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REMARKS ON PSEUDO STABLE LAWS ON
CONTRACTIBLE GROUPS

WILFRIED HAZOD

Abstract. In this note we discuss a class of probability distribu-
tions on homogeneous groups, called pseudo stable laws which were
investigated in [5] for the real line. In particular it is shown that
under mild assumptions these distributions belong to the domain
of normal attraction of stable laws.

Introduction

In [5] the authors investigate a class of distributions of real random
variables, called (c, p)-pseudo stable laws, which are closely related to
symmetric stable laws. These investigations are motivated by an ear-
lier publication [8]. See also [3] and [7] for some generalizations (in the
context of weak stability). A real random variable X resp. its distri-
bution µ = X(P ) is called (c, p)-pseudo stable if for all real a, b and iid

X, Y , and independent X, Z, we have a ·X + b · Y d
= c ·X + d1/r · Z,

where c = c(a, b) ∼= (ap + bp)1/p for some (fixed) p > 0, d = d(a, b) ≥ 0,
and Z with distribution Z(P ) = γ denotes a symmetric stable random
variable with characteristic function γ̂(u) = e−|u|

r
, for some 0 < r ≤ 2.

(γt)t≥0 denotes the corresponding continuous convolution semigroup.
In order to investigate similar structures of distributions on more

general state spaces, in particular on locally compact groups, we first
re-write the defining equation in an equivalent form. Let, for α ∈ R,
Hα denote the homothetical transformation Hα : x 7→ α·x. µ ∈M1(R)
is pseudo stable iff, for some d(·, ·) ≥ 0,

Ha(µ) ? Hb(µ) = Hc(a,b)(µ) ? γd(a,b)

Now replace R by a locally compact group G, replace (Ht)t>0 by a con-
tracting continuous group of automorphisms (τt)t>0 ⊆ Aut(G) (with
τtτs = τts). Fix p, r > 0 and let (γu)u≥0, γ0 = εe, be a continu-
ous convolution semigroup which is (strictly) stable w.r.t. (τt1/r), i.e.,
τt(γs) = γtr·s (resp. τt1/r(γs) = γt·s) for s ≥ 0, t > 0. We fix the func-
tion c : R2

+ → R+, c(a, b) := (ap + bp)1/p. µ ∈ M1(G) is called pseudo
stable w.r.t. ((τt) , p, r, (γs)) if for all a, b > 0 we have

τa(µ) ? τb(µ) = τc(a,b)(µ) ? γd(a,b) (0.1)

for some d = d(a, b) ≥ 0, and furthermore, if there exists a commutative
?-sub-semigroup S ⊆M1(G) such that {τu(µ) : u > 0, γv : v ≥ 0} ⊆ S.

Note that the existence of stable continuous convolution semigroups
(γu) with γ0 = εe, equivalently, the existence of a contracting one pa-
rameter group (τt) implies that G is a homogeneous group, in particular
a simply connected nilpotent Lie group.
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Recall that Abelian homogeneous groups are just vector spaces. It
should be pointed out that the setup chosen here covers also (strictly)
operator stable laws on Rd. For the background on stable laws on
groups see e.g. [1], for operator stable laws on vector spaces cf. e.g.,
[6], or [1], Ch. I, and the references mentioned there.

Our assumptions differ slightly from [5]: In (0.1) a ≤ 0 or b ≤ 0
are not admitted, and the distributions γu are not supposed to be
symmetric. Hence, in particular, one-sided stable distributions on the
positive half-line R+ are not allowed in [5]. Furthermore, here we fixed
the functions c (with given p), whereas in [5] c belongs a priori to a
slightly larger class of functions.

We show in Section 2 under mild conditions (satisfied for all exam-
ples) that pseudo stable laws belong to the domain of normal attraction
of stable laws. Hence in particular, this has a strong impact on the tail
behaviour of these laws. (For the existence of moments see e.g., [1],
1.10.17 resp. 2.10.18.)

1. Examples of pseudo stable laws

In the following we briefly investigate some examples of pseudo stable
laws on groups and indicate methods to construct new examples. Of
course, these examples are well-known for R, more generally, for vector
spaces. Throughout, as before, let G be a homogeneous group, let
p, r > 0 and let (τt)t>0 be a fixed contracting one-parameter group of
automorphisms. Furthermore, let (γu)u≥0 be a (τt1/r)-stable continuous

convolution semigroup, γu 6≡ εe, and we fix c(a, b) := (ap + bb)1/p.

Example 1.1. Let p = r > 0. Then the stable law µ := γ1 is pseudo
stable (with d(·, ·) ≡ 0).[[

Indeed, τa(µ) ? τb(µ) = γap ? γbp = γap+bp = τc(a,b)(µ).
]]

Example 1.2. Let p > r > 0. Again µ := γ1. Then µ is pseudo stable
w.r.t. ((τt) , p, r, (γu)), where d(a, b) = ar + br − c(a, b)r.[[

Let c := c(a, b) and w.l.g., b ≤ a. Then τa(µ) ? τb(µ) = τa [µ ? τu(µ)]
with 0 < u := b/a ≤ 1. And µ ? τu(µ) = γ1 ? γur = γ1+ur = γc(1,u)r ?
γ1+ur−c(1,u)r = τc(1,u)(µ) ? γd(1,u) with d(1, u) = 1 + ur − c(1, u)r ≥ 0.
Thus we can choose d(a, b) = ard(1, u) = ar +br−c(a, b)r and it follows
τa(µ) ? τb(µ) = τc(a,b)(µ) ? γd(a,b).

]]
Example 1.3. Let p ≥ r > 0, and let (γu) as before. Let (δs)s>0

be a (τt1/p)-stable continuous convolution semigroup and assume that
all γu and δv commute. Then µ := γ1 ? δ1 is pseudo stable (w.r.t.
((τt), p, r, (γu))), with d as in Example 1.2.[[

τa(µ)?τb(µ) = τa(γ1)?τb(γ1)?τa(δ1)?τb(δ1) = τc(a,b)(γ1)?γd(a,b)?δc(a,b) =

τc(a,b)(µ) ? γd(a,b).
]]

Example 1.4. a) Let p ≥ r > 0, and let, for i = 1, 2, µ(i) be

pseudo stable, τa(µ
(i))?τb(µ

(i)) = τc(a,b)(µ
(i))?γ

(i)

d(i)(a,b)
, where

(
γ

(i)
u

)
are

(τt1/r)-stable. Assume moreover d(i) to be linearly dependent, d(2)(·, ·) =

α · d(1)(·, ·) for some α ≥ 0, and
{

τu(µ
(i)), γ

(i)
v : u > 0, v ≥ 0, i = 1, 2

}
commute. Then µ := µ(1) ? µ(2) is pseudo stable w.r.t. ((τt) , p, r, (γu)),

where γu := γ
(1)
u ? γ

(2)
αu , and with d(·, ·) = d(1)(·, ·).
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τa(µ) ? τb(µ) = τa(µ

(1)) ? τb(µ
(1)) ? τa(µ

(2)) ? τb(µ
(2)) = τc(a,b)(µ

(1) ?

µ(2)) ? γ
(1)

d(1)(a,b)
? γ

(2)

d(2)(a,b)
= τc(a,b)(µ) ? γ

(1)

d(1) ? γ
(2)

α·d(1) =: τc(µ) ? γd(1), with

c = c(a, b), d(1) = d(1)(a, b). And
(
γu := γ

(1)
u ? γ

(2)
α·u

)
is (τt1/r)-stable.

]]
b) In particular, let µ(1) be as in a), let (δt) be a continuous con-

volution semigroup which is stable w.r.t. (τt1/r), and assume again
that all measures belong to a commutative sub-semigroup S. Assume
d(1)(a, b) = α · (ar + br − c(a, b)r) for some constant α ≥ 0. Then
µ := µ(1) ? δ1 is pseudo stable.[[

δ1 is pseudo stable w.r.t. ((τt) , p, r, (δu)) (according to Example 1.2),

i.e., µ(2) := δ1, γ
(2)
u = δu satisfy the assumptions of a).

]]
Example 1.5. A particular case: Let Hi be contractible groups with

contracting automorphism groups
(
τ

(i)
t

)
, i = 1, 2. Let µ(i) be pseudo

stable w.r.t. (
(
τ

(i)
t

)
, p, r,

(
γ

(i)
t

)
). Put G := H1 ⊗ H2, τt := τ

(1)
t ⊗ τ

(2)
t

and µ := µ(1) ⊗ µ(2). Then µ is pseudo stable if, as in Example 1.4,
d(2) = α · d(1).[[

In fact, γ
(i)
u , µ(i) may be considered as probabilities on G supported

by the subgroups Hi ⊆ G, and hence the commutativity assumption is
satisfied.

]]
Obviously we obtain

Example 1.6. Let G1, G2 be homogeneous groups with contracting

groups
(
τ

(i)
t

)
⊆ Aut(G1), i = 1, 2. Let ϕ : G1 → G2 be a continuous

homomorphism satisfying ϕτ
(1)
t = τ

(2)
t ϕ. Let µ ∈ M1(G1) be pseudo

stable w.r.t. ((τ
(1)
t ), p, r, (γ

(1)
u )). Then ν := ϕ(µ) is pseudo stable w.r.t.

(
(
τ

(2)
t

)
, p, r,

(
γ

(2)
u := ϕ(γ

(1)
u )

)
).

Example 1.7. Subordination. Let G1 be a contractible group with
contracting automorphism group (τt). Let (λt)t≥0 be a (τt)-stable con-

tinuous convolution semigroup. Let (αt) ⊆M1(R+) be (one-sided) sta-
ble w.r.t. (Ht1/r). (Hence 0 < r ≤ 1.) Let furthermore, ξ ∈M1(R+) be
pseudo stable w.r.t. ((Ht) , p, r, (αt)). Then µ :=

∫
R+

λtdξ(t) ∈ M1(G)

is pseudo stable w.r.t. ((τt) , p, r,
(
γt :=

∫
R+

λudαt(u)
)
).[[

We have Ha(ξ) ∗ Hb(ξ) = Hc(a,b)(ξ) ∗ αd(a,b). Furthermore, τa(µ) =∫
R+

τa(λu)dξ(u) =
∫

R+
λaudξ(u) =

∫
R+

λudHa(ξ)(u).

Hence τa(µ) ? τb(µ) =
∫

R+
λud(Ha(ξ) ∗Hb(ξ))(u) =

∫
R+

λud(Hc(ξ) ∗

αd)(u) =
(∫

R+
λudHc(ξ)

)
?

(∫
R+

λudαd

)
= τc(µ) ? γd.

]]
In fact, we do not know if on R+ there exist pseudo stable laws which

are not convolution products of stable laws. (For R cf. Example 1.8
below.) If ξt = αt ∗ βt ∈M1(R+), where (αt) and (βt) are (Ht1/p)- and

(Ht1/r)-stable respectively, then µ =
(∫

R+
λudα1(u)

)
?

(∫
R+

λudβ1(u)
)

is a convolution product of two (τt1/p)- and (τt1/r)-stable factors. So,
we are in the situation of Example 1.3. In that case, no new examples
are created via subordination.

The next class of examples is found in [5], cf. also [3, 8]: there exist
pseudo stable laws which are not representable as convolution products
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of stable laws. We mention these examples in our list since they seem
to be the only known concrete examples with that property:

Example 1.8. For G = R, it is shown in [5], [8], that for 0 < r ≤ 2
there exist A, B > 0, p > 2 such that f : R 3 t 7→ exp (−A|t|r −B|t|p)
is the characteristic function of a probability measure µ, i.e. f(t) =
µ̂(t). In fact, for r ∈ (0, 1]∪{2}, p > 2 and sufficiently large A, B, f is
a characteristic function, but for r ≤ 2, A, B > 0, the set of p > 2, such
that f is not a characteristic function, is not empty. It is easily shown
that such a probability is pseudo stable w.r.t. ((Hu) , p, r, (γu)), where
(γu) is the stable continuous convolution semigroup with characteristic
function t 7→ exp (−A|t|r). As p > 2, µ cannot be represented as
convolution product of two stable laws.

Almost verbatim as in the preceding Examples 1.2, 1.3 it follows that
again d(a, b) = ar + br − c(a, b)r (though t 7→ exp (−B|t|p)) is not the
Fourier transform of a probability).

Remarks 1.9. a) In Examples 1.4, 1.5 we had to suppose that the
functions d(i) are linearly dependent. In all concrete examples in our
list we obtained – for fixed p ≥ r – d(a, b) = ar + br − c(a, b)r, hence
in that cases linear dependence is trivially satisfied. (The case p < r
turns out to be trivial, cf. Theorem 2.1 a).)

b) In [5, 3, 8] the authors show furthermore that for G = R the
characteristic functions of (symmetric) pseudo stable laws are always
representable as t 7→ exp (−A|t|r −B|t|p) for constants A, B ≥ 0, 0 <
r ≤ 2 and p > 0. Hence a convolution product of two stable laws is
pseudo stable, a product of n ≥ 3 stable laws (with different stability
indices) is not pseudo stable. The last result holds true in general:

Let
(
γ

(i)
t

)
be (τt1/ri )-stable, i = 1, 2, 3 with 0 < r := r1 < r2 < r3 :=

p. Then µ := γ
(1)
1 ? γ

(2)
1 ? γ

(3)
1 is not pseudo-stable (though, according to

our examples, γ
(i)
1 and the products of two factors are pseudo stable).[[

In fact, for a, b > 0, c = c(a, b) we have τa(µ) ? τb(µ) = γ
(1)
cr ? γ

(2)
cr2 ?

γ
(1)
cp ?γ

(1)
(ar+br−cr)?γ

(2)
(ar2+br2−cr2 ) = τc(µ)?

[
γ

(1)
(ar+br−cr) ? γ

(2)
(ar2+br2−cr2 )

]
. If µ

is pseudo stable, we have τa(µ) ? τb(µ) = τc(µ) ? λd(a,b) for some (τt1/r)-
stable continuous convolution semigroup (λt). By the injectivity of the
convolution operator of the embeddable law τc(µ) (cf. [4]) it follows that

λd(a,b) = γ
(1)
(ar+br−cr)?γ

(2)
(ar2+br2−cr2 ). But the right side is not (τt1/r)-stable,

a contradiction.
]]

As mentioned afore, our examples enable us to construct new non-
trivial pseudo stable measures on homogeneous groups. We show e.g.,
for G = H1, the 3-dimensional Heisenberg group, that there exist
pseudo stable laws with full support which are not representable as
convolution products of stable laws. The reader will easily see how this
result may be generalized to arbitrary homogeneous groups.

Example 1.10. Let (τt) denote the group of dilations on H1 acting on
the Lie algebra g ≡ R3 as tE for the diagonal exponent E = diag(1, 1, 2).
Let Z ≡ R denote the center and i : R → Z ⊆ H1 the canonical
injection.
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Let
(
γ

(1)
t

)
⊆M1(H1) be (τt1/r)-stable with full support, and let µ(1) ∈

M1(H1) be pseudo stable w.r.t. ((τt) , p, r,
(
γ

(1)
t

)
) (e.g., choose µ(1) =

γ
(1)
1 ), such that d(a, b) = ar + br − c(a, b)r.

Let
(
γ

(2)
t

)
⊆M1(R) be (Ht1/2r)-stable and let ν ∈M1(R) be pseudo

stable w.r.t. ((Ht) , 2p, 2r,
(
γ

(2)
t

)
) as in Example 1.8. (Therefore, 2r ≤

1.) Put µ(2) := i(ν) ∈ M1(H1). τt1/r |Z = Ht1/2r implies that
(
i(γ

(2)
t )

)
is (τt1/r)-stable, furthermore, i(ν) and i(γ

(2)
t ) are central measures in

M1(G). Hence, by Example 1.4,
(
γt := γ

(1)
t ? γ

(2)
t

)
is (τt1/r)-stable and

µ := µ(1) ? µ(2) is pseudo stable w.r.t. ((τt) , p, r, (γt)), has full support
and is not representable as convolution of stable laws.

2. Pseudo stable laws and domains of attraction

In the following we point out that pseudo stable laws are closely
related to limit laws. Let, as before, µ 6= εe be pseudo stable w.r.t.
((τt) , p, r, (γt)). To avoid trivialities, assume again γs 6= εe for s 6= 0.
Then, putting a = b = 1 in (0.1), we obtain µ2 = τ21/p(µ) ? γd2 with
c(1, 1) = 21/p and d(1, 1) =: d2 ≥ 0. By induction we obtain (observing
c(k1/p, 1) = (k + 1)1/p) :

µn = τn1/p(µ) ? γdn (2.2)

with d1 := 0, d2 = d(1, 1), dn =
∑n

2 d((k − 1)1/p, 1).

Theorem 2.1. Assume that {dn/n} is bounded above. Then we have:
a) If p < r then τn−1/p(µ)n → µ, hence λ1 := µ is embeddable into a

(τt1/p)-stable continuous convolution semigroup (µt), and γd(·,·) ≡ εe.
b) If p > r then {τn−1/r(µ)n} is relatively compact with accumula-

tion points LIM {τn−1/p(µ)n} ⊆ {γs : 0 ≤ s ≤ K} for some K > 0. In
particular, any accumulation point is (τt1/r)-stable.

b1) In particular, if dn/n → α for some α > 0, then µ belongs to the
domain of normal attraction DNA(γα) (w.r.t. (τt1/r)).

c) If p = r then again {τn−1/p(µ)n} is relatively compact, with ac-
cumulation points LIM {τn−1/p(µ)n} ⊆ {µ ? γs : 0 ≤ s ≤ K} for some
K > 0. In that case all accumulation points are embeddable into con-
tinuous convolution semigroups (λt) with λ1 = µ ? γs.

c1) And again, if dn/n → α > 0, then µ is embeddable into a
(uniquely determined) (τt1/r)-stable continuous convolution semigroup
(µt) and, as in Example 1.2, γd(a,b) = µar+br−c(a,b)r .

Proof. Equation (2.2) is equivalent with

τn−1/p(µ)n = µ ? γdn·n−r/p (2.3)

(since (γu) is (τn1/r)-stable), resp.

τn−1/r(µ)n = τn1/p−1/r(µ) ? γdn·n−1 (2.4)

In case a) we use equation (2.3), in case b) (2.4), to see that {τn−1/p(µ)n}
resp. {τn−1/r(µ)n} are relatively compact: In case a), r/p > 1, we have
dn · n−r/p → 0, thus τn−1/p(µ)n → µ.

In case b), 1/p− 1/r < 0, we have τn1/p−1/r(µ) → εe, thus (for some
upper bound K of {dn/n}), LIM {τn−1/r(µ)n} ⊆ {γs : 0 ≤ s ≤ K}.
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In case c), p = r, it follows τn−1/p(µ)n = µ ? γdn/n and therefore,
LIM {τn−1/p(µ)n} ⊆ {µ ? γs : 0 ≤ s ≤ K}.

In either case, it follows embeddability of µ in a) resp. of any accumu-
lation point γs resp. µ?γs in b) resp c), (cf. e.g., [1], 2.6.4). In case b1)
or c1) we have in addition bn/n → α. Then τn−1/p(µ)n → λ1 := γα resp.
→ λ1 := µ ? γα yields µ ∈ DNA(λ1) w.r.t. (τt1/r); in particular, λ1 is
embeddable into a (uniquely determined) (τt1/r)-stable continuous con-
volution semigroup (λt) (cf. e.g., [1], 2.6.10 b)). If λ1 = µ?γα, stability
of (λt) implies for all n ∈ N: λn

1 = τn1/r ?γnα, and on the other hand we
have λn

1 = µn ? γnα. Thus, again by the injectivity of the convolution
operators of γu ([4]) we obtain µn = τn1/r(µ), n ∈ N. I.e., µ is B-stable
(cf. [1], 2.6.13), and therefore µ is embeddable into a stable continuous
convolution semigroup (µt) ([1], 2.6.14 b) and 2.6.11* (p. 256)). The
last assertion follows as in Example 1.2: τa(µ)?τb(µ) = τ(ar+br)1/r(µ) by
stability, thus = µar+br = µc(a,b)r ? µar+br−c(a,b)r . Hence in view of the
defining equation (0.1), τc(a,b)(µ) ? γd(a,b) = τc(a,b)(µ) ? µar+br−c(a,b)r . In-
jectivity of the convolution operators of (the embeddable law) τc(a,b)(µ)
yields γd(a,b) = µar+br−c(a,b)r , as asserted.

Note that we assumed µ 6= εe and γα 6= εe and furthermore, that (τt)
is contractive. Hence in either case a), b1), c1), the limit λ1 6= εe is a full
measure w.r.t. B := {τt}t>0 ⊆ Aut(G). And therefore, the convergence
of types theorem holds true (e.g., verbatim as in [1], 1.13.33.) Hence,
as in the proof of [1], 2.6.10 b), µ resp. λ1 is embeddable into a stable
continuous convolution semigroup. �

For α = 0 we obtain γα = εe. Then the assertions hold trivially.
In [5, 3, 8] for G = R the functions d(·, ·) are explicitly calculated

solving functional equations of characteristic functions: If c(a, b) =
(ap + bp)1/p then d(·, ·) has the form we obtained in the examples
in Section 1. In general we can only show that d is homogeneous,
d(ta, tb) = trd(a, b) for a, b, t > 0. We indicate a proof to point out
which tools are needed if characteristic functions are not available:[[

τta(µ) ? τtb(µ) = τc(ta,tb)(µ) ? γd(ta,tb), with c(ta, tb) = t · c(a, b). On the
other hand, this equals τt [τa(µ) ? τb(µ)], thus we obtain: τtc(a,b)(µ) ?
γtrd(a,b) = τtc(a,b) ? γd(ta,tb). Assume e.g., trd(a, b) ≥ d(ta, tb), then
again injectivity of the convolution operators of γu yields τtc(a,b)(µ) ?
γtrd(a,b)−d(ta,tb) = τtc(a,b)(µ), i.e., γtrd(a,b)−d(ta,tb) = εe since G is aperiodic.

Whence the assertion.
]]

In our examples 1.2, 1.3, 1.8 we obtained for r ≤ p: d(k1/p, 1) =
kr/p + 1− (k + 1)r/p, thus dn =

∑n
2 d((k − 1)1/p, 1) = n− nr/p. Hence,

dn/n ≡ 0 for r = p and dn/n → 1 for r < p. Thus these examples are
covered by Theorem 2.1.

To show that the assumption dn/n ≤ K in Theorem 2.1 is quite
natural we consider briefly the case of infinitely divisible µ:

Proposition 2.2. Let, with the above notations, µ be pseudo stable
w.r.t. ((τt) , p, r, (γt)), γt 6≡ εe. Assume in addition that µ is infinitely
divisible, hence embeddable into a continuous convolution semigroup
(µt), µ1 = µ. Furthermore, assume either (1) G = Rd, or (2) µt =
µ̃t, t ≥ 0. Then {dn/n} is bounded.

Proof. Inserting µ = µn
1/n, n ∈ N, in the defining equation, we obtain

τa(µ1/n)n ? τb(µ1/n)n = τc(a,b)(µ1/n)n ? γn
dn/n. In case (1), M1(G) is

commutative and the roots µ1/n, γdn/n of infinitely divisible laws are



PSEUDOSTABLE LAWS 7

uniquely determined. In case (2), the convolution operators Tµt on
L2(G) are positive semi-definite functions of Tµ1 , hence µt are uniquely
determined by µ1 and commute with all measures commuting with
µ1. Furthermore, the stable continuous convolution semigroup (γt) is
uniquely determined by γ1.

Hence we obtain τa(µ1/n)?τb(µ1/n) = τc(a,b)(µ1/n)?γdn/n for all n and
therefore it follows for all t ≥ 0,

τa(µt) ? τb(µt) = τc(a,b)(µt) ? γdn·t (2.5)

As immediately seen, symmetry of (µt) yields γdnt = γ̃dnt for all t, n,
this shows that (γt) is symmetric too. Let A, G denote the generating
functionals of (µt) and (γt) respectively, and denote the Lévy measures
and Gaussian terms by ηA, ηG and ΓA, ΓG respectively. (2.5) easily
yields τa(A)+ τb(A) = τc(a,b)(A)+dn ·G, in particular, 2A = τ21/p(A)+
d2·G, and by induction, for n ∈ N, n·A = τn1/p(A)+dn·G. Equivalently,

A = (1/n) · τn1/p(A) + (dn/n) ·G
Consequently,

ηA = (1/n) · τn1/p(ηA) + (dn/n) · ηG (2.6)

ΓA = (1/n) · τn1/p(ΓA) + (dn/n) · ΓG (2.7)

Hence, if ηG 6= 0 or ΓG 6= 0, boundedness of {dn/n} follows by (2.6)
resp. (2.7). Since, as mentioned above, (γu) is symmetric, 6≡ εe, the
proof is complete. �

However, we do not know if in the group case there exist examples
µ with different growth behaviour of {dn}. Hence we mention

Theorem 2.3. Let (γt) be a (τt1/r)-continuous convolution semigroup
of full measures. (For the definition of full measures cf. e.g., [1], §
2.2. I.) Assume for a subsequence (n′) ⊆ N that dn/n

(n′)→ ∞. Then we
have:

a) If p < r then τ
d
−1/p
n

(µ)n → εe along the subsequence (n′).

b) If p ≥ r then τ
d
−1/r
n

(µ)n → γ1 along (n′). Thus, if (n′) = N, µ

belongs to the (general) domain of attraction µ ∈ DA(γ1) (with norming
automorphisms belonging to B = (τt)).

Proof. a) r > p, hence 1/r < 1/p and thus τ
d
−1/p
n

(µ)n = τ(d−1
n ·n)1/p(µ) ?

γ
d
−r/p
n ·dn

→ εe (along (n′)), since d−1
n · n → 0 and d

1−r/p
n → 0.

b) r ≤ p. Then τ
d
−1/r
n

(µ)n = τ(d−1
n ·n)1/pτd

1/p−1/r
n

(µ) ? γ1 → γ1 (along

(n′)) as d−1
n ·n → 0, 1/p− 1/r ≤ 0, thus τ(d−1

n ·n)1/pτd
1/p−1/r
n

(µ) → εe. �

Possible Generalizations. a) As Aut(R) = {Hu : u ∈ R\{0}}, the
definition of pseudo stability (on R) could be generalized as follows:

µ ∈M1(G) is called completely pseudo stable if for all a, b ∈ Aut(G)
we have

a(µ) ? b(µ) = c(µ) ? γd

where c : Aut(G)×Aut(G) → Aut(G) and d : Aut(G)×Aut(G) → R+

are (suitable) functions. However, for d(·, ·) ≡ 0, this defines ’complete
stability’ (cf. e.g., [1], 1.14.28, 2.11.22). It is known (cf. [9]) that for
G = Rn and n ≥ 2, completely stable measures are Gaussian, and vice
versa. Thus the definition of complete pseudo stability turns out to be
to restrictive.
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b) At the first glance it seems natural to investigate pseudo sta-
ble laws on more general convolution structures admitting contract-
ing groups (τt) of automorphisms (to guarantee the existence of stable
laws). E. g. generalized convolutions for the state space R+ (cf. e.g.,
[3, 7] and the literature mentioned there). In the case of hypergroups,
as in the group case, the existence of contracting (τt) has a strong im-
pact on the underlying structure. E.g., on R+, only Bessel-Kingman
hypergroups admit contracting automorphisms. More general exam-
ples are hypergroup structures on matrix cones (cf. [10]), which have
a considerably rich structure of automorphisms, and hence there exist
stable laws in abundance. (Cf. also [2]). Our Examples 1.1–1.7 and
Theorem 2.1 hold true in this situation. However, the existence of non-
trivial pseudo stable laws µ, i.e., laws which are not products of stable
laws, could not be proved. Therefore, we omit further details.

c) The existence of stable laws and hence of continuous contract-
ing automorphism groups restricts the investigations to homogeneous
groups. To get rid of that restrictions one can replace G by a con-
tractible locally compact group, (τt) by a discrete contracting group(
τ k

)
k∈Z and assume (γt) to be semistable. Under additional conditions

on G which guarantee a convergence of types theorem and continu-
ous embedding of (certain) infinitely divisible laws, a part of the afore
mentioned results holds in this general situation. Natural candidates
for investigations of examples of such ’pseudo semistable’ laws are the
real line on the one hand and certain contractible totally disconnected
groups on the other, e.g., p-adic groups. Details will appear elsewhere.
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Turing instabilities in a mathematical model for signaling networks
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2011-02 Stefan Jäschke, Karl Friedrich Siburg and Pavel A. Stoimenov
Modelling dependence of extreme events in energy markets using tail copulas

2011-01 Ben Schweizer and Marco Veneroni
The needle problem approach to non-periodic homogenization

2010-16 Sebastian Engelke and Jeannette H.C. Woerner
A unifying approach to fractional Lévy processes
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