α0) =

(
(1 + 2τ 2)I11(z, α) 2τI12(z, α0)

2τIT12(z, α0) 2

)
.(4.13)

Here the matrices I11(z, α0) and I12(z, α0) are given by

I11(z, α0) =
1

(z + α0)2

 1 z z2

z z2 z3

z2 z3 z4

 and I12(z, α0) =
1

z + α0

 1

z

z2

 ,

respectively. We now consider the D-optimal design problem for the Fisher information (4.13)

on the design space Z = [z`, zu] for which by Theorem 4.3 the optimal solution has 3 support

points including the boundary points z` and zu. Define

h(z, p1, p2) = det(p1I(z`, α0) + p2I(z, α0) + (1− p1 − p2)I(zu, α0)),

then maximizing h with respect to p1, p2 yields by tedious calculations p1 = p2 = 1/3. The

function h(z, 1
3
, 1

3
) is given by

h(z) = 2
(1 + t2)2(z` − z)2(z` − zu)2(z − zu)2

27(α0 + zu)2(α0 + z`)2(α0 + z)2

which is maximal at

z∗ = −α0 +
√

(α0 + z`)(α0 + zu).

Therefore the D-optimal design on the design space Z = [z`, zu] has equal masses at the points

z`, z
∗ and zu. Observing that z` = α1x`/(α2+x`), zu = α1xu/(α2+xu) the statement of the theo-

rem now follows by transforming these results to the original design space via the transformation

x = α2z
α1−z . 2

Note that in contrast to the homoscedastic case, when the locally D-optimal design depends

only on the parameter α2 [see Dette et al. (2010)], the D-optimal design for the EMAX model

with a constant coefficient of variation depends on all parameters of the model. However, it is

remarkable that the locally D-optimal designs do not depend on the size τ > 0 of this coefficient.

13



5 Bayesian and standardized minimax D-optimal designs

For the Bayesian and standardized minimax optimality criteria the corresponding optimal designs

have to be determined numerically in all cases of practical interest and for brevity we will only

investigate robust designs for the EMAX model. Our main result shows showed that the Bayesian

and standardized minimax D-optimal designs do not depend on the parameter τ .

Theorem 5.1 The Bayesian and the standardized minimax D-optimal design for the EMAX

model with a constant coefficient of variation τ > 0 do not depend on the parameter τ .

Proof. Recall the definition of the logarithmic derivative in (4.9) and introduce the transforma-

tion

x = γ(w) :=
α0α2w

α1 − (α0 + α1)w
.

A straightforward calculation yields( ∂

∂α
µ2(x, α)/µ2(x, α)

)T
=

1− w
α0

(
1,

α0w

α1(1− w)
,−α0w(α1 − (αo + α1)w)

α1α2(1− w)2

)T
= D(1, w, δ(w))T

where the function δ and the matrix D are defined by δ(w) = w2

1−w and

D =


1
α0
− 1
α0

0

0 1
α1

0

0 − 1
α2

α0

α1α2


respectively. Consequently, the determinant of the information matrix in the Bayesian and

standardized minimax D-optimality criterion can represented as

|M(ξ, θ)| = |D̄|2
∣∣∣∫ Ī(w, θ)dξ(γ(w))

∣∣∣
for some appropriate matrix D̄, where

I(w, θ) =

(
(1 + 2τ 2)I11(w, α) 2τI12(w, α)

2τI
T

12(w, α) 2

)
and

I11(w, α) =

 1 w δ(w)

w w2 wδ(w)

δ(w) wδ(w) δ2(w)

 , I12(w, α) =

 1

w

δ(w)

 .
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Therefore the determinant can be calculated by exactly the same arguments as given in the proof

of Theorem 4.1 and a term depending on τ factorizes [see formula (4.6)]. Transforming back to

original design space yields the assertion of assertion of Theorem 5.1. 2

For numerical illustration we considered a scenario motivated by the discussion in Dette et al.

(2008), where the design space is given by X = [0, 150] and the parameters vary in the interval

α0 ∈ [0.5, 0.75] α1 ∈ [0.25, 0.75] α2 ∈ [15, 25](5.1)

α0 ∈ [0.5, 1] α1 ∈ [0.25, 0.75] α2 ∈ [24, 26](5.2)

α0 ∈ [0.5, 3] α1 ∈ [0.1, 2] α2 ∈ [20, 30](5.3)

α0 ∈ [0.5, 2] α1 ∈ [0.2, 1] α2 ∈ [10, 40](5.4)

where a uniform prior is used in the Bayesian optimality criterion. Some illustrative results are

shown in Table 1.

Bayes Minimax

support x1 x2 x3 x1 x2 x3 w1 w2 w3

(5.1) 0 15.310 150 0 14.157 150 1
3

1
3

1
3

(5.2) 0 12.300 150 0 11.559 150 1
3

1
3

1
3

(5.3) 0 15.301 150 0 13.392 150 1
3

1
3

1
3

(5.4) 0 15.009 150 0 12.037 150 1
3

1
3

1
3

Table 1: Weights and support points of standardized minimax and Bayesian D-optimal designs

for the EMAX model (4.2) with a constant coefficient of variation.

The optimality of the calculated robust D-optimal designs has been verified by the equivalence

Theorem 3.2, more precisely in equality (3.4), and a representative plot is shown in Figure 1. We

observe from Table 1 that the optimal designs with respect to the Bayesian and standardized

minimax approach are very similar.
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Figure 1: The function u defined in (3.4) for a uniform prior on the cube (5.1)
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