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Abstract: INGARCH models for time series of counts arising, e.g., in

epidemiology assume the observations to be Poisson distributed con-

ditionally on the past, with the conditional mean being an affine-

linear function of the previous observations and the previous condi-

tional means. We model outliers within such processes, assuming that

we observe a contaminated process with additive Poisson distributed

contamination, affecting each observation with a small probability. Our

particular concern are additive outliers, which do not enter the dynam-

ics of the process and can represent measurement artifacts and other

singular events influencing a single observation. Such outliers are diffi-

cult to handle within a non-Bayesian framework since the uncontami-

nated values entering the dynamics of the process at contaminated time

points are unobserved. We propose a Bayesian approach to outlier mod-

eling in INGARCH processes, approximating the posterior distribution

of the model parameters by application of a componentwise Metropolis-

Hastings algorithm. Analyzing real and simulated data sets, we find

Bayesian outlier detection with non-informative priors to work well if

there are some outliers in the data.

Keywords: Generalized Linear Models; Time Series of Counts; Addi-

tive Outliers; Level Shift.
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1 Introduction

Models for outliers and intervention effects in Gaussian time series and

methods for their detection are well established nowadays. Dependen-

cies within Gaussian time series are commonly modeled by assuming

a simple parametric form of the conditional mean of the current ob-

servation Yt given its past Yt−1, Yt−2, . . . and adding a random error et

representing an innovation at time t which cannot be predicted from

the past; compare the popular autoregressive moving average (ARMA)

models. Outlier effects are usually added directly to the observations

within this framework, see Charles and Darne (2005), for instance. Fox

(1972) distinguishes between innovative outliers and additive outliers

in such time series models: the former correspond to outlying inno-

vations et and describe, e.g., major technological advances influencing

the whole process according to its dynamics. The latter represent sin-

gle outlying observations which may be caused, e.g., by measurement

artifacts.

Little work has been done so far on the analysis of outliers in time

series of counts arising in epidemiology, insurance industry, economics

and communications, among others. Following similar lines as Chen

and Liu (1993) in the Gaussian framework, Fokianos and Fried (2010)

propose an iterative procedure for outlier detection and correction in

so called integer-valued GARCH (INGARCH) models, which have been

developed and investigated by Ferland, Latour and Oraichi (2006) and

Fokianos, Rahbek and Tjostheim (2009), among others. These mod-

els are developed within the framework of generalized linear models.

Denoting the whole information up to time t − 1 by FYt−1, dependen-

cies between subsequent observations are incorporated by expressing

the conditional mean λt = E(Yt|FYt−1) of the current observation Yt in

terms of past observations and past conditional means, using the iden-

tity link. More precisely, an INGARCH process {Yt} of order (p, q),
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abbreviated by INGARCH(p, q), is defined by the relationships

Yt|FYt−1 ∼ Poisson(λt), t ≥ 1, (1)

λt = β0 +

q∑
i=1

βiYt−i +

p∑
j=1

αjλt−j .

Here, FYt−1 is the σ–field generated by {Y1−q, . . . , Yt−1, λ1−p, . . . , λ0},

β0 > 0 is an intercept and βi > 0, i = 1, . . . , q, and αj > 0, j = 1, . . . , p,

are regression coefficients. A stationary solution of (1) with mean

β0/(1 −
∑p

i=1 αi −
∑q

j=1 βj) exists if
∑p

i=1 αi +
∑q

j=1 βj < 1. Simi-

lar models, in which {λt} is regressed on past values of the observed

process and past values of {λt} itself, have been studied before by Ry-

dberg and Shephard (2000), Streett (2000) and Heinen (2003). These

models for count time series include a feedback mechanism to achieve

parsimony–an idea similar to the GARCH model (Bollerslev, 1986). In

addition, stationarity and geometric ergodicity are guaranteed by sim-

ple conditions on the parameters (Doukhan, Fokianos and Tjostheim,

2012).

Fokianos and Fried (2010) model different types of outliers and in-

tervention effects through the conditional mean. Parameter estimation

is accomplished by maximization of the conditional likelihood. How-

ever, purely additive outliers describing measurement artifacts or other

events not entering the dynamics cannot be treated easily within this

frequentist framework. The reason is that the conditional means given

the past of the process, which are needed for maximum likelihood esti-

mation and other purposes, depend on the unobserved uncontaminated

observations. Even the spiky outliers considered by Fokianos and Fried

(2010) affect the future of the process via the evolution of the con-

ditional mean, similar to the innovation outliers in Gaussian ARMA

models. We will show that additive outliers are straightforward to deal

with within a Bayesian framework. A Bayesian approach to the de-

tection of multiple outliers in ARMA models has been suggested by

Justel, Peña and Tsay (2001), while Abanto-Valle et al. (2010) and
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Wang, Chan and Choy (2011) develop Bayesian methods for treating

outliers in stochastic volatility models. Silva, Frias and Pereira (2012)

treat additive outliers in integer autoregressive models for time series

of counts, which are constructed by means of binomial thinning and

are very different from the generalized linear modeling framework con-

sidered here.

Like Fokianos and Fried (2010) we restrict ourselves to INGARCH

models, though our approach can be generalized to other link functions.

Our focus is on the INGARCH(1,1) model, since it is simple, but yet

sufficiently flexible for approximating many realistic dependence struc-

tures, which are observed in real count time series. Section 2 presents

a Bayesian extension of the INGARCH(1,1) model and proposes a def-

inition of additive outliers within this context. Intervention effects are

added directly to the observations {Yt} following the linear time series

methodology, so that the next observations are not contaminated. We

develop Bayesian methods for the estimation of regression parameters

and intervention effects using Markov Chain Monte Carlo (MCMC)

techniques. Section 3 describes some examples and a simulation study

for investigating the reliability of this procedure. Section 4 provides an

application to real data and Section 5 draws some conclusions.

2 Bayesian outlier modeling in INGARCH series

In the following we develop Bayesian approaches for dealing with out-

liers in INGARCH processes, starting from the uncontaminated process

without outliers.

2.1 Bayesian modeling of INGARCH processes

To implement the Bayesian version of the INGARCH(1,1) model (1)

we use the software OpenBUGS (Bayesian inference Using Gibbs Sam-

pling, Lunn et al., 2009), and the R2WinBUGS interface (Sturtz, Ligges
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and Gelman, 2005). In the absence of prior information we use weakly-

informative prior distributions for the parameters θ̃ = (β0, β1, α1, λ0, Y0),

with β0, (β1, α1) and (λ0, Y0) assumed to be independent random vari-

ables. For the positive parameters β0 and λ0, which are the regres-

sion intercept and the value initializing the dynamics of the INGARCH

process, independent gamma priors are used with parameters (0.1,0.1),

which are traditional weakly informative prior distributions in the Pois-

son model. The unobserved observation Y0 also needed for initialization

is drawn from a Poisson distribution with mean λ0. To guarantee sta-

tionarity of the resulting process the dependence parameters α1 and

β1 need to be positive with α1 + β1 < 1. A prior distribution suited

for encoding this constraint is the two-dimensional Dirichlet distribu-

tion for (α1, β1). The three components of a vector simulated from this

distribution are positive and sum to one, so that the two first compo-

nents sum up to a random value between 0 and 1, while the last one is

determined by the first two components. The parameters of the Dirich-

let are chosen as (1,1,1), corresponding to the uniform distribution on

the 2-dimensional probability simplex, and implying Beta(1,2) marginal

distributions for α1 and β1. To obtain a sample from the posterior dis-

tribution of θ̃, the Metropolis-Hastings (MH) algorithm (Metropolis et

al., 1953, Hastings, 1970) is used.

2.2 Modeling of additive outliers

Additive outliers correspond to single contaminated observations, so

that the outlier effect does not carry over to the subsequent observa-

tions. This does not apply if an outlier changes the conditional mean

λt of the process, as it enters the dynamics (Fokianos and Fried, 2010).

Additive outliers can be modeled assuming that we observe a contam-

inated process {Zt} instead of the clean INGARCH process {Yt}. For

this, we complement model (1) by an observation equation, contami-

nating each clean value Yt with probability πt by an additive outlier of
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random size Xt following a Poisson distribution,

Zt = Yt + δtXt (2)

with Xt ∼ Pois(ω) and δt ∼ Bern(πt).

We assume X1, δ1, . . . , Xn, δn to be independent and independent from

the latent process {Yt} of clean data. If we have prior information

about the distribution of outliers, all probabilities πt can be chosen

equal to a deterministic constant, πt ≡ π, such that the product nπ is

the expected numbers of outliers in the data. The parameter ω must

be strictly positive.

Model (2) is different from the model studied by Fokianos and Fried

(2010) since additive outliers do not contaminate the observations there-

after, i.e. the conditional means λt are unaffected. It is difficult to ana-

lyze this model within a non-Bayesian framework since the conditional

mean λt+1 of an observation right after a contaminated time point de-

pends on the uncontaminated value yt, which is not observed. An EM

algorithm (e.g., O’Hagan, Murphy and Gormley, 2012) could be used if

the time of the outlier is known, but the arising computations become

cumbersome if there are multiple interventions at unknown time points.

We implement a Bayesian version of model (2) in R (R Development

Core Team, 2009).

All model parameters can be collected in an extended vector

θ = (β0, β1, α1, ω, δ1, · · · , δn, π1, · · · , πn, λ0, Y0)

with (2n + 6) components. Here, λ0 and Y0 are starting values for the

unobserved conditional mean process {λt} and the INGARCH process

{Yt}. In addition to the prior specifications provided in Subsection 2.1

for (β0, β1, α1, λ0, Y0), we use independent beta priors with parameter

(1, 10) for the πt and a gamma prior with parameter (0.1,0.1) for ω.

Denoting random variables by capital letters and their realizations

by small letters, i.e. w is the realization of W , and using p(w) as a
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generic symbol for the density of a random variable W , the a posteri-

ori distribution of the parameters is obtained from Bayes theorem as

p(θ|z) = p(z|θ)·p(θ)
p(z)

∝ p(z|θ) · p(θ) with p(z|θ) = L(θ) being the condi-

tional likelihood function,

L(θ) =
n∏
t=1

(λt + δtω)zt

zt!
e−(λt+δtω) .

We simulate samples θ(1), θ(2), · · · , θ(N) from the posterior distribu-

tion using the componentwise Metropolis-Hastings algorithm as de-

scribed in Ntzoufras (2009), for instance. Dividing the vector θ into

subvectors of correlated elements (parameter blocking) and updating it

sequentially can improve the convergence. In our case, we update the

parameters α1 and β1 jointly, while all other blocks correspond to single

components. Let θj denote the j-th block, θ−j the vector θ excluding

the block θj, and θ(k) be the value of θ after updating all blocks of θ

the k-th time.

1. Set initial values θ(0) by giving values to all blocks θ(0)j .

2. For k = 1, . . . , N repeat the following steps

a) Set θ = θ(k−1)

b) For j = 1, . . . , (2n+ 5), generate a new candidate value θ′j for

the block θj from a proposal distribution q(θ′j|θ). Calculate

α(θ
′

j, θ−j) = min
(

1,
p(θ

′
j|θ−j, z)q(θj|θ

′
j, θ−j)

p(θj|θ−j, z)q(θ
′
j|θj, θ−j)

)
= min

(
1,
p(z|θ′j, θ−j)p(θ

′
j, θ−j)q(θj|θ

′
j, θ−j)

p(z|θj, θ−j)p(θj, θ−j)q(θ
′
j|θj, θ−j)

)
Set θj = θ

′
j with probability α(θ

′
j, θ−j).

c) Set θ(k) = θ.

For the simulations, we need the full conditional distributions p(θj|θ−j, z),

that is the posteriori distribution of each block conditional on all the

other blocks of θ and the data z = (z1, . . . , zn). For the parameters
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πt and δt we obtain analytically known full conditional distributions

so that the quantity α(θ
′
j, θ−j) is equal to 1 in the Metropolis-Hastings

algorithm for these particular steps. We make use of the fact that for δt

known the distribution of Zt is again a Poisson distribution with mean

equal to the sum of the mean parameters of Yt and δtXt.

2.3 Full conditional distribution of β0

The a-posteriori distribution of β0 given all other parameters and the

data is proportional to the likelihood function times the prior distribu-

tion. Assuming β0 to be a-priori Γ(αβ0 , ββ0) distributed and excluding

all terms without β0 we obtain

p(β0|θ−1, z) ∝
n∏
t=1

[(β0 + rt)
zt · e−(β0+rt)] · βαβ0−10 e−ββ0 ·β0 ,

with rt = β1yt−1 + α1λt−1 + ωδt. Since this full conditional distribution

does not correspond to a known distribution, the MH-Algorithm is used

for β0 with a Gamma distribution as proposal distribution, using the

slightly disturbed values from the previous iteration for the parameters.

The full condition distributions for ω, λ0 and Z0 are simulated similarly.

2.4 Full conditional distribution of (β1, α1)

To ensure that β1 + α1 < 1 we use the Dirichlet distribution with

parameter aβ1 , aα1 , aα2 as prior distribution for (β1, α1). This leads to

a full conditional distribution with a density

p(β1, α1, α2|θ−2, z) ∝
n∏
t=1

(β0+β1yt−1+α1λt−1+δtω)zt·e−(β0+β1yt−1+α1λt−1+δtω)

·βaβ1−11 · αaα1−11 · (1− α1 − β1)aα2−1

Again, this is a non-standard distribution, so that we use an MH-

Algorithm step with a Dirichlet distribution with the parameters up-

dated according to the values accepted in the previous iteration as

proposal distribution.
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2.5 Full conditional distribution of δt

We assume δt to be a-priori Bernoulli distributed with parameter πt.

Analogously to the previous subsection, the full conditional distribution

can be computed excluding the terms without δt as follows:

p(δt|θ−(t+4), z) ∝ (λt + δtω)zte−(λt+δtω)πδtt (1− πt)1−δt .

Because δt only takes the values 0 and 1, we can simplify the above

expression,

p(δt = 1|θ−(t+4)) ∝ (λt + ω)zte−(λt+ω)πt = At

p(δt = 0|θ−(t+4)) ∝ λztt e
−λt(1− πt) = Bt

The probabilities need to sum to 1, implying that we can norm these

expressions to become At/(At+Bt) and Bt/(At+Bt), respectively. The

values δt are sampled directly using Gibbs Sampling.

2.6 Full conditional distribution of πt

The hierarchical structure of model (2) ensures that each πt is inde-

pendent of all other model parameters except δt. Choosing the prior

distribution of πt as a Beta distribution with parameters a and b, the

full conditional for πt is given by

p(πt|θ−(4+n+t), z) = p(πt|δt) (3)

∝ πδtt (1− πt)1−δt · πa−1t (1− πt)b−1

⇒ πt|θ−(4+n+t), z ∼ Beta(δt + a, b+ 1− δt) .

Alternatively, the πt can be set to the same constant, since the model

described above is not affected strongly by this.

3 Simulation experiments

Deviating slightly from the fitted additive outlier model (2), we simulate

INGARCH(1,1) time series with additive outliers at known time points.
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Using fixed time points for the outliers, corresponding to fixed values

of πt ∈ {0, 1}, allows to control the number of outliers in the time series

and to calculate the relative frequencies of time series generated from

the same model, for which each of the outliers was detected.

We apply the procedure given above to estimate the model parame-

ters by the posterior means. The posterior means of the outlier proba-

bilities for each observation are approximated by calculating the mean

of the vectors δ(k) selected from θ(1), θ(2), · · · , θ(N). The average value of

δt obtained in the iterations can be used to approximate the a-posteriori

probability of Zt being outlying. Alternatively, the mean value of πt

could also be used for this purpose, but the difference will usually be

small in practice. Each observation can be classified as outlying or not

choosing a cutoff, e.g., 0.5, for one of these two quantities.

In the following we first illustrate our procedure using a single arti-

ficial data example, before we study it more systematically varying the

number of outliers and the parameter values.

3.1 A first example

The first example refers to an INGARCH(1,1) series of length n = 150

with parameters (β0, β1, α1) = (2, 0.3, 0.4) and eight additive outliers

at times 15, 48, 83, 101, 126, 136, 137 and 138. The outlier sizes are

generated from the Poisson distribution with mean ω = 15, see Figure

1. The posterior means estimate the true parameters rather well, see

Table 1.

Table 2 illustrates that the Bayesian fitting procedure does not lead

to any false detection in this data set and identifies seven of the eight

outliers correctly since the a-posteriori probabilities of outlyingness are

close to one. The only exception is the rather small outlier at time 138.

This can happen since the Poisson distribution used for the contami-

nation can take on small values occasionally. Additionally, there can

be masking effects because of the two outliers occurring immediately
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Figure 1: First example: Simulated INGARCH(1,1) time series with eight additive

outliers and a-posteriori probabilities of outlyingness, multiplied by 20 for the reason

of illustration.

Table 1: First example: True parameters and parameter estimates obtained as the

posterior means with their standard deviations.

Parameter β0 β1 α1 ω

True value 2 0.3 0.4 15

Estimate 2.810 0.357 0.213 15.830

Standard deviation 0.801 0.083 0.127 1.965

before it, if these are not detected or if their size is underestimated.

In the next subsection we study the performance of the Bayesian

procedure more carefully in a simulation study and compare it to ordi-

nary conditional likelihood estimation.

3.2 Simulation study

We start our simulation study by comparing the classical conditional

maximum likelihood (CML) and the Bayesian estimators described

above in the absence of outliers. The biases, standard deviations and

root of the mean square errors of the estimators are approximated by
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Table 2: First example: Times of the true and the detected outliers along with the

a-posteriori probabilities of outlyingness.

True outliers at 15 48 83 101 126 136 137 138

Observed value 21 33 25 20 19 22 20 10

Detected outliers 15 48 83 101 126 136 137 —

posterior probabilities 0.999 1 0.994 0.999 0.996 0.996 0.994 0.010

analyzing 10000 time series by conditional maximum likelihood and 100

time series by the Bayesian procedure for each of several models, with

the length of the time series being n = 150. The Bayesian procedure is

applied to fewer time series because of its larger computation times.

In case of clean data, both estimators are somewhat positively biased

for β0 and slightly negatively biased for α1, and stronger so if α1 is

large, see Table 3. While the biases of the estimators are of similar

size, the Bayesian procedure leads to smaller MSEs because of smaller

variabilities. Imposing a prior distribution apparently stabilizes the

estimates.

Table 4 shows the results for INGARCH(1,1) time series with three

or six positive additive outliers. The conditional maximum likelihood

estimator becomes positively biased for β0 and negatively biased for the

dependence parameters β1 and α1. The Bayesian procedure performs

considerably better in this respect and shows much smaller biases, ex-

cept if α1 + β1 is large, i.e., as the model approaches non-stationarity.

Outlier detection is very difficult in almost non-stationary time series,

as becomes manifest in the strong underestimation of the mean ω of

the outliers in this situation. Incorporating the possibility of additive

outliers in the analysis is helpful in the other cases. Since addition-

ally the standard deviation of the Bayesian estimators is again smaller

than that of the CML estimators, the Bayesian approach leads to much

smaller MSEs. The estimators of β0, β1, α1 perform better if there are

only a few outliers, since fewer outliers affect the estimators less. How-
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Table 3: Results for clean data: Bias, standard deviation and root of the mean

square error of the estimators based on the Bayesian procedure with additive out-

liers and of the conditional maximum likelihood estimators, in case of time series

generated from different INGARCH(1,1) models without outliers.

Bayesian estimator CML-estimator

β0 β1 α1 ω no. of outliers β0 β1 α1

true 1 0.2 0.3 0 - 1 0.2 0.3

bias 0.068 -0.013 -0.030 0.217 0.096 -0.008 -0.041

std.dev. 0.191 0.069 0.091 0.174 0.463 0.081 0.246
√
MSE 0.203 0.070 0.096 0.278 0.473 0.081 0.250

true 1 0.5 0.3 0 - 1 0.5 0.3

bias 0.221 0.011 -0.060 0.400 0.179 -0.010 -0.028

std.dev. 0.369 0.068 0.091 0.356 0.439 0.083 0.126
√
MSE 0.430 0.069 0.109 0.536 0.474 0.084 0.129

true 2.5 0.2 0.3 0 - 2.5 0.2 0.3

bias 0.035 -0.005 -0.007 0.362 0.231 -0.008 -0.039

std.dev. 0.425 0.072 0.098 0.238 1.152 0.081 0.246
√
MSE 0.427 0.072 0.099 0.434 1.175 0.081 0.249

ever, the Bayesian estimator of ω gets less biased as the number of

outliers increases, because more information on the outlier mechanisms

becomes available. Hence, non-informative Bayesian modelling of ad-

ditive outliers becomes more effective when several outliers exist in the

data, and this is when protection from outliers is more important.

The results obtained by the Bayesian estimators can be improved

by choosing an improper Γ(2, 0) prior for the expected outlier size ω

instead of the Γ(0.1, 0.1) prior, which is a common standard for positive

parameters. The underlying idea of this improper prior is that one

knows a-priori that outliers are large, and that an observation is more

probable to be an outlier the larger it is. So it makes sense to choose a

monotone increasing function as ”prior” density. The improper Γ(2, 0)

prior corresponds to a linearly increasing function, p(θ) ∝ θ. The

results also provided in Table 4 indicate that the bias and to some

13



Table 4: Bias, standard deviation and root of the mean square error of the con-

ditional maximum likelihood estimators and the estimators based on the Bayesian

modelling of additive outliers with different priors for ω, in case of time series gen-

erated from different INGARCH(1,1) models with no ∈ {3, 6} additive outliers.

CML-estimator Γ(0.1, 0.1) prior for ω Γ(2, 0) prior for ω

β0 β1 α1 no β0 β1 α1 ω β0 β1 α1 ω

true 1 0.2 0.3 6 1 0.2 0.3 5 1 0.2 0.3 5

bias .334 -.068 -.039 .108 -.058 -.002 -2.53 .060 -.056 -.001 -1.48

std.dev. .581 .080 .278 .225 .055 .094 1.08 .186 .058 .072 .62
√
MSE .670 .105 .281 .249 .080 .094 2.75 .196 .081 .072 1.60

true 3

bias .199 -.038 -.034 .082 -.033 -.006 -3.87 .052 -.033 -.020 -2.14

std.dev. .523 .082 .261 .197 .072 .085 .94 .184 .064 .078 .63
√
MSE .560 .091 .263 .213 .079 .086 3.98 .191 .073 .080 2.23

true 1 0.5 0.3 6 1 0.5 0.3 5 1 0.5 0.3 5

bias .306 -.066 .013 .286 -.057 .003 -3.53 .197 -.060 .011 -1.38

std.dev. .515 .086 .138 .461 .074 .103 1.39 .435 .090 .104 .88
√
MSE .599 .109 .139 .542 .094 .103 3.80 .478 .108 .104 1.63

true 3

bias .239 -.039 -.007 .242 -.035 -.018 -4.36 .214 -.039 -.016 -1.66

std.dev. .480 .085 .133 .410 .082 .099 .61 .400 .070 .095 .96
√
MSE .536 .093 .134 .476 .089 .100 4.40 .454 .080 .096 1.92

true 2.5 0.2 0.3 6 2.5 0.2 0.3 5 2.5 0.2 0.3 5

bias .496 -.039 -.038 .062 -.031 .028 -3.98 .120 -.039 .007 -1.37

std.dev. 1.275 .079 .258 .479 .061 .106 1.01 .448 .059 .093 .94
√
MSE 1.368 .088 .261 .483 .068 .110 4.11 .464 .071 .093 1.66

true 3

Bias .342 -.024 -.034 .140 -.029 .004 -4.20 -.071 -.015 .014 -1.91

std.dev. 1.214 .080 .252 .478 .063 .096 .89 .467 .067 .091 .70
√
MSE 1.261 .083 .254 .498 .070 .096 4.29 .472 .069 .092 2.03
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extent also the variability of the estimators of ω and β0 are reduced

with this prior choice, resulting in substantially smaller MSEs. The

results for β1 and α1 are little affected.

Since we expect outlier sizes in Poisson data to be much larger than

1, which is the expected value of the Γ(0.1, 0.1) prior used above, an-

other reasonable alternative is to replace it by a more ’realistic’ distri-

bution with a larger expectation. Further simulation results based on

a Γ(0.25, 0.05) prior for ω not reported here indicate further possible

substantial improvements for the bias and the MSE for the estimation

of ω, for the expense of a somewhat increased bias (but not necessarily

MSE) for the estimation of β0.

4 Application to real data

Finally, we apply the iterative procedure with the Γ(0.1, 0.1) prior for ω

to the campylobacterosis data analyzed by Fokianos and Fried (2010),

among others, see Figure 2. We detect additive outliers at times 100,

101, 113 and 125, see Table 5. These findings match those of Fokianos

and Fried (2010) in a sense, as these authors detect a level shift at time

84 and a spiky outlier at time 100. This is an alternative explanation

of the increased variability at the end of the time series. A spiky out-

lier with carry-over effect as considered by Fokianos and Fried (2010)

can well lead to two subsequent deviating observations, which are then

detected as additive outliers by the approach taken here. Moreover,

an increase of the Poisson parameter (corresponding to a simultaneous

shift of level and scale) will lead to several observations which look like

additive outliers. Note, however, the substantial differences between

the parameter estimates reported in Table 6: Similar to the case of

linear Gaussian time series, additive outliers not entering the dynamics

strongly affect classical estimates of dependence parameters, as could

already be seen in Table 4. The correction estimators based on data

15



Table 5: Additive outliers detected in the campylobacterosis data and corresponding

a-posteriori probabilities.

Outliers(Time) 100 101 113 125

Observed values 55 47 33 25

A-posteriori probabilities 1 0.998 0.964 0.928

cleaning suggested by Fokianos and Fried (2010) assume outliers to en-

ter the dynamics and thus lead to substantially different estimates of

the dependence parameters α1 and β1 than the Bayesian approach for

additive outliers suggested here. Note that the Bayesian estimate of

the marginal mean β0/(1 − β1 − α1) can be interpreted as a weighted

average of the cleaning estimates of the means before and after the shift

of height ω, β0/(1− β1 − α1) and (β0 + ω)/(1− β1 − α1).
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Figure 2: Campylobacterosis data and estimated outlier probabilities.
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Table 6: Model parameters estimated for the campylobacterosis data by condi-

tional likelihood, applying the classical outlier detection procedure, or the Bayesian

procedure with additive outliers.

Parameter β0 β1 α1 ω

Conditional likelihood 2.439 0.196 0.591 —

Cleaning estimate 3.584 0.352 0.230 2.93 / 41.65

Bayesian estimate 1.692 0.431 0.417 21.892

Standard deviation 0.690 0.094 0.135 4.667

5 Conclusions

We have developed a Bayesian framework for the analysis of INGARCH

models for time series of counts, including the treatment of outlier

effects. As compared to a classical likelihood approach, the Bayesian

paradigm offers increased flexibility and provides feasible strategies for

including different outlier effects in this context. While Fokianos and

Fried (2010) analyzed outliers which enter the dynamics of the process,

we have focused on additive outliers not entering the dynamics since

they can be handled more easily by our Bayesian analysis than by a

likelihood approach. Having the possibility to distinguish and classify

the different outlier patterns would be interesting. The flexibility of

the Bayesian paradigm is promising for such a unified framework, but

much more work is necessary for this.

We have seen that several outliers are needed to provide enough

information for reliable estimation of the model parameters, including

the expected size ω of the outliers, when using non-informative priors.

Suitable informative priors for ω can provide better results if only a

few outliers are present. Estimators which are able to deal with mul-

tiple outliers at unknown time points like the Bayesian ones presented

here are interesting and useful since such scenarios are difficult to deal

with when using classical estimators and simple iterative procedures

for outlier detection and cleaning.
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