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LIMIT TRANSITION BETWEEN HYPERGEOMETRIC
FUNCTIONS OF TYPE BC AND TYPE A

MARGIT ROSLER, TOM KOORNWINDER, AND MICHAEL VOIT

ABSTRACT. Let Fpc (A, k;t) be the Heckman-Opdam hypergeometric function
of type BC with multiplicities k = (k1, k2, k3) and weighted half sum p(k) of
positive roots. We prove that Fc (X + p(k), k;t) converges for k1 + ko — oo
and k1 /k2 — oo to a function of type A for ¢ € R"™ and A € C™. This limit is
obtained from a corresponding result for Jacobi polynomials of type BC, which
is proven for a slightly more general limit behavior of the multiplicities, using
an explicit representation of Jacobi polynomials in terms of Jack polynomials.

Our limits include limit transitions for the spherical functions of non-
compact Grassmann manifolds over one of the fields F = R,C,H when the
rank is fixed and the dimension tends to infinity. The limit functions turn out
to be exactly the spherical functions of the corresponding infinite dimensional
Grassmann manifold in the sense of Olshanski.

1. INTRODUCTION

Consider the Heckman-Opdam hypergeometric functions Fr (A, k;t) for the root
systems R = BC,, = {+e;, £2¢;, te;+e;, 1 <i<j<n} and A,_1 = {£(e; —¢;) :
1 <4< j <n} with multiplicities k = (k1, k2, k3) and k = k respectively as studied
e.g. in [BOJ, [H1], [H2], [H3], [HS], [O1], [02]. Fix a positive subsystem Ry in each
case and denote by pr(k) = 1 > ac R, ko the weighted half-sum of positive roots.
The Jacobi polynomials of type BC,, are indexed by the cone of dominant weights

Pr={(A1,... \) €27 : A1 > ... > A\, }

and can be written as

1
c(A+ ppce(k), k)
where c¢ is the generalized c-function. The Jacobi polynomials of type A,_; are

indexed by the set 7(Py), where m denotes the orthogonal projection of R™ onto
RE. They can be written as monic Jack polynomials,

PP (kt) = Fpc(A+ ppe(k), k;t)

Pioy(rst) = j5(e"), t € Rg;

see Section 4 for the precise notation.
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In this paper, we shall prove the following limit transition for the Jacobi poly-
nomials of type BC),:
im  PPO(kit) = 4. 8 (a(0)) (L.1)

k1+ko— oo
k‘l/k‘g —a

for a € [0, 00], with the transform

a+1
a+2
This result was already stated in [K2] without proof. A proof different from the
one in the present paper was given by R. J. Beerends and the second author in an
unpublished manuscript.

Restricting to the case a = co we shall next extend the limit with respect to the
spectral variable A and prove that

lim FBc()\—l—ch(kj),k;t) (12)

k1+ko— co
k?l/ktz — o0

t;
R" = RY, t—a(t) with zi(t) =7, + sinh2(§), Yo =

= 1_[(cosh2%)z?:1 Aifm Fa(m(X) + pa(ks), ks; 7 (log cosh2%))
i=1

K3
for all ¢t € R”, locally uniformly in A € C™.
Let us briefly discuss the above limits for the rank one case n = 1 where k3 does
not appear, the functions Fpc (A, k;t) are essentially Jacobi functions

o\D(t) = 2Fi((a+ B+iA), b(a+ F+1—id);a+ 1; —sinh®¢),

for which we refer to [K1], and where F4 reduces to the constant function 1. More
precisely, comparing the examples on p. 89 of [O1] and [K1], we have

a,8) ¢ .
Fpe, (A k) = <p£2;8>?(§) with a=ki+ka—1/2, f=ky—1/2,
and (1.2) becomes the limit

aﬂoolio%ﬁoo s"(AJr’f}()owrﬁJrl)( ) = (cosht)™ (A €C).

This limit is easily seen from

go&i?()oé+ﬂ+1)( )= QFl(%i)\, a+6+1-— %i)\;a +1;— sinh? t)
= (cosht) 5 Fy (3i\, =B+ 2iXsa + 1; tanh? t).
Moreover, the Heckman-Opdam polynomials in rank one are related to the monic
Jacobi polynomials p{®? by
PBC(kit) = 27pl*P) (cost), n € Z,.
Limit (1.1) means that for c =a+ 1 € [1,00) and z = cost € [—1, 1],

—1\"
lim  pl®(z) = (sc + < )

a—o0,a/B—c c+1

This limit is easily seen from

n

2"(a+ 1), n+a+8+1) z—1\'
(o, ) —
P (@) (n+a+8+1) nz (a+ 1) (l)( 2 ) '

I=
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We shall obtain (1.1) by means of an explicit representation of PP¢ in terms
of Jack polynomials which goes back to ideas of [SK] and to [Ha]. The limit (1.2)
for the hypergeometric function is then obtained from (1.1) by Phragmén-Lindel6f
principles and sharp explicit estimates for general hypergeometric functions which
slightly improve estimates by Opdam [O1] and Schapira [Sch]. Our limit transi-
tion (1.2) includes a limit result for the spherical functions of the Grassmannians
500(p;n)/SO(p) x SO(n), SU(p,n)/S(U(p) x U(n)) and Sp(p,n)/Sp(p) x Sp(n),
where Sp(p,n) denotes the pseudo-unitary group of index (p,n) over H. As p — oo
(and the rank n is fixed), the spherical functions of these Grassmannians con-
verge to (restrictions of) the spherical functions of the reductive symmetric space
GL,(n,R)/SO(n),GL(n,C)/U(n) and GL(n,H)/Sp(n), respectively. We shall
also show that the obtained limits are exactly the spherical functions of the corre-
sponding infinite dimensional Grassmannians in the sense of Olshanski. Our results
for infinite dimensional Grassmannians are also of interest in comparison with the
recent results of [DOW]. There it is shown that under natural conditions on an
infinite dimensional symmetric space Goo/Koo = liin G./K, where G,/K, are

Riemannian symmetric of compact type, spherical functions of G,,/K,, can have a
limit which is K-spherical only if the G,,/K,, are Grassmannians.

This paper is organized as follows: In Section 2 we recapitulate some basic
notions and facts on the Cherednik kernel and Heckman-Opdam hypergeometric
functions. We need the Cherednik kernel because we improve in Section 3 estimates
of Opdam [O1] and Schapira [Sch] for this function. This results in an estimate for
the Heckman-Opdam hypergeometric functions which is uniform in the multiplicity
parameters. The Cherednik kernel will not be further used in the main part of the
paper, starting in Section 4, where the limit (1.1) for Jacobi polynomials of type BC
is proved. This result, the estimates of Section 3, and Phragmén-Lindelof principles
are combined in Section 5, leading to the limit (1.2). In Section 6 we briefly discuss
this limit in terms of spherical functions for non-compact Grassmann manifolds of
growing dimension and fixed rank. Finally, in Section 7 the Olshanski spherical
functions of the associated infinite dimensional Grassmannians are characterized.

2. NOTATION AND PRELIMINARIES

Let a be a finite-dimensional Euclidean space with inner product (.,.) which is
extended to a complex bilinear form on the complexification ac of a. We identify
a with its dual space a* = Hom(a, R) via the given inner product. Let R C a be
a (not necessarily reduced) crystallographic root system and let W be the Weyl
group of R. For a € R we write oV = 2a/(«, ) and denote by o, (t) =t — (t,a" )«
the orthogonal reflection in the hyperplane perpendicular to a. We denote by K
the vector space of multiplicity functions k = (ko )acr, satisfying k, = kg if @ and
(3 are in the same W-orbit. We shall write k > 0 (k > 0) if ko, > 0 (ko > 0) for all
a € R. For k € K let

p=pk) =3 3 hao (2.1)
acRy

be the weighted half-sum of positive roots, where R is some fixed positive subsys-
tem of R. Let

a+::{t€a:<t,a>>0Va€R+}
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be the positive Weyl chamber associated with Ri. If k¥ > 0, then p(k) € ay, and
if £ > 0, then p(k) € a; . This follows from the fact that for a simple system
{a;} C R4+ (with indivisible roots «;), the reflection o, leaves Ry \ {«;} invariant,
and hence

<p(k),0t;/> = kai + 2k20¢,
(with the understanding that kan, = 0 if 2a; ¢ R), c.f. [M], Section 11.
For fixed k € IC, the Cherednik operator in direction ¢ € a is defined by

Te=Te(k) =0+ Y hadn ©)——s (1~ 00)  (p(k), &)

a€ER

where O is the usual directional derivative and
At) = e YAt € ac.

For fixed k, the operators {T¢(k), £ € a} commute. According to Theorem 3.15 of
[O1], there exist a W-invariant tubular neighborhood U of a in ac and a unique
holomorphic function G on ac x K" x U which satisfies

()VEea Neac: Te(k)GN K ) = NEGNE; )
(i) GO\, k;0) = L. (2.2)

The function G is called the Cherednik-Opdam kernel. We shall mainly be con-
cerned with the hypergeometric function associated with R, which is given by

F(\ k;t) = 1 > Gk w').
|W| weWw
It is actually W-invariant both in A and ¢. The functions F(\ k; .) generalize the
spherical functions of Riemannian symmetric spaces of the non-compact type, which
occur for specific values of the multiplicity parameter k& > 0.
In order to interpret the main results below in the geometric context, we shall
use the following scaling property:

Lemma 2.1. Let R be a root system in a Euclidean space a with multiplicity func-
tion k. For a constant ¢ > 0 consider the rescaled root system R:=cR:= {ca,a €
R} and define k on R by Eca := ko . Then the associated Cherednik kernels are
related via

Ga(k;t) = Gijelksct).

A corresponding result holds also for the associated hypergeometric functions.

Proof. Write f(t) = f(ct) for functions f on a. Then

(Te(R)]) (1) = (Tug(R))(ct).

In view of characterization (2.2), this implies the assertion. ]

In this paper, we shall always assume that k > 0 and we often write

G\ kst) = Ga(kst), F(Mk;t) = Fx(k;t).

For certain spectral variables A\, the hypergeometric functions F) are actually
exponential polynomials, called Heckman-Opdam Jacobi polynomials. To introduce
these, let P = {\ € a: (\,a") € ZVa € R} denote the weight lattice of R and
P.={xeP:(\avY) >0Va € Ry} the set of dominant weights associated
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with Ry. We equip P4 with the usual dominance order, that is, p < A iff A — p is
a sum of positive roots. Let

T :=spanc{e*, A € P}

denote the space of exponential polynomials associated with R. The monomial
symmetric functions
My= > e AePy (2.3)
pEWX
form a basis of the subspace 7" of W-invariant elements from 7.

The Jacobi polynomials {Py(k), A\ € P;} associated with R are uniquely char-
acterized by the following two conditions:
() Pr(k) = My + 3" exu(W)M, (exu(k) € ©);
pn<A
(ii) LePr(k) = (X, A+ 2p(k)) Px(k)
with the operator
(o, 1)

Li = A+ Z k,, coth 5

a€ER

Oa - (2.4)

This is just the W-invariant part of the Heckman-Opdam Laplacian, which is given
by restriction to W-invariant functions of

> T, (k) = (k)2
=1

with an arbitrary orthonormal basis {{1,...,&,} of a. The operator L;, generalizes
the radial part of the Laplace-Beltrami operator on a Riemannian symmetric space
of the non-compact type.

Let us point out that in the definition of the Jacobi polynomials, condition (ii) is
frequently replaced by an orthogonality condition. As remarked in Proposition 8.1
of [H1], both sets of conditions are equivalent. Note also that in [H1], the Jacobi
polynomials are indexed by — P, instead of P, which leads to a different sign in
(ii).

According to equation (4.4.10) of [HS], the Py(k) can be expressed in terms of
the hypergeometric function via

Exgp(kit) = c(A+p, k) Pa(k; ), (2.5)

where ¢(\, k) is the generalized c-function as defined in [HS], Definition 3.4.2. As
the polynomial Py(k) is a constant, it follows that

F(k;t) = 1. (2.6)

3. SOME ESTIMATES FOR G AND F

The growth behavior and asymptotic properties of the Cherednik kernel G and
the hypergeometric function F' have been studied in detail in [O1] as well as in
[Sch], where the precise asymptotic behavior in the space variable was determined.
We recall the following results:

Lemma 3.1. ([O1]) Let k > 0. Then for all A € ac and all t € a,
Galls )] < /[T e Retwrd, (.1
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Lemma 3.2. ([Sch]) Let k > 0. Then

(1) For X\ € a, the kernel Gx(k; .) is real and strictly positive on a.
(2) |Ga(k;t)| < GRrea(k;t) for all X € ac and t € a.

By symmetrization over the Weyl group, one obtains the same properties and
estimates for the hypergeometric function F.

In [Sch], Opdam’s estimate (3.1) was substantially improved. In fact, it is shown
there that for all A € a and all t € q,

Ga(k;t) < Go(k;t) - emaxwew (wAt) (3.2)
and that for fixed k£ > 0, the kernel Gy has the asymptotic behavior
Go(k;t) = H (1+ <a,t>)67<p’t+>
@€RY [{a,t)>0
where RY denotes the set of indivisible positive roots and ¢, is the unique element

from the orbit Wt which is contained in a5 .

The following result generalizes Schapira’s estimate (3.2).

Theorem 3.3. Let k > 0. Then for all A € a, all p € ay and all t € a,
Garp(k;t) < Gk, t) - emaxwew wAb),

The same estimate holds for the hypergeometric function F instead of G.

For 4 = p € @y we obtain, in view of identity (2.6) and of Lemma 3.2, the
following

Corollary 3.4. Let k > 0. Then for all A € ac and all t € a,
’FAer(k? t)‘ < eMmaxwew Re(w)\,t). (33)

Remarks.

(1) While the proof of (3.2) is by real-analytic methods and uses the Cherednik
operators, we shall present a different approach, based on methods from
complex analysis.

(2) Remark 3.1 of [Sch] implies the following asymptotics for ¢ € ay, when
k > 0 and some real A € ay are fixed:

F)\_;,_p(k; t) = €<)\"t>.
For our purposes, it will however be important to have an estimate which

is uniform in k.

For the proof of Theorem 3.3, we shall use the Phragmén-Lindel6f principle, see
e.g. Theorem 5.61 of [T]:

Lemma 3.5. (Phragmén-Lindelof). Let f be holomorphic in an open neighborhood
of the right half plane H = {z € C: Rez > 0}, and suppose that f satisfies
[fliy)l <M VyeR
and, as |z| = r — oo,
e
f(z)=0(")
for some B < 1, uniformly in H. Then actually |f(2)] < M for all z € H.
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Proof of Theorem 3.3. Fix t € a and denote again by ¢, the unique element from
the orbit Wt which is contained in a7 . Further, put

S:={A€ac: ReAeas}.
The geometry of root systems implies that for A € S and all w € W,
(wReA, t) < (Re, ty4).
Fix now w € W and consider the function

_ Gungplkit)
= e~ Ntg)  TwAdphy P

which is holomorphic on ac. We shall investigate f on the closure S of S. By part
(2) of Lemma 3.2, we have

[F()] < f(Re ).
Hence for A € S, Lemma 3.1 leads to the estimate

e(N’t+>

_ GuRentp(k;t)
< o~ (ReAty)  FTwReA+pl\hyb) -
FO] < e < VWl a5

3.4
: Go(kit) G4
Note that the right side is independent of A\. Again by Lemma 3.2, we further obtain
for real A € a the uniform estimate

_ |Giwatu(k;t)]

|fEN)] = RGO <L (3.5)

We claim that |f| <1 on S. For this, fix a basis {\1,...,\,} € Py of fundamental
weights. Then each A\ € S has a unique expansion A\ = Z?:l zi\; with z; € H =
{z € C:Rez > 0}. Consider first A = z1A; with z; € H. In view of estimates (3.5)

and (3.4), we may apply Lemma 3.5 with 5 = 0, thus obtaining
|f(z1A1)] <1 V2 € H.
We proceed by induction: Suppose, for 1 < m < n, that
[fzih+ .o+ zmdm)| <1 Vz,..., 2, € H.

Consider h(zpm+1) = f(z1A1+. . -+ 2mAm+2Zme1Ama1) for 2,41 € H. This function
is uniformly bounded on H according to (3.4), and for purely imaginary z,,+1 € iR
we have

[h(zmt1)] < |f(Re(z1)\1—|—. . .—|—zm/\m—|—zm+1/\m+1))‘ = \f(Rezlv\l—l—. . .—&—Rezm)\m)\

which is less or equal to 1 by our induction hypothesis. By Lemma 3.5, we conclude
that |h(2)| <1 for all z € H. Thus, induction shows that [f(\)] < 1 for all A € S,
and in particular for all A\ € a-. If X € a is arbitrary, just use the fact that A = w)\’
with some w € W and X € a. This implies the assertion.

O
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4. LIMIT TRANSITION FOR JACOBI POLYNOMIALS OF TYPE BC

Let a = R™ with the usual Euclidian scalar product and denote by (e;)i=1,..n
the standard basis of R™. We consider the root system BC), in R™ with the positive
subsystem

BC;F ={ei,2e;, 1 <i<n}U{e;+ej, 1<i<j<n},
as well as the root system A, _1 in the linear subspace
b={teR":t; +...+t, =0}
with the positive subsystem
At ={ei—e;, 1<i<j<n}.

The Jacobi polynomials associated with these root systems as well as their rela-
tionship have been widely studied; see in particular [BO], [BF], [H1] and [H2]. We
recall the fundamental facts: Let

1

w(t):=t— E(t,am)wn (4.1)

with
Wp =€e1+...+ ey
denote the orthogonal projection of R™ onto Rfj. The cone of dominant weights of
BC, is
PBC ={(\,... M) €2 : 0 > > A\,
and the dominant weights of A,,_; are given by
A BC
Py = 7T(P+ )

For abbreviation, we write Py := Pfc, which is just the set of partitions of length
n. The dominance order on P, is given by

% 7
ASM@ZAQSZMJ, 2:1,,71
j=1 j=1

For the A, _i-case, we take a real parameter x > 0 and consider the monic Jack
polynomials j§ in n variables which are indexed by partitions A € P, and are
uniquely characterized by the following conditions:

(1) j% is homogeneous of degree |A| and of the form
Jx=mx+ Z exu(k)my
<

where p < A refers to the dominance order on P, and the my, A € P, are
the monomial symmetric polynomials

my(x) = Z z*  (z eR™).

HESRA

(2) j& is an eigenfunction of the operator

- 0? x2 0
D, = 2 - 42 d .
le Oz? + Rgxi—xjaxi

i=1
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In fact, the Jack polynomials satisfy
Dyj§ = da(k)j5  with dx(r) =Y Ai(Ai — 14 26(n — i),
i=1

see [Ha] or [St]. For k = 0, we have j) = m,, while for £ > 0, the polynomial
j%(x) coincides up to constant positive factor with the Jack polynomial Jy(x;1/k)
in standard normalization as introduced in [St].

The Heckman-Opdam Jacobi polynomials of type A, _1 with multiplicity param-
eter k > 0 are essentially Jack polynomials; according to Proposition 3.3. of [BO],
they are given by

P‘A()\)(Ii;t) = ji(e") where €' = (e",... €M), t = (t1,...,t,) ERY.

T
Notice that the homogeneity of the Jack polynomials implies that for arbitrary
teR",
J(eh) = erbettnn (o) (42)
The Heckman-Opdam Jacobi polynomials of type BC,, are parameterized by a
multiplicity function k = (k1, k2, k3) > 0 on BC,,, where k; stands for the parameter
on e;, ko for the parameter on 2e; and k3 for the parameter on e; +e;. Let L,?C be

the associated operator (2.4) of type BC,,. The corresponing eigenvalue (see [Ha|)
is

ex(k) :==dx(ks) + (k1 + 2ke + 1)|\|,
with dy as above. We then obtain from [Ha] the following representation of the
BC,-type Jacobi polynomials Pfc(k) in terms of the Jack polynomials jl§3 :

Proposition 4.1. For all \,k,t as above,

BC
P/\Bc(k;t) — 4 H Ly —eu(k)

S A (s (). (4.3)
HCA H

2

t
Here sinhz(f) is understood component-wise, and p C X means that p # A and
wi < A; for each i.
Proof. Denote the right hand side of (4.3) by PEC(k;t). Tt follows from relation
(13) of [Ha] that PEC (k;t) is equal to PEC (k;t) up to a multiplicative constant. In
order to identify this constant, we compare the leading terms of both polynomials

in the expansion with respect to the monomial symmetric functions M, fc of type
BC as defined in (2.3). In fact,

. t
4PNy (smh2§) = MECt) + Z d,\quC(t)
<A

with certain constants dy, (c.f. [SK], p. 383). Taking the characterization of the
Jack polynomials j§ as well as part 1 of the characterization of the Pfc(k; t) and
the definition of ¢; on p. 1580 of [Ha] into account, we conclude that

PO (kst) = MEO(t) + > exaM7(2) (4.4)

p<A

with certain coefficients ey,,. Therefore PEC (k;t) = PPC (k;t) as claimed. O
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We notice that representations such as (4.3) were already observed by Macdon-
ald [M] and were used in [SK] for limit transitions between different families of
orthogonal polynomials.

From (4.3), we shall deduce the following limit result which was already stated
as Theorem 1 in [K2] without proof.

Theorem 4.2. Fiz a parameter 0 < a < oo and consider k = (k1, ke, k3) where
ks > 0 is fized. Then

lim  PEC(kt) = 4P 85 (a(), (45)
ki1+ko— 0o
k:l/ktz —a

where the transform t — x(t),R" — R is given by
a+1
a+2

with the understanding that voo = 1. The convergence in (4.5) is locally uniform in
t € R™. Especially if a = oo, then

t;
xz(t) =% + Sil’th(E)y Yo =

t
lim  PPC(k;t) =485 (cosh® -
k1+lgn—>oo A ( ’ ) ])\ (COS 2)
kl/k2—>00

n N\ Al /n
= (H4cosh2%)| " P2y (ks; 7 (log cosh2g)) (4.6)
i=1

The case a = oo occurs for instance if ko, k3 > 0 are fixed and k1 — oc.

Proof. We split the coordinate transform ¢ — x(¢) and consider first the transform
.ot
Y = —smh2§Z

which is frequently used in the BC-setting. In y-coordinates, the operator LEC
becomes

n

~ n o? 1 0 yilyi—1) 0
LBC = i(yi—1) = — > (k1+ko+ = —(k1+2ko+1)y;) — + 2k LA
k ;y (y )3213 ;( 1+ 2+2 (k1+2ka+1)y )ayi + 3; i —9; Oy

see Section 4 of [BO] (or also [Ha|, Section 2.3). Next, we carry out the linear

transform x; = =, — y;, under which LEC becomes

R n 82 Ya — T4 ’Ya_l_mi 9

Lee 22(%—%)(%—1—%)@ +2k32( 33-(—38‘ ) O
i=1 v i#£] ' ! '
+ i(lﬁ ka7 — (ka2 1) gci))i'

=1

Equation (4.3) thus writes

TBC _ e
PE (s t) = 4N (T 75;(]{) — ;ﬁ)) 35 ) (@) (4.7)
HCA s

with = z(t). As k1 + k2 — oo, we have

ex(k) ~ |A\|(k1 + 2k2).



LIMIT TRANSITION BETWEEN HYPERGEOMETRIC FUNCTIONS 11

If in addition k;/ke — a, then
ki + ko
k1 + 2ks
Now let 1+ C A. Then |p| < |A| and for f € C*°(R™) we obtain, as (ki,ks) — oo in
the required way,

LPC —euk) o N
B —eu) ) T = |m(zz )@,

For f a symmetric polynomial, the convergence is locally uniform in z € R". In
our case, f = j§3 is homogeneous of degree |A|. Thus

leij)\ = [A- 55" ()

— Ya -

and therefore R
LkBC —eu(k) g,
ex(h) = e (k)
locally uniformly, for each p C A. Iteration according to formula (4.7) yields

Uk t) — 4P g3 a(t)),

locally uniformly in ¢ which completes the proof of relation (4.5). Finally, in the
setting of relation (4.6) we have 7, = 1, and the claimed limit result follows from
formula (4.2).

— 3

O

5. LIMIT TRANSITION FOR HYPERGEOMETRIC FUNCTIONS OF TYPE BC

We now extend the above limit transition to the associated hypergeometric func-
tions, where we restrict our attention to the case a = oc.

For abbreviation, we write Cg for the closed Weyl chamber associated with the
positive system BC’*, ie.

Cp={teR":t;>...>t, >0}

Observe that under the projection 7 : R™ — R{, the chamber Cp is mapped onto
the closed Weyl chamber associated with the positive subsystem AT | of A, ;.
Again, we consider k = (ki, ko, k3) where k3 > 0 is fixed. We also recapitulate
that the half-sums (2.1) of positive roots for BC,, and A, _; are given by
ppc(k) =Y (ki +2ky+2ks(n—i))e; and pa(ks) =ks Y _(n+1-2i)e;. (5.1)
i=1 i=1
Theorem 5.1. For eacht € R™ and A € C™,

oy, Frc(A+ppe(k) ki)
kl/kg — 0O

= H(COShQ%)Q’%W” - Fa(m(X) + pa(ks), ks; m(log cosh2%)).
i=1

The convergence is locally uniform with respect to .



12 MARGIT ROSLER, TOM KOORNWINDER, AND MICHAEL VOIT

Notice that in this situation, pgc(k) — oo. The proof of Theorem 5.1 will be
based on Theorem 4.2 above and the following well-known theorem of Carlson (see
e.g. [T], Theorem 5.81):

Theorem 5.2 (Carlson’s Theorem). Let f be a function, which is holomorphic in a
neighborhood of {z € C: Rez > 0} and satisfies f(z) = O(el?!) for some constant
¢ < 7. Suppose that f(n) =0 for alln € Ng. Then f is identically zero.

Proof of Theorem 5.1. Let K := {k = (k1,ka,k3) € R3 : k; > 0 Vi} and fix some
t € R®. By the BC-symmetry of both sides, we may assume that t € Cp. For
k € K4 define

feA) := e~ MY - Fpe (A + pee(k), ki t)
and

g(A) = e~ ~1_[(cosh2
i=1

t;

Wnp) /M :
2)<,\, )/ .FA(W(A)+pA(kg),ks;w(logcosh2§)).

The functions fi and g are holomorphic on C?¢. Corollary 3.4 readily implies that
the family {fx : k € K4} is locally bounded on C? and uniformly bounded on the
set S:={Ae€C?: Re\ € Cp}; indeed, as t € Cg we obtain

fe)] <1 Vres. (5.2)

Now let (k(j))jen C K4 be a sequence of multiplicities such that k(j)s3 = k3 with
fixed ks > 0 and k(j)1 + k(j)2 — +o0, k(j)1/k(j)2 — +oo. For abbreviation, we
write
fj = fk(j)7 j € N.

We have to show that f; — g locally uniformly on C?. By Montel’s theorem in
several complex variables (see for instance [G]), each locally bounded sequence of
holomorphic functions on C? has a subsequence which converges locally uniformly
to some limit function which is again holomorphic on CY. It therefore suffices to
verify the following condition:

(M) If (f;,) is a subsequence of (f;) such that f;, — h locally uniformly on
C? for some h, then h = g on C9.

Suppose that (f;,) is a subsequence with f;, — h locally uniformly on C9.
According to Theorem 4.2 together with (2.5) and Fiy,(k;0) = 1, we have

fi,(A) = g(A)

for all dominant weights A € P, . Therefore h(\) = g(\) for all A € P, . Consider
again the set S. We claim that

h(A) =g(\) VA€ES. (5.3)

Once this is shown, the identity theorem will imply that Ao = g on C?, and the
verification of condition (M) will be accomplished. For the proof of (5.3) we shall
apply Carlson’s theorem to g — h on S, which requires suitable growth bounds on
the involved functions. First, h is the locally uniform limit of the sequence f;,
which is uniformly bounded on S according to (5.2). Hence

|lh(A)] <1 VA€ S.
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For an estimate of g on S, note that Rew()) is contained in the closed positive
chamber associated with A" for each A € S. Application of Corollary 3.4 therefore
yields

¢ t
‘e‘(ﬂ'()\)m(log(coshz§))> 'FA(W()\) +,OA(ks),k3;7T(logcosh2§))‘ <1

for all A € S. Let us call the function on the left E()) and write
n
_ t ti\ (Awn)/n
A = |e=dt) | o{m(A),m(log(cosh? ) | h22 - E(N).
g = e e : [[( 5) |- BV
As L
(m(),7(y)) = (z,y) — (&, wn)(y,wn) Y,y €R",

we obtain

L . : ti\Re X
)| = —(A\t) | ()\,log(6031122)> CE(\) < —t; h2i i
lg(N)] ‘6 e ’ \) < il;[l(e cos 2)
and therefore
lgN)| <1 Vies.

Summing up, we have
lg—h| <2 on S and (g—h)(A\) =0 VX € Py.

As in the proof of Theorem 3.3, we fix a set of fundamental weights {A1,..., A} C
Py and write A € S as A = > 1", z\; with coefficients z; € {z € C: Rez > 0}.
Then successive use of Carlson’s Theorem with respect to the variables z1,..., z,
shows that actually g —h =0 on S.

O

6. LIMIT TRANSITION FOR SPHERICAL FUNCTIONS OF NONCOMPACT
GRASSMANN MANIFOLDS

6.1. Spherical functions of non-compact Grassmannians. For specific mul-
tiplicities, hypergeometric functions of type BC occur as spherical functions of
non-compact Grassmann manifolds. This was the starting point for the construc-
tion of hypergroup convolution algebras with hypergeometric functions as charac-
ters in [R]. Let us recall this connection. For each of the fields F = R,C,H we
consider the Grassmann manifolds G, 4(F) = G/K where G is one of the groups
SOo(p,q), SU(p,q) or Sp(p,q) with maximal compact subgroup K = SO(p) x
SO(q), S(U(p) x U(q)) or Sp(p) x Sp(q), where we assume that p > ¢q. We regard
G and K as subgroups of the indefinite unitary group U(p, q;F) over F. The Lie
algebra g of G has the Cartan decomposition g = € @ p where ¢ is the Lie algebra
of K and p consists of the (p + ¢)-block matrices

0 X
< o) X € My, 4(F).

As a maximal abelian subspace of p we choose
t

a={H = Oo 0, e | tERE
L O0gx(p—q) Ogxq

where t := diag(ti,...,%q) is the ¢ x ¢ diagonal matrix corresponding to t.
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The restricted root system A = A(g, a) is of type BC, with the understanding
that zero is allowed as a multiplicity on the long roots. We identify a* with a via
the Killing form and a with R? via the mapping H; — t. Under this identification,
the Killing form corresponds to a constant multiple of the Euclidean scalar product
on RY, and

A= BCq = {:I:ei,:I:?ei,:I:ei :|:€j, 1 S 1< ] < q} C RY.
The geometric multiplicities of the roots are given by

dp—gq) for a==te;
Mo =<d—1 for a@ = £2e;
d for oo = *e; L e;.

where d = dimg F. We consider the spherical functions of G/K as functions on
A =expa. Let Fgc denote the hypergeometric function associated with R = BCj,
and multiplicity ko = 3mq (mq as above), and denote by Fpe the hypergeometric
function associated with the rescaled root system R = 2BC, and multiplicity %ga =
kq. Then according to Remark 2.3 of [H3] and Lemma 2.1, the spherical functions
of the Grassmannian G, ,(F) are given by

ox(ar) = Fe(\E;t) = Fpe(M/2,k;2t), A eCo, (6.1)
where
cosht 0 sinht
teR? and a; =eft = 0 I, 0
sinht 0 cosht
The limit k7 — oo in Theorem 5.1 here corresponds to p — co. In order to identify
the limit in this case, we recapitulate some facts on spherical functions of type A.

6.2. Spherical functions of type A. Consider the symmetric spaces G/K where
G is one of the connected reductive groups GL,(q,R), GL(q,C), GL(q,H) with
maximal compact subgroup K = SO(q), U(q) and Sp(q), respectively. We have
the Cartan decomposition G = K AK with

A=expa, a={t=diag(ts,...,t;), t=(t1,...,t,) € R} (6.2)

For the moment, we consider the spherical functions of G/K as functions on a,
where we identify a = R? via t — ¢. The spherical functions of G/K are then
characterized as the continuous functions on R? which are symmetric and satisfy

the product formula
»(t)w(s) :/ w(log(asmg(eik ei)))dk; (6.3)
K

here 04ing(M) = (01,...,04) € R? denotes the singular values of M € My(F)
ordered by size: o1 > ... > o,. The spherical functions of G/K = GL(¢,F)/U(q,F)
are closely related to those of G1/K; where G is the corresponding semisimple
group SL(q,F) and Ky = SU(q,F). Indeed, consider the orthogonal projection
m: R? — R{ as in (4.1). In the same way as above, the spherical functions of
G1/K1 may be characterized as the symmetric functions ¢ on R{ which satisfy the
same product formula (6.3). Now suppose that ¢ is a spherical function of G/K.
Then for t € RY, we have

P(t) = ot —m(t) +m(t) = Pt —7(t)) - (7 (t))
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because t—(t) corresponds to the scalar matrix exp (3>°7_, ¢;/q)- I, which belongs
to the subgroup Zg := {a - I, : a > 0} of the center of G. As the restriction of v
to Zg is multiplicative on Zgr, we have ¥ (a - I;) = ™ with some exponent m € C.
Therefore

P(t) = exp(m - Z ti/q) - (m(t)) (6.4)

where the restriction 9| Rrg corresponds to a spherical function of G1 /K. Conversely,
it is easily checked that for a given spherical function ¢ of G1/K;, formula (6.4)
defines an extension to a spherical function ¢ of G/K.

We now return to the usual convention and consider spherical functions as func-
tions on the group. For G1/Kj, the geometric multiplicity on the restricted root
system A = A,_; is given by m = d. Therefore, again according to Remark 2.3 of
[H3] and Lemma 2.1, the spherical functions of G1/K; can be identified as

ZZ’A(BL) = FA()‘/de/za 2t)7 le Rga (65)
with A e C:={AeC?: 37 |\, =0}. For A€ C%, put m =37, \;. Then

(t —m(t),\) = m~Zti/q. (6.6)

This shows that we can parameterize the spherical functions of G/K according to
a(el) = TN By (1(N/2),d/2;7(2t)), A€ CY (6.7)

With the notions of (6.1) and (6.7), Theorem 5.1 now implies the following limit
relation.

Corollary 6.1. The spherical functions ¢ of the Grassmannian G, o(F) and ¥y
of GL(q,F)/U(q,F) satisfy

Jmoxpg (@) = Py pseo(cosht )

for all X\ € C? and t € RY, with the “geometric” constants p%° = 2pr(k) given by

q

q
phe=> ([dp+q+2-2i)—2e; and p%° =) d(g+1-2i)e;.
i=1 =1

Proof. From relation (6.1), Theorem 5.1 and identity (6.6) we obtain

lim oy poee(ar) = lim Fpo(A/2+ ppo(k), k;21)
1—00

p—00
q
= H(costhi)Q’“quq - Fa(m(M/2) + pa(ks),d/2; 7 (Incosh®t))
i=1

— e(lncosth—ﬂ(lncoshzt),A/Q) -Fa (7_‘_(/\/2) —|—pA(k3),d/2;7T(1DCOSh2t)),

with & = (d(p — ¢q)/2,(d — 1)/2,d/2). Using pa(ks) € R and (6.7), we conclude
that this limit equals

e(lncosh2t77r(lncosh2t),)\/2+pA(k3)> CFy (7_‘,()\/2 + ,OA(kg)), d/2, ﬂ'(lnCOSth))
= Yoo (cosht)

as claimed. O
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We finally mention that Corollary 6.1 can be also obtained with sharp estimates
for the order of convergence by comparing explicit versions of the Harish-Chandra
integral representations of the involved spherical functions; see [RV2]. We also
remark that our limit transition for hypergeometric functions has a counterpart
in the Euclidean case, namely the convergence of (suitably scaled) Dunkl-Bessel
functions of type B to such of type A, which was obtained in [RV1] by completely
different methods.

7. SPHERICAL FUNCTIONS OF INFINITE-DIMENSIONAL GRASSMANNIANS

We now discuss an interpretation of the preceding limit results in the context
of infinite dimensional symmetric spaces and Olshanski spherical pairs. For the
general background on this subject we refer to Faraut [F] and Olshanski [Ol1],
[O11] . In order to be in agreement with standard terminology, we slightly change
our notation. We consider the Grassmann manifolds G,,/K,, with G,, = SOg(n +
q,q), SU(n+gq,q) or Sp(n+gq, q) and maximal compact subgroup K, = SO(n+q) x
SO(q), S(U(n+q)xU(q)) or Sp(n+q)xSp(q). In all three cases, G, is regarded as a
closed subgroup of G, 41 with K,, = G,,NK,,11. Consider the inductive limits G, =
lim_, G, and K :=lim_, K,,. Then (G, K ) is an Olshanski spherical pair, and
Goo /Ko is one of the infinite-dimensional Grassmannians SOg(00,q)/SO(c0) x
SO(q), SU(c0,q)/S(U(c0)xU(q)), Sp(o0,q)/Sp(c0)xSp(q). A continuous function
¢ : G5 — C is called an Olshanski spherical function of (G, Koo) if ¢ is Koo
biinvariant and satisfies the product formula

n—00 K

o(g) - ¢(h) = lim d(gkh) dk for g¢g,h € Gy.

We shall now classify the Olshanski spherical functions of (G, Koo ) without rep-
resentation theory.
For this we use the decomposition G,, = K, A K,

cosht 0 sinht
At ;:{ 0 1, 0 : tECB}

sinht 0 cosht
of representatives of the K,-double cosets in G,,, where again
Cpi={t=(t1,...,ty) €ERY: t; >ty > ... >t, >0}
denotes the closed Weyl chamber of type BC. Therefore, independently of n, we
identify A} with the set of diagonal matrices
D := {cosht := diag(coshty,...,cosht,) : t € Cp}.

This gives the topological identification G,,//K,, ~ A} ~ D. Notice that the ele-
ments of D are just the lower right ¢ x g-blocks of the matrices from A;}'. In the
same way,

cosht 0 sinht
Goof [ Koo = AL = {af"

= 0 I 0 tte C’B} ~ D.
sinht 0 cosht
By definition of the inductive limit topology, a function ¢ : G, — C is continuous

and Koo-biinvariant iff for all n € N, ¢|¢, is continuous and K,-biinvariant. The
space of all continuous, K .-biinvariant functions on G, may thus be identified with
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the space of all continuous functions on D. Using this convention, the Olshanski
spherical functions of (G, Koo) can be characterized as follows:

Lemma 7.1. A continuous Koo-bitnvariant function ¢ : Goo — C is an Olshanski
spherical function if and only if there is a continuous function ¢ : D — C with

d(ag®) = @(cosht) fort € Cp such that ¢ satisfies the product formula

o(a) - p(b) = / O(Osing(akb))dk, a,be D. (7.1)
U(q,F)
Here the vector o4ing(...) € RY is identified with the corresponding diagonal matriz.

Proof. Let ¢ be a continuous K.-biinvariant function on G. By the preceding
discussion, ¢ is Olshanski spherical if and only if there is a continuous function
¢ : D — C with ¢(a®) = ¢(cosht) for t € Cp such that ¢ satisfies

¢(cosht) - (coshs) = lim d(a® kal)dk = lim ¢(af kal)dk (7.2)

for s,t € Cg. We shall use Proposition 2.2 of [R] to rewrite the integrals on the
right hand side. Let By := {w € My(F) : w*w < I} and

eni= | AU —w'w)"FOYV2 gy with = d(qg—1/2) + 1,
Bq

where A denotes the determinant and dw means integration with respect to Lebesgue
measure. Then

/ d(al ka?) dk = ¢, " / / G(0ging(sinh t w sinh s + cosht k cosh s))
K, Bq JUo(q,F)
AT — wrw) D2 gk duy (7.3)

where Up(q,F) is the connected component of U(q,F). The probability measures
eyt A(I - 11)*‘11})("‘“1)d/2_v dw are compactly supported in B, and tend weakly to
the point measure ¢y for n — oo. Therefore (7.2) is equivalent to

d(cosht) - p(coshs) = /U e G(Oging(cosht k cosh s)) dk. (7.4)
olq,

Finally, is easily checked that the group Uy(q,F) may be replaced by U(g,F) in the
integral, which completes the proof. (I

We consider the reductive symmetric spaces G/K = GL(q,F)/U(q,F) of sub-
section 6.2 and resume the notation from there. We introduce the set of diagonal
matrices

Do :={et € My(R) : t = (t1,...t,) € R? with t; > ... >t,}.
Then G//K = Dy, and a spherical function ¢ of G/K may be characterized as a

continuous function on Dy satisfying the product formula

w(a) - p(b) = / (0 ving(akb))dE, a,b € Do. (7.5)

U(q,F)

Comparison with Lemma 7.1 gives
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Theorem 7.2. A continuous K, -biinvariant function ¢ : Goo — C is an Olshanski
spherical function if and only if the function ¢ : D — C with p(a®) = d;(cosh t) for
t € Cp is the restriction to D of a spherical function ¢ of G/K. FEach spherical
function ¥ of G/ K is uniquely determined by its restriction to D, and the Olshanski
spherical functions therefore correspond in a bijective way to the spherical functions

of G/K.

Proof. The if-part is clear from Lemma 7.1. The converse direction follows from
Lemma 7.1 together with the following lemma. (]

Lemma 7.3. Fach continuous function ¢ on D which satisfies product formula
(7.1) admits a unique extension to a continuous function ¥ on Dy satisfying product
formula (7.5).

Proof. Assume first that ¢ : Dy — C is such an extension of (. Consider first a
scalar matrix a = rI; with r > 1. Then a € D and hence ¢(a) = ¢(a). Moreover,
as ¥(a~1) = 1/1(a) for a as above, the function ¢ is uniquely determined by ¢ on
the set of scalar matrices Z = {rl,, r > 0}. Now let a € Dy. We then find r > 0
and a matrix b € D such that a = rb. Using Product formula (7.5) we obtain

Y(rly)y(b) = Y(0sing (kb)) dk = ¢(rb) = ¥(a). (7.6)
Uq(F)
Therefore, 1) is determined uniquely by ¢.
Conversely, it is easily checked that for given ¢, the definition of ¢ first on Z as
above and then on Dy via (7.6) leads to a well-defined continuous function 1 on
Dg which satisfies the product formula. O

We notice at this point that our proof of Theorem 7.2 relies only on the explicit
product formula (7.3) and does not require the results of the preceding sections.
On the other hand, Corollary 6.1 and Theorem 7.2 imply the following

Corollary 7.4. All Olshanski spherical functions of the infinite-dimensional Grass-
mannians Goo | Koo appear as limits of the spherical functions of the Grassmannians

G/ K.

Let us finally remark that the arguments above may also be applied to further
Olshanski spherical pairs with fixed rank, for example to pairs related to the Cartan
motion groups of Grassmann manifolds with growing dimension.
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