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Abstract

Uniform asymptotic confidence bands for a multivariate regression function in an in-

verse regression model with a convolution-type operator are constructed. The results are

derived using strong approximation methods and a limit theorem for the supremum of a

stationary Gaussian field over an increasing system of sets. As a particular application

asymptotic confidence bands for a time dependent regression function ft(x) (x ∈ Rd, t ∈ R)

in a convolution-type inverse regression model are obtained. To the best knowledge of the

authors the results presented in this paper are the first which provide uniform confidence

bands for multivariate nonparametric function estimation in inverse problems.
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1 Introduction

1.1 Inverse regression models

In many applications it is impossible to observe a certain quantity of interest because only indirect

observations are available for statistical inference. Problems of this type are called inverse prob-
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lems and arise in many fields such as medical imaging, physics and biology. Mathematically the

connection between the quantity of interest and the observable one can often be expressed in terms

of a linear operator equation. Well known examples are Positron Emission Tomography, which

involves the Radon Transform, (Cavalier (2000)), the heat equation (Mair and Ruymgaart (1996)),

the Laplace Transform Saitoh (1997) and the reconstruction of astronomical and biological images

from telescopic and microscopic imaging devices, which is closely connected to convolution-type

operators (Adorf (1995), Bertero et al. (2009)).

Inverse problems have been studied intensively in a deterministic framework and in mathematical

physics. See for example Engl et al. (1996) for an overview of existing methods in numerical analy-

sis of inverse problems or Saitoh (1997) for techniques based on reproducing kernel Hilbert spaces.

Recently, the investigation of inverse problems has also become of importance from a statistical

point of view. Here, a particularly interesting and active field of research is the construction of

statistical inference methods such as hypothesis tests or confidence regions.

In this paper we are interested in the convolution type inverse regression model

(1.1) Y = (f ∗ ψ)(x) + ε,

where ε is a random error, the operation ∗ denotes convolution, ψ is a given square integrable

function and the object of interest is the function f itself. An important and interesting appli-

cation of the inverse regression model (1.1) is the recovery of images from imaging devices such

as astronomical telescopes or fluorescence microscopes in biology. In these cases, the observed,

uncorrected image is always at least slightly blurry due to the physical characteristics of the prop-

agation of light at surfaces of mirrors and lenses in the telescope. In this application the variable

x represents the pixel of a CCD and we can only observe a blurred version of the true image

modeled by the function f . In the corresponding mathematical model the observed image is (at

least approximately) a convolution of the real image with the so-called point-spread-function ψ,

i.e. an inverse problem with convolution operator.

The inference problem regarding the function f is called inverse problem with stochastic noise.

In recent years, the problem of estimating the regression function f has become an important

field of research, where the main focus is on a one dimensional predictor. Several authors propose

Bayesian methods (Bertero et al. (2009); Kaipio and Somersalo (2010)) and construct estimators

using tools from nonparametric curve estimation (Mair and Ruymgaart (1996); Cavalier (2008);

Bissantz et al. (2007b)). Further inference methods, in particular the construction of confidence

intervals and confidence bands, are much less developed. Birke et al. (2010) have constructed

uniform confidence bands for the function f with a one-dimensional predictor.

The present work is motivated by the fact that in many applications one has to deal with an

at least two-dimensional predictor. A typical example is image reconstruction since a picture

is a two-dimensional object. Also in addition to the spatial dimensions, the data often show a
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dynamical behavior, thus repeated measurements at different times can be used to extend the

statistical inference. For example in astrophysics spectra of different objects like supernovae or

variable stars underly changes in time on observable timescales. In this case the function f depends

on a further parameter, say ft and the reconstruction problem refers to a multivariate function

even if the predictor is univariate.

The purpose of the present paper is the investigation of asymptotic properties of estimators for

the function f in model (1.1) with a multivariate predictor. In particular we present a result

on the weak convergence of the sup-norm of an appropriately centered estimate, which can be

used to construct asymptotic confidence bands for the regression function f . In contrast to other

authors (e.g. Cavalier and Tsybakov (2002)) we do not assume that the function ψ in model (1.1)

is periodic, because in the reconstruction of astronomical or biological images from telescopes or

microscopic imaging devices this assumption is often unrealistic.

1.2 Confidence bands

In a pioneering work, Bickel and Rosenblatt (1973b) extended results of Smirnov (1950) for a

histogram estimate and constructed confidence bands for a density function of independent iden-

tical distributed (i.i.d) observations. Their method is based on the asymptotic distribution of

the supremum of a centered kernel density estimator. Since then, their method has been further

developed both in the context of density and regression estimation. For density estimation, Neu-

mann (1998) derived bootstrap confidence bands, and Giné and Nickl (2010) derived adaptive

asymptotic bands over generic sets. In a regression context, asymptotic confidence bands were

constructed by Eubank and Speckman (1993) for the Nadaraya-Watson and by Xia (1998) for a

local polynomial estimator. Bootstrap confidence bands for nonparametric regression were pro-

posed by Hall (1993), Neumann and Polzehl (1998) and by Claeskens and van Keilegom (2003).

For the statistical inverse problem of deconvolution density estimation, Bissantz et al. (2007a)

constructed asymptotic and bootstrap confidence bands, where Lounici and Nickl (2011) obtained

non-asymptotic confidence bands by using concentration inequalities. Recently, Birke et al. (2010)

provided uniform asymptotic and bootstrap confidence bands for a spectral cut-off estimator in

the one-dimensional indirect regression model with convolution operator.

All these results are limited to the estimation of univariate densities and regression functions, and

are not applicable in cases, where the quantity of interest depends on a multivariate predictor. In

such cases - to the best knowledge of the authors - confidence bands are not available. One reason

for this gap is that a well-established way to construct asymptotic uniform confidence bands,

which uses a pioneering result of Bickel and Rosenblatt (1973b) as the standard tool, cannot be

extended in a straightforward manner to the multivariate case. There are substantial differences

between the multivariate and one-dimensional case, and for multivariate inverse problems the

mathematical construction of confidence bands requires different and/or extended methodology.
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In the present paper we will consider the problem of constructing confidence bands for the regres-

sion function in an inverse regression model with a convolution-type operator with a multivariate

predictor. The estimators and assumptions for our asymptotic theory are presented in Section 2,

while Section 3 contains the main results of the paper. In Section 4 we consider the special case

of time dependent regression functions with a univariate predictor, which originally motivated

our investigations. The arguments of Section 5 and 6, which contain all technical details of the

proofs, are based on results by Piterbarg (1996). These authors provided a limit theorem for the

supremum

sup
t∈Tn

X(t)

of a stationary Gaussian field {X(t) | t ∈ Rd}, where {Tn ⊂ Rd}n∈N is an increasing system of sets

such that λd(Tn)→∞ as n→∞. This result generalized the multivariate extension in Bickel and

Rosenblatt (1973a), who provided a limit theorem for the supremum supt∈[0,T ]d X(t), as T →∞.

2 Notation and assumptions

2.1 Model and notations

Suppose that (2n + 1)d observations (xk, Yk),k = (k1, . . . , kd) ∈ Gn := {−n, . . . , n}d from the

model

Yk = g(xk) + εk := (f ∗ ψ)(xk) + εk,(2.1)

are available, where the function f : Rd → R is unknown, ψ : Rd → R is a known function and

g := f ∗ ψ denotes the convolution of f and ψ, that is

g(x) := (f ∗ ψ)(x) :=

∫
Rd
f(s)ψ(x− s) ds.(2.2)

The basic assumptions that guarantee the existence of the integral (2.2) and also assure g ∈ L2(Rd)

is that f ∈ L2(Rd) and ψ ∈ L1(Rd) ∩ L2(Rd), which will be assumed throughout this paper. In

model (2.1) the predictors xk := k · 1
nan

are equally spaced fixed design points on a d-dimensional

grid, with a sequence (an)n∈N satisfying

nan →∞ and an ↘ 0 for n→∞.

The noise terms {εk |k ∈ Gn} are a field of centered i.i.d. random variables with variance σ2 :=

Eε2
k > 0 and existing fourth moments. As a consequence of the convolution theorem and the
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formula for Fourier inversion we obtain the representation

f(x) =
1

(2π)d

∫
Rd

Fg(ξ)

Fψ(ξ)
exp(iξTx) dξ.(2.3)

An estimator for the regression function f can now easily be obtained by replacing the unknown

quantity Fg = F(f ∗ψ) by an estimator F ĝ. The random fluctuations in the estimator F ĝ cause

instability of the ratio F ĝ(ξ)
Fψ(ξ)

if at least one of the components of ξ is large. As a consequence, the

problem at hand is ill-posed and requires regularization. We address this issue by excluding large

values of ξj for any j = 1, . . . , d from the domain of integration, i.e. we multiply the integrand

in (2.3) with a sequence of Fourier transforms Fη(h·) of smooth functions with compact support

[−h−1, h−1]d. Here h = hn is a regularization parameter which corresponds to a bandwidth in

nonparametric curve estimation and satisfies h → 0 if n → ∞. For the exact properties of the

function η we refer to Assumption A below.

An estimator f̂n for the function f in model (2.1) is now easily obtained as

f̂n(x) =
1

(2π)d

∫
Rd

F ĝ(ξ)

Fψ(ξ)
exp(iξTx)Fη(hξ) dξ,(2.4)

where

F ĝ(ξ) =
1

(2π)
d
2ndadn

∑
k∈Gn

Yk exp(−iξTxk)

is the empirical analogue of Fourier transform of g. Note that with the definition of the kernel

Kn(x) =
1

(2π)
d
2

∫
Rd

Fη(ξ)

Fψ( ξ
h
)

exp(iξTx) dξ,(2.5)

the estimator (2.4) has the following representation

f̂n(x) =
1

(2π)dndadnh
d

∑
k∈Gn

YkKn

(
(x− xk)

1

h

)
.(2.6)

Note that the kernel Kn can be expressed as a Fourier transform as follows

Kn = F
( Fη
Fψ( ·

h
)

)
.

The first step of the proof of our main result (see Theorem 1 in Section 3) will consist of a

uniform approximation of f̂n(x) − Ef̂n(x) by an appropriate stationary Gaussian field. In the

second step, we apply results of Piterbarg (1996) and Bickel and Rosenblatt (1973a) to obtain the
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desired uniform convergence for the approximation process of the first step. Finally, these results

are used to construct uniform confidence regions for Ef̂n(x). Our approach is then based on

undersmoothing: the choice of sufficiently small bandwidths assures the same limiting behaviour

of f̂n(x)−Ef̂n(x) and f̂n(x)− f(x). This avoids the estimation of higher order derivatives, which

often turns out to be difficult in applications. Thus, the limit theorem obtained in the second step

will also provide uniform confidence regions for the function f itself. Whereas undersmoothing

implies that the rate-optimal bandwidth cannot be used, there has also been some theoretical

justification why this choice of the regularization parameter is useful for constructing confidence

intervals (see Hall (1992)).

2.2 Assumptions

We now introduce the necessary assumptions which are required for the proofs of our main results

in Section 3 . The first assumption refers to the type of (inverse) deconvolution problem describing

the shape of the kernel function η in the spectral domain.

Assumption A. Let Fη denote the Fourier transform of a function η such that

A1. supp
(
Fη
)
⊂ [−1, 1]d.

A2. Fη ∈ D(Rd) = {f : Rd → R | f ∈ C∞(Rd), supp(f) ⊂ Rd compact}.

A3. There exists a constant D > 0, such that Fη(ξ) = 1 for all ξ ∈ [−D,D]d and |Fη(ξ)| ≤ 1

for all ξ ∈ Rd.

Remark 1.

1. The decay of the tails of the kernel Kn is given in terms of the smoothness of the integrand

in (2.5). The choice of a smooth regularizing function Fη has the advantage that the

smoothness of 1/Fψ carries over to Fη(h·)/Fψ.

2. Functions like Fη are called bump functions. Their existence follows from the C∞ Urysohn

Lemma (see for example Folland (1984), Lemma 8.18).

3. Note that D(Rd) ⊂ S (Rd), where S (Rd) denotes the Schwartz space of smooth and rapidly

decreasing functions. Since F : S (Rd) → S (Rd) is a bijection (see for example Folland

(1984), Corollary 8.28) we know that η ∈ S (Rd) as well.

4. For the sake of transparency, we state the conditions and results with the same regularization

parameter h for each direction. In practical applications this might not be the best strategy.

The results presented in Section 3 and 4 also hold for different sequences of bandwidths

h1, . . . , hd as long as the system of rectangles {[0, h−1
1 ]×, . . . , [0, h−1

d ] |n ∈ N} is a blowing
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up system of sets in the sense of Definition 14.1 in Piterbarg (1996). This is the case if the

assumption

d∑
p=1

( d∏
j=1,j 6=p

1

hj

)
≤ L1 ·

( d∏
j=1

1

hj

)L2

,

is satisfied for a constant L1 that only depends on d and a constant L2 < 1. This condition

is not a restriction in our setting because it holds whenever hj · nγj → Cj for constants

Cj, γj > 0, j = 1, . . . , d.

In general, two kinds of convolution problems are distinguished in the literature, because the decay

of the Fourier transform of the convolution function ψ determines the degree of ill-posedness. In

the case of an exponentially decreasing Fourier transform Fψ the problem is called severely ill-

posed. In the present paper the class of moderately ill-posed problems is considered, where the

Fourier transform of the convolution function decays at a polynomial rate (the precise condition

will be specified in Assumption B below). Throughout this paper

Wm(Rd) = {f ∈ L2(Rd) | ∂(α)f ∈ L2(Rd) exists∀α ∈ Nd, |α| ≤ m},

denotes the Sobolev space of order m ∈ N, where ∂(α)f is the weak derivative of f of order α. In

the subsequent discussion we will also make use of the Sobolev space for general m > 0, which is

defined by

Wm(Rd) = {f ∈ L2(Rd) | (1 + |ξ|2)
m
2 Ff ∈ L2(Rd)}.

Assumption B. We assume the existence of a function Ψ : Rd → R such that the kernel

K = F (Ψ · Fη) satisfies

B1. K 6= 0 and there exist constants β > d/2, M ∈ N, indices 0 < µ1 < µ2 < . . . < µM and

L2-functions f1, . . . , fM−1, fM : Rd → R with the property

ξαfp ∈ Wm(Rd) (p = 1, . . . ,M − 1)

for all multi-indices α ∈ {0, . . . , d}d, |α| ≤ d and all m > d+|α|
2

, such that

hβKn(x)−K(x) =
M−1∑
p=1

hµpFfp(x) + hµMFfn,M(x).(2.7)

where fM may depend on n, i.e. fM = fM,n and ‖fM,n‖L1(Rd) = O(1).

B2. ξαΨ · Fη, ξα hβ

Fψ( ·
h

)
· Fη ∈ Wm(Rd) for some m > d+|α|

2
.
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B3. log(n) · hµM (a
− d

2
n h−

d
2 ) · ‖fM‖L1(Rd) = o(1) and hµ1(log(n))2 = o(1).

Remark 2. Assumption B1 implies hβKn → K in L2(Rd) and also specifies the order of this

convergence. It can be understood as follows. If the convergence of the difference hβKn − K is

fast enough, i.e.

log(n) · hµ1(anh)−
d
2 = o(1)(2.8)

we have M = 1. On the other hand, in some relevant situations (see Example 1 (ii) below) the

rate of convergence hµ1 is given by h2 for each d and (2.8) cannot hold for d ≥ 4. Here, the

expansion (2.7) provides a structure, such that our main results remain correct although the rate

of convergence is not very fast. We can decompose the difference hβKn −K in two parts, where

one part depends on n only through the factors hµp and the other part converges sufficiently fast

(in some cases this term vanishes completely).

Example 1. This example illustrates the construction of the functions in the representation (2.7).

(i) Let d = 2 and ψ(x) = 1
4

exp(−|x1|) exp(−|x2|), x = (x1, x2)T , ξ = (ξ1, ξ2)T . Then we have
h4

Fψ(ξ)
= 2π

(
h4 + h2(ξ2

1 + ξ2
2) + ξ2

1ξ
2
2

)
, which implies β = 4, M = 3 and

h4 ·Kn(x) =

∫
R2

(
h4 + h2(ξ2

1 + ξ2
2) + ξ2

1ξ
2
2

)
Fη(ξ) exp(ixT ξ) dξ

K(x) =

∫
R2

Fη(ξ)ξ2
1ξ

2
2 exp(ixT ξ) dξ.

With the definitions f1(ξ) = 2π(ξ2
1 + ξ2

2)Fη(ξ), f2(ξ) = 2πFη(ξ) and fn,3 ≡ 0 we obtain

h4 ·Kn(x)−K(x) = h2 · Ff1(ξ) + h4 · Ff2(ξ).

In this example, the condition log(n)h2/
√
adnh

d = o(1) is satisfied. However, the following

results are valid if the weaker condition of a decomposition of the form (2.7) holds. Further-

more, since the factors of Fη in f1 and f2 are polynomials, we have Ffj(ξ) ∈ S (Rd), which

implies ξαfj ∈ Wm(Rd) for all α and all m ∈ N.

(ii) If |x| =
√
x2

1 + . . .+ x2
d and ψ(x) = 2−

d+1
2 e−|x| we have

Fψ(ξ) =
1√
2π

Γ

(
d+ 1

2

)
1

(1 + |ξ|2)
d+1
2

,
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[see Folland (1984), Exercise 13]. If d is odd we use the identity

(
h2 + |ξ|2

) d+1
2

=

d+1
2∑
j=0

(
d+1

2

j

)
h2j|ξ|

d+1
2
−2j,

and an expansion of the form (2.7) is obvious from the definition of Kn in (2.5). If the

dimension d is even the situation is more complicated. Consider for example the case d = 4,

where

h5

Fψ( ξ
h
)

=→
√

2π

Γ
(

5
2

) |ξ|5 =

√
2π

Γ
(

5
2

)√(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4

)5
as n→∞.

It follows that the constant β and the functions Ψ, Kn and K from Assumption B are given

by β = d+ 1 = 5, Ψ(ξ) =
√

2π

Γ
(

5
2

) |ξ|5 and

hβKn(x) =
1

(2π)2

∫
Rd

√
2π

Γ
(

5
2

)(h2 + |ξ|2
) d+1

2 Fη(ξ) exp(iξTx) dξ,

K(x) =
1

(2π)2

∫
Rd

√
2π

Γ
(

5
2

) |ξ|d+1Fη(ξ) exp(iξTx) dξ,

respectively. In order to show that Assumption B1 holds in this case we use Taylor’s Theorem

and obtain

h5

Fψ( ξ
h
)
−Ψ(ξ) =

√
2π

Γ
(
d+1

2

)(h2 · 5

2
· |ξ|3 + h4 · 5

2
· 3

2
· (|ξ|2 + λdh

2)
1
2

)
,

for some constant λd ∈ [0, 1). Recalling the definition of Kn in (2.5) this gives

(hβKn −K)(x) = h2 Ff1(ξ) + h4 Ff2,n(ξ)

where the functions f1 and f2,n are defined by

f1(ξ) =
1

(2π)
3
2 Γ
(

5
2

) · |ξ|3 · 5

2
· Fη(ξ),

f2,n(x) =
1

(2π)
3
2 Γ
(

5
2

) 5

2
· 3

2
h4(|ξ|2 + λdh

2)
1
2 · Fη(ξ),

respectively. It can be shown by a straightforward calculation that ξαfj ∈ W6+|α|(Rd) for

all α ∈ {0, . . . , d}d.
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Remark 3. In the one-dimensional regression model (2.1), Birke et al. (2010) assume that the

kernel K has exponentially decreasing tails in order to obtain asymptotic confidence bands, which,

in combination with the other assumptions only allows for kernels that are Fourier transforms of

C∞-functions with square integrable derivatives. Our Assumption B is already satisfied if K is the

Fourier transform of a once weakly differentiable function with square integrable weak derivative,

such that all indices of ill-posedness β that satisfy β > 1
2

are included if d = 1. Moreover, the

assumptions regarding the bandwidths are less restrictive compared to Birke et al. (2010).

Our final assumptions refer to the smoothness of the function f and to the decay of the convolution

f ∗ ψ.

Assumption C. We assume that

C1. There exist constants γ > 2, m > γ + d
2

such that f ∈ Wm(Rd).

C2. There exists a constant ν > 0 such that∫
R
|(f ∗ ψ)(z)|2 (1 + |z|2)ν dz <∞.

3 Asymptotic confidence regions

In this section we construct asymptotic confidence regions for the function f on the unit cube

[0, 1]d. These results can easily be generalized to arbitrary rectangles "dj=1[aj, bj] for fixed constants

aj < bj (j = 1, . . . , d) and the details are omitted for the sake of brevity. We investigate the limiting

distribution of the supremum of the process {Ỹn(x) |x ∈ [0, 1]d}, where

Ỹn(x) =
(2π)dhβ

√
hdndadn

σ‖K‖L2(Rd)

[
f̂n(x)− Ef̂n(x)

]
(3.1)

=
(2π)dhβ

σ‖K‖L2(Rd)

√
hdndadn

∑
k∈Gn

Kn

(
(x− xk)

1

h

)
εk.

and the kernel Kn is defined in (2.5). Note that

sup
x∈[0,1]d

|Ỹn(x)| = sup
x∈[0,h−1]d

|Yn(x)|,

where the process

Yn(x) :=
(2π)dhβ

σ‖K‖L2(Rd)

√
hdndadn

∑
k∈Gn

Kn

(
x− xk

1

h

)
εk(3.2)
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can be approximated by a stationary Gaussian field uniformly with respect to [0, h−1]d. Thus

the desired limiting distribution corresponds to the limiting distribution of the supremum of a

stationary Gaussian process over a system of increasing smooth sets with sufficient similarity of

their speed of increase, and is therefore of Gumbel-type. The precise result is given in the following

Theorem.

Theorem 1. Assume that for some fixed constant δ ∈ (0, 1], δ < d and a constant r > 2d
d−δ the r-th

moment of the errors exists, i.e. E|εk|r < ∞. If additionally Assumptions A and B are satisfied

and log(n)
nδaδnh

d = o(1), then we have

lim
n→∞

P

(
sup

x∈[0,1]d

(
|Ỹn(x)| − Cn,3

)
· Cn,3 < κ

)
= e−2e−κ ,

where

C1 = det

([
(2π)2d

‖K‖2
2

∫
Rd
|Ψ(v)Fη(v)|2vivj dv

]
, i, j = 1, . . . , d

)
Cn,2 =

√
C1

(2π)d+1

1

hd

Cn,3 =
√

2 ln(Cn,2) +
(d− 1) ln

(
2 ln(Cn,2)

)
2
√

2 ln(Cn,2)
.

The proof of this result is long and complicated and therefore deferred to Section 5 and 6. In

the following we apply Theorem 1 to construct uniform confidence regions for the function f by

choosing the bandwidth such that the bias decays to zero sufficiently fast. More precisely, if the

condition

log(n) sup
x∈[0,1]d

∣∣∣f(x)− Ef̂n(x)
∣∣∣ = o

((
hβ
√
hdndadn

)−1
)

is satisfied, it follows directly that the random quantities supx∈[0,1]d |Ỹn(x)| and

(2π)dhβ
√
hdndadn

‖K‖L2(Rd)σ
sup

x∈[0,1]d

∣∣∣f(x)− f̂n(x)
∣∣∣

have the same limiting behavior.

Corollary 1. Assume that the conditions of Theorem 1, Assumption C and the condition

√
hdndadn

√
log(n)

( 1

n3a3
nh

2
+
aνn
n

+ a
ν+ d

2
n + hγ+β

)
= o(1) for n→∞
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are satisfied. Then we have for any κ ∈ R

lim
n→∞

P
(
f̂n(x)− Φn,κ ≤ f(x) ≤ f̂n(x) + Φn,κ for all x ∈ [0, 1]d

)
= e−2e−κ ,

where the sequence Φn,κ is defined by

Φn,κ =
( κ
Cn,3

+ Cn,3)σ‖K‖L2(Rd)

(2π)dhβ
√
hdndadn

.

As a consequence of Corollary 1 an asymptotic uniform confidence region for the function f with

confidence level 1− α is given by

{[f̂n(x)− Φn,− ln(−0.5 ln(1−α)), f̂n(x) + Φn,− ln(−0.5 ln(1−α))] |x ∈ [0, 1]d}.(3.3)

The corresponding (1 − α)-band has a width of 2Φn,− ln(−0.5 ln(1−α)). Here, the factor 1
hβ

is due to

the ill-posedness of the inverse problem (see Assumption B). It does not appear in corresponding

results for the direct regression case. On the other hand the factor a
− d

2
n arises from the design on

the growing system of sets {[−a−1
n , a−1

n ]d |n ∈ N, }. In the case of a regression on a fixed interval

it does not appear as well. The width of the asymptotic point-wise confidence intervals in the

multivariate indirect regression case as obtained in Bissantz and Birke (2009) is of order 1

hβ
√
Nhdadn

,

where N is the total number of observations. Their point-wise confidence intervals are smaller

than the uniform ones obtained in Corollary 1. The price for uniformity is an additional factor of

logarithmic order, which is typical for results of this kind.

In applications the standard deviation is unknown but can be estimated easily from the data,

because this does not require the estimation of the function f . In particular, (3.3) remains

an asymptotic (1 − α)-confidence band, if σ is replaced by an estimator satisfying σ̂ − σ =

oP (1/ log(n)).

4 Time dependent regression functions

In this section we extend model (2.1) to include a time dependent regression function, that is

Yj,k,n =
(
Tψftj

)
(xk) + εk, k ∈ Gn, j = −m, . . . ,m,(4.1)

where xk = k
nan

and tj = j
mbm

, m = m(n), such that m(n)→∞ and bm(n) ↘ 0 as n→∞.
We assume that ψ does not depend on the time and the operator Tψ is defined by

(
Tψft

)
=

∫
Rd
ft(y)ψ(· − y) dy.
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This assumption is reasonable in the context of imaging where the function ψ corresponds to the

point spread function (Bertero et al. (2009)). If it is not satisfied, i.e. the convolution operator

effects all coordinates, the problem can be modeled as in Section 2.

For a precise statement of the results we will add an index to the Fourier operator F which gives

the dimension of the space under consideration. We will write Fd+1 if the Fourier transform is

taken over the whole space Rd+1 and Fd to denote Fourier transformation with respect to the

spatial dimensions. By the same considerations as given in Section 2 we obtain an estimator f̌ for

the function ft

f̌n(x; t) =
1

(2π)
d+1
2

∫
Rd+1

Fd+1(f̂ ∗ ψ)(ξ, τ)

(2π)
d
2Fdψ(ξ)

Fdη̌(ξh, τht) exp(itτ + ixT ξ) d(ξ, τ)

=
1

(2π)d+ 1
2ndmadnbm

∑
(k,j)∈Gd+1

(n,m)

Yk,jǨn

(x− xk
h

,
t− tj
ht

)
,

where Gd+1
(n,m) denotes the grid {−n, . . . , n}d × {−m, . . . ,m} and the kernel Ǩn is given by

Ǩn(x; t) =
1

(2π)
d+1
2

∫
Rd+1

exp
(
iτ t+ iξTx

)
Fdψ( ξ

h
)

Fd+1η̌(ξ, τ) d(ξ, τ).(4.2)

Here the function η̌ : Rd+1 → R satisfies condition A and ht = ht(n) is an additional sequence

of bandwidths referring to the time domain. For the asymptotic analysis we require a modified

version of Assumption B.

Assumption B̌ Let Assumptions B1 (with corresponding kernel Ǩ) and B2 hold and additionally

assume that

B̌3. log(n+m(n)) · hµM (a
− d

2
n h−

d
2 b

1
2

m(n)m(n)
1
2 ) = o(1) and for p = 1, . . . ,M − 1

hµp(log(n+m))2 = o(1).

Theorem 2. Define

Y̌n(x; t) :=
(2π)d+1hβ

√
hdhtndmbmadn

σ‖Ǩ‖L2(Rd+1)‖
[
f̌n(x; t)− Ef̌n(x; t)

]
and let the moment condition of Theorem 1 and Assumptions A and B̌ be satisfied. We further

assume that the bandwidths ht and h, and the sequences (an)n∈N and (bm(n))n∈N satisfy

log(n+m)

(√
nan
mbm

1√
nδhtaδnh

d
+
(mbm
nan

) d
2 1√

mδhthd

)
= o(1) for n→∞

13



ht + h ≤ L1 · hd(1−L2)h
(1−L2)
t

for some constants L1 <∞ and L2 ∈ (0, 1). Then we have for each κ ∈ R,

lim
n→∞

P

(
sup

x∈[0,1]d

(
|Y̌n(x; t)| −Dn,3

)
·Dn,3 < κ

)
= e−2e−κ ,

where

D1 = det

([
(2π)2(d+1)

‖Ǩ‖2
L2(Rd+1)

∫
Rd+1

|Ψ(v1, . . . , vd)Fd+1η̌(v)|2vivj dv

]
, i, j = 1, . . . , d+ 1

)
,

Dn,2 =

√
D1

(2π)d+2

1

hdht
and

Dn,3 =
√

2 ln(Dn,2) +
(d− 1) ln

(
2 ln(Dn,2)

)
2
√

2 ln(Dn,2)
.

Corollary 2. If the assumptions of Theorem 2 are satisfied, the limit kernel Ǩ is defined by

Ǩ(x, t) =
1

(2π)
d+1
2

∫
Rd+1

Ψ(ξ)Fd+1η̌(ξ, τ) exp(iξTx+ iτ t) d(ξ, τ).(4.3)

and the function f(·)(·) : Rd+1 → R1 satisfies Assumption C, then it follows that

lim
n→∞

P
(
f̌n(x; t)− Φ̌n,κ ≤ f(x; t) ≤ f̌n(x; t) + Φ̌n,κ for all (x, t) ∈ [0, 1]d+1

)
= e−2e−κ ,

where the constant Φ̌n,κ is defined by

Φ̌n,κ =
( κ
Dn,3

+Dn,3)σ‖Ǩ‖L2(Rd+1)

hβ
√
hdndadnmbmht(2π)d+1

.

Asymptotic confidence bands for the function ft(x) at level 1− α are hence given by

{[f̌n(x; t)− Φ̌n,− ln(−0.5 ln(1−α)), f̌n(x; t) + Φ̌n,− ln(−0.5 ln(1−α))] | (x, t) ∈ [0, 1]d+1}.
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5 Proofs of Theorem 1 and Corollary 1

5.1 Notation, preliminaries and remarks

First, we introduce some notation which is used extensively in the following proofs. Define for

a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd the d-dimensional cube [a, b] := "dj=1[aj, bj]. Let k =

(k1, . . . , kd) ∈ Zd, α = (α1, . . . , αd) ∈ {0, 1}d be multi-indices, 0 := (0, . . . , 0)T ∈ Rd and 1 :=

(1, . . . , 1)T ∈ Rd and define Gk := Zd∩ [−k, k]. For j ∈ {1, . . . , d} we denote by Gj
k the canonical

projection of Gk onto Zj, i.e. Gj
k is a j-dimensional grid of integers with possibly different length

in each direction. For j ∈ N let Gj,+
k := Gj

k ∩ Nj denote the part of the grid Gj
k whose vectors

contain only positive components and write G+
k for Gd,+

k . We further introduce the bijective map

Ed :

{
{0, 1}d → P({1, . . . , d})

(α1, . . . , αd) 7→ v = {v1, . . . , v|α|}; αvj = 1, j = 1, . . . , |α| =
∑d

i=1 αi,

that maps each α to the set v ⊂ {1, . . . , d} that contains the positions of its ones. For α ∈ {0, 1}d

and {v1, . . . , v|α|} = Ed(α) let (x)α := (xv1 , xv2 , . . . , xv|α|) denote the projection of x ∈ Rd onto

the space spanned by the coordinate axes given by the positions of ones of the multi-index α.

For a, b ∈ Rd let (a)α : (b)1−α = (a : b)α := (aα1
1 · b1−α1

1 , . . . , aαdd · b
1−αd
d ) denote the vector of the

components of a and b specified by the index α. The following example illustrates these notations.

Example 2. For d = 2 we have {0, 1}2 = {(1, 1), (1, 0), (0, 1), (0, 0)} and the mapping E2 is

defined by

E2

(
(1, 1)

)
= {1, 2}, E2

(
(1, 0)

)
= {1}, E2

(
(0, 1)

)
= {2} and E2

(
(0, 0)

)
= ∅.

For any x = (x1, x2) ∈ R2 we have

(x)(1,1) = x, (x)(1,0) = x1 and (x)(0,1) = x2.
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For a = (a1, a2), b = (b1, b2) ∈ R2 we have

(a : b)(1,1) = (a1, a2) = a, (a : b)(1,0) = (a1, b2), (a : b)(0,1) = (b1, a2), (a : b)(0,0) = (b1, b2) = b.

For the approximation of the integrals by Riemann sums we define for multi-indices α̃, α ∈
{0, 1}d\{0}

∆α(f ; a, b) :=
∑

α̃∈{0,1}d, α̃≤α

(−1)|α̃|f((a : b)α̃) =
∑

α̃∈{0,1}d, α̃≤α

(−1)d−|α̃|f
(
(a)1−α̃ : (b)α̃

)
,(5.1)

where the symbol α̃ ≤ α means α̃j ≤ αj for j = 1, . . . , d. Note that for α = 1 ∈ Rd we obtain the

special case of the d-fold alternating sum, i.e.

∆(f ; a, b) := ∆1(f ; a, b) =
∑

α∈{0,1}d
(−1)|α|f ((a : b)α) =

∑
α∈{0,1}d

(−1)d−|α|f((a : b)1−α),

Note that ∆α(f ; a, b) can be regarded as the increment of the function fα((x)α) := f
(
(x : b)α

)
over the interval [(a)α, (b)α] which also gives rise to the alternative notation

∆α (f ; a, b) = ∆ (fα, (a)α, (b)α) .(5.2)

5.2 Proof of Theorem 1

To prove the assertion of Theorem 1 we decompose the index set Gn = {−n, . . . , n}d of the sum

in (3.1) into 2d + 1 parts: the respective intersections with the 2d orthants of the origin in Rd

and the marginal intersections with the coordinate axes. Our first auxiliary result shows that the

contribution of the term representing the marginals is negligible (here and throughout the paper

we use the convention 00 = 1).

Lemma 1.

sup
x∈[0,h−1]d

∣∣∣ hβ√
hdndadn

∑
α∈{0,1}d\{1}

∑
(k:0)α,k∈G+

n

Kn

(
x− 1

h
xk

)
εk

∣∣∣ = oP

(
1

log(n)

)
.

We obtain from its proof in Section 6 that Lemma 1 holds under the weaker condition log(n)√
nanh

= o(1),

which follows from the assumptions of Theorem 1. Next we consider the “positive” orthant G+
n

and show in three steps that

(5.3) sup
x∈[0,h−1]d

∣∣∣Y (+)
n (x)− Y (+)(x)

∣∣∣ = op(1),
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where the processes Y
(+)
n and Y (+) are defined by

Y (+)
n (x) :=

(2π)dhβ

σ‖K‖L2

√
hdndadn

∑
k∈G+

n

Kn(x− 1

h
xk)εk,(5.4)

Y (+)(x) :=
(2π)d

‖K‖L2

∫
Rd+
K(x− u) dB(u),(5.5)

respectively, B is a standard Brownian sheet on Rd (see the proof of Lemma 2 for details) and K

denotes the kernel defined in Assumption B. The final result is then derived using Theorem 14.1

in Piterbarg (1996). To be precise note that it can easily be shown that

lim
n→∞

ndadnh
dh2β · Var

(
f̂n(x)

)
=

σ2

(2π)2d

∫
Rd
|K(

x

h
− u)|2 du =

σ2‖K‖2
L2

(2π)2d

(in particular the limit is independent of the variable x, which is typical for kernel estimates in

homoscedastic regression models with equidistant design). We further obtain for the function

r(t) = (2π)2d‖K‖−2
L2

∫
Rd K(v + t)K(v)dv that

‖r‖L1 =
(2π)2d

‖K‖2
L2

∫
Rd

∣∣∣∣∫
Rd
K(v + t)K(v) dv

∣∣∣∣ dt ≤ (2π)2d‖K‖2
L1

‖K‖2
L2

<∞,

Therefore the conditions of Theorem 14.1 in Piterbarg (1996) are satisfied and the assertion of

Theorem 1 follows.

The remaining proof of the uniform approximation (5.3) will be accomplished showing the following

auxiliary results. For this purpose we introduce the process

Y
(+)
n,1 (x) :=

(2π)dhβ√
ndadnh

d‖K‖L2(Rd)

∑
α∈{0,1}d

(−1)|α|
∑

j∈G|α|,+n

∆α (Kn ◦ τx, Ij)B(j : (n)1−α)

where the function τx is defined by τx(u) := x− u+1
nanh

,

Ij :=
[
(j− 1) : (n)1−α, j : (n)1−α

]
⊂ Rd

+(5.6)

and we use the notation (5.2).

Lemma 2. There exists a Brownian sheet B on Rd such that

sup
x∈[0,h−1 ]d

|Y (+)
n (x)− Y (+)

n,1 (x)| = o
( 1√

log(n)

)
a.s.

We obtain from the proof in Section 6.1 that Lemma 2 holds under the condition log(n)

n
δ
2 a

δ
2
n h

d
2

= o(1),
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which follows from the assumptions of Theorem 1. The next step consists of the replacement of

the kernel Kn in the process Yn,1 by its limit.

Lemma 3.

sup
x∈[0,h−1]

∣∣∣Yn,1(x)− Yn,2(x)
∣∣∣ = oP

(
1

log(n)

)
,

where the process Yn,2 is given by

Yn,2(x) :=
(2π)d√

ndadnh
d‖K‖L2

∑
α,γ∈{0,1}d

(−1)|α|
∑

j∈G|α|,+n

∆α (K ◦ τx, (−1)γIj)B((−1)γj : (n)1−α).

As described in Section 5.1 for fixed α ∈ {0, 1}d, j ∈ G
|α|,+
n the quantity ∆α (K ◦ τx; Ij) can be

regarded as the increment of the function (Kn ◦ τx)α((u)α) = Kn ◦ τx
(
(u : n)α

)
on the cube

[(j − 1), j]. This point of view is the basic step in the approximation by the Riemann-Stieltjes

Integral of B(((·) : n)1−α) with respect to the function (Kn ◦ τx)α for each α ∈ {0, 1}d.

Lemma 4.

sup
x∈[0,h−1]d

|Y (+)
n,2 (x)− Y (+)

n,3 (x)| = oP

(
1

log(n)

)
,

where the process Y
(+)
n,3 is defined by

(5.7) Y
(+)
n,3 (x)

D
=

(2π)d

‖K‖L2

∫
[0,(anh)−1]d

K(x− u) dB(u).

We obtain from its proof in Section 6.2 that Lemma 4 holds under the condition log(n)
nhd

= o(1),

which follows from the assumptions of Theorem 1. In the final step we show that the difference

Y (+)(x)− Y (+)
n,3 (x) =

(2π)d

‖K‖L2

∫
Rd+
IRd+\[0,(anh)−1]d(u)K(x− u) dB(u)

is asymptotically negligible.

Lemma 5. supx∈[0,h−1]d |Yn,3(x)− Y (x)| = oP ((log(n)−1).

5.3 Proof of Corollary 1

The assertion follows from the estimate

sup
[0,1]d

∣∣∣f(x)− Ef̂n(x)
∣∣∣ = o

(
h−β(hdndadn)−1/2

)
.(5.8)
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To prove (5.8) we use the representation (2.6) and obtain by a straightforward calculation

Ef̂n(x) =
1

(2π)dndadnh
d

∑
k∈Gn

(f ∗ ψ)(xk) ·Kn

(
(x− xk)

1

h

)
=

1

(2π)dhd

∫
[− 1

an
, 1
an

]d
(f ∗ ψ)(z) ·Kn

(
(x− z)

1

h

)
dz + Rn,1(x)

=
1

(2π)d

∫
Rd

(f ∗ ψ)(z · h) ·Kn

(x
h
− z
)
dz +Rn,1(x) +Rn,2(x),

where the term

Rn,1(x) =
1

(2π)dhd

∑
k∈Gn−1

∫
[xk,xk+1]

{
(f ∗ ψ)(xk)Kn

(x− xk
h

)
− (f ∗ ψ)(z)Kn

(x− z
h

)}
dz(5.9)

denotes the “error” in the integral approximation and

Rn,2(x) :=
1

(2π)dhd

∫
([− 1

an
, 1
an

]d)
C

(f ∗ ψ)(z)Kn

(
(x− z)

1

h

)
dz.

An application of the Plancherel identity (see for example Folland (1984), Theorem 8.29) gives

(observing Assumption A1 and A3)

Ef̂n(x) =
1

(2π)
d
2hd

∫
Rd
Ff
(
h−1ξ

)
Fψ
(
h−1ξ

) Fη(ξ)

Fψ( ξ
h
)

exp
(
ih−1xT ξ

)
dξ +Rn,1(x) +Rn,2(x)

=
1

(2π)
d
2

∫
Rd
Ff(ξ) · Fη(ξh) exp(ixT ξ) dξ +Rn,1(x) +Rn,2(x)

= f(x) +Rn,1(x) +Rn,2(x) +Rn,3(x) +Rn,4(x)

where

Rn,3(x) =
1

(2π)
d
2

∫
([−D

h
,D
h

]d)C
Ff(ξ) exp(ixξ) dξ

Rn,4(x) =
1

(2π)
d
2

∫
[− 1

h
, 1
h

]d\[−D
h
,D
h

]d
Ff(ξ) · Fη(ξh) exp(ixξ) dξ.

We further obtain from Assumption C∣∣∣∫
{ξj>D

h
}
Ff(ξ) exp(−ixξ) dξ

∣∣∣ ≤ 1

Dγ

∫
{ξj>D

h
}
|Ff(ξ)|(hξj)γ dξ = o(hγ),

and finally |Rn,3(x)| ≤
∑d

j=1

∫
{ξj>D

h
} |Ff(ξ)| dξ = o(hγ). With the same arguments it follows

Rn,4(x) = o(hγ), since |Fη(ξh)| ≤ 1 for all ξ ∈ Rd. Define An = ([− 1
an
, 1
an

]d)C , then we obtain
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from the representation (2.7) the estimate

|Rn,2(x)| ≤ 1

(2π)dhβ+d

(∫
An
|(f ∗ ψ)(z)|2 dz

) 1
2
[(∫

An
|K
(

(x− z)
1

h

)
|2 dz

) 1
2

+
(∫
An
|(hβKn −K)

(
(x− z)

1

h

)
|2 dz

) 1
2
]

=
1

(2π)dhβ

(∫
An
|(f ∗ ψ)(z)|2 dz

) 1
2
(
O
(
hda

d
2
n

)
+O

(
hµ1+da

d
2
n

))
= O

(aν+ d
2

n

hβ

)
.

uniformly with respect to x ∈ [0, 1]d. Note that by Assumption C we have f ∈ Wbmc(Rd)

and since m > 2 + d
2

Sobolev’s Embedding Theorem (Folland (1984), Theorem 8.54) implies

the existence of a function f̃ ∈ C2(Rd) with f = f̃ almost everywhere. Observing that the

convolution function ψ is integrable gives ∂α(f ∗ ψ) = (∂αf) ∗ ψ ∈ C(Rd) for all α ∈ {0, 1, 2}
with |α| ≤ 2 (see for example Folland (1984), Proposition 8.10), which justifies the application

of Taylor’s Theorem. Straightforward but tedious calculations give for the remaining term (5.9)

Rn,1(x) = O( 1
n3a3nh

β+2 ) +O( aνn
nhβ

) uniformly with respect to x ∈ [0, 1]d.

5.4 Proofs of Theorem 2 and Corollary 2

First we will show that the kernel Ǩn satisfies conditions B1 and B2, with the kernel Ǩ defined

(4.3). If Assumption B̌ holds we have∫
Rd

( hβ

Fdψ( ξ
h
)
−Ψ(ξ)

)
Fd+1η̌(ξ, τ) exp(ixT ξ) dξ

=
M−1∑
p=1

hµp
∫
Rd

Ψp(ξ)Fd+1η̌(ξ, τ) exp(ixT ξ) dξ + hµM
∫
Rd

ΨM,n(ξ)Fd+1η̌(ξ, τ) exp(ixT ξ) dξ,

which implies

hβǨn(x, t)− Ǩ(x, t) =
M−1∑
p=1

hµp
∫
Rd+1

Ψp(ξ)Fd+1η̌(ξ, τ) exp(ixT ξ + itτ) d(ξ, τ)

+ hµM
∫
Rd+1

ΨM,n(ξ)Fd+1η̌(ξ, τ) exp(ixT ξ + itτ) d(ξ, τ).

A careful inspection of the proofs of Theorem 1 and Corollary 1 shows that the arguments can

be transferred to the time-dependent case if the increase of n and m(n) as well as the decrease

of an, bm(n), h and ht are balanced as given in the assumptions of the theorem. The details are

omitted for the sake of brevity.
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6 Proof of auxiliary results

6.1 Proof Lemma 2

Define Sk :=
∑

j∈G+
k
εj, set Sj ≡ 0 if min{j1, . . . , jd} = 0 and recall the definition of Y

(+)
n and τx in

(5.4) and before Lemma 2, respectively. In a first step we will replace the errors εk by increments

given in terms of partial sums Sk−α for α ∈ {0, 1}d. To be precise, we use the representation

εk =
∑

α∈{0,1}d
(−1)|α|S(k−α) =

∑
α∈{0,1}d

(−1)|α|S(
(k−1):k

)
α

.

A straightforward calculation gives

Y (+)
n (x) :=

hβ

σ‖K‖2

√
ndhdadn

∑
k∈G+

n

Kn ◦ τx(k− 1)
∑

α∈{0,1}d
(−1)|α|Sk−α

=
hβ

σ‖K‖2

√
ndhdadn

∑
α∈{0,1}d

(−1)|α|
∑
k∈G+

n

Kn ◦ τx(k− 1)S((k−1):k)α

=
hβ

σ‖K‖2

√
ndhdadn

( ∑
α∈{0,1}d

(−1)|α|
∑
k∈G+

n

(Kn ◦ τx(k− 1)−Kn ◦ τx(((k− 1) : k)α))S((k−1):k)α

+
∑

α∈{0,1}d
(−1)|α|

∑
k∈G+

n

Kn ◦ τx(((k− 1) : k)α)S((k−1):k)α

)
.

Now we can make use of Proposition 6 and Proposition 3 of Owen (2005) to rewrite the sums,

such that the increments given in terms of partial sums can be expressed by increments given in

terms of the kernel Kn. We obtain

Y (+)
n (x) =

hβ

σ‖K‖2

√
ndhdadn

[
Kn ◦ τx(n)S(n)

+
∑

α∈{0,1}d
(−1)|α|

∑
k∈G+

n

∑
β∈{0,1}d\{0}

(−1)|β|∆β(Kn ◦ τx; k− 1, ((k− 1) : k)α)S((k−1):k)α

]
,

The quantity ∆β(Kn◦τx; k−1, ((k−1) : k)α) can only take values different from zero if α ≤ 1−β.

Note that for α ≤ 1− β the equality (k)β = ((k− 1) : k)α)β holds which implies that in this case

we also have
[(

k− 1
)
β
,
(
((k− 1) : k)α

)
β

]
= [(k− 1)β, (k)β]. We further obtain

Y (+)
n (x) =

hβ

σ‖K‖2

√
ndhdadn

[
Kn ◦ τx(n)S(n) +

∑
β∈{0,1}d\{0}

(−1)|β|
∑
k∈G+

n

∑
α̃∈{0,1}d−|β|

(−1)|α̃|

×∆β

(
Kn ◦ τx; k− 1 , (k)β : ((k− 1)1−β : (k)1−β)α̃

)
S(k)β :((k−1)1−β :(k)1−β)α̃

]
.
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The alternating sum with respect to the index α̃ can be written as an increment ∆ as defined in

(5.1) which then defines a telescope sum according to Owen (2005), Proposition 2. Taking into

account that S(k) ≡ 0 if kj = 0 for at least one j ∈ {1, . . . , d} gives

Y (+)
n (x) =

hβ

σ‖K‖2

√
ndhdadn

∑
β∈{0,1}d

(−1)|β|
∑

j∈G|β|,+n

∆β (Kn ◦ τx; Ij) · Sj:(n)1−β .

With the definitions X(A) :=
∑

k∈A⊂Zd Xk for any subset A ∈ Zd, we can rewrite these partial

sums as set-indexed partial sums with index class n ·S , where S := {(0, γ] | 0 < γj ≤ 1, 1 ≤ j ≤
d} and n ·S := {n · S |S ∈ S }. It follows directly that S is a sufficiently smooth VC-class of

sets, which justifies the application of Theorem 1 in Rio (1993). Therefore there exists a version

of a Brownian sheet on [0,∞)d, say B1, such that

sup
k∈G+

n

∣∣∣∣Sk

σ
−B1(k)

∣∣∣∣ = O
(

(log(n))
1
2n

d−δ
2

)
a.s.(6.1)

Recalling the definition of Ij in (5.6) we further obtain

Y (+)
n (x)− Y (+)

n,1 (x) =
hβ

‖K‖2

√
ndhdadn

∑
β∈{0,1}d

(−1)|β|

∑
j∈G|β|,+n

∆β (Kn ◦ τx; Ij) ·
( 1

σ
Sj:(n)1−β −B1

(
j : (n)1−β

))
.

The estimate (6.1) implies the existence of a constant C ∈ R+ such that

|Y (+)
n (x)− Y (+)

n,1 (x)| ≤ C ·

√
log(n)

nδhδaδn
hβ
[ ∑
γ∈{0,1}d, |γ|=1

∫
[0,(anh)−1]d

(u)
d−δ
2

γ |∂1Kn(x− u)| du

+
∑

β∈{0,1}d\{0,1}

∫
[0,(anh)−1]|β|

∣∣∣∂βKn

((
x− (u : (anh)−11)

)
β

)∣∣∣ (du)β

+ |Kn(x− (anh)−11)|
]

a.s.

It follows from Assumption B that the function u 7→ (u)
|α|
2
γ ∂αK(u) is integrable on Rd for all

α ∈ {0, 1}d such that ∫
[0,(anh)−1]d

(u)
d−δ
2

γ |∂1Kn(x− u)| du = O(h
δ−d
2
−β)
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and ∫
[0,(anh)−1]|β|

∣∣∣∂βKn

((
x− (u : (anh)−11)

)
β

)∣∣∣ (du)β + |Kn(x− (anh)−11)| = O((anh)
d
2h−β).

Note that for sufficiently large n such that an < 1
2

we obtain − 1
2anh

≥ xj − (anh)−1 = an−1
anh

uniformly with respect to j (note that xj ∈ [0, h−1]). Let B̃ be a continuous version of B1. We set

B̃(t) ≡ 0 if tj < 0 for at least one index j ∈ {1, . . . , d} and let {B̃α |α ∈ {0, 1}d} be 2d mutually

independent copies of B̃. For t ∈ Rd define

Bα(t) := B̃α((−1)α1t1, (−1)α2t2, . . . , (−1)αdtd),

then the process {B(t) :=
∑

α∈{0,1}d Bα(t) | t ∈ Rd} is a Wiener field on Rd.

6.2 Proof of Lemma 4

Note that ∂αK exists and is integrable for each α ∈ {0, 1}d. Consequently, the kernel K is of

bounded variation on [0, (anh)−1]d in the sense of Hardy Krause for each fixed n (see Owen (2005),

Definition 2). Therefore an application of integration by parts for the Wiener integral (note that

the kernel K has not necessarily a compact support) and rescaling of the Brownian sheet Y
(+)
n,3

yields

Y
(+)
n,3 (x)

D
=

∑
α∈{0,1}d\{0}

(−1)|α|
∫

[0,(anh)−1]|α|
B
((
u : (anh)−11

)
α

)
dK
(
x−

(
u : (anh)−11

)
α

)
+ ∆

(
K(x− ·) ·B(·), [0, (anh)−1]d

)
=

∑
α∈{0,1}d\{0}

(−1)|α|
∫

[0,(anh)−1]|α|
B
((
u : (anh)−11

)
α

)
∂αK

(
x−

(
u : (anh)−11

)
α

)
(du)α

+ ∆
(
K(x− ·) ·B(·), [0, (anh)−1]d

)
.

Recalling the definition of Y
(+)
n,2 (x) and identity (15) in Owen (2005) we can replace the increments

by the corresponding integrals, that is

Y
(+)
n,2 (x)

D
=

∑
α∈{0,1}d\{0}

(−1)|α|
∑

k∈G|α|,+n−1

∫
[(nanh)−1(k−1)α,(nanh)−1(k)α]

∂αK
(
x−

(
u : (anh)−11

)
α

)
(du)α

×B
((

(nanh)−1k : (anh)−11
)
α

)
+ ∆

(
K(x− ·) ·B(·), [0, (anh)−1]d

)
= Y +

n,3(x) +Rn,SI(x),
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where the remainder Rn,SI(x) is defined in an obvious manner. From the modulus of continuity

for the Brownian Sheet (see Khoshnevisan (2002), Theorem 3.2.1) it follows that for a, b ∈ Rd

lim sup
δ→0+

sup
s,t∈[a,b],‖s−t‖∞<δ

|B(s)−B(t)|√
δ log(1

δ
)
≤ 24 · d‖b‖d/2∞ ,(6.2)

which yields

|Y (+)
n,2 (x)− Y (+)

n,3 (x)| = |Rn,SI(x)| ≤ sup
δ< 1

n

sup
s,t∈[0,2]d: ‖s−t‖∞≤δ

|B(s)−B(t)|

×
√

log(n)

n

[∫
[0,(a−nh)−1]d

(
(u)1

) 1
2 |∂1K(x− u)| du + O(h−

d−1
2 )

]
(note that the dominating term in Rn,SI(x) is given by the summand where |α| = d). With the

same arguments as in the proof of Lemma 2 we finally obtain

|Y (+)
n,2 (x)− Y (+)

n,3 (x)| = OP

(√
ln(nanh)

nhd

)
,

where we used the estimate (6.2) for the modulus of continuity of the Brownian sheet (note that

this estimate is independent of x).

6.3 Proof of Lemma 5

Integration by parts gives

∆n,3 := |Y (+)
n,3 (x)− Y (+)(x)|(6.3)

≤
∣∣∣∫

[0,∞)d\[0, 1
anh

]d
B(u)∂1K(x− u) du

∣∣∣
+
∣∣∣ ∑
α∈{0,1}d\{0,1}

(−1)|α|
∫

[0, 1
anh

]|α|
B
((
u : (anh)−11

)
α

)
∂αK

(
x−

(
u : (anh)−11

)
α

)
(du)α

∣∣∣
+
∣∣∆ (K(x− ·)B(·); [0, (anh)−1]d

)∣∣ := |∆(1)
n,3(x)|+ |∆(2)

n,3(x)|+ |∆(3)
n,3(x)|,

where the processes ∆
(j)
n,3(x), j = 1, 2, 3 are defined in an obvious manner. Let n be sufficiently

large such that 1
anh
≥ 1 and an <

1
2
. Since B(u) = 0 if tj = 0 for at least one index j ∈ {1, . . . , d}
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we have

|∆(3)
n,3(x)| =

∣∣K (x− (anh)−11
)
·B
(
(anh)−11

)∣∣
=

√
2d (anh)−d ln(d ln((anh)−1))

|K (x− (anh)−11)| |B ((anh)−11) |√
2d (anh)−d ln(d ln((anh)−1))

.

An application of the version of a law of the iterated logarithm given in Theorem 3 of Paranjape

and Park (1973) yields the estimate

sup
x∈[0,h−1]

|∆(3)
n,3(x)| = O(1) ·

√
2d (anh)−d ln(d ln((anh)−1)) sup

x∈[0,h−1]

∣∣K (x− (anh)−11
)∣∣

≤ O(1) ·
√

2d (anh)−d ln(d ln((anh)−1)) sup
v≤an−1

anh

|K (v)| = o

(
1

log(n)

)
a.s.

uniformly with respect to x.

To show that ∆
(2)
n,3(x) and ∆

(1)
n,3(x) are asymptotically negligible we also apply the LIL for the

Brownian sheet. For each summand, say ∆
(2)
n,3,α, in ∆

(2)
n,3(x) (|α| < d) we have

∆
(2)
n,3,α(x) :=

∣∣∣∫
[0, 1

anh
]|α|
B
((
u : (anh)−11

)
α

)
∂αK

(
x−

(
u : (anh)−11

)
α

)
(du)α

∣∣∣
= (anh)−|α|

∣∣∣∫
[0,1]|α|

B
((
u : 1

)
α
(anh)−1

)
∂αK

(
x−

(
u : 1

)
α
(anh)−1

)
(du)α

∣∣∣.
Scaling of the Brownian sheet yields

∆
(2)
n,3,α(x)

D
= (anh)−

2|α|+d
2

∣∣∣∫
[0,1]|α|

B
((
u : 1

)
α

)
∂αK

(
x−

(
u : 1

)
α
(anh)−1

)
(du)α

∣∣∣
= O

(
(anh)−

d
2

) ∣∣∣∫
[0, 1

anh
]|α|
∂αK

(
x−

(
u : 1

)
α
(anh)−1

)
(du)α

∣∣∣ a.s.

With the same arguments as in the proof of Lemma 2 we conclude that the leading contributions

are given by the quantities ∆
(2)
n,3,α(x), where |α| = d− 1. For α = (0, 1, . . . , 1) obtain

sup
x∈[0,h−1]d

∣∣∆(2)
n,3,α(x)

∣∣ = OP

(
(anh)−

d
2

)
sup

v≤− 1
2anh

∫
Rd−1

∣∣∂αK(v, u2, . . . , ud
)∣∣ d(u2, . . . , ud).

This gives supx∈[0,h−1]d

∣∣∆(2)
n,3,(0,1,...,1)(x)

∣∣ = o( 1
log(n)

). Applying the same argument to the other terms

yields ∆
(2)
n,3(x) = oP ( 1

log(n)
) uniformly with respect to x ∈ [0, 1/h]d. Finally, a similar argument

gives for the remaining term in (6.3) ∆
(1)
n,3(x) = oP ( 1

log(n)
), which completes the proof of Lemma 5.
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6.4 Proof of Lemma 3

Note that we have

Y
(+)
n,1 (x)

D
=

hβ√
ndadnh

d‖K‖L2(Rd)

∑
α∈{0,1}d

(−1)|α|
∑

j∈G|α|,+n

∆α(Ffp ◦ τx; Ij)B(j : (n)1−α).

The representation (2.7) and the definition (5.6) yield

|Y (+)
n,1 (x)− Y +

n,2(x)|

=
M−1∑
p=1

hµp√
ndadnh

d

∣∣∣ ∑
α∈{0,1}d

(−1)|α|
∑

j∈G|α|,+n

∆α(Ffp ◦ τx; Ij)B(j : (n)1−α)
∣∣∣+ oP

(
1

log(n)

)
.

For each fixed p we can now perform the approximation steps of the previous Lemmas and obtain

log(n) sup
x∈[0,h−1]d

∣∣∣ 1√
ndadnh

d

∑
α∈{0,1}d

(−1)|α|
∑

j∈G|α|,+n

∆α(Ffp ◦ τx; Ij)B(j : (n)1−α)

−
∫
Rd+
Ffp(x− u) dB(u)

∣∣∣ = oP (1).

It can easily be shown that for all p = 1, . . . ,M − 1

lim
n→∞

ndadnh
dVar

( 1

ndadnh
d

∑
k∈Gn

YkFfp
(

(x− xk)
1

h

))
= σ2‖fp‖2

2,

where the limit does not depend on x. We finally obtain, repeating the approximation steps given

in the previous Lemmas for each of the 2d − 1 remaining orthants

log(n) sup
x∈[0,h−1]d

∣∣∣ 1√
ndadnh

d

∑
α,γ∈{0,1}d

(−1)|α|
∑

j∈G|α|,+n

∆α(Ffp ◦ τx; (−1)γIj)B((−1)γj : (n)1−α)

−
∫
Rd
Ffp(x− u) dB(u)

∣∣∣ = oP (1).

Note that

r(x− z) := E
(∫

Rd
Ffp(x− u) dB(u)

∫
Rd
Ffp(z − u) dB(u)

)
=

∫
Rd
fp(x− z + u)fp(u) du
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and ‖r‖1 ≤ ‖fp‖2 < ∞. The system of sets {[0, h−1]d |n ∈ N} is a blowing up system of sets in

the sense of definition 14.1 in Piterbarg (1996). If we define

Zp(x) =
1

‖fp‖L2(Rd)

∫
Rd
Ffp(x− u) dB(u),

then Theorem 1 in Bickel and Rosenblatt (1973a) gives the asymptotic independence of the scaled

minimum and maximum of the process Zp, which, with the observation that Zp and −Zp have

the same distribution and an application of Theorem 14.1 in Piterbarg (1996) yields that for G ∼
Gumbel(ln(2), 1)

sup
x∈[0,h−1]d

((
|Zp(x)| − C̃n,3

)
C̃n,3

)
D→ G for n→∞,

where the constants C̃1, C̃n,2 and C̃n,3 are given by

C̃1 = det

([
1

‖fp‖2
L2(Rd)

∫
Rd
|fp(v)|2vivj dv

]
, i, j = 1, . . . , d

)
,

C̃n,2 =

√
C̃1

(2π)d+1

1

hd

C̃n,3 =

√
2 ln(C̃n,2) +

(d− 1) ln
(
2 ln(C̃n,2)

)
2
√

2 ln(C̃n,2)
.

Since hµp = o
(

1
logn

)
we obtain hµp supx∈[0,h−1] |Zp(x)| = oP ((log n)−1/2) for each p = 1, . . . ,M −1,

which justifies the replacement of hβKn by K. Since the outer sum does not depend on n this

gives the desired result.

6.5 Proof of Lemma 1

With the same arguments as in the proof of the previous Lemmas we can replace the errors by

combinations of partial sums and perform the same approximation steps. In each replacement we

obtain at most a d− 1-fold sum which yields the desired result right away.
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