Active learning of interface programs

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
der Technischen Universitit Dortmund
an der Fakultit fiir Informatik

von
Falk M. Howar

Dortmund
2012

Tag der miindlichen Priifung: 30.03.2012
Dekan/Dekanin: Prof. Dr. Gabriele Kern-Isberner

Gutachter/Gutachterinnen:
Prof. Dr. Bernhard Steffen
Prof. Dr. Karl Meinke

Abstract

Computer systems today are no longer monolithic programs; instead they usually comprise
multiple interacting programs. With the continuous growth of these systems and with their
integration into systems of systems, interoperability becomes a fundamental issue. Inte-
gration of systems is more complex and occurs more frequently than ever before. One
solution to this problem could be the automated model-based synthesis of mediators at run-
time. However, this approach has strong prerequisites. It requires the existence of adequate
models of the systems to be connected. Many systems encountered in practice, on the other
hand, do not come with models. In such cases models have to be constructed ex post (at
runtime). Furthermore, adequate models must capture control as well as data aspects of
a system. In most protocols, for instance, data parameters (e.g., session identifiers or se-
quence numbers) can influence system behavior. Models of such systems can be thought of
as interface programs: Rather than covering only the control behavior, they describe explic-
itly which data values are relevant to the communication and have to be remembered and
reused.

This thesis addresses the problem of inferring interface programs of systems at runtime
using active automata learning techniques. Active automata learning uses a test-based and
counterexample-driven approach to inferring models of black-box systems. The method has
originally been introduced for finite automata (the popular L* algorithm). Extending active
learning to interface programs requires research in three directions: First, the efficiency of
active learning algorithms has to be optimized to scale when dealing with data parameters.
Second, techniques are needed for finding counterexamples driving the learning process in
practice. Third, active learning has to be extended to richer models than Mealy machines or
DFAs, capable of expressing interface programs.

The work presented in this thesis improves the state of the art in all three directions. More
concretely, the contributions of this thesis are the following: first, an efficient active learning
algorithm for DFAs and Mealy machines that combines the ideas of several known active
learning algorithms in a non-trivial way; second, a framework for finding counterexamples
in black-box scenarios, leveraging the incremental and monotonic evolution of hypothetical
models characteristic of active automata learning; third, and most importantly, the tech-
nically involved extension of the partition/refinement-based approach of active learning to
interface programs.

The impact of extending active learning to interface programs becomes apparent already
for small systems. We inferred a simple data structure (a nested stack of overall capacity 16)
as an interface program in no more than 20 seconds, using less than 45,000 tests and only 9
counterexamples. The corresponding Mealy machine model, on the other hand, would have
more than 10° states already in the case of a very small finite data domain of size 4 and
require significantly more than 10° tests when being inferred using the classic L* algorithm.

Keywords: Interface Synthesis, Automata Learning, Regular Inference, Extended Finite
State Machines, Register Automata, Register Mealy Machines.

II

List of papers

I Introduction to Active Automata Learning from a Practical Perspective
by Bernhard Steffen, Falk Howar, and Maik Merten. In Marco Bernardo and Valérie
Issarny, editors, Formal Methods for Eternal Networked Software Systems, 2011, Lec-
ture Notes in Computer Science, Springer Verlag, 6659:256-296.

II From ZULU to RERS: Lessons Learned in the ZULU Challenge
by Falk Howar, Bernhard Steffen, and Maik Merten. In Proceedings of the 4th In-
ternational Symposium on Leveraging Applications, ISOLA 2010, Heraklion, Part I,
ISoLA 2010, Lecture Notes in Computer Science, Springer Verlag, 6415:687-704,
2010.

III Automata Learning with Automated Alphabet Abstraction Refinement
by Falk Howar, Bernhard Steffen, and Maik Merten. In Proceedings of the 12th In-
ternational Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI 2011, Lecture Notes in Computer Science, Springer Verlag, 6538:263-277,
2011.

IV A Succinct Canonical Register Automaton Model
by Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten, and Bernhard Steffen.
In Proceedings of the 9th International Symposium on Automated Technology for
Verification and Analysis, ATVA 2011, Lecture Notes in Computer Science, Springer
Verlag, 6996:366-380, 2011.

V Inferring Canonical Register Automata
by Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. In Proceedings
of the 13th International Conference on Verification, Model Checking, and Abstract
Interpretation, VMCALI 2012, Lecture Notes in Computer Science, Springer Verlag,
7148:251-266, 2012.

VI Inferring Semantic Interfaces of Data Structures
by Falk Howar, Malte Isberner, Bernhard Steffen, Oliver Bauer, and Bengt Jonsson.
Accepted for ISoLA 2012.

I

v

Comments on my participation

I Introduction to Active Automata Learning from a Practical Perspective
Most of the ideas and examples were worked out in discussions among the authors.
I am co-author to all sections of the paper. I am lead-author of Section 5. I am one
of two maintainers of LearnLib at the time and most of the strategies for handling
counterexamples have been implemented by me.

II From ZULU to RERS: Lessons Learned in the ZULU Challenge
The approach to the ZULU competition presented in this paper evolved from discus-
sions with Bernhard Steffen and Maik Merten. I am co-author to all sections of the
paper. I am lead-author of Section 3. I carried out implementation and experiments.

III Automata Learning with Automated Alphabet Abstraction Refinement
The work presented in this paper is the continuation of work done in my Diploma
thesis. The theoretical results were established in discussions with Bernhard Steffen
and Maik Merten. I am co-author to all sections of the paper. I am lead-author of
Section 4. I carried out implementation and experiments.

IV A Succinct Canonical Register Automaton Model
The canonical automaton model presented in this paper was worked out in discussions
among the authors of this paper. I am co-author to all sections of the paper. I am the
lead author of the comparison with other canonical automata.

V Inferring Canonical Register Automata
The algorithm for inferring register automata models was developed in discussions
among the authors of the paper. I am co-author of the introduction and the lead-
author for the rest of the paper. I carried out implementation and experiments.

VI Inferring Semantic Interfaces of Data Structures
The technical extensions of register automata learning to Register Mealy machines
have been developed in discussions among the authors of the paper. I am co-author
to all sections of the paper. The presentation in the paper is partly based on texts and
figures from this thesis.

VI

Other peer reviewed publications

Conference papers

- Towards an Architecture for Runtime Interoperability
by Amel Bennaceur, Gordon S. Blair, Franck Chauvel, Gang Huang, Nikolaos Geor-
gantas, Paul Grace, Falk Howar, Paola Inverardi, Valérie Issarny, Massimo Paolucci,
Animesh Pathak, Romina Spalazzese, Bernhard Steffen, and Bertrand Souville. In
Proceedings of the 4th International Symposium on Leveraging Applications, ISOLA
2010, Heraklion, Part II, ISoLA 2010, Lecture Notes in Computer Science, Springer
Verlag, 6416:206-220, 2010.

- Reusing System States by Active Learning Algorithms
by Oliver Bauer, Johannes Neubauer, Bernhard Steffen, and Falk Howar. In Proceed-
ings of the 1st EternalS workshop, EternalS 2011, Communications in Computer and
Information Science, 255:61-78, 2012.

- On Handling Data in Automata Learning: Considerations from the ConNEcT
Perspective
by Falk Howar, Bengt Jonsson, Maik Merten, Bernhard Steffen, and Sofia Cassel. In
Proceedings of the 4th International Symposium on Leveraging Applications, ISOLA
2010, Heraklion, Part II, ISoLA 2010, Lecture Notes in Computer Science, Springer
Verlag, 6416:221-235, 2010.

- Next Generation LearnLib
by Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. In Proceed-
ings of the 17th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS 2011, Lecture Notes in Computer Science,
Springer Verlag, 6605:220-223, 2011.

- Demonstrating Learning of Register Automata
by Maik Merten, Falk Howar, Bernhard Steffen, Sofia Cassel, and Bengt Jonsson. In
Proceedings of the 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2012, Lecture Notes in Computer
Science, Springer Verlag, to appear 2012.

- Inferring Automata with State-local Alphabet Abstractions
by Malte Isberner, Bernhard Steffen, and Falk Howar.
Under Submission.

Book chapters

- Practical Aspects Of Active Automata Learning
by Falk Howar, Maik Merten, Bernhard Steffen, and Tiziana Margaria. In Stefania
Gnesi and Tiziana Margaria, editors, Formal Methods for Industrial Critical Systems,
Wiley-VCH, to appear 2012.

VII

VIII

Acknowledgements

First and foremost I want to thank Bernhard Steffen for guiding me through the past three
years that led to this dissertation. Thank you for encouraging me, questioning me, support-
ing me, challenging me, and motivating me always in just the right moment of time.

I thank Bengt Jonsson and Sofia Cassel for a marvelous summer in Sweden, and for the
great cooperation that led to and originated from this summer.

Then I want to thank Maik Merten, faithful companion in three years of sharing office,
and traveling. Thank you for countless hours of inspiring discussions, all the fun time I had
traveling (most of the time), and - of course - for providing the sound track to the past three
years.

I am also grateful to everyone from the chair of Programming Systems for many work-
related discussions and a great atmosphere.

Last but not least, I want to thank my wife Julia for all the patience and moral support
without which I never would have survived the past three years.

IX

Contents

(I Introduction|

mI

Research problems addressed in this thesis|

12

Organization|. Lo e e e

2 Inferring Mealy machines|

[oR

Mealy machines|.

o)

Active learning for Mealy machines|

[2.2.1 Hypothesis construction|
[2.2.2 Hypothesis verification| L0

B TLocalized inf |

B1

Local exploration|,

[3.1.1 Inference with a learning aspect|

B2

Incremental equivalence quertes| 000,

[3.2.1 The evolving hypothesis algorithm|.
[3.2.2 Correctness and complexity|

|4 Active learning of interface programs|

a1

Automated alphabet abstraction refinement|

%)

Modeling systems capable of storing data values|.

4.2.1 Registerautomatal.o

A3

4.3.2 An active learning algorithm for register automata

4.4

Inferring semantic interfaces of data structures|.

25
25
25
26
28
29
31
32

35
36
39
39
41
44
44
47
49

53

57
57
59

XI

List of Figures

|1.1 Integrated systems performing a payment transaction| 2
|1.2 " Informal model of a transaction protocol| 3
2.1 ~ Mealy machine model of 3-place bufterf] 10
2.2 Observation pack example| 13
[2.3 Exploiting counterexamples: suffix-based vs. prefix-based strategies| 17
[3.1 Aspect for inferring a partial model of the 3-place buffer from Figure[2.1|. . 26
[3.2 Partial model of 3-place bufter| 27
[3.3 Sequence of evolving hypothesis models| 31
|4.1 ~ Partial countable Mealy machine model of sensor with threshold| 37
|4.2 Exploiting counterexamples for alphabet abstraction refinement] 38
|4.3 Automatic alphabet abstraction refinement| 39
4.4 Register automaton for Lypein|o 41
4.5 Prefix-closed subset of L-essential words for Ljpgjn| 43
|4.6 Preorder of abstract suffixes foroneprefix| 46
|4.7 Handling counterexamples when inferring register automata models| 48
|4.8 Partial models of a stack of capacity 3: RA (left) and RMM (right), 49

X1

1 Introduction

Software and the process of developing software has changed radically in the past two
decades. Some 20 years ago most programs could be developed by single persons or small
teams, implementing most of the functionality from scratch. With software aiding more and
more processes and tasks in everyday life, systems began to grow and the need emerged to
re-use functionality instead of developing everything from scratch in every application. To-
day almost any program uses third-party libraries and components. More importantly, sys-
tems in use today are no longer monolithic programs, they comprise a number of programs
that interact with one another.

As an example consider any flight- or hotel-booking web-site. The application will be
developed using a web framework, providing basic functionality, and it will use a number of
libraries providing database abstraction, authentication, authorization, and other function-
ality common to these applications. Then, it will be integrated into a whole landscape of
systems. For availability and prices of flights or hotels it will have to browse the contingents
of carriers and travel agencies. Booking flights or making reservations in hotels, it has to
interact with corresponding applications. In order to offer payment it has to be integrated
with applications of payment providers, e.g., credit card companies, micro payment sys-
tems, etc. Finally, displaying additional information about travel locations, e.g., the current
local weather, it has to obtain this information from some application.

With the growth of systems and the integration of systems into systems of systems, es-
pecially interoperability, i.e., the ability of different systems developed and maintained by
different parties to work together, becomes a fundamental issue. In the past interoperabil-
ity has mainly been addressed by standard-based middleware. Examples are CORBA [71]],
DCOM [83]], or Web services [85]. Due to the diverse nature of distributed systems, how-
ever, one cannot hope for a single solution equally adequate in all scenarios. Integration
of systems using different middleware technologies requires bridging between these tech-
nologies. While shared middleware eases the problem of interoperability, systems still have
to be integrated manually at the level of application protocols. In the above example, the
payment service might use a Web service protocol. In order to use it, the developers of the
flight-booking service will still have to invoke it correctly, i.e., perform the right actions in
the right order to complete payment transactions.

Ubiquitous computing and the internet of things aggravate the problem. Not only are we
surrounded by an exploding number of computer systems, but these systems interact with
one another. The flawless integration of these systems cannot be achieved at the time of de-
velopment. The communication partners of these systems are simply not known by the time
of development. In such scenarios interoperability gets a new quality. Not only do systems
need to be compatible at the level of the used middleware technology. Encountering one
another spontaneously, systems need to be compatible at the level of application protocols.
Obviously, standardization cannot be a solution at the application level.

1 Introduction

init session; beginT ransaction(sVal)
beginT ransaction(session); \ on beginT ransaction(sVal) :
sid := hash(sVal);

/ .
if (returns v') then / return v ;

~

completeT ransaction(sVal)

completeTransaction(session);\ on completeT ransaction(sVal) :
if (hash(sVal) = sid) then

/ .
if (returns v') then / return v';

else ...

Figure 1.1: Integrated systems performing a payment transaction

With interoperability and integration of systems becoming more and more complex and
more and more frequent at the same time, solutions are needed for automated integration
of systems. One approach to this problem, taken by the Connect project [[57] is the devel-
opment of “Emergent Middleware”, i.e., at set of enablers synthesizing mediators between
systems automatically at runtime. The automated process envisioned in the CONNECT project
has five main steps: (i) discovery of systems, (ii) inference of the (application) protocol of
systems, (iii) model-based synthesis of mediators, (iv) functional and non-functional vali-
dation of mediators, and finally (v) deployment of mediators.

This thesis does focus on one particular step of the process: The automated inference of
system behavior in the context of the envisioned automated integration of systems. One goal
of the ConnEcr project is the development of inference methods for models that can be used
for synthesizing mediators based on active automata learning. Active automata learning
uses a test-based approach for inferring models of black-box systems. Observations are
made by actively interacting with a system under learning (SUL). The approach has been
introduced in [7]] for deterministic finite automata (DFAs). It has been extended to infer
Mealy machine models in [70}|63]], which are more adequate for describing reactive systems
that produce outputs rather than accept or reject sequences of inputs. It has been used
successfully to infer models of black-box systems in model-checking [[72, 25]], testing [52]],
and interface synthesis [4].

Active learning infers models of systems for which initially only a set of inputs is known
by iterating two phases, namely

1. Test-based modeling: In this phase a hypothetical model is generated from observa-
tions made in tests.

2. Model-based testing: In this phase models generated in the first phase are tested for
equivalence with the black-box system.

Active learning algorithms are formulated in a theoretical model that assumes a teacher,
which answers two kinds of queries for the learning algorithm. So-called membership
queries correspond to tests that have to be executed on a system under learning. The first
phase of learning, test-based modeling, uses membership queries to construct a hypothetical

on completeT ransaction(sVal)
if (session = sVal) /v

d thi
on beginT ransaction(sVal) 9 notiung @
if (true) /v

do session := sVal
20 @

on completeT ransaction(sVal)
if (session # sVal) / X
do nothing

Figure 1.2: Informal model of a transaction protocol

model of the SUL. The second phase, model-based testing, is realized by so-called equiv-
alence queries, testing whether a hypothetical model is equivalent to the SUL. If a model
does not describe the behavior of a system faithfully, they provide a counterexample, i.e., a
sequence of inputs proving the inequivalence of hypothesis and SUL.

Due to its test-based approach active learning can be considered the natural choice for
inferring models of black-box systems, as envisioned in the ConNecT project. However,
since it is restricted to finite automata, the inferred models are not sufficient as a basis for
automated mediator synthesis as the following example shows.

Consider the payment service offered by a credit card company in the example of the
flight-booking service. Payments are organized in transactions. When using the application,
a certain protocol has to be followed. Transactions are identified by identifiers that have to
be used in every step of the protocol. Figure [I.]shows schematically the correct usage of
such a service by an application: The application starts by creating an identifier and stores it
in a variable named session. Then, the applications requests a new transaction using session
in a message to the payment service. The payment service (in the right of the figure) stores
a hash of the received identifier in a variable named sid, begins a new transaction associated
with sid and sends a receipt to the application, denoted by v~ in the figure. After providing
the wiring details for the payment, which is omitted in the figure, the application requests the
completion of the transaction in a message, using the identifier stored in session. Receiving
this request, the payment service will check if the hash of the provided identifier matches
the one stored in sid. If this is the case, the transaction will be completed successfully.

The behavior of the service does not only depend on the order in which messages are
invoked. The data parameters that are used in the communication also influence on the
services’ behavior. To integrate the payment service successfully, it is necessary to use the
primitives exposed by the service in the correct order, and to use the same identifier for the
session in all invocations. An analysis of the requirements in the context of the CoNNECT
project is presented in [47].

Assuming that identifiers have to be unique, it is not an option to fix a single identifier in
an application using the service. In order to achieve automatic integration of applications
and services based on models of the systems behavior, it is necessary to express the require-
ments on the use of data parameters relevant to the communication in inferred models.

1 Introduction

Figure [[.2] shows this idea informally. The displayed model of the above protocol has
transitions, labeled by blocks of events, conditions, and actions. Comparing the labels with
the pseudo-code in Figure [I.T] the events are methods of the payment service’s application
programming interface (API), i.e., entry points to the service. The conditions resemble the
ones from the service. Finally, the assignments occur on both sides, in the application and
in the service. However, in the figure the use of hashes is not visible and the name session
is used for the variable. This emphasizes that the actions are not meant to encode what is
actually happening in the service but rather how the application operating the service has to
use data values from the communication.

The shown model is more than a behavioral model of the service. It is an interface
program for the service. Rather than (only) covering the behavior of the service, it describes
the protocol of an interaction with the service. Knowing the goal of the communication, e.g.,
a successfully completed transition (marked by output v in the model), the model can be
used to actively steer the communication with the service.

Interface programs describe explicitly how data values relevant to the communication
have to be used. In order to make these requirements explicit in models, means are needed
for expressing variables, conditions, and assignments. Thus, such models can be seen as (re-
stricted) program structures capable of operating the interface of a system (hence, interface
programs).

In order infer interface programs by means of active learning, active learning has to be
extended beyond the realm of DFAs and Mealy machines. It has to be capable of inferring
variables, conditions, and assignments describing the effect of data parameters used in the
communication with a system.

1.1 Research problems addressed in this thesis

This section summarizes the research questions addressed in this thesis. The problem ad-
dressed in this thesis is

inferring interface programs for black-box systems
by means of test-based interaction with these systems.

Using active learning techniques to infer interface programs comes with a number of chal-
lenges. These challenges can be grouped into intrinsic and extrinsic ones. Intrinsic chal-
lenges are related to the method of active learning itself:

1. the vast amount of membership queries active learning requires,
2. the use of equivalence queries which do not exist in practice,

3. and (most importantly) that it is formulated for deterministic finite automata which
do not suffice to express interface programs.

Extrinsic challenges are related to the application of active learning in concrete contexts,
e.g., how to derive a set of inputs for a learning algorithm from a SUL, how to translate
queries of a learning algorithm into actual invocations on a a SUL, or how to establish
well-defined initial conditions for every query on a SUL.

1.1 Research problems addressed in this thesis

One may be tempted to refer to the first category as conceptual problems, and to the
second one as engineering ones. This is not correct, however. Both, intrinsic and extrin-
sic, problems have conceptual and engineering aspects and can be considered from both
perspectives. E.g., the amount of membership queries may be reduced by using domain
specific knowledge, which requires a conceptual idea for representing and exploiting such
knowledge. To actually apply such a method in practice, however, for every domain a con-
crete solution has to be engineered. The problem of deriving a set of inputs from a SUL,
on the other hand, is not only an engineering problem. It can be addressed at the conceptual
level as well, e.g., by developing patterns or general methods for finding inputs for a S UL.
Thus, rather than the problems, the solutions can be characterized as being conceptual or
being engineered.

Using these classifications, the focus of this thesis is on conceptual aspects of the three in-
trinsic problems of active learning mentioned above. In more detail, the following problems
are addressed.

Scalability of active learning algorithms: Active learning relies on test-based interac-
tion with black-box systems. Learning performs huge numbers of tests. Most
case studies report models with a couple of hundred states and small sets of inputs
(e.g., [[75, 152]]), requiring already some hundred thousand tests to be executed on a
SUL. Experiments on larger systems are rarely reported. To the knowledge of the au-
thor the largest reported model inferred through active learning is of a software router
with 22,000 states and 7 inputs [[74]. While this model exceeds typical case studies
by more than one order of magnitude in size already, models of actual systems can
still be larger by some orders of magnitude.

One common approach to this problem is the application of filters and domain-
specific knowledge in order to compute (some) results of tests without actually testing
the SUL [65! 164} [74]]. The number of membership queries can also be reduced by a
learning algorithm directly. As is shown in Section [2.2] the amount of membership
queries used by a learning algorithm depends to a high degree on how counterex-
amples from equivalence queries are used by the algorithm. A learning algorithm is
presented that can be combined with many of the strategies for handling counterex-
amples that have been suggested so far. Analyzing and categorizing these strategies
in the context of the presented algorithm leads to a new effective strategy for han-
dling counterexamples. Basis for this analysis is an observation about the structure of
counterexamples, presented in [82] (Paper I).

A second approach to large models is the inference of partial models of systems, usu-
ally related to some property to be verified on the system (e.g., [35]). Inferring partial
models requires a means for dealing with partial models in the learning algorithm as
well as replacing equivalence of models by a relation that supports partiality of an
inferred model. In Section [3.1] an idea for inferring only certain aspects of a SUL is
presented.

Testing equivalence of black-box systems: Active learning relies on equivalence
queries, i.e., tests for equivalence of a black-box system and an inferred model of
this system. While equivalence queries provide a theoretical framework for formulat-
ing active learning algorithms, they do not exist in practice. By definition, a model of

1 Introduction

an unknown black-box system cannot be verified by a finite number of tests. It can
only be falsified. Using active learning in practice, equivalence queries can only be
approximated by means of testing. This has the consequence that regular inference in
practice is neither sound nor complete.

One important step towards making active learning a valuable tool for inference of
models of black-box systems is developing means for approximating equivalence
queries in practice. Due to the conceptual proximity of active learning and confor-
mance testing, which is discussed in [12], methods from conformance testing have
been suggested as a natural match. These methods aim at proving equivalence (under
certain additional assumptions) by means of single tests, which is very expensive. In
the course of learning, however, the inferred model is only tested successfully for
equivalence with the black-box once, at the very end of the learning experiment. The
vast majority of equivalence queries are be unsuccessful and return a counterexample.
Thus, in most cases what really is needed is a method for finding counterexamples
efficiently.

A second problem of equivalence queries is that they are not incremental. While
subsequent hypothesis model are strongly related, equivalence queries test each hy-
pothesis independently. In practice this leads to high costs in terms of tests to be ex-
ecuted on a SUL. Section [3.2] presents a strategy for realizing equivalence queries in-
crementally, focusing on finding counterexamples rather than on testing equivalence
unsuccessfully for all but one hypothesis model. This strategy has been evaluated
in the ZULU challenge [26], a contest in active automata learning with membership
queries, where it was an integral part of the winning algorithm in the competition.
Detailed results of the evaluation are discussed in [50] (Paper II).

Active learning for interface programs: Active learning produces Mealy machine
models or DFAs. While these models are often sufficient for organizing tests or for
verification, where one can encode data parameters statically in a set of predefined in-
puts covering (potentially) interesting cases, they cannot be used as a basis for proper
integration of systems at runtime. In order to achieve integration of systems based on
models, interface programs are needed, modeling explicitly the requirements on the
use of data values in the communication. This changes the quality of models. Rather
than being pure descriptions of sets of program traces, they become (restricted) pro-
grams capable of operating the interface of a system actively, storing values from the
communication and re-using these values at a later point in time. In order to use active
learning successfully in contexts as the CoNNEcT project [57]], it has to be extended to
produce such richer models. Two problems have to be addressed in particular.

1. Active learning has to be capable of dealing with infinite sets of inputs compris-
ing data values from unbounded domains (e.g., natural numbers or strings).

2. Active learning has to be extended to infer models that make explicit the afore-
mentioned requirements on data values used in the interaction with a system.

One common approach to the first problem, i.e., inferring models of systems with
infinite sets of inputs, is the use of abstractions on the set of inputs. Such abstractions
are commonly realized by placing a mapper in between the SUL and the learning

1.1 Research problems addressed in this thesis

algorithm [S8]]. The learning algorithm then works on a set of abstract inputs, which
the mapper translates into concrete inputs to be executed on the SUL. However, the
construction of such mappers is a laborious and error-prone task that has to be ex-
ecuted manually. It especially involves finding sound abstractions prior to learning,
i.e., ones that do not introduce non-determinism. This usually leads to a number
of iterations of failed learning experiments (due to observed non-determinism) and
manual refinements to the mapper.

In Section which briefly introduces the ideas from [S1] (Paper III), it is discussed
how the partition-refinement based approach of active learning can be extended to the
set of inputs in order to derive a sound and optimal abstraction automatically in the
course of learning. A main feature of this approach is that it does not need a mapper
as the learning algorithm works directly on concrete representative inputs.

The second problem, i.e., inferring interface programs for real systems capable of
storing data values and using these in the subsequent communication, is conceptually
more challenging. While the use of abstraction is still based on active learning of
finite automata, for this second problem active learning itself has to be extended to
richer models.

Concretely, a means of expressing storage of data values and operations on these
data values is required. Imagine, e.g., a session identifier or a sequence number,
which influences the behavior of a system. In order to describe such phenomena in
finite models, they have to be made explicit. This requires the development of a new
automaton model comprising registers, storing data values, and transitions that can
operate on these registers. Also, adequate notions of regularity and canonicity have
to be established. This is sketched in Section4.2]and presented in [23] (Paper IV).

Then, in order to infer interface programs, an active learning algorithm capable of
dealing with models comprising conditions and assignments is needed. Extending
active learning to the extended automaton model requires the adaption of the key
ideas of active learning. Active learning relies heavily on the well-known Nerode-
relation [69] and on the characterization of states of a SUL, which it provides by
means of suffixes. When inferring models with registers that store data, especially
this suffix-based characterization of states has to be extended. The necessary steps are
sketched in Section [4.3] The resulting active learning algorithm is presented in [49]
(Paper V).

Finally, black-box components usually can be modeled as reactive systems, providing
output (with data values) on inputs. Corresponding to using Mealy machines instead
of deterministic finite automata in classic active learning, it is possible to model out-
puts with data values directly. While, as in the classic case, this does not change the
expressivity of the obtained models, it leads to a dramatically increased performance
of learning algorithms. A Mealy machine variant of systems storing data values and
its effect on the performance of learning algorithms is discussed in Section 4.4] sum-
marizing [46]] (Paper VI).

Key to progress in all research problems addressed in this thesis is rethinking active learning
and identifying and leveraging the conceptual building blocks of active learning. These are

1 Introduction

- the Nerode-relation and Myhill/Nerode-theorem [69], and

- the partition-refinement based approach to incremental construction of models driven
by counterexamples.

All research problems discussed above relate to these building blocks in some respect: Re-
ducing the number of membership queries requires analyzing how the Nerode-relation can
be realized optimally by a minimal set of suffixes. Key to inferring partial models and to
incremental equivalence queries is the breath-first style of exploration of the state space
that can be enforced by the analysis of counterexamples. Alphabet abstraction refinement
incorporates the partition-refinement-based approach to the on-the-fly construction of sets
of inputs, using an equivalence relation on an infinite set of inputs that strongly resembles
the Nerode-relation. Finally, extending active learning to register automata models, requires
an extended Nerode-relation, allowing for the application of a multi-dimensional partition-
refinement-based approach (on states, registers, and inputs) for inferring such models.

1.2 Organization

The thesis is organized as follows. In the next chapter, an introduction to inferring Mealy
machine models is given. Presentation is based on the observation pack algorithm, a frame
algorithm that can be instantiated with different strategies for handling counterexamples.
The chapter presents original results, exceeding the results of the corresponding papers.
The presented observation pack algorithm is due to the author and has not been presented
in detail before, as is the analysis of different strategies for handling counterexamples. Re-
sults from applying both ideas in the context of the ZULU competition are discussed in [50]
(Paper II), which, however, covers neither the technical details of the observation pack algo-
rithm, nor does it include an analysis of different approaches of handling counterexamples.
This analysis is based on ideas presented in [82] (Paper I) but clearly exceeds these.

In Chapter [3] two ideas are discussed that have in common a “local” approach to infer-
ence. First it is shown, how local exploration of the state space allows for learning partial
models of big systems. Then, it is investigated how the (local) differences in subsequent hy-
pothesis models obtained during inference can be understood as modifications to one evolv-
ing hypothesis model, which leads to a new incremental version of equivalence queries.
While the positive effect of using incremental equivalence in practice is discussed in [50]]
(Paper II), the “local” perspective to active learning discussed this chapter is original.

Chapter [] sketches the essential ideas for inferring systems with data, i.e., with infinite
sets of inputs or even infinite state spaces. In particular, a new automaton model with a
corresponding language model, and Nerode-relation are presented. These are then used as
basis for an active learning algorithm. The chapter provides introductions to the correspond-
ing papers [51]] (Paper IIT), [23] (Paper IV), [49] (Paper V), and [46]] (Paper VI) along with
examples and intuitions. The papers contain detailed technical accounts of the presented
results.

Related work is discussed in Chapter [5|before concluding in Chapter [6]

2 Inferring Mealy machines

Active automata learning, also sometimes reffered to as regular inference, aims at inferring
automata models of black-box systems for which initially only a set of inputs is known.
Angluin’s popular L* algorithm [7] infers an unknown regular language £, producing a
minimal deterministic finite acceptor (DFA) for L. It has been adapted to Mealy machines
by Niese [[70]. This chapter presents the observation pack algorithm, a frame algorithm
consolidating the central conceptual ideas in regular inference. It can be concretized to
work for regular languages as well as for Mealy machines. Presentation is be based on
Mealy machines to allow for inclusion of results on handling counterexamples from [82]]
(Paper D).

2.1 Mealy machines

In this section the formal notation introduced in [82] (Paper I) for Mealy machines and
their sets of traces is briefly recited. For one thing, the notation will serve as a formal
basis for the subsequent sections. More importantly, however, this allows for revisiting
the central ideas of the Nerode-relation and the corresponding Myhill/Nerode-theorem for
regular languages [69]] while discussing their adaption to the Mealy scenario.

Definition 1 (Mealy machine) A Mealy machine is a tuple M = {Q, qo, X, Q, 6, 1) where

- Q is a finite nonempty set of states,

- qo € Q is the initial state,

- X is a finite input alphabet,

- Q is a finite output alphabet,

- 0: QXX — Q is the transition function, and

- A QXX — Qis the output function. O

A Mealy machine processes sequences of inputs (input words or simply words), producing
outputs. Let therefore &£ denote the empty word, and X* = X* \ {&} be the set of all words
of length greater than zero. Then, let [M] : £* — Q be the semantic functional of M. In
order to describe [M] in terms of M, we extend the transition function to 6* : O X X* — Q
by defining inductively 6*(g, &) = ¢ and 6*(q, aw) = 6" (6(g,a),w) for g € Q and aw € T*
with w € *. Let [M] now simply be defined to be the last output of M on a particular
word, i.e.,
IMlwa) =ger A(67(qo,w), a) forwaeX".

Figure 2.1 shows a graphical representation of a Mealy machine for a 3-place buffer, which
will be used as an example throughout the thesis. The buffer has four states, an initial
(empty) state, and one state per number of potential elements in the buffer. The input put

2 Inferring Mealy machines

put/v’ put/v’ put/v’
B e G e O
get/V get/V get/V
get/x

Figure 2.1: Mealy machine model of 3-place buffer

adds one element to the buffer, and the input get removes one element from the buffer.
Almost all operations produce output v". Only unsuccessful operations produce output X.
To describe precisely the class of systems that can be modeled as Mealy machines and
of which Mealy machine models can be inferred, it is necessary to characterize the class of
mappings 7 : ¥ — Q that can be understood as the semantic functional of some Mealy
machine. Key to this characterization is the equivalence induced by 7" on input words.

Definition 2 (Equivalence wrt. T) Two words u,u’ € X* are equivalent wrt. =7, denoted
byu=ru, iff

YveXt . Tw) = Tw'v). O

This equivalence corresponds to the well-known Nerode relation for regular languages [69]].
It can be reformulated in terms of residual languages [28]], or in the case of Mealy machines
in terms of residual functionals. Let u'T . T > Qwith u™ ' T(V) =4, ¢ T(uv) foru € T~
and v € £*. Let [u] be the equivalence class of u wrt. =7, i.e., the set of words with identical
residual functional.

Since Mealy machines have finitely many states, only mappings 7 : X* — Q where
=7 has finite index can be represented as Mealy machines. On the other hand, the seman-
tic functional of a Mealy machine can have only finitely many residual functionals since
the Mealy machine has only a finite number of states. This directly yields the following
equivalent to the Myhill/Nerode-theorem for regular languages [69].

Theorem 1 (Characterization theorem) A mapping T : ¥ — Q is a semantic functional
for some Mealy machine iff =1 has finite index. (|

A proof of the theorem is presented in [82] (Paper I). In reminiscence of the classification of
regular languages, let regular mappings be mappings 7 : £* — Q that can be represented as
Mealy machines. From a regular mapping 7 one can straightforwardly construct the Mealy
machine representation My of T: Let My = (Q, qo, Z, Q, 8, 1) such that

- The set of states is defined by the classes of =7: one state gy, for every class [u] of

=7.
- The initial state is the state for the class of the empty word, i.e., go = q[¢]-
- The sets X and Q are determined using the domain and the range of 7.

- The transition function is defined as 6(q(u), @) =def Gua) for a € X.

- The output function is defined as A(q[u}, @) =ger T(ua) fora € X.

10

2.2 Active learning for Mealy machines

The finite index of =y guarantees that My is well-defined. Thus, My is the canonical
Mealy machine for 7.

This approach to automata construction is a central element in active learning. Every
learning algorithm will use a variant of this method for constructing models. The construc-
tion has to be slightly modified to work on finite sets of words rather than on the equivalence
classes of =7. Also, these equivalence classes have to be characterized by finite subsets of
their residuals.

2.2 Active learning for Mealy machines

Assume a system under learning with a a set of inputs X and a set of outputs) that can be
represented as a Mealy machine. Active automata learning is based on two main aspects of
Theorem[Il It can be summarized as

1. finding a finite set U C X* of prefixes that contains a word from every class of the
(unknown) equivalence relation =g, and

2. finding a finite set V C X* of suffixes that is sufficient to realize the Nerode-relation
on U, i.e., such that u #gy u’ implies [SUL](uv) # [SUL](u'v) for u,u’ € U and
somev e V.

Certainly, it is possible to find a finite set of prefixes since we assume [S UL] to be regular.
The existence of a finite set of suffixes follows directly from Definition [2] For any two
classes of =gy there is at least one distinguishing suffix, and every distinguishing suffix
partitions the set of classes of =g in at least two blocks. Hence, it is possible to find a set
V of suffixes that is bounded in size by the index of =gy;.

Active learning algorithms are formulated in the MAT-learning model [7]], which assumes
the existence of a minimally adequate teacher (MAT), answering two kinds of queries.

Membership queries test for the output of a word w € X*. Sometimes M Q(w) will be
used instead of [S UL](w) to emphasize that the value has to be determined by a test
on the SUL.

Equivalence queries test whether an intermediate hypothesis automaton # is equivalent
to the SUL, i.e., if [H] = [SUL]. In case that hypothesis and system are not equiv-
alent, an equivalence query delivers a counterexample, i.e., a word w € £* for which
[H](w) # [SUL](w). Equivalence queries will be denoted by EQ(H) in pseudo-
code listings.

Corresponding to the two kinds of queries, inference is organized in two phases, alter-
nated iteratively. In the first phase a hypothesis model is derived and iteratively refined
using membership queries. In the second phase hypothesis models are verified by means of
equivalence queries.

This thesis presents a new active learning algorithm for the MAT model: The observation
pack algorithm infers models of back-box systems by means of membership queries and
equivalence queries. Technically, the algorithm combines the idea of using a discrimination
tree for learning regular languages [60] with a localized version of the observation tables

11

2 Inferring Mealy machines

of [[7]. The name “observation pack” is chosen in reminiscence of the abstract concept of
an observation pack discussed in [8]. Please note, however, that in [8]] no concrete learning
algorithm is presented. The algorithm presented here is due to the author.

2.2.1 Hypothesis construction

Let us begin by describing how membership queries can be used to construct hypothesis
models. In particular this requires data structures for maintaining the sets of prefixes and
suffixes discussed above.

Definition 3 (Component) A component C is a tuple (U, ug, V, T) where

- U C X is a finite set of prefixes,

- ug € U is the unique access sequence of the component,
- V C X* is an finite ordered set of suffixes vy, ..., v, and
- T: UXxYV — Qis the observation table.

Let row(u) with u € U be the sequence {T(u,v1), ..., T(u,v)) fork =1|V|, i.e., the “row” of
uinT.]

A component consists of a set of prefixes, a dedicated prefix, i.e., its access sequence, a set
of suffixes, and a mapping from pairs of prefixes and suffixes to outputs, approximating the
Nerode-relation on the set of prefixes by the set of suffixes. The mapping T is derived by
means of membership queries. In a hypothesis automaton, each component will correspond
to one state. The prefixes of a component represent the transitions that end in this state. In
order to represent different states by different components, (new) prefixes have to be related
to components.

Definition 4 (Discrimination tree) A discrimination tree T is a rooted tree defined by the
tuple (N, ng, E, A, L) where

- N is a finite set of nodes,

- ng € N is the root of the tree,

- E C N X N is the finite set of edges,

- A= Ag U Ay assigns labels to edges and nodes, where
/lE E— Q,
Ay : N = X, and

- L C N is the set of leaves.

For n € N, let parent(n) = {n’ € N | (n',n) € E}. Since T is a rooted tree, we have
|parent(ng)| = 0, and |parent(n)| = 1 for n € N \ {ng}. Let thus parent(n) also denote the
unique predecessor of n. A node is a leaf if it is not the predecessor of some node. O

A discrimination tree is used to sort new words into a set of components (described below).
Inner nodes of this tree are labeled with suffixes; edges in the tree are labeled with outputs.
Leaves of the tree are labeled by prefixes. For every leaf in the tree there is a correspond-
ing component in the set of components, the label of the leaf corresponding to the access
sequence of the component.

12

2.2 Active learning for Mealy machines

‘ put get
X e ‘ v X
get v X
put get | X
, v Put| | Cou | put get put put
T B
put put get ‘ v v v

X
putput| | Cp. but | put get put put
put put ‘ v v X
put put put ‘ X v X

Figure 2.2: Unclosed observation pack for the 3-place buffer from Figure The bottom-
most component is unclosed.

Definition 5 (Observation Pack) An observation pack P is a tuple (T ,C) where T is a
discrimination tree and C is a set of components.]

The set of access sequences in an observation pack, denoted by Uy(C), is the set of access
sequences of its components. The set of prefixes is the union of the (disjoint) sets of prefixes
of all components. The set of suffixes of an observation pack is the union of the sets of
suffixes of all its components.

Figure[2.2]shows an intermediate observation pack for the 3-place buffer from Figure[2.T]
The discrimination tree is shown on the left-hand side, the components are shown on the
right-hand side of the figure. The inner nodes of the discrimination tree are labeled by suf-
fixes get and put put. Every leaf in the tree corresponds to one component. The labels of the
leaves equal the access sequences of the components. The set of access sequences is prefix-
closed and represents a subset of the states of the 3-place buffer (there is no component for
the state representing three elements in the buffer, yet).

Initially an observation pack consists only of one component (U, ug, V, T') for the empty
prefix, i.e., U = {¢}, and uy9 = . The set of suffixes V is initialized as X in the case of
inferring Mealy machine models. The discrimination tree is initialized with only one leaf
labeled by &, which also is the root of the tree.

A new word u is sifted into the observation pack (Algorithm [I]), by sinking it into the
discrimination tree. At each inner node on the path from the root a membership query is
performed for the concatenation of u and the suffix v labeling the node (line 4). The outcome
of the membership query determines which edge to follow (line 6). New words are added
as prefixes to the component that corresponds to the leaf reached when sifting the word into
the tree (lines 15-16).

13

2 Inferring Mealy machines

Algorithm 1 Sift(7,C,u)
Input: A discrimination tree 7 = (N, ng, E, 4, L), a set of components C, and a new prefix

uex
Output: A new component or "OK’

1: n:=ng > Start at root node

2: while n ¢ L do > While current node is leaf ...

3: v:i=An) > Get suffix for node

4 0 := MQ(uv) > Check suffix on prefix

5 if exists e = (n,n’) in E with A(e) = o then > Determine successor

6: n:=n

7 else > No successor: new leaf

8 Create new node n,,

9: N:=NU{n,}, E:=EU{nn,} > Update tree
10: Alny) =u, Al(n,n,)) :=o > Update labels
11: Create component C,, > Create new component
12: return C, > return component
13: end if
14: end while
15: u’' = A(n) > Get component for leaf
16: add u to C,y (for C,y € C) > Add prefix to component
17: return 'OK’ > Done

In case, at some inner node no appropriate edge is found, a new leaf is created and
connected to the inner node by an edge, labeled with the outcome of the corresponding
membership query. A new component will be created for the new leaf, using u as access
sequence of the new component (lines 8-11). The set of suffixes of a new component will
be initialized using the suffixes on the path in the tree leading to the newly created leaf, or as
the set of suffixes of the observation pack, depending on how counterexamples are handled.
This is discussed in detail in the next section.

In order to be able to construct well-defined hypothesis automata from an observation pack,
one condition has to hold on the components. A component is closed if all prefixes are
equivalent wrt. to the approximated Nerode-relation, i.e., if the rows of all prefixes in T are
identical.

Definition 6 (Closedness) A component (U, ug, V,T) is closed if row(u) = row(up) for all
ueul. O

An observation pack is closed if all components are closed. Uncloseness of a component
means that two prefixes up and u in the component are not equivalent wrt. the set of suffixes.
In particular, there is one suffix in V such that T (1, v) # T'(u,v). This means that u #7 ug.
Since one component represents one state, and the two prefixes do not lead to the same
state in the canonical Mealy machine for 7, the prefixes have to be organized into different
components. In the example in Figure [2.2] the bottom-most component is unclosed: The
words put put and put put put do not lead to the same state in the 3-place buffer, which is
proven by the suffix put.

In such a case the component will be split as shown in Algorithm [2] The prefix u will
become the access sequence of the new component. All words u’ in the old component will

14

2.2 Active learning for Mealy machines

Algorithm 2 Split(7,C,C,u,v)

Input: A discrimination tree 7~ = (N, ng, E, A, L), a set of components C, a dedicated com-
ponent C = (U, up, V, T) from C, a prefix u € U, and asuffix v € Vs.t. T(ugp,v) # T(u,v)

Output: A new component

1: Create component C,, = (@, u, V,0) in C

2: for u’ € U do > Transfer prefixes

3 if T(ug,v) # T(',v) then

4: transfer u’ from C to C,

5: end if

6

7

8

9

: end for

: Let n € L where A(n) = uyg > Select old leaf for u
: Create new node n,

: Create new inner node n,

10: N := NU{ny,,n,} > Add new nodes to tree
11: A(ny) :=v > Add new suffix to labels
12: if n = ng then > Original node was root?
13: no :=n, > Then: replace root
14: else > Otherwise: replace old leaf by new inner node
15: n, := parent(n) > Get old parent (singleton set)
16: [:= A((np,n)) > Get old edge label
17: E = (E\{(np,n)}) U {(np,n,)} > Update edges
18: A(np,ny)) =1 > Update labels
19: end if

20: E := E VU {(n,,n),(n,,n,)} > Add new edges to leaves
21: A((ny,n)) = T(ug,v), A(n,,ny,):=T(u,v) > Update labels
22: return C, > Done

be sorted into one of the components, depending on T(1’, v) (lines 1-6). The new component
uses the same set of suffixes as the old component. Hence, no membership queries are spent
splitting a component.

After splitting the component, the discrimination tree has to be updated accordingly. The
leaf representing the old component has to be split into two leaves, one for the old and for
the new component. A new inner node labeled by v has to be introduced, replacing the old
leaf in the tree. The two leaves will be connected to this new inner node (lines 7-21).

This results in the procedure shown in Algorithm [3] First, components are completed by
performing membership queries in order to complete the table mappings (line 3). Then a
check for unclosed components is performed. These are split, and newly created compo-
nents are added to a work list (lines 4-6). Then, until the work list is empty, one-letter
continuations of access sequences of components in the work list are added to the observa-
tion pack by sifting them into the discrimination tree. This, of course, may lead to further
new components (lines 7-15). Once the work list is empty, the algorithm starts over by com-
pleting components. This is done until each component of the pack is complete and closed.
From a complete and closed observation pack (7, C) a hypothesis H = (Q, qo, X, Q, 5, 1)
can be constructed (line 17) following the approach from Section[2.1}

- The set of states is defined by the access sequences: one state g, for every prefix u in
the set of access sequences Uy(C).

15

2 Inferring Mealy machines

Algorithm 3 ClosePack(7,C)
Input: An observation pack (7, C)
Output: Hypothesis H

- W:=0 (only in first iteration: W := {C,}) > Init. list of new components
2: while unclosed or incomplete do > Loop until stable
3: complete components > Perform membership queries
4 Let C = (U,uy, V,T) withu € U,v € Vs.t. T(up,v) # T(u,v) > Select unclosed
5: C, :=Split(7,C,C,u,v) > Split component
6: W:=WwWul{C,} > Add new component to W
7 while W = 0 do > Process new components
8 C, := poll(W) > Remove new component from W
9 for a € X do

10 c = Sift(T,C, ua) > Sift new prefixes to components

11: if ¢ # OK’ then > Sifted to new component?

12: W= WU/{c} > Then: add new component to W

13: end if

14: end for

15: end while

16: end while

17: construct H from (7, C) > As described in Section[2.2.1

18: return H > Done

- The initial state is the state for the empty word ¢.
- The sets X and Q are known as inputs to the learning algorithm.

- The transition function is defined as 6(qy, a) =4ef qu if ua is in the component with
access sequence u’.

- The output function is defined as A(qgy, a) =4 T (u, a), where T is the table mapping
of component C,,.

The closedness of the observation pack and the initialization of all sets of suffixes as super-
sets of X guarantee that H is well-defined. While the former ensures that every transition
has a defined destination, the latter guarantees that the output function can be defined from
the table mappings. Finally, the initial state exists since € is an access sequence. By con-
struction, [H] equals [S UL] for all prefixes in the observation pack.

2.2.2 Hypothesis verification

Once a hypothesis H is produced from the observation pack, an equivalence query can be
used to find a counterexample, i.e., an input word w € X* for which [H](w) # [S UL](w). In
the literature different methods are discussed for using counterexamples in active learning.
These methods fall into two categories.

1. Suffix-based methods for handling counterexamples add suffixes of a counterexample
to the set of distinguishing suffixes, resulting in unclosedness of the observations
directly.

16

2.2 Active learning for Mealy machines

Suffix-based) o “ o 4 4NV o v

o X
Lulge \
lualy . . .
Same state in hypothesis
u a v
Prefix-based) o £ o v
[e3 \ , o X
Same state in hypothesis a v
Lu gy luale Dist. by suffix from V

Figure 2.3: Exploiting counterexamples: suffix-based vs. prefix-based strategies

2. Prefix-based methods add prefixes of a counterexample to the set of prefixes used by
the learning algorithm [7, 60], resulting in inconsistency of the observations, i.e., ob-
servations that would lead to non-deterministic hypothesis automata. Inconsistencies
are handled by step-wisely extending the set of suffixes with suffixes resolving non-
determinism. These suffixes in general are not equal to suffixes of a counterexample.

Methods of both categories can be further classified using the following fundamental the-
orem about counterexamples from [82] (Paper I). Variants of this theorem are used in sub-
sequent chapters of this thesis. Let |u]4; denote the access sequence of the component
corresponding to the state reached by u in H.

Theorem 2 (Counterexample Decomposition) For every counterexample w € X* (i.e.,
[H](w) # [SUL](w)) there exists a decomposition w = uav into an access sequence u €
Uo(C), an input a € %, and a suffix v € ¥ such that [SUL|(uav) # [SUL|(lualgv). O

The theorem is the basis for two observations about counterexamples.

First, it states that at least one prefix of the counterexample does not lead to the same
state in the SUL as its access sequence (from the hypothesis). For some suffix v/ from the
set of distinguishing suffixes it holds that [S UL](uav’) # [S UL](lua]4V"). In the extreme
case v = v and both are of length one. It follows that u and | u]4, leading to the same state
in the hypothesis, can be distinguished by av’. The situation is shown schematically in the
lower half of Figure Prefix-based strategies for handling rely on this perspective.

Second, it also follows from the theorem that at least one suffix of a counterexample
will lead to unclosedness: There is a unique decomposition uav with a shortest prefix u
that enjoys the properties stated in the theorem. For this decomposition [S UL[(uav) =
[S UL](lulggav). 1t follows transitively that [S UL](lulgav) # [S UL](lualgv). Since the
words |u|4a and |ua |4, are both in the set of prefixes (even in the same component!), the
suffix v will lead to unclosedness. The situation is shown schematically in the upper half
of Figure 2.3] This perspective is the backbone for suffix-based strategies for handling
counterexamples.

17

2 Inferring Mealy machines

Strategies for handling counterexamples can now be characterized in two additional re-
spects. First, by the number of suffixes (or prefixes, respectively) that are used from coun-
terexamples. Second, by the prefixes to which the suffixes are applied. Traditionally,
suffixes have been used uniformly for all prefixes. Only Kearns and Vazirani present an
approach for using suffixes to distinguish prefixes only pairwisely in [60]]. Differing (1) in
whether all or only some suffixes (prefixes) of a counterexample are used and (2) in whether
these suffixes are applied to all or only some prefixes, the following strategies for exploiting
counterexamples have been suggested.

Suffix-based methods. Since, as discussed above, the prefixes | ua |4, and |u|4a are in the
same component of the observation pack, it suffices to add all suffixes of a counterexample
to all sets of suffixes in order to produce unclosedness in one of the components, which in
turn will lead to splitting the corresponding component, and yield a new state in the next
hypothesis. This strategy will be referred to as AllGlobally. It has been suggested by Maler
and Pnueli in [62] for inferring DFAs. Optimizations to this strategy, using only a suffix-
closed subset of the suffixes and adding these suffixes incrementally are presented in [[77]]
and [54] for Mealy machines.

As shown in [75] for DFAs and in [82] (Paper I) for Mealy machines, a concrete decom-
position of a counterexample can be determined using a binary search over the counterex-
ample. This search provides one suffix that subsequently will lead to unclosedness in one of
the components. Adding only this suffix to all sets of suffixes, referred to as OneGlobally,
thus is sufficient to guarantee progress.

Finally, the decomposition of a counterexample also provides the short prefix of the exact
component to split. Adding one suffix to this component, using a binary search to determine
the decomposition of the counterexample, will be referred to as OneLocally. This strategy
is due to the author and has been presented and applied first in the context of the ZULU
competition [S0] (Paper II).

The fourth possible strategy, i.e., adding all suffixes of a counterexample to one compo-
nent has not been investigated yet.

Prefix-based methods. The second category of strategies for handling counterexamples
does not add suffixes of counterexamples to the set of suffixes but rather adds prefixes of
counterexamples to the set of prefixes. A detailed account of the correctness of these ap-
proaches is omitted here but can be found in [7]. The strategy known best in this class is
Angluin’s L* algorithm presented in [[7]. It adds all prefixes of a counterexample to the set
of prefixes (more specifically: to the set of access sequences). It thus can be seen as the
prefix-based version of the AllGlobally strategy: all prefixes of a counterexample are used
in combination with a global set of suffixes.

A prefix-based strategy resembling OneLocally is presented by Kearns and Vazirani
in [60]: They determine the exact prefix of a counterexample leading to inconsistency, use
only this prefix, and resolve the inconsistency by a suffix that is used only locally (to split
one leave in their version of a discrimination tree).

The other two combinations, i.e, adding one prefix of a counterexample while using a
global set of suffixes, and using all prefixes but resolving inconsistencies locally remain to
be investigated.

18

2.2 Active learning for Mealy machines

Combining prefix-based strategies for handling counterexamples with the observation
pack algorithm would require the extension to components with multiple access sequences
and the incorporation of methods for resolving inconsistencies into the learning algorithm.

As discussed in the previous section, the different strategies for handling counterexamples
influence how new components are created in the observation pack (line 11 of Algorithm/[I)).
In case of using AllGlobally or OneGlobally, the sets of suffixes of new components are
initialized to equal the (global) set of suffixes of the observation pack. In this case all
components use a uniform set of suffixes. In case of OneLocally the set of suffixes for a
new component contains the suffixes on the path in the discrimination tree, leading from the
root to the leaf corresponding to the component.

An estimation of the resulting costs in terms of queries for the different strategies for
handling counterexamples is given in Section [2.2.3] The results of a (small) experimental
evaluation, including the algorithms from [7] and [60] is presented in Section@

2.2.3 Correctness and complexity

The complete observation pack learning algorithm is shown in Algorithm[] The set of com-
ponents is initialized with one component for the empty word, containing all inputs as suf-
fixes. The discrimination tree is initialized with one leaf for the empty word. The algorithm
then loops closing the observation pack (Algorithm 3 and performing equivalence queries
for intermediate hypothesis models (lines 5-6). Counterexamples are exploited (lines 10-
19) as discussed in Section Once an equivalence query signals success, the final
hypothesis is returned (lines 7-9).
The correctness of the algorithm follows from the following properties.

1. Algorithm [3|will always return a well-defined hypothesis automaton.

2. Every counterexample can be decomposed as shown in line 10 of Algorithm @ and in
Theorem

As discussed in Section [2.2.2] all strategies for handling counterexamples will lead to un-
closedness in at least one of the components, and thus to at least one new state in the
subsequent hypothesis. The algorithm terminates as soon as no further counterexample can
be found. Since components are only split if a distinguishing suffix is found, all states in
the final model are distinguishable, i.e., the model is the canonical (i.e., smallest) Mealy
machine for [SUL].

For all strategies of handling counterexamples the number of equivalence queries is
bounded by the number of states in the canonical Mealy machine. This, however, is a
general upper bound. In practice, the number of actual equivalence queries can differ dra-
matically (cf. Section [2.2.4)).

The different strategies for handling counterexamples result in different worst case mea-
surements for the amount of membership queries needed in the course of learning. Let n
be the number of states in the final hypothesis, m be the length of the longest counterexam-
ple, and k the size of the set of inputs. The resulting complexity (in terms of membership
queries) for the discussed approaches is shown in Table 2.1} As a reference the complexity
of the L* version for Mealy machines is given. The number of membership queries can

19

2 Inferring Mealy machines

Algorithm 4 Observation Pack Algorithm

Input: A set of inputs X
Output: A model H with [H] = [SUL]

1: Create component C, = (X U {&}, &, %, 0) > Create Initial component
2: C:={Cg} > Init. components
3: T = {ng}, ng, 0,{e}, {(ng, &)}, {n.}) > Init. discrimination tree
4: loop
5: H := ClosePack(T,C) > Hypothesis construction
6: we := EQ(H) > Hypothesis verification
7: if w. = "OK’ then > Counterexample?
8: return H > Then: done
9: end if

10: Split w, into uav s.t. C, € C and MQ(uav) # MQ(u'v), where ua € C,y

11: if AllGlobally then > Exploit counterexample ...

12: Add all suffixes of w.to VofallC e C

13: end if

14: if OneGlobally then

15: AddvtoVofallCeC

16: end if

17: if OneLocally then

18: AddvtoVofC, €C

19: end if

20: end loop

be estimated as the sum of membership queries needed to complete all components, and
the membership queries needed to analyze counterexamples. Membership queries used for
sifting new words into the observation pack need not to be considered as they contribute to
completing components.

Table 2.1: Membership query complexity for different variants of the observation pack

algorithm

Algorithm ‘ Max. table sizeﬂ ‘ Membership queries
Angluin nkm - (n + k) 0%k - m + k*n - m)

Pack + AllGlobally | nk - (nm + k) O(n*k - m + k*n)

Pack + OneGlobally | nk - (n + k) O(n*k + k>n + n - loga(m))
Pack + OneLocally | nk-(n+ k) O’k +k*n+n- logo(m))

As can be seen in Table 2.1] the approaches for handling counterexamples result in a
different influence the length of counterexamples has in the worst-case estimation of the
number of membership queries. For all approaches the number of suffixes needed to dis-
tinguish all states is bounded by n. Adding k suffixes that are in the set of suffixes initially,
the size of the set of suffixes can be estimated by n + k for all approaches except for All-

IFor the observation pack this is the accumulated size of all components, i.e., number of prefixes times number
of suffixes for each component.

20

2.2 Active learning for Mealy machines

Globally, where all suffixes of counterexamples are added to the set of suffixes. The set
of prefixes, on the other hand, can be estimated by kn, i.e., the number of transitions in the
final model for all cases except for the L* algorithm (Angluin), which adds all prefixes of a
counterexamples to the set of access sequences.

In the literature k is often assumed to be a small constant and is omitted from the estima-
tion of the membership complexity. The different influence of m in Angluin and AllGlob-
ally, which becomes apparent only when including k, however, shows that for practical
scenarios where often k dominates # it is important to include & in this estimation.

Finally, assuming a binary search over the length of the counterexample for the correct
decomposition, the costs for analyzing a counterexample can be estimated by log,(m), re-
sulting in the estimations for OneGlobally and OneLocally. As for equivalence queries,
both approaches share the same worst case complexity. In practice, however, the numbers
of actual membership queries differ significantly.

Though presented here for Mealy machines, the observation pack algorithm can be used
to infer regular languages, too. The only modification that is necessary concerns the ini-
tialization of the set of suffixes, which will be initialized by the singleton set containing &,
distinguishing accepted and not accepted words. The estimation of the membership com-
plexity has to be modified accordingly.

Implementing the observation pack algorithm in practice, several optimizations to the
version presented here can be realized when using OneLocally or OneGlobally for han-
dling counterexamples.

1. Counterexamples often can be exploited more than once. In practice, counterexam-
ples can be reused until they are no longer counterexamples instead of performing an
equivalence query every time the observation pack is closed.

2. The proof of progress presented here does not ensure that intermediate hypothesis
models agree with all made observations. This can easily be enforced using a suffix-
closed set of distinguishing suffixes [7]]. In [82] (Paper I) an optimization, namely
semantic suffix-closedness, is presented that ensures that all hypothesis models agree
with all observations by closing the set of distinguishing suffixes under suffixes rele-
vant to this end. This, too, can result in a reduced number of equivalence queries.

An implementation of the observation pack algorithm incorporating these optimizations has
been realized in LearnLib [67], a library supporting the implementation and evaluation of
automata learning algorithms.

2.2.4 Evaluation

In order to evaluate the influence of different strategies for handling counterexamples on
the number of membership queries, a series of experiments on models from the Edinburgh
Concurrency Workbench (CWB) [68] and from the CADP tool set [34]] has been conducted.

The examples from these tool sets are nondeterministic incomplete finite automata with
internal actions. In order to infer (DFA) models of these examples, all actions are made
inputs, and the examples are transformed into DFAs by means of subset construction. In
order to obtain complete models, a non-accepting sink state, looping itself for all inputs, is

21

2 Inferring Mealy machines

added. All inputs that are undefined at a certain state (missing transitions) are directed to this
sink. Using DFAs as black-box systems, the DFA version of the observation pack algorithm
is used in the experiments. Counterexamples were found by means of the equivalence test
from [43]].

The experiments subdivide into two series. In one series the observation pack algorithm
is combined with the different strategies for handling counterexamples presented in Sec-
tion[2.2.2] To provide meaningful results, a second series is included in which the same ex-
amples are inferred using well-known active learning algorithms from the literature. These
algorithms have not been implemented by the author but are taken from libalf [20] (version
0.3), which provides implementations of these algorithms.

The observation pack algorithm has been implemented in LearnLib, which also provides
an interface to the algorithms of libalf. The presented figures are from experiments using
the observation pack implementation and the libalf implementations of Angluin’s L* algo-
rithm [7], its variant from [62] (referred to as Maler) adding all suffixes of counterexamples
to the table, and the discrimination tree algorithm [60] (referred to as Kearns). In order to
provide a fair comparison, only the number of distinct membership queries is counted for all
algorithms. This was achieved by using a cache, storing all membership queries used dur-
ing one experiment. The experiments were conducted using LearnLib on a 2,4GHz AMD
Opteron processor with 16 cores and 256GB memory running Linux.

Table 2.2: Results for L*-based algorithms

Model Maler Angluin Kearns
Name | 1ol | 1= | MQ | EQ | MQ|EQ| MQ | EQ
vmnew (CWB) 26 | 4 2,316 8 1,690 9 290 | 26
cspprot (CWB) 43 5 5,578 8 2,942 9 545 43
peterson2 (CADP) | 50 | 18 63,023 | 14 18,744 | 14 | 1,291 | 50
sched4 (CWB) 97 | 12 95,148 | 13 21,428 | 12| 2,409 | 97
sched5 (CWB) 241 | 15 401,865 | 15 76,914 | 13 | 8,869 | 241
pots2 (CADP) 664 | 32 | 7,925,888 | 53 | 2,330,380 | 77 | 62,021 | 664

Table [2.2] displays the results for the libalf algorithms, Table [2.3] shows the results for
the observation pack algorithm. It can be seen, that the performance of Maler corresponds
exactly to the performance of AllGlobally, which is little surprising since both are imple-
mentations of the same algorithm. Both use the same number of equivalence queries all
experiments.

While it has been argued in Section that Angluin is the prefix-based counterpart
of AllGlobally, in the experiments its performance shows a much closer correlation to
OneGlobally. This can partly be contributed to the particular implementation of the equiv-
alence test, which yields “optimal” counterexamples with prefixes from a learning algo-
rithm’s set of prefixes and shortest (new) suffixes. For such counterexamples adding all new
prefixes of a counterexample to the set of prefixes is unlikely to result in the worst-case of
actually adding all of its prefixes. On the other hand, in practice one can search for such
optimal counterexamples actively (cf. Section [3.2).

22

2.2 Active learning for Mealy machines

When inferring DFA models, the observation pack with OneGlobally corresponds to the
reduced observation table from [75]. Comparing Angluin and OneGlobally, the results
show savings between 10% and 50% in membership queries but for most of the cases an
increase in the number of equivalence queries. Though the L* algorithm is better known
and by far more popular than the reduced observation table, the latter is the more efficient
algorithm in practice.

Finally, there is a close correlation between Kearns and OneLocally which both use lo-
cal sets of suffixes. These two, however, are not implementations of the same algorithm.
The Kearns algorithm sifts prefixes of counterexamples into the used discrimination tree in
order to determine a sensible decomposition of the counterexample. This is more expen-
sive than a binary search over the length of a counterexample and accounts for the slightly
increased number of membership queries in Kearns. While for Kearns the number of
equivalence queries in all experiments is identical to the number of states of the SUL, this
is not the case for OneLocally implementing the optimizations discussed in the previous

section.
Table 2.3: Results for Observation pack-based algorithms
Model AllGlobally OneGlobally OnelLocally
Name | 1ol | 1= | MQ | EQ | MQ | EQ[MQ | EQ
vmnew (CWB) 26 | 4 2,142 8 886 | 12 250 | 21
cspprot (CWB) 43| 5 4,466 8 2,130 | 10 509 | 36
peterson2 (CADP) | 50 | 18 64,099 | 14 15,674 | 18 | 1,314 | 49
sched4 (CWB) 97 | 12 98,587 | 13 17,361 | 15| 2,402 | 94
sched5 (CWB) 241 | 15 411,465 | 15 68,021 | 19 | 8,804 | 235
pots2 (CADP) 664 | 32 | 7,906,166 | 53 | 1,463,852 | 68 | 61,090 | 581

While OneLocally consumes significantly less membership queries than OneGlobally
in all experiments, it has often been argued that using this strategy for handling counterex-
amples is not a wise choice in practice since the number of equivalence queries increases
drastically. In the next chapter, on the other hand, an approach for organizing equivalence
queries is presented that can be described as performing only one incremental equivalence
query per learning experiment while searching for counterexamples.

23

3 Localized inference

In the previous chapter the observation pack algorithm was presented along with different
strategies for handling counterexamples. These strategies were shown to be a first means of
reducing the number of membership queries needed to infer models of black-box systems.
The reduction, however, comes at a price: an increase in the number of equivalence queries.
The central idea was applying suffixes of counterexamples only locally, i.e., adding one
suffix to one component. In this chapter it will be discussed, how the idea of locality can be
applied to the set of prefixes and to equivalence queries as well. In Section [3.1|an approach
for “directed” learning will be presented. Section[3.2]describes how equivalence queries can
be replaced by a localized version, which is easier to approximate in practical experiments.

3.1 Local exploration

When inferring models of real systems one is often only interested in a certain aspect of
the behavior of the SUL, e.g., one may only be interested in the behavior for a subset of
all inputs; maybe the interesting subset even depends of the current state of the SUL. On
the other hand, for many systems the assumption of a global set of inputs is not natural.
Consider, e.g., an e-commerce web-application that will allow providing shipping details
only at a certain stage of a purchase. In such situations a means is needed to reflect this
partiality (i.e, state-local sets of inputs) in the learning algorithm.

One common approach is the use of filters that help answering membership queries by
providing answers without testing the SUL in case the SUL cannot process a query [65,9].
Such filters have two major drawbacks.

1. Prefixes that are not executable on the SUL will still be added to the observation pack,
leading to further membership queries.

2. Filters do not allow for inferring only certain aspects of a SUL.
Here, a new approach for inferring partial models is presented that does not introduce these
problems.
3.1.1 Inference with a learning aspect

The observation pack algorithm can be extended easily to inferring partial models by mak-
ing line 10 in Algorithm [3|conditional: new prefixes are only sifted into the pack if they are
relevant to the aspect to be inferred. Technically, this can be realized by a learning aspect.

Definition 7 (Learning aspect) An aspect for inferring a Mealy machine M =
(0,q0,%,Q,6,1) is a DEAI| P = (Qp, 0, Zp, Sp, Fp), where

'For a definition of a DFA cf. [44].

25

3 Localized inference

(-5 %)
*})
V)

Figure 3.1: Aspect for inferring a partial model of the 3-place buffer from Figure

- the initial state qq is in the set of final states Fp,

- the set of inputs Xp = X X Q contains all combinations of inputs and outputs of M,
and

- every non-final state is a sink: For q € Qp\ Fp all transitions are reflexive 6p(q,a) = q
foraeZp.

When describing purposes, symbols (-, 0), (a,-), and (-, -) are used as wildcards for all pairs
with output o, all pairs with input a, and all combinations of inputs and outputs of M. U

In order to determine if a word w € X* is accepted by an aspect, a membership query is used
for every prefix of w. The results are combined into a sequence (aj,01) ... (a,, 0,), where
W = aj...ay, in the obvious wayE] The sequence of input/output pairs can be tested for
acceptance by the aspect.

A learning aspect is used to determine whether new prefixes are relevant for the inferred
model or not. Only prefixes that lead to input/output sequences accepted by a aspect will
be added to the observation pack. When using a learning aspect, the resulting models are
partial. Equivalence queries will have to be modified to decide (partial) equivalence of hy-
pothesis models and the system under learning. In fact, this corresponds to using a preorder
instead of equivalence, which is common in testing (cf. [22]). The inferred model then
corresponds to a specification and the SUL to an implementation.

Figure[3.T]shows a learning aspect for inferring a partial model of the 3-place buffer from
Figure[2.1] The aspect will accept all words where none of the prefixes produces an output
x on the buffer. Figure[3.2]shows the corresponding inferred partial model of the buffer: the
model contains only transitions that have output v'.

The approach of using a learning aspect is a general framework for restricting inference
based to some aspect of interest. It thus is different from the application of filters, which
primarily aims at reducing the number of membership queries answered by the SUL when
inferring complete models. Learning aspects, on the other hand, aim at inferring partial
models.

3.1.2 Evaluation

To provide a concrete example, the models used in the experiments presented in Sec-
tion [2.2.4] all accept prefix-closed languages. Partial models for these prefix-closed lan-
guages can be obtained by removing the non-accepting sink state. The resulting (partial)
models will only have accepting states.

2In practice this usually can be done by a single test on a SUL since a SUL will provide an output after every
step in a test.

26

3.1 Local exploration

get/V get/V get/V

Figure 3.2: Partial model of 3-place buffer

In the series of experiments presented here, these partial models are inferred using a
simple test for language containment as learning aspect, resembling the aspect shown in
Figure [3.1] This in particular means that the inferred models are of the same size as the
target models. Thus, the experiments presented here do not evaluate rigorously how inferred
models can be restricted to certain aspects of interest in practice. They are rather to be
understood as a proof of concept of inferring partial models.

The experiments were conducted using a modified version (for partial models) of the
algorithm from [43]] for testing equivalence of automata. Results from this experiments with
a learning aspect for exploiting prefix-closedness are presented in Table|3.1{and Table
The tables compare membership queries and equivalence queries with and without applying
a learning aspect. The last two columns of each table show the ratio between the numbers
in both cases.

Table [3.1] shows the results of applying the aspect to the observation pack algorithm,
using OneGlobally as strategy for handling counterexamples. As can be seen in the last
two columns, the number of membership queries is reduced significantly by the learning
aspect. The number of equivalence queries is not influenced, which is little surprising since,
as discussed above, the used aspects do not reduce the number of states in the final models
(in this particular case).

Table 3.1: Results for partial exploration (OneGlobally)

Model complete partial cgr?lr;taililte
Name | 101 | 1= | MQ |EQ| MQ|EQ| MQ| EQ
vmnew (CWB) 26 | 4 886 | 12 468 | 12 | 0.53 | 1.00
cspprot (CWB) 43 5 2,130 | 10 721 10 | 0.34 | 1.00
peterson2 (CADP) | 50 | 18 15,674 | 18 1,810 | 18 | 0.12 | 1.00
sched4 (CWB) 97 | 12 17,361 15 3,498 | 15| 0.20 | 1.00
sched5 (CWB) 241 | 15 68,021 | 19 13,270 | 19 | 0.20 | 1.00
pots2 (CADP) 664 | 32 | 1,463,852 | 68 | 218,678 | 68 | 0.15 | 1.00

Table [3.2] shows the results of applying the learning aspect to the observation pack algo-
rithm, using OneLocally as strategy for handling counterexamples. In this case, neither the
number of membership queries nor the number of equivalence queries is influenced by the
learning aspect. This is little surprising. Since the aspect was realized by means of member-

3The experiments have been conducted on a 2,4GHz AMD Opteron processor with 16 cores and 256GB
memory running Linux.

27

3 Localized inference

ship queries, the membership query used to determine whether a word should be sifted into
the pack corresponds exactly to the membership query spent at the root node of the discrim-
ination tree, deciding whether the word is sorted to the component of the sink state. The
corresponding component will have only one suffix during learning. In the case of the One-
Globally strategy, on the other hand, this component is extended by all newly found suffixes
in the course of learning, producing large numbers of in-effective membership queries.

Table 3.2: Results for partial exploration (OneLocally)

. partial
Model complete partial complete
Name 10| =] MQ|EQ| MQ|EQ|MQ| EQ
vmnew (CWB) 26 | 4 250 | 21 246 | 21 | 098 | 1.00
cspprot (CWB) 43 1 5 509 | 36 504 | 36| 0.99 | 1.00
peterson2 (CADP) | 50 | 18 | 1,314 | 49 | 1,296 | 49 | 0.99 | 1.00
sched4 (CWB) 97 | 12| 2,402 | 94| 2,390 | 94| 1.00 | 1.00
sched5 (CWB) 241 | 15 | 8,804 | 235 | 8,789 | 235 | 1.00 | 1.00
pots2 (CADP) 664 | 32 | 61,090 | 581 | 61,058 | 581 | 1.00 | 1.00

In this particular case, the effect of using a learning aspect on the number of membership
queries is comparable to the one of using a filter for prefix-closedness [65]. However, there
are two important differences. First, in case of using an aspect irrelevant words are not added
to the observation pack, which will lead to much less memory consumption and thus allow
for inferring bigger models (cf. Section[3.2.3)). Second, the inferred models are partial, i.e.,
have different sets of inputs per state, and thus are more adequate for describing reactive
systems in practice.

3.2 Incremental equivalence queries

One problem when applying active automata learning in practice is intrinsic to the MAT
learning model: equivalence queries do not exist for black-box systems. They have to be
approximated by membership queries, and the possibility of not having tested thoroughly
enough will always remain. Due to the close correspondence of equivalence queries and
conformance tests, which is discussed in detail in [[12]], conformance test methods have been
suggested for approximating equivalence queries in practice. There are few conformance
tests, however, that deal with additional states in the implementation, which in the context
of learning is the most interesting phenomenon (e.g., W-method [24]] and Wp-method [33]]).
These methods require the specification of an upper bound to the number of states of the
SUL and produce membership queries exponential in the difference between this bound
and the number of states of a hypothesis. In order to organize equivalence queries in an
improved way, to observations are essential.

First, conformance tests aim at proving conformance between specification and imple-
mentation. During learning, however, all but one equivalence query are used to find coun-
terexamples. Thus, in the vast majority of cases, an efficient method for finding counterex-

28

3.2 Incremental equivalence queries

amples is required rather than a method for rigidly proving absence of counterexamples.
One idea for how to search for counterexamples is provided by Theorem [2] Since every
counterexample will be decomposed into a prefix from the set of access sequences in the
observation pack, an input, and a suffix, it may be beneficial to use candidate counterexam-
ples of this form.

Second, in the MAT model different equivalence queries are independent. Each query
takes a model and tests the equivalence of this model and the SUL. Also, the formulation of
the classic L* algorithm does not make it obvious if or how subsequent hypothesis models
are related. Subsequent hypothesis models produced by the observation pack algorithm, on
the other hand, are strongly related. The set of access sequences computed by the algorithm
is a prefix-closed set of words. As an analogy, this set can be thought of an incrementally
growing spanning tree covering the state space of a SUL. Intuitively, the set of all prefixes
extends this spanning tree by all transitions that turn the spanning tree into an automaton.

Using the spanning tree, i.e., the set of access sequences, subsequent hypothesis models
can be related, as is shown schematically in Figure [3.3] The figure will be discussed in
detail below. For now, let {&, a, aa} be the spanning tree that evolves from # to H3. The
hypothesis evolves by adding one of the transitions to the tree that is not yet part of the
spanning tree (marked (?) in the figure), and adding some new transitions originating in the
corresponding new state.

While in the sequence shown in [3.3] there is only one unconfirmed transition in each
hypothesis (marked (?)), and only this transition is added to the spanning tree, in general
there will be many such unconfirmed transitions, and in a single round of learning more than
one of these may be added to the spanning tree. Yet, especially when using OneLocally for
handling counterexamples and inferring models of considerable size, changes between two
subsequent hypothesis models will be very local.

Taking these observations into account, the obvious conclusions are that (1) equivalence
of models can be subdivided into equivalence of single transitions, and that (2) only new or
modified transitions have to be tested in the process. Let thus the MAT model be modified
by providing a learning algorithm with membership queries and identity queries.

Identity queries test whether two prefixes u, 4’ are in the same class of =gy. In case
u £gyr u' they return a suffix v for which [S UL](uv) # [S UL](«'v). Otherwise they
return successfully.

During learning, identity queries will be used to test whether a prefix from one component
in the observation pack leads to the same state in the SUL as its access sequence (from
the same component). Of course, in practice identity queries are no less unrealistic than
equivalence queries, but as will be argued in Section [3.2.2] and Section [3.2.3|they provide
a framework for organizing equivalence queries incrementally and can be approximated
easily.

3.2.1 The evolving hypothesis algorithm

The evolving hypothesis algorithm, which replaces the equivalence oracle in learning se-
tups, works in two phases. In the first phase the hypothesis model maintained by the al-
gorithm is updated using the most recent hypothesis produced by the learning algorithm

29

3 Localized inference

Algorithm 5 Test evolving hypothesis(H, Hg, W)
Input: Current hyp. H, evolving hyp. Hg, and a list of words W
Output: A counterexample or 'OK’

1: for ge Qgyanda € X do > update modified transitions
2 u :=|qle (i.e., the known access sequence of g) > trace for state
3 ua:=u-a > trace for transition
4 if ua # |ualy and |ualy # |ualy, then > No access seq. and modified?
5: W = W U {ua} > Then: mark for checking
6 end if

7. end for

8: Heg:=H > ’evolve’ hypothesis
9: while W # 0 do > check modified transitions
10: u = poll(W) > Remove candidate from W
11: u' = uly, > Get access seq. for destination
12: we = 1Q(u,u’) > Perform IQ
13: if w. # OK’ then > Found a counterexample?
14: W = WU {u} > Then: re-add prefix to work list
15: return w, > and return counterexample
16: end if
17: end while
18: return ’OK’ > Done

and the set of access sequence from the observation pack. In the second phase, the evolved
hypothesis is tested for equivalence to the SUL using identity queries.

The algorithm is shown in Algorithm[3] It is assumed that for a hypothesis H it is known
which access sequence belongs to which state. The algorithm uses an evolving hypothesis
‘Hg and a queue W of unconfirmed transitions, i.e., prefixes from the observation pack that
are not in the set of access sequences. Upon first invocation (not shown in the pseudo-
code), the first half of the algorithm is skipped (lines 1-7). Instead, all prefixes that are
not access sequences are simply added to W. In subsequent invocations all transitions that
have been modified, i.e., that lead to different states in H and H are added to the queue
of unconfirmed transitions unless they belong to the spanning tree (lines 1-7). As indicated
in lines 6 and 14 of the algorithm, the queue of unconfirmed transitions contains every
transition of H at most once. After updating the set of transitions to be verified, Hg is
evolved, i.e., replaced by H (line 8).

In the second phase transitions in W are checked by means of identity queries (lines 9-
17). For every transition it is checked whether the corresponding prefix leads to the same
state in SUL than its access sequence in the hypothesis. In case the identity query (line 14)
returns a counterexample, the prefix is re-added to the set of unconfirmed transitions and the
counterexample is returned. Re-adding the prefix is necessary since it is not guaranteed how
the counterexample is used by the learning algorithm. This will be discussed below. In case
no counterexample is found for any of the unconfirmed transitions, the algorithm terminates
successfully (line 18). The work list W is not emptied between subsequent invocations of
the algorithm.

Figure [3.3] shows schematically an evolving hypothesis. Unconfirmed transitions in the
subsequent hypothesis models are marked by (?), while confirmed ones are marked by (v').

30

3.2 Incremental equivalence queries

— (@ a) H.ﬂ} « H

7‘(1 *************** > 7‘(2 ******************** > 7{3 a (\/)
1Q0(g,a) 1Q(a, aa)
a(?) @

Figure 3.3: Sequence of evolving hypothesis models

Identity queries (and intermediate rounds of learning) lead to the refinements shown in the
figure. In the first step, the unconfirmed transition for a is refined into a transition to a new
state, a becoming the access sequence of this new state. In the second step the same is done
for the prefix aa.

3.2.2 Correctness and complexity

The correctness of the presented algorithm is straightforward. Transitions of a hypothesis
are added to the work list of the algorithm whenever their destination changes. When a
transition is removed from the work list an identity query is performed for the corresponding
prefix ua and its access sequence u’ (unless ua is an access sequence already).

If the identity query for ua and u’ returns a suffix v, either uav or u’v is a counterexample
since

[H](uav) = [H]w'v) while [SUL)(uav) # [SUL]®w v).

The counterexample is passed to the learning algorithm and ua is added to the work list
againﬂ An identity query may lead to removing a transition from the work list permanently
or to a counterexample. Counterexamples can be found at most n — 1 times. On the other
hand, n — 1 transitions are access sequences and will not be tested. This yields.

Theorem 3 Regular languages and regular sets of traces can be inferred with polynomially
many membership queries and O(kn) identity queries.]

Algorithm [5| will not only work with the observation pack algorithm but with any learning
algorithm that uses a growing set of unique access sequences to states of the hypothesis.

Of course, for black-box systems identity queries can not be computed. They have to be
approximated. The concrete realization of such an approximation follows straightforwardly
from the idea of the queries itself. One only needs to provide candidate suffixes. As for
equivalence queries, the possibility of not having tested enough will always remain in the
black-box scenario. Though, identity queries provide a valuable framework for organizing

“A learning algorithm does not necessarily use this counterexample to split the component of ua and u’. Using
a strategy like OneLocally for analyzing counterexamples may lead to a different component being split if
the counterexample provides a reason for splitting that component, too. Even if the component of ua and
i’ is split, it is not guaranteed that ua becomes the access sequence of the newly created component. This
could be realized by tighter integration of the evolving hypothesis algorithm and the learning algorithm. On
the other hand, such an integration would make the interface between learning algorithm and equivalence
test less general. Realizing the algorithm in LearnLib, generality outweighed performance in this particular
decision. Thus, it is necessary to re-add ua to the work list, such that #’ and ua can be tested again in a
subsequent identity query.

31

3 Localized inference

equivalence queries. They provide a pattern for the search for counterexamples in practical
applications, while still realizing an (incremental) conformance test.

An approximative version of the evolving hypothesis algorithm has been used in the
ZULU competition [26]]. Combined with the observation pack algorithm and the OneLo-
cally strategy for handling counterexamples it outperformed all other solutions for approxi-
mating equivalence queries by means of membership queries. Detailed results are discussed
in [50] (Paper II).

3.2.3 Evaluation

The evolving hypothesis algorithm has been evaluated on the set of examples from Sec-
tion 2.2.4] 1In order to investigate the relation between equivalence queries and identity
queries, two series of experiments have been performed using the observation pack algo-
rithm. In one series OneGlobally is used to handle counterexamples, while in the other
series counterexamples are analyzed by the OneLocally strategy. Algorithm [5|was used to
realize equivalence queries. Identity queries have been realized by a synchronized breath-
first search (starting in different states) on the target systems. In each experiment the overall
number of these equivalence queries and the total number of identity queries were observed.
Results of all experiments are shown in Table

Table 3.3: Equivalence vs. Identity Queries

OneLocall

Model OneGlobally OneLocally —OI?:Gl(Z) i;u};
Name | 10l | Trans. |EQ | IQ | EQ| IQ| EQ| 1IQ
vmnew (CWB) 26 104 | 11 89 20 98 1.82 | 1.10
cspprot (CWB) 43 215 | 10 182 30 202 3.00 | 1.11
peterson2 (CADP) 50 900 | 18 868 49 899 272 | 1.04
sched4 (CWB) 97 1,164 | 15 1,082 92 1,159 6.13 | 1.07
sched5 (CWB) 241 3,615 | 18 3,392 | 228 3,602 | 12.67 | 1.06
pots2 (CADP) 664 | 21,248 | 60 | 20,644 | 568 | 21,152 947 | 1.02

While the increase in equivalence queries ranges from about 80% to almost 1,200% be-
tween the two series, the amount of identity queries increases only moderately by 2% to
11%. Identity queries almost being constant, the average number of identity queries per
equivalence query mainly depends on the number of equivalence queries. Put differently,
the average costs of equivalence queries are not uniform for the same experiment in both
series of experiments.

The overall number of identity queries during a learning experiment on the other hand is
almost invariant under the application of different strategies for handling counterexamples.
This is not surprising. It is a direct consequence of Theorem[3] and suggests that the number
of identity queries is a more appropriate measure than the number of equivalence queries

5The experiments have been conducted on a 2,4GHz AMD Opteron processor with 16 cores and 256GB
memory running Linux.

32

3.2 Incremental equivalence queries

when comparing different strategies for handling counterexamples. The less equivalence
queries are used during learning the more complex are the single equivalence queries.

Finally, to explain the increase in identity queries, please observe that for every row of
Table [3.3]for both series of experiments the following equation holds

IQ = Trans. — (|Q| — EQ).

The number of identity queries corresponds exactly to the number of transitions minus the
number of states that has been found without equivalence query. Of the |Q] — 1 access
sequences |Q| — 1 — (EQ — 1) many are found without consuming identity queries: The
potential increase in the number of identity queries between OneGlobally and OneLocally
is limited by the number of states in the final model.

Finally, the integration of local exploration and local equivalence tests (i.e., the evolving
hypothesis algorithm) has been tested in an additional series of experiments on bigger ex-
amples from the CADP tool set. Automata models have been extracted from the examples
as described in Section[2.2.4] In all experiments the observation pack algorithm is combined
with the OneLocally strategy for handling counterexamples, a learning aspect resembling
the one in Figure [3.1] exploiting partiality of the models, and the evolving hypothesis algo-
rithm. The results of the experiments are presented in Table [3.4]

Table 3.4: Combining local exploration and local equivalence

Model Results
Name ‘ 0| ‘ DY ‘ Trans. MQ ‘ EQ ‘ 1Q
co4-3-1 9979 | 85| 21,237 | 2,171,464 6,433 17,691
turntable_par | 22,846 | 25 | 82,983 | 2,759,885 18,691 | 78,828
SCSI_A 56,168 | 28 | 154,748 | 6,899,646 | 35,030 | 133,610
co4-4-1 166,883 | 121 | 483,735 | 47,090,040 | 106,358 | 423,210

To the author’s knowledge, models of this size have not been inferred using active au-
tomata learning methods before. The biggest inferred (non partial) model is reported in [73]],
namely a router with 11 inputs and about 22,000 states.

To verify that the increased performance is not only due to newer hardware and more
available memory, execution times and memory consumption were recorded in the exper-
iments. In the experiment “turntable_par” 0.36GB of memory was used and learning re-
quired 197 seconds, while identity queries consumed 16 seconds. In the case of “co4-4-1"
learning finished in 3 hours and 50 minutes using 4.05GB of memory. Identity queries
consumed 58 seconds.

33

4 Active learning of interface programs

The previous two chapters presented the central ideas for learning models of black-box
systems by means of membership queries and equivalence queries. This chapter will focus
on extending active learning to interface programs.

The main problem when inferring interface programs for real black-box systems by
means of active automata learning is that DFAs or Mealy machines are not designed to
describe such systems: Usually, real black-box systems do not only consist of a control
structure, which can be described faithfully by an automaton, but also use data: Inputs of
such systems comprise data values. Making matters worse, these data values typically in-
fluence the control behavior. As a simple example, consider an identifier for a session in
a web-application. The behavior exposed by the application will strongly depend on the
concrete session identifier that one includes in the communication with this application.
Other examples of data parameters that have an impact on the behavior of a systems are
authentication credentials and sequence numbers. Providing valid credentials usually leads
to different behavior than providing invalid ones. The same holds for sequence numbers:
one has to follow a strict pattern (i.e., increasing at the right moment of time) in order to
achieve progress in some protocol. Thus, when extending regular inference to systems with
data, two problems arise.

1. Data values usually are from unbounded domains (e.g., natural numbers or strings),
leading to infinite sets of inputs.

2. Mealy machines and DFAs are adequate models of control behavior, but these au-
tomata do not model explicitly data parameters or their influence on the behavior.
In order to model such an influence, storing data values and comparing stored data
values has to be made explicit.

Both problems, infinity and expressivity, have to be addressed twice: once at the level of an
adequate modeling formalism, and once at the level of a learning algorithm. In particular,
active learning relies on the following ideas, which have to be adapted.

1. A Nerode-like relation allowing the suffix-based identification of elements in inferred
models, i.e., states and transitions (Section [2.1).

2. A Myhill/Nerode-like theorem establishing a method for constructing automata from
regular semantic functionals (Section [2.T)).

3. A data structure from which at certain points in time hypothesis automata can be
constructed (Section[2.2.1)). In particular this data structure has to realize the Nerode-
relation using finite sets of prefixes and suffixes.

4. A method for exploiting counterexamples, ensuring progress (Section [2.2.2)).

35

4 Active learning of interface programs

In the next section, regular inference is extended to systems with infinite sets of inputs.
Section 4.2] presents a modeling formalism and a corresponding Nerode-relation for a class
of systems that store data values. This class of systems can be inferred using finite sets of
prefixes and suffixes, as will be discussed in Section[4.3] In both cases an extended method
for analyzing counterexamples will be necessary. Finally, in Section {f.4] the ideas from the
previous sections will be extended to systems that can produce parameterized output using
stored data values together with data from a small evaluation of the approach.

4.1 Automated alphabet abstraction refinement

As discussed above, real systems usually use inputs with data parameters over infinite do-
mains. The resulting set of inputs is infinite. As an example consider a threshold for some
sensor in a reactive system. The behavior of the system will only depend on a data value
exceeding the threshold value or not. Figure [4.1] details this example. Inputs set(x) with
Xx € Z set the value of the sensor. Input test reads the value of the sensor afterwards. For
values below or equal 10, reading will produce a positive output (i.e., v'). Sensor values
above the threshold will lead to output X on reading.

Inferring a model of the sensor would require infinitely many tests when applying active
learning directly. Luckily, in many cases (especially if data values from inputs cannot be
remembered by a SUL) the data values occurring in inputs can be partitioned into finitely
many classes: A model of the behavior can abstract from the concrete data values. The
obvious abstraction indicated in the figure is using two abstract set operations.

Inferring abstract models directly, however, is difficult for two reasons. First, active learn-
ing relies on tests being executed on a SUL, and these tests have to be sequences of concrete
inputs. Thus, one needs a system of representative inputs for an abstraction. Second, defin-
ing (correct) abstractions prior to learning to some extent contradicts the idea of inference
and in most situations is not feasible. The abstract classes of inputs depend on the behavior
of a system, which is unknown prior to learning.

In [51] (Paper III) a method avoiding both these problems is presented. By inferring a
system of representative inputs during learning and integrating automated alphabet abstrac-
tion refinement (AAAR) into the learning algorithm, the algorithm will work at the level
of a concrete and finite representation of a SUL. Abstractions can be refined in the course
of learning, modeled as monotonic growth of the set of inputs used in the the learning al-
gorithm. This section gives a brief introduction to these ideas and relates them to the four
building blocks of active learning enumerated in the introduction to this chapter.

Let X¢ be a countable set of inputs, and M¢ = (Q, qo, Zc, Q, 6, 1) be a countable Mealy
machine (CMM), i.e., a Mealy machine with a countable set of inputs. Figure [4.1] shows
a countable Mealy machine for the discussed example. Luckily, the inputs from X¢ of a
countable Mealy machine can be partitioned into finitely many classes since a CMM has
only finitely many states. This leads to the following definition.

Definition 8 (Equivalent input symbols) For a regular set of traces T, two input sym-
bols a,a’ € Xc are equivalent, denoted by a ~r d', if for all u,v € X, it holds that
T(uav) = T(ua'v). O

36

4.1 Automated alphabet abstraction refinement

@ test/v

set(x) | x < 10/v | | set(x) | x> 10/v

@ test/x

set(x) | x < 10/v

set(x) | x> 10/V

Figure 4.1: Partial countable Mealy machine model of sensor with threshold with infinite
set of inputs test and set(x) for x € Z.

While the equivalence relation on words =7 is a right-congruence, the equivalence relation
on inputs is a middle-congruence. Accordingly, input actions are not distinguished (wrt. ~7)
by suffixes but by pairs of prefixes and suffixes.

Definition 9 (Witness) A triple (u,v,0) € T* X X* X Q is referred to as a witness. A witness
proves inputs a,a’ € ¢ inequivalent if T(uav) = o but T(ua’v) # o (or vice versa). O

In the example from Figure 4.1] the witness (g, test, x) partitions all inputs set(x) with
X € Z into two classes, one class of inputs below or equal to the threshold, and one class of
inputs above the threshold. Including an output in a witness guarantees that every witness
partitions the set of inputs into at most two classes.

While in a Mealy machine infinitely many words may lead to the same state, active learning
works on a finite prefix-closed set of words, reaching every state (i.e., class of =) once. A
similar approach can be used to infer countable Mealy machine models, using one concrete
input for every class of ~7, potentially containing infinitely many inputs.

Let W be a finite set of witnesses, and let a ~y a’ denote the fact that no witness in W
proves the inequivalence of a and a’. Accordingly, for a #w « there is a witness in W
proving the inequivalence of a and @’. A set Xy C Z¢ of representative inputs is a finite set,
where a #yw a’ for a,a’ € y, and such that for every a” € Z¢ there is a representative input
a in Ty such that @ ~y @”. Let then py : ¢ — Xy map every input in Z¢ to its unique
representative (i.e., equivalent wrt. ~y) input from ZWEI The mapping pw can be extended
to a mapping X/ — X}, in the obvious way.

Certainly, an active learning algorithm can be used to construct a Mealy machine hypoth-
esis for a finite subset Xy of ¢, i.e., at the level of the concrete representative inputs. The
remaining problem is an equivalence query, which may return counterexamples from X/.
Counterexamples obtained during learning can either contradict the intermediate abstrac-
tion or the intermediate hypothesis over Zy. Let w € X7, be a counterexample, i.e., such
that [H](pw(w)) # [SUL](w). Then it can either be the case that

[SULJ(pww)) # [SUL]Jw) or [SULJ(pww) # [H](pw(w)).

In the second case it contradicts the hypothesis over Zy. This case is not different to an
ordinary counterexample and can be handled as described in Chapter 2} In the first case,

!Technically, such a mapping and set of representative inputs can be realized by means of a binary decision
tree, in which the inner nodes are labeled with witnesses, and leaves are labeled with representative inputs.
The mapping py can then be computed by sinking inputs into the tree.

37

4 Active learning of interface programs

ow(u)
pw(a) R

* Same state in hypothesis

Figure 4.2: Exploiting counterexamples for alphabet abstraction refinement

on the other hand, the counterexample contradicts the abstraction induced by pw. The
abstraction has to be refined by means of a witness

Let w be a counterexample of the first category. Then there has to be a smallest index i
such that w = uv, where u is of length i, and [SUL](pw(u)v) # [SUL](uv). This directly
yields the following theorem.

Theorem 4 (Counterexample Decomposition (AAAR)) For a set of a representative in-
puts Xy, a corresponding mapping pw, and a counterexample w € X[with [SUL](w) #
[SUL](pw(w))) there exists a decomposition w = uav into a prefix u € X7, an input a € X,
and a suffix v € . such that [SUL](pw(u) av) # [SUL](pw(ua)v). O

Figure [4.2] shows the situation stated in the theorem schematically. At some point of the
counterexample (after py (u)), the input a and its representative input py(a) lead to different
states in the SUL, which is proven by suffix v of the counterexample.

The triple (ow(u), v,0) with o = [SUL](pw(u) av) is a witness for the inequivalence
of a and pw(a). Figure shows this schematically. The class p;vl (a) is refined by the
witness from the counterexample into two classes of a new representation induced by the
set W’, containing the additional witness. The input a from the counterexample becomes

the representative input for the new class p‘jvl/ (a).

Starting with an arbitrary input from 2¢ as initial representative input, the approach sketched
above can be iterated for a monotonically growing set Xy of representative inputs. At every
stage of the process, a hypothesis is constructed for Xy. Every counterexample either leads
to a refined hypothesis for Xy, or to an extension of Xy .

In [51] (Paper III) it is shown that this approach terminates with an optimal deter-
minism preserving abstraction, i.e., one with a minimal set Xy for which [SUL](w) =
[SUL](pw(w)) for all w € Z*C. This overcomes the problem of finding correct abstrac-
tions prior to learning, while still polynomially many membership queries and equivalence
queries are sufficient to infer models with automated alphabet abstraction refinement.

The approach works for regular sets of traces, where the index of =7 is finite. Regu-
larity makes it easy to provide the following prerequisites to active learning from the list
in the introduction to this chapter: (1) The equivalence relation on the set of inputs and
witnesses realizing these are used to identify representative transitions in inferred models.
(2) Automata construction at the level of representative inputs does not differ from the case
of Mealy machines. (3) The finite indices of both equivalence relations guarantee that the
learning algorithm can work on finite sets of prefixes and suffixes.

38

4.2 Modeling systems capable of storing data values

1 Py (ow(@))
Py (@)
AAAR

P (@)
Witness for a £7 pw(a)

Figure 4.3: Automatic alphabet abstraction refinement for inputs a, pw(a) € X¢ and a #r
pw(a)

Finally, the process of analyzing counterexamples has to be extended using a two-step
approach for analyzing counterexamples, distinguishing between counterexamples that re-
fine the chosen representation and regular ones that lead to new states. While for the former
case a new pattern of analysis is required, the latter case is covered by the pattern presented

in Section[2.2.2]

4.2 Modeling systems capable of storing data values

As discussed above, in many real systems data parameters of inputs influence the behavior
of the system. This is already true for the class of systems discussed in the previous section.
These systems could be characterized using the (classic) Nerode-relation directly. As soon
as systems can store data values and compare these stored data values, this in general is not
possible. As an example consider a system that allows users to register an account with a
set of credentials and afterwards login to this account with the credentials provided during
registration. The behavior of such a system will depend on the credentials provided during
registration, which can be from some infinite domain. Using the classic Nerode-relation,
this directly yields infinitely many classes, one for every concrete set of credentials.

In order to represent such systems as finite models, storing and comparing data values has
to made explicit in the automata representation. In this section the results from [23] (Paper
IV) will be discussed, presenting an automaton model for a special class of such systems,
comparing data values for equality.

Presentation in this section served as a basis for in [46] (Paper VI) and is thus very similar
to the paper.

4.2.1 Register automata

In [23] (Paper IV) we have presented register automata as a modeling formalism for inter-
face programs. Let D be an unbounded domain of data values which can be compared for
equality, and X be a set of parameterized inputs, each with a fixed arity (i.e., number of
arguments it takes from D). A data input is a pair (a,d), where a € X with arity k, and
d = di,...,d; is a sequence of data values from 9. Sequences of data inputs are data

39

4 Active learning of interface programs

words. For a data word w, let Acts(w) be the sequence of parameterized inputs in w and
Vals(w) be the sequence of data values in w (from left to right). Let then ValS et(w) denote
the set of distinct data values in Vals(w). Data words are concatenated just like plain words.

Let Wy be the set of all data words for a fixed set of parameterized inputs and a data
domain D, and 7 : D — D be a permutation on 9. A permutation 7 is applied to a data
word w pointwisely on Vals(w). On a set of data words, 7 is applied pointwisely on every
data word in the set. Finally, a data language is a set of data words Ly C Wy, that is closed
under permutations on D, i.e., Lp = n(Lyp) for any permutation 7 on D.

As an example for a data language consider the following language over the domain of
natural numbers and the set {reg,login} of parameterized inputs, each of arity two. The
language L,gin consists of all sequences of reg and login, where the data values of login
match the ones of reg, i.e,

Liogin = {(reg,(di, d2))(login, (d3,dy)) | dy = d3 A dy = dy}.

Intuitively, one has to login with the credentials one has registered with, and Lein
describes valid sequences of register and login. While (reg,(1,2))(login,(1,2)) and
(reg, (3, 3))(login, (3, 3) are in .Ly,4,), the data word (reg, (1, 2))(login, (3, 4)) is not.

Let now a symbolic input be a pair (a, p), of a parameterized input a of arity k£ and a
sequence of symbolic parameters p = (p1,..., px) Let further X = (x1,..., x,;) be a finite
set of registers. A guard is a propositional formula of equalities and negated equalities over
symbolic parameters and registers of the form

G:=GAG|GVG|xi=pjlxi#pjltrue,

where true denotes the atomic predicate that is always satisfied. An assignment is a partial
mapping o : X — X U P for a set P of formal parameters.

Definition 10 (Register Automaton) A Register Automaton (RA) is a tuple A =
(29 La 109 X, r, /l), Where

- X is a finite set of parameterized inputs.

- L is a finite set of locations.

- lp € L is the initial location.

- X is a finite set of registers.

- T is a finite set of transitions, each of which is of form (I, (a, p), g, o, '), where l is the
source location, I’ is the target location, (a, p) is a symbolic input, g is a guard, and
o is an assignment.

- A: L {+, -} maps each location to either + (accept) or — (reject).]

Let us define the semantics of an RA A = (X, L, [y, X, I, 1). A valuation, denoted by v, is a
(partial) mapping from X to D. A state of A is a pair (/,v) where [€ L and v is a valuation.
The initial state is the pair of initial location and empty valuation (ly, 0).

(a,

d _
A step of A, denoted by (I, v) ——L (I',v"), transfers A from ([, v) to (', v') on input (a, d)
if there is a transition (/, (a, p), g, o, ") € T such that

1. gis modeled by d and v, i.e., if it becomes true when replacing all p; by d; and all x;
by v(x;), and

40

4.2 Modeling systems capable of storing data values

(reg(p1,p2)) | true (login(p1,p2)) | X1=p1Ax2=p>

X1:=Pp15X2:=p2 /l\ —

1

dogin(p1,p2)) | x1#p1VX2#p2 (reg(p1,p2)) | true

@ (reg(p1,p2)) | true (login(pi,p2)) | true
— 9 —

(reg.(p1,p2)) | true (login(p;,p2)) | true

Figure 4.4: Register automaton for £,g,. Accepting location marked by double circle.

2. V' is the updated valuation, where v'(x;) = v(x;) wherever o(x;) = x;, and V' (x;) = d;
wherever o (x;) = p;.

A run of A over a data word (a1, d)) ... (ax, dy) is a sequence of steps

(ay ,d_l) (ak yd_k)
(o, 0) —— (i,ve)y oo A1, vie1) —— i, vi).

A run is accepting if A(ly) = +, otherwise it is rejecting. The data language L(A) recognized
by A is the set of data words that it accepts. A register automaton A is determinate if no
data word has accepting and non-accepting runs in A. A data word w is accepted by a
determinate register automaton (DRA) A if all runs of w in A are acceptingE]

Two registers x;, x; € X of A are independent if the behavior of A does not depend on
the equality (or inequality) of x; and x;. Technically, this means that

- no guard of any transition may require the equality of x; and x;, and
- no combination of guard and assignment may imply the equality of x; and x;.

A register automaton is right-invariant if all registers are pairwisely independent.

Right-invariance is important for defining canonical DRAs by means of an extended
Nerode-relation for data languages. This allows for using one location for every class of
the (to be defined) Nerode-relation since in a right-invariant DRA in no state the future
behavior depends on the equality of registers.

Figure@ shows a DRA for L;,4,. From the initial location it is possible to register with
a username and password. Then, it is possible to login with the these credentials. All other
inputs will lead to the non-accepting sink location /3.

4.2.2 Suffix-based model construction

In the introduction to this chapter it has been argued that when extending expressivity of
the modeling formalism, four problems arise. The first two of these, (1) a suffix-based

2Determinacy is a way of encoding disjunctions in guards implicitly (instead of working with explicit disjunc-
tions and determinism). It allows to relate data languages and register automata more easily than explicit
disjunctions when constructing canonical automata for data languages.

41

4 Active learning of interface programs

identification of all parts of a model (locations, transitions, and registers in this case) and (2)
a method of generating automata from sets of traces, will be discussed in this section. The
remaining two problems (using finite sets of prefixes and suffixes in a learning algorithm
and handling counterexamples) will be addressed in the following two sections.

First, in order to identify locations in a register automaton, a corresponding Nerode-
relation with finite index is needed. Such a relation alone, however, is not sufficient, when
constructing canonical register automata models for sets of data words. One will also
need a means of deriving registers, guards, and assignments from data words. As will
be shown, suffixes can be used to determine registers and assignments in a canonical au-
tomaton. Guards of transitions can be derived from data words when combining the ideas
from Section[d.1] i.e., using a system of representative inputs with an order on the inputs.

Identifying locations. Let us begin with the adaption of the Nerode-relation to data lan-
guages. Let the residual of some word u € Wy wrt. a data language Lp, denoted by
u~' Lp, be the set of words v with uv € L. As discussed above, the set of data inputs over
P and some set of parameterized inputs X is infinite. Unlike in the case of countable Mealy
machines (Section [4.T)), however, also the (classic) Nerode-relation on words over this set
of inputs will have infinitely many classes in the case of data languages. In the example
of Ljygin, the data words (reg, (1,2)) and (reg, (3,4)) have different residuals wrt. Ly,gin.
There is a distinct residual for every combination of dj,d> € D and (reg, (di,d>)). When
comparing different data words, one has to abstract from concrete data values in residuals.

Definition 11 (Equivalence wrt. Lyp) Two words u,u’ € T* are equivalent wrt. =g, de-
noted by u =y ', iff for some permutation w on D

u ' Lp) = ' L. O

Intuitively, the permutations replace equality of residuals by some notion of isomorphism
on residuals. This corresponds exactly to the role of registers in DRAs. In our example
(reg, (1,2)) and (reg, (3, 4)) are equivalent wrt. =,. Using the permutation on D that maps
1 to 3 and 2 to 4 and is the identity otherwise, (reg,(1,2)) becomes (reg, (3,4)), and the
residual of (reg, (1,2)), i.e., the singleton set containing (login, (1, 2)), becomes equal to
the residual of (reg, (3,4)).

Identifying transitions. The transitions of a register automaton are guarded by logic for-
mulas over binary (in-)equalities between registers and symbolic parameters. Similar to the
case of AAAR, the guards can be understood as an abstraction on the (infinite) set of all in-
puts. While in the case of AAAR the abstraction is formulated globally on the set of inputs,
here representative data inputs have to be chosen for every prefix of the language (i.e., in
every location of an RA)EI

Intuitively, such a set has to contain one data word for every path (sequence of transitions)
in a canonical DRA. A representative data word for a path has to be capable of representing
all other data words for that particular path. It will thus be a data word with just enough
equal data values for this sequence of transitions. Such a word can represent all data words

3AAAR can also be extended to work with local sets of representative inputs. Such an extension is presented
in [56].

42

4.2 Modeling systems capable of storing data values

(reg, (1,2))(login, (1, 2))

(login, (p1.p2)) | x1 = p Axz = p2 N

(I‘eg\(j’g))

(reg, (p1,p2)) | true
X] 1= Pl1.X2 = p2

(login,(py,p2)) | x1 # p1 VX2 # p2

(reé, (1,2))(login, (3,4))

(login, (p1, p2)) | true

(log>in, (1,2))

Figure 4.5: Prefix-closed subset of L-essential words for Ly,

that correspond to the same path but have some additional equalities among memorable data
values since the canonical DRA is right-invariant, i.e., equality of values in registers has no
effect on its behavior. Let such words be L-essential data words.

Figure details the intuition for the example of £, and its canonical DRA in Fig-
ure .4 The figure shows the prefix of the tree that results from “unrolling” the automaton
from Figure 4.4] up to infinite depth. Every node in such a tree can be associated with one
L-essential data word form a prefix-closed set of L-essential data words. The root of the
tree corresponds to the empty data word (no transition has been passed so far).

The two nodes in the right of the figure and the corresponding [L-essential data
words show what is meant by “just enough equal data values”. The data word
(reg, (1,2))(reg, (3,4)) is L-essential since it cannot be the special case of any other word
(it has no equal data values). This reflects that the guards of both transitions passed by this
word do not require any equalities between data values. The word (reg, (1,2))(reg,(1,2))
is L-essential since it is the word with least equal data values that is not a special case of
(reg, (1,2))(reg, (3,4)), i.e., corresponds to a different sequence of transitions in the canoni-
cal DRA for Lj,ein, requiring exactly the first and third data value and the second and fourth
data value to equal.

In [23] (Paper IV), we prove the existence of a unique minimal set of L-essential words
inductively, delivering implicitly an algorithm for constructing such a set. Of course, the
definition in the paper is not based on the intuition given above, which relies on the (un-
known) canonical DRA for a data language. It is based on an a set of orders on data words,
realizing the intuition of special cases given above. Using these orders, L-essential data
words can be identified by means of suffixes. Intuitively, data words that can be represented
by one L-essential word have “similar” residuals. These residuals can be computed from
the residual of the L-essential word.

Identifying registers. Finally, a method is needed for identifying which data values to
store in registers when constructing a canonical register automaton for some data language.
Let mgq : D — D be a transposition of d and d’, i.e., mapping d to d’ and vice versa, and
the identity otherwise.

43

4 Active learning of interface programs

Definition 12 (Memorable data values) For some word u € Wo a data value d €
ValS et(u) is memorable (wrt. Lgp) if for some suffix v.e Wyq and some transposition
Taqa, where d' € D\ Vals(uv),

uy € Lz) < umgq v) ¢ Lz).

The set of memorable data values in u is denoted by mem p(u). I:E]

Memorable data values have to be stored in registers of a DRA for Lgp. For (reg, (1,2))
both data values are memorable, which is proven for data value 1 by suffixes (login, (1, 2)),
and (login, (3, 2)).

Using the above ideas, a Myhill/Nerode-like theorem for (regular) data languages and regis-
ter automata can be established, stating that a data language can be represented by a register
automaton if =z has a finite index. One direction of the proof of this theorem is an algorithm
for constructing a register automaton for a regular data language from its set of L-essential
words, resembling the approach from Section [2.1]

4.3 Inferring register automata models

In order to infer register automata models, two problems remain to be solved. First, a finite
set of suffixes has to incrementally approximate and finally realize the Nerode-relation on
the (finite) set of prefixes, used to determine the locations and transitions of the inferred
model. In particular, these suffixes have to be capable of identifying locations and registers.
Also, these suffixes have to be equally applicable to different prefixes, which due to data
values is not trivial.

Second, counterexamples have to be exploited in a way that guarantees strictly monotone
progress towards the canonical DRA for an inferred data language. This section focuses on
how the idea of an abstract representation, applied to sets of suffixes, leads to a finite set of
suffixes with the desired properties, and how the ideas for handling counterexamples from
the previous sections can be extended in the context of register automata. Put together, this
results in an active learning algorithm for register automata models.

Presentation in this section served as a basis for in [46] (Paper VI) and is thus very similar
to the paper.

4.3.1 Abstract suffixes

Approximating the Nerode-equivalence for data languages by means of a finite set of suf-
fixes is different from the classic case (of inferring DFA or Mealy machine models) in a
number of respects. While in the classic case a suffix is equally meaningful after any prefix,
this is not true when learning register automata. Here, the data values in a suffix, in par-
ticular if they equal memorable data values in a prefix, have an impact that is specific to a
prefix. Also, in the classic case suffixes are only used to distinguish states. When learning

4The definition used here is not the one from [23]] (Paper 1V), which relies heavily on the formalism used in
the paper. The definition of memorable data values given here resembles the definition from [11]. While
both definitions provide the same set of memorable data values for a prefix, the one used here shows better
how suffixes can be used to identify memorable data values.

44

4.3 Inferring register automata models

register automata, however, suffixes are additionally used to identify memorable data values
in prefixes. Also, Definition [IT|uses residuals, i.e., infinite sets of suffixes. It is not imme-
diately obvious that any finite set of suffixes can realize the Nerode-relation in the case of
data languages. This section discusses how these problems are solved in [49] (Paper V).

Assume an infinite data domain Dy, disjoint from 9, which will be used in suffixes.
Elements of Dy will be marked by an overline. An abstract suffix is a data word with data
values in Dy and D. Let by convention the data values from Dy always occur in fixed order
1,2,...k in an abstract suffix. For a prefix u, an abstract suffix v represents all concrete
suffixes that can be obtained by some injective mapping from Dy to D \ (ValS et(u) U
ValS et(v)) . Since data languages are closed under permutations on 9, all these suffixes
lead to the same behavior after u. Thus, abstract suffixes can be used just like concrete
suffixes. Consider the example of Ly,. For the prefix (reg,(1,2)), the abstract suffix
(login, (1,2)) represents all concrete suffixes that can be obtained by an injective mapping
from Dy to D\ {1, 2}, e.g., (login, (3,4)) or (login, (5, 7)).

Now, let Z = {zi,...,z} be a finite set of placeholders, which is disjoint from 9 and
PDy. An abstract parameterized suffix (v) is a data word with data values in Z U Dy. Let
o :Z — ValSet(u) U (Dy \ ValSet({v))) be an injective mapping that is applied to (v)
pointwisely to all z; € Vals({v)) such that o({(v)) is an abstract suffix. For a set V of abstract
parameterized suffixes let V(u) be the set of abstract suffixes that can be generated from
abstract parameterized suffixes in V by mappings o for prefix u.

Different mappings o~ will use selected data values from ValS ef(u) in suffixes. They allow
exactly the construction of pairs of suffixes that identify memorable data values. In the case
of Lyyein, consider the prefix (reg, (1,2)). The abstract parameterized suffix (login, (z,z))
will (among others) yield the abstract suffixes (login, (1, 2)) and (login, (1, 2)), which prove
1 to be memorable in (reg, (1, 2)).

While abstract parameterized suffixes solve the problem of identifying memorable data val-
ues, they introduce a new problem. Prefixes of different length (i.e, different numbers of
data values) give rise to differently many abstract suffixes for one abstract parameterized
suffix. In order to use abstract suffixes for approximating the Nerode-relation, however,
the partial residuals constructed by means of abstract parametrized suffixes have to be re-
lated for different prefixes. The sets of abstract suffixes have to be represented in a way
that allows comparing. Luckily, the idea of an (abstract) representation, used in Section 4.1
and Section 4.2.2] on the (infinite) set of inputs and the set of prefixes, respectively, can be
adapted to sets of suffixes.

For two abstract suffixes v,v'in V(u) let v Cy V' denote that v/ can be obtained from v
by an injective mapping from Dy to D U Dy. In the example used above (login, (1,2)) Cy
(login, (1,1)) Cy (login,(1,2)) for prefix (reg,(1,2)). The preorder Cy can be used to
define a set of representative suffixes for V(u). For v € V(u) let

weakyuy (V) =ger maxc,{v' € V(u) |V Cy v},

i.e., the set of greatest (wrt. Cy) suffixes in the set of suffixes smaller than v (wrt. Cy) in
V(u).

A suffix v is in the set of representative suffixes for V(u) if for some V' in weaky,(v)
it is true that w.l.o.g. uv € Lo but w’ ¢ Lo, or if weaky,(v) is empty. Intuitively, the

45

4 Active learning of interface programs

(login, (1, 2))/+ (login, (2, 1))/—

(ogin, (1,1))/— (login,(1,2))/— (login,(2,1))/— (login,(1,1))/—

—_—

(login, (1,2))/-

Figure 4.6: Preorder of abstract suffixes and corresponding acceptance for prefix
(reg, (1,2)) generated by abstract parameterized suffix (login, (z;,z)) in the
case of Lj,gin. Representative suffixes marked by an underline

set of representative suffixes contains all suffixes in which a memorable data value shows
some effect and additionally the smallest suffixes wrt. Cy. This representation allows for
comparing sets of suffixes since it depends on the memorable data values of a prefix and not
on all data values.

Figure .6 shows the construction of the set of representative suffixes for prefix
(reg, (1,2)) and abstract parameterized suffix (login, (z1,z2)) in the L;,,;, example. Suffixes
in the preorder are marked with + if the corresponding word (concatenated to the prefix)
is in Lyyein, and with — otherwise. Representative suffixes are underlined. As can be seen,
the smallest element and the suffix identifying the memorable data values in (reg, (1, 2)) are
representative suffixes.

For a set of abstract parameterized suffixes V and some prefix u, let | V(u)] be the set of
representative suffixes for V(u), and the closure Cy, : |[V(u)] — {+, -}, where Cy,)(v) =
+ if uv € Ly and — otherwise for v in [V (u)]. Let further memy (1) be the set of data
values in ValS et(u) that are proven to be memorable in u by V. For two prefixes u =, v’
obviously [memy(u)| equals [memy(u’)|, and there is a permutation 7 on D that on memy (1)
is a bijection into memy (u”) such that 7(Cy(,)) = Cy), where r is applied to all suffixes in
the domain of Cy).

So far, it has been shown how abstract suffixes can be used to realize the Nerode-relation on
a set of prefixes and how abstract suffixes identify memorable data values of these prefixes.
It remains to be shown that a finite set of abstract suffixes can realize the Nerode-relation
such that 7(Cy(,)) # Cy) for all permutations 7 on D in case u #, u’. It follows from
Definition |1 1| that if u #, u’, then for every permutation 7 there is at least one suffix v such
thatuv € Ly & u'n(v) ¢ Lp. Thus, it only has to be shown that a finite number of suffixes
is sufficient to eliminate all permutations in case u #, u’

For u,u’ € Wy, let there be more than one permutation on 9 under which the partial
representative residuals become equal for some set V of abstract suffixes, i.e.,

1 (Cvwy) = Cvuwy = m(Cyw).

This implies that Cy,) = m o 1(CV(,,)). Either there are memorable data values in u that
can be used interchangeably in Ly, or the suffixes in V fail to prove these data values to
be non-interchangeable. In the latter case a single abstract suffix can be found, splitting a

46

4.3 Inferring register automata models

group of seemingly interchangeable memorable data values in Cyy,. Such a suffix has to
prove two memorable data values of u to have different effects. It is sufficient to find a suffix
in which the one data value has an effect while the other does not. Since the two memorable
data values can be distinguished in L, such a suffix exists.

Now, let V be such that for u #, u’ all memorable data values are identified and only
true symmetries remain between memorable data values, but still 7(Cy,)) = Cy) for
some permutation 7 on D. As stated above, there is a single suffix that disproves m. It
is sufficient to argue about a single permutation here. If permutations mj,m, remain, the
complete residual of u is invariant under 7y orr, !, Disproving one permutation, automatically
disproves the other one, too.

Hence, a finite set of abstract parameterized suffixes can be used to realize the Nerode-
relation on a set of prefixes and to identify registers in a register automaton to be constructed.

4.3.2 An active learning algorithm for register automata

The ideas from the previous sections can be combined into the active learning algorithm
for register automata models presented in [49]] (Paper V). The algorithm is formulated in
the MAT learning model, using membership queries for data words and equivalence queries
that test the equivalence of an unknown target data language Ly and the data language
recognized by an intermediate hypothesis.

The learning algorithm will use a finite prefix-closed set of L-essential words as prefixes.
The prefixes will be used to determine locations and transitions of the inferred register
automaton. The Nerode-relation on the set of prefixes will be approximated by a finite set
of abstract parametrized suffixes. As a data structure an observation table, i.e., a mapping
from the set of prefixes to closures for prefixes and abstract parameterized suffixes, is used.
According to the Nerode-relation for data languages, prefixes in the table are compatible if
their closures become equal under some permutation 7 on . As in the classic case, the
learning algorithm will start with the empty data word as only prefix and only suffix. The
empty prefix leads to the initial location in the canonical DRA for Ly, and the empty suffix
distinguishes prefixes in Ly from ones that are not in L.

Extending the ideas from Section {.1] counterexamples are analyzed in order to deter-
mine if they (1) prove a new data value to be memorable in some prefix, (2) disprove a
permutation under which the approximated residuals of two prefixes become equal, or (3)
prove a refinement of the abstraction to be necessary (i.e., provide a new L-essential prefix).

Figure shows this extended analysis of counterexamples. The first case (new loca-
tion) resembles the default case from Theorem [2} data words |uJea and |ualg; from the
set of prefixes lead to the same location in the hypothesis but the suffix of the counterex-
ample disproves their equivalence (at least under the permutation used during hypothesis
construction). Adding a new abstract parameterized suffix generated from the suffix of the
counterexample to the set of suffixes used by the learning algorithm will reduce the number
of valid permutations between both prefixes as discussed in Section[d.3.1]

The second case (new transition) corresponds to the case of a refinement in AAAR stated
in Theorem (4 The data word ua’ is the L-essential word for ua in the hypothesis. In
case this is true in the SUL, too, a counterexample can be found in which the prefix ua is
replaced by its L-essential representative word ua’. The search for such a counterexample

47

4 Active learning of interface programs

New location)
Ly

~~ . _ Same state in hypothesis

Crupar = 7 Cvitualyn)

Same state in hypothesis.
Same state in SUL?

New transition)

New assignment)

Figure 4.7: Handling counterexamples when inferring register automata models

can be quite expensive. As indicated in the figure, the new counterexample will have less
equalities between data values as the original one. The number of possible refinements is
exponential in the number of equal data values that have to be refined into multiple sets of
equal data values.

The third case (new assignment) relates directly to the definition of memorable data val-
ues (Definition[I2). The suffixes v and v’ are a pair of suffixes as assumed in the definition.
The word ua is from the set of prefixes. This ensures that the newly introduced assignment
has a well-defined transition in the next hypothesis.

Progress achieved in any of the three dimensions is strictly monotonic. Due to the finite
index of = there are only finitely many locations and registers in the canonical DRA for
Lp, and only finitely many transitions that have to represented by L-essential words. As
shown in Section 4.3.1] the number of permutations between two prefixes can only be re-
duced finitely often before no valid permutation is left. Thus, the algorithm will terminate
with the unique canonical DRA for Ly (up to isomorphism, i.e, renaming of locations and
registers).

48

4.4 Inferring semantic interfaces of data structures

|

(put(p)) | true

(get(p)) | p=x) X1:=p /(Ok’ » (get,()) | true /(out ()

(put(p)) | true
X1:=p

(put,(p)) | true
X2:=p

(put(p)) | true / (ok

t, =
(get(p)) | p=x; Xai=p (get0) | rue / (out, (1)

(put,(p)) | true

t
o (Put(p)) | true /(K.0)

t, =
(getp)) | p=x3 =P (et Q) | true / (out, (x;))

OGO uOly

Figure 4.8: Partial models of a stack of capacity 3: RA (left) and RMM (right)

4.4 Inferring semantic interfaces of data structures

The previous sections summarized the ideas for extending active learning to register au-
tomata. While register automata accept data languages, real black-box components are
usually reactive systems, producing output. In [46] (Paper VI) an extension of the algo-
rithm from [49] (Paper V) to systems that produce outputs with data values from registers is
used to infer interfaces of data structures. Rather than re-describing the extension in detail
here, this section will only provide the intuition behind the extension and discuss its effect
along a small example.

As an example for a system that produces parameterized output think of a stack of limited
size, exposing two inputs: put and get. The action put tries to store an additional object
in a data structure, get tries to retrieve a data value from a data structure. The stack allows
storing the same object multiple times, and does not change its state on unsuccessful oper-
ations, i.e., when adding an additional data value exceeding the size limit of the stack, or
when trying to get a data value from the empty stack.

The stack can be modeled as a register automaton, which is shown in the left-hand side
of Figure 4.8] For better readability reflexive transitions are omitted in the figure. The get
operation in this case has a data parameter and the returned data value of get operations
is encoded in the guards of corresponding transitions. E.g., from location [, a get returns
the value of register x;. In terms of the data language accepted by the RA, the data word
(put, (d))(get, (d)) is in the data language accepted by the automaton.

While it is certainly possible to model parameterized output in this fashion, it is not
very natural. In the right-hand side of Figure 4.§] the same stack is modeled as a Register
Mealy Machine (RMM), i.e., a register automaton with Mealy machine-like outputs on all
transitions [46] (Paper VI). There, the outputs are symbolic: they comprise data parameters,
which are bound to registers. Performing a get operation from location /; will produce an
output (out, (xy)).

In order to extend active learning from register automata to RMMs, the concepts intro-
duced in the previous sections have to be modified accordingly.

49

4 Active learning of interface programs

Table 4.1: Experimental results for inferring register automata models from data structures
using various algorithms

Name Mealy (|D| = 4) RA RMM

Ol MQs EQs | |L] MQs EQs |]|L] MQs EQs
Stack (1) 5 17 0] 3 35 21 2 10 0
Stack (2) | 21 53 1| 4 135 41 3 18 0
Stack 3) | 85 232 31 5 554 6| 4 38 1
Stack (4) | 341 854 41 6 2998 81 5 53 2

1. The Nerode-relation for data languages has to be adapted in a fashion similar to the
semantic functionals of Mealy machines from Section[2.1]

2. The definition of memorable data values has to be extended by the additional case
that a data value is proven to be memorable by occurring in some output.

3. Closures and their equivalence have to be adapted to residual functionals with param-
eterized outputs.

Apart from these extensions, the algorithm from [49] (Paper V) can mostly remain un-
changed. Corresponding to the extension of active learning from DFAs to Mealy machines,
the set of abstract suffixes will be initialized using all symbolic inputs instead of the empty
word.

Implementations of both learning algorithms (for register automata and RMMs) have
been evaluated in a small series of experiments based on models of data structures. The
learning algorithms have been implemented on top of LearnLib. The results from all con-
ducted experiments are presented in [46] (Paper VI). Here, the results from one series of
experiments will be discussed. In this series, models of stacks with varying size limits have
been inferred using three different approaches.

1. Mealy machine models have been learned for a finite data domain of size 4. In these
experiments, the learning algorithm for Mealy machines was equipped with a tech-
nique for symmetry reduction, resulting in optimized consumption of membership-
and equivalence queries.

2. Register automata models have been inferred using the learning algorithm from [49]
(Paper V).

3. The active learning algorithm from [46] (Paper VI) has been used to infer for RMM
models.

In all experiments counterexamples were derived by “unfolding” the target system and hy-
pothesis models for a large enough finite data domain, and applying an equivalence test
for Mealy machines to these models. Table 4.1] shows the key figures of the experimental
results.

While the inferred Mealy machine models encode the state of the stack in the state space,
the inferred register automata and RMM models have one location per number of stored

50

4.4 Inferring semantic interfaces of data structures

data values, including an initial (empty) location. The register automata additionally have
one sink location, which is an artifact of the instrumentation used in this setup.

In the series of experiments inferring Mealy machines and register automata, the number
of membership queries grows exponentially in the size of the stack. In the case of Mealy
machines this is due to the exponentially growing state-space.

In the the case of register automata this has two reasons. First, as described in the analysis
in [49] (Paper V), the number of registers contributes to the number of membership queries
as an exponential factor. Second, the register automaton encodes output into guarded tran-
sitions. These additional guarded transitions have to be inferred from counterexamples.

As discussed in [49] (Paper V), deriving new prefixes representing guarded transitions
from counterexamples requires exponentially many membership queries (in the number of
data values in a counterexample). In the series of experiments presented here, the costs
of inferring additional guards clearly dominate the costs for inferring registers, which is
indicated by the increased number of equivalence queries in the case of inferring register
automata (compared to the experiments with the algorithm for learning RMMs).

The experiments lead to two conclusions. First, switching from Mealy machines to mod-
els with registers leads to more expressive models: Modeling the influence of (stored) data
values on the control-behavior results in infinite-state models. Already for small finite data
domains these infinite-state models are exponentially smaller than the corresponding Mealy
machines.

Second, using RMM s instead of register automata does not further extend the expressive-
ness of the inferred models but has a dramatic effect on the performance. The more adequate
way of modeling output leads to exponential (in the number of registers and length of coun-
terexamples) savings in the number of membership queries. The number of equivalence
queries is reduced roughly by the number of transitions with parameterized output.

The huge impact of inferring RMMs instead of Mealy machines becomes apparent when
looking at bigger systems. The RMM model of a nested stack (i.e., a stack of stacks) with
a capacity of four in the inner stacks as well as in the outer stack has 781 locations, and
can be inferred with 44,589 membership queries and only 9 equivalence queries (cf. [46]
(Paper VI)). The RMM has 16 registers, corresponding to the overall capacity of the 2-
dimensional stack. The corresponding Mealy machine model for a finite data domain of size
four would already have significantly more than 4'® (> 10”) states, which clearly exceeds
the capabilities of today’s active learning algorithms by far.

51

5 Related work

This chapter reviews works related to the topic of this thesis, i.e., the inference of interface
programs by means of (active) automata learning. The structure of the chapter follows
roughly the topics addressed in the previous chapters.

Active automata learning. Automata learning techniques have been researched for the
past 40 years. At first passive learning algorithms, constructing automata from gives sets
of examples have been investigated (e.g., 16, 84]). In [37] it is shown that constructing
minimal automata from samples is an NP-complete problem.

The first active automata learning algorithm, using membership queries and a set of pre-
fixes that covers all classes of the Nerode-relation, is presented in [6]]. The algorithm in-
corporates the partition-refinement pattern typical to active learning and uses a polynomial
number of membership queries.

Active learning for regular languages with membership queries and equivalence queries
is presented in [[7]. Variants are presented in [60], using a discrimination tree instead of
an observation table, and in [62], adding suffixes of counterexamples to the table instead
of prefixes. A first algorithm for analyzing counterexamples explicitly is presented in [75].
The abstract idea of an observation pack, unifying these approaches is developed in [8]].

Active learning has been extended to Mealy machine models in [70, [63]] by adapting the
algorithm from [7]]. In [[77]] the algorithm from [62] is adapted in a slightly optimized version
to Mealy machine models. Further improvements to this approach, especially for the case
of long counterexamples obtained from testing or monitoring, are discussed and evaluated
in [54]. Finally, in [82] (Paper I), the strategy from [75] for handling counterexamples
explicitly is extended to Mealy machines.

The performance of active learning (in terms of queries) is essential when it comes to
practical application. This has been addressed by applying application specific filters, which
help answering membership queries without performing tests on a SUL [53,9]. The poten-
tial of different generic types of filters and the interplay of different filters has been investi-
gated in 65, 164, 55]]. A different approach to dealing with realistic systems is the inference
of partial models as is discussed in Section [3.1]

While optimizations to the number of membership queries have been investigated thor-
oughly, equivalence queries remain a fundamental problem in active learning. They do not
exist in practice but can only be approximated using methods from testing. In [12] the close
relation between active automata learning and conformance testing (e.g., 24, [33]]) is ana-
lyzed. An example for the integration of active learning and conformance testing is given
is [72], where the combined approach is discussed as one method for checking properties
of black-box systems.

53

5 Related work

Applications of active learning. Currently there are two libraries available implementing
active learning algorithms, namely libalf [20] and LearnLib [74} [67]. While the focus of
libalf is providing implementations of algorithms from the literature, LearnLib aims at pro-
viding an infrastructure for evaluating, and implementing learning algorithms as well as for
applying these in case studies. The implementations of (active) learning algorithms from
libalf can be used in the framework provided by LearnLib.

Active learning has been applied successfully in an number of interesting case studies. It
has been used to infer models of CTI systems [41},40]], web-applications [[73]], communica-
tion protocol entities [1]], the new biometric European passport [2]], bot nets [21]], a network
of integrated controllers in the door of a car [80], and enterprise applications [[10, 9. The
particular challenges of practical application are discussed in [48]] along with illustrating
examples from case studies.

The state-of-the-art approach to inferring models of real (i.e., infinite state) systems in
active automata learning is using predefined abstractions, realized by so-called mappers
(cf. [58]]), which are placed between the component to be inferred and the learning algo-
rithm. Mappers provide a regular projection of the component. This approach is described
explicitly for the generation of specifications from protocol entities in [1]].

However, defining mappers is an error-prone and laborious manual effort. In [51] (Paper
III) automated alphabet abstraction refinement is integrated with active learning to over-
come this problem. A similar approach, using lazy alphabet construction without coun-
terexample driven alphabet abstraction refinement, is presented in [35] for the inference of
assumptions in assume-guarantee reasoning.

Extensions to active learning. A different approach to dealing with non-regular systems
is the extension of active learning algorithms to richer modes. Active automata learning has
been extended to systems with parameterized inputs and guarded transitions in a number
of works [45} [79} [78] [13]]. Other extensions include I/O-automata [3]] (using a mapper that
provides a regular projection of the inferred I/O-automaton), timed automata [38},39] (using
decision trees similar to the ones presented in [23] (Paper IV)), Petri Nets [30]], or Kripke-
structures [66]. An extension to probabilistic systems is presented in [31]].

The requirements on modeling interface programs have been analyzed in [47]]. The result-
ing automaton model (i.e., register automata) is presented in (23] (Paper IV). It resembles
Memory Automata, which have been introduced in [59] with the explicit aim of developing
an automata-based formalism for program behavior. Register automata differ from mem-
ory automata mainly in the explicit description of guards and assignments along transitions
and by using a finite set of inputs with data parameters instead of using an infinite set of
inputs directly. Myhill/Nerode-like theorems for classes of Memory Automata have been
formulated in [[11]] and in [32]. The canonical models resulting from the Myhill/Nerode-like
theorem presented in [23]] (Paper V) differ significantly from canonical Memory Automata.
In fact, by allowing random access to registers canonical RAs can be exponentially smaller
than the canonical Memory Automata from [11] and [32]]. A detailed discussion can be
found in [23]] (Paper IV). In [[18,[19], automata with registers are investigated from an alge-
braic perspective, resulting in a Nerode-relation similar to the one of [23] (Paper VI).

An active learning algorithm for Memory Automata is presented in [76]. This algorithm
infers DFAs for growing finite data domains and encodes these as Memory Automata. Un-

54

like the algorithm presented in [49] (Paper V), no guarantees about the resulting automata
are made. In particular, since the approach is not backed by a canonical form, the automata
constructed in different learning experiments (for the same SUL) may differ. The authors
of [[14}[17] present a similar technique for inferring symbolic Mealy machines, i.e., automata
with guarded transitions and state-local sets of registers: First, a Mealy machine is learned
for a large enough finite domain. Then, from this Mealy machine a symbolic version is
constructed. In [61] another variant of this two-step approach is presented in combination
with passive learning: behavioral models are inferred from program traces obtained through
monitoring using passive automata learning. The influence of data values on the behavior
is inferred with an invariance detector [29]. The results are combined into a single model.

In contrast to these two-step approaches that use off-the-shelf learning algorithms in the
first step, the active learning algorithm for register automata presented in [49] (Paper V)
infers models with registers directly. The extension of active learning to this class of richer
models comes at the price of a more complex treatment of counterexamples and requires
appropriate extensions of the suffix-based identification of entities in models (i.e., registers,
transitions, and locations). As can be seen in the results from the experiments presented in
Section @] and in [46] (Paper VI), however, this effort is rewarded already when inferring
small models by a significant positive impact on the number of required tests that have to
be executed on a SUL.

Interface synthesis. Synthesis of component interfaces has been a research interest for
the past decade. Presented approaches fall into three classes described in [81]].

First, client-side static analysis uses a static analysis of source code using the component
of which a model is to be inferred. The approaches described in [81} [86] mine Java code
to infer sequences of method calls. These sequences are used to produce usage patterns
statistically. Deviations from these patterns are then considered as candidates for erroneous
usages of the component and have to be verified manually.

Second, component-side static analysis uses a static analysis on the component itself.
In [4] an approach is presented that generates behavioral interface specifications for Java
classes by means of predicate abstraction and active automata learning. Here, predicate
abstraction is used to generate an abstract version of the considered class. Afterwards a
minimal interface for this abstract version in obtained by active learning. Another approach
uses counterexample guided abstraction refinement (CEGAR) [42] instead of active learn-
ing in order to derive a regular model from the Boolean program obtained by predicate
abstraction. Both strategies are compared in [15]].

Static analysis methods rely on access to source-code, either of the component or of code
using the component. This cannot be assumed in all scenarios. The ConnecT project [S7]],
which provides the motivational background for this thesis, aims at automated mediator syn-
thesis for networked systems. In this scenario neither components are available as source-
code, nor is client-side code.

The third class of methods, namely dynamic analysis, infers interface models from ac-
tual program executions. The authors of [S]] present an approach for inferring probabilistic
finite state automata (PFSA) describing a components’ interface using a variant of the k-tail
algorithm [16] for learning finite state automata from sets of examples. In [87] a special
form of component interfaces, consisting of one finite state automaton per field of a class, is

55

5 Related work

presented along with a static analysis and a dynamic analysis for inferring such component
interfaces.

Finally, the SPY approach [[36] aims at inferring behavioral specifications, represented as
graph transformation rules, from Java classes. Inference is organized in two phases: First,
the run-time behavior of components is observed on a small concrete data domain. Then,
(symbolic) transformation rules are constructed inductively from the concrete observations.

All three of these dynamic approaches use passive learning and are thus limited to (pos-
sibly small) sets of observed executions. In case some functionality of a component is not
executed, it will not be captured in the inferred model. Using active methods, on the other
hand, allows for active exploration of the interface of a component: The authors of [27],
e.g., use a combination of component-side static analysis, identifying side-effect free meth-
ods (so-called inspectors), which are then used to identify states of the component when
interacting with the component systematically.

Summarizing, all previous approaches that infer models describing data explicitly from
black-box components (i.e., [36], [76], [14], and [61]) work in two steps. The first step
consists in inferring models (or in obtaining sets of examples in the case of passive learning)
at the level of a concrete finite data domain. The experiments from [46] (Paper VI) show
that this becomes unfeasible already for relatively small models of data structures. The
active learning algorithm presented in this thesis, on the other hand, infers register automata
directly, without generating such an intermediate representation.

Except for [36], the approach to interface synthesis presented to in this thesis differs
from all previous attempts wrt. the expressiveness of the inferred models. While in all
other approaches inferred interfaces are modeled as “plain” automata, the automata used in
this thesis allow for modeling of (restricted) interface programs comprising conditions and
assignments.

56

6 Conclusion and future work

6.1 Conclusion

This thesis addresses the problem of developing active learning algorithms for interface pro-
grams describing interaction protocols of black-box systems capable of storing and compar-
ing data values used in the interaction. As has been discussed in Section L.} this required
research in three directions: First, the efficiency of active learning (in terms of membership
queries) had to be optimized. Second, equivalence queries had to be approximated. Third,
active learning had to be extended to richer models than Mealy machines or DFAs. The
work presented in this thesis improves the state of the art in all of these directions:

- The efficiency (in terms of membership queries) of active learning for DFAs and
Mealy machine models has been improved considerably by using a new method for
handling counterexamples in combination with inferring partial models: A model
with more than 166,000 states and 121 inputs was inferred. This exceeds the state
of the art (22,000 states and 11 inputs) by more than two orders of magnitude (cf.

Section[3.2.3).

- The incremental equivalence queries presented in Section [3.2] clearly outperformed
the best other algorithms for approximating equivalence queries in the ZULU com-
petition, discovering up to 8% more states using the same amount of membership
queries (cf. [S0] (Paper II)).

- Automated alphabet abstraction refinement allows for inferring models of real sys-
tems (with infinite sets of inputs) without an intermediate hand-tailored abstraction.
An optimal abstraction is inferred in the course of learning (cf. Section[d.I). In the
case of a biometric passport [2]], e.g., a model and an abstraction was learned fully
automatically. Designing the same abstraction required considerable manual effort in
the original case study, presented in [2].

- The extension of active learning to register automata models, presented in Section4.4]
allows for the inference of (restricted) program structures comprising conditions and
assignments, capable of operating real black-box components. Unlike previous ap-
proaches to the inference of models or interfaces with similar expressivity (e.g., [14]
or [36]), no unfeasibly large finite state representation of the system under learning
has to be produced. Instead, register automata are constructed from observations di-
rectly.

The practical importance of this improvement becomes apparent when inferring
RMMs (cf. Section4.4). Already for small data domains finite state representations
of the models inferred in the experiments in [46] (Paper VI) exceed the biggest Mealy

57

6 Conclusion and future work

machine models inferred in experiments presented in this thesis (cf. Section[3.2.3) by
several orders of magnitude.

In the particular case of a nested stack of overall capacity 16, the resulting Mealy ma-
chine model for a finite data domain of size 4 would have 7 inputs and significantly
more than 10° states. The biggest inferred Mealy machine model presented in this
thesis is more than two orders of magnitude smaller and was inferred with almost
50 million membership queries and more than 400,000 equivalence queries (cf. Ta-
ble [3.4) in almost 3 hours. The RMM of the nested stack, on the other hand, was
inferred with less than 45,000 membership queries and only 9 equivalence queries in
no more than 20 seconds.

Key to progress in all directions are two related and recurring patterns, which are extended
step-wisely throughout the thesis: The suffix-based identification of entities in inferred mod-
els and the corresponding analysis of counterexamples.

Suffix-based identification. When inferring Mealy machine models, only states are iden-
tified by means suffixes. In the case of automated alphabet abstraction refinement, the
pattern is extended to classes of the alphabet abstraction, which are identified using tuples
of prefixes and suffixes. Finally, in the case of inferring register automata, single (concrete)
suffixes are no longer sufficient to identify entities in models: Locations and registers are
identified using abstract parameterized suffixes, each representing a complete preordered
set of concrete suffixes.

Analysis of counterexamples. Accordingly, the decomposition and analysis of coun-
terexamples is extended to multiple cases of counterexamples.

1. The thorough analysis of possible strategies for handling counterexamples when in-
ferring Mealy machine models from Section [2.2.2] provides a solid base case, i.e.,
counterexamples leading to new states, which can be used also in the more elaborate
scenarios.

2. The second case, i.e., counterexamples to an abstraction and its integration with the
base case, is presented in Section[4.1] It can be adapted to the case of counterexamples
leading to new transitions in the case of inferring RAs.

3. Finally, a third case, i.e., counterexamples leading to new register assignments, is
added “on top” of the previously introduced cases when inferring register automata
models in Section

The seamless integration of all three cases is achieved by the decomposition of counterex-
amples: In all cases counterexamples are decomposed into an access sequence to one of
the states of a hypothesis and some suffix. This decomposition guarantees that all newly
discovered locations, transitions, and registers have a well-defined, i.e., invariant, position
in subsequent hypothesis models.

The combination of both patterns extends the typical partition-refinement based approach
of active automata learning algorithms to multiple dimensions: locations, transitions, and
registers.

58

6.2 Future work

6.2 Future work

The application of active automata learning in the context of interface synthesis leads to
several interesting questions which exceed the scope of this thesis. These questions can be
categorized using the categories from Section[I.1]

Performance in practical scenarios. The learning algorithm for register automata pre-
sented in [49] has a worst case complexity that is influenced exponentially by the length
of counterexamples. This complexity had a strong negative impact on the performance in
experiments where RA models were inferred of systems that produce output. One big step
towards the practical application of active learning of interface programs was the extension
to RMM s presented in Section f.4] This practical optimization did not only lead to more
natural models of reactive systems but also increased the performance of learning dramati-
cally.

However, this optimizations came at a price: in the current version of RMMs newly in-
troduced data values in outputs are not covered. In real systems this is a quite common
phenomenon: As an example consider a session identifier that is created by the component
to be inferred. In order to infer interface programs for a larger class of components effi-
ciently, it will have to be investigated how inference of RMMs can be extended to handle
output comprising new data values.

Equivalence queries. The approximation of equivalence queries still is one of the fun-
damental open problems in active automata learning. While the evolving hypothesis algo-
rithm, presented in this thesis, has been applied successfully in the ZULU challenge, the
systems used there were randomly generated. In this scenario randomized generation of
suffixes proved to be the best strategy. This strategy, however, will hardly be successful for
man made systems.

On the other hand, a number of works explore the combination of white-box and black-
box methods (or static analysis and dynamic analysis) for the synthesis of interfaces. It
would be very interesting to investigate if equivalence queries, i.e., the search for counterex-
amples, can benefit from information obtained by static analysis (e.g., symbolic execution),
or monitoring.

Expressivity. Register automata faithfully describe systems that only pass data and do
not process data. While this is sufficient for modeling an interesting class of systems (e.g.,
data structures and many network protocols), it does not include all networked systems
envisioned in the ConNECT project: More complex components and protocols use data pa-
rameters on which simple operations can be performed, e.g., an increment operation on a
sequence number.

One appealing direction of research is the extension of active learning to more expressive
models, allowing more tests on data values than for equality, or allowing simple operations
on data values. Interesting phenomena of practical importance can be derived, e.g., from
the requirements in the context of the CoNNECT project. In particular, the boundary will have
to be explored up to which suffix-based identification can be used to uniquely identify these
phenomena in a black-box scenario.

59

Bibliography

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating Models of Infinite-State
Communication Protocols using Regular Inference with Abstraction. In Proceedings
of the 22" IFIP WG 6.1 Int. Conf. on Testing software and systems, ICTSS’10, volume
6435 of Lecture Notes in Computer Science, pages 188—-204. Springer Verlag, 2010.

Fides Aarts, Julien Schmaltz, and Frits W. Vaandrager. Inference and Abstraction
of the Biometric Passport. In Proceedings of the 4" Int. Symposium on Leveraging
Applications, ISoLA’10 (1), volume 6415 of Lecture Notes in Computer Science, pages
673-686. Springer Verlag, 2010.

Fides Aarts and Frits Vaandrager. Learning I/O Automata. In Paul Gastin and Francois

Laroussinie, editors, Proceedings of the 21"

Int. Conf. on Concurrency Theory, CON-
CUR’10, volume 6269 of Lecture Notes in Computer Science, pages 71-85. Springer

Verlag, 2010.

Rajeev Alur, Pavol Cerny, P. Madhusudan, and Wonhong Nam. Synthesis of in-
terface specifications for Java classes. In Proceedings of the 32" ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL’05, pages 98—
109. ACM, 2005.

Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In
Proceedings of the 29" ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL’05, pages 4-16. ACM, 2002.

Dana Angluin. A Note on the Number of Queries Needed to Identify Regular Lan-
guages. Information and Control, 51(1):76-87, 1981.

Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation, 75(2):87-106, 1987.

José L. Balcézar, Josep Diaz, and Ricard Gavalda. Algorithms for Learning Finite
Automata from Queries: A Unified View. In D.-Z. Du and K.-I. Ko, editors, Advances
in Algorithms, Languages, and Complexity, pages 53—72. Kluwer Academic, 1997.

Oliver Bauer. Beherrschung emergenten Verhaltens auf Basis reguldrer Extrapolation
am Beispiel einer prozessgesteuerten Anwendung. Master’s thesis, TU Dortmund,
Department of Computer Science, Chair of Programming systems, 2011.

Oliver Bauer, Johannes Neubauer, Bernhard Steffen, and Falk Howar. Reusing System

States by Active Learning Algorithms. In Proceedings of the 1"

EternalS workshop,
EternalS’11, volume 255 of Communications in Computer and Information Science,

pages 61-78. Springer Verlag, 2012.

61

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

62

M. Benedikt, C. Ley, and G. Puppis. What You Must Remember When Processing
Data Words. In Proceedings of the 4" Alberto Mendelzon Int. Workshop on Founda-
tions of Data Management, volume 619 of CEUR Workshop Proceedings.

Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Harald Raffelt, and
Bernhard Steffen. On the Correspondence Between Conformance Testing and Regular
Inference. In Proceedings of the 8" Int. Conf. on Fundamental Approaches to Software
Engineering, FASE ’05, volume 3442 of Lecture Notes in Computer Science, pages
175-189. Springer Verlag, 2005.

Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular Inference for State Ma-
chines with Parameters. In Proceedings of the 9" Int. Conf on Fundamental Ap-
proaches to Software Engineering, FASE '06, volume 3922 of Lecture Notes in Com-
puter Science, pages 107-121. Springer Verlag, 2006.

Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular Inference for State Ma-
chines Using Domains with Equality Tests. In Proceedings of the 11" Int. Conf. on
Fundamental Approaches to Software Engineering, FASE "08, volume 4961 of Lecture
Notes in Computer Science, pages 317-331. Springer Verlag, 2008.

Dirk Beyer, Thomas Henzinger, and Vasu Singh. Algorithms for Interface Synthesis.
In Proceedings of the 19" Int. Conf. on Computer Aided Verification, CAV’07, volume
4590 of Lecture Notes in Computer Science, pages 4—19. Springer Verlag, 2007.

A. W. Biermann and J. A. Feldman. On the Synthesis of Finite-State Machines from
Samples of Their Behavior. IEEE Trans. Comput., 21:592-597, June 1972.

Therese Bohlin and Bengt Jonsson. Regular Inference for Communication Protocol
Entities. Technical report, Department of Information Technology, Uppsala Univer-
sity, Schweden, 2009.

Mikolaj Bojanczyk. Data Monoids. In Proceedings of the 28" Int. Symposium on The-
oretical Aspects of Computer Science, STACS’11, volume 9, pages 105-116. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata with Group Actions.
In Proceedings of the 26" Annual IEEE Symposium on Logic in Computer Science,
LICS’11, pages 355-364. IEEE Computer Society, 2011.

Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider,
and David R. Piegdon. libalf: The Automata Learning Framework. In Proceedings of
the 22 Int. Conf. on Computer Aided Verification, CAV’10, volume 6174 of Lecture
Notes in Computer Science, pages 360-364. Springer Verlag, 2010.

G. Bossert, G. Hiet, and T. Henin. Modelling to Simulate Botnet Command and Con-
trol Protocols for the Evaluation of Network Intrusion Detection Systems. In Proceed-
ings of the 6™ Conf. on Network and Information Systems Security, SAR-SSI’11, pages
1-8. IEEE Computer Society, 2011.

Bibliography

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner. Model-based Testing of Reactive Systems, volume 3472 of Lecture Notes
in Computer Science. Springer Verlag, 2005.

Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten, and Bernhard Steffen. A Suc-
cinct Canonical Register Automaton Model. In Proceedings of the 9" Int. Symposium
on Automated Technology for Verification and Analysis, ATVA’11, volume 6996 of
Lecture Notes in Computer Science, pages 366—380. Springer Verlag, 2011.

Tsun S. Chow. Testing Software Design Modeled by Finite-State Machines. [EEE
Transactions on Software Engineering, 4(3):178-187, May 1978.

Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learning
assumptions for compositional verification. In Proceedings of the 9" Int. Conf. on
Tools and algorithms for the construction and analysis of systems, TACAS’03, volume
2619 of Lecture Notes in Computer Science, pages 331-346. Springer Verlag, 2003.

David Combe, Colin de la Higuera, and Jean-Christophe Janodet. Zulu: an Interactive
Learning Competition. In Finite-State Methods and Natural Language Processing,
FSMNLP’09, volume 6062 of Lecture Notes in Artificial Intelligence, pages 139-146.
Springer Verlag, 2010. 2010.

Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski, and Andreas Zeller. Min-
ing object behavior with ADABU. In Proceedings of the 2006 international workshop
on Dynamic systems analysis, WODA’06, pages 17-24. ACM, 2006.

Francois Denis, Aurélien Lemay, and Alain Terlutte. Residual Finite State Automata.
Fundamenta Informaticae, 51(4):339-368, 2002.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and
C. Xiao. The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming, 69(1-3):35-45, 2007.

Javier Esparza, Martin Leucker, and Maximilian Schlund. Learning Workflow Petri
Nets. In Proceedings of the 31" Int. Conf. on Application and Theory of Petri Nets
and Other Models of Concurrency, Petri Nets’10, Lecture Notes in Computer Science,
pages 206-225. Springer Verlag, 2010. 2010.

Lu Feng, Marta Z. Kwiatkowska, and David Parker. Automated Learning of Prob-
abilistic Assumptions for Compositional Reasoning. In Proceedings of the 14™ Int.
Conf. on Fundamental Approaches to Software Engineering, FASE ’11, volume 6603
of Lecture Notes in Computer Science, pages 2—17. Springer Verlag, 2011.

N. Francez and M. Kaminski. An algebraic characterization of deterministic regular
languages over infinite alphabets. Theoretical Computer Science, 306(1-3):155-175,
2003.

Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou, and Ab-
derrazak Ghedamsi. Test Selection Based on Finite State Models. IEEE Transactions
on Software Engineering, 17(6):591-603, 1991.

63

Bibliography

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

64

Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2010: A
Toolbox for the Construction and Analysis of Distributed Processes. In Proceedings
of the 17" Int. Conf. on Tools and algorithms for the construction and analysis of
systems, TACAS’11, volume 6605 of Lecture Notes in Computer Science, pages 372—
387. Springer Verlag, 2011.

Mihaela Gheorghiu Bobaru, Corina S. Pasareanu, and Dimitra Giannakopoulou. Au-
tomated Assume-Guarantee Reasoning by Abstraction Refinement. In Proceedings of
the 20™ Int. Conf. on Computer Aided Verification, CAV’08, volume 5123 of Lecture
Notes in Computer Science, pages 135—-148. Springer Verlag, 2008.

C. Ghezzi, A. Mocci, and M. Monga. Synthesizing Intentional Behavior Models by
Graph Transformation. In Procceedings of the 31" Int. Conf. on Software Engineering,
ICSE 09, pages 430-440. IEEE Computer Society, 2009.

E. Mark Gold. Complexity of Automaton Identification from Given Data. Information
and Control, 37(3):302-320, 1978.

Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Learning of event-recording
automata. Theoretical Computer Science, 411(47):4029-4054, 2010.

Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of Event-Recording
Automata Using Timed Decision Trees. In Proceedings of the 17" Int. Conf. on Con-
currency Theory, CONCUR’06, volume 4137 of Lecture Notes in Computer Science,
pages 435-449. Springer Verlag, 2006.

Andreas Hagerer, Hardi Hungar, Oliver Niese, and Bernhard Steffen. Model gen-
eration by moderated regular extrapolation. In Proceedings of the 5™ Int. Conf. on
Fundamental Approaches to Software Engineering, FASE ’02, volume 2306 of Lec-
ture Notes in Computer Science, pages 80-95. Springer Verlag, 2002.

Andreas Hagerer, Tiziana Margaria, Oliver Niese, Bernhard Steffen, Georg Brune, and
Hans-Dieter Ide. Efficient regression testing of CTI-systems: Testing a complex call-
center solution. Annual review of communication, Int.Engineering Consortium (IEC),
55:1033-1040, 2001.

Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permissive interfaces.
In Proceedings of the 10" European Software Engineering Conference held jointly
with 13" ACM SIGSOFT Int. Symposium on Foundations of Software Engineering,
ESEC/SIGSOFT FSE’05, pages 31-40. ACM, 2005.

John E. Hopcroft and R. M. Karp. A Linear Algorithm for Testing Equivalence of
Finite Automata. Technical Report 71-114, Cornell University, 1971.

John E. Hopcroft, Rajeev Motwani, and Jeftrey D. Ullman. Introduction to automata
theory, languages, and computation - (2. ed.). Addison-Wesley series in computer
science. Addison-Wesley-Longman, 2001.

Falk Howar. Inferenz Parametrisierter Moore-Automaten. Master’s thesis, TU Dort-
mund, Department of Computer Science, Chair of Programming systems, 2009.

Bibliography

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Falk Howar, Malte Isberner, Bernhard Steffen, Oliver Bauer, and Bengt Jonsson. In-
ferring Semantic Interfaces of Data Structures. Accepted for ISoLA 2012.

Falk Howar, Bengt Jonsson, Maik Merten, Bernhard Steffen, and Sofia Cassel. On
Handling Data in Automata Learning - Considerations from the CONNECT Perspec-
tive. In Proceedings of the 4" Int. Symposium on Leveraging Applications, ISoLA’10
(2), volume 6416 of Lecture Notes in Computer Science, pages 221-235. Springer
Verlag, 2010.

Falk Howar, Maik Merten, Bernhard Steffen, and Tiziana Margaria. Formal Methods
for Industrial Critical Systems, chapter Practical Aspects of Active Automata Learn-
ing. Wiley-VCH, 2012.

Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring Canoni-
cal Register Automata. In Porceedings of the 13™ Int. Conf. on Verification, Model
Checking, and Abstract Interpretation, VMCAI’12, volume 7148 of Lecture Notes in
Computer Science, pages 251-266. Springer Verlag.

Falk Howar, Bernhard Steffen, and Maik Merten. From ZULU to RERS - Lessons
Learned in the ZULU Challenge. In Proceedings of the 4" Int. Symposium on Leverag-
ing Applications, 1SoLA’10 (1), number 6415 in Lecture Notes in Computer Science,
pages 687-704. Springer Verlag, 2010.

Falk Howar, Bernhard Steffen, and Maik Merten. Automata Learning with Automated
Alphabet Abstraction Refinement. In Porceedings of the 12" Int. Conf. on Verification,
Model Checking, and Abstract Interpretation, VMCAI'11, volume 6538 of Lecture
Notes in Computer Science, pages 263-277. Springer Verlag, 2011.

Hardi Hungar, Tiziana Margaria, and Bernhard Steffen. Test-based model generation
for legacy systems. In Proceedings of 2003 International Test Conference, ITC 03,
pages 971-980. IEEE Computer Society, 2003.

Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-Specific Optimization in
Automata Learning. In Proceedings of the 15" Int. Conf. on Computer Aided Verifi-
cation, CAV’03, volume 2725 of Lecture Notes in Computer Science, pages 315-327.
Springer Verlag, 2003.

Muhammad Naeem Irfan. State Machine Inference in Testing Context with Long
Counterexamples. In Proceedings of the 3" Int. Conf. on Software Testing, Verification
and Validation, ICST’ 10, pages 508-511. IEEE Computer Society, 2010.

Malte Isberner. Untersuchung der Optimierbarkeit reguldrer Extrapolationsverfahren
durch Ausnutzung vorhandenen Wissens. Master’s thesis, TU Dortmund, Department
of Computer Science, Chair of Programming systems, 2011.

Malte Isberner, Bernhard Steffen, and Falk Howar. Inferring Automata with State-
local Alphabet Abstractions. Submitted to CAV 2012.

Valérie Issarny, Bernhard Steffen, Bengt Jonsson, Gordon S. Blair, Paul Grace,
Marta Z. Kwiatkowska, Radu Calinescu, Paola Inverardi, Massimo Tivoli, Antonia

65

Bibliography

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

66

Bertolino, and Antonino Sabetta. CONNECT Challenges: Towards Emergent Con-
nectors for Eternal Networked Systems. In Proceedings of the 14" IEEE Int. Conf.
on Engineering of Complex Computer Systems, ICECCS’09, pages 154-161. IEEE
Computer Society, 2009.

Bengt Jonsson. Learning of Automata Models Extended with Data. In Formal Meth-
ods for Eternal Networked Software Systems, SFM’11, volume 6659 of Lecture Notes
in Computer Science, pages 327-349. Springer Verlag, 2011.

M. Kaminski and N. Francez. Finite-Memory Automata. Theoretical Computer Sci-
ence, 134(2):329-363, 1994.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, USA, 1994,

Davide Lorenzoli, Leonardo Mariani, and Mauro Pezze. Automatic generation of
software behavioral models. In Procceedings of the 30 Int. Conf. on Software Engi-
neering, ICSE’08, pages 501-510. ACM, 2008.

Oded Maler and Amir Pnueli. On the Learnability of Infinitary Regular Sets. Infor-
mation and Computation, 118(2):316-326, 1995.

Tiziana Margaria, Oliver Niese, Harald Raffelt, and Bernhard Steffen. Efficient test-
based model generation for legacy reactive systems. In Proceedings of the 9" Annual
IEEE Int. High-Level Design Validation and Test Workshop, HLDVT’ 04, pages 95—
100. IEEE Computer Society, 2004.

Tiziana Margaria, Harald Raffelt, and Bernhard Steffen. Analyzing Second-Order
Effects Between Optimizations for System-Level Test-Based Model Generation. In
Proceedings of 2005 Int. Test Conference, ITC’05. IEEE Computer Society, 2005.

Tiziana Margaria, Harald Raffelt, and Bernhard Steffen. Knowledge-based relevance
filtering for efficient system-level test-based model generation. Innovations in Systems
and Software Engineering, 1(2):147-156, July 2005.

Karl Meinke and Muddassar A. Sindhu. Incremental Learning-Based Testing for Re-
active Systems. In Tests and Proofs - 5™ Int. Conf. TAP’11, volume 6706 of Lecture
Notes in Computer Science, pages 134—151. Springer Verlag, 2011.

Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. Next Genera-
tion LearnLib. In Proceedings of the 17" Int. Conf. on Tools and algorithms for the
construction and analysis of systems, TACAS’11, volume 6605 of Lecture Notes in
Computer Science, pages 220-223. Springer Verlag, 2011.

Faron Moller and Perdita Stevens. Edinburgh Concurrency Workbench User Manual
(Version 7.1). Available from http://homepages.inf.ed.ac.uk/perdita/cwby.

A. Nerode. Linear Automaton Transformations. Proceedings of the American Mathe-
matical Society, 9(4):541-544, 1958.

Bibliography

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD thesis, Uni-
versity of Dortmund, Germany, 2003.

Object Management Group (OMG). CORBA. http://www.corba.org/. Version
of 01.02.2012.

D. Peled, M. Y. Vardi, and M. Yannakakis. Black Box Checking. Journal of Automata,
Languages and Combinatorics, 7(2):225-246, 2002.

Harald Raffelt, Maik Merten, Bernhard Steffen, and Tiziana Margaria. Dynamic test-
ing via automata learning. Int. J. Softw. Tools Technol. Transf., 11(4):307-324, 2009.

Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria. LearnLib: a
framework for extrapolating behavioral models. Int. J. Softw. Tools Technol. Transf.,
11(5):393-407, 2009.

Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing
sequences. Information and Computation, 103(2):299-347, 1993.

H. Sakamoto. Learning Simple Deterministic Finite-Memory Automata. In Proceed-
ings of the 8" Int. Conf. on Algorithmic Learning Theory, ALT’97, volume 1316 of
Lecture Notes in Computer Science, pages 416—431. Springer Verlag, 1997.

Muzammil Shahbaz and Roland Groz. Inferring Mealy Machines. In Proceedings of
the 2™ World Congress on Formal Methods, FM’09, volume 5850 of Lecture Notes in
Computer Science, pages 207-222. Springer Verlag, 2009.

Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning and Integration of Parame-
terized Components Through Testing. In Proceedings of the 19" IFIP TC6/WG6.1 Int.
Conf. on Testing of Software and Communicating Systems, 7" Int. Workshop, Test-
Com/FATES 07, volume 4581 of Lecture Notes in Computer Science, pages 319-334.
Springer Verlag, 2007.

Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning Parameterized State Ma-
chine Model for Integration Testing. In Proceedings of the 31" Annual Int. Computer
Software and Applications Conference, COMPSAC’07, pages 755-760. IEEE Com-

puter Society, 2007.

Muzammil Shahbaz, K. C. Shashidhar, and Robert Eschbach. Iterative refinement of
specification for component based embedded systems. In Proceedings of the 20" Int.
Symposium on Software Testing and Analysis, ISSTA’11, pages 276-286. ACM, 2011.

Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. Static specification
mining using automata-based abstractions. In Proceedings of the ACM/SIGSOFT Int.
Symposium on Software Testing and Analysis, ISSTA’07, pages 174—-184. ACM, 2007.

Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to Active Automata
Learning from a Practical Perspective. In Formal Methods for Eternal Networked
Software Systems, SFM’1 1, volume 6659 of Lecture Notes in Computer Science, pages
256-296. Springer Verlag, 2011.

67

http://www.corba.org/

Bibliography

[83]

[84]

[85]

[86]

[87]

68

The Open Group. DCOM. http://www.opengroup.org/comsource/. Version of
01.02.2012.

B.A. Trakhtenbrot and I.M. Barzdin. Finite Automata; Behavior and Synthesis [By] B.
A. Trakhtenbrot and Ya. M. Barzdin. Translated From the Russian by D. Louvish. En-
glish Translation Edited by E. Shamir and L. H. Landweber, volume 1 of Fundamental
Studies in Computer Science. 1973.

W3C. Web services. http://www.w3.0org/2002/ws/. Version of 01.02.2012.

Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting Object Us-
age Anomalies. In Proceedings of the 6" joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Int. Symposium on Foundations of
Software Engineering, ESEC-FSE’07, pages 35—44. ACM, 2007.

John Whaley, Michael C. Martin, and Monica S. Lam. Automatic extraction of
object-oriented component interfaces. In Proceedings of the 2002 ACM SIGSOFT
Int.tSymposium on Software testing and analysis, ISSTA’02, pages 218-228. ACM,
2002.

http://www.opengroup.org/comsource/
http://www.w3.org/2002/ws/

	Introduction
	Research problems addressed in this thesis
	Organization

	Inferring Mealy machines
	Mealy machines
	Active learning for Mealy machines
	Hypothesis construction
	Hypothesis verification
	Correctness and complexity
	Evaluation

	Localized inference
	Local exploration
	Inference with a learning aspect
	Evaluation

	Incremental equivalence queries
	The evolving hypothesis algorithm
	Correctness and complexity
	Evaluation

	Active learning of interface programs
	Automated alphabet abstraction refinement
	Modeling systems capable of storing data values
	Register automata
	Suffix-based model construction

	Inferring register automata models
	Abstract suffixes
	An active learning algorithm for register automata

	Inferring semantic interfaces of data structures

	Related work
	Conclusion and future work
	Conclusion
	Future work

