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Abstract

In sufficiently dimerized quantum antiferromagnets the elementary excitations are
given by gapped spin S= 1 triplon quasiparticles. Although these triplons are protected
by a gap at low energies they may decay spontaneously at higher energies where the
one-triplon dispersion merges with the two-triplon continuum.

First, we illustrate and characterize such a spontaneous decay in low-dimensional
quantum antiferromagnets on the basis of a simple one-dimensional bosonic model.
The decay implies the breakdown of the quasiparticle picture. No quantitative descrip-
tion by a Lorentzian resonance is possible. In particular, three qualitatively different
scenarios are identified depending on the one-triplon dispersion and the two-triplon
interaction.

To describe unstable quasiparticles in more complex models we introduced an
adapted generator for continuous unitary transformations. Its general properties are
derived and discussed.

Next, we investigate asymmetric antiferromagnetic and asymmetric ferro-
antiferromagnetic spin S = 1/2 Heisenberg ladders, which allow for spontaneous
triplon decay, to illustrate this approach. Results for the low-energy spectra and
the dynamical structure factors for these systems are presented. We show that
quasiparticle decay is more pronounced in the case of ferro-antiferromagnetic ladders
than in solely antiferromagnetic ladders.

Finally, we use continuous unitary transformations and high temperature series ex-
pansions to determine a quantitative model for the compound IPA-CuCl3 based on data
of inelastic neutron scattering and measurements of the magnetic susceptibility. Our
calculations reveal IPA-CuCl3 as system of coupled asymmetric spin S= 1/2 Heisenberg
ladders with the four magnetic couplings J1 ≈ −2.3 meV, J2 ≈ 1.2 meV, J3 ≈ 2.9 meV and
J4 ≈ −0.3 meV.

Based on this microscopic model for IPA-CuCl3 the adapted continuous unitary
transformation is used to describe the quasiparticle decay in IPA-CuCl3. The results
agree very well with the experimental data. In addition the magnetic field dependence
of the lowest modes in the condensed phase as well as the temperature dependence of
the gap without magnetic field corroborate our microscopic model.
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Kurze Zusammenfassung

In hinreichend stark dimerisierten Quanten-Antiferromagneten sind die elementaren
Anregungen durch Spin S= 1 Quasiteilchen gegeben, die eine Anregungslücke besitzen
und Triplonen genannt werden. Obwohl diese Triplonen bei niedrigen Energien durch
die Anregungslücke geschützt sind, können sie bei höheren Energien, bei denen ihre
Dispersion mit dem Kontinuum mischt, spontan zerfallen.

Zunächst beschreiben und charakterisieren wir diesen, in niedrigdimensionalen
Quanten-Antiferromagneten auftretenden, spontanen Zerfall anhand eines einfachen
eindimensionalen bosonischen Modells. Der Zerfall lässt sich nur unzureichend durch
das übliche Quasiteilchenkonzept beschreiben, da keine quantitative Beschreibung der
zerfallenden Anregungen in Form einer Lorentzkurve möglich ist. Insbesondere sind je
nach Form der Dispersion der Triplonen und der Stärke der Wechselwirkung zwischen
je zwei Triplonen drei unterschiedliche Zerfallsszenarien möglich.

Um zerfallende Quasiteilchen in komplexeren Modellen zu beschreiben, werden
kontinuierliche unitäre Transformationen verwendet, welche durch einen speziell
angepassten Generator gegeben sind. Die allgemeinen Eigenschaften dieser
angepassten kontinuierlichen unitären Transformation werden hergeleitet und
diskutiert.

Danach wird dieser Zugang anhand von asymmetrischen antiferromagentischen
und asymmetrischen ferro-antiferromagnetischen Spin S = 1/2 Heisenberg Leitern il-
lustriert. Resultate für die Niederenergiespektren und die dynamischen Strukturfak-
toren werden präsentiert. Wir zeigen, dass der Zerfall von Quasiteilchen im Falle der
ferro-antiferromagnetischen Leiter ausgeprägter ist als im Falle der rein antiferromag-
netischen Leiter.

Zuletzt verwenden wir kontinuierliche unitäre Transformationen und
Hochtemperatur-Reihenentwicklungen um auf Grundlage von Daten aus inelastischer
Neutronstreuung und Messungen der magnetischen Suszeptibilität ein quantitatives
Modell für die Verbindung IPA-CuCl3 zu bestimmen. Unsere Rechnungen zeigen, dass
IPA-CuCl3 durch ein System von gekoppelten asymmetrischen Spin S= 1/2 Heisenberg
Leitern beschrieben werden kann, wobei die vier magnetischen Kopplungen gegeben
sind durch J1 ≈ −2.3 meV, J2 ≈ 1.2 meV, J3 ≈ 2.9 meV und J4 ≈ −0.3 meV.

Ausgehend von diesem mikroskopischen Modell für IPA-CuCl3 wird mittels
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angepasster kontinuierlicher unitärer Transformationen der Quasiteilchenzerfall
in IPA-CuCl3 beschrieben. Die erzielten Ergebnisse stimmen sehr gut mit den
experimentellen Befunden überein. Zusätzlich gestützt wird unser mikroskopisches
Modell durch die Abhängigkeit dessen tiefliegender Anregungsmoden innerhalb der
kondensierten Phase im magnetischen Feld, sowie durch die Temperaturabhängigkeit
der Anregungslücke ohne magnetisches Feld.
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Chapter 1

Introduction

A standard approach to calculate electric properties of condensed matter is to treat the
electrons as independent particles in a periodic potential induced by the underlying
lattice [Ashcroft & Mermin(1976), Czycholl(2004)]. Within this approach interactions
between the electrons are completely neglected or at most considered statically within
density functional theory. Naturally, phenomena caused by correlations of the electrons
due to their interactions can not or only insufficiently be described in this fashion.

Particularly the discovery of high-temperature superconductivity in cuprates by
Bednorz and Müller in 1986 [Bednorz & Müller(1986)] illustrates which fascinating
and surprising phenomena can be caused by strong correlations and raised the interest
in strongly correlated systems. The example of high-temperature superconductivity
also shows how challenging theoretical descriptions of systems with strong correla-
tions are. Although Zhang and Rice [Zhang & Rice(1988)] derived an effective model
Hamiltonian to describe the high-temperature superconductivity in cuprates already
two years after its discovery the exact mechanisms behind this superconductivity is in
our days, more than 25 years later, still a subject of ongoing research.

Besides superconductivity also the magnetic properties of insulators, typically
described by spin models, can be defined by correlated localized electrons. Especially
in low-dimensional quantum spin systems built up by spins with a small spin
quantum number S quantum fluctuations are important. Therefore, low-dimensional
quantum spin systems display various fascinating properties. Examples are,
the spin-Peierls transition [Peierls(1955), Bray et al.(1975), Hase et al.(1993)], the
appearance of a Haldane gap for integer spins [Haldane(1983), Renard et al.(1987)],
the previously mentioned high-temperature superconductivity upon doping
[Bednorz & Müller(1986)], and the Bose-Einstein condensation (BEC) in spin-
dimer systems [Affleck(1991), Shiramura et al.(1997), Giamarchi & Tsvelik(1999),
Garlea et al.(2007), Mills(2007)]. The latter one is characterized by a phase transition
from a non-magnetic phase to a long range antiferromagnetically ordered gapless
phase at some critical magnetic field Hc1 . A candidate for such a BEC studied in
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Figure 1.1: Time-of-flight (a) and 3-axis (b), (c), (d) inelastic neutron data mea-
sured in IPA-CuCl3 at T = 1.5K. (Figure and caption are taken from reference
[Masuda et al.(2006)]).

detail is TlCuCl3 [Nikuni et al.(2000), Matsumoto et al.(2002), Rüegg et al.(2003)].
Unfortunately recent research suggests that the high field spectrum remains gapped
[Sirker et al.(2005), Johannsen et al.(2005)] in contrast to what is expected from a phase
where a continuous symmetry is broken. Another promising candidate for a BEC in
a spin-dimer system is the quasi one-dimensional compound isopropylammonium
trichlorocuprate(II) (CH3)2CHNH3CuCl3, abbreviated by IPA-CuCl3, where inelastic
neutron scattering (INS) data indeed imply an almost exact realization of a BEC
[Garlea et al.(2007), Zheludev et al.(2007)].

Beside BEC IPA-CuCl3 shows one further fascinating phenomenom recently ob-
served in low-dimensional antiferromagnets, namely the decay of their elementary
excitations [Masuda et al.(2006)], see figure 1.1. Although the elementary excitations
are protected by a finite gap at low energies they decay at higher energies. Such a
quasiparticle breakdown was measured for the first time in the two-dimensional quan-
tum spin S = 1/2 system piperazinium hexachlorodicuprate (PHCC) [Stone et al.(2006)],
see figure 1.2.

The situation is very similar to the quasiparticle decay occurring in superfluid
helium II (4He). To describe the superfluidity of helium II Landau postulated a dis-
persion relation of bosonic elementary excitations which consists of a phonon and a
roton part [Landau(1941b), Landau(1941a), Landau(1947), Landau et al.(1980)]. Feyn-
man and Cohen showed that the dispersion relation suggested by Landau can be
obtained qualitatively by using an appropriate trial wave function [Feynman(1954),
Feynman & Cohen(1956)] and they also suggested that the spectrum can be deter-
mined by INS [Cohen & Feynman(1957)]. Shortly afterwards, the energy spectrum
of helium II was indeed measured by INS [Palevsky et al.(1957)] and confirmed Lan-
dau’s ideas. Two years later Pitaevskii predicted that these quasiparticles can be-
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Figure 1.2: Magnetic excitation spectrum at T = 1.4K in PHCC. Panel a,
background-corrected intensity along the (1/2,0,−1− l) and (h,0,−1−h) directions.
A δ~ω = 0.25meV running average was applied to each constant wave vector scan,
retaining the actual point density of the acquired data. Black line, previously
determined single-magnon dispersion [Stone et al.(2001)]. White lines, bounds of
two-magnon continuum calculated from this dispersion. Red circle with cross,
the point where the single-particle dispersion relation intersects the lower bound
of the two-particle continuum. Panel b, first frequency moment of measured
scattering intensity integrated over different energy ranges. Red squares (total),
0.8 ≤ ~ω ≤ 5.5meV; black circles (quasiparticle), 0.8 ≤ ~ω ≤ 3meV; blue diamonds
(continuum), 3 ≤ ~ω ≤ 5.5meV. Panel c, resolution-corrected HWHM of the lower
energy peak throughout the range of wave vector transfer for high resolution (solid
points) and low resolution (open points) data. Error bars illustrate systematic error
corresponding to 10% uncertainty in the neutron beam collimation used for resolu-
tion correction. (Figure and caption are taken from reference [Stone et al.(2006)])
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come unstable if certain decay channels exist [Pitaevskii(1959), Landau et al.(1980)].
The quasiparticles do not survive beyond a certain threshold in momentum space
where decay into two rotons is possible. Their spectrum terminates at this threshold.
This prediction was confirmed later by INS measurements on superfluid helium II
[Smith et al.(1977), Fåk & Bossy(1998)].

In PHCC [Stone et al.(2006)] and IPA-CuCl3 [Masuda et al.(2006)] as well a thresh-
old momentum was observed beyond which the quasiparticle merges with the two-
quasiparticle continuum and ceases to exist as well-defined excitation, see figure 1.2
and figure 1.1.

Theoretical descriptions of quasiparticle decay in quantum magnets were given in
2006 by Kolezhuk and Sachdev using Fermi’s golden rule to calculate the decay rate
[Kolezhuk & Sachdev(2006)] and by Zhitomirsky who used diagrammatic techniques
to describe the decay [Zhitomirsky(2006)], cf. chapter 2. Both papers show that ele-
mentary excitations in gapped spin systems become unstable if they merge with the
two-particle continuum. Spin systems in one and higher dimensions are analyzed to
explain the observations in IPA-CuCl3 and in PHCC. For the special case of an asym-
metric rung-dimerized spin ladder, Bibikov [Bibikov(2007)] confirmed these results by
investigating the bare one- and two-triplon sector by a Bethe ansatz.

Theoretical considerations also predict quasiparticle decay in spin
systems on a triangular lattice [Zheng et al.(2006a), Zheng et al.(2006b),
Chernyshev & Zhitomirsky(2009)] and on square lattices in a strong magnetic
field [Zhitomirsky & Chernyshev(1999), Syljuåsen(2008), Syromyatnikov(2009),
Lüscher & Läuchli(2009), Mourigal et al.(2010)], where the elementary excitations
are gapless magnons. In the latter case the instability of the one-magnon excitation
could be confirmed experimentally in the spin S = 5/2 compound Ba2MnGe2O7

[Masuda et al.(2010)].

Actually, physical systems of unstable quasiparticles are much more common than
systems of completely stable quasiparticles. For instance, the quasiparticles occurring
in the famous so-called Fermi liquid theory, developed by Landau in the late 1950s
for interacting fermionic systems [Landau(1956), Landau(1958), Landau et al.(1980)],
always have a finite lifetime except at the Fermi energy. All these examples of quasipar-
ticles with finite lifetime show that for a theoretical description and the understanding
of many systems in condensed matter physics it is an indispensable task to develop
methods that are able to describe systems with unstable quasiparticles.

In the present thesis we introduce and investigate adaptations of the method of con-
tinuous unitary transformations (CUTs) to describe systems with quasiparticle decay.
The method of CUTs was introduced by Wegner [Wegner(1994)] and independently
by Głazek and Wilson [Głazek & Wilson(1993), Głazek & Wilson(1994)] in 1994. In-
stead of applying a unitary transformation induced by a constant generator to simplify
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a given Hamiltonian the CUT performs the unitary transformation in a continuous
fashion where the transformation is induced by an infinitesimal generator. Thereby the
transformation can adjust itself permanently during its application. To deal with quasi-
particles with finite lifetime we modify a generator suggested by Knetter and Uhrig
[Uhrig & Normand(1998), Knetter & Uhrig(2000)]. In its original form this generator
creates quasiparticle number conserving effective Hamiltonians. Therefore, the one-
particle states are separated from all other states which makes the direct description of
quasiparticle decay impossible.

Besides a detailed general discussion of modified generators we illustrate the
concept by explicit calculations for asymmetric spin S = 1/2 Heisenberg ladders and
for the quasi one-dimensional compound isopropylammonium trichlorocuprate(II)
(CH3)2CHNH3CuCl3.

1.1 Thesis Overview

In the following chapter 2 spontaneous quasiparticle decay (SQPD) in gapped one-
dimensional quantum systems is discussed on the basis of a toy model. The aim of this
chapter is to give a pedagogical introduction to the physics of SQPD independent of all
technical details of CUTs and to characterize different decay scenarios depending on
the one-particle dispersion and two-particle interactions. We also elaborate differences
to the decay occurring in a standard Fermi liquid.

In chapter 3 the concept of CUTs is introduced. Especially, we focus on a new
adapted generator introduced to treat SQPD by CUTs. Subsequently, the self-similar
realization of CUTs in real-space is described which is used in all following chapters.

In chapter 4 the low energy spectrum of the asymmetric antiferromagnetic spin
S = 1/2 Heisenberg ladder (AASHL) is investigated by self-similar continuous unitary
transformations (sCUTs). We use this model to illustrate our general considerations
of chapter 3 concerning CUTs in systems with unstable quasiparticles. Additionally,
results for the dynamical structure factor for the AASHL obtained by sCUTs are pre-
sented. This quantity can be experimentally determined by INS.

In chapter 5 results for the dynamical structure factor of the asymmetric ferro-
antiferromagnetic spin S = 1/2 Heisenberg ladder (AFASHL) obtained by sCUTs are
presented. We show that in this model the SQPD is much more pronounced than in
the AASHL due to the larger mobility of the excitations.

In chapter 6 a microscopic model for IPA-CuCl3 is determined by using CUTs and
high temperature series expansions (HTSEs). Starting from the derived model we
calculate the dynamical structure factor of IPA-CuCl3 by CUTs designed for SQPD.
Additionally, we calculate the magnetic field dependence as well as the temperature
dependence of the lowest energy modes.
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Chapter 2

Introduction to spontaneous
quasiparticle decay

In this chapter an introduction to the physics of spontaneous quasiparticle
decay (SQPD) in gapped one-dimensional quantum spin systems is given. The
word “spontaneous” emphasizes that the decay occurs at zero temperature
(T = 0) and is not caused by thermal fluctuations as discussed, e.g., in references
[James et al.(2008), Essler & Konik(2008)]. Following Zhitomirsky’s general arguments
[Zhitomirsky(2006)] the scenario of SQPD is illustrated on a simple one-dimensional
bosonic model where in first order all important quantities can be calculated
analytically. We want to emphasize that despite its simplicity the model is closely
related to the asymmetric spin S = 1/2 Heisenberg ladder (cf. chapter 4 and chapter 5)
and therefore helps to quantitatively understand the SQPD in this system.

Generically the ground state |0〉 is given by a spin S = 0 singlet and the elemen-
tary excitations are given by a triplet of spin S = 1 quasiparticles, also called triplons
[Schmidt & Uhrig(2003)]. A spin gap ∆ separates the singlet energy from the triplet
energies and without any intrinsic anisotropies and without an external magnetic field
the energy levels of the quasiparticles are threefold degenerate. Qualitatively such a
situation can be described in one dimension by the Hamiltonian

H0 =
∑
α

N−1∑
r=0

[
t†α,rtα,r+

τ
4

(
t†α,rtα,r+1+ t†α,r+1tα,r

)]
(2.1)

with bosonic operators1 t†α,r and tα,r creating and destroying a quasiparticle on site r
with a polarization α ∈ {

x, y,z
}
. The hopping amplitude is given by τ > 0 and we assume

periodic boundary conditions
(
t†
α,N = t†α,0

)
.

1Actually, triplons are represented by hard-core bosons, cf. chapter 4
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The Hamiltonian H0 can easily be diagonalized by a Fourier transformation

t†α,r :=
1√
N

∑
Q

eiQr b†α,Q (2.2a)

tα,r :=
1√
N

∑
Q

e−iQr bα,Q (2.2b)

with bosonic operators b†α,r and bα,r. The sum
∑

Q runs over all Qn =
2πn
N with n =

0, . . . ,N −1. Then the Hamiltonian H0 is given by

H0 =
∑
α

∑
Q

ω1(Q) b†α,Qbα,Q (2.3)

with the one-particle dispersion

ω1(Q) = 1+
τ
2

cos(Q) . (2.4)

To ensure the existence of a gap the hopping amplitude τ must be smaller than two
(τ < 2). We also demand that τ > 0 so that the minimum of the gap ∆ is located at the
momentum Q = π.

Besides the one-particle energy spectrum ω1(Q) it is also possible to calculate the
energy spectrum of states consisting of two particles. The two-particle continuum is
defined by

ω2(Q,q) := ω1
(
Q/2+ q

)
+ω1

(
Q/2− q

)
(2.5a)

= 2+τcos(Q/2)cos
(
q
)

(2.5b)

with total momentum Q and relative momentum q. It is completely determined by
one-particle properties, namely the one-particle dispersion ω1(Q). The upper edge
of the two-particle continuum is given by maxq∈[−π,π]ω2(Q,q) = 2+ τcos(Q/2) and the
lower edge by minq∈[−π,π]ω2(Q,q) = 2− τcos(Q/2). For total momentum Q = −π and
Q = π respectively the upper edge and the lower edge have the same value, so that
at this particular momentum no real continuum exists. This is due to the simplicity
of the model which only considers nearest neighbor hopping. Figure 2.1 shows the
one-particle dispersion ω1(Q) and the two-particle continuum ω2(Q,q) for τ = 1.0.

From

∂ω2(Q,q)
∂q

= v1
(
Q/2+ q

)−v1
(
Q/2− q

)
(2.6)
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Figure 2.1: One-particle dispersion ω1(Q) and two-particle continuum ω2(Q,q)
for τ = 1.0. For momenta Q smaller than the decay threshold momentum Qc
spontaneous quasiparticle decay is possible.

with the spin group velocity

v1(Q) :=
∂ω1(Q)
∂Q

(2.7a)

= −τ
2

sin(Q) . (2.7b)

follows that at the edges of the continuum, where ω2(Q,q) becomes extremal with
respect to q, the two quasiparticles have the same velocity because ∂ω2(Q,q)

∂q = 0.

To allow SQPD one important prerequisite of the energy spectrum is that the one-
particle dispersion merges with the two particle continuum, e.g. the equation

ω1(Q) =ω2(Q,q) (2.8)

can be satisfied. The intersection point of the one-particle dispersion and the lower
edge of the two-particle continuum defines the decay threshold momentum Qc, so that
the equation

ωc :=ω1(Qc) = min
q∈[−π,π]

ω2(Qc,q) (2.9)

holds, cf. figure 2.1. In the present model the decay threshold momentum Qc is given
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by

Qc =2arccos

−τ+ √3τ2+4τ
2τ

 . (2.10)

The second important ingredient to make SQPD possible is the existence of a decay
vertex so that decay of the one-particle mode into the continuum is possible. In
Heisenberg spin systems the decay term typically has the form (cf. chapter 4 and
chapter 5)

H1 =
λτ
4

∑
α,β,γ

N−1∑
r=0

i εαβγ t†α,rt
†
β,r+1

(
tγ,r+ tγ,r+1

)
+H.c. . (2.11)

The antisymmetric tensor εαβγ assures that one quasiparticle decays in an antisymmetric
two-quasiparticle state. Thus the total spin is conserved during the decay process so
that the two created spin S = 1 quasiparticles form a S = 1 state.

Fourier transformation (2.2) of (2.11) leads to

H1 =
1

2
√
N

∑
α,β,γ

∑
Q,q

εαβγ Γ1(Q,q) b†α,Q/2+qb†β,Q/2−qbγ,Q+H.c. (2.12)

with

Γ1(Q,q) =λτsin
(
q
)
cos(Q/2) . (2.13)

Note, that Γ1(Q,q) = −Γ1(Q,−q). This property is a consequence of conserving the total
spin during the decay process and the associated appearance of the antisymmetric
tensor εαβγ.

To describe SQPD we calculate the effect of the decay processes on the self-energy
Σ(Q,ω). Considering the second-order contribution of the decay processes (2.12) to the
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self-energy Σ(Q,ω) yields

Σ(Q,ω) =

�
γ,Q

α,Q/2+ q

β,Q/2− q

γ,Q
Γ1 Γ1 (2.14a)

= lim
δ→0+

1
2π

π∫
−π

Γ2
1(Q,q)

ω−ω2(Q,q)+ iδ
dq . (2.14b)

The imaginary part of the self-energy Σ(Q,ω) is given by

ImΣ(Q,ω) = −(λτ)2

2
cos2 (Q/2)

π∫
−π

sin2(q)δ
(
ω−ω2(Q,q)

)
dq (2.15a)

=

−λ
2
[
(τcos(Q/2))2− (ω−2)2

]1/2
if |ω−2| ≤ τcos(Q/2)

0 if |ω−2| > τcos(Q/2)
(2.15b)

and the real part of the self-energy Σ(Q,ω) calculated by Kramers-Kronig relation
results in

ReΣ(Q,ω) =
1
π

∞?
−∞

ImΣ(Q,x)
x−ω dx (2.16a)

=
1
π

2+τcos(Q/2)?
2−τcos(Q/2)

ImΣ(Q,x)
x−ω dx (2.16b)

=


λ2 (ω−2) if |ω−2| ≤ τcos(Q/2)

λ2 (ω−2)
(
1−

[
1−

(
τcos(Q/2)
ω−2

)2
]1/2

)
if |ω−2| > τcos(Q/2)

. (2.16c)

The integral occurring in equation (2.16) can be found in reference
[Bronstein et al.(2001)]. Figure 2.2 illustrates the self-energy Σ(Q,ω) for τ = 1.0
and λ = 1.0.
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Figure 2.2: Real and imaginary part of the self-energyΣ(Q,ω) for τ= 1.0 andλ= 1.0.

2.1 Stable region

We follow the analysis of Zhitomirsky [Zhitomirsky(2006)] and start our discussion
in the stable region of the single quasiparticle, where spontaneous decay is forbidden.
Defining the renormalized one-particle dispersion ω1,r(Q) implicitly by the poles of the
complete one-particle Green function G(Q,ω), given by Dyson’s equation, leads to

G−1(Q,ω) = ω−ω1(Q)−Σ(Q,ω) = 0 . (2.17)

Squaring equation (2.17) and solving the resulting quadratic equation yields the
two solutions2

ω+/−(Q) =
1

1−2λ2

(
1−3λ2− τ

2
+
λ2τ

2
+

[
τ−λ2τ

]
cos2 (Q/2)

±λ2
[(

1+
τ
2

)2
−2

(
τ+τ2−λ2τ2

)
cos2 (Q/2)+τ2 cos4 (Q/2)

]1/2 )
.

(2.18)

This result holds independently whether one is considering the region where sponta-
neous quasiparticle decay is allowed or the region where decay is forbidden. Note, that
ω+/−(Q) are the solutions of the quadratic equation. They are not necessarily solutions
of equation (2.17).

In the generic case, the solutions ω+/−(Q) become complex for Q < Q0, where Q0 is
given by the root of the radicand

0 =
(
1+

τ
2

)2
−2

(
τ+τ2−λ2τ2

)
cos2 (Q/2)+τ2 cos4 (Q/2) . (2.19)

2Note, that for λ2 = 1/2 the solutions diverge. For the description of SQPD the interval λ2 < 1/2 is
relevant. For completeness we now and then discuss values λ2 > 1/2, too.



2.1 Stable region 23

ω

Q/π

λ = 0.2
λ = 0.4
λ = 0.5
λ = 0.6
λ = 0.8
λ = 1.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0

τ = 1.0

Figure 2.3: Radicand of the square root in ω+/−(Q) for τ = 1.0. The radicand is
negative in the region Q <Q0 for λ = 0.2, 0.4, 0.5, 0.6. The dotted grey lines indicate
the respective Q0.

Figure 2.3 shows the right hand side of (2.19) for τ = 1.0 and various values of λ. For
λ = 0.2, 0.4, 0.5, 0.6 and Q < Q0 the function (2.19) is negative and therefore the two
solutions ω+/−(Q) become complex. Thus we restrict our analysis to the case Q ≥ Q0.
For λ = 0.8, 1.0 no root appears and the two solutions ω+/−(Q) stay real for all momenta
Q.

As mentioned before, ω+/−(Q) are solutions of the quadratic equation obtained by
squaring equation (2.17). For τ = 1.0 and λ = 0.5 these solutions are depicted in figure
2.4a. Both solutions satisfy ω+/−(Q)−2 ≤ τcos(Q/2) so that the self-energy Σ

(
Q,ω+/− (Q)

)
has no imaginary part for Q≥Q0. To check whether the solutionsω+/−(Q) solve equation
(2.17) or not we calculate ω+/− (Q)−ω1 (Q)−Σ

(
Q,ω+/− (Q)

)
. The results are shown in

figure 2.4b. Obviously, only ω+(Q) satisfies equation (2.17) for Q ≥ Qc,r where Qc,r is
defined by

ω+(Qc,r) = min
q∈[−π,π]

ω2(Qc,r,q) (2.20)

and explicitly given by

Qc,r = 2arccos
(
λ2−1

2
+

1
2τ

[(
λ4−2λ2+3

)
τ2+4τ

]1/2
)
. (2.21)

Therefore, we define the renormalized one-particle dispersion ω1,r (Q) outside the two-
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Figure 2.4: Results for τ = 1.0 and λ = 0.5.
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Figure 2.6: Solution ω+ (Q) for τ = 1.0 and λ = 0.8.

particle continuum by

ω1,r (Q) := ω+(Q) for Q ≥Qc,r . (2.22)

Interestingly, no solution of equation (2.17) exists between Q0 and Qc,r.

In figure 2.5a and figure 2.5b the same quantities as before are depicted for τ = 1.0
and λ = 0.6. Qualitatively nothing changes to the case with λ = 0.5. The higher value
of λ only shifts both momenta Q0 and Qc,r to lower values and pushes them apart at
the same time, so that the interval, where no solution of equation (2.17) exists, grows.

For τ = 1.0 and λ = 0.8 the situation changes qualitatively as shown in figure 2.6.
The solution ω+(Q) satisfies equation (2.17) for all momenta Q.

The next quantity we want to discuss is the spin velocity

v1,r(Q) :=
∂ω1,r(Q)
∂Q

for Q ≥Q0 (2.23a)

=
∂ω+(Q)
∂Q

for Q ≥Q0 (2.23b)

of the renormalized quasiparticle. Particularly, the behavior of v1,r(Q) at the momentum
Qc,r where the renormalized one-particle dispersion ω1,r (Q) merges with the two-
particle continuumω2(Q,q) is of interest. In figure 2.7 the difference of the spin velocity
of the renormalized quasiparticle v1,r(Q) and the velocity of the lower edge of the
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Figure 2.7: Difference of the spin velocity of the renormalized quasiparticle v1,r (Q)
and the velocity of the lower edge of the continuum v2(Q) for τ = 1.0 and various
values λ. Since this difference vanishes at Qc,r, for λ = 0.2, 0.4, 0.5, 0.6 the renormal-
ized one-particle branch approaches tangentially the boundary of the two-particle
continuum. Dotted grey lines indicate the respective Qc,r.

continuum

v2(Q) :=
∂
∂Q

(
min

q∈[−π,π]
ω2

(
Q,q

))
(2.24a)

=
τ
2

sin(Q/2) (2.24b)

is depicted for τ = 1.0 and different values λ. For λ = 0.2, 0.4, 0.5, 0.6 the difference
vanishes at Qc,r. Hence the renormalized one-particle branch approaches tangentially
the boundary of the two-particle continuum.

Finally, we want to discuss the quasiparticle weight Z(Q) with

Z−1(Q) :=
∂G−1(Q,ω)

∂ω

∣∣∣∣∣∣
ω=ω1,r(Q)

. (2.25)

Figure 2.8 shows the quasiparticle weight Z(Q) for τ = 1.0 and various values λ. For
λ = 0.2, 0.4, 0.5, 0.6 the weight Z(Q) is continuously suppressed and vanishes at Qc,r,
while for λ = 0.8, 1.0, where no Qc,r exists, the weight shrinks for smaller Q but never
vanishes.

All results of this section quantitatively coincide with the results of Zhitomirsky
[Zhitomirsky(2006)] who showed by a linearization around Qc,r that close to Qc,r the
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Figure 2.8: Quasiparticle weight Z(Q) for τ = 1.0 and variant values λ. For λ = 0.2,
0.4, 0.5, 0.6 the weight Z(Q) is continuously suppressed and vanishes at Qc,r. Dotted
grey lines indicate the respective Qc,r.

quasiparticle weight Z is continuously suppressed and vanishes completely at Qc,r,
where the one-particle branch merges with the two-particle continuum. In addition,
Zhitomirsky [Zhitomirsky(2006)] stated that the one-particle branch terminates at the
continuum boundary. This corresponds to the fact that typically a region (Q0 <Q<Qc,r)
exists where no solution of equation (2.17) can be found. This can be interpreted
as quasiparticle breakdown. Nevertheless, the question, what happens inside the
continuum, remains. It could be possible that the spectral density ρ(Q,ω) has still a
marked peak inside the continuum which vanishes gradually. In this case one would
rather speak of a decay than a breakdown. Therefore, in the next section 2.2 we discuss
results for the spectral density ρ(Q,ω).

2.2 Unstable region

Inelastic neutron scattering INS experiments typically measure the dynamical structure
factor Sαβ(Q,ω) (cf. chapter F). For the discussed model (cf. equation (2.1) and equation
(2.11)) the dynamical structure factor Sαβ(Q,ω) corresponds to the spectral density
ρ(Q,ω) which we now discuss in detail.

In the region where decay is possible, the self-energy is complex and the spectral



2.2 Unstable region 29

density ρ(Q,ω) is given by

ρ(Q,ω) =− 1
π

ImG(Q,ω) (2.26a)

=− 1
π

ImΣ(Q,ω)(
ω−ω1(Q)−ReΣ(Q,ω)

)2
+

(
ImΣ(Q,ω)

)2 . (2.26b)

Referring to a Lorentz distribution one can define the energy of the quasiparticle by

ω−ω1(Q)−ReΣ(Q,ω) = 0 (2.27)

and interpret the imaginary part of the self-energy ImΣ(Q,ω) as the inverse lifetime of
the quasiparticle. It roughly determines the width of the quasiparticle resonance.

Solving equation (2.27) for |ω−2| ≤ |τcos(Q/2)| yields

ω1,r(Q) =
1−2λ2+ τ

2 cos(Q)

1−λ2 . (2.28)

Therefore, the renormalized one-particle dispersion for the total Brillouin zone is
given by

ω1,r(Q) =


1−2λ2+ τ2 cos(Q)

1−λ2 if Q <Qc,r

ω+(Q) if Q ≥Qc,r

. (2.29)

Note that both definitions meet continuously at Qc,r.

In figure 2.9 the renormalized one-particle dispersion ω1,r(Q) for τ = 1 and various
values λ is presented. Of course, for λ = 0.0 no renormalization takes place so that
equation ω1,r(Q) = ω1(Q) holds. For λ = 0.8 and λ = 1.0 the renormalized one-particle
dispersion lies below the two-particle continuumω2(Q,q). In contrast to equation (2.17)
a solution of equation (2.27) exists for all momenta Q. If one only considers the real
part of the self-energy ReΣ(Q,ω) to define the position of the quasiparticle, the position
of the quasiparticle is well-defined for the whole Brillouin zone. There is no reason to
assume a breakdown of the quasiparticle picture on the basis of equation (2.27).

Previously, it was shown that the one-particle branch in the stable region Q ≥ Qc,r

approaches tangentially the boundary of the two-particle continuum (cf. figure 2.7).
Figure 2.10 depicts the angle ϕ under which the one-particle dispersion ω1,r(Q) (2.28)
inside the continuum Q <Qc,r touches the lower edge of the two-particle continuum as
a function of the parameters λ and τ. Formally, the angle ϕ is defined by
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function of the parameters λ and τ. For the definition of ϕ see inset and equation
(2.30a).



2.2 Unstable region 31

ϕ := arctan
(
v2(Qc,r)

)−arctan
(

lim
Q→Qc,r−

[
ω1,r(Q)−ω1,r(Qc,r)

Q−Qc,r

])
(2.30a)

= arctan
(

lim
Q→Qc,r+

[
ω1,r(Q)−ω1,r(Qc,r)

Q−Qc,r

])
−arctan

(
lim

Q→Qc,r−

[
ω1,r(Q)−ω1,r(Qc,r)

Q−Qc,r

])
(2.30b)

and depends on the values of λ and τ as shown in figure 2.10. The situation is
different from the situation outside the two-particle continuum, where the one-particle
dispersion merges wiht the two-particle continuum for all values λ under the same
angle zero.

Figure 2.11a, figure 2.11b and figure 2.11c depict the spectral density ρ(Q,ω) for
τ = 1.0 and λ = 0.2, 0.5 and 0.6. As expected, the spectral density becomes broader
for larger λ. Nevertheless, a distinct correlation between the maximum of the spectral
density ρ(Q,ω) and the energy of the quasiparticle defined by equation (2.27) exists and
even for λ = 0.6 an obvious peak in the spectral density ρ(Q,ω) near Qc,r is present.

In the prototype model for the quasiparticle concept, the standard Fermi liquid in
two or three dimensions [Landau(1956), Landau(1958), Landau et al.(1980)] , the decay
of the quasiparticles is typically characterized by their width relative to their excitation
energy [Nozières & Pines(1999), Uhrig(2005)]. The width behaves like (ε(Q)−εF)2 with
the dispersion relation ε(Q) and the Fermi energy εF. Thus the width relative to the
excitation energy |ε(Q)−εF| is proportional to

(ε(Q)−εF)2

|ε(Q)−εF|
= |ε(Q)−εF| . (2.31)

This quantity vanishes if the energy ε(Q) approaches the Fermi energy εF. Therefore,
close to the Fermi surface the quasiparticle width decreases faster than their excitation
energy. In this sense quasiparticles are well-defined.

Analogously , we want to discuss the ratio between the width or inverse lifetime of
the renormalized quasiparticle

γ(Q) :=− ImΣ
(
Q,ω1,r(Q)

)
for Q ≤Qc,r (2.32)

depicted in figure 2.12 and the distance of the renormalized quasiparticle to the lower
edge of the two-particle continuum

δ(Q) :=ω1,r(Q)− min
q∈[−π,π]

ω2
(
Q,q

)
for Q ≤Qc,r . (2.33)

A short calculation yields
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Figure 2.11: Spectral density ρ(Q,ω) for τ = 1.0 and various values λ. Black lines
indicate ω1(Q). Green lines indicate the renormalized one-particle dispersions
ω1,r (Q).
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Figure 2.12: Quasiparticle width γ(Q) for τ = 1.0 and different values λ.

γ(Q)
δ(Q)

=λ2

√
τcos(Q/2)−

(
ω1,r(Q)−2

)
√
τcos(Q/2)+

(
ω1,r(Q)−2

) for Q ≤Qc,r . (2.34)

Since the numerator of equation (2.34) stays finite for Q→Qc,r while the denominator
goes to zero the ratio γ(Q)/δ(Q) diverges for Q→Qc,r as depicted in figure 2.13. Therefore,
near the merging momentum Qc,r the width of the excitations is always arbitrarily large
compared to the distance to the lower edge of the continuum. According to that the ratio
γ(Q)/δ(Q) behaves completely opposite compared to the case of a Fermi liquid where the
quasiparticles become more and more well-defined if they approach the Fermi surface.
This motivates the naming “quasiparticle breakdown” instead of “quasiparticle decay”.

For λ = 0.5 and λ = 0.6 the width γ(Q) is greater than the distance to the lower edge
of the two-particle continuum δ(Q) even down to Q = 0, cf. figure 2.13, so one could
state that no well-defined quasiparticles exist inside the continuum.

A further difference to the quasiparticle concept in a Fermi liquid becomes apparent
if one tries to calculate the quasiparticle weight Z(Q) of the decaying excitation. Using
the definition of the quasiparticle weight Z(Q) commonly used in a Fermi liquid leads
to

Z(Q) =
1

1− ∂
∂ωReΣ(Q,ω)

∣∣∣∣
ω=ω1,r(Q)

(2.35a)

=
1

1−λ2 > 1 for Q ≤Qc,r . (2.35b)
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Figure 2.13: Ratio (γ(Q)/(δ(Q)))−2 for Q ≤Qc,r for τ = 1.0 and different values λ. Near
the merging momentum Qc,r the width of the excitations γ(Q) becomes arbitrarily
large compared to the distance of the quasiparticle to the lower edge of the contin-
uum δ(Q). Thus a quasiparticle breakdown occurs. For λ = 0.5 and λ = 0.6 the ratio
(γ(Q)/(δ(Q)))−2 is smaller than one down to Q = 0.

Thus, for all interactions λ the quasiparticle weight inside the continuum is greater
than one, which clarifies that the quasiparticle weight is ill-defined for the system
under study.

2.3 Influence of interaction terms

In dimerized spin systems two-particle interactions of the structure

H2 = µτ
∑
α,β

N−1∑
r=0

(
t†α,rtβ,rt

†
β,r+1tα,r+1− t†α,rtβ,rt

†
α,r+1tβ,r+1

)
(2.36)

occur, cf. appendix C. The influence of these interactions on the SQPD is discussed
in this section where we restrict ourselves to the case µ > 0, which leads to threefold
degenerate S = 1 bound states.

On the diagrammatic level the two-particle interactions H2 can be considered
by calculating the scattering function given by the Bethe–Salpeter equation
[Fetter & Walecka(1971)]. Here were use a Lanczos tridiagonalization, see appendix
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A, in the spin S = 1, m = 0 subspace spanned by the states

∣∣∣Q〉S=1

m=0
=

1√
N

∑
r

eiQr t†z,r |0〉 (2.37a)

∣∣∣Q,d〉S=1

m=0
=

i√
2N

∑
r

eiQ(r+ d
2 )

(
t†x,rt

†
y,r+d− t†y,rt

†
x,r+d

)
|0〉 (2.37b)

with d > 0 to include the two-particle interactions H2
3. This leads to the one-particle

Green function G(Q,ω) represented by a continued fraction

G(Q,ω) =
1

ω− a0(Q)−
b2

1(Q)

ω− a1(Q)−
b2

2(Q)

. . .

(2.38)

with

a0(Q) =ω1(Q) = 1+
τ
2

cos(Q) (2.39a)

a1(Q) =2−µτ (2.39b)

an(Q) =2 for n ≥ 2 (2.39c)

and

b2
1(Q) =

(λτ)2

2
cos2 (Q/2) (2.40a)

b2
n(Q) =

τ2

4
cos2 (Q/2) for n ≥ 2 (2.40b)

where the coefficients an(Q) and bn(Q) are calculated by repeated application of H =

H0+H1+H2 on the initial state
∣∣∣Q〉S=1

m=0
, cf. appendix A. Since for n ≥ 2 all coefficients

an(Q) and bn(Q) are identical the continued fraction can easily be terminated. Using the
square root terminator (A.4) leads to the self-energy

Σ(Q,ω) =
b2

1(Q)

ω− a1(Q)−Λ(Q,ω)
(2.41)

3This Lanczos tridiagonalization yields the same results as the diagrammatic approach without
self-consistency.
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with

Λ(Q,ω) =


(ω−2)

2 − i
2

[
(τcos(Q/2))2− (ω−2)2

]1/2
if |ω−2| ≤ τcos(Q/2)

(ω−2)
2

(
1−

[
1−

(
τcos(Q/2)
ω−2

)2
]1/2

)
if |ω−2| > τcos(Q/2)

. (2.42)

Such a Lanczos algorithm we also use in the next section 2.4 to discuss the effects of
next-nearest-neighbor hopping and in chapter 4, chapter 5 and chapter 6 to analyze
effective models generated by continuous unitary transformations (CUTs).

Before we consider SQPD induced by a finite λ we discuss the case λ = 0. For λ = 0

one can start the Lanczos tridiagonalization with the two-particle initial state
∣∣∣Q,1〉S=1

m=0
to calculate the dispersion ωbound(Q) of the bare S = 1 two-particle bound state. Its
dispersion ωbound(Q) is implicitly given by

ω− a1(Q)−Λ(Q,w) = 0 if ω < 2−τcos(Q/2) (2.43)

which leads to

ωbound(Q) = 2−µτ− τ
4µ

cos2 (Q/2) if ωbound(Q) < 2−τcos(Q/2) . (2.44)

This bound state exists for momenta Q > 2arccos(2µ) =: Qbound,c. Thus for µ ≥ 1/2 it
exists for all Q. The one-particle dispersionω1(Q) and the dispersion of the bound state
ωbound(Q) cross each other if Qbound,c <Qc. Thus for µ > µc with

µc =

√
3τ2+4τ−τ

4τ
(2.45)

the one-particle dispersion ω1(Q) and the dispersion of the bound state ωbound(Q) meet
below the two-particle continuum ω2(Q,q), cf. equation (2.10). All in all the two-
particle interaction H2 (2.36) with µ > 0 and λ = 0 leads to three different scenarios:
(i) For small values of µ, i.e., 0 ≤ µ < µc a bound state exists which merges with the
two-particle continuum before it crosses the one-particle dispersion. (ii) In the region
µc ≤ µ < 1/2 the bound state crosses the one-particle dispersion before it merges with
the two-particle continuum. (iii) Finally for µ ≥ 1/2 the S = 1 bound state exists for all
momenta Q4.

In figure 2.14 for each scenario one example is depicted. For µ = 0.2 the bound state
merges with the continuum before it crosses the one-particle dispersion. For µ = 0.45
the bound state crosses the one-particle dispersion and merges with the two-particle
continuum at smaller momenta Q. Finally, for µ = 0.6 the bound state exists for all

4For µ > τ+2
2τ the bound state lies below the one-particle dispersion for all momenta Q. Thus at least

for these high values of µ the model becomes erroneous.
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Figure 2.14: Dispersion ωbound(Q) of the bare (λ = 0) two-particle bound states
for τ = 1 and various values µ. Bound state exists for momenta Q > Qbound,c =
2arccos(2µ).

momenta Q.

In the following we discuss the one- and two-particle spectrum for τ = 1.0, λ = 0.2
and valuesµ= 0.2, 0.45, 0.6. A finite value ofλ renormalizes the one-particle dispersion
and the dispersion of the two-particle bound state. Additionally, it makes SQPD
possible.

Below the two-particle continuum (ω< 2−τcos(Q/2)) the renormalized one-particle
dispersion ω1,r(Q) and the renormalized dispersion of the two-particle bound state
ωbound,r(Q) are given implicitly by the roots of

G−1(Q,ω) = ω−ω1(Q)−Σ(Q,ω) = 0 . (2.46)

From equations (2.39), (2.40), (2.41) and (2.42) follows that the solutions of equation
(2.46) are given by roots of a cubic function. Note, that the roots of the cubic function are
not necessarily solutions of equation (2.46). In figure 2.15 the renormalized one-particle
dispersion ω1,r(Q) (green lines) and the renormalized dispersion of the two-particle
bound stateωbound,r(Q) (blue lines) are depicted for τ= 1.0, λ= 0.2 and µ= 0.2, 0.45, 0.6.

Inside the two-particle continuum (|ω−2| ≤ τcos(Q/2)) we define the energy of the
quasiparticles by

ω−ω1(Q)−ReΣ(Q,ω) = 0 . (2.47)
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Figure 2.15: Renormalized one-particle dispersion ω1,r(Q) and the renormalized
dispersion of the two-particle bound stateωbound,r(Q) for τ= 1.0, λ= 0.2 and various
values µ.

The solutions of this equation are depicted in figure 2.15 by red lines for τ = 1.0, λ = 0.2
and µ = 0.2, 0.45, 0.6.

For µ = 0.2 nothing out of the ordinary occurs. The point where the bound state
merges with the continuum is slightly shifted from Qbound,c ≈ 0.7380π to Qbound,c,r ≈
0.7425π. Within this interval [Qbound,c,Qbound,c,r] a solution of equation (2.47) exists for
|ω− 2| ≤ τcos(Q/2). The one-particle dispersion changes slightly as well and starts to
decay once it merges with the two-particle continuum analogous to the case µ = 0.0.

For µ = 0.45 the bare (λ = 0) two-particle bound state crosses the one-particle dis-
persion ω1(Q). This has a significant effect. Now the decaying quasiparticle (red
line close to ω1(Q)) is continued by the renormalized two-particle bound state for
Q >Qbound,c,r ≈ 0.4510π. The renormalized one-particle dispersion ω1,r(Q) (green line)
merges with the continuum at Q=Qc,r ≈ 0.1097π and ceases to exist at this momentum.
There is no solution of equation (2.47) between Q = 0 and Qc,r inside the continuum.
Interestingly, a solution of equation (2.47) exists between Qc,r and Qbound,c just above
the lower edge of the two-particle continuum. The finite value of λ = 0.2 leads to level
repulsion between the one-particle dispersion and the two-particle bound state. These
two states avoid any crossing.

For µ = 0.6 the bare two-particle bound state exists for all momenta Q. This leads
to a stable renormalized one-particle dispersion for all momenta Q, cf. figure 2.15.
Again the decaying particle inside the continuum is continued by the renormalized
two-particle bound state. They meet at Q =Qbound,c,r ≈ 0.4111.
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Figure 2.16: Quasiparticle weight Z(Q) for τ = 1.0, λ = 0.2 and variant values µ.
For µ = 0.2, 0.45 the weight Z(Q) is continuously suppressed and vanishes at Qc,r.
Dotted grey lines indicate the respective Qc,r.

In figure 2.16 the quasiparticle weight Z(Q) (2.25) below the two-particle continuum
is depicted for τ = 1.0, λ = 0.2 and µ = 0.2, 0.45, 0.6. For µ = 0.2, 0.45 the weight Z(Q) is
continuously suppressed and vanishes at Qc,r. In the case µ = 0.6 the weight Z(Q) stays
finite for all momenta Q although it shrinks for smaller momenta Q. It is remarkable
that for µ = 0.45 the weight Z(Q) of the renormalized one-particle dispersion decreases
significantly for Q / Qc,bound,r ≈ 0.4510π where the two-particle bound state passes
over to the decaying excitation inside the continuum. Thus, although the particle
described by the renormalized one-particle dispersion ω1,r(Q) (green line) has infinite
lifetime down to Qc,r ≈ 0.1097π the main part of the spectral weight is allocated in the
continuum for Q / 0.35π.

Figure 2.17 shows the weight Zbound(Q) of the bound state given by

Z−1
bound(Q) :=

∂G−1(Q,ω)
∂ω

∣∣∣∣∣∣
ω=ωbound,r(Q)

(2.48)

for τ = 1.0, λ = 0.2 and µ = 0.2, 0.45, 0.6. For all values µ the weight Zbound(Q) vanishes
at Qbound,c,r and at Q = π.

Next, we want to discuss the influence of the two-particle interaction on the imagi-
nary part of the self-energy ImΣ(Q,ω) and on the spectral density ρ(Q,ω).

In figure 2.18 the imaginary part of the self-energy ImΣ(Q,ω) (left panels) and the
spectral density ρ(Q,ω) (right panels) for τ = 1.0, λ = 0.2 and µ = 0.2, 0.45, 0.6 are
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Figure 2.17: Weight Zbound(Q) of the bound states for τ = 1.0, λ = 0.2 and variant
values µ. For all µ the weight Zbound(Q) is continuously suppressed and vanishes
at Qbound,c,r. Dotted grey lines indicate the respective Qbound,c,r. The data for µ= 0.2
is multiplied by a factor of 100.

depicted. The left panels show the bare one-particle dispersion ω1(Q) (black line) and
the bare two-particle bound state (blue line below the continuum) as well. In the right
panels the renormalized dispersions are depicted, cf. figure 2.15.

Inside the two-particle continuum (|ω− 2| ≤ τcos(Q/2)) the imaginary part of the
self-energy is given by

ImΣ(Q,ω) =−λ2
1
4

√
(τcos(Q/2))2− (ω−2)2[(

ω−2
2

)
+τµ

]2
+ 1

4

[
(τcos(Q/2))2− (ω−2)2

] . (2.49)

At the edges of the continuum this quantity stays finite unless 2µ = ±cos(Q/2). For
2µ = cos(Q/2) the bare bound state enters the continuum and the imaginary part of the

self-energy ImΣ(Q,ω) diverges like
[
(τcos(Q/2))2− (ω−2)2

]−1/2
. Generically, a positive

value of µ shifts weight in the imaginary part of the self-energy ImΣ(Q,ω) to lower
energies ω.

For µ = 0.2 and µ = 0.45 these two effects of the two-particle interaction on the
imaginary part of the self-energy ImΣ(Q,ω) are clearly visible, see left panel of figure
2.18a and left panel of figure 2.18b. For both values of µ more weight is accumulated
in the lower part than in the upper part. Also the one over square root behavior in the
vicinity of the point where the two-particle bound state merges with the one-particle
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Figure 2.18: Imaginary part of the self-energy ImΣ(Q,ω) and the spectral density
ρ(Q,ω) for τ = 1.0, λ = 0.2 and various values µ. Black lines occurring in the left
panels indicate the one-particle dispersionω1(Q). Blue lines below the two-particle
continuum occurring in the left panels indicate the bare two-particle bound state
ωbound(Q). Additional lines occurring in the right panels indicate the renormalized
dispersions, cf. figure 2.15.
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dispersion can be observed. For µ = 0.6 the bare two-particle bound state exists for all
momenta Q, so it never merges with the two-particle continuum. Thus the imaginary
part of the self-energy ImΣ(Q,ω) stays finite for all momenta Q. Nevertheless, the
two-particle interaction shifts weight to lower energies ω, cf. left panel of figure 2.18c.

Inside the continuum peaks occur in the spectral density ρ(Q,ω) for all three values
ofµwhose positions are given by the solutions of equation (2.47) (red lines). In addition,
for µ = 0.45 small peaks very close to the lower edge of the continuum are present for
momenta Q / 0.3π caused by the renormalized one-particle dispersion (green line),
cf. right panel of figure 2.18b. For µ = 0.6 these small peaks are not present, see right
panel of figure 2.18c. Note, that the stable excitation below the continuum (green line)
has a small spectral weight, cf. figure 2.16.

Finally, we discuss the width of the the excitation inside the continuum given by
the red curves close to the bare one-particle dispersion ω1(Q), cf. figure 2.15 and figure
2.18. In figure 2.19 the quasiparticle width γ(Q) for τ = 1.0, λ = 0.2 and various values
µ is depicted. A finite value of µ considerably changes the width of the the quasipar-
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Figure 2.19: Width γ(Q) for τ = 1.0, λ = 0.2 and various values µ.

ticle inside the continuum. Especially, for µ = 0.45 the width of the quasiparticle is
markedly enhanced close to the point where the two-particle bound state merges with
the two-particle continuum. Nevertheless, the width vanishes when the quasiparticle
approaches the lower edge of the continuum.

Instead of a two-particle interaction also a next-nearest-neighbor hopping can effect
the kind of decay. This is discussed in the next section.
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2.4 Influence of next-nearest-neighbor hopping

In this section the influence of next-nearest-neighbor hopping is discussed. Thus, we
consider the Hamiltonian

H =HNNN
0 +H1 (2.50a)

with

HNNN
0 =

∑
α

N−1∑
r=0

[
t†α,rtα,r+

τ1

4

(
t†α,rtα,r+1+ t†α,r+1tα,r

)
+
τ2

4

(
t†α,rtα,r+2+ t†α,r+2tα,r

)]
(2.50b)

H1 =
λτ1

4

∑
α,β,γ

N−1∑
r=0

i εαβγ t†α,rt
†
β,r+1

(
tγ,r+ tγ,r+1

)
+H.c. . (2.50c)

For the bare one-particle dispersion ω1(Q) follows

ω1(Q) = 1+
τ1

2
cos(Q)+

τ2

2
cos(2Q) (2.51)

leading to the two-particle continuum

ω2(Q,q) := ω1
(
Q/2+ q

)
+ω1

(
Q/2− q

)
(2.52a)

= 2+τ1 cos(Q/2)cos
(
q
)
+τ2 cos(Q)cos

(
2q

)
. (2.52b)

Unfortunately, it is no longer possible to derive a closed formula for the self-energy
Σ(Q,ω). However, the imaginary part of the self-energy is still given by

ImΣ(Q,ω) = − (λτ1)2

2
cos2 (Q/2)

π∫
−π

sin2(q)δ
(
ω−ω2(Q,q)

)
dq , (2.53)

cf. equation (2.15a).

For τ2 = 0 the extrema of the two-particle continuum for a fixed total momentum
Q are always at q = 0 and q = ±π. For these momenta the sin2(q) appearing in the
integrand of the imaginary part of the self-energy is zero, cf. equation (2.53). As a
result, the imaginary part of the self-energy ImΣ(Q,ω) stays finite. No singularities
occur.

For a finite τ2 the extrema of the two-particle continuum are determined by

τ1 cos(Q/2)sin
(
q
)
+2τ2 cos(Q)sin

(
2q

)
= 0 . (2.54)
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As for τ2 = 0, q = 0 and q = ±π are possible solutions. But for(
τ2

τ1

)2

>
1

16
· cos2 (Q/2)(

2cos2 (Q/2)−1
)2 (2.55)

equation (2.54) is also fulfilled by

q± =π∓ q̃± (2.56)

with

q̃± =arctan

±
√

64(τ2/τ1)2 cos4 (Q/2)−64(τ2/τ1)2 cos2 (Q/2)+16(τ2/τ1)2− cos2 (Q/2)

cos(Q/2)

 .
(2.57)

for τ2/τ1 > 0 and by q̃± for τ2/τ1 < 0. At these additional solutions the sin2(q) appearing
in the integrand of the imaginary part of the self-energy is not zero. This leads to
singularities in the imaginary part of the self-energy ImΣ(Q,ω) (2.53).

In the following we illustrate the effects caused by next-nearest-neighbor hopping
for τ1 = 1.0, λ = 0.2 and various values τ2.

As in the previous section 2.3 we use a Lanczos tridiagonalization in the spin
S = 1, m = 0 subspace (2.37) to calculate the one-particle Green function G(Q,ω). We
determine numerically the coefficients an(Q) and bn+1(Q) for n < 1400 in the subspace
(2.37) with d < 4000. Thus, for fixed momentum Q we obtain a representation of the
Green function G(Q,ω) given by a finite continued fraction. This finite continued
fraction has poles at the zeros of the denominator leading to a collection of δ-peaks.
To obtain a continuous density ρ(Q,ω) we introduce a small broadening via ω→ω+ iδ
with a small real number δ. Unfortunately, this broadening smears out all sharp features
like band edges or van Hove singularities. To avoid such a loss of resolution one can
use an appropriate termination [Viswanath & Müller(1994)]. We terminate the finite
continued fraction for n < 1400 by using the square root terminator, cf. appendix A. To
approximate the limits a∞(Q) and b∞(Q) we calculate the arithmetic mean of an(Q) and
bn(Q) for n ∈ [1400,1490]. In the following, results for the spectral density ρ(Q,ω) and
for the imaginary part of the self-energy ImΣ(Q,ω) obtained by a small broadening
(δ = 0.05) as well as by a termination with the square root terminator are presented.

We start our discussion of the influence of next-nearest-neighbor hopping by con-
sidering positive interactions τ2 > 0. In figure 2.20 the one-particle dispersion ω1(Q),
the two-particle continuum ω2(Q,q), the imaginary part of the self-energy ImΣ(Q,ω)
and the spectral density ρ(Q,ω) for τ1 = 1.0, τ2 = 0.2 and λ = 0.2 are depicted. The bare



2.4 Influence of next-nearest-neighbor hopping 45

ω

Q/π

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

ω2(Q,q)

ω1(Q)

(a) Bare (black line) and renormal-
ized (green crosses, red circles) one-
particle dispersion for τ1 = 1.0, τ2 =
0.2 and λ = 0.2.

0.0
0.2

0.4
0.6

0.8
1.0

Q/π
-1.0

-0.5
0.0

0.5
1.0

q/π

1

2

3

4

ω
2(

Q
,q

)

(b) Two-particle continuum ω2(Q,q)
for τ1 = 1.0, τ2 = 0.2 and λ = 0.2.
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(c) Imaginary part of the self-energy ImΣ(Q,ω) for τ1 = 1.0, τ2 = 0.2 and λ = 0.2. Left
panel: Results obtained by a square root terminator. Right panel: Results obtained
by a small broadening (δ = 0.05).
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(d) Spectral density ρ(Q,ω) for τ1 = 1.0, τ2 = 0.2 and λ = 0.2. Left panel: Results
obtained by a square root terminator. Right panel: Results obtained by a small
broadening (δ = 0.05).

Figure 2.20: One-particle dispersion, two-particle continuum, imaginary part of
the self-energy and one-particle spectral density for τ1 = 1.0, τ2 = 0.2, λ = 0.2. The
green crosses depict the renormalized one-particle dispersion determined by the
smallest root of equation (2.58) where a small broadening (δ = 0.05) is used. Red
circles represent the renormalized one-particle dispersion resulting from the use of
the square root terminator.
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one-particle dispersion ω1(Q) is represented by a black line. The green crosses depict
the renormalized one-particle dispersion determined by the smallest root of

ω−ω1(Q)−ReΣ(Q,ω) = 0 , (2.58)

where a small broadening (δ = 0.05) is used to determine ReΣ(Q,ω). The red circles
represent the renormalized one-particle dispersion defined by the smallest root of
equation (2.58), too. But instead of a small broadening the square root terminator is
used to determine the real part of the self-energy ReΣ(Q,ω). For τ1 = 1.0, τ2 = 0.2,
λ = 0.2 the green crosses and the red circles lay on top of each other, see figure 2.20a.

From equation (2.55) follows that for finite τ2/τ1 > 0 and momenta Q ≈ π the two-
particle continuum ω2(Q,q) exhibits additional extrema at q± (2.56). For τ2 = 0.2 the
two-particle continuum has maxima at q± for Q ≈ π, see figure 2.20b. These maxima
yield to singularities in the imaginary part of the self-energy at the upper edge of the
two-particle continuum, cf. left panel of figure 2.20c. A broadening (δ= 0.05) smears out
these singularities, see right panel of figure 2.20c. Since the imaginary part of the self-
energy has no singularities in the region of the Brillouin zone where the one-particle
dispersion merges with the two-particle continuum the decay of the quasiparticle is
qualitatively the same as in the case without next-nearest-neighbor hopping (τ2 = 0.0).
Thus, the spectral density ρ(Q,ω) for τ = 0.2 and for τ = 0.0 have qualitatively the
same structure, cf. figure 2.11 and the left panel of figure 2.20d. Below the two-
particle continuum the quasiparticles are stable. According to this, the quasiparticles
are represented by δ-peaks. The position of these δ-peaks are represented by the red
circles. A slight broadening transforms the δ-peaks to Lorentzian functions. This
can be observed in the right panel of figure 2.20d where the spectral density ρ(Q,ω) is
depicted for a broadening of δ = 0.05.

From equation (2.55) follows that singularities in the imaginary part of the self-
energy ImΣ(Q,ω) around Q ≈ 0.0 can only occur for |τ2/τ1| > 1/4. Thus, in figure 2.21 the
same quantities as in figure 2.20 are depicted for τ1 = 1.0, τ2 = 0.4 > 1/4 and λ = 0.2. For
τ2 = 0.4 the two-particle continuum ω2(Q,q) has minima at q± (2.56) around Q ≈ 0.0,
cf. figure 2.21b. Due to these minima the imaginary part of the self-energy ImΣ(Q,ω)
exhibits singularities at the lower edge of the continuum, see left panel of figure 2.21c,
and stable excitations exist below the two-particle continuum for all momenta Q. The
dispersion of these stable excitations is depicted by the red circles, see figure 2.21a.
From the right panel of figure 2.21d one can conclude that the weight of the stable
excitations is small, once the bare one-particle dispersion ω1(Q) has merged with the
two-particle continuum. Thus a small broadening annihilates the roots of equation
(2.58) which describe these excitations. As a consequence, the green crosses lie inside
the two-particle continuum. Most of the weight of ρ(Q,ω) is located at the decaying
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(b) Two-particle continuum ω2(Q,q)
for τ1 = 1.0, τ2 = 0.4 and λ = 0.2.
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(c) Imaginary part of the self-energy ImΣ(Q,ω) for τ1 = 1.0, τ2 = 0.4 and λ = 0.2. Left
panel: Results obtained by a square root terminator. Right panel: Results obtained
by a small broadening (δ = 0.05).

0.0
0.2

0.4
0.6

0.8
1.0Q/π

0
1

2
3

4

ω

2
4
6
8

10

ρ
(Q
,ω

)

0.0
0.2

0.4
0.6

0.8
1.0Q/π

0
1

2
3

4

ω

2
4
6
8

10

ρ
(Q
,ω

)

(d) Spectral density ρ(Q,ω) for τ1 = 1.0, τ2 = 0.4 and λ = 0.2. Left panel: Results
obtained by a square root terminator. Right panel: Results obtained by a small
broadening (δ = 0.05).

Figure 2.21: One-particle dispersion, two-particle continuum, imaginary part of
the self-energy and one-particle spectral density for τ1 = 1.0, τ2 = 0.4, λ = 0.2. The
green crosses depict the renormalized one-particle dispersion determined by the
smallest root of equation (2.58) where a small broadening (δ = 0.05) is used. Red
circles represent the renormalized one-particle dispersion resulting from the use of
the square root terminator.
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excitations inside the two-particle continuum indicated by the green crosses.

Note, that for τ2 > 1/4 the minimum of the dispersion ω1(Q) is no longer at Q = π,
see figure 2.21a.

For the sake of completeness, figure 2.22 and figure 2.23 depict the one-particle
dispersion, the two-particle continuum, the imaginary part of the self-energy and the
one-particle spectral density for τ1 = 1.0, λ = 0.2 and negative values τ2 = −0.2, −0.4.
The negative sign of τ2 transforms minima at q± for τ2/τ1 > 0 to maxima at q̃± for τ2/τ1 < 0,
and maxima at q± for τ2/τ1 > 0 to minima at q̃± for τ2/τ1 < 0. Hence, for τ2 = −0.2, −0.4
the two-particle continuum ω2(Q,q) has minima at q̃± for total momenta Q around
π, cf. figure 2.22b and figure 2.23b. In addition, for τ2 = −0.4 maxima appear in the
two-particle continuum ω2(Q,q) at q̃± for total momenta Q close to Q = 0. Replacing
a minimum by a maximum shifts a singularity occurring in ImΣ(Q,ω) at the lower
edge of the two-particle continuum to the upper edge of the continuum. Analogously,
replacing a maximum by a minimum shifts a singularity occurring in ImΣ(Q,ω) at
the upper edge of the two-particle continuum to the lower edge of the continuum,
cf. figure 2.22c and figure 2.23c. As a consequence, for τ2 < 0 the imaginary part of
the self-energy ImΣ(Q,ω) has no singularities at the lower edge of the two-particle
continuum in the region of the Brillouin zone where the one-particle branch merges
with the continuum. Thus, even for τ2 = −0.4 no stable excitation exists below the two-
particle continuum for all momenta Q. Only positive interactions τ2 > τ1/4 > 0 yield
stable excitations within the whole Brillouin zone.

Finally, we discuss the influence of next-nearest-neighbor interactions on the width
Z(Q) of the quasiparticles. To define the positions of the quasiparticles we choose the
green crosses depicted in figures 2.20–2.23. Thus for τ1 = 1.0, τ2 = 0.4, λ = 0.2 and
small total momenta Q we ignore the stable excitations below the continuum due to
their negligible spectral weights. To calculate the width γ(Q) we use the square root
terminated continued fraction representation of the self-energy Σ(Q,ω).

Figure 2.24 shows the width γ(Q) for τ1 = 1.0, λ = 0.2 and various τ2. In addition to
the previously discussed interactions τ2 = ±0.2, ±0.4 results for τ2 = ±0.6 are depicted
as well. For τ2 = 0.6 stable excitations exist in the whole Brillouin zone. But their
spectral weight is negligible for small total momenta Q so that the maxima of the
spectral density ρ(Q,ω) are inside the continuum. As for τ2 = 0.4 we use these maxima
of the spectral density ρ(Q,ω) to define the quasiparticle dispersion.

Interestingly, it seems that for τ2 = 0.4 and τ2 = 0.6 the width γ(Q) is discontinuous
at the lower edge of the continuum while for all other considered values of τ2 the width
vanishes at the boundary of the continuum , see figure 2.24.
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(b) Two-particle continuum ω2(Q,q)
for τ1 = 1.0, τ2 = −0.2 and λ = 0.2.
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(c) Imaginary part of the self-energy ImΣ(Q,ω) for τ1 = 1.0, τ2 =−0.2 and λ= 0.2. Left
panel: Results obtained by a square root terminator. Right panel: Results obtained
by a small broadening (δ = 0.05).
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(d) Spectral density ρ(Q,ω) for τ1 = 1.0, τ2 = −0.2 and λ = 0.2. Left panel: Results
obtained by a square root terminator. Right panel: Results obtained by a small
broadening (δ = 0.05).

Figure 2.22: One-particle dispersion, two-particle continuum, imaginary part of
the self-energy and one-particle spectral density for τ1 = 1.0, τ2 = −0.2, λ = 0.2. The
green crosses depict the renormalized one-particle dispersion determined by the
smallest root of equation (2.58) where a small broadening (δ = 0.05) is used. Red
circles represent the renormalized one-particle dispersion resulting from the use of
the square root terminator.
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(b) Two-particle continuum ω2(Q,q)
for τ1 = 1.0, τ2 = −0.4 and λ = 0.2.
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(c) Imaginary part of the self-energy ImΣ(Q,ω) for τ1 = 1.0, τ2 =−0.4 and λ= 0.2. Left
panel: Results obtained by a square root terminator. Right panel: Results obtained
by a small broadening (δ = 0.05).
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(d) Spectral density ρ(Q,ω) for τ1 = 1.0, τ2 = −0.4 and λ = 0.2. Left panel: Results
obtained by a square root terminator. Right panel: Results obtained by a small
broadening (δ = 0.05).

Figure 2.23: One-particle dispersion, two-particle continuum, imaginary part of
the self-energy and one-particle spectral density for τ1 = 1.0, τ2 = −0.4, λ = 0.2. The
green crosses depict the renormalized one-particle dispersion determined by the
smallest root of equation (2.58) where a small broadening (δ = 0.05) is used. Red
circles represent the renormalized one-particle dispersion resulting from the use of
the square root terminator.
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2.5 Chapter summary

In this chapter an introduction to spontaneous quasiparticle decay (SQPD) in gapped
one-dimensional quantum spin systems has been given. For this purpose a bosonic
toy model has been discussed where the one-particle dispersion merges with the two-
particle continuum.

We have calculated the self-energy Σ(Q,ω) to describe the renormalization of the
one-particle dispersion caused by decay processes.

Within this approach outside the continuum, where the quasiparticles have infi-
nite lifetime, the quasiparticle weight continuously decreases when the dispersion ap-
proaches the two-particle continuum and vanishes completely at the merging point. At
the merging point the lower edge of the two-particle continuum and the renormalized
one-particle dispersion have the same velocities, so that the renormalized one-particle
branch approaches the boundary of the two-particle continuum tangentially.

Inside the continuum the quasiparticles show SQPD characterized by a finite life-
time. In contrast to the decay in a Fermi liquid where the width of the excitations near
to the Fermi surface decreases faster than the distance to the Fermi surface, in the model
discussed the width of the excitations near to the merging point becomes arbitrarily
large compared to the distance to the lower edge of the two-particle continuum. In
this sense a breakdown of the quasiparticle picture occurs. Additionally, the usual
definition of the quasiparticle weight can not be used.

Furthermore, we discussed the influence of two-particle interactions and next-
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nearest-neighbor hopping on the SQPD.
If the two-particle interaction is large enough to produce a bound state in the

region of the Brillouin zone where the SQPD occurs a new decay scenario emerges.
Level repulsion occurs and the bound state is continued inside the continuum by a
particle with finite lifetime. Simultaneously, the one-particle branch is pushed below
the continuum and stays stable in the region where the bound state starts to decay.
Thereby most of the spectral weight of the one-particle spectral density is allocated
inside the continuum. Whether the one-particle branch is stable in the whole Brillouin
zone or merges with the continuum at a small momentum and ceases to exist depends
on the strength of the two-particle interaction.

For a sufficiently large positive next-nearest-neighbor hopping a stable excitation
throughout the whole Brillouin zone occurs as well. But again, for small momenta
most of the spectral weight is allocated at an excitation with finite lifetime inside the
continuum.

All in all, we have found three different decay scenarios: (i) The stable one-particle
branch below the continuum is continued inside the continuum by a quasiparticle
branch with a finite lifetime and non-Fermi-liquid behavior. (ii) A two-particle bound
state below the continuum is continued inside the continuum by a quasiparticle branch
with a finite lifetime. Simultaneously, the one-particle branch is pushed below the
continuum due to level repulsion and stays stable in the region where the bound state
starts to decay. (iii) Next-neighbor-hopping causes additional minima inside the two-
particle continuum whereby stable excitations within the whole Brillouin zone are
produced. Nevertheless, for small momenta most of the spectral weight is gathered
around an excitation with finite width inside the continuum.



Chapter 3

Continuous unitary transformations

“Hilbert space is a big place!” CarltonM. Caves

In this chapter the general concept of continuous unitary transformations (CUTs), also
referred to as flow equation method or double-bracket flow, is described in detail.
The method was introduced in 1994 by Wegner [Wegner(1994)] and independently by
Głazek and Wilson [Głazek & Wilson(1993), Głazek & Wilson(1994)].

Since then, CUTs were applied to a wide range of problems in condensed
matter physics, including electron-phonon coupling [Lenz & Wegner(1996),
Ragwitz & Wegner(1999)], dissipative quantum systems [Kehrein & Mielke(1997),
Kehrein & Mielke(1998)], the Hubbard model [Stein(1997), Reischl et al.(2004),
Hamerla et al.(2010), Yang et al.(2010), Yang & Schmidt(2011)], the Anderson
impurity model [Kehrein & Mielke(1994), Kehrein & Mielke(1996b)], the spin-
boson model [Kehrein et al.(1995), Kehrein & Mielke(1996a)], spin systems
[Knetter et al.(2003a), Schmidt & Uhrig(2006)], and the toric code model in a magnetic
field [Vidal et al.(2009)]. A detailed description of the method and its applications is
given in the book “The Flow Equation Approach to Many-Particle Systems” by Kehrein
[Kehrein(2006)].

Various approaches based on CUTs were developed in the last years. Besides the
approach Wegner used in his original work [Wegner(1994)], which we will denote by
self-similar continuous unitary transformation (sCUT), the perturbative realization of
CUT [Uhrig & Normand(1998), Knetter & Uhrig(2000)], usually denoted as perturba-
tive continuous unitary transformation (pCUT), has become a powerful tool to perform
high-order perturbation theory. Also a combination of pCUT and sCUT referred to as
enhanced perturbative continuous unitary transformation (epCUT) is an issue of on-
going research [Krull(2011)]. A very recently developed approach called graph theory
based continuous unitary transformation (gCUT) combines graph theory and CUTs
[Yang & Schmidt(2011)].

In the following section 3.1 we give an introduction to the concept of CUTs. We
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introduce the flow equation (3.3) which is the key element of all CUTs. The outcome
of this equation depends on the particular choice of a generator which is the issue of
section 3.2. We give a brief overview over the original choice of a generator by Wegner
(cf. section 3.2.1) and discuss in detail a class of generators where the coefficients of
the Hamiltonian appear in the generator in linear order. Hamiltonians given explicitly
by a matrix as well as Hamiltonians formulated in second quantization are considered
(cf. section 3.2.2 and section 3.2.3). In particular, we discuss a generator capable to
describe systems with unstable quasiparticles in an efficient way.

In section 3.3 differences and similarities of some generators are indicated and
illustrated on systems with finite dimension. We also prove that a certain class of
generators transform subspaces of the Hilbert space entirely equally, see section 3.3.4.

Section 3.4 is dedicated to the concept of sCUTs in real space for systems in the
thermodynamic limit as used in chapter 4, 5, and 6. The usage of translational symmetry
is explained explicitly (cf. section 3.4.2) and a truncation scheme is introduced to deal
with the infinite dimension of the system (cf. section 3.4.3).

Finally, some remarks about the implementation on a computer are given (cf. section
3.5).

3.1 General concept of continuous unitary transforma-

tions

A central issue of theoretical quantum mechanics is the diagonalization of a self-adjoint
Hamiltonian H. Particularly, in the field of condensed matter physics, where non-
relativistic point-like particles interact only via Coulomb interactions, the so-called
“theory of everything” is well-known. This means that it is possible to write down
the Hamiltonian H which should describe all properties of the system under study
[Czycholl(2004), Schmidt(2008)].

Theoretically, a diagonalization of a normal operator and in particular of a self-
adjoint operator is always possible. According to that a unitary operator U exists
which changes the basis in a way that U†HU is diagonal. But unfortunately, the actual
diagonalization of the full Hamiltonian H, although possible in theory, is usually an
impossible task due to the huge number of degrees of freedom. Therefore, often a
reductive approach is used. One tries to identify the relevant degrees of freedom and
to write down an effective model which hopefully describes the partial aspect of interest
sufficiently well and is easier to solve than the initial problem. Typically, the derivation
of such an effective model is a highly nontrivial and challenging task.

In a certain way the main aims of condensed matter physics are therefore contrary
to those of high energy physics where the low-energy effective theory, the so called
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“standard model of particle physics”, is well established but the “theory of everything” is
unknown.

A famous example in the field of correlated electrons for the derivation of an effective
model is the reduction of the half-filled Hubbardmodel 1 to the antiferromagnetic spin
S= 1/2 Heisenbergmodel in the limit of strongly interacting electrons [Anderson(1959),
Harris & Lange(1967), Takahashi(1977), Reischl et al.(2004), Hamerla et al.(2010)].

The method of CUTs offers a general approach to diagonalize matrices and operators
or at least to achieve a form closer to diagonality and to derive effective models in a
systematic way.

3.1.1 The flow equation

Normally, the Hamiltonian H is transformed by a finite number of unitary transforma-
tions Un

Heff =U†HU (3.1a)

with

U :=U1U2 · · ·UN . (3.1b)

In the following we always denote the transformed Hamiltonian U†HU by Heff. If U
is a unitary transformation, Heff is entirely equivalent to H. The eigenvalues en of Heff

are the same as for the initial Hamiltonian H and if vn,eff is an eigenvector of Heff then
Uvn,eff is an eigenvector of H. In this case the subscript “eff” as an abbreviation for
effective is misleading. But in actual calculations we usually have to perform some
approximations due to the complexity of the problems (cf. section 3.4.3). Typically this
slightly destroys the unitarity of the transformation and we only achieve an effective
description of the initial problem. For that reason we use the subscript “eff”.

In 1994 Wegner [Wegner(1994)] and independently Głazek and Wilson
[Głazek & Wilson(1993), Głazek & Wilson(1994)] generalized equation (3.1) by
replacing the finite number of unitary transformations U :=

∏N
n=1 Un by infinitely

many, thus a continuous unitary transformation (CUT). The idea is to introduce a
continuous auxiliary variable ` and to define an `-dependent Hamiltonian

H(`) :=U†(`)HU(`) . (3.2)

1The Hubbardmodel itself is a effective model.
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Then the Hamiltonian H(`) transforms according to the flow equation

∂H(`)
∂`

= [G(`),H(`)] (3.3a)

with the initial condition

H(0) =H (3.3b)

and an antihermitian generator G(`) defined by

G(`) := −U†(`)
∂U(`)
∂`

. (3.4)

The antihermiticity of the generator G(`) ensures that the transformation (3.3) of H(`)
is unitary. So for all values ` the transformed Hamiltonian H(`) is unitarily equivalent
to the initial Hamiltonian H. Usually, we consider the limit `→∞ and denote H(∞) as
the effective Hamiltonian

Heff := lim
`→∞

H(`) . (3.5)

Multiplying equation (3.4) from the left by U(`) yields a differential equation for the
unitary transformation U(`)

∂U(`)
∂`

= −U(`)G(`) (3.6a)

with the initial condition

U(0) = 1 . (3.6b)

This differential equation can formally be solved by

U(`) =Lexp
(
−
∫ `

0
G(`′)d`′

)
(3.7)

whereL denotes the `- ordering operator which orders the following expressions from
left to right in increasing order of `. Due to this ordering a simple choice of a generator
G(`) may produce a very complicated unitary transformation U(`).

Certainly, the final structure of the effective Hamiltonian Heff depends on the form
of the chosen generator G(`). So the crucial point is to choose a generator G(`) that
leads to a simplification of the initial Hamiltonian. Another important issue is whether
the ensuing flow equation (3.3) is practically tractable. Nevertheless, the continuous
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representation of the unitary transformation (3.3) offers some considerable advantages
in comparison to the finite representation (3.1). Firstly, the CUT can adjust itself during
the diagonalization depending on the current form of the Hamiltonian whereby a sim-
ple choice of a generator G(`) can produce an elaborated unitary transformation U(`).
Secondly, the flow equation (3.3) can be used to determine the asymptotic structure
of the Hamiltonian. By inspecting the right hand side of the flow equation (3.3) one
recognizes that the transformation only stops if the generator G(`) commutes with the
Hamiltonian H(`)

[G(`),H(`)] = 0 . (3.8)

Therefore, if the flow equations converge to a fixed point the structure of the effective
Hamiltonian Heff can be easily predicted by the structure of the generator G(`). Exam-
ples are given in section 3.2 where various generators are introduced and discussed.

3.1.2 Transformation of observables

For a comparison of theoretical calculations with experimental data observables must
be considered as well. For example, in inelastic neutron scattering (INS) measurements
the cross section is proportional to the dynamical structure factor Sαβ(Q,ω) which
involves matrix elements of spin operators (cf. section F).

In the same way as for the Hamiltonian H the technique of CUTs can be used to
transform an observable O. The flow equation for an observable is given by

∂O(`)
∂`

= [G(`),O(`)] (3.9a)

with the initial condition

O(0) =O . (3.9b)

Typically, the structure of the observable O(`) will become more and more complicated
during the flow (cf. section 3.4.3 and chapter E).
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3.2 Generators

3.2.1 Wegner’s generator

In his first work about CUTs [Wegner(1994)] Wegner split the Hamiltonian H into a
diagonal part Hd and a non-diagonal part Hnd

H =Hd+Hnd (3.10)

and defined the generator GW(`) by

GW(`) := [Hd(`),H(`)] = [Hd(`),Hnd(`)] . (3.11)

The definition of Hd(`) is arbitrary. One is free to choose which part of the Hamiltonian
H is called diagonal implying which part is called non-diagonal depending on the
problem under study [Wegner(2006)].

If one considers a Hamiltonian H(`) given by a (N+1)× (N+1) matrix2

H(`) =



e0(`) h0,1(`) h0,2(`) . . . h0,N(`)
h1,0(`) e1(`) h1,2(`) . . . h1,N(`)
h2,0(`) h2,1(`) e2(`) . . . h2,N(`)
...

...
...

. . .
...

hN,0(`) hN,1(`) hN,2(`) . . . eN(`)


(3.12)

and defines the diagonal part as

H(`) =



e0(`) 0 0 . . . 0
0 e1(`) 0 . . . 0
0 0 e2(`) . . . 0
...

...
...

. . .
...

0 0 0 . . . eN(`)


. (3.13)

The sum over all squared non-diagonal elements is a monotonically decreasing function
for the generator GW(`) since its derivative is given by [Wegner(1994)]

∂

∂`

N∑
n,m=0
n,m

∣∣∣hn,m(`)
∣∣∣2 = −2

N∑
n,m=0

(en(`)− em(`))2
∣∣∣hn,m(`)

∣∣∣2 . (3.14)

Therefore, the flow equation (3.3) has to converge in the limit `→∞ and the Hamil-

2We denote matrix elements of the Hamiltonian H(`) by 〈n|H(`) |m〉 = hn,m(`). For diagonal elements
we use besides hn,n(`) also en(`). Matrix elements of a generator G(`) are denoted by 〈n|G(`) |m〉 = gn,m(`).
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tonian H(`) becomes more and more diagonal during the flow. From equation (3.14)
follows for `→∞

lim
`→∞

(en(`)− em(`))2
∣∣∣hn,m(`)

∣∣∣2 = 0 ∀n,m . (3.15)

Thus Wegner’s generator GW(`) diagonalizes the Hamiltonian H(`) up to degener-
ate subspaces3 (cf. section 3.3.1). This property also applies for infinite matrices
[Dusuel & Uhrig(2004)].

3.2.2 Generators for matrices

Mielke’s generator

For band-diagonal Hamiltonian matrices, i.e.,

hn,m(0) = 0 for |n−m| >N0 , (3.16)

Mielke proposed another generator GM(`). His choice conserves the initial band struc-
ture during the flow [Mielke(1998)], which is not the case for Wegner’s generator.
Mielke achieved the conservation of the banded structure by introducing a sign func-
tion depending on the difference between the row index n and the column index m of
the considered matrix element

gn,m(`) = sgn(n−m)hn,m(`) . (3.17)

From this choice follows that the flow of a diagonal element en(`) is given by

∂en(`)
∂`

= 2
N∑

m=0
m,n

sgn(n−m)
∣∣∣hn,m(`)

∣∣∣2 . (3.18)

Therefore, the sum of the first r+ 1 diagonal element is a monotonically decreasing
function [Mielke(1998)]

∂
∂`

r∑
n=0

en(`) = −2
r∑

n=0

N∑
m=r+1

∣∣∣hn,m(`)
∣∣∣2 ≤ 0 . (3.19)

3Note, here we mean by degenerate en(`) = em(`) and do not refer to the eigenvalues of H(`).
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For finite systems and systems which are bounded from below the sum
r∑

n=0
en(`) has a

lower limit. Then, since r is arbitrary, from equation (3.19) follows

lim
`→∞

∣∣∣hn,m(`)
∣∣∣2 = 0 ∀n,m : n ,m . (3.20)

Thus the effective Hamiltonian Heff is diagonal even if the spectrum is degenerate.

Another important property of Mielke’s generator is the asymptotic behavior of
the non-diagonal elements hn,m(`) with n ,m and the implied ordering of the diagonal
elements en(`). The flow of a non-diagonal element is given by

∂hn,m(`)
∂`

= −sgn(n−m)
(
en(`)− em(`)

)
hn,m(`)

+

N∑
k=0

k,m,n

(
sgn(n− k)+ sgn(m− k)

)
hn,k(`)hk,m(`) .

(3.21)

Since the non-diagonal elements hn,m(`) vanish for `→∞ the second term in equation
(3.21), quadratic in the non-diagonal elements, can be neglected for large enough values
of `. Therefore, if hn,m(`) tends to zero, one must have

sgn(n−m) (en(`)− em(`)) > 0 (3.22)

for sufficiently large values `. Thus the generator proposed by Mielke orders the
diagonal matrix elements en(`) in ascending order and the non-diagonal matrix el-
ements hn,m(`) decrease exponentially for large values `. Note that the exponential
decay of the non-diagonal elements holds only asymptotically. For smaller values of
` the non-diagonal matrix elements hn,m(`) can even increase, see for example refer-
ence [Dusuel & Uhrig(2004)]. Also the sum over all squared non-diagonal elements

N∑
n,m=0
n,m

∣∣∣hn,m(`)
∣∣∣2 can increase during the flow in contrast to Wegner’s version, see equa-

tion (3.14). Thus during the flow the Hamiltonian H(`) can be even less diagonal that
at ` = 0.

The generator of Dawson et al.

Dawson et al.[Dawson et al.(2008)] used variational calculations to derive generators op-
timized for ground state properties of Hamiltonians represented by matrices. In section
3.2.3 we present a generalization for Hamiltonians formulated in second quantization,
see reference [Fischer et al.(2010)] as well. The idea is to minimize ∂e0(`)

∂` =
∂〈0|H(`)|0〉

∂`

with |0〉 = (1,0, . . . ,0)T under the constraint of a bounded G(`) so that the quantity e0(`)
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decreases as fast as possible4. This leads to the variation

δ
{
〈0| [G(`),H(`)] |0〉+µ‖G(`)‖2H

}
= 0 (3.23)

with the Lagrange multiplier µ > 0 and ‖.‖ denoting the Hilbert-Schmidt norm. For
the matrix elements one obtains the expression

δ

{ N∑
n=0

(
g0,n(`)hn,0(`)−h0,n(`)gn,0(`)

)
+µ

N∑
n,m=0

g∗n,m(`)︸ ︷︷ ︸
−gm,n(`)

gn,m(`)
}
= 0 . (3.24)

The variation implies

δ0,nhm,0(`)−h0,n(`)δm,0−2µgm,n(`) = 0 (3.25)

and hence

gn,m(`) =
1

2µ
(
hn,0(`)δ0,m−δn,0h0,m(`)

)
. (3.26)

In the following, we set µ = 1/2 and denote this generator by GDEO(`) explicitly given
by

GDEO(`) =



0 −h0,1(`) −h0,2(`) . . . −h0,N(`)
h1,0(`) 0 0 . . . 0
h2,0(`) 0 0 . . . 0
...

...
...

. . .
...

hN,0(`) 0 0 . . . 0


. (3.27)

It has the property that only matrix elements involving the state |0〉 are different from
zero.

Choosing the generator GDEO(`) leads to

∂e0(`)
∂`

= −2
N∑

n=1

∣∣∣h0,n
∣∣∣2 ≤ 0 (3.28)

for the flow of the matrix element e0(`). Therefore, the matrix element e0(`) is a mono-
tonically decreasing function and it follows

lim
`→∞

∣∣∣h0,n(`)
∣∣∣2 = 0 ∀n : n > 0 (3.29)

4To correspond with our approach in second quantization (see section 3.2.3) we use the vacuum state
|0〉 as the starting vector for the minimization. In principle, one can use an arbitrary starting vector.
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so that in the limit `→∞ the matrix element e0(`) is an eigenvalue of the Hamiltonian
H(`). In section 3.3.4 we prove that the transformation of the matrix element e0(`) is
the same as in the case of Mielke’s generator GM(`). Therefore, for `→∞ the matrix
element e0(`) yields the ground state energy if e0(`) is linked to the ground state by
matrix elements.

3.2.3 Generators in second quantization

In this section generalizations of the generator GM(`) (3.17) and the generator GDEO(`)
(3.27) for models formulated in second quantization are discussed. We also generalize
the variational derivation of generators by Dawson et al. [Dawson et al.(2008)]. The or-
dering properties of the introduced generators and their implications for the description
of quasiparticles with finite lifetime are another important issue of this section.

The generator by Knetter and Uhrig

Knetter and Uhrig [Uhrig & Normand(1998), Knetter & Uhrig(2000)] suggested a gen-
erator that allows us to create (quasi)particle number conserving effective many-body
Hamiltonians. As in the case of Mielke’s generator their choice of a generator is
also based on the idea of using a sign function. In contrast to Mielke’s choice they
used the difference of the particle number as the argument of the sign function. This
generator can be regarded as a generalization of Mielke’s generator for Hamiltonians
formulated in second quantization. In the following, we denote this generator creating
(quasi)particle number conserving effective Hamiltonians by Gpc(`). An analogous
generator was also used by Stein [Stein(1997), Stein(1998)] for models where the use of
the sign function was not necessary.

Generally, a Hamiltonian in second quantization can be written as

H(`) =
N∑

i, j=0

Hi
j(`) (3.30)

where Hi
j(`) stands for the sum over all normal ordered terms that annihilate j and cre-

ate i (quasi)particles. For instance, H0
0(`) is proportional to the identity and describes

the vacuum energy during the flow. By the expression “term”, we refer to both, the
operators and the corresponding prefactor. The whole `-dependence of the Hamilto-
nian is carried by the prefactor (cf. equation (3.52) and equation (3.53)). Note that for
infinitely large systems the maximum number of involved (quasi)particles N might be
infinite, but this does not need to be the case.
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According to the form of the Hamiltonian (3.30) the generator Gpc(`) is given by

Gpc(`) =
N∑

i, j=0

sgn(i− j)Hi
j(`) . (3.31)

This means that terms in H(`) which contain more creation operators than annihilation
operators are taken over to Gpc(`) with the same sign. Terms with more annihilation
operators than creation operators are included in Gpc(`) with a negative sign. Terms
leaving the number of particles unchanged do not occur in Gpc(`).

To discuss properties of the flow and the resulting effective model obtained by
using the generator Gpc(`) we use an eigenbasis {|n〉} of the operator Q counting the
(quasi)particle number

Q |n〉 = qn |n〉 . (3.32)

As before, we denote the matrix elements of the Hamiltonian H(`) by
hn,m(`) = 〈n|H(`) |m〉. The matrix elements of the generator Gpc(`) are given
by

gn,m(`) = 〈n|G(`) |m〉
= sgn

(
qn− qm

)
hn,m(`)

(3.33)

For this generator the flow equation (3.3) yields

∂hn,m(`)
∂`

= −sgn
(
qn−qm

) (
hn,n(`)−hm,m(`)

)
hn,m(`)

+
∑

k,n,m

(
sgn(qn−qk)+ sgn(qm− qk)

)
hn,k(`)hk,m(`) .

(3.34)

Without loss of generality, we assume the eigenstates of the counting operator Q ordered
so that qn ≥ qm for n > m. Then the derivative of the sum over the first r+ 1 diagonal
elements of the Hamiltonian

∂
∂`

r∑
n=0

hn,n(`) = 2
r∑

n=0

∑
k>r

sgn(qn− qk)
∣∣∣hn,k(`)

∣∣∣2 ≤ 0 (3.35)

is a monotonically decreasing function since qn ≤ qk. For physically reasonable systems
the spectrum of the Hamiltonian H(`) is bounded from below. Thus the sum

∑r
n=0 hn,n(`)

has to converge for `→∞ which also implies that

lim
`→∞

sgn(qn−qk)
∣∣∣hn,k(`)

∣∣∣2 = 0 ∀n,k : n , k . (3.36)
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Since r is arbitrary, all matrix elements hn,k(`) which couple to subspaces with a dif-
ferent particle number (qn , qk) have to vanish in the limit `→∞. Hence the effective
Hamiltonian is block-diagonal and conserves the particle number, i.e.,

[Q,Heff] = 0 . (3.37)

This is the most significant property of the flow induced by Gpc(`). It allows us to
consider all sectors with a different particle number separately. For example, the
ground state of the effective Hamiltonian Heff is given by the (quasi)particle vacuum
and diagonalization of the one-particle sector yields the one-particle energies.

Next, we discuss the asymptotic behavior of the flow equations induced by the gen-
erator Gpc(`). We show that the generator Gpc(`) sorts the eigenvalues en in ascending
order of the particle number qn of the corresponding eigenvectors such that en ≥ em

holds, if qn > qm [Mielke(1998), Heidbrink & Uhrig(2002), Fischer et al.(2010)]. Particu-
larly, this implies that the vacuum state |0〉 of the effective Hamiltonian represents the
ground state of the system.

In an eigenbasis of the operator Q the generator Gpc(`) can also be written as

gi, j(`) = sgn(qi−q j)hi, j(`) , (3.38)

where gi, j(`) and hi, j(`) stand not only for a single matrix element but for the whole
submatrix of the Hamiltonian H(`) that connects the eigenspace belonging to the eigen-
value q j with the eigenspace belonging to the eigenvalue qi. Therefore hi, j(`) is given
by a matrix with the dimension di × d j, where di is the dimension of the eigenspace
belonging to qi. In general, the eigenspace for a given number of (quasi)particles qi has
a large dimension di, which is infinite for infinite systems, but for the purpose of the
present derivation we stick to finite dimensional Hilbert spaces.

Using the form (3.38) the flow equation (3.3) yields the matrix equation

∂hi, j(`)

∂`
= −sgn

(
qi− q j

)(
hi,i(`)hi, j(`)−hi, j(`)h j, j(`)

)
+

∑
k,i, j

(
sgn(qi− qk)+ sgn(q j−qk)

)
hi,k(`)hk, j(`) .

(3.39)

Since the effective model will be block diagonal, all off-diagonal submatrices hi, j(`) with
i , j have to vanish for `→∞. Hence, for large `, equation (3.39) is dominated by the
first term on the right hand side where the off-diagonal matrices only appear linearly.
So, for large `, the asymptotic behavior of (3.39) is given by

∂hi, j(`)

∂`
= −sgn

(
qi−q j

)(
hi,ihi, j(`)−hi, j(`)h j, j

)
+O(h2

i, j(`)) . (3.40)
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Note that to this order ∂hi,i(`)
∂` = 0 ∀i, so that we can neglect the `-dependence of hi,i(`)

and h j, j(`). Without loss of generality we assume in the following that qi > q j. Then
(3.40) yields

∂hi, j(`)

∂`
= −

(
hi,ihi, j(`)−hi, j(`)h j, j

)
+O(h2

i, j(`)) . (3.41)

The matrix hi,i and the matrix h j, j are Hermitian. Thus unitary transformations ui

and u j exist that diagonalize hi,i and h j, j, respectively. We will denote these diagonal
matrices by di = u†i hi,iui and d j = u†j h j, ju j. Multiplying (3.41) from left by u†i and from
right by u†j , one obtains

∂h̃i, j(`)

∂`
= −

(
dih̃i, j(`)− h̃i, j(`)d j

)
+O(h̃2

i, j(`)) , (3.42)

where h̃i, j(`) := u†i hi, j(`)u j. According to (3.42) the matrix elements
(
h̃i, j(`)

)
n,m

satisfy

∂
(
h̃i, j(`)

)
n,m

∂l
= −

∑
k

(di)n,k

(
h̃i, j(`)

)
k,m
+

∑
k

(
h̃i, j(`)

)
n,k

(
d j

)
k,m

= −
(
(di)n,n−

(
d j

)
m,m

)(
h̃i, j(`)

)
n,m

(3.43)

in linear order in the non-diagonal matrices. Since hi, j(`) vanishes for `→∞, h̃i, j(`)
must vanish as well. Therefore, for large ` the inequality(

di
)
n,n
−

(
d j

)
m,m

> 0 (3.44)

must be fulfilled5 for all n,m for which the matrix elements
(
h̃i, j(`)

)
n,m

are nonzero. This
implies that all eigenvalues of di must be larger than the eigenvalues of d j. Thus, the
eigenvalues are sorted in ascending order of the particle number of the corresponding
eigenvectors, as asserted above.

In summary, for the generator Gpc(`) the flow equation (3.3) displays the following
properties:

(a) If the spectrum of H(`) is bounded from below, the flow equation converges
[Mielke(1998), Knetter & Uhrig(2000)]. This is the generic situation for physical
systems. The mathematical derivation requires the Hilbert space of the system
to be finite dimensional.

(b) The effective Hamiltonian Heff will be block-diagonal in the sense that it con-
serves the (quasi)particle number [Knetter & Uhrig(2000)]. Therefore, the effec-

5For ` =∞ (di)n,n−
(
d j

)
m,m
= 0 is also possible.
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0,0

1,1

2,2

3,3

4,4

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

0,0 0,1 0,2

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,2 4,3 4,4

` = 0 finite ` ` =∞

Figure 3.1: Schematical representation of the structure of the Hamiltonian H(`)
during the flow for the generator Gpc(`). A colored block described by the pair
i, j stands for the part Hi

j(`) of the Hamiltonian. Only those blocks are colored

where at least one term of Hi
j(`) has a non-vanishing coefficient. We assume an

initial Hamiltonian that creates or annihilates at most two particles. For finite ` the
generator Gpc(`) conserves the block band-diagonality of the initial Hamiltonian.
For ` =∞ the Hamiltonian conserves the (quasi)particle number.

tive Hamiltonian commutes with the operator Q which counts the number of
(quasi)particles

[Q,Heff] = 0 . (3.45)

Thus it is of the form

Heff = lim
`→∞

N∑
i=0

Hi
i(`) . (3.46)

This property allows us to analyze subspaces with different (quasi)particle num-
bers separately.

(c) If the initial Hamiltonian H(0) has a block band-diagonal structure (i.e. Hi
j(0) = 0

for
∣∣∣i− j

∣∣∣ > N0), this block band-diagonal structure will be conserved during the
flow [Mielke(1998), Knetter & Uhrig(2000)].

(d) The generator Gpc(`) will sort the eigenvalues in ascending order of
the particle number of the corresponding eigenvectors [Mielke(1998),
Heidbrink & Uhrig(2002), Fischer et al.(2010)] if the eigenvectors are linked by a
matrix element of the Hamiltonian.

Items (b) and (c) are schematically illustrated in figure 3.1.
Despite all the favorable properties of the generator Gpc(`), it is not advantageous

in every situation. Particularly, the last point is both a blessing and a curse. On the
one hand, it ensures that the ground state is represented by the vacuum state of the
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effective model. Additionally, it produces the appropriate (quasi)particle picture in
systems where the elementary excitations have an infinite lifetime. On the other hand,
the described ordering of the eigenstates does not reflect the situation in many physical
systems, e.g., systems with unstable (quasi)particles. This is schematically illustrated
in figure 3.2.

ω

Q

Single-particle excitation

Two-particle continuum

Qc

Figure 3.2: States with two excitations lying energetically below the single-particle
dispersion for momentum Q < Qc. If in addition the Hamiltonian contains ma-
trix elements that connect the one-particle space with the two-particle space, the
(quasi)particles will become unstable for Q < Qc (dashed line), cf. chapter 2. The
generator Gpc(`) leads to a dispersion relation consisting of the solid and the dashed-
dotted lines. Instead, the solid line and the dotted line appear to be physically more
reasonable.

The generator Gpc(`) interprets the energetically lowest states above the ground
state as the elementary excitations. In principle, it is possible to define the elemen-
tary excitations of the system in this way. But this definition can be misleading in the
sense that states with very low or zero spectral weight are regarded as the elemen-
tary excitations of the system. Without spectral weight we consider such states to be
meaningless in terms of elementary excitations which serve as building blocks of all
other excitations. Therefore, one usually defines the states with the largest spectral
weight above the ground state as the elementary excitations of the system. More-
over, previous calculations [Reischl et al.(2004), Reischl(2006)] strongly suggest that
the rearrangement of the Hilbert space causes convergence problems in practice, be-
cause all practical calculations comprise approximations. In the perturbative approach
of CUT [Knetter & Uhrig(2000), Knetter et al.(2003b)] (pCUT) these problems become
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perceivable in the extrapolations [Schmidt & Uhrig(2005), Dusuel et al.(2010)], which
can become meaningless and unreliable.

The second property, [Q,Heff] = 0, of the effective Hamiltonian generated by Gpc(`)
makes the description of unstable (quasi)particles difficult. By construction, the gen-
erator Gpc(`) produces an effective Hamiltonian Heff where the elementary excita-
tions exhibit an infinite lifetime. The information of the decay is stored in the uni-
tary transformation and therefore an additional transformation of observables is in-
dispensable to describe the (quasi)particle decay. This approach was first used by
Kehrein and Mielke to describe dissipative quantum systems [Kehrein & Mielke(1997),
Kehrein & Mielke(1998)].

In the following, we present a generator which does not eliminate the decay pro-
cesses. Therefore, it is possible to study the (quasi)particle decay more easily and more
directly. The transformation of the observable is still necessary for quantitative results,
but the essential aspect, i.e., the finite lifetime, is obvious without this transformation.

Generator for the ground state

To tackle the problems of (quasi)particle decay within the framework of CUTs men-
tioned in the previous section, we introduce the adapted generator

Ggs(`) =
N∑

i>0

(
Hi

0(`)−H0
i (`)

)
(3.47)

relying on the form of the Hamiltonian (3.30). We included only those terms in the
generator Ggs(`) which either contain only creation operators or only annihilation
operators. The terms that contain only creation operators are included as they appear
in H(`). The terms that contain only annihilation operators are included with a negative
sign relative to their sign in H(`).

Again, the flow equation (3.3) converges if the spectrum is bounded from below.
This follows directly from introducing a basis {|n〉}, including the vacuum state |0〉, and
examining

∂h0,0(`)
∂`

= −2
∑
n,0

∣∣∣h0,n(`)
∣∣∣2 (3.48)

with hn,m(`) := 〈n|H(`) |m〉. Note that hn,m(`) describes an explicit matrix element in
contrast to the previously appearing quantity Hi

j(`) which stands for a sum over terms in
second quantization. According to equation (3.48) h0,0(`) is a monotonically decreasing
function of `. Therefore, if the spectrum is bounded from below, its derivative must
vanish in the limit `→∞. This also implies that

lim
`→∞

h0,n(`) = lim
`→∞

hn,0(`) = 0 , (3.49)
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Figure 3.3: Schematical representation of the structure of the Hamiltonian H(`)
during the flow for the generator Ggs(`). A colored block described by the pair i, j
stands for the part Hi

j(`) of the Hamiltonian. Only those blocks are colored where

at least one term of Hi
j(`) has a non-vanishing coefficient. We assume an initial

Hamiltonian that creates or annihilates at most two particles. For finite ` the block
band-diagonality of the initial Hamiltonian is not conserved. For ` =∞ only the
H0

0(`) part is separated. The information about decay is still stored in the effective
Hamiltonian Heff in the parts Hi

1(`) and H1
i (`).

i.e., all matrix elements connected to the vacuum state vanish in the limit `→∞. In
contrast to the generator Gpc(`) this generator destroys a block band-diagonal structure
of the initial Hamiltonian H(0). It solely separates the vacuum state from all other
states. Hence the effective Hamiltonian is more difficult to analyze. The evolution of
the Hamiltonian H(`) during the flow using the generator Ggs(`) is depicted in Fig. 3.3.

The generator Ggs(`) (3.47) can be regarded as a generalization of the generator
GDEO(`) (3.27) for Hamiltonians formulated in second quantization. Consequently,
the question arises if it is possible to adapt the variational derivation of the generator
GDEO(`) to the generator Ggs(`) formulated in second quantization. This can be achieved
by modifying the applied scalar product as we show next.

We consider a system formulated in second quantization. Each operator acting on
the Hilbert space can be represented by a sum over terms consisting of a product of
creation and annihilation operators and a prefactor. We call the product of creation
and annihilation operators a monomial. Thus a term consists of a monomial and a
prefactor.

To obtain a unique representation of each monomial we first assume them to be
normal ordered. Second, a certain ordering within all creation (annihilation) operators
is implied. The creation and annihilation operators are denoted by e†ik and eik

, where
ik contains all quantum numbers describing the considered operator, for instance its
position and spin. Note that such an expansion of a general operator is unique since
all possible (ordered) monomials are linearly independent. They can be distinguished
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from one another by appropriate matrix elements.

Next we define the scalar product 〈M1,M2〉 of two monomials M1 and M2 by

〈M1,M2〉 :=

1 for M1 =M2

0 for M1 ,M2

. (3.50)

Since any operator on the total Hilbert space can be expanded in monomials, equation
(3.50) in combination with the usual bilinearity of scalar products defines a valid scalar
product. The scalar product (3.50) defines different monomials as pairwise orthogonal.
So the set of all possible monomials are an orthonormal basis of the super Hilbert
space of operators.

The scalar product (3.50) implies the norm of an operator A as ‖A‖2 := 〈A,A〉. We
again minimize 〈0| [G,H(`)] |0〉, but with the constraint ‖G(`)‖2 = const. Thus we calcu-
late the variation

δ
{
〈0| [G(`),H(`)] |0〉+µ‖G(`)‖2

}
= 0. (3.51)

The operators H(`) and G(`) are expanded in second quantization

H(`) =
∑
i,j

hi
j(`)M

i
j (3.52a)

and

G(`) =
∑
i,j

gi
j(`)M

i
j (3.52b)

with the `-dependent prefactors
{
hi

j(`)
}

and
{

gi
j(`)

}
. Here the bold indices i and j are

sets of indices, e.g. i=
{
i1, . . . , iNi

}
. Upper indices stand for creation operators and lower

indices for annihilation operators. So Mi
j is short hand for the monomial

Mi
j = e†i1 · · ·e

†
iNi

e j1
· · ·e jNj

. (3.53)

The sums
∑

i,j in (3.52a) and (3.52b) run over all possible ordered sets i and j so that a
unique expansion in monomials Mi

j is achieved.

Based on (3.52a) and (3.52b) the right hand side of equation (3.51) to be varied has
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two additive contributions. The first one reads

〈0| [G(`),H(`)] |0〉 =〈0|G(`)H(`)−H(`)G(`) |0〉 (3.54a)

=
∑

i

(
g∅i (`)hi

∅(`)−h∅i (`)gi
∅(`)

)
, (3.54b)

where the empty set ∅ stands for the lack of nontrivial operators, in particular, a prefactor
g∅i (`) belongs to a term which only contains annihilation operators. We exploit the fact
that only creation operators yield non-vanishing results if applied to |0〉. Conversely,
only annihilation operators yield non-vanishing bra states if placed right to 〈0|.

The second contribution reads

µ
(
‖G(`)‖2

)
= µ

(∑
i,j

∣∣∣∣gi
j(`)

∣∣∣∣2 ) . (3.55)

Making the variation with respect to gi
j(`) vanish leads to

gi
j(`) =

1
2µ

(
hi
∅(`)δ∅,j−δi,∅h∅j (`)

)
. (3.56)

This generator solely contains monomials, which are only composed of creation
operators or only of annihilation operators. If we set µ = 1/2 we obtain exactly the
generator Ggs(`) we conjectured in equation (3.47). Note that the above derivation
holds for all kinds of operators in second quantization, including bosons, hard-core
bosons, fermions and hard-core fermions6. This terminates the general derivation of
Ggs(`) and its properties.

In the following, we only consider the case where the generator Ggs(`) separates
only the vacuum state |0〉 from all other states. But we want to mention that it is
also possible to generalize the generator Ggs(`) to the case where the vacuum state
|0〉 is replaced by a statistical operator, which defines a certain subspace, for example
a reference ensemble. In this case the generator Ggs(`) induces an effective model
on the reference subspace, which is separated from all other states. A well-known
example is the derivation of the Heisenberg model or the t− J model from the Hubbard
model. This generalization works very much in the same way as it was done for the
generator Gpc(`) before [Reischl et al.(2004), Reischl(2006), Lorscheid(2007)] and has
already been used successfully to derive t− J models for finite doping [Hamerla(2009),
Hamerla et al.(2010)].

6Fermions of the same kind have a hard-core property anyway. If different kinds of fermions exist but
only one fermion can occupy a certain site the fermions are called hard-core fermions. For example, a
dimerized t− J model can be formulated by a combination of hard-core bosons and hard-core fermions
[Duffe(2010)].
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Other similar generators

Beside the two choices Gpc(`) in (3.31) and Ggs(`) in (3.47) for a generator, there also exist
other similar possibilities. For example, one can also include all terms to the generator
which are connected to the one-particle subspace and define

Ggs,1p(`) =
N∑

i>0

(
Hi

0(`)−H0
i (`)

)
+

N∑
i>1

(
Hi

1(`)−H1
i (`)

)
. (3.57)

Analogous to the cases of the generators Gpc(`) and Ggs(`) convergence of the flow
equation (3.3) can be proven for a bounded spectrum by examining

∂
∂`

(
h0,0(`)+

∑
n

qn=1

hn,n(`)
)
= −2

∑
n,0

∣∣∣h0,n(`)
∣∣∣2−2

∑
r

qr=1

∑
n

qn>1

∣∣∣hr,n(`)
∣∣∣2 . (3.58)

Since this generator also separates the one-particle subspace from all subspaces with
two and more particles (cf. equation (3.58)), it is not an ideal choice to describe
(quasi)particle decay. It suffers from the same caveats as Gpc(`). But this generator
can be the optimal choice if the (quasi)particles have an infinite lifetime, while the
higher particle subspaces are overlapping in energy (cf. figure 3.4). In figure 3.5 the

ω

Q

ω

Q

Single-particle excitation

Two-particle continuum

Three-particle continuum

Figure 3.4: Overlap of the two- and three-particle continua.

structure of the corresponding Hamiltonian H(`) during the flow is schematically illus-
trated. Nevertheless, it can be useful to use a generator which separates the H1

1(`) part
(e.g. Gpc(`) or Ggs,1p(`)) even if the (quasi)particles are unstable. In figure 3.2 a situa-
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Figure 3.5: Schematical representation of the structure of the Hamiltonian H(`)
during the flow for the generator Ggs,1p(`). A colored block described by the pair i, j
stands for the part Hi

j(`) of the Hamiltonian. Only those blocks are colored where

at least one term of Hi
j(`) has a non-vanishing coefficient. We assume an initial

Hamiltonian that creates or annihilates at most two particles. For finite ` the block
band-diagonality of the initial Hamiltonian is not conserved. For ` =∞ the H0

0(`)
part and the H1

1(`) are separated.

tion is depicted where the (quasi)particles are only unstable in a certain region (Q<Qc)
of the Brillouin zone. If in the actual calculation no convergence problems occurs,
separating the H1

1(`) part will typically allow to calculate the dispersion relation quite
easily in the region of stable quasiparticles (Q > Qc). This can be used to test results
obtained by the generator Ggs(`) and a following analysis of the generated effective
model (cf. chapter D).

Generally, one can consider the generator

Ggs,1p,. . . ,Mp(`) =
M∑
j=0

N∑
i> j

(
Hi

j(`)−H j
i (`)

)
. (3.59)

The effective Hamiltonian Heff derived by this generator conserves the (quasi)particle
number within each subspace with M or less (quasi)particles. For an initial Hamiltonian
H(0) at ` = 0 given by

H(0) =
N0∑

i, j=0

Hi
j(0) (3.60)

the generator Ggs,1p,. . . ,Mp(`) is equal to the generator Gpc(`) for M = N0 ≤ N, since the
generator Gpc(`) conserves a block band-diagonal structure.

Likewise, it might be reasonable to investigate generators which eliminate all ele-
ments connecting the one-particle space with the three-particle space (i.e. H3

1(`) and
H1

3(`)) but keeps elements connecting the one-particle space with the two-particle space
(i.e. H2

1(`) and H1
2(`)). If the three-particle space is energetically well separated from
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the one-particle space no reordering should occur. Additionally, the structure of the
effective Hamiltonian Heff will be simpler than in the case of the generator Ggs(`).

To achieve robust convergence of the flow and to generate an effective model
as simple as possible also adaptations within a certain block Hi

j can be useful
[Duffe & Uhrig(2011), Duffe(2010)].

In this thesis we will mainly restrict ourself to an investigation of the three generators
Gpc(`), Ggs(`) and Ggs,1p(`).

3.3 Differences and similarities of various generators

3.3.1 Example: Toy model of one hard-core boson

To illustrate some properties of Wegner’s generator GW(`) and Mielke’s generator
GM(`) and, in particular, to illustrate the differences between them we discuss a two-
level system given by one hard-core boson. In the spin S = 1/2 representation this
two-level system is discussed in reference [Dusuel & Uhrig(2004), Reischl(2006)]. We
consider the Hamiltonian

H(`) := h∅∅(`) 1+h{1}∅ (`)(b†1+ b1)+h{1}{1}(`) b†1b1 (3.61a)

=


h∅∅(`) h{1}∅ (`)

h{1}∅ (`) h∅∅(`)+h{1}{1}(`)

 (3.61b)

=

 e0(`) h0,1(`)

h0,1(`) e1(`)

 (3.61c)

with the hard-core boson b1 represented by

b1 =

0 1
0 0

 (3.62)

and obeying the commutation relation[
b1,b1

†] = 1−2 b†1b1 . (3.63)

For simplicity, we assume all coefficients hi
j(`) to be real. Note, that due to the hermiticity

of the Hamiltonian h∅{1}(`) = h{1}∅ (`) holds so we only have to consider h{1}∅ (`).
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For Wegner’s generator GW(`) the flow equation (3.3) yields

∂h∅∅(`)

∂`
= −2 h{1}{1}(`)

(
h{1}∅ (`)

)2
(3.64a)

∂h{1}{1}(`)

∂`
= 4 h{1}{1}(`)

(
h{1}∅ (`)

)2
(3.64b)

h{1}∅ (`)

∂`
= −

(
h{1}{1}(`)

)2
h{1}∅ (`) . (3.64c)

Since all right sides of the flow equations (3.64) are proportional to h{1}{1}(`) h{1}∅ (`) the

flow stops if h{1}{1}(`) or h{1}∅ (`) are equal zero. Therefore, if h{1}{1}(`) = 0 (e.g. e0(`) = e1(`))

and h{1}∅ (`) , 0 the effective Hamiltonian Heff will not be diagonal, cf. section 3.2.1.
From equation (3.64c) follows that the off-diagonal element h{1}∅ (`) always decreases
monotonically.

For Mielke’s generator GM(`) the flow equation (3.3) reads

∂h∅∅(`)

∂`
= −2

(
h{1}∅ (`)

)2
(3.65a)

∂h{1}{1}(`)

∂`
= 4

(
h{1}∅ (`)

)2
(3.65b)

h{1}∅ (`)

∂`
= −h{1}∅ (`) h{1}{1}(`) . (3.65c)

In that case a fixed point of the flow equation (3.3) is only given for h{1}∅ (`)= 0. Therefore,
diagonality of the effective Hamiltonian H(`) is achieved in any case, although the off-
diagonal coefficient h{1}∅ (`) might increase temporarily during the flow.

To illustrate differences in the ordering of eigenvalues depending on the chosen
generator the evolution of the matrix elements hn,m(`) in the flow for Wegner’s generator
GW(`) and Mielke’s generator GM(`) is depicted in figure 3.6 for two different sets of
initial values.

In panel 3.6a the off-diagonal matrix element h0,1(`) decreases monotonically for
both generators and the eigenvalues lim`→∞ en(`) are sorted in the same way.

This behavior changes for the set of initial values considered in panel 3.6b. In
the case of Mielke’s generator GM(`) the off-diagonal matrix element h0,1(`) increases
at first since the coefficient h{1}{1}(`) = e1(`)− e0(`) in equation (3.65c) is negative at the
beginning of the flow. The matrix element h0,1(`) increases as long as e0(`) > e1(`).
For e0(`) = e1(`) the matrix element h0,1(`) has a maximum and for e0(`) < e1(`) the
matrix element h0,1(`) decreases exponentially. Therefore, the generator GM(`) orders
the eigenvalues lim`→∞ en(`). In contrast, for Wegner’s generator GW(`) no sorting of
eigenvalues lim`→∞ en(`) occurs and the off-diagonal matrix element h0,1(`) decreases
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(a) Evolution of the matrix elements hn,m(`) for initial values e0(0) = 0, h0,1(0) = 1
and e1(0) = 2.
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Wegner: h0,1(`)
e0(`)
e1(`)
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(b) Evolution of the matrix elements hn,m(`) for initial values e0(0) = 0, h0,1(0) = 1
and e1(0) = −2.

Figure 3.6: Evolution of the matrix elements hn,m(`) of the toy model (3.61) in the
flow for Wegner’s generator GW(`) and Mielke’s generator GM(`) for two different
sets of initial values. Panel (b) shows sorting of eigenvalues en(`) for Mielke’s
generator GM(`). In the case of Wegner’s generator GW(`) no sorting occurs.
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Figure 3.7: Evolution of the matrix elements hn,m(`) of the toy model (3.61) in the
flow for Wegner’s generator GW(`) and Mielke’s generator GM(`) for initial values
e0(0) = e1(0) = 0 and h0,1(0) = 1. Wegner’s generator GW(`) stays stationary for all
values `.

monotonically during the whole flow.

This example illustrates that an increasing off-diagonal matrix element indicates
rearrangement of the eigenvalues in the case of Mielke’s generator GM(`). It also
shows that Wegner’s generator GW(`) does not sort the eigenvalues and therefore not
necessarily need to yield a reasonable effective low-energy model.

Figure 3.7 illustrates that for degenerate diagonal matrix elements e0(`) = e1(`) the
flow for Wegner’s generator GW(`) stays stationary for all values `. Thus Wegner’s
generator GW(`) does not diagonalize the Hamiltonian (3.61). In contrast, Mielke’s
generator GM(`) leads to a diagonal Hamiltonian for `→∞.

For the considered two-level system (3.61) no difference exists between the genera-
tors GDEO(`), Gpc(`), Ggs(`) and Mielke’s generator GM(`). To discuss some differences
one has to consider at least two particles. Therefore, in the next section 3.3.2 a toy
model consisting of two hard-core bosons is discussed briefly.

3.3.2 Example: Toy model of two hard-core bosons

We consider the Hamiltonian

H(`) =H0
0(`)+H1

1(`)+H2
2(`)+H1

0(`)+H0
1(`)+H2

1(`)+H1
2(`)+H2

0(`)+H0
2(`) (3.66a)
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with

H0
0(`) = h∅∅(`) 1 (3.66b)

H1
1(`) = h{1}{1}(`) b†1b1+h{2}{2}(`) b†2b2+h{2}{1}(`)

(
b†1b2+ b†2b1

)
(3.66c)

H2
2(`) = h{1,2}{1,2}(`) b†1b1b†2b2 (3.66d)

H1
0(`) = h{1}∅ (`) b†1+h{2}∅ (`) b†2 (3.66e)

H0
1(`) =

(
H1

0(`)
)†

(3.66f)

H2
1(`) = h{1,2}{1} (`) b†1b1b†2+h{1,2}{2} (`) b†1b†2b2 (3.66g)

H1
2(`) =

(
H1

0(`)
)†

(3.66h)

H2
0(`) = h{1,2}∅ (`) b†1b†2 (3.66i)

H0
2(`) =

(
H2

0(`)
)†

(3.66j)

and the two hard-core bosons b1 and b2 represented by

b1 =

0 1
0 0

⊗ 1 0
0 1

 (3.67a)

b2 =

1 0
0 1

⊗ 0 1
0 0

 . (3.67b)

As a 4×4 matrix the Hamiltonian (3.66) is given by

H =



e0 h0,1 h0,2 h0,3

h0,1 e1 h1,2 h1,3

h0,2 h1,2 e2 h2,3

h0,3 h1,3 h2,3 e3


(3.68a)

=



h∅∅ h{1}∅ h{2}∅ h{1,2}∅

h{1}∅ h∅∅+h{1}{1} h{2}{1} h{2}∅ +h{1,2}{1}

h{2}∅ h{2}{1} h∅∅+h{2}{2} h{1}∅ +h{1,2}{2}

h{1,2}∅ h{2}∅ +h{1,2}{1} h{1}∅ +h{1,2}{2} h∅∅+h{1}{1}+h{2}{2}+h{1,2}{1,2}


(3.68b)

where we have suppressed the `-dependence of the coefficients en(`), hn,m(`) and hi
j(`)

to improve legibility.
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Comparing the matrix representation of the Mielke generator

GM =



0 −h{1}∅ −h{2}∅ −h{1,2}∅

h{1}∅ 0 −h{2}{1} −h{2}∅ −h{1,2}{1}

h{2}∅ h{2}{1} 0 −h{1}∅ −h{1,2}{2}

h{1,2}∅ h{2}∅ +h{1,2}{1} h{1}∅ +h{1,2}{2} 0


(3.69)

and the matrix representation of the generalized generator for systems formulated in
second quantization

Gpc =



0 −h{1}∅ −h{2}∅ −h{1,2}∅

h{1}∅ 0 0 −h{2}∅ −h{1,2}{1}

h{2}∅ 0 0 −h{1}∅ −h{1,2}{2}

h{1,2}∅ h{2}∅ +h{1,2}{1} h{1}∅ +h{1,2}{2} 0


(3.70)

clarifies their differences. In the case of Gpc(`) all matrix elements within the one-particle
space are zero thus no h{2}{1}(`) occurs. Likewise the matrix representation of

GDEO =



0 −h{1}∅ −h{2}∅ −h{1,2}∅

h{1}∅ 0 0 0

h{2}∅ 0 0 0

h{1,2}∅ 0 0 0


(3.71)
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differs from the matrix representation of

Ggs =



0 −h{1}∅ −h{2}∅ −h{1,2}∅

h{1}∅ 0 0 −h{2}∅

h{2}∅ 0 0 −h{1}∅

h{1,2}∅ h{2}∅ h{1}∅ 0


. (3.72)

The flow equations generated by (3.69), (3.70), (3.71) and (3.72) are given in appendix
B. All four generators (3.69), (3.70), (3.71) and (3.72) decouple the ground state. Thus
for the limit `→∞ these generators reveal the same h∅∅(`) = e0(`). Interestingly, e0(`) is
the same for all four generators for all values of ` as shown in the left panel of figure
3.8a and in the left panel of figure 3.8b. Thus, all four generators transform the vacuum
state |0(`)〉 exactly in the same way. It is possible to proof this statement rigorously, see
section 3.3.4 and reference [Fischer et al.(2010)].

To quantify the speed of convergence of the flow equation for different generators,
we introduce the residual off-diagonality (ROD) [Reischl et al.(2004), Reischl(2006)].
The ROD is defined as the square root of the sum of the moduli squared of all coefficients
that contribute to the considered generator. To be more precise, in the case of generators
given in matrix representation (e.g. GM(`) and GDEO(`)) the ROD is given by

ROD(`) =
( ∑

n,m
hn,m(`) ∈ G(`)

∣∣∣hn,m(`)
∣∣∣2 )1/2

(3.73)

and in the case of generators formulated in second quantization (e.g. Gpc(`) and Ggs(`))
the ROD is defined as7

ROD(`) =
( ∑

i,j

hi
j(`) ∈ G(`)

∣∣∣∣hi
j(`)

∣∣∣∣2 )1/2

. (3.74)

The right panels of figure 3.8a and figure 3.8b show the evolution of the ROD for
the toy model (3.66). For the generators GDEO(`) and Ggs(`) the evolution of the ROD is
exactly the same for all values `. This is a result of the fact that for these two generators

7In the thermodynamic limit we consider only the representatives of the translation group.
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(a) Evolution of the ground state energy e0(`)= h∅∅(`) and the ROD for starting values

h∅∅(0) = 0, h{1}{1}(0) = h{2}{2}(0) = h{2}{1}(0) = h{1,2}{1,2}(0) = 1, h{1}∅ (0) = h{2}∅ (0) = 2 and h{1,2}{1} (0) =

h{1,2}{2} (0) = h{1,2}∅ (0) = 1/2.
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(b) Evolution of the ground state energy e0(`)= h∅∅(`) and the ROD for starting values

h∅∅(0) = 0, h{1}{1}(0) = h{2}{2}(0) = h{2}{1}(0) = h{1,2}{1,2}(0) = −1, h{1}∅ (0) = h{2}∅ (0) = 2 and h{1,2}{1} (0) =

h{1,2}{2} (0) = h{1,2}∅ (0) = 1/2.

Figure 3.8: Evolution of the ground state energy e0(`) = h∅∅(`) and the ROD of the
toy model (3.66) for two different sets of initial values. The four generators GM(`),
GDEO(`), Gpc(`) and Ggs(`) are considered. The ground state energy e0(`) is the same
for all four generators for all values of `.
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Figure 3.9: Evolution of ∆e0(`) := |e0(`)− eexact| during the flow for an antiferromag-
netic spin S = 1/2 Heisenberg chain with ten spins and exchange couplings J⊥ = 1
and x = 0, y = 1 (cf. equation (4.1)). All calculations start from the dimerized phase.
The left panel shows results for periodic boundary conditions; right panel shows
results for open boundary conditions.

the ROD is given by

ROD(`) = −
∂h∅∅(`)

∂`


1/2

(3.75)

(cf. appendix B equation (B.3a) and equation (B.4a)). Since h∅∅(`) is identical for both
generators the ROD is identical, too.

For both sets of initial values the generator GM(`) converges most slowly which is a
consequence of the total diagonalization induced by this generator.

3.3.3 Example: Finite antiferromagnetic spin S = 1/2 Heisenberg

chain

In the former section 3.3.2 it was exemplarily shown for a very simple toy model that
different generators transform the vacuum state |0(`)〉 in the same way. Before we prove
this statement generally we numerically verify this property on a more complex model.

In figure 3.9 we show numerical data verifying the equivalent transformation of
the vacuum state |0(`)〉 by different generators. The `-dependence of the difference
∆e0(`) := |e0(`)− eexact| between the vacuum expectation value e0(`) = 〈0|H(`) |0〉 and the
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exact ground state energy eexact is plotted for the generators GDEO(`), Gpc(`), Ggs(`) and
Ggs,1p(`). The system under study is an antiferromagnetic spin S= 1/2 Heisenberg chain
with ten spins and exchange couplings J⊥ = 1 and x = 0, y = 1 (cf. equation (4.1)). All
calculations start from a bound operator formulation where the vacuum state is given
by a product state of singlets (cf. equations (4.4) and (4.6) and figure 4.1 in section 4
for x = 0 and y = 1). We considered periodic and open boundary conditions. Figure
3.9 shows clearly that all considered generators transform the vacuum state |0(`)〉 in
the same way. The features beyond ` = 12 stem from numerical inaccuracies occurring
at ∆e0(`) ≈ 10−10. These inaccuracies are shown here to illustrate where and how
numerical errors make themselves felt.

In the following section 3.3.4 we prove that the considered generators transform the
vacuum state |0(`)〉 in the same way. Additionally, we prove that the generator Gpc(`)
and the Ggs,1p(`) transform all one-particle states identically.

3.3.4 Identical transformation of subspaces

Ground state

In section 3.3.2 and section 3.3.3 we have argued that all generators GM(`), GDEO(`),
Gpc(`), Ggs(`) and Ggs,1p(`)) transform the vacuum state |0(`)〉 in the same way if the
flow equation is solved exactly. Here we prove this statement.

Previously, we defined the `-dependent Hamiltonian by H(`) :=U†(`)HU(`). Alter-
natively, we can keep the operators constant but make the states `-dependent. This
is in complete analogy to passing from the Heisenberg picture to the Schrödinger
picture. Hence, the `-dependence of the vacuum state is given by |0(`)〉 = U(`) |0〉 and
the generator is given by G(`) = −U†(`)∂U(`)

∂` . Thus, for the derivative of |0(`)〉 it follows

∂ |0(`)〉
∂`

= ∂lU(`) |0〉 (3.76a)

=U(`)U†(`) (∂lU(`))︸           ︷︷           ︸
=−G(`)

|0〉 (3.76b)

= −U(`)G(`) |0〉 . (3.76c)

Introducing a basis {|n〉} yields

∂ |0(`)〉
∂`

= −
∑

n
U(`) |n〉〈n|G(`) |0〉︸      ︷︷      ︸

=gn,0(`)

.
(3.77)

The key observation is that for all considered generators the definition of the matrix
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element gn,0(`) is the same, namely

gn,0(`) =

hn,0(`) for n > 0

0 for n = 0
. (3.78)

Applying (3.78)) to (3.77) yields

∂ |0(`)〉
∂`

= −
∑
n,0

U(`) |n〉〈n|H(`) |0〉 (3.79a)

= −
∑

n
U(`) |n〉〈n|H(`) |0〉

+U(`) |0〉〈0|H(`) |0〉 . (3.79b)

Shifting the `-dependency to the vacuum state and using the equality U(`)U†(`) ≡ 1
provides us with

∂ |0(`)〉
∂`

= −H |0(`)〉+ |0(`)〉〈0(`)|H |0(`)〉 (3.80a)

=
[
P0(`),H

]
|0(`)〉 (3.80b)

with the `-dependent projector P0(`) = |0(`)〉〈0(`)|. According to (3.80a) the derivative
of |0(`)〉 only depends on |0(`)〉 itself and the initial Hamiltonian H. Therefore, the con-
sidered generators all transform the vacuum state |0(`)〉 in the same way. The essential
point of the proof is that for all considered generators the matrix elements gn,0(`) are
defined identically by (3.78). We point out, that the statement, that all generators treat
|0〉 alike, does no longer hold if approximations (truncations) are introduced.

One-particle space

The proof presented in the previous subsection can be generalized. Since the action
of the generator Gpc(`) and the generator Ggs,1p(`) is also the same on the one-particle
subspace, one can prove that they also transform all one-particle states in the same way.
In the following we characterize the states by their number of (quasi)particles, so it is
useful to use an eigenbasis {|n〉} of the (quasi)particle number operator Q. The number
of (quasi)particles of a state |n〉 is denoted by qn. Consider the derivative of an arbitrary
state |n(`)〉 with at most one particle (qn ≤ 1)

∂
∂`
|n(`)〉 = ∂lU(`) |n〉 (3.81a)

= −U(`)G(`) |n〉 (3.81b)

= −
∑

m
U(`) |m〉〈m|G(`) |n〉︸       ︷︷       ︸

=gm,n(`)

. (3.81c)
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For both generators the matrix elements gm,n(`) with qn ≤ 1 are given by

gm,n(`) = sgn
(
qm−qn

)
hm,n(`) (3.82)

according to (3.31) and (3.57). Hence we have

∂
∂`
|n(`)〉 = −

∑
m

qm>1

U(`) |m〉〈m|H(`) |n〉

−
∑

m
qm≤1

sgn
(
qm− qn

)
U(`) |m〉〈m|H(`) |n〉

(3.83)

To the first part on the right hand side of (3.83) we add all missing contributions with
qm ≤ 1. Hence we get

∂
∂`
|n(`)〉 = −U(`)H(`) |n〉

+
∑

m
qm≤1

U(`) |m〉〈m|H(`) |n〉

−
∑

m
qm≤1

sgn
(
qm−qn

)
U(`) |m〉〈m|H(`) |n〉.

(3.84)

Just as in the previous subsection we shift the `-dependence from the Hamiltonian H(`)
to the states

∂
∂`
|n(`)〉 = −H |n(`)〉

+
∑

m
qm≤1

|m(`)〉〈m(`)|H |n(`)〉

−
∑

m
qm≤1

sgn
(
qm− qn

) |m(`)〉〈m(`)|H |n(`)〉.

(3.85)

It follows that the transformation of the subspace {|n〉} with qn ≤ 1 is independent
from all other states {|n〉} with qn > 1. The transformation only depends on the initial
Hamiltonian H. Therefore, the generator Gpc(`) and the generator Ggs,1p(`) transform
the one-particle subspace in the same way. Note that this proof is not restricted to the
case qn ≤ 1 and can easily be adapted to the case qn ≤M ∈N. The choice (3.57) or (3.82)
has to be adapted accordingly, i.e., we have pass from Ggs,1p(`) to Ggs,1p,. . . ,Mp(`) with

Ggs,1p,. . . ,Mp(`) =
M∑
j=0

N∑
i> j

(
Hi

j(`)−H j
i (`)

)
. (3.86)
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3.4 Self-similar continuous unitary transformations

So far the concept of CUTs was discussed in general. This section will focus on the
self-similar realization of CUTs denoted as sCUT. Following reference [Reischl(2006)]
a truncation scheme in real-space is introduced to make the CUT approach amenable
for gapped infinitely large systems.

For the sCUT the Hamiltonian H(`) is represented by a sum

H(`) =
∑

i

ci(`)Ai (3.87)

of linearly independent operators Ai and their `-dependent prefactors ci(`). During the
flow only the prefactors ci(`) change while the operators Ai serve as a fixed basis for
H(`), which motivates the naming self-similar. Already in the first work about CUTs
Wegner used such a self-similar approach [Wegner(1994)]. In principle, also all CUTs
performed in matrix representation fit the definition of sCUTs given above. In this
case the Ai are simply matrices where only one element is equal to one and all other
are zero. But in the following the operators Ai typically are monomials of operators in
second quantization, cf. equation (3.53).

The commutator [G(`),H(`)] appearing on the right hand side of the flow equation
(3.3) might also generate operators Ai, which do not appear in the initial Hamiltonian
H(0), i.e., whose prefactors ci(`) are zero for ` = 0. These new operators Ai must be
added to the Hamiltonian H(`) and must also be considered in the generator G(`).
Then the commutator [G(`),H(`)] generates even more operators, which have to be
taken into account, too. For a finite dimensional Hilbert space this procedure comes to
an end because the maximal number of linearly independent operators Ai is finite. Such
unrestricted calculations were performed for the toy models in section 3.3.1 and section
3.3.2 and to compute the results for the ground state energy of the finite Heisenberg
chain presented in section 3.3.3.

For large systems such an unrestricted approach is not possible due to the prolif-
erating number of operators Ai. Especially in the thermodynamic limit or in bosonic
systems one has to deal with an infinite number of operators Ai. Hence it is not possible
to obtain a closed set of differential equations. Thus in practice one has to decide which
operators Ai are important to describe the underlying physics properly and which can
be neglected.

One established truncation scheme is to use a perturbative approach (pCUT) which
is based on the generator Gpc(`) [Knetter & Uhrig(2000), Knetter et al.(2003b)]. But since
we intend to describe the decay of (quasi)particles so that variations of the generator
Gpc(`) have to be used (cf. section 3.2.3), we choose the self-similar approach (sCUT)
where modifications to the generator Gpc(`) are easy to realize. But there is no fun-
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damental reason why an adapted generator cannot be implemented perturbatively as
well [Krull(2011)].

In actual sCUT calculations the differential equations for the prefactors ci(`) deter-
mined by the flow equation (3.3) are calculated by performing the following steps:

(a) If necessary, define a truncation scheme (cf. section 3.4.3) that restricts the maximal
number of operators Ai.

(b) Set up a Hamiltonian H(`) with operators Ai and prefactors ci(`) given by the
initial Hamiltonian H(0).

(c) Define a generator G(`) by using the operators Ai and by choosing its prefactors
cG

i (`). The only restriction on the prefactors cG
i (`) is that the resulting generator

G(`) is antihermitian but typically the prefactors cG
i (`) of the generator G(`) will

be determined by the prefactors ci(`) of the Hamiltonian H(`) (cf. section 3.2).

(d) Calculate the commutator [G(`),H(`)] and compare the prefactors of the operators
on the left hand and on the right hand side of the flow equation (3.3). This yields
differential equations for the prefactors ci(`) of the form

∂ci(`)
∂`
=

∑
j,k

ai jk cG
j (`)ck(`) . (3.88)

The factors ai jk are determined by the commutator
[
A j,Ak

]
. If new operators

emerge, the truncation scheme decides whether these operators are considered
or not.

(e) Repeat step (d) until no new operators emerge which fit the truncation scheme.

(f) Solve the differential equations (3.88).

Formally, the effective Hamiltonian Heff is given by

Heff =
∑

i

ci(∞)Ai . (3.89)

Since in actual calculations an analytic integration of the system of coupled differential
equations (3.88) is usually not feasible, the equations have to be solved numerically.
The initial values ci(0) are determined by H(0). New operators Ai emerging in step (d)
start with an initial prefactor equal to zero.

The sCUT approach works for observables O(`) in the same way as for the Hamil-
tonian H(`), but usually the truncation scheme for the observables O(`) differs from the
truncation scheme for the Hamiltonian H(`), cf. section 3.4.3. The form of the generator
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G(`) is predicted by the Hamiltonian H(`), cf. section 3.2. Thus it is convenient to trans-
form the Hamiltonian H(`) and the observable O(`) simultaneously instead of saving
the Hamiltonian H(`) for each ` to transform the observable O(`).

3.4.1 Real space representation by local operators

Many problems in solid state physics are represented by localized states (e.g. Wannier
states) and local Hamiltonians in second quantization [Ashcroft & Mermin(1976)] on a
lattice. By local Hamiltonians we refer to Hamiltonians whose hopping and interaction
terms have a finite range in real space. An example is a tight-binding Hamiltonian for
non-interacting fermions that contains only hopping terms to a few nearest neighbors.
This example also illustrates that a local Hamiltonian does not necessarily describe
local physics. The eigenstates of such a tight-binding Hamiltonian are momentum
eigenstates which are extended over the whole lattice.

In second quantization the Hamiltonian H(`) is given by

H(`) =
∑
i,j

hi
j(`)M

i
j (3.90)

with the normal ordered monomials

Mi
j = e†i1 · · ·e

†
iNi

e j1
· · ·e jNj

, (3.91)

see reference [Knetter et al.(2003b)].

Let us now assume that the local Hilbert space on a lattice site r consists of four
states. In chapters 4, 5 and 6 spin systems are mapped to a triplon representation (cf. ap-
pendix C) which leads to such local Hilbert spaces with four states. The generalization
to any finite number of states is obvious. The four states on site r are labeled by |r,n〉
with n ∈ {0,1,2,3}. We define the states |r,0〉 := (1,0,0,0)T

r as local reference states. The
global reference state |0〉 is given by the product state

|0〉 =
⊗

r
|r,0〉 . (3.92)

To ensure that the CUT can transfer the global reference state |0〉 into the ground state
for `→∞ it is important that |0〉 is connected to the ground state by the Hamiltonian,
e.g., |0〉 has the same quantum numbers as the ground state. The local excitations |r,α〉
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with the flavor α ∈ {1,2,3} can be created by the creation operators e†α,r as follows

|r,1〉 = e†1,r |r,0〉 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0


r


1
0
0
0


r

=


0
1
0
0


r

(3.93a)

|r,2〉 = e†2,r |r,0〉 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


r


1
0
0
0


r

=


0
0
1
0


r

(3.93b)

|r,3〉 = e†1,r |r,0〉 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


r


1
0
0
0


r

=


0
0
0
1


r

. (3.93c)

The annihilation operator eα,r are given by the hermitian conjugate of the matrices
appearing in (3.93). The operators e†α,r create so called hard-core particles, where the
name hard-core particle implies that only one particle can exist on a given site r and
has its origin in the description of nucleon-nucleon interaction where the force between
them is singular [Fetter & Walecka(1971)]. Therefore, applying a creation operator on
an occupied state yields zero, reflected by e†α,re†β,r = 0. The set

{
14 ,e†α,r ,eα,r ,e

†
α,reβ,r

∣∣∣ α,β = 1,2,3
}

(3.94)

builds a basis for the operators of the local Hilbert space and hence any local operator
Ar can be decomposed into a linear combination of these basis operators. All operators
except the identity operator 14 are normal ordered in the sense of

〈0|Ar |0〉 = 0 . (3.95)

Note that one uses the identity operator in the set (3.94) and not the operator

14−
3∑
α=1

e†α,reα,r =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


r

. (3.96)

If one would use this operator instead of the identity operator, the action of a local
operator on a state would depend on the form of the state on all other site, which
would not correspond to the concept of second quantization. To illustrate this point let
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us consider a system with N sites and a local operator Ar acting on site r. Formally, the
operator Ar has the matrix representation

14,1⊗ . . .⊗14,r−1⊗Ar⊗14,r+1⊗ . . .⊗14,N , (3.97)

where one usually omits all identity matrices 14. But exactly these identity matrices
ensure that the action of the local operator Ar does not depend on states on any other
site r , r′. If one used the operator (3.96) instead of the identity 14 in equation (3.97),
the operator Ar could only yield a non vanishing result if it is applied to a state built up
by the local reference states |r,0〉 for all r , 0. This illustrates why one uses the identity
matrix 14 instead of the operator (3.96) to build up the local basis (3.94).

The commutation relations for the hard-core particle operators in (3.93) are

[
eα,r,e†β,s

]
= δr,s

(
δα,β

(
14−

3∑
γ=1

e†γ,reγ,r

)
− e†β,reα,r

)
(3.98)

where we assumed that operators on different sites fulfill bosonic commutation rela-
tions. The additional contributions appearing in the commutator for hard-core bosons
(3.98) in comparison to the commutation relations for normal bosons complicate ana-
lytical calculations with hard-core particles. For example, a usual Bogoliubov transfor-
mation will fail to diagonalize a bilinear Hamiltonian. Also, even for a non-interacting
system of hard-core bosons an exact analytic expression for the partition function is not
available [Troyer et al.(1994)] so that calculations of thermodynamic quantities are also
more involved.

In this thesis only the case of a unique reference state |0〉 as described above is
considered so we restrict all discussions to this case. Nevertheless, we want to mention
that the sCUT method can also be applied for an ensemble of reference states. For
a detailed discussion see references [Reischl et al.(2004), Reischl(2006), Hamerla(2009),
Hamerla et al.(2010)].

3.4.2 Translation invariant systems and other symmetries

A favorable property of the sCUT approach is that the translational symmetry of a
lattice can be implemented easily, which makes calculations in the thermodynamic
limit possible. Terms in the Hamiltonian that are related by the translation symmetry
have the same coefficient so only one representative term needs to be considered. Let
T be the translation group. Then the Hamiltonian H(`) can be rewritten as

H(`) =
∑

i

ci(`)Ai =
∑

T

∑
j

c̃ j(`)Ã j (3.99)
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where Ã j are the representatives of the translation group T and c̃ j(`) their coefficients8

. Using these representatives the flow equation (3.3) is given by

∂
∂`

∑
T

∑
i

c̃i(`)Ãi =

∑
T

∑
j

c̃G
j (`)Ã j,

∑
T

∑
k

c̃k(`)Ãk


=

∑
T

∑
j

c̃G
j (`)Ã j,

∑
T

∑
k

c̃k(`)Ãk

 .
(3.100)

Since in equation (3.100) the sum over the translation group T appears on the left hand
and on the right hand side of the equal sign one can drop this sum and derive the flow
equations only for the representatives.

The second sum over the translation group T on the right hand site of equation
(3.100) can not be canceled. Nevertheless, if one assumes that the operators A j have only
a finite range and that the local Hilbert space has a finite dimension, the commutator[∑

j
c̃G

j (`)Ã j,
∑
T

∑
k

c̃k(`)Ãk

]
only produces a finite number of non-vanishing terms.

In the same way as the translation symmetry also other possible symmetries can
be taken into account. Typical examples are lattice symmetries reflected by the corre-
sponding space group, spin rotation symmetries or a particle-hole symmetry. Likewise,
relations between coefficients caused by hermiticity of the Hamiltonian H(`) and the
antihermiticity of the generator G(`) can be used to reduce the computational effort.

Note that the coefficients c̃i(`) of the representatives Ãi might be different from the
corresponding coefficients ci(`) of Ai. This is because some terms can be invariant
under a certain symmetry operation so that they occur several times in the sum over
the symmetry group which must be considered in the coefficient c̃i(`). As an example
let us assume that the hopping terms h{i}{ j}(`) e†i e j and h{ j}{i} (`) e†j ei are related by a reflection

symmetry so that h{i}{ j}(`) = h{ j}{i} (`) holds. As representatives one can choose all terms

h̃{i}{ j}(`) e†i e j with i ≤ j. For i < j indeed h̃{i}{ j}(`) = h{i}{ j}(`) = h{ j}{i} (`) holds. But for i = j the
coefficient of the representative is only one half of the corresponding coefficient in the
unsymmetrized Hamiltonian, e.g. 2h̃{i}{ j}(`) = h{i}{ j}(`), since interchanging i and j leaves

e†i e j invariant for i = j. In addition some symmetry operations can also lead to a change
of the sign of the coefficient.

For translational invariant systems formulated in real space by local operators we

8For the translation group ci(`) = c̃i(`) holds. This does not need to be the case for other symmetry
groups.
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use as a notation for terms of the Hamiltonian

α0,α1,...,αNc

β0,β1,...,βNa

[
cH|Nc

Na

]d1,...,dNc

l0,l1,...,lNa
e†α0,r e†α1,r+d1

· · ·e†αNc ,r+d1+...+dNc
eβ0,r+l0

eβ1,r+l0+l1
· · ·eβNa ,r+l0+l1+...+lNa

(3.101)

where we split the local degrees of freedom, flavors, α0, . . . ,αNc ,β0, . . . ,βNa from the
relative lattice distances d1, . . . ,dNc , l0, . . . , lNa . Note, that due to translation symmetry
no d0 occurs. If a term purely consists of annihilation operators, the parameter l0 is
superfluous and therefore does not occur in the coefficient, e.g.,

β0,β1,...,βNa

[
cH|Nc

Na

]
l1,l2,...,lNa

eβ0,r
eβ1,r+l1

· · ·eβNa ,r+l1+...+lNa
. (3.102)

For hard-core particles d1, . . . ,dNc , l1, . . . , lNa > 0 holds. The only distance that can become
zero and negative is l0. We also have neglected the `-dependence of the coefficient to
enhance legibility. For terms describing a local observable O(`,r) connected to the site
r we use the notation

α0,α1,...,αNc

β0,β1,...,βNa

[
cO|Nc

Na

]d0,d1,...,dNc

l0,l1,...,lNa
e†α0,r+d0

e†α1,r+d0+d1
· · ·e†αNc ,r+d0+d1+...+dNc

×

× eβ0,r+l0
eβ1,r+l0+l1

· · ·eβNa ,r+l0+l1+...+lNa

(3.103)

where the distance d0 ∈ Z may occur.

3.4.3 Truncation scheme

A crucial point of the sCUT approach is the choice of an appropriate truncation
scheme, ideally justified by the physics under study. Formally, it is possible to es-
timate effects of the truncation via an inhomogeneous flow equation [Drescher(2009),
Drescher et al.(2011)]. But unfortunately, especially in infinite systems, the errors typi-
cally are highly overestimated which makes an optimization of the truncation scheme
according to these estimates nearly impossible in actual calculations.

Truncation scheme for the Hamiltonian

In the following we will describe a truncation scheme for translational invariant Hamil-
tonians in second quantization formulated by local operators, where the truncation
scheme is based on the locality of the terms. If we consider gapped systems the cor-
relation length ξ and the gap energy ∆ satisfy the relation ∆ ∝ ξ−z where z denotes
the dynamic critical exponent [Sachdev(1999)]. Therefore, the correlations are local
which implies that long-range interactions are less important. This property motivates
a truncation scheme which disregards long-range interactions
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14,r−2 14,r−1 14,r+2 14,r+3 14,r+5 14,r+6e†α,r e†β,r+1 eγ,r+4⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

D = 4

Figure 3.10: Schematical representation the monomial e†α,re†β,r+1eγ,r+4 with extension
D = 4. Filled circles indicate non-trivial operators.

Since this thesis only deals with sCUTs in one dimension we only
present a truncation scheme for one-dimensional systems. Nevertheless,
the presented approach can be easily generalized to higher dimensions
[Reischl et al.(2004), Reischl(2006), Hamerla(2009), Hamerla et al.(2010)].

We first define a measure for the locality of a term, which we call the extension
D. The extension D of a term is defined by the distance between the rightmost to the
leftmost site on which the monomial acts in a nontrivial way. For example, the term
e†α,re†β,r+1eγ,r+4 has an extension D = 4, cf. figure 3.10. Second, we define the truncation
scheme by choosing a maximal extension Dmax discarding all terms with a larger
extension (D >Dmax).

It turns out that it is appropriate to define not only one maximal extension for all
terms but to keep terms with a different number of annihilation or creation operators up
to different maximal extensions [Reischl(2006)]. Accordingly, terms with n annihilation
or creation operators in total are required to have an extension Dn or less to be kept in
the flow equation. As a second truncation criterion we admit only terms which create
or annihilate not more than Nt (quasi)particles. Thus the total truncation scheme is
defined by the value of Nt and the set of extensions D =

(
D2, . . . ,D2Nt

)
.

Note, that in translational invariant systems with a finite-dimensional local Hilbert
space D1 is superfluous. In the case of a four-dimensional local Hilbert space as
considered before only six different monomials exist, which act on one site only, in
particular, e†1, e†2, e†3, e1, e2 and e3. In figure 3.11 a truncation scheme with Nt = 3 is
illustrated.

Additional, certain symmetries might cause that some blocks Hi
j(`) of the full Hamil-

tonian H(`) never occur during the flow. As an example, for the symmetric spin S = 1/2

Heisenberg ladder (y = 0, cf. section 4.1) no terms occur that consist of an odd number
of operators. Therefore, we do not need to define maximum extensions D3,D5, . . .. In
the notation of the set of extensions D we replace such superfluous extensions by a dot,
e.g. D = (8, .,6, .,4).

It is worthwhile to emphasize that this truncation scheme does not turn our ap-
proach to a calculation on a finite cluster. It is a self-similar calculation strictly in the
thermodynamic limit. We only truncate the range of the interactions in real space, but
not the Hilbert space.
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D2

D3 D4 D5

D4 D5 D6

D2

D3

D2

D3

D3

D4

Nt = 3

Figure 3.11: Schematical representation of a truncation scheme with Nt = 3. All
contributions Hi

j(`) (cf. figure 3.1) with i, j >Nt = 3 (grey blocks) are neglected. In a

part Hi
j(`) only those terms are considered which extension D is smaller or equal to

the maximal extension Di+ j, i.e. D ≤Di+ j.

Truncation scheme for observables

Since a local observable is connected to a certain site one has to define a separate
truncation scheme for observables [Reischl(2006)]. Let us consider a local observable
O(`,r) located at site r for ` = 0. During the flow the observable delocalizes so that it
also acts on sites different from r. Again we define a truncation scheme relying on the
locality of the problem.

Firstly, we define an extension DO for terms occurring in the observable O(`,r). In
contrast for terms appearing in the Hamiltonian, where only the distance between the
rightmost to the leftmost site have an effect on the extension, the extension DO of a
observable O(`,r) is defined as the sum of the distances of all its local operators to the
site r.

Figure 3.12 illustrates the definition of the observable extension DO. For ` = 0 the
observable O(`,r) only acts on site r as indicated by the filled circle in panel (a). During
the flow also terms with a structure depicted in panel (b), (c) and (d) might occur. Panel
(b) shows a term of the observable O(`,r) only acting on site r−2. Thus the observable
extension of this term is DO = |(r−2)− r| = 2. The term depicted in panel (c) acts on
site r− 2 and on site r− 1. Its observable extension is DO = |(r−2)− r|+ |(r−1)− r| = 3.
Finally, the term in panel (d) acts on four sites whereby its action on site r does not
contribute to it observable extension DO = |(r−2)− r|+ |(r−1)− r|+ |(r+2)− r| = 5.

Note, that the terms appearing in panel (b), (c) and (d) are generated by the com-
mutator on the right hand side of equation (3.9). In this thesis the generator G(`) is
always built by terms occurring in the Hamiltonian H(`). Thus, if the Hamiltonian
H(`) is sufficiently well described by terms with a finite extension, also the observ-
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O(0,r)

r−4 r−3 r−2 r−1 r r+1 r+2 r+3 r+4

(a)

(b)

(c)

(d)

Figure 3.12: Illustration of the definition of the observable extension DO, cf. text.
Panel (a) depicts the local observable O(0,r) for ` = 0. Panel (b), (c) and (d) depict
terms occurring during the flow for ` > 0. Open circles indicate sites where the term
under study acts as the identity. Filled circles indicate sites on which a non-trivial
operator acts. (b) The term acts only at site r−2 and has the observable extension
DO = 2. (c) This term additionally acts on site r−1 and therefore has an observable
extension of DO = 3. (d) A term acting on four sites with observable extension
DO = 5. Terms beyond a certain maximal observable extension are omitted.

able O(`,r) should be describable by terms close to the site r. Therefore, as for the
Hamiltonian we define a maximum value DO

max for the observable extension DO and
discard all terms with a larger observable extension (DO >DO

max). We also use different
maximal observable extensions DO

n depending on the total number n of annihilation
and creation operators occurring in the term and admit only terms which create or
annihilate not more than NO

t (quasi)particles. Therefore, the total truncation scheme
for the observables is defined by the value NO

t and the set of observable extensions
DO = (DO

1 , . . . ,D
O
2NO

t
). In contrast to the truncation scheme for the Hamiltonian also

terms consisting of only one annihilation or creation operator must be truncated in the
truncation scheme for the observable O(`,r). For that reason DO

1 appears in DO, which
is a consequence of the missing translational invariance of the local observable O(`,r).

3.5 Implementation

To perform a sCUT two basic steps are necessary. The calculation of the coupled system
of coupled differential equations for the coefficients given by the flow equation (3.3) and
their integration. Since the construction of the differential equations is independent of
their initial values it is useful to have a separate program for each of these two steps.
Once the system of differential equations is constructed the same system can be used
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to describe different interaction parameters of the model under study (cf. chapter 4,
chapter 5 and chapter 6).

In the following section 3.5.1 the program constructing the differential equation
system is briefly described. In section 3.5.2 comments about the numerical integration
of the differential equations are given.

3.5.1 Construction of the differential equations

The program to set up the differential equations induced by the flow equation (3.3) is
based on the implementations by Reischl [Reischl(2006)] and Duffe [Duffe(2010)]. In
the given references also more details of the implementation are given. Here only the
main aspects are briefly discussed.

To optimize performance and flexibility the programming language C++ is used
instead of a computer algebra program like Mathematica or Maple. Nevertheless, we
use algebraical fractions to describe the factors ai jk in equation (3.88) to avoid rounding
errors during the setting up.

A local operator is implemented as an object of a class op and characterized by
three elements op_state_0, op_state_1 and i, cf. figure 3.13. The element i represents

class op
{
private:
short op_state_0;
short op_state_1;
short i;

. . .

Figure 3.13: Representation of a local operator in the programming language C++.

the lattice site r of the local operator. Since within this thesis only one-dimensional
systems are considered the lattice site can be described by just one integer. To describe
higher-dimensional lattices one has to use a vector. The integer op_state_0 determines
the flavor α of the creation operator on site r while op_state_1 determines the flavor
of the annihilation operator on site r, cf. equation (3.93).

The main elements describing a term of the Hamiltonian H or an observable O are
prefactor, ops and imaginary, see figure 3.14. Each term consists of a vector ops of
local operators op and an algebraical fraction as prefactor. Additionally, the element
imaginary determines if the prefactor is imaginary or not. It is convenient to include
also other elements in the class term such as a hashing value to speed up comparisons
of terms or values describing symmetries of a term [Duffe(2010)].
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class term
{
private:
fraction prefactor;
vector<op> ops;
bool imaginary;

. . .

Figure 3.14: Representation of a term of the Hamiltonian H or an observable O in
the programming language C++.

In figure 3.15 the structure of the program setting up the differential equations is
depicted. The program follows directly the algorithm of sCUT described in section 3.4.

initialize

while (new terms occur)

for terms in G (1st for loop)

for terms in H (2nd for loop)

apply symmetries

calculate commutator

truncate

find representatives

include new terms in H

file contributions to diff. eqs.

Figure 3.15: Structure diagram of the program for setting up the flow equation
[Hamerla(2009)].

Firstly, the Hamiltonian H is initialized where only representative terms have to be con-
sidered due to the use of symmetries. To treat systems in the thermodynamic limit it is
indispensable to use the translational symmetry. Addtionally, we use spin symmetries
and the hermiticity of the Hamiltonian to reduce the number of representative terms.

Since we only consider generators determined by the Hamiltonian we do not have
to save the generator separately. The main part of the program consists of two loops to



98 Continuous unitary transformations

calculate the commutator of all terms occuring in the generator G and the Hamiltonian
H. To get all contributions a sum over the corresponding symmetry group is necessary,
cf. section 3.4.2. The commutator of two terms can be calculated efficiently by splitting
it via the product rule into a sum over commutators of local operators [Reischl(2006),
Duffe(2010)]. After the calculation of the commutator the resulting terms are transferred
to a unique, i.e., unambiguous, representation by sorting the local operators according
to their sites and local normal ordering. If a term satisfies the truncation scheme its
representative term is determined and its occurrence is registered in the differential
equation system. When all commutators are computed it has to be tested if new
representative terms have emerged. For these new terms we have to repeat the steps
explained above. As long as new terms emerge, which comply with the truncation
scheme, a new run through the loop is started to compute their contributions to the
system of differential equations.

Setting up the differential equations for a local observable O(r) works in the same
way. But one has to take into account that the local observable is not translationally
invariant and that it possesses a different truncation scheme, cf. section 3.4.3.

3.5.2 Numerical solution of the differential equations

The numerical integration of the first order system of coupled differential equations is
done by standard Runge-Kutta-algorithms [Press et al.(2002)]. We use the ROD defined
in section 3.3.2 to measure the convergence. If the ROD falls below a certain threshold
(typically ≈ 10−10) we consider the integration as converged.

Since the generator G(`) is typically defined by the Hamiltonian H(`) (cf. section 3.2)
the integration of the differential equations describing a transformation of an observable
O(`) should be done simultaneously with the integration of the system of differential
equation describing the transformation of the Hamiltonian H(`).

The number of considered coefficients depends on the chosen truncation schemes.
Within this thesis the order of magnitude of the number of considered coefficients is
105−106.

3.6 Chapter summary

In this chapter the concept of continuous unitary transformations (CUTs) was pre-
sented. CUTs can be used to derive effective Hamiltonians whose structure is more
diagonal than the original problem. The final form of the effective Hamiltonian depends
on the choice of the generator generating the CUT.

After an introduction to former well-established choices of generators we introduced
a generator adapted to describe systems with unstable (quasi)particles. We also derived
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this generator in the context of variational calculus and discussed generalizations of this
generator. Results obtained by this new generator will be presented in the following
chapters 4, 5 and 6.

To illustrate differences and similarities of distinct generators small toy models were
discussed. We also proved that certain different generators transform some subspaces
entirely in the same way.

After these general considerations of CUTs we presented the concept of self-similar
continuous unitary transformations (sCUTs) in real space by local operators. A trunca-
tion scheme based on the locality of terms to perform calculations in the thermodynamic
limit was discussed as well. This approach is used in the following chapters 4, 5 and 6.

Finally we described briefly how to implement the sCUT in real space on a computer.
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Chapter 4

Asymmetric antiferromagnetic spin
S = 1/2 Heisenberg ladder

The Hamiltonian for the asymmetric antiferromagnetic spin S = 1/2 Heisenberg ladder
(AASHL) reads

H = J⊥H⊥+ J‖H‖+ JdiagHdiag (4.1a)

with

H⊥ =
∑

r
S1(r)S2(r) (4.1b)

H‖ =
∑

r

(
S1(r)S1(r+1)+S2(r)S2(r+1)

)
(4.1c)

Hdiag =
∑

r
S1(r)S2(r+1) (4.1d)

where the subscript l ∈ 1,2 denotes the leg and the argument r ∈ Z denotes the rung of
the spin vector Sl(r), cf. figure 4.1. In the fully antiferromagnetic case the couplings J⊥, J‖
and Jdiag all are positive (J⊥, J‖, Jdiag ≥ 0). From now onwards, we use the dimensionless
parameters

x :=
J‖
J⊥

(4.2a)

y :=
Jdiag

J⊥
(4.2b)

and set the perpendicular coupling equal to one, i.e. J⊥ = 1. For calculations including
dynamical structure factors Sαβ (Q,ω) also the vector b defining the ladder rungs is
important (see figure 4.1, cf. section F).

For the case x < y the Hamiltonian (4.1) is usually denoted as a dimerized and
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rr−1r−2 r+2r+1

rr−1r−2 r+2r+1

bJ⊥ Jdiag

J‖

1

2

Figure 4.1: Schematic representation of the asymmetric antiferromagnetic spin S =
1/2 Heisenberg ladder (AASHL). Circles indicate spins with spin S = 1/2. Solid lines
stand for couplings, where all couplings are assumed to be positive, i.e. J⊥, J‖, Jdiag ≥
0. Ladder rungs are defined by the vector b. In the following, the dimensionless
parameters x := J‖/J⊥ > 0 and y := Jdiag/J⊥ > 0 are used and the perpendicular coupling
is set to one, i.e. J⊥ = 1. The additional diagonal interaction Jdiag breaks the reflection
symmetry and hence induces a hybridization between the one-triplon states and
the two-triplon continuum.

frustrated spin S= 1/2 chain (see reference [Schmidt et al.(2004)] and references therein).
Since in this thesis we are mainly interested in the case x > y, we denote the system as
AASHL instead of dimerized an frustrated chain.

The Hamiltonian (4.1) comprises some frequently discussed models as lim-
iting cases. For example, for x = 0 and y = 1 the Hamiltonian (4.1) describes
the exactly solvable isotropic antiferromagnetic spin S = 1/2 Heisenberg chain
[Bethe(1931), Hulthén(1938), des Cloizeaux & Pearson(1962), Yang & Yang(1966a),
Yang & Yang(1966b), Faddeev & Takhtajan(1981), Baxter(1982)].

In the broad field of quantum spin systems without magnetic long-range order,
the limit of the symmetric spin S = 1/2 Heisenberg ladder [Barnes et al.(1993),
Dagotto & Rice(1996), Sushkov & Kotov(1998), Damle & Sachdev(1998),
Brehmer et al.(1999), Jurecka & Brenig(2000), Knetter et al.(2001), Zheng et al.(2001),
Schmidt et al.(2001), Haga & Suga(2002), Knetter et al.(2003a), Schmidt & Uhrig(2005)]
with y= 0 (cf. section 4.1 and figure 4.3) is a very popular example of a one-dimensional
valence-bond solid [Affleck et al.(1987)].

Besides the theoretical interest, there is a large number of com-
pounds that can be described by quantum Heisenberg spin ladders (see
for example [Kojima et al.(1995), Schwenk et al.(1996), Eccleston et al.(1996),
Kumagai et al.(1997), Hammar et al.(1998), Sugai & Suzuki(1999), Matsuda et al.(2000),
Konstantinović et al.(2001), Grüninger et al.(2002), Notbohm et al.(2007),
Schmidiger et al.(2011)] or for an overview see [Johnston et al.(2000)]). Special
interest has been raised by the realization of coupled spin ladders in the stripe
phase of cuprate superconductors [Tranquada et al.(1995), Vojta & Ulbricht(2004),
Uhrig et al.(2004), Uhrig et al.(2005b)]. Also the experimental evidence for supercon-
ductivity in Sr0.4Ca13.6Cu24O41.84 under pressure [Uehara et al.(1996)] contributed to
the interest in the spin S = 1/2 Heisenberg ladder and its extended versions.

The phase diagram of the asymmetric Heisenberg ladder for x> 0 depicted in figure
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4.2 is well understood [Chitra et al.(1995), Brehmer et al.(1996), Brehmer et al.(1998)].
A special role plays the line y = 1 where the physics differs considerably

x

y

0

1

incommensurate region

Qmin = π

Qmin = 0

ladder line

MG (0.5,1)

chain (0,1)

gapless line
Sh
a
st
ry

-S
u
th
er
la
n
d

lin
e

Figure 4.2: Schematic illustration of the ground state phase diagram of the AASHL
as (x, y)-plane. At the chain point (0,1) and along the Shastry-Sutherland line the
respective exact ground state is known. Except for y= 1 and 0≤ x< xc ≈ 0.241167 the
excitation spectrum is gapped. Different colors are used to distinguish the region
with the minimum of the dispersion at Qmin = 0 (green), the region with Qmin = π
(blue) and the incommensurate region (grey). The shown boundaries only provide
a qualitative picture. They do not correspond to any calculations.

from all other parts of the phase diagram. Starting from the exactly
solvable isotropic antiferromagnetic spin S = 1/2 Heisenberg chain for
x = 0 the system remains gapless up to a critical value xc ≈ 0.241167
[Haldane(1982), Okamoto & Nomura(1992), Castilla et al.(1995), Eggert(1996)].
Within this interval the ground state is unique and the excitations are gapless
S = 1/2 spinons [des Cloizeaux & Pearson(1962), Faddeev & Takhtajan(1981)].
For x > xc the ground state is twofold degenerate and dimerized, see e.g.
[Haldane(1982)]. The excitations are massive spinons. In this region also lies the
Majumdar-Ghosh point (x = 0.5, y = 1.0) which ground states are known exactly
[Majumdar & Ghosh(1969a), Majumdar & Ghosh(1969b)].

Everywhere else (y , 1) the ground state of the model is unique and the excitations
are gapped [Barnes et al.(1993), White(1996)]. For y→−∞ two spins connected by Jdiag
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form an effective S = 1 spin, since the singlet part becomes irrelevant for the physics at
low energies. Therefore, for y =∞ the system is equivalent to the S = 1 Haldane chain
[Haldane(1983), Renard et al.(1987)] with an effective coupling J⊥(1+2x)/4.

For x = y = 0 the model is trivial. The ground state is given by a product state of
singlets. Excitations are immobile triplets. We use this point as starting point for the
self-similar continuous unitary transformations (sCUTs), see below. On the Shastry-
Sutherland line connecting the point x = 0 and y = 0 with the Majumdar-Ghosh point
the product state of singlets is also the exact ground state [Shastry & Sutherland(1981)].
The symmetric Heisenberg ladder lies on the line y = 0.

Away from the line y = 1 the elementary excitations are triplons continuously con-
nected to the local triplets. The momentum Qmin indicating the minimum of their dis-
persion depends on the parameters x and y [Brehmer et al.(1996), Brehmer et al.(1998),
Müller & Mikeska(2000)]. In figure 4.2 different colors are used according to whether
the momentum Qmin is 0 or π or lies between these values (incommensurate region).
We did not calculate the exact position of the boundaries. The shown boundaries shall
only provide a qualitative sketch. In this thesis we only consider parameters for which
the minimum of the dispersion lies at Qmin = π.

To define an appropriate starting point for the sCUT we use the bond operator
representation [Chubukov(1989), Sachdev & Bhatt(1990)] (cf. chapter C). Each rung r
of the ladder is separately considered has a four-dimensional Hilbert space. A possible
eigenbasis of the local operator S1(r)S2(r) is given by the singlet state

∣∣∣r,singlet
〉

:=
1√
2

(∣∣∣ ↑↓ 〉− ∣∣∣ ↓↑ 〉)
r

(4.3a)

and the three triplet states

t†x,r
∣∣∣r,singlet

〉
:=

∣∣∣r,x〉 = −1√
2

(∣∣∣ ↑↑ 〉− ∣∣∣ ↓↓ 〉)
r

(4.3b)

t†y,r
∣∣∣r,singlet

〉
:=

∣∣∣r, y〉 = i√
2

(∣∣∣ ↑↑ 〉+ ∣∣∣ ↓↓ 〉)
r

(4.3c)

t†z,r
∣∣∣r,singlet

〉
:=

∣∣∣r,z〉 = 1√
2

(∣∣∣ ↑↓ 〉+ ∣∣∣ ↓↑ 〉)
r
. (4.3d)

Without any interactions along the ladder (x = 0, y = 0) the ground state of the system
is the product state of the rung singlets

∣∣∣0〉 :=
⊗

r

∣∣∣r,singlet
〉
=

⊗
r

1√
2

(∣∣∣ ↑↓ 〉− ∣∣∣ ↓↑ 〉)
r
. (4.4)

This reference state shall be the vacuum state of the system at ` = 0. Excitations on a
rung r are created by the local operators t†x,r, t†y,r and t†z,r. These operators defined by
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(4.3) create a triplet on a rung r and satisfy the hard-core boson commutation relations
(cf. equation (3.98))

[
tα,r, t

†
β,s

]
= δr,s

(
δα,β

(
14−

3∑
γ=1

t†γ,rtγ,r

)
− t†β,rtα,r

)
(4.5)

where tα,r (α ∈ {
x, y,z

}
) annihilate such a triplet. We consider all the excited states,

which can be continuously connected to the local triplets, to be elementary mag-
netic excitations. These quasiparticles are called triplons [Schmidt & Uhrig(2003),
Schmidt & Uhrig(2005)].

In the bond operator representation the Hamiltonian (4.1) is given in the notation
(3.30) by

H =H0
0 +H1

1 +H2
2 +H2

0 +H0
2 +H2

1 +H1
2 (4.6a)

with

H0
0 = −

∑
r

3
4

(4.6b)

H1
1 =

∑
r

∑
α

t†α,rtα,r+
(1
2

x− 1
4

y
)∑

r

∑
α

(
t†α,rtα,r+1+ t†α,r+1tα,r

)
(4.6c)

H2
2 =

(1
2

x+
1
4

y
)∑

r

∑
α,β

(
t†α,rt

†
β,r+1tβ,rtα,r+1− t†α,rt

†
α,r+1tβ,rtβ,r+1

)
(4.6d)

H2
0 =

(1
2

x− 1
4

y
)∑

r

∑
α

t†α,rt
†
α,r+1 (4.6e)

H0
2 =

(
H2

0

)†
(4.6f)

H2
1 = −

i
4

y
∑

r

∑
α,β,γ

εαβγ t†α,rt
†
β,r+1

(
tγ,r+ tγ,r+1

)
(4.6g)

H1
2 =

(
H2

1

)†
. (4.6h)

This representation of the Hamiltonian of the asymmetric antiferromagnetic spin
S = 1/2 Heisenberg ladder is used as the starting point for the sCUTs. Therefore, the
initial values of the sCUT are given by

α

α

[
cH|11

]
0
= 1 (4.7a)

α

α

[
cH|11

]
1
=

α

α

[
cH|11

]
−1
=

1
2

x− 1
4

y (4.7b)

α,β

β,α

[
cH|22

]1

0,1
=

(1
2

x+
1
4

y
)(

(1−δαβ
)

(4.7c)
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α,α

β,β

[
cH|22

]1

0,1
= −

(1
2

x+
1
4

y
)(

(1−δαβ
)

(4.7d)

α,α[
cH|20

]1
=

α,α

[
cH|02

]
1
=

1
2

x− 1
4

y (4.7e)

α,β

γ

[
cH|21

]1

0
=

α,β

γ

[
cH|21

]1

1
= − i

4
y εαβγ (4.7f)

γ

α,β

[
cH|12

]1

0
=

γ

α,β

[
cH|12

]1

−1
=

i
4

y εαβγ . (4.7g)

For the parameter y= 0 the coefficients (4.7f) and (4.7g) vanish whereby decay processes
of one triplon into two are prevented.

In the following section 4.1 we briefly summarize the low-energy physics of the
symmetric spin S = 1/2 Heisenberg ladder (y = 0). Since in this model no decay occurs
the generator Gpc(`) can be used. We reproduce the sCUT calculations for the energy
spectrum previously performed by Reischl [Reischl(2006)]. In addition, we calculate
the dynamical structure factor for the one and two quasiparticle channel using sCUTs
based on the generator Gpc(`). These calculations serve as a basis for an investigation
of the more involved model of the AASHL and they help to quantify the influence of
the parameter y > 0.

In section 4.2 the AASHL for x = 0.5 and y = 0.1 is discussed in detail. The conver-
gence behavior of various generators is investigated and compared to the symmetric
case with y = 0. Also the more involved analysis of the effective model produced by
the generator Ggs(`) is illustrated.

To describe quasiparticle decay in the AASHL results for the dynamical structure
factor Szz(Q,ω) for various parameters x and y are given in section 4.3.

4.1 Symmetric case (y = 0)

The symmetric Heisenberg spin ladder with y = 0 is invariant under a reflection about
the centerline of the ladder, see figure 4.3. This reflection symmetry is responsible for

rr−1r−2 r+2r+1

rr−1r−2 r+2r+1

bJ⊥

J‖

1

2

Figure 4.3: Schematic representation of a Heisenberg spin ladder. Circles indicate
spins with spin S = 1/2. Solid lines stand for couplings where all couplings are
assumed to be positive, i.e. J⊥, J‖ ≥ 0. The dashed line indicates the axis of reflec-
tion symmetry. Ladder rungs are defined by the vector b. In the following, the
dimensionless parameter x := J‖/J⊥ is used and the perpendicular coupling is set to
one, i.e. J⊥ = 1.
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the infinite lifetime of the triplons, which are the S = 1 elementary magnetic excitations
of an antiferromagnetic system without long-range order [Schmidt & Uhrig(2003)].
Although the energy levels of the one-triplon dispersion and the two-triplon continuum
might overlap decay is forbidden due to missing decay vertices (matrix elements),
cf. chapter 2. Generally, due to the reflection symmetry no decay vertices between
subspaces with an odd number of quasiparticles and subspaces with an even number
of quasiparticles exist [Knetter et al.(2003a)].

4.1.1 Energy properties

By using the generator Gpc(`) subspaces with different quasiparticle numbers are

separated. Thus the one-triplon dispersion is given by the coefficients of Heff
∣∣∣1
1 =

lim`→∞H1
1(`). To calculate the one-triplon dispersion we use the momentum space

representation. The Fourier transformed one-particle states are defined by

∣∣∣Q,α0
〉

:=
1√
N

∑
r

eiQr
∣∣∣r,α0

〉
(4.8)

with |r,α〉 = t†α,r |0〉. The action of Heff
∣∣∣1
1 with respect to translational symmetry on the

one-triplon state |r,α〉 is given by equation (D.2) in appendix D. Due to the SU(2)
symmetry of the Hamiltonian (4.1) the hopping coefficients

α0

β0

[
cH|11

]
l0

obey the relation
α0

β0

[
cH|11

]
l0
= δα0,β0

[
cH|11

]
l0

. This leads to the threefold degenerate one-triplon dispersion

ω1(Q) :=
〈
Q,α

∣∣∣ Heff
∣∣∣1
1

∣∣∣Q,α〉 =∑
r

eiQr
[
cH|11

]
r

(4.9)

for α = x, y,z.

The one-triplon dispersion ω1(Q) also determines the two-triplon continuum

ω2(Q,q) = ω1(Q/2+ q)+ω1(Q/2− q) (4.10)

with the relative momentum q ∈ [−π,π]. The lower band edge ωmin
2 (Q) is given by the

minimum ofω2(Q,q) over q and the maximum ofω2(Q,q) over q defines the upper band
edge ωmax

2 (Q), i.e.

ωmin
2 (Q) = min

q∈[−π,π]
ω2(Q,q) (4.11a)

ωmax
2 (Q) = max

q∈[−π,π]
ω2(Q,q) . (4.11b)

Note, that the energies of the two-triplon continuum is entirely determined by the one-
triplon dispersion. Interactions between two two-triplon states are not incorporated.
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Since the generator Gpc(`) also separates the two-triplon subspace the whole two-

triplon energy spectrum is determined by Heff
∣∣∣1
1 and Heff

∣∣∣2
2 = lim`→∞H2

2(`). The matrix
elements determining the two-quasiparticle spectrum are given by〈

Q,α0
∣∣∣〈d1,α1

∣∣∣ (Heff
∣∣∣1
1+Heff

∣∣∣2
2

) ∣∣∣Q,β0
〉∣∣∣l1,β1

〉
(4.12)

with the Fourier transformed two-particle states

∣∣∣Q,α0
〉∣∣∣d1,α1

〉
=

1√
N

∑
r

e
iQ

(
r+

d1
2

) ∣∣∣r,α0
〉∣∣∣r+d1,α1

〉
(4.13)

with d1 > 0. Due to the SU(2) symmetry of the Hamiltonian (4.1) the computational
effort can be reduced by considering only matrix elements relevant for the description
of a subspace specified by the spin quantum numbers S and m, for details see references
[Knetter et al.(2003a)] and [Knetter(2003)]. In table 4.1 the spin eigenstates in the zero-,
one- and two-triplon subspace are listed.

The two-quasiparticle interaction terms occurring in Heff
∣∣∣2
2 can produce

bound and antibound states [Uhrig & Schulz(1996), Damle & Sachdev(1998),
Sushkov & Kotov(1998), Uhrig & Normand(1998), Kotov et al.(1999), Trebst et al.(2000),
Jurecka & Brenig(2000), Zheng et al.(2001)].

Figure 4.4 depicts the energy spectrum of the symmetric spin ladder for x = 0.5 and
y = 0.0 obtained by sCUTs using the generator Gpc(`) and a truncation scheme Nt = 4
with D = (10, .,8, .,5, .,3), cf. section 3.4.3.

Due to the reflection symmetry of the symmetric spin ladder subspaces with an
odd number of quasiparticles cannot interact with subspaces with an even number of
quasiparticles. Thus the energy spectra of odd subspaces and the energy spectra of
even subspaces are presented in separate graphs. The black line in the left panel of
figure 4.4 depicts the one-triplon dispersion ω1(Q). The solid blue lines in the right
panel of figure 4.4 display the boundaries of the two-triplon continuum ω2(Q,q). In
this figure also the two-particle bound states are depicted. The S = 0 bound state is
represented by the dashed blue line and the threefold degenerate S = 1 bound state by
the dotted blue line.

For the calculations of the bound states all Fourier transformed two-particle states
with d1 < 4000, cf. equation (4.13), have been considered. This leads to a diagonalization
of a 3999×3999 matrix for fixed spin quantum numbers S and m. The existence of bound
states depends on the momentum Q. They do not exist within the whole Brillouin
zone. For all momenta Q where bound states exist the spectrum of the S = 0 bound
state lies below the spectrum of the S = 1 bound state.

The three-triplon and four-triplon continua are also depicted in figure 4.4 besides
the one- and two-triplon energy levels. Without considering two-triplon bound states
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Table 4.1: Spin eigenstates in the zero-, one- and two-triplon subspace.

S m zero-triplon subspace

0 0
∣∣∣ singlet,singlet

〉
S m one-triplon subspace

1 1 − 1√
2

(∣∣∣singlet,x
〉
+ i

∣∣∣singlet, y
〉)

1 0
∣∣∣singlet,z

〉
1 -1 1√

2

(∣∣∣singlet,x
〉
− i

∣∣∣singlet, y
〉)

S m two-triplon subspace

2 2 1
2

[∣∣∣x,x〉− ∣∣∣y, y〉+ i
(∣∣∣x, y〉+ ∣∣∣y,x〉)]

2 1 −1
2

[∣∣∣x,z〉+ ∣∣∣z,x〉+ i
(∣∣∣y,z〉+ ∣∣∣z, y〉)]

2 0 1√
6

(
2
∣∣∣z,z〉− ∣∣∣x,x〉− ∣∣∣y, y〉)

2 -1 1
2

[∣∣∣x,z〉+ ∣∣∣z,x〉− i
(∣∣∣y,z〉+ ∣∣∣z, y〉)]

2 -2 1
2

[∣∣∣x,x〉− ∣∣∣y, y〉− i
(∣∣∣x, y〉+ ∣∣∣y,x〉)]

1 1 −1
2

[∣∣∣x,z〉− ∣∣∣z,x〉+ i
(∣∣∣y,z〉− ∣∣∣z, y〉)]

1 0 i√
2

(∣∣∣x, y〉− ∣∣∣y,x〉)
1 -1 −1

2

[∣∣∣x,z〉− ∣∣∣z,x〉− i
(∣∣∣y,z〉− ∣∣∣z, y〉)]

0 0 1√
3

(∣∣∣x,x〉+ ∣∣∣y, y〉+ ∣∣∣z,z〉)
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Figure 4.4: Energy spectrum for the symmetric spin ladder with x = 0.5 obtained
by sCUT using the generator Gpc(`) and a truncation scheme Nt = 4 with D =
(10, .,8, .,5, .,3). Left panel: subspaces with an odd number of triplons. Right panel:
subspaces with an even number of triplons. The lower edges of the three- and four-
triplon continua taking into account the two-triplon S= 0 bound state are displayed
by dashed lines.

the lower edgeωmin
3 (Q) and the upper edgeωmax

3 (Q) of the three-triplon continuum are
given by

ωmin
3 (Q) = min

q∈[−π,π]

(
ωmin

2 (Q/2+ q)+ω1(Q/2− q)
)

(4.14a)

ωmax
3 (Q) = max

q∈[−π,π]

(
ωmax

2 (Q/2+ q)+ω1(Q/2− q)
)
. (4.14b)

The band edges of the four-triplon continuum are given analogously by

ωmin
4 (Q) = min

q∈[−π,π]

(
ωmin

3 (Q/2+ q)+ω1(Q/2− q)
)

(4.15a)

ωmax
4 (Q) = max

q∈[−π,π]

(
ωmax

3 (Q/2+ q)+ω1(Q/2− q)
)
. (4.15b)

In figure 4.4 these continua are represented by solid lines. To incorporate the influence
of the two-triplon bound states to the three- and four-triplon continua one has to
replace ωmin

2 (Q) in equation 4.14a by the dispersion of the lowest bound state (S = 0).
The resulting lower band edges are depicted in figure 4.4 by dashed lines. Note, that
the influence of terms appearing in Heff

∣∣∣3
3 = lim`→∞H3

3(`) and Heff
∣∣∣4
4 = lim`→∞H4

4(`) are
not considered for the calculations of the three- and four-triplon spectrum.
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The results shown in figure 4.4 for the truncation scheme Nt = 4 with
D = (10, .,8, .,5, .,3) coincide within the linewidth with results for the truncation
scheme Nt = 4 with D = (10, .,6, .,4, .,3), results obtained by perturbative continuous
unitary transformations (pCUTs) [Schmidt(2004)] and directly evaluated enhanced
perturbative continuous unitary transformations (deepCUTs) [Krull(2011)]. For a
detailed discussion of the accuracy of the sCUT results see [Reischl(2006)].

In figure 4.5 the energy spectrum of the symmetric spin ladder with x= 0.75 obtained
by sCUTs is depicted. Again the generator Gpc(`) and the truncation scheme Nt = 4
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Figure 4.5: Energy spectrum for the symmetric spin ladder with x = 0.75 obtained
by sCUT using the generator Gpc(`) and a truncation scheme Nt = 4 with D =
(10, .,8, .,5, .,3). Left panel: subspaces with an odd number of triplons. Right panel:
subspaces with an even number of triplons. The lower edges of the three- and four-
triplon continua taking into account the two-triplon S= 0 bound state are displayed
by dashed lines.

with D= (10, .,8, .,5, .,3) have been used. The results coincide within the linewidth with
results for the truncation scheme Nt = 4 with D = (10, .,6, .,4, .,3).

Qualitatively, no differences to the symmetric spin ladder with x = 0.5 exist. How-
ever, the bandwidth of the one-triplon dispersion for x = 0.75 is considerably larger
than for x = 0.5. This also enlarges the bandwidths of the continua and leads to a larger
overlap between the two- and four-triplon continua. The one-triplon dispersion and
the three-triplon continua are still well separated. Again S = 0 and S = 1 bound states
exist.

By further increasing the parameter x the bandwidth of the one-triplon dispersion
becomes even broader. This is depicted in figure 4.6 for x = 1.0. Once more, the
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Figure 4.6: Energy spectrum for the symmetric spin ladder with x = 1.0 obtained
by sCUT using the generator Gpc(`) and a truncation scheme Nt = 4 with D =
(10, .,8, .,5, .,3). Left panel: subspaces with an odd number of triplons. Right panel:
subspaces with an even number of triplons. The lower edges of the three- and four-
triplon continua taking into account the two-triplon S= 0 bound state are displayed
by dashed lines.

generator Gpc(`) and the truncation scheme Nt = 4 with D = (10, .,8, .,5, .,3) have been
used.

For x = 1.0 the lower edge of the three-triplon continuum is very close to the one-
triplon dispersion. At small values of the momentum Q the three-triplon continuum
pushes the one triplon-dispersion to lower energy values. This leads to a dip within the
one-triplon dispersion at Q = 0. Additionally, due to the larger bandwidth of the one-
triplon dispersion the overlap between the two- and four-triplon continua is enhanced.
As well as for x = 0.5 and x = 0.75 a S = 0 bound state and a threefold degenerate S = 1
bound state exist in the two-triplon sector.

The correlation length of the ladder increases with the value x. Thus for x = 1.0
truncations effects become considerably more noticeable as for, e.g., x = 0.5. In figure
4.7 results for various methods based on continuous unitary transformation (CUT)
with the generator Gpc(`) are compared. Black and blue lines indicate sCUT calcu-
lations. Two different truncation schemes are depicted (truncation scheme I: Nt = 4,
D = (10, .,8, .,5, .,3), truncation scheme II: Nt = 4, D = (10, .,6, .,4, .,3)). Also results ob-
tained by sCUTs (grey lines) and deepCUTs (cyan lines) are depicted. A more detailed
discussion of the influence of the truncation scheme on the sCUT results is given in
[Reischl(2006)].
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Figure 4.7: Energy spectrum of the one- and two-triplon sector for the symmetric
spin ladder with x= 1.0 obtained by the generator Gpc(`) for various CUT methods.
Black and blue lines indicate sCUT calculations (truncation scheme I: Nt = 4, D =
(10, .,8, .,5, .,3), truncation scheme II: Nt = 4, D = (10, .,6, .,4, .,3)). Grey lines indicate
pCUT calculations [Schmidt(2004)]. Cyan lines indicate deepCUT calculations
[Krull(2011)].

Especially, the results for the one-triplon dispersion for momenta Q ' 0.5π coincide
for all four calculations (cf. left panel of figure 4.7). For momenta Q/ 0.5π the dispersion
relations slightly differ from one another. This also leads to minor deviations for the
band edges of the two-triplon continuum. For most momenta also the results for the
bound states coincide. Only the most stringent truncation scheme II yields considerably
deviating results for the S = 0 bound state, cf. right panel of figure 4.7. For truncation
scheme I the relative deviation to the pCUT results is less than 2%, cf. [Reischl(2006)].

A further increment of the parameter x towards values beyond x= 1.0 leads to larger
deviations between the different calculations. Additionally, for x≈ 1.4 the sCUT calcula-
tions with the generator Gpc(`) diverge for the truncation scheme I. In section 3.2.3 it was
stated that the generator Gpc(`) sorts the eigenvalues in ascending order of the particle
number of the corresponding eigenvector if the eigenvectors are linked by a matrix ele-
ment of the Hamiltonian [Mielke(1998), Heidbrink & Uhrig(2002), Fischer et al.(2010)].
The generator Ggs,1p(`) transforms the vacuum state and the one-particle subspace in
the same way, see section 3.3.4 and reference [Fischer et al.(2010)], but it transforms
states consisting of more than one particle differently. Thus the divergence occurring in
the sCUT calculations with the generator Gpc(`) seems to be caused by reordering pro-
cesses between the the two- and four-triplon states (cf. section 3.2.3) since calculations
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with the generator Ggs,1p(`) for the same truncation scheme converge. Note, that even
for x = 1.0 a pronounced overlap between the two- and four-triplon continua exists,
cf. figure 4.6.

The truncation scheme II converges even for higher values of the parameter x, for
x= 1.5 see [Duffe(2010)] and for x= 1.95 see [Krull(2011)]. But especially in sectors with
more than one triplon the results differ considerably from results obtained by enhanced
perturbative continuous unitary transformation (epCUT), see [Krull(2011)]. For these
high values of x the one-triplon dispersion might merge with the three-triplon continua
besides the overlap between the two- and four-triplon continua. Thus, decay processes
from one triplon into three triplons might become possible so that even in the case of
the symmetric Heisenberg ladder spontaneous quasiparticle decay (SQPD) may occur,
while usually the triplons have infinite lifetime due to the reflection symmetry (see
figure 4.3).

The main aim of this thesis is to investigate the SQPD of one triplon into two
triplons. To avoid the very involved physics of Heisenberg spin S = 1/2 ladders with a
large coupling x, e.g., triplon decay of one triplon into three triplons and hybridization
of two- and four-triplon states, we restrict ourselves in the following to couplings
x≤ 1.0. For these couplings sCUTs yield reliable results, see figure 4.4, figure 4.5, figure
4.6 and figure 4.7.

4.1.2 Spectral properties

In this section results for the dynamical structure factor Szz(Q,ω) for the symmetric
spin ladder are presented. All results are calculated by sCUTs using the generator
Gpc(`). The dynamical structure factor Szz(Q,ω) can be measured by inelastic neutron
scattering (INS) experiments, cf. appendix F.

For temperature T = 0 the dynamical structure factor Szz(Q,ω) is given by

Szz(Q,ω) = − 1
π

ImGzz(Q,ω) (4.16)

with the retarded zero temperature Green function

Gzz(Q,ω) = lim
δ→0+

〈
g
∣∣∣ Sz(−Q)

[
ω− (H(Q)−E0)+ iδ

]−1
Sz(Q)

∣∣∣g〉 for ω > 0 . (4.17)

The vector
∣∣∣g〉 denotes the ground state of the system. Experiments can only measure

energy differences. Thus the ground state energy E0 is subtracted in equation (4.17).
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The Fourier transformed spin operator Sz(Q) is defined by

Sz (Q) =
eiQ b

2
√

2N

∑
r

eiQr
(
e−iQ b

2 Sz
1(r)+eiQ b

2 Sz
2(r)

)
, (4.18)

for details see appendix F. Note, that the Fourier transformed spin operator Sz (Q)
depends on the inner product of the momentum vector Q and the basis vector b
defining the ladder rungs. With the scalar Q we denote only the momentum along the
ladder. By fixing Qb it is possible to investigate the odd and even quasiparticle sectors
of the symmetric ladder separately. This is explained in more detail below.

The unitary transformation U induced by the generator Gpc(`) yields a quasiparticle
number conserving Hamiltonian Heff (cf. section 3.2.3). Thus it is possible to discuss the
dynamical structure factor Szz(Q,ω) split in parts with different quasiparticle numbers.

Formally, this can be seen by inserting UU† = 1 in equation (4.16)

Szz(Q,ω) = − 1
π

Im lim
δ→0+

〈
g
∣∣∣ UU†Sz(−Q)UU†

[
ω− (H(Q)−E0)+ iδ

]−1
UU†Sz(Q)UU†

∣∣∣g〉
(4.19a)

= − 1
π

Im lim
δ→0+

〈
0
∣∣∣ Sz

eff(−Q)
[
ω− (Heff(Q)−E0)+ iδ

]−1
Sz

eff(Q)
∣∣∣0〉 (4.19b)

= − 1
π

Im
∑

N

lim
δ→0+

〈
0
∣∣∣ Sz

eff(−Q)
∣∣∣0
N

[
ω−

( N∑
i=0

Heff(Q)
∣∣∣i
i−E0

)
+ iδ

]−1
Sz

eff(Q)
∣∣∣N
0

∣∣∣0〉
(4.19c)

where after the CUT the ground state
∣∣∣g〉 is represented by the quasiparticle vacuum

|0〉 =U†
∣∣∣g〉. In the latter step the block-diagonality of the Hamiltonian Heff is used. The

N-quasiparticle sector of the dynamical structure factor we denote by

Szz
N (Q,ω) = − 1

π
Im lim

δ→0+

〈
0
∣∣∣ Sz

eff(−Q)
∣∣∣0
N

[
ω−

( N∑
i=0

Heff(Q)
∣∣∣i
i−E0

)
+ iδ

]−1
Sz

eff(Q)
∣∣∣N
0

∣∣∣0〉 .
(4.20)

Therefore the dynamical structure factor Szz(Q,ω) is given by

Szz(Q,ω) =
∑

N

Szz
N (Q,ω) . (4.21)

Analogously, we can split the spectral weight

I =
∫ π

−π

dQ
2π

∫ ∞

−∞
dω Szz (Q,ω) (4.22)
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in parts IN related to different quasiparticle numbers

I =
∑

N

IN (4.23)

with

IN =

∫ π

−π

dQ
2π

∫ ∞

−∞
dω Szz

N (Q,ω) . (4.24)

For the calculation of the dynamical structure factor Szz(Q,ω) by means of CUTs
it is necessary to determine the effective observable Sz

eff(Q), cf. equation (4.19b). This
is done by transforming the local observable Sz

1(r), see section 3.1.2, appendix E and
appendix F. Accordingly, we also have to use a truncation scheme for observables,
cf. section 3.4.3.

In the following we discuss the one- and two-quasiparticle contributions to the
dynamical structure factor Szz(Q,ω). By adjusting the momentum Q⊥ perpendicular
to Q it is possible to fix the inner product Qb in equation (4.18). By setting Qb = π
equation (4.18) yields

Sz (Q) =
1√
2N

∑
r

eiQr
(
Sz

1(r)−Sz
2(r)

)
(4.25a)

=
1√
2N

∑
r

eiQr
(
t†z,r+ tz,r

)
(4.25b)

cf. equation C.1. Since in the symmetric case of the ladder no interactions between sub-
spaces with odd quasiparticle numbers and subspaces with even quasiparticle numbers
exist (cf. figure 4.3 and reference [Knetter et al.(2003a)]) the observable in equation (4.25)
can be used to investigate odd contributions Szz

N (Q,ω) with N = 1,3, . . . to the dynamical
structure factor Szz(Q,ω). Analogously, by setting Qb = 0 equation (4.18) yields

Sz (Q) =
1√
2N

∑
r

eiQr
(
Sz

1(r)+Sz
2(r)

)
(4.26a)

= − i√
2N

∑
r

eiQr
(
t†x,rty,r− t†y,rtx,r

)
, (4.26b)

which can be used to investigate even contributions Szz
N (Q,ω) with N = 2,4, . . . to the

dynamical structure factor Szz(Q,ω).
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One-triplon dynamical structure factor

For a translational invariant system the one-triplon dynamical structure factor can be
calculated by the identity

lim
δ→0+

1
ω−ω0± iδ

=P 1
ω−ω0

∓ iπδ(ω−ω0) (4.27)

with the principal value P. Therefore, the one-triplon contribution Szz
1 (Q,ω) to the

dynamical structure factor is given by

Szz
1 (Q,ω) =

〈
0
∣∣∣ Sz

eff(−Q)
∣∣∣0
1 δ

(
ω−Heff(Q)

∣∣∣1
1

)
Sz

eff(Q)
∣∣∣1
0

∣∣∣0〉 (4.28a)

=
∣∣∣CS=1,m=0

Sz|10
(Q)

∣∣∣2 S=1
m=0

〈
Q
∣∣∣ δ(ω−Heff(Q)

∣∣∣1
1

) ∣∣∣Q〉S=1

m=0
(4.28b)

=
∣∣∣CS=1,m=0

Sz|10
(Q)

∣∣∣2 δ (ω−ω1(Q)) (4.28c)

= Szz
1 (Q) δ (ω−ω1(Q)) (4.28d)

with the equal-time structure factor for the one-triplon part

Szz
1 (Q) =

∣∣∣CS=1,m=0
Sz|10

(Q)
∣∣∣2 (4.29)

and

CS=1,m=0
Sz|10

(Q) = −
√

2iei Qb
2

∑
d0

z[
cSz

1|
1
0

]d0 sin(Qd0+Qb/2) . (4.30)

Details of the calculation of CS=1,m=0
Sz|10

(Q) are given in appendix F and in appendix E.

In figure 4.8 the equal-time structure factor for the one-triplon part Szz
1 (Q) is depicted

for various interaction values x. To maximize the one-triplon contribution we set
Qb = π. Black lines are calculated by sCUTs. Grey lines indicate results obtained by
pCUTs [Schmidt(2004), Schmidt & Uhrig(2005)]. For x = 0.5 the results coincide within
the linewidth. For the used definition of Szz

1 (Q) (4.29) the equation Szz
1 (Q)/I = 1.0 holds

in the absence of any interaction (x = 0). By increasing the interaction x the equal-
time structure factor for the one-triplon part Szz

1 (Q) decreases for momenta around
Q = 0 and increases for momenta around Q = π. This observation indicates the strong
tendency towards antiferromagnetism and agrees with results obtained by bosonization
for weakly coupled spin chains where a peak in the dynamical structure factor around
Q = π is predicted [Shelton et al.(1996)].
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Figure 4.8: Equal-time structure factor for the one-triplon part Szz
1 (Q) for Qb = π

normalized to the total spectral weight I. Black lines: sCUT results for the generator
Gpc(`) using the truncation scheme Nt = 4, D = (10, .,8, .,5, .,3) and NO

t = 3, DO =
(10,10,8,8,6,6). Grey lines: pCUT results [Schmidt(2004), Schmidt & Uhrig(2005)].
For x=0.5 the sCUT and pCUT results agree within the linewidth. The area under
a curve is equal to its relative weight Irel

1 =
I1/I.



4.1 Symmetric case (y = 0) 119

Two-triplon dynamical structure factor

To calculate the two-triplon dynamical structure factor Szz
2 (Q,ω) we use a

Lanczos tridiagonalization, which leads to the continued fraction representation
[Zwanzig(1961), Mori(1965), Gagliano & Balseiro(1987), Pettifor & Weaire(1985),
Viswanath & Müller(1994)]

Szz
2 (Q,ω) = − 1

π
Im

〈
0
∣∣∣ Sz

eff(−Q)
∣∣∣0
2 Sz

eff(Q)
∣∣∣2
0

∣∣∣0〉
ω− a0(Q)−

b2
1(Q)

ω− a1(Q)−
b2

2(Q)

. . .

(4.31a)

= − 1
π

Im

S=1
m=0

〈
Q, l1

∣∣∣ ∑
l1

[
CS=1,m=0

Sz|20
(Q)

]l1∗∑
d1

[
CS=1,m=0

Sz|20
(Q)

]d1
∣∣∣Q,d1

〉S=1

m=0

ω− a0(Q)−
b2

1(Q)

ω− a1(Q)−
b2

2(Q)

. . .

(4.31b)

= − 1
π

Im

∑
d1

∣∣∣∣[CS=1,m=0
Sz|20

(Q)
]d1

∣∣∣∣2
ω− a0(Q)−

b2
1(Q)

ω− a1(Q)−
b2

2(Q)

. . .

. (4.31c)

The coefficients an(Q) and bn(Q) are calculated by repeated application of Heff
∣∣∣1
1+Heff

∣∣∣2
2

to the initial state Sz
eff(Q)

∣∣∣2
0

∣∣∣0〉 = ∑
d1

[
CS=1,m=0

Sz|20
(Q)

]d1
∣∣∣Q,d1

〉S=1

m=0
with momentum Q, spin

S = 1, and Sz component m = 0. Details of the calculation of
[
CS=1,m=0

Sz|20
(Q)

]d1 are given

in appendix F and in appendix E. For details about the Lanczos tridiagonalization

see appendix A. All states
∣∣∣Q,d1

〉S=1

m=0
with d1 < 4000 are considered. The equal-time

structure factor for the two-triplon part is given by

Szz
2 (Q) =

∑
d1

∣∣∣∣[CS=1,m=0
Sz|20

(Q)
]d1

∣∣∣∣2 . (4.32)

In figure 4.9 the two-triplon dynamical structure factor Szz
2 (Q,ω) is depicted for

various values of x. The effective Hamiltonian and the effective observable are obtained
by the generator Gpc(`) using the truncation scheme Nt = 4, D = (10, .,8, .,5, .,3) and
NO

t = 3, DO = (10,10,8,8,6,6). The continued fraction (4.31) is terminated as described
in appendix A.2 by a square-root terminator [Pettifor & Weaire(1985)].
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Figure 4.9: Two-triplon dynamical structure factor Szz
2 (Q,ω) for various values of

x and y = 0 for Qb = 0. The effective Hamiltonian and the effective observable
are obtained by the generator Gpc(`) using the truncation scheme Nt = 4, D =
(10, .,8, .,5, .,3) and NO

t = 3, DO = (10,10,8,8,6,6). The continued fraction (4.31)
is terminated as described in appendix A.2. Solid black lines depict one-triplon
dispersions. Dotted blue lines depict the S = 1 bound states. Green lines in the left
panels indicate mid-band singularities.
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In the left panel of figure 4.9a, 4.9b and 4.9c the two-triplon dynamical structure
factor Szz

2 (Q,ω) is represented by solid blue lines in a three-dimensional plot. The
right panels also show the two-triplon dynamical structure factor Szz

2 (Q,ω), as color
plot. Here only the boundaries of the two-triplon continuum are represented by solid
blue lines. Also the one-triplon dispersion is depicted by a solid black line in each
panel. The dispersion of the S = 1 bound states is depicted by dotted blue lines. Note,
that if the continued fraction for the two-triplon dynamical structure factor Szz

2 (Q,ω) is
terminated by a square-root terminator, the bound states appear as δ-peaks. Therefore,
we only depict their dispersion and not their weight in figure 4.9.

In figure 4.10 the same quantities as in figure 4.9 are depicted. This time, instead of
a terminator, a slight broadening ω→ ω+ iδ with δ = 0.051 has been used to calculate
the two-triplon dynamical structure factor Szz

2 (Q,ω), cf. appendix A. Coefficients an(Q)
and bn+1(Q) with n < 1400 have been used.

Most of the spectral weight inside the continuum of the two-triplon dynamical
structure factor Szz

2 (Q,ω) is located near the lower band edge, cf. figure 4.9. Especially,
in the region where the S = 1 bound state merges with the continuum plenty of spectral
weight occurs. In figure 4.9 also mid-band singularities indicated by green lines can
be observed. They can be interpreted as precursors of the upper band edge of the
two-spinon continuum for the isolated spin chain [Schmidt(2004)]. However, these
details of the continuum of the two-triplon dynamical structure factor Szz

2 (Q,ω) are
barely accessibly in INS experiments. Due to the finite resolution in actual experiments
the S = 1 bound state can be hardly separated from the continuum and thus dominates
the dynamical structure factor Szz

2 (Q,ω). This is illustrated in figure 4.10 where a
slight broadening with δ = 0.05 has been used. Note, that the existence of a finite
ring exchange can prevent the existence of a S = 1 bound state because it weakens the
attractive interaction [Schmidt & Uhrig(2005), Notbohm et al.(2007)].

Spectral weight

Since the total spectral weight I is fixed by a sum rule, see appendix F, we define relative
spectral weights by Irel

N = IN/I where the N-particle part of the spectral weight is given
by

IN =

∫ π

−π

dQ
2π

Szz
N (Q) (4.33)

with the N-particle equal-time structure factor Szz
N (Q). The one-particle equal-time

structure factor Szz
1 (Q) is given by equation (4.29) and the two-particle equal-time

structure factor Szz
2 (Q) by equation (4.32).

1As the energy ω the broadening δ is given in units of J⊥, where we set J⊥ = 1.
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Figure 4.10: Two-triplon dynamical structure factor Szz
2 (Q,ω) for various values

of x and y = 0 for Qb = 0. The effective Hamiltonian and the effective observable
are obtained by the generator Gpc(`) using the truncation scheme Nt = 4, D =
(10, .,8, .,5, .,3) and NO

t = 3, DO = (10,10,8,8,6,6). The continued fraction (4.31) has
been calculated up to n = 1399. A broadening with δ = 0.05 has been used. Solid
black lines depict one-triplon dispersions. Dotted blue lines depict the S = 1 bound
states.
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For x = 0 the complete spectral weight is in the one-particle sector. With increasing
interaction x more and more weight is distributed in channels with more and more
triplons. In table 4.2 the relative spectral weights for the one- and two-particle channel
Irel
1 and Irel

2 plus their sum are listed for x = 0.5, x = 0.75 and x = 1.0. For the considered

Table 4.2: Relative spectral weights Irel
N .

x Irel
1 Irel

2 Irel
1 + Irel

2

0.50 0.918 0.075 0.993

0.75 0.829 0.141 0.970

1.00 0.739 0.199 0.938

interactions x the spectral weight is dominated by the one- and two-particle sector. Even
for x = 1.0 about 94% of the spectral weight is found in these sectors. The missing spec-
tral weight can be found in subspaces with more than two triplons, whereby the main
part of the missing spectral weight occurs in the three-triplon subspace [Schmidt(2004)].

4.2 The asymmetric antiferromagnetic spin S = 1/2

Heisenberg ladder for x = 0.5 and y = 0.1

In this section we study the parameter set x = 0.5, y = 0.1 and compare its results to
those of the parameter set x = 0.5, y = 0.0. The scope of this section is to illustrate the
general considerations concerning CUTs for unstable quasiparticles (cf. chapter 3) by a
concrete example.

The low energy spectrum for x = 0.5 and y = 0 is well studied by several methods
(see for instance reference [Sushkov & Kotov(1998)] and reference [Trebst et al.(2000)])
including methods based on CUTs [Knetter et al.(2003a), Schmidt(2004), Reischl(2006)],
see also section 4.1. Therefore, it is a perfect starting point to discuss the more sophis-
ticated case with x = 0.5 and y = 0.1. The additional diagonal interaction y makes the
whole situation conceptionally more difficult because it breaks a symmetry. While for
y = 0 the model is symmetric under reflection (see figure. 4.3) an arbitrary small value
y , 0 breaks this reflection symmetry (see figure. 4.1).

Breaking this symmetry creates processes which enable the triplons to decay into
two-triplon states. Therefore, the asymmetric spin S = 1/2 Heisenberg ladder is an
ideal model to analyze quasiparticles with finite lifetime and to illustrate our previous
theoretical considerations concerning the choice of an adaptive generator quantitatively,
see section 3.2.3.
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Firstly, we show that a rearrangement of the states of the Hilbert space, i.e.,
a continuous relabelling (for simple examples see reference [Dusuel & Uhrig(2004),
Reischl(2006)] and section 3.3.1), reduces the speed of convergence (see section 4.2.1).
Therefore, generators that avoid such a rearrangement induce a considerably faster
convergence.

Secondly, we discuss the low-energy spectrum for the symmetric and for the asym-
metric ladder (see section 4.2.2). If decay is possible the generator Ggs,1p(`) and the
generator Gpc(`) indeed tend to interpret the energetically lowest states above the
ground state as the elementary excitations (as stated before in section 3.2.3). This can
be avoided by using the generator Ggs(`). Unfortunately, for this generator a simple
calculation in the one-particle subspace is not sufficient to obtain reliable results for
the true one-triplon dispersion. This is a consequence of the fact that in the effective
Hamiltonian induced by Ggs(`) the one-particle subspace still couples to higher particle
subspaces (see figure 3.3). To obtain reliable results for the single triplon dispersion
we include states which consist of up to three particles in our calculations (see section
4.2.2). Especially, we show results for a spectral density at zero temperature in which
the (quasi)particle decay is manifest as a Lorentzian resonance of finite width.

4.2.1 Convergence

As for the toy model discussed in section 3.3.2 we use the residual off-diagonality (ROD)
[Reischl et al.(2004), Reischl(2006)] to quantify the speed of convergence of the flow
equation. The ROD is given by

ROD(`) =
( ∑

i,j

hi
j(`) ∈ G(`)

∣∣∣∣hi
j(`)

∣∣∣∣2 )1/2

. (4.34)

where the range of the sum
∑

i,j depends on the choice of the generator G(`), cf. section
3.3.2 equation (3.74). For translational invariant systems in the thermodynamic limit
only one representative of the translational symmetry group is included. Otherwise
the ROD would grow proportional to the system size. In addition, the partial RODi

j
with i ≥ j denotes the square root of the sum of the moduli squared of all coefficients
belonging to terms with i creation and j annihilation operators or to their hermitian
conjugate terms, i.e.,

RODi
j(`) =

( ∑
i,j

hi
j(`) ∈ Hi

j(`),H
j
i (`)

∣∣∣∣hi
j(`)

∣∣∣∣2 )1/2

. (4.35)
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Figure 4.11a shows the evolution of the ROD during the flow for different generators
G(`) and different truncation schemes for x = 0.5 and y = 0. For all generators the RODs
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(b) RODs for the asymmetric ladder with x = 0.5 and y = 0.1.

Figure 4.11: Convergence of flow equations. Panel (a) shows the evolution of the
ROD during the flow for various generators and various truncation schemes for
the symmetric ladder. In all cases, the ROD decreases strictly monotonically. Panel
(b) shows the evolution of the ROD for various generators and various truncation
schemes for the asymmetric ladder. The RODs of the generator Ggs,1p(`) and the
generator Gpc(`) increase temporarily during the flow. This indicates a significant
rearrangement of the states in the Hilbert space.

decrease strictly monotonically. The ROD of the generator Ggs(`) decreases faster than
the ROD of the generator Ggs,1p(`). This a consequence of the fact that the generator
Ggs,1p(`) contains more coefficients than the generator Ggs(`). The convergence of
these additional coefficients is slower because they connect states that differ less in
their eigenenergies (cf. equation (3.43)), for example, the energy gap between one- and
three-triplon states is smaller than the energy gap between the vacuum state and the
two-triplon states. This also explains why the generator Ggs,1p(`) converges faster than
the generator Gpc(`).
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The convergence behavior clearly changes if one includes the diagonal interaction,
even if y is small (y = 0.1,0.01). In figure 4.11b the ROD during the flow for various
generators and various truncation schemes for x = 0.5 and y = 0.1 is depicted. Only
the ROD of the generator Ggs(`) decreases strictly monotonically, whereas the RODs
of the generator Ggs,1p(`) and the generator Gpc(`) increase temporarily during the
flow. These increases indicate a rearrangement in the Hilbert space, cf., reference
[Dusuel & Uhrig(2004)] for simple examples. . If all eigenstates were ordered in such a
way that states with more triplons had higher eigenenergies, the ROD would decrease
exponentially (cf. equation (3.42)).

The generator Gpc(`) sorts the eigenvalues in ascending order of the particle
number of the corresponding states [Mielke(1998), Heidbrink & Uhrig(2002),
Fischer et al.(2010)]. These rearrangements affect the results for the one-triplon
dispersion as we illustrate in section 4.2.2.

Figure 4.12 shows the ROD of the generator Gpc(`) split in the partial RODs RODi
j

defined above for x = 0.5 and y = 0.1,0.01. Clearly, the contributions RODi
j of the ROD

changing the number of triplons only by one (|i− j| = 1) provide the main contributions
to the total ROD, although the corresponding initial couplings are proportional to y
which is small (y = 0.1,0.01). From this we infer that the convergence of the flow
equation is mainly influenced by terms in the generator that induce a rearrangement of
the Hilbert space if they are to be eliminated by the CUT. It is less important whether
the corresponding coupling parameter is large or not. This is an important property
of the CUTs that distinguishes them from conventional diagrammatic perturbation
theories.

In summary, we state that a rearrangement of the states of the Hilbert space re-
duces the speed of convergence. Omitting the corresponding terms from the generator
stabilizes the flow in the sense that the convergence is monotonic and robust. Hence,
especially the generator Ggs(`) yields a very fast converging and robust flow. We point
out that a fast convergence is advantageous because it minimizes the interval in ` dur-
ing which significant terms are truncated. Hence as a rule of thumb, the faster the
convergence, the smaller the truncation errors.

4.2.2 Low-energy spectrum

In this section we discuss the low-energy spectrum of the effective Hamiltonian Heff.
The CUTs were always stopped at ` = 200. At this value the remaining effect on the
one-particle subspace is very small for all generators and truncation schemes (cf. figure
4.11) so that a further integration of the flow equation would not change the results for
the one-triplon dispersion as shown in figure 4.13.
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(a) RODi
j for the generator Gpc(`) for the asymmetric ladder with x= 0.5 and y= 0.1.

Truncation scheme: Nt = 4, D = (10,8,8,5,5,3,3).
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(b) RODi
j for the generator Gpc(`) for the asymmetric ladder with x= 0.5 and y= 0.01.

Truncation scheme: Nt = 4, D = (10,8,8,5,5,3,3).

Figure 4.12: ROD of the generator Gpc(`) split into the parts RODi
j for the asym-

metric ladder for x = 0.5 and y = 0.1,0.01. The main contributions to the total ROD
is due to RODi

j with |i− j| = 1.
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Energy properties

The generator Gpc(`) and the generator Ggs,1p(`) separate the one-particle subspace
from the other subspaces. Consequently, for these two generators the one-triplon
dispersionω1(Q), cf. equation (4.9), yields eigenvalues of the effective Hamiltonian Heff

in the one-particle subspace. In contrast, the generator Ggs(`) does not separate the
one-particle space. Therefore, the effective Hamiltonian Heff still contains terms that
connect the one-particle subspace with states of more particles, see figure 3.3. In this
case the quantity ω1(Q) only gives an approximation of the eigenvalues of the effective
Hamiltonian Heff, cf. figure D.1.

In figure 4.13a the one-triplon dispersion ω1(Q) is displayed for x = 0.5 and y = 0.0.
Results for all three generators Gpc(`), Ggs,1p(`) and Ggs(`) and various truncation
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Figure 4.13: Low-energy spectrum of the symmetric and asymmetric spin S = 1/2
Heisenberg ladder. Panel (a) shows results for the one-triplon dispersion ω1(Q) for
the symmetric ladder with x = 0.5 and y = 0.0. Results for different generators and
different truncation schemes are depicted. Additionally, the lower part of the two-
particle continuum is shown (light blue area). The dashed white line represents
an approximation of the lower edge of the two-particle continuum obtained by the
approximate one-triplon dispersion ω1(Q) in the case of the generator Ggs(`). Panel
(b) shows the corresponding quantities for the asymmetric ladder with x = 0.5 and
y = 0.1. Green crosses represent the renormalized one-triplon dispersion (see text).

schemes are shown. The two generators Gpc(`) and Ggs,1p(`) separating the one-particle
space yield almost the same results and barely depend on the chosen truncation scheme.
Together with the good convergence, see figure 4.11a, this implies that the results are
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reliable. By construction, for the generator Ggs(`) the quantity ω1(Q) as defined above
(cf. equation (4.9)) yields only an approximation of the true one-triplon dispersion. The
resulting ω1(Q) is an upper variational bound to the results obtained from the other
two generators if truncation errors are negligible. This fact is based on the variational
principle that a minimum in a restricted subspace is an upper bound to the minimum
in an unrestricted subspace. To improve the results in this case one has to consider
subspaces with more particles as well, see below.

Figure 4.13a also displays the lower part of the two-particle continuum ω2(Q),
cf. equation (4.10), using the one-triplon dispersion ω1(Q) obtained from the generator
Gpc(`). The additional dashed white line represents an approximation of the lower
edge of the two-particle continuum obtained by the approximate one-triplon dispersion
ω1(Q) obtained from the generator Ggs(`).

We emphasize again that due to the reflection symmetry for y = 0, see figure 4.3,
no interaction exists between the one-triplon states and the two-triplon continuum.
As a result the quasiparticles are well defined and infinitely long lived for the whole
Brillouin zone, although the two-particle continuum starts below the one-triplon
dispersion for certain momenta Q. In addition, this symmetry prevents any rearrange-
ment between the one- and two-particle subspaces during the flow, see section 3.2.3.
This situation changes abruptly if a diagonal interaction is switched on, even if y is
infinitesimally small.

In figure 4.13b the one-triplon dispersion ω1(Q) is displayed for x = 0.5 and a small
additional interaction y = 0.1. Again, results for all three generators Gpc(`), Ggs,1p(`)
and Ggs(`) and various truncation schemes are shown as well as the lower part of the
two-particle continuum ω2(Q,q) determined from the one-triplon dispersion obtained
from the generator Gpc(`). Likewise, the approximate results for the lower edge of the
two-particle continuum obtained from the generator Ggs(`) are shown.

The use of the two generators Gpc(`) and Ggs,1p(`) implies significantly lower en-
ergies for the one-triplon dispersion, see figure 4.13b, where ω1(Q) overlaps with the
two-triplon continuum. The results strongly depend on the truncation scheme in this
region. This can be explained as follows. Since for y , 0 the one-particle and the two-
particle space are interacting with each other, the two generators Gpc(`) and Ggs,1p(`)
try to sort the eigenvalues in such a way that the eigenvalues of the one-triplon disper-
sion lie below the two-particle continuum, see figure 3.2 and section 3.2.3. Therefore,
the one-triplon dispersion of the effective model Heff lies at the lower edge of the
two-particle continuum in the region where the one-triplon dispersion merges with
the two-particle continuum. This is not completely achieved in practice because of the
finite range of processes which can be described by our truncation scheme in real space.

We truncate the range of the decay processes in real space. This means that the
distance between the generated two triplons is limited although the true scattering
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state comprises contributions up to infinite distance. As a result, the rearrangement of
the eigenvalues is only incomplete. Figure 4.13b illustrates that increasing the range of
the decay processes (e.g. increasing D3) implies that ω1(Q) approaches the lower band
edge of ω2(Q,q) from above more and more.

As stated before, the rearrangements of the states are unfavorable for two reasons.
Firstly, they imply a slow convergence, which may cause growing truncation errors.
Secondly, one usually defines the state with the largest spectral weight above the ground
state as the elementary excitation of the system and not a state with almost no spectral
weight, even if it is lower in energy. Strictly speaking, one scattering state inside the
continuum in an infinite large system has no spectral weight. To define a weight inside
the continuum an integration over a finite energy interval is necessary.

To avoid the rearrangement of the eigenstates, which leads to a potentially mis-
leading (quasi)particle picture, we employ the operator Ggs(`) (cf. figure 4.13b). The
generator Ggs(`) only yields an approximation for the one-triplon eigenvalues of the
effective Hamiltonian Heff. This is the case even in the region of the Brillouin zone
where the (quasi)particles are well defined. Due to our treatment of the problem in real
space, we cannot distinguish processes in different regions in momentum space easily.
To improve the results for the one-triplon dispersion one must include transitions to
states that consist of more than one particle. This is discussed below.

Here, we first want to show the results for the two-, three- and four-particle continua
(cf. equation (4.10), equation (4.14) and equation (4.15)) resulting from the approximate
one-triplon dispersion ω1(Q) in the case of the generator Ggs(`) for x = 0.5 and y = 0.1.
The boundaries of these continua are shown in figure 4.14b by solid lines. Additionally,
figure 4.14b shows the lower boundaries of the three- and four-particle continua2

emerging from the combination of the approximate one-triplon dispersion ω1(Q) and
the S = 0 bound state.

The two-particle bound states for S= 0 and S= 1 shown in figure 4.14b are calculated
by diagonalizing the effective Hamiltonian Heff in the subspace spanned by the single
triplon states (4.8) and the two-triplon states (4.13) with 0 < d1 < 120 for each given
value of Q (for details see appendix D)3. Since the subspace spanned by the states
(4.8) and (4.13) is not separated from states with higher number of triplons (cf. figure
D.1) we obtain, as for the one-triplon dispersion ω1(Q), only an approximation for the
bound states. Consequently, the depicted continua only represent approximations. The
restriction of the relative distance d1 in the two-triplon states (4.13) is less important.
Increasing d1 does not change the results perceivably.

For comparison, figure 4.14a shows the same quantities for the symmetric

2The names “three- and four-particle continuum” refer to the fact that the corresponding states consist
of three, respectively four, triplons in the basis of the effective Hamiltonian.

3Here we considered d1 < 120 only to be consistent with the later calculations which also include the
three-particle space. In principle, d1 ≈ 4000 is easily accessible in the two-particle space.
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Figure 4.14: Panel (b): Two-, three- and four-triplon continua of the AASHL with
x = 0.5 and y = 0.1. The solid blue lines represent the lower and upper boundaries
of the two-particle continuum. The other blue lines represent the S= 0 and the S= 1
two-particle bound states. Grey lines illustrate the boundaries of the three-particle
continuum, where the type of line corresponds to the two-particle state(s) used to
determine the three-particle continuum. Cyan lines illustrate the boundaries of the
four-particle continuum, where the type of line corresponds to the three-particle
state(s) used to determine the four-particle continuum. Panel (a): Analogous results
for the symmetric case with x = 0.5 and y = 0.0.

case x = 0.5 and y = 0, cf. section 4.1 and references [Uhrig & Schulz(1996),
Uhrig & Normand(1998), Damle & Sachdev(1998), Sushkov & Kotov(1998),
Trebst et al.(2000), Knetter et al.(2001)].

Note that the whole complex structure of the low-energy spectrum shown in fig-
ure 4.14 follows from the one-triplon dispersion, the triplon-triplon interaction, and
from the diagonalization of the effective Hamiltonian within the one- and two-triplon
subspace.

Spectral properties

In this subsection we improve the results presented in the former section for the one-
triplon dispersion which we obtained with the generator Ggs(`) for x = 0.5 and y = 0.1.
This is achieved by including transitions to three-triplon states. To describe the triplon
decay we calculate the zero temperature spectral density.

We start by analyzing the frequency and momentum resolved retarded zero tem-



132 Asymmetric antiferromagnetic spin S = 1/2 Heisenberg ladder

perature Green function

G(Q,ω) = lim
δ→0+

S=1
m=0

〈
Q
∣∣∣ [ω− (Heff(Q)−E0)+ iδ

]−1 ∣∣∣Q〉S=1

m=0
. (4.36)

The corresponding spectral density ρ(Q,ω) follows by taking the negative imaginary
part of G(Q,ω) divided by π

ρ(Q,ω) = − 1
π

ImG(Q,ω) . (4.37)

We only investigate the action of the effective Hamiltonian Heff on the state
∣∣∣Q〉S=1

m=0
to illustrate the description of quasiparticle decay by using the generator Ggs(`). We
do not transform any observables as before, cf. section 4.1.2. An investigation of the
dynamical structure factor of the AASHL is given in section 4.3.

The Green function is evaluated by tridiagonalization (Lanczos algo-
rithm, cf. appendix A), which leads to the continued fraction representation
[Zwanzig(1961), Mori(1965), Gagliano & Balseiro(1987), Pettifor & Weaire(1985),
Viswanath & Müller(1994)]

G(Q,ω) =
1

ω− a0(Q)−
b2

1(Q)

ω− a1(Q)−
b2

2(Q)

. . .

. (4.38)

The coefficients an(Q) and bn(Q) are calculated by repeated application of Heff(Q)−E0

on the initial state
∣∣∣Q〉S=1

m=0
with wave vector Q, spin S = 1, and Sz component m = 0

(for details see appendix A). Note that the continued fraction in the denominator on
the right hand side of (4.38) (proportional to b2

1(Q)/ω. . .) can be taken as a standard
self-energy whose imaginary part determines the decay rate.

In all practical calculations, we have to restrict ourselves to a certain subspace. For
this calculation, we considered the subspace spanned by∣∣∣Q〉S=1

m=0
(4.39a)∣∣∣Q,d1

〉S=1

m=0
(4.39b)∣∣∣Q,d1,d2,a

〉S=1

m=0
(4.39c)

with a = 1,2,3 and d1,d2 > 0 and d1,d1+d2 < 120, cf. table D.1 in appendix D. Thus we
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consider the restricted effective Hamiltonian

Hres
eff =H1

1(∞)+H2
2(∞)+H3

3(∞)+H2
1(∞)+H1

2(∞)+H3
1(∞)+H1

3(∞)+H3
2(∞)+H2

3(∞) .
(4.40)

The action of this restricted effective Hamiltonian Hres
eff on the considered subspace is

presented in appendix D. More details of the calculation of the spectral density are
given in appendix A.

Figure 4.15a shows the spectral density ρ(Q,ω) for x = 0.5 and y = 0.1. For Q / 0.2π
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(a) Spectral density of the AASHL for x = 0.5 and y = 0.1.
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Figure 4.15: Spectral density of the AASHL. Panel (a) shows the spectral density
of the AASHL for x = 0.5 and y = 0.1. Green crosses depict the renormalized
one-triplon dispersion obtained by using the generator Ggs(`) (truncation scheme:
Nt = 5, D= (12,10,10,6,6,5,5,4,4)) and (tri)diagonalization in the subspace (4.39). In
panel (b), a Lorentzian is fitted to the spectral density. The described quasiparticle
exhibits an inverse lifetime of γ ≈ 0.0201.

decaying triplons are observed. Their maximum density lies in the vicinity of the
approximate one-triplon dispersion. The region framed in green is shown in detail in
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figure 4.15b. In this region, we can fit our data to a Lorentzian

L(ω) =
A
π

γ

(ω−ω0)2+γ2
(4.41)

with

A ≈ 1.0848/J⊥ (4.42a)

ω0 ≈ 1.4938 J⊥ (4.42b)

and the inverse lifetime

γ ≈ 0.0201 J⊥ . (4.42c)

Note, that the fitting parameter A is greater than one which would correspond to a
quasiparticle weight greater than one. This illustrates once more that the usual Fermi
liquid like definition of the quasiparticle weight does not hold in this system, cf. section
2.2.

Besides the strong one-triplon peaks for Q / 0.2π the spectral density increases
distinctly at the beginning of the three-particle continuum involving the S = 0 bound
state for Q / 0.5π, cf. figure 4.15a. This illustrates that the existence of bound states
influences the form of the spectral density significantly. For an additional discussion
of the influence of the S = 1 bound state and a S = 2 anti-bound state on the spectral
density ρ(Q,ω) see [Fischer et al.(2010)].

Finally, we want to discuss the shift of the one-triplon dispersion caused by the
hybridization with two- and three-particle states. In the sequel, we refer to this shifted
one-triplon dispersion as renormalized one-triplon dispersion. The results for the
renormalized one-triplon dispersion are depicted in figure 4.13b and figure 4.15a by
green crosses.

We obtain the renormalized one-triplon dispersion by fixing the total momentum
Q and determining the root of the real part of the Green function G(Q,ω) (4.38) using
the subspace (4.39). To good accuracy, we retrieve the results obtained before by
the generators Gpc(`) and Ggs,1p(`) in the region of the Brillouin zone where the
quasiparticles are stable. Therefore, it is sufficient to consider the subspace (4.39) if one
wants to describe the one-triplon dispersion of the AASHL with x = 0.5 and y = 0.1
using the generator Ggs(`).

Note that the calculation in the subspace (4.39) does not lead to the correct band
edges of the triplon continuum because the shift of the one-triplon dispersion makes
itself felt only if we included four-particle states as well. Hence, this kind of calculation
is not fully self-consistent. In principle, there are possibilities to achieve consistency
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between the one-triplon dispersion and the band edges of the continua. But this issue
is beyond the scope of the present thesis.

In the region where the one-triplon dispersion hybridizes with the two-triplon
continuum the renormalized one-triplon dispersion indicates the energies with the
maximum spectral intensity ρ(Q,ω). These energies represent what is usually seen
as the energy of a quasiparticle with finite lifetime. The energies determined in this
way lie between what is obtained from the generator Ggs(`) in the one-triplon sector
(grey line in figure 4.13b) and what is obtained from the generator Gpc(`) or from the
generator Ggs,1p(`).

We emphasize that the advantage of the generator Ggs(`) compared to the generator
Gpc(`) or Ggs,1p(`) is that also the quasiparticle decay is described in the region of the
Brillouin zone where the one-triplon dispersion merges with the two-triplon contin-
uum. The generator Ggs(`) avoids rearrangement processes during the flow, which
lead to a potentially misleading quasiparticle picture. Thereby the CUT becomes more
robust. Hence, the proposed adapted generator achieves the initial goal to describe
decaying quasiparticles properly.

4.3 Dynamical structure factors for the asymmetric anti-

ferromagnetic spin S = 1/2 Heisenberg ladder

In the previous section it was shown that decaying quasiparticles can be described
by CUTs using the generator Ggs(`). Additionally, in this section observables are
transformed to determine the dynamical structure factor Szz(Q,ω) for the AASHL which
is experimentally accessible by inelastic neutron scattering (INS), cf. appendix F.

To determine the dynamical structure factor Szz(Q,ω) we use a continued fraction
representation of equation (4.19b)

Szz(Q,ω) = − 1
π

ImGzz(Q,ω) (4.43)
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with the retarded zero temperature Green function

Gzz(Q,ω) = lim
δ→0+

〈
0
∣∣∣ Sz

eff(−Q)
[
ω− (Heff(Q)−E0)+ iδ

]−1
Sz

eff(Q)
∣∣∣0〉 (4.44a)

=

〈
0
∣∣∣ Sz

eff(−Q) Sz
eff(Q)

∣∣∣0〉
ω− a0(Q)−

b2
1(Q)

ω− a1(Q)−
b2

2(Q)

. . .

(4.44b)

=
Szz(Q)

ω− a0(Q)−
b2

1(Q)

ω− a1(Q)−
b2

2(Q)

. . .

, (4.44c)

where again the coefficients an(Q) and bn(Q) are calculated by a Lanczos tridiagonal-
ization, see appendix A. The effective Hamiltonian Heff(Q) and the effective observ-
able Sz

eff(Q) have been obtained by the generator Ggs(`) using the truncation scheme
Nt = 5, D = (12,10,10,6,6,5,5,4,4) and NO

t = 3, DO = (10,10,8,8,6,6) (cf. section 3.4.3)
and a Fourier transformation (cf. appendix D, appendix E and appendix F). Again we
stopped the sCUTs at ` = 200. As in section 4.2.2 we restrict ourselves to the subspace

(4.39) given by
∣∣∣Q〉S=1

m=0
,
∣∣∣Q,d1

〉S=1

m=0
and

∣∣∣Q,d1,d2,a
〉S=1

m=0
with a = 1,2,3 and d1,d2 > 0 and

d1,d1+d2 < 120 (cf. appendix D) and consider the restricted effective Hamiltonian Hres
eff

(4.40). Thus the initial state of the Lanczos tridiagonalization
∣∣∣ψ0

〉
is given by∣∣∣ψ0

〉
= Sz

eff(Q)
∣∣∣0〉 (4.45a)

= CS=1,m=0
Sz|10

(Q)
∣∣∣Q〉S=1

m=0

+
∑
d1

[
CS=1,m=0

Sz|20
(Q)

]d1
∣∣∣Q,d1

〉S=1

m=0

+
∑
d1,d2

3∑
a=1

a[
CS=1,m=0

Sz|30
(Q)

]d1,d2 ∣∣∣Q,d1,d2,a
〉S=1

m=0
.

(4.45b)

For the definition of CS=1,m=0
Sz|10

(Q),
[
CS=1,m=0

Sz|20
(Q)

]d1 and
a[

CS=1,m=0
Sz|30

(Q)
]d1,d2 see equation

(F.16), (F.18) and (F.20). Then the equal-time structure factor Szz(Q) is given by

Szz(Q) =
∣∣∣CS=1,m=0

Sz|10
(Q)

∣∣∣2+∑
d1

∣∣∣∣[CS=1,m=0
Sz|20

(Q)
]d1

∣∣∣∣2+∑
d1,d2

3∑
a=1

∣∣∣∣ a[
CS=1,m=0

Sz|30
(Q)

]d1,d2
∣∣∣∣2 . (4.46)

Due to the restriction d1+d2 < 120 for the distances d1 and d2 a proper termination
of the continued fraction (4.44) is difficult, cf. appendix A.2. Thus in the following we
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use a slight broadening ω→ ω+ iδ with δ = 0.05. The number of used Lanczos steps n
is quoted in the respective figure captions.

In figure 4.16 the dynamical structure factor Szz(Q,ω) (4.43) of the AASHL for x= 0.5
and various values y > 0 is depicted. We use three-dimensional plots (left panels) and
color plots (right panels) to visualize the dynamical structure factor Szz(Q,ω). The inner
product Qb is set to Qb = π. In addition to results obtained by the generator Ggs(`)
and a Lanczos tridiagonalization as described above also the one-triplon dispersion
(4.9) (black line) and the ensuing two-triplon continuum (4.10) (blue lines in the (Q,ω)-
plane) obtained by the generator Ggs,1p(`) are shown. We want to emphasize once more
that the generator Ggs,1p(`) tends to interpret the energetically lowest states above the
ground state as the elementary excitations and not the state with the largest spectral
weight, cf. section 4.2. Nevertheless, its results help to check the validity of the results
obtained by the generator Ggs(`), especially in the region of the Brillouin zone where
the quasiparticles have infinite lifetime. The green crosses depict the renormalized
one-triplon dispersion determined by the root of the real part of the Green function
Gzz(Q,ω) (4.44), i.e.,

ReGzz(Q,ω) = Re
〈
0
∣∣∣ Sz

eff(−Q)
[
ω− (Heff(Q)−E0)+ iδ

]−1
Sz

eff(Q)
∣∣∣0〉 = 0 (4.47)

for δ = 0.05 and Qb = π which corresponds to ω−ω1(Q)−ReΣ(Q,ω) = 0. The red
circles depict the lowest energy level obtained by a diagonalization of Hres

eff (4.40) in the
subspace (4.39).

For x = 0.5 and y = 0.25 and for x = 0.5 and y = 0.5 the one-triplon dispersions do
not merge with the two-triplon continuum, see figure 4.16b and figure 4.16c. Therefore,
stable excitations exist in the whole Brillouin zone. This is a consequence of the
fact that with increasing coupling y the quasiparticles become less and less mobile (in
first order the next-neighbor hopping is given by x/2− y/4, cf. equation (4.7b)). Thus
increasing y does not necessarily enhance the quasiparticle decay. It can also lead to
stable excitations.

For x = 0.5 and y = 0.1 quasiparticle decay occurs but still a marked peak exists
inside the continuum, see figure 4.16a. A discussion of the width of the excitations is
given below, cf. section 4.3.2.

In figure 4.17 the dynamical structure factor Szz(Q,ω) (4.43) of the AASHL for x= 0.5
and y = 0.1,0.25,0.5 is depicted for Qb = 0. For all considered values of y a S = 1 bound
state exists for momenta Q ' 0.5 due to triplon-triplon interactions. Note, that in
the case of unstable quasiparticles (x = 0.5, y = 0.1) the definition of the continuum
is in some way arbitrary since one has to choose which states define the one-triplon
dispersion ω1(Q) inside the continuum, cf. equation (4.10). The depicted boundaries
of the two-triplon continuum (blue lines in the (Q,ω)-plane) are determined by the
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Figure 4.16: Dynamical structure factor Szz(Q,ω) of the AASHL for x = 0.5, Qb = π
and various values y > 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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Figure 4.17: Dynamical structure factor Szz(Q,ω) of the AASHL for x = 0.5, Qb = 0
and various values y > 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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one-triplon dispersion obtained by the generator Ggs,1p(`) (black line). Nonetheless,
if one used the renormalized one-triplon dispersion (green crosses) to define the two-
triplon continuum the boundaries of the two-triplon continuum would lie even higher
in energy since the renormalized one-triplon dispersion lies above the one-triplon
dispersion obtained by the generator Ggs,1p(`). Thus for momenta Q ' 0.5, in any
case, a stable excitation exists between the one-triplon dispersion and the two-triplon
continuum, the so-called S = 1 bound state. Since y , 0 traces of the S = 1 bound state
can also be found in the dynamical structure factor Szz(Q,ω) for Qb= π, cf. figure 4.16c.

As mentioned before, for x = 0.5 and y = 0.1 decay occurs but still marked peaks
inside the continuum can be observed. A possibility to increase the width of these peaks
is to increase the interaction y. Unfortunately, increasing y leads to quasiparticles which
are less mobile. This may produce stable excitations within the whole Brillouin zone,
see figure 4.16b and figure 4.16c. To prevent the formation of a stable excitation for
larger y one has to increase the interaction x as well. Another possibility is to consider
asymmetric ferro-antiferromagnetic spin S = 1/2 Heisenberg ladders (AFASHLs) with
y < 0. In first order the mobility of the triplons is given by x/2− y/4, cf. equation 4.6.
According to this, a positive interaction y > 0 decreases the mobility of the triplons
while a negative interaction y < 0 increases their mobility. The width is in first order
proportional to y2 (see equation (4.6)) and thereby insensitive to the sign of y. AFASHLs
are discussed in the next chapter 5.

Figure 4.18 shows the dynamical structure factor Szz(Q,ω) of the AASHL for x= 0.75
and y = 0.1, 0.25, 0.5 for Qb = π. The analogous quantities for Qb = 0 are depicted in
figure 4.19. Figure 4.20 and figure 4.21 display results for x = 1.0 and y = 0.1, 0.25, 0.5.

For x = 0.75, y = 0.5 (cf. figure 4.18c) and for x = 1.0, y = 0.5 (cf. figure 4.20c) the
renormalized one-triplon dispersion (green crosses) and the lowest S = 1 eigenvalues
obtained by the generator Ggs(`) and a diagonalization of the Hamiltonian Hres

eff in the
subspace 4.39 (red circles) coincide in the whole Brillouin zone. This indicates that
stable elementary excitations exist for all momenta Q. For x= 0.75, y= 0.5 the scenario of
stable quasiparticles within the whole Brillouin zone is supported by results obtained
by the generator Ggs,1p(`), see figure 4.18c. The one-triplon dispersion (black line) lies
below the lower edge of the continuum (blue line) for all momenta Q. In contrast,
for x = 1.0, y = 0.5 the one-triplon dispersion (black line) merges with the continuum
(blue line) for Q/ 0.1π. Thus calculations with the generator Ggs,1p(`) indicate unstable
quasiparticles for x = 1.0, y = 0.5 and Q / 0.1π.

The differences between the results obtained by the generator Ggs(`) and the results
obtained by the generator Ggs,1p(`) seem to be mainly caused by the incomplete self-
consistency in the analysis of the effective Hamiltonian Hres

eff . The energy of the lower
band edge of the continuum around Q ≈ 0 is determined by the one-triplon dispersion
around Q ≈ π. For Q = 0 the lower band edge should lie at 2∆ with the gap energy ∆
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Figure 4.18: Dynamical structure factor Szz(Q,ω) of the AASHL for x= 0.75, Qb= π
and various values y > 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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(a) x = 0.75, y = 0.1, number of Lanczos steps n = 60
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(b) x = 0.75, y = 0.25, number of Lanczos steps n = 60
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(c) x = 0.75, y = 0.5, number of Lanczos steps n = 70

Figure 4.19: Dynamical structure factor Szz(Q,ω) of the AASHL for x = 0.75, Qb = 0
and various values y > 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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(b) x = 1.0, y = 0.25, number of Lanczos steps n = 50
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Figure 4.20: Dynamical structure factor Szz(Q,ω) of the AASHL for x = 1.0, Qb = π
and various values y > 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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(a) x = 1.0, y = 0.1, number of Lanczos steps n = 50
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(b) x = 1.0, y = 0.25, number of Lanczos steps n = 50
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(c) x = 1.0, y = 0.5, number of Lanczos steps n = 50

Figure 4.21: Dynamical structure factor Szz(Q,ω) of the AASHL for x = 1.0, Qb = 0
and various values y > 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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located at Q=π. For Q' 0.5π the lowest S= 1 eigenvalues obtained by a diagonalization
of the Hamiltonian Hres

eff in the subspace 4.39 (red circles) coincide with the one-triplon
dispersion obtained by the generator Ggs,1p(`). Therefore, for a fully self-consistent
calculation the lowest S = 1 eigenvalue (red circles) should coincide with the lower
edge of the continuum (blue line) in the vicinity of Q = 0 for unstable excitations.
Especially for x = 1.0 the incomplete self-consistency becomes obvious. Note, that
in the case of quasiparticle decay the black line around Q = 0 has no significance in
describing the excitations with maximal spectral weight, cf. section 4.2.

For x= 0.75,1.0 and x= 0.1,0.25 quasiparticle decay can be observed, see figure 4.18a,
figure 4.18b, figure 4.20a and figure 4.20b. As expected the width of the excitations
inside the continuum increases with increasing interaction y.

Figure 4.19 and figure 4.21 show results for Qb = 0. In all cases an excitation can
be observed for Q ' 0.4π close to the lower band edge of the continuum. The question
arises, if this excitation is a bound state with infinite lifetime. For x = 0.75, y = 0.1, 0.25
and x = 1.0, y = 0.1, 0.25, 0.5 the blue line specifying the lower edge of the continuum
dips below the excitation around Q ≈ π. Thus in this region of the Brillouin zone
the excitation most likely will have a (small) finite width. Nevertheless, it seems that
a S = 1 bound state with infinite lifetime exists in the middle of the Brillouin zone
around Q ≈ 0.5π which becomes a resonance for Q→ π.

For all pairs (x, y) for which the AASHL shows quasiparticle decay the one-triplon
dispersion ω1(Q) = a0(Q) does not allow for additional minima within the two-particle
continuum effecting the decay, cf. section 2.4. Therefore, the peaks inside the continuum
are either continued by the one-triplon branch (scenario (i), cf. section 2.2) or by the
two-triplon bound state (scenario (ii), cf. section 2.3) while the one-triplon branch is
pushed below the continuum and stays stable in the region where the bound state starts
to decay.

For x = 0.5 and y = 0.1 it seems that the peaks inside the continuum are continued
by the one-triplon branch (scenario (i)), cf. figure 4.16a. In contrast, for x = 0.75, 1.0
and y = 0.25 a two-peak structure occur around Q ≈ 0.2π in the dynamical structure
factor Szz(Q,ω), see figure 4.18b and 4.20b. This suggest, that the decay is influenced
by the bound state (scenario (ii)). Calculations for y = 0.75, 1.0 and x = 0.0 support
this scenario. They show that the one-triplon dispersion crosses the two-particle S = 1
bound state below the continuum, see figure 4.9b and figure 4.9c. According to this,
scenario (ii) should also occur for x = 0.75, 1.0 and y = 0.1. Unfortunately, no evidence
for scenario (ii) can be found in figures 4.18a, 4.19a, 4.20a and 4.21a. This might be
caused by the fact that the interaction y= 0.1 is too small to produce a pronounced level
repulsion which can be observed in the broadened result shown in figures 4.18a–4.21a.
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4.3.1 Equal-time structure factors Szz(Q) and spectral weights

Next, we want to discuss the equal-time structure factor Szz(Q). Figure 4.22 displays
Szz(Q) for Qb = π (dashed lines), Szz(Q) for Qb = 0 (dotted lines) and the sum of these
two quantities (solid lines) normalized to the total spectral weight I (F.13) for various
interactions x and y. Most of the spectral weight is gathered in the channel with Qb=π.
As in the symmetric case for y = 0 (cf. section 4.1.2), increasing x shifts more and more
spectral weight from momenta around Q = 0 to momenta around Q = π , see figure
4.22a, figure 4.22b and figure 4.22c. Increasing y has the opposite effect. By increasing
y more and more spectral weight is shifted from momenta around Q = π to momenta
around Q = 0.

In table 4.3 the relative spectral weights Irel
∣∣∣
Qb := I

∣∣∣
Qb/I for Qb = π and Qb = 0 are

listed. We emphasize that the sum of Irel
∣∣∣
Qb=π and Irel

∣∣∣
Qb=0 fulfills the sum rule (F.13)

Table 4.3: Relative spectral weights Irel
∣∣∣
Qb.

x y Irel
∣∣∣
Qb=π Irel

∣∣∣
Qb=0 Irel

∣∣∣
Qb=π+ Irel

∣∣∣
Qb=0

0.50 0.10 0.93272 0.06732 1.00004

0.50 0.25 0.94408 0.05598 1.00006

0.50 0.50 0.96402 0.03605 1.00007

0.75 0.10 0.86405 0.13608 1.00013

0.75 0.25 0.87012 0.12999 1.00011

0.75 0.50 0.88017 0.12000 1.00017

1.00 0.10 0.80877 0.19238 1.00115

1.00 0.25 0.80926 0.19170 1.00096

1.00 0.50 0.80790 0.19303 1.00093

very well. This justifies the restriction to the subspace 4.39, at least for the transformed
local spin operator Sz

l (r). The spectral weight of states with four or more triplons seems
to be negligible.

The distribution of the spectral weight is mainly influenced by the parameter x.
Increasing x shifts more and more spectral weight from the channel with Qb = π to the
channel with Qb = 0. For x = 0.5 and x = 0.75 increasing y slightly thwarts this shift.
Interestingly, for x = 1.0 the effect of the interaction y is negligible.
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(a) Equal-time structure factor Szz(Q) normalized to the total spectral weight I for
x = 0.5 and various y > 0.

Szz
(Q

)/
I

Q/π

x = 0.75, y = 0.10
x = 0.75, y = 0.25
x = 0.75, y = 0.50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0

(b) Equal-time structure factor Szz(Q) normalized to the total spectral weight I for
x = 0.75 and various y > 0.

Szz
(Q

)/
I

Q/π

x = 1.0, y = 0.10
x = 1.0, y = 0.25
x = 1.0, y = 0.50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0

(c) Equal-time structure factor Szz(Q) normalized to the total spectral weight I for
x = 1.0 and various y > 0.

Figure 4.22: Equal-time structure factor Szz(Q) normalized to the total spectral
weight I for various interactions x and y > 0. Dashed lines indicate Szz(Q) for
Qb = π, dotted lines indicate Szz(Q) for Qb = 0 and solid lines indicate the sum of
the two structure factors.
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4.3.2 Quasiparticle lifetime

In section 2.2 we have shown that the usual definition of the quasiparticle weight Z(Q)
does not apply inside the continuum for the spin systems under study. Therefore, we
solely use the inverse quasiparticle lifetime, respectively the width of the resonances,
to describe the decay processes.

To determine the width we use a continued fraction representation of the self-energy
Σ(Q,ω) given by

Gzz(Q,ω) =
Szz(Q)

ω− a0(Q)−Σzz(Q,ω)
(4.48)

and

Σzz(Q,ω) =
b2

1(Q)

ω− a1(Q)−
b2

2(Q)

ω− a2(Q)−
b2

3(Q)

. . .

, (4.49)

cf. equation (4.44) for Qb = π. The width of the quasiparticle is then given by

γ(Q) = −ImΣzz(Q,ω1,r(Q)) , (4.50)

where the renormalized one-triplon dispersion ω1,r(Q) is given by the roots of the real
part on the Green function Gzz(Q,ω) indicated by green crosses in figure 4.16-4.21.

It turns out to be convenient to use a slightly broadened Green function Gzz(Q,ω)
to determine the position of a renormalized quasiparticle and to use a terminated
(cf. appendix A.2) self-energy Σzz(Q,ω) to calculate the width of the renormalized
quasiparticle.

Figure 4.23 shows the width γ(Q) in units of J⊥ = 1 for pairs (x, y) for which the
AASHL shows quasiparticle decay. The triplons start to decay when they merge with
the continuum. As expected the width γ(Q) increases with increasing interaction y.
But interestingly, the width γ(Q) decreases with increasing interaction x. Typically,
however, the width is quite small (γ(Q) / 0.08). For all considered interactions x and y
the width has a maximum close to the point where the one-triplon dispersion merges
with the continuum indicating the relevance of two-particle interactions (cf. figure
2.19) and hopping terms exceeding nearest-neighbor interactions (cf. figure 2.24). The
dashed grey line indicates the widthγ(Q) obtained by a broadened (δ= 0.05) self-energy
Σzz(Q,ω) for x= 0.75 and y= 0.25. The broadening smears out the transition from stable
excitations with infinite lifetime to unstable excitations with finite lifetime inside the
continuum. For that reason, we usually use a terminated self-energy Σzz(Q,ω) to
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Figure 4.23: Width γ(Q) for various interactions x > 0 and y > 0. For Q / 0.2π
the triplons decay. The dashed grey line indicates the width γ(Q) obtained by a
broadened (δ = 0.05) self-energy Σzz(Q,ω) for x = 0.75 and y = 0.25.

determine the width of the renormalized quasiparticle. Note, that the dashed grey line
is convex up to Q = 0.2π . This is not the case for the corresponding width obtained by
a terminated self-energy Σzz(Q,ω) which indicates numerical inaccuracies due to the
previously mentioned difficulties of a proper termination.

In summary we found, that quasiparticle decay indeed occurs in the AASHL. But
generically marked peaks inside the continuum can still be observed (cf. figure 4.16,
figure 4.18 and figure 4.20) since the width of the excitations is small, see figure 4.23.
Basically, one observes a reduction of spectral weight within the equal-time structure
factor Szz(Q), cf. figure 4.22. The fact that increasing the interaction y leads to less mobile
quasiparticles and thus may lead to stable excitations within the whole Brillouin zone
counteracts the tendency of increasing line width on increasing y. Therefore, in the
next chapter 5 we discuss the AFASHL with y < 0. We will see that the decay in the
AFASHL is considerably larger than in the AASHL.

4.4 Chapter summary

In this chapter the low energy spectrum of the asymmetric antiferromagnetic spin
S= 1/2 Heisenberg ladder (AASHL) was investigated by self-similar continuous unitary
transformations (sCUTs). Energy properties as well as spectral properties are discussed.

Starting from the symmetric ladder where quasiparticle decay is not permitted due
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to a reflection symmetry, the AASHL is discussed in detail. In that model an interaction
breaking the reflection symmetry leads to spontaneous quasiparticle decay (SQPD).
The behavior of the flow equations for different generators is illustrated. In the case
of SQPD only the generator Ggs(`) leads to a robust flow which is consistent with the
general considerations presented in chapter 3.

Finally, results for the dynamical structure factors of the AASHL are shown. It
turns out, that the SQPD in the AASHL can be influenced by a S = 1 bound state.
Additionally the SQPD remains quite small, i.e., the decaying quasiparticles have a
large lifetime. This follows from the fact that increasing the parameter which causes
the decay simultaneously decreases the mobility of the triplon whereby stable quasi-
particles below the continuum are produced. Thus the AASHL where all interaction
are antiferromagnetic is not an ideal model to study large SQPD. We will see in the
next chapter 5 that an asymmetric ladder with one ferromagnetic interaction is more
suitable to study quasiparticle decay.



Chapter 5

Asymmetric ferro-antiferromagnetic
spin S = 1/2 Heisenberg ladder

The model of the asymmetric ferro-antiferromagnetic spin S = 1/2 Heisenberg ladder
(AFASHL) is depicted in figure 5.1. As in the case of the asymmetric antiferromagnetic

rr−1r−2 r+2r+1

rr−1r−2 r+2r+1

bJ⊥ Jdiag

J‖

1

2

Figure 5.1: Schematic representation of the asymmetric ferro-antiferromagnetic
spin S = 1/2 Heisenberg ladder (AFASHL). Circles indicate spins with spin S = 1/2.
Solid lines stand for couplings. The coupling J⊥ and J‖ are assumed to be positive,
i.e. J⊥, J‖ > 0 while the diagonal coupling is assumed to be negative, i.e. Jdiag < 0.
Ladder rungs are defined by the vector b. In the following, the dimensionless
parameters x := J‖/J⊥ > 0 and y := Jdiag/J⊥ < 0 are used and the perpendicular coupling
is set to be one, i.e. J⊥ = 1. The additional diagonal interaction Jdiag breaks the
reflection symmetry and hence induces a hybridization between the one-triplon
states and the two-triplon continuum.

spin S = 1/2 Heisenberg ladder (AASHL), the AFASHL is described by the Hamiltonian
(4.1). Again we use the dimensionless parameters x = J‖/J⊥ and y = Jdiag/J⊥, where we
set the perpendicular coupling to unity, i.e. J⊥ = 1. In contrast to the previous chapter
4 where the model of the (4.1) was discussed for solely positive interactions x > 0 and
y > 0, in this chapter we focus on the case with a ferromagnetic interaction y < 0. We
will see, that a ferromagnetic coupling y < 0 is more suited for an investigation of large
quasiparticle decay in the asymmetric ladder (4.1) than an antiferromagnetic coupling
y > 0.

As mentioned before, cf. chapter 4, for y→−∞ the model is equivalent to the S = 1
Haldane chain. Note, that in the S = 1 Haldane chain quasiparticle decay was indeed
observed experimentally [Zaliznyak et al.(2001)]. Zaliznyak et al. observed a gradual
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crossing of the single-particle mode over to a narrow continuum for momenta Q≤ 0.5π
in inelastic neutron scattering (INS) data of CsNiCl3.

5.1 Dynamical structure factors for the asymmetric ferro-

antiferromagnetic spin S = 1/2 Heisenberg ladder

To investigate spontaneous quasiparticle decay (SQPD) in the AFASHL we calculate the
dynamical structure factor Szz(Q,ω) by self-similar continuous unitary transformations
(sCUTs). In this section only the results for the dynamical structure factor Szz(Q,ω) are
given and discussed. Details of the calculations were given in section 4.3.

Figures 5.2-5.7 depict the dynamical structure factor Szz(Q,ω) (4.43) of the AFASHL
for x = 0.5, 0.75 and x = 1.0 and various values y < 0. Results for the dynamical
structure factor Szz(Q,ω), the renormalized one-triplon dispersion (green crosses) and
the lowest energy level of Hres

eff (4.40) in the subspace (4.39) (red circles) are determined
from the generator Ggs(`), cf. section 4.3. Additionally, the one triplon dispersion (4.9)
(black line) and the ensuing two-triplon continuum (4.10) (blue lines in the (Q,ω)-plane)
obtained by the generator Ggs,1p(`) are depicted.

In figure 5.2, figure 5.4 and in figure 5.6 the inner product Qb is set to Qb = π. The
main difference to the dynamical structure factors Szz(Q,ω) with solely antiferromag-
netic interactions is that quasiparticle decay can still be observed for interactions y < 0
with larger absolute value. Stable quasiparticles within the whole Brillouin zone do
not emerge. Thus it is possible to discuss decay for y = −0.5.

In figure 5.3, figure 5.5 and in figure 5.7 the inner product Qb is set to Qb= 0. As for
positive y a marked peak can be observed for momenta around Q ≈ π which vanishes
for small momenta around Q ≈ 0. Decreasing the parameter y reduces binding effects
(in first order binding effects are proportional to x/2+ y/4, cf. equation (4.7c) and equation
(4.7d)). This can be seen in figure 5.3, figure 5.5 and in figure 5.7. Only for x = 0.5,
y = −0.1, −0.25 and for x = 0.75, y = −0.1, and only around Q ≈ 0.5π, marked peaks lie
below the two-particle continuum obtained by the generator Ggs,1p(`) which indicate
S = 1 bound states. Around momenta Q ≈ π the peaks always lie inside the continuum.

The incomplete self-consistency of the results obtained by the generator Ggs(`) and
a subsequent (tri)diagonalization can again be observed in the shown results. The
red circles do not coincide with the lower edge of the continuum (blue line in the
(Q,ω)-plane) obtained by the generator Ggs,1p(`) for Q ≈ 0 although they do for Q ≈ π.

As for the AASHL the one-triplon branch does not allow for additional minima
within the two-triplon continuum effecting the decay, cf. section 2.4. But again, two-
triplon interactions seem to be important (scenario (ii), cf. section 2.3). Especially,
for x = 0.75, 1.0 and y = −0.25, − 0.5 a two peak structure occur around Q = 0.3π in
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(c) x = 0.5, y = −0.5, number of Lanczos steps n = 70

Figure 5.2: Dynamical structure factor Szz(Q,ω) of the AFASHL for x = 0.5, Qb = π
and various values y < 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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Figure 5.3: Dynamical structure factor Szz(Q,ω) of the AFASHL for x = 0.5, Qb = 0
and various values y < 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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Figure 5.4: Dynamical structure factor Szz(Q,ω) of the AFASHL for x= 0.75, Qb= π
and various values y < 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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Figure 5.5: Dynamical structure factor Szz(Q,ω) of the AFASHL for x = 0.75, Qb = 0
and various values y < 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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Figure 5.6: Dynamical structure factor Szz(Q,ω) of the AFASHL for x = 1.0, Qb = π
and various values y < 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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(c) x = 1.0, y = −0.5, number of Lanczos steps n = 50

Figure 5.7: Dynamical structure factor Szz(Q,ω) of the AFASHL for x = 1.0, Qb = 0
and various values y < 0 calculated by using the generator Ggs(`) and Lanczos
tridiagonalization as described in the text (broadening: δ = 0.05). The solid black
line depicts the one-triplon dispersion and blue lines in the (Q,ω)-plane depict the
borders of the two-triplon continuum obtained by the generator Ggs,1p(`). Green
crosses depict the renormalized one-triplon dispersion obtained by the generator
Ggs(`) and equation (4.47). Red circles depict the lowest energy level obtained by a
diagonalization in the subspace (4.39).
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the dynamical structure factor Szz(Q,ω), cf. figures 5.4–5.7 panels (b) and (c). The
small peaks for Q / 0.3π occurring in figures 5.4b, 5.4c, 5.6b and figure 5.6c for Qb = π
indicated by the green crosses are continued by resonances for Qb = 0 and Q ' 0.3π,
see figures 5.5b, 5.5c, 5.7b and figure 5.7c. This supports a scenario of level repulsion.

5.1.1 Equal-time structure factors Szz(Q) and spectral weights

In figure 5.8 the equal-time structure factor Szz(Q) for x = 0.5, 0.75, 1.0 and various
values y < 0 is depicted for Qb = π (dashed lines) and for Qb = 0 (dotted lines). The
solid lines depict the sum of the equal-time structure factor Szz(Q) for Qb = π and
Qb = 0.

Most of the spectral weight is found in the channel with Qb = π. Again, (cf. section
4.1.2 and section 4.3.1) increasing the coupling x shifts more and more weight from
momenta around Q = 0 to momenta around Q = π, see figure 5.8a, figure 5.8b and
figure 5.8c. This effect is slightly enhanced by decreasing y.

In table 5.1 the relative spectral weights Irel
∣∣∣
Qb := I

∣∣∣
Qb/I for Qb = π and Qb = 0 are

listed. Also for y < 0 the sum rule (F.13) is very well fulfilled. Thus for the transformed

Table 5.1: Relative spectral weights Irel
∣∣∣
Qb.

x y Irel
∣∣∣
Qb=π Irel

∣∣∣
Qb=0 Irel

∣∣∣
Qb=π+ Irel

∣∣∣
Qb=0

0.50 -0.10 0.91848 0.08155 1.00002

0.50 -0.25 0.90853 0.09150 1.00004

0.50 -0.50 0.89344 0.10672 1.00015

0.75 -0.10 0.85632 0.14395 1.00027

0.75 -0.25 0.85090 0.15956 1.00046

0.75 -0.50 0.84264 0.15827 1.00091

1.00 -0.10 0.80740 0.19415 1.00154

1.00 -0.25 0.80607 0.19585 1.00192

1.00 -0.50 0.80361 0.19903 1.00264

local spin operator Sz
l (r) the restriction to the subspace 4.39 is well justified.

By increasing the coupling x more and more spectral weight is shifted from the
channel with Qb = π to the channel with Qb = 0. Decreasing the interaction y slightly
amplifies this shift, so that for the considered parameters x and y the parameter set
x = 1.0 and y = −0.5 shows the largest shift.
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Figure 5.8: Equal-time structure factor Szz(Q) normalized to the total spectral weight
I for various interactions x and y< 0. Dashed lines indicate Szz(Q) for Qb=π, dotted
lines indicate Szz(Q) for Qb = 0 and solid lines indicate their sum.
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5.1.2 Quasiparticle lifetime

Finally, we discuss the inverse lifetime, the line width respectively, of the elementary
excitations in the AFASHL.

As described in section 4.3.2 we use a terminated continued fraction representation
of the self-energy Σ(Q,ω) (4.49) to determine the width γ(Q) (4.50) of the renormalized
quasiparticles indicated by green crosses in figures 5.2–5.7. Details of the termination
of the continued fractions are given in appendix A.2.

Figure 5.9 shows the width γ(Q) for various values of x > 0 and y < 0. For all

γ
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)

Q/π
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Figure 5.9: Width γ(Q) for various interactions x > 0 and y < 0. For Q / 0.3π the
triplons decay.

considered parameter pairs (x, y) the triplons decay. The maximal width (γ(Q) ≈ 0.25)
occurs for the parameter set x = 0.5 and y = −0.5 at Q = 0.3π. Note, that for these
parameters and Q = 0.3π still an excitation with considerable weight exist below the
renormalized quasiparticle (green cross), see figure 5.2c. Thus it is possible that a stable
quasiparticle still exists below the continuum. Nevertheless, for smaller momenta Q
only the excitation inside the continuum remains.

As expected, the width γ(Q) increases by increasing the absolute value of y. As for
the AASHL increasing the interaction x leads to a smaller width.

The possibility to use higher absolute values of the parameter y in the AFASHL
compared to the AASHL leads to the appearance of larger widths in the AFASHL,
cf. figure 4.23 and figure 5.9.

The previously mentioned (cf. section 4.3.2) maximum of the width close to the point
where the one-triplon dispersion merges with the continuum appears in the AFASHL,
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as well.
In figure 5.10 the width γ(Q) is depicted for Q = 0 as function of y2 for various

interactions x > 0 and y < 0. Approximately the width γ(Q) at Q = 0 is given by a
γ

(Q
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Figure 5.10: Width γ(Q) at Q = 0 as function of y2 for various interactions x > 0 and
y < 0. Solid lines are linear fits (γ(Q = 0) = ay2).

quadratic function of y, e.g. γ(Q = 0) = ay2 . In table 5.2 the fitting parameter a is listed
for x = 0.5, 0.75, 1.0.

Table 5.2: Fitting parameter a for x = 0.5, 0.75, 1.0 (γ(Q = 0) = ay2).

x a

0.50 0.5187±0.0173

0.75 0.1878±0.0050

1.00 0.0763±0.0032

5.2 Chapter summary

In this chapter dynamical structure factors of asymmetric ferro-antiferromagnetic spin
S = 1/2 Heisenberg ladder (AFASHL) were discussed. Self-similar continuous unitary
transformations sCUTs were used to calculate the dynamical structure factors. Thereby
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a quantitative description of spontaneous quasiparticle decay (SQPD) in the AFASHL
was achieved.

The AFASHL shows a significant SQPD for larger absolute values of the reflection
symmetry breaking interaction, in contrast to the asymmetric antiferromagnetic spin
S = 1/2 Heisenberg ladder (AASHL). Thus the AFASHL is more suitable to study large
quasiparticle decay. Again, for sufficiently large interactions x the SQPD is influenced
by two-triplon interactions.

The results presented in this chapter explain why SQPD was observed in isopropy-
lammonium trichlorocuprate(II) (CH3)2CHNH3CuCl3 (IPA-CuCl3) partly described by
an AFASHL. A detailed discussion of IPA-CuCl3 is given in the next chapter 6.
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Chapter 6

IPA-CuCl3

The salt isopropylammonium trichlorocuprate(II) (CH3)2CHNH3CuCl3 (IPA-
CuCl3) is an excellent system to study two fascinating phenomena recently
observed in low-dimensional quantum spin systems. The elementary S = 1
excitations, triplons [Schmidt & Uhrig(2003)], show spontaneous quasiparticle
decay (SQPD) at higher energies so that the triplons exist only in a restricted
part of the Brillouin zone [Masuda et al.(2006)]. Additionally, inelastic neutron
scattering (INS) provides evidence for an almost exact realization of a Bose-
Einstein condensation (BEC) in IPA-CuCl3 for strong enough magnetic fields
[Garlea et al.(2007), Zheludev et al.(2007)], which was theoretically proposed for
coupled spin ladders [Giamarchi & Tsvelik(1999)].

Since the characterization of IPA-CuCl3 by Roberts et al. [Roberts et al.(1981)] vari-
ous spin models were discussed. Manaka et al. pointed out that the magnetic suscepti-
bility of IPA-CuCl3 can be explained by a ferro-antiferromagnetically alternating spin
S = 1/2 Heisenberg chain with a ferromagnetic coupling twice as large as the antiferro-
magnetic coupling [Manaka et al.(1997)]. According to Hida [Hida(1992)] the magnetic
ground state is thus given by a gapped Haldane state [Haldane(1983)].

The dispersion measured by INS [Masuda et al.(2006)] and the crystal structure of
IPA-CuCl3 indicates that the system is quasi two-dimensional. It is described by weakly
coupled asymmetric spin S = 1/2 Heisenberg ladders, see figure 6.1. The Hamiltonian
reads

HIPA-CuCl3 =H1D+Hint (6.1a)

H1D = J1

∑
r,s

S1(r,s)S2(r+1,s)+ J3

∑
r,s

S1(r,s)S2(r,s)

+ J2

∑
r,s

(
S1(r,s)S1(r+1,s)+S2(r,s)S2(r+1,s)

) (6.1b)

Hint = J4

∑
r,s

S1(r,s)S2(r+1,s+1) (6.1c)
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Figure 6.1: Sketch of IPA-CuCl3. Circles indicate Cu ions with spin S = 1/2. The
couplings J1 and J4 are ferromagnetic (J1, J4 < 0) while J2 and J3 are antiferromagnetic
(J2, J3 > 0). Two spins linked by J3 form a dimer. A unit cell of IPA-CuCl3 is spanned
by the vectors a and c and a basis vector d, cf. reference [Masuda et al.(2006)].

with two ferromagnetic couplings J1, J4 < 0 and two antiferromagnetic couplings J2,
J3 > 0. The dominant dimer coupling is J3 so that we use the dimensionless ratios
x = J2/J3, y = J1/J3 and z = J4/J3 to characterize the system. Let us first consider the
ladders as isolated because the interladder coupling J4 is small. The standard view of
these ladders takes the J3 bonds to form the rungs of the ladder. Then J1 is a diagonal
bond, cf. chapter 4 and chapter 5, see figure 6.2.

The key element of this model is the asymmetry of the spin ladders controlled by J1.
On the one hand, the presence of J1 spoils the reflection symmetry about the center line
of the ladder between the legs, cf. section 4.1. This symmetry would imply a conserved
parity such that the triplons on the dimers could be changed only by an even number
[Knetter et al.(2001), Schmidt & Uhrig(2005)] so that no decay of a triplon into a pair of
triplons could occur. Hence the very presence of J1 in IPA-CuCl3 opens an important
decay channel for quasiparticle decay.

On the other hand, the two bonds J2 and J1 represent the coupling of adjacent
dimers. Both contribute to the hopping of the triplons which is given in leading
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Figure 6.2: Upper panel: Ladder structure in IPA-CuCl3. Lower panel: Standard
view of this ladder.

order by 2J2 − J1 [Uhrig & Schulz(1996)] (cf. chapter 4) while the interaction of
adjacent triplons is proportional to 2J2+ J1. With information only on the dispersion
[Masuda et al.(2006)] it is impossible to determine J1 and J2 separately. Hence, the
same feature that induces the interesting quasiparticle decay makes it particularly
difficult to establish a microscopic model. Thus, in spite of many years of
intensive studies [Roberts et al.(1981), Manaka et al.(1997), Manaka & Yamada(2000),
Masuda et al.(2006), Garlea et al.(2007), Manaka et al.(2007), Hong et al.(2010)] no
quantitative microscopic model for IPA-CuCl3 is established. This chapter aims at
filling this gap. Theoretically, the determination of the magnetic couplings J1, J2, J3 and
J4 in IPA-CuCl3 is based on self-similar continuous unitary transformations (sCUTs)
of models with quasiparticle decay, see chapter 3, chapter 4 and chapter 5, to
describe INS. To describe the magnetic susceptibility χ(T) high temperature series
expansions (HTSEs) for asymmetric spin ladders which are topologically equivalent to
dimerized and frustrated spin chains [Bühler et al.(2001)] are used. The experimental
input used are INS data [Masuda et al.(2006)] and magnetic susceptibility χ(T) data
[Manaka et al.(1997)]. We illustrate why it is intrinsically difficult to determine the
microscopic model.

After we will have determined the microscopic model of IPA-CuCl3 (cf. section 6.1)
we calculate the dynamical structure factor Szz(Q,ω) to describe the SQPD occurring in
IPA-CuCl3, see section 6.2. Since IPA-CuCl3 is to a great extent described by asymmetric
ferro-antiferromagnetic spin S = 1/2 Heisenberg ladders (AFASHLs) it is not surprising
that SQPD was observed in this compound, cf. reference [Masuda et al.(2006)] and
chapter 5.

Finally, we compute the magnetic field and the temperature dependence of the
lowest magnetic modes in the Bose-condensed phase, cf. section 6.3 and section 6.4.
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The calculation of the magnetic field dependence as well as the calculation of the
temperature dependence are based on the effective model previously obtained by
sCUTs.

6.1 Magnetic couplings of IPA-CuCl3

To determine the magnetic couplings of IPA-CuCl3 we start with sCUTs using the
generator Ggs,1p(`), cf. section 3.2.3. In chapter 4 and in chapter 5 it was illustrated that
this generator produces reliable results for the one-triplon dispersion in the region of
the Brillouin zone where the excitations are stable.

As mentioned before INS data [Masuda et al.(2006)] imply that the interladder cou-
pling J4 is small compared to the remaining couplings J1, J2 and J3. Thus, we start with
the limit of isolated asymmetric ladders described by H1D (6.1b). The Hamiltonian H1D
is precisely described by the AFASHL discussed in chapter 5.

The sCUT maps the Hamiltonian H1D to an effective model where the one-triplon
sector is given by

H1D,eff
∣∣∣1
1 = J3

∑
r,s

∑
α

∑
d

[
cH1D|11

]
d

t†α,r,stα,r+d,s (6.2)

with the triplon creation operators t†α,r,s and annihilation operators tα,r,s in real space and
the spin polarization α ∈ {

x, y,z
}
. Here we use the generator Ggs,1p(`) and the truncation

scheme Nt = 4 with D= (10,8,8,6,6,4,4). The Hamiltonian H1D,eff
∣∣∣1
1 can be diagonalized

by a Fourier transformation

t†α,r,s :=
1√
N

1√
N

∑
h,l

e2πi(hr+ls) t†α,h,l (6.3a)

tα,r,s :=
1√
N

1√
N

∑
h,l

e−2πi(hr+ls) tα,h,l (6.3b)

(6.3c)

yielding

H1D,eff
∣∣∣1
1 = J3

∑
h,l

∑
α

ω1(h) t†α,h,ltα,h,l (6.4)

in terms of triplon creation operators t†
α,h,l and annihilation operators t

α,h,l in momentum
space, where h is the wave vector component along the ladders, l the one perpendicular
to them. These operators are the Fourier transforms of the bond operators t†α,r,s and
tα,r,s [Chubukov(1989), Sachdev & Bhatt(1990)] (cf. appendix C) defined on the dimers
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in figure 6.1.

The dispersion ω1(h), given by

ω1(h) =
[
cH1D|11

]
0
+2

D2∑
d=1

[
cH1D|11

]
d

cos(2πdh) (6.5)

(cf. appendix D). It depends only on h because the sCUT is applied to the isolated ladders
which still have to be coupled. This coupling is achieved in leading order following
the approach in references [Uhrig et al.(2004), Uhrig et al.(2005a)]. The spin component
Sαi (r,s) is taken as observable and transformed into the new basis by the sCUT. The
truncation scheme for the observable has been NO

t = 3 and DO = (10,10,8,8,6,6). Then
it reads

Sαi,eff(r,s) :=U†Sαi (r,s)U (6.6a)

=

DO
1∑

δ=−DO
1

[
cSαi |

1
0

]δ (
t†α,r+δ,s+ tα,r+δ,s

)
+ . . . , (6.6b)

where the dots stand for normal-ordered higher terms in the real space triplon operators
t†α,r,s (tα,r,s). Knowing Sαi,eff(r,s) allows us in a second step to write down the effective
bilinear interladder coupling Hbilinear

int,eff in real space

Hbilinear
int,eff = J4

∑
r,s

∑
α

∑
δ,δ′

[
cSα1 |

1
0

]δ[
cSα2 |

1
0

]δ′ [
t†α,r,s

(
t†α,r+1+(δ′−δ),s+1+ t

α,r+1+(δ′−δ),s+1

)
+H.c.

]
,

(6.7)

where trilinear and higher contributions are neglected. Therefore, the bilinear part of
the complete two-dimensional effective model for IPA-CuCl3 reads

Hbilinear
IPA-CuCl3,eff = J3

∑
r,s

∑
α

∑
d

[
cH1D|11

]
d

t†α,r,stα,r+d,s

+ J4

∑
r,s

∑
δ,δ′

∑
α

[
cSα1 |

1
0

]δ[
cSα2 |

1
0

]δ′ [
t†α,r,s

(
t†α,r+1+(δ′−δ),s+1+ t

α,r+1+(δ′−δ),s+1

)
+H.c.

]
.

(6.8)

This approach is highly accurate for intraladder effects and it considers interladder
couplings in leading order. Fourier transformation leads to

Hbilinear
IPA-CuCl3,eff = J3

∑
h,l

∑
α

[
Ω(h, l) t†α,h,ltα,h,l+

Λ(h, l)
2

(
t†α,h,lt

†
α,−h,−l+ tα,h,ltα,−h,−l

)]
(6.9)
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with

Ω(h, l) = ω1(h)+Λ(h, l) (6.10)

and

Λ(h, l) = 2z
DO

1∑
δ,δ′=−DO

1

[
cSα1 |

1
0

]δ[
cSα2 |

1
0

]δ′
cos(2πh(1+δ′−δ)+2πl) (6.11)

= −2z
DO

1∑
δ,δ′=−DO

1

[
cSα1 |

1
0

]δ[
cSα1 |

1
0

]δ′
cos(2πh(δ+δ′−1)−2πl) (6.12)

where in the latter step
[
cSα2 |

1
0

]δ′
= −

[
cSα1 |

1
0

]−δ′
has been used. The dispersion relation

ω(h, l) of the Hamiltonian Hbilinear
IPA-CuCl3,eff (6.9) can be obtained by a bosonic Bogoliubov

transformation

bα,h,l := u(h, l) tα,h,l+v(h, l) t†α,−h,−l (6.13a)

b†α,h,l := u(h, l) t†α,h,l+v(h, l) tα,−h,−l (6.13b)

with

u2(h, l)−v2(h, l) = 1 (6.14)

leading to

ω(h, l) = J3

√
Ω2(h, l)−Λ2(h, l) (6.15a)

= J3

√
ω2

1(h)+2ω1(h)Λ(h, l) . (6.15b)

In the Bogoliubov diagonalization the hard-core property of the bosons is neglected.
However, this does not concern the large intraladder couplings, but only the small
interladder couplings so that the approach is still very accurate [Exius(2010)]. The
dispersion ω(h, l) makes a direct comparison with INS results possible.

To determine the microscopic parameters we fix the value y = J1/J3 and fit the two
ratios x = J2/J3, z = J4/J3, and the energy scale J3 to reproduce the INS result (equation
(2) in reference [Masuda et al.(2006)])

ω2(h, l) = a2 cos2(πh)+
[
∆2+4b2 sin2(πl)

]
sin2(πh)+ c2 sin2(2πh) (6.16)

with a = 4.08(9)meV, ∆ = 1.17(1)meV, b = 0.67(1)meV and c = 2.15(9)meV. To be more
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specific, comparing equation 6.15 and equation 6.16 for h = 0.5 yields

J2
3 ω

2
1(0.5) = ∆2+2b2 (6.17a)

4J3J4 ω1(0.5)
(∑
δ

(−1)δ
[
cSα1 |

1
0

]δ)2

= −2b2 (6.17b)

which fixes the couplings J3 and J4. To fit J2 we use the experimental value ofω(0.4,0.0).
Thus, we obtain the triples (x, y,z) in table 6.1. They all essentially imply the same

Table 6.1: Parameters for IPA-CuCl3 compatible with INS [Masuda et al.(2006)]

.

J3 [meV] x = J2/J3 y = J1/J3 z = J4/J3

3.743 0.133 -2.0 -0.076

3.288 0.268 -1.4 -0.088

3.158 0.317 -1.2 -0.092

3.038 0.369 -1.0 -0.096

2.929 0.424 -0.8 -0.100

2.830 0.480 -0.6 -0.103

dispersion, see figure 6.3. Hence, on the basis of the the INS data, one cannot decide
which of the triples applies to IPA-CuCl3. The quasiparticle decay occurs where the
dispersion enters the tow-triplon continuum.

In complement to the INS data we use the temperature dependence of the magnetic
susceptibility χ(T) [Manaka et al.(1997)]. Starting from the spin isotropic Hamiltonian
(6.1) the susceptibilities in different spatial direction have to be the same up to scaling
proportional to the squares of the Landé g-factors. This means that χA : χB : χC equals
g2

A : g2
B : g2

C where A, B, C indicate the directions normal to the corresponding surfaces
of the crystal [Manaka et al.(1997)]. Figure 6.4b displays that the three susceptibilities
can be scaled to coincide for gA = 2.08, gB = 2.06, and gC = 2.25 within about 3%.
In the region of the maximum, between T = 15 K and 50 K the scaling even holds
within less than 0.5%. This choice of g-factors fulfills the experimental constraints
[Manaka et al.(1997), Manaka & Yamada(2000)] gA, gB ∈ [2.06,2.11] and gC = 2.25−2.26
best. We conclude that a spin isotropic Hamiltonian such as (6.1) provides a very
good description, although anisotropies, e.g., Dzyaloshinskii-Moriya terms, can be
present with a relative size of a few percent. This agrees with findings from electron
paramagnetic resonance [Manaka & Yamada(2000)].

Theoretically, we use the HTSE for the isolated asymmetric ladder
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Figure 6.3: Circles are INS data [Masuda et al.(2006)]. Upper panel: Dispersions
ω(h,0) for (x,y,z) triples in table 6.1. The quasiparticle decay takes place where the
dispersion enters the light blue area indicating the two-triplon continuum. Lower
panel: Dispersion ω(0.5, l). All triples lead to coinciding curves.
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gC = 2.25, indicating anisotropies.

Figure 6.4: Magnetic susceptibility χ(T).
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[Bühler et al.(2001)] providing series in β = 1/T up to order βn+1 with n = 10
denoted by χ1D(β) and a Dlog–Padé representation [Domb & Green(1972)] to enhance
the region of validity and to include interladder interactions in IPA-CuCl3 on a
mean-field level.

The magnetization m of isolated ladders in an external magnetic field in z-direction

Hh = −h
∑
r,s

(
Sz

1(r,s)+Sz
2(r,s)

)
(6.18)

is given by

m = χ1D h . (6.19)

Applying a mean-field approximation to the part Hint (6.1c) describing the interladder
interaction yields

Hint = J4

∑
r,s

S1(r,s)S2(r+1,s+1) (6.20a)

= J4

∑
r,s

∑
α

Sα1 (r,s)Sα2 (r+1,s+1) (6.20b)

≈ J4

∑
r,s

∑
α

Sα1 (r,s)
〈
Sα2 (r+1,s+1)

〉
+Sα2 (r+1,s+1)

〈
Sα1 (r,s)

〉
(6.20c)

= J4m
∑
r,s

(
Sz

1(r,s)+Sz
2(r,s)

)
(6.20d)

where we assume
〈
Sz

i (r,s)
〉
= m and

〈
Sx

i (r,s)
〉
=

〈
Sy

i (r,s)
〉
= 0 for i ∈ {1,2}, and all sites

r,s. Thus, the interladder interaction acts like an additional external magnetic field
leading to an effective total magnetic field heff = h− J4m. This can be used to define a
two-dimensional magnetic susceptibility χ2D via

m = χ1D heff (6.21a)

= χ1D (h− J4m) (6.21b)

⇒ m =
χ1D

1+ J4χ1D︸     ︷︷     ︸
=:χ2D

h (6.21c)

⇒ χ−1
2D = χ

−1
1D+ J4 (6.21d)

in interladder mean-field approximation.

A Dlog–Padé approximant of a expansion of the two-dimensional magnetic suscep-
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tibility χ2D(β) is given by

χ(β) =
β

4
exp

(∫ β

0
Pk

l (β′)dβ′
)

(6.22)

where Pk
l (β) is the rational Dlog-Padé approximant with a polynomial of degree k in the

numerator and a polynomial of degree l in the denominator of

f (β) =
∂
∂β

ln
(
χ2D(β)
β

)
(6.23)

= − ∂
∂β

ln
(

1
χ1D(β)/β+Aβn+1+Bβn+2

+ J4β

)
. (6.24)

Possible orders [k, l] of Pk
l (β) have to fulfill k+ l = n+ 1 where n is the order of the

truncated series available. The parameters A and B are introduced to incorporate zero-
temperature information to the HTSE. The term J4β considers the interaction J4 on a
mean-field level, cf. equation (6.21).

From the asymptotic low-temperature behavior

χD(β) ≈ β1−D2 exp(−∆β) for 1/β� ∆ (6.25)

of a gapped D-dimensional system with a quadratic dispersion (cf. reference
[Troyer et al.(1994)] and reference [Bühler(2003)]) follows for the low-temperature
behavior of the approximant in a two-dimensional system

Pk
l (β) ≈ −∆− 1

β
. (6.26)

A finite value of Pk
l (β) for β→∞ is only possible for k = l. To circumvent this con-

straint on the possible degrees of the Dlog–Padé approximant we perform an Euler
transformation

u = β/(1+β) ⇔ β = u/(1−u) . (6.27)

Then, the asymptotic behavior (6.26) yields the two conditions

Pk
l (u)

∣∣∣
u=1 = −∆ (6.28a)

∂
∂u

Pk
l (u)

∣∣∣
u=1 = 1 (6.28b)

which fix the additional parameters A and B in equation (6.23).
The result1 is plotted in figure 6.4a and compared to χm measured in [emu/g] and

1All theory curves rely on the [7,4] Dlog–Padé approximant in u = β/(1+β). Data from other Dlog–
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converted according to

χ(T) =mmolkB
(
gµB

)−2 N−1
A χm(T) . (6.29)

Here mmol is the molar mass of IPA-CuCl3, kB the Boltzmann constant, µB the Bohr
magneton and NA the Avogadro constant.

Figure 6.4a illustrates that theory and experiment agree indeed best for gA = 2.08
and the triple of y = −0.8. As an asset, we stress that even without the value of gA,
the position and the shape of the maximum of χ(T) fits best for the triple of y = −0.8
and one can deduce that the gA-factor is around 2.08. As a caveat, we stress the
very weak dependence of χ(T) on y in a triple tuned to the INS data. By assuming
gA = 2.08±0.01 we estimate the error of our analysis to be x = 0.42±0.06, y = −0.8±0.2
and z=−0.100±0.004 implying J1 =−2.3±0.6 meV, J2 = 1.2±0.2 meV, J3 = 2.9±0.1 meV
and J4 = −0.292± 0.001 meV. These values establish the microscopic model for IPA-
CuCl3. We highlight that the ferromagnetic coupling J1 does not dominate over the
antiferromagnetic coupling J3 because |y| / 1, in contrast to the previous purely 1D
analysis [Manaka et al.(1997)].

6.2 Quasiparticle decay in IPA-CuCl3

In the previous section 6.1 the magnetic couplings of IPA-CuCl3 were determined.
Theory and experiment agree best for x = J2/J3 = 0.42, y = J1/J3 = −0.8, z = J4/J3 = −0.1
and J3 = 2.929 meV. For these couplings we present in the following results for the
dynamical structure factor Szz(Q,ω) along the ladder direction h.

6.2.1 Dynamical structure factors for IPA-CuCl3

Without the interladder interaction J4, IPA-CuCl3 is described by a one-dimensional
AFASHL. For this model dynamical structure factors were calculated in chapter 5.
In the following we describe how we incorporate the interladder interaction J4 to the
one-dimensional calculations performed in chapter 5 for the AFASHL.

For l = 0 the interladder interaction J4 reduces the gap of IPA-CuCl3 at h = 0.5, see
figure 6.3. As a consequence, J4 also reduces the energy of the two-triplon continuum
around h = 0 and l = 0. In this way, the interladder interaction J4 supports the SQPD in
IPA-CuCl3. In an one-dimensional AFASHL with x = 0.42 and y = −0.8 decay is hardly
noticeable.

Padé approximants, e.g., [9,2], agrees within line width except at very low temperatures.
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The gap of IPA-CuCl3 is reduced by J4 by

∆J4 =

√
∆2+4b2−

√
∆2

2
(6.30)

with ∆ = 1.17(1)meV and b = 0.67(1)meV, cf. equation (6.16). By assuming that this
reduction is the same within the whole Brillouin zone we can incorporate the two-
dimensionality of IPA-CuCl3 to the one-dimensional effective model (6.2) by using a
reduced coefficient [

creduced
H1D|11

]
0
=

[
cH1D|11

]
0
−∆J4/J3 (6.31)

for the local terms t†α,r,stα,r,s. We stress that this represents a simplifying approxima-
tion. Thus, to determine the dynamical structure factors of IPA-CuCl3 we calculate
an effective Hamiltonian Heff by sCUTs using the generator Ggs(`) and the trunca-
tion scheme Nt = 5, D = (12,10,10,6,6,5,5,4,4) and NO

t = 3, DO = (10,10,8,8,6,6) for
x = 0.42 and y = −0.8. Then we replace the coefficient

[
cH1D|11

]
0

in the effective model

by
[
creduced

H1D|11

]
0
. Subsequently, we calculate the dynamical structure factor by a Lanczos

tridiagonalization, as described in section 4.3.

Figure 6.5 depicts results for the dynamical structure factors Szz(Q,ω) of IPA-CuCl3
along the ladder direction Q = 2πh.

In figure 6.5a the inner product Qb is set to Qb = π and in figure 6.5b the inner
product Qb is set to Qb = 0. Results for the dynamical structure factor Szz(Q,ω), the
renormalized one-triplon dispersion (green crosses) and the lowest energy level of
Hres

eff (4.40) in the subspace (4.39) (green circles) determined by the generator Ggs(`),
cf. section 4.3, are shown. In addition, the one triplon dispersion given by equation
(6.16) (black line) and the ensuing two-triplon continuum (blue lines in the (Q,ω)-plane)
are depicted, cf. reference [Masuda et al.(2006)].

On the whole, the one-dimensional approach which incorporates the two-
dimensionality of IPA-CuCl3 by equation (6.31) only leads to very good results for the
one-triplon dispersion where the excitations are stable, cf. black line and green crosses
in figure 6.5. Additionally, the lowest energy level of Hres

eff (4.40) in the subspace (4.39)
(green circles) are very close to the minimum of the two-triplon continuum (lower
blue line in the (Q,ω)-plane) so that the missing self-consistency (cf. section 4.2.2) of
the results plays a minor role. Thus, our approach for the dynamical structure factor
seems to yield reliable results.

In figure 6.5a the decay of the excitations is clearly visible. For momenta Q/ 0.3π no
marked peaks can be observed. Interestingly, for Qb= 0 marked peaks can be observed
in the region around Q ≈ 0.3π close to the lower edge of the two-triplon continuum,
cf. figure 6.5b. Nevertheless, the intensity of these peaks is very small compared to the
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Figure 6.5: Dynamical structure factor Szz(Q,ω) of IPA-CuCl3 calculated by us-
ing the generator Ggs(`) and Lanczos tridiagonalization as described in the text
(broadening: δ = 0.05). The solid black line depicts the one-triplon dispersion and
blue lines in the (Q,ω)-plane depict the borders of the two-triplon continuum given
by equation (6.16), cf. reference [Masuda et al.(2006)]. Green crosses depict the
renormalized one-triplon dispersion obtained by the generator Ggs(`) and equation
(4.47). Red circles depict the lowest energy level obtained by a diagonalization in
the subspace (4.39).
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intensity of the peaks occurring for Qb = π for Q ' 0.3π, see figure 6.5a. Most of the
spectral weight for Qb = 0 is gathered inside the two-triplon continuum for momenta
Q ' 0.4π, see figure 6.5b.

6.2.2 Equal-time structure factors Szz(Q) and spectral weights

In figure 6.6 the equal-time structure factor Szz(Q) of IPA-CuCl3 is depicted for Qb = π
(dashed line) and for Qb = 0 (dotted line). The solid line depicts the sum of the equal-

Szz
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I

Q/π
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Figure 6.6: Equal-time structure factor Szz(Q) normalized to the total spectral weight
I of IPA-CuCl3. Dashed line indicates Szz(Q) for Qb=π, dotted line indicates Szz(Q)
for Qb = 0 and solid line indicates the sum of the two structure factors.

time structure factor Szz(Q) for Qb = π and Qb = 0.
Most of the spectral weight is distributed in the channel with Qb = π. For Qb = 0

and Qb = π the equal-time structure factor Szz(Q) increases with the momentum Q.
The relative spectral weights Irel

∣∣∣
Qb := I

∣∣∣
Qb/I for Qb = π and Qb = 0 are

Irel
∣∣∣
Qb=π = 0.89353 (6.32a)

Irel
∣∣∣
Qb=0 = 0.10672 . (6.32b)

The sum rule (F.13) is fulfilled to high accuracy (Irel
∣∣∣
Qb=π + Irel

∣∣∣
Qb=0 = 1.00025) which

indicates that for the transformed local spin operator Sz
i (r) the restriction to the subspace

4.39 is again justified.

6.2.3 Quasiparticle lifetime

Figure 6.7 shows the inverse lifetime, respectively the width γ(Q) determined from
the imaginary part of the self-energy, of IPA-CuCl3 in the Qb = π channel. As de-
scribed in the previous sections 4.3.2 and 5.1.2 we use a terminated continued fraction



180 IPA-CuCl3

γ
(Q

)/
J 3

Q/π

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.7: Width γ(Q) of IPA-CuCl3 for Qb = π. For Q / 0.3π the triplons decay.

representation of the self-energy Σ(Q,ω) (4.49) to determine the width γ(Q) (4.50) of
the renormalized quasiparticles indicated by green crosses in figure 6.5. Details of the
termination of the continued fractions are given in appendix A.2.

We draw the reader’s attention to the fact, that the widths appearing in IPA-CuCl3,
see figure 6.7, exceed all widths occurring in the previously discussed models, cf. figure
4.23 and figure 5.9, due to the small coupling x and relatively large coupling y. Addi-
tionally, the two-dimensionality of IPA-CuCl3 supports the decay by reducing the gap,
see equation (6.30).

6.2.4 Comparison with experimental data

Masuda et al. performed INS experiments along the ladder direction Q = (2πh,0,0)
[Masuda et al.(2006)]. Therefore, the effective Fourier transformed spin operator Sz

eff(Q)
appearing in the dynamical structure factor (cf. equation (4.43)) is given by

Sz(Q) =
eiQ b

2
√

2

(
e−iQ b

2 Sz
1,eff (Q)+eiQ b

2 Sz
2,eff (Q)

)
, (6.33)

cf. equation (F.14), where b is the projection of the vector b in ladder direction Q. The
vector b defining the ladder rungs is given by

b = d−a , (6.34)
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cf. figure 6.1 and figure 5.1, with d given by2 d = (0.0854,0.1316,−0.4432)
[Masuda et al.(2006)]. Thus b in equation (6.33) is given by

b = 0.0854−1.0000 = −0.9146 (6.35)

in units of a. Note, that equation (6.33) is not 2π-symmetric in Q due to the appearance
of the product Qb. As a consequence the results for the dynamical structure factor
Szz(Q,ω) are not identical in different branches of the Brillouin zone. Except for
the use of equation (6.33) instead of equation (F.14) for a fixed inner product Qb all
calculations in this section are performed in the same way as in section 6.2.1 and in
section 6.2.2.

Dynamical structure factors for IPA-CuCl3

Figure 6.8 depicts INS data [Masuda et al.(2006)]. In figure 6.9 the corresponding theo-
retical results for the dynamical structure factor Szz(Q,ω) are shown.

Theory and experiment coincide to a great extent. Peak positions, weights and the
abrupt disappearance of the triplon branch are excellently captured by the microscopic
model (6.1) for J1 = −2.3 meV, J2 = 1.2 meV, J3 = 2.9 meV and J4 = −0.292 meV.

The most distinct deviations appear close to the merging point. For example, the po-
sition of the maximum of Szz(Q,ω) for Q= (1.2π,0,0) and Q= (1.15π,0,0) differs from the
experimental data. These deviations might be caused by the missing self-consistency
or by the only rough consideration of the interladder interaction J4 in the calculations
for the dynamical structure factor Szz(Q,ω). Interestingly, for Q = (1.5π,0,0) a small
second peak appears around ~ω ≈ 6.7 meV, cf. figure 6.10. Unfortunately, Masuda et al.
have not presented any data for these higher energies [Masuda et al.(2006)].

Equal-time structure factor Szz(Q) and spectral weight

Figure 6.11 shows the measured h dependence of the equal-time structure factor in IPA-
CuCl3. In figure 6.12 the corresponding theoretical results for the equal-time structure
factor Szz(Q) normalized to the total spectral weight I are depicted. For b = −0.9146 the
equal-time structure factor Szz(Q) vanishes for

h =
Q
2π
=

n
b

with n ∈ Z, (6.36)

see figure 6.12. This follows directly from equation 6.33. If Q/2π = n/b, the Fourier
transformed spin operator Sz(Q) is proportional to the operator of the total spin in

2Actually, Masuda et al. state d = (−0.0854,−0.1316,0.4432). But this sign of the vector d is not
consistent with their own figure depicting the structure of IPA-CuCl3 while d = (0.0854,0.1316,−0.4432)
is, see [Masuda et al.(2006)].
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Figure 6.8: Time-of-flight (a) and 3-axis (b), (c), (d) inelastic neutron data mea-
sured in IPA-CuCl3 at T = 1.5K. In (b), (c), (d) the shaded areas are calculated
peak shapes due to resolution. (Figure and caption are taken from reference
[Masuda et al.(2006)]).
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Figure 6.9: Dynamical structure factor Szz(Q,ω) of IPA-CuCl3 for b = −0.9146 calcu-
lated by using the generator Ggs(`) and Lanczos tridiagonalization as described in
the text (broadening: δ = 0.05).
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Figure 6.10: Dynamical structure factor Szz(Q,ω) of IPA-CuCl3 for b = −0.9146 and
Q= (1.5π,0,0) calculated by using the generator Ggs(`) and Lanczos tridiagonaliza-
tion as described in the text (broadening: δ = 0.05). Around ~ω = 6.7 a small second
peak appears.

z-direction

Sz
total =

∑
r,s

(
Sz

1(r,s)+Sz
2(r,s)

)
. (6.37)

Applying this operator to the ground state, given by a spin singlet state, yields zero.
Thus the disappearance of the signal for b = −0.9146 close to Q/2π = n/b is supported
by static properties. It is not necessarily a result of the dynamics induced by the
Hamiltonian, i.e., the decay vertices. Therefore, it is more meaningful to study the
decay for a fixed inner product Qb = π as done in section 6.2.1 till section 6.2.3.

Another consequence of b = −0.9146 is that the equal-time structure factor Szz(Q)
is no longer symmetric about reflection at Q/π = 2h = n for n ∈ Z, see figure 6.5. Un-
fortunately, not enough experimental data is available to observe these asymmetries,
cf. figure 6.11. Note, that also contributions from higher energies can influence the
equal-time structure factor Szz(Q), e.g. the peak occurring for Q = (1.5π,0,0) around
ω ≈ 6.7, cf. figure 6.10.

The relative spectral weight Irel is equal to Irel = 0.7073 for h ∈ [0,1] and equal to
Irel = 0.6580 for h ∈ [1,2].

6.3 IPA-CuCl3 in a magnetic field

Generically, the phase diagram of a gapped quantum-disordered antiferromagnet in an
external magnetic field exhibits three different phases. For magnetic fields smaller than
a critical magnetic field Hc1 , determined by the gap, the systems remains in a gapped
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Figure 6.11: Measured h dependence of single-triplon excitation intensities in
IPA-CuCl3 (symbols). Solid line depicts a simulation, described in reference
[Masuda et al.(2006)] (Figure is taken from reference [Masuda et al.(2006)]).
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Figure 6.12: Equal-time structure factor Szz(Q) normalized to the total spectral
weight I of IPA-CuCl3 for b=−0.9146. Red circles are INS data [Masuda et al.(2006)]
scaled by a factor 0.38.
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disordered phase. If the magnetic field exceeds the critical value Hc1 a BEC occurs
characterized by a long-range antiferromagnetically ordered gapless phase. Further
increasing the magnetic field beyond a upper critical magnetic field Hc2 leads again to
a gapped phase, which is fully polarized.

To describe BEC in IPA-CuCl3 we follow the bond-operator approach used in the ref-
erences [Sommer et al.(2001), Matsumoto et al.(2002), Matsumoto et al.(2004)]. With this
approach Matsumoto et al. successfully described the BEC occurring in TlCuCl3. But
this approach to spin-dimer systems is quantitatively reliable only as long as the inter-
dimer couplings Jinter are significantly smaller than the dimer coupling Jdimer, cf. |Jinter|<
Jdimer/2 [Normand & Rüegg(2011)]. This limit requires |Ji| < J3/2 for i ∈ {1,2,4} which
does not hold for IPA-CuCl3, see table 6.1 and reference [Manaka et al.(1997)]. Thus
we do not start with the original spin model, as in previous work [Sommer et al.(2001),
Matsumoto et al.(2002), Matsumoto et al.(2004)], but with the effective bilinear model
Hbilinear

IPA-CuCl3,eff (6.8) in real space obtained by the generator Ggs,1p(`).

In the presence of an external magnetic field in z-direction

Hh = −h
∑

r

(
Sz

1(r)+Sz
2(r)

)
(6.38)

(r = (r,s)) the bond operator t†+,r, t†−,r and t†0,r defined by

t†x,r =
1√
2

(
t†+,r+ t†−,r

)
(6.39a)

t†y,r =
−i√

2

(
t†+,r− t†−,r

)
(6.39b)

t†x,r = t†0,r . (6.39c)

are commonly used, cf. appendix C. For the external field Hh (6.38) follows

Hh = ih
∑

r

(
t†x,rty,r− t†y,rtx,r

)
(6.40a)

= −h
∑

r

(
t†+,rt+,r− t†−,rt−,r

)
(6.40b)
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Then the effective bilinear model Hbilinear
IPA-CuCl3,eff (6.8) is given by

Hbilinear
IPA-CuCl3,eff = J3

∑
r,s

∑
m

∑
d

[
cH1D|11

]
d

t†m,r,stm,r+d,s

+ J4

∑
r,s

∑
δ,δ′

∑
m

[
cSm

1 |
1
0

]δ[
cSm

2 |
1
0

]δ′ [
t†m,r,s

(
t†m,r+1+(δ′−δ),s+1+ tm,r+1+(δ′−δ),s+1

)
+H.c.

]
−h

∑
r,s

(
t†+,r,st+,r,s− t†−,r,st−,r,s

)
(6.41)

where m = −m.

Following reference [Sommer et al.(2001)] and references [Matsumoto et al.(2002),
Matsumoto et al.(2004)] we perform the local transformation

|s̃r〉 = u |sr〉+veiQ0r
(

f
∣∣∣t+,r〉+ g

∣∣∣t−,r〉) (6.42a)∣∣∣t̃+,r〉 = u
(

f
∣∣∣t+,r〉+ g

∣∣∣t−,r〉)−veiQ0r |sr〉 (6.42b)∣∣∣t̃0,r
〉
=

∣∣∣t0,r
〉

(6.42c)∣∣∣t̃−,r〉 = f
∣∣∣t−,r〉− g

∣∣∣t+,r〉 (6.42d)

in real space with u = cos(θ), v = sin(θ), f = cos(ϕ) and g = sin(ϕ), the position r = (r,s)
and the wave vector Q0 = (π,0) of the minimum of the dispersion. The two independent
variables θ and ϕ are varied to minimize the classical ground state energy. This choice
also ensures that firstly all linear terms in the triplon operators vanish and secondly
a massless Goldstone mode appears at a critical magnetic field Hc1 as it has to be if
a continuous symmetry is spontaneously broken. For details of the calculations, see
appendix G.

Fourier transformation and Bogoliubov diagonalization of the resulting bilinear
terms finally provides the lowest lying modes. Their resulting gap energies are dis-
played in figure 6.13. No parameters are adjusted.

Second, the upper critical field Hc2 can be determined exactly for the spin model (6.1)
to be Hc2 = (2J2+ J3)/(gµB)≈ 2/g ·45.8 T. After the transformation (6.42) is applied to the
dispersion obtained from sCUT we obtain Hc2 ≈ 2/g ·45.1 T. The very good agreement
of these two values strongly supports the approximations made. Additionally, the
theoretical values also match the experimental result [Manaka et al.(2008)] Hc2 = (43.9±
0.1) T(2/g) within 4%. In view of the neglect of anisotropies and magneto-elastic effects,
cf. reference [Johannsen et al.(2005)], this nice agreement lends independent support to
the advocated microscopic model.
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Figure 6.13: Gaps in IPA-CuCl3 vs. the reduced magnetic field gH/2. Solid lines
show theoretical results, see text. Symbols mark experimental data from references
[Zheludev et al.(2007)] (Setup I & IV) and [Garlea et al.(2007)] (Setup II & III).

6.4 Temperature dependence of the spin gap

Finally, we discuss the temperature dependence of the gap ∆(T) as test for our
microscopic model. To calculate the temperature dependence of the effective
low-energy model obtained by continuous unitary transformations (CUTs) we
apply the mean-field approach in reference [Exius et al.(2010)] which is based
on the mean-field approach used by [Sachdev & Bhatt(1990), Troyer et al.(1994),
Rüegg et al.(2005), Normand & Rüegg(2011)] to Hbilinear

IPA-CuCl3,eff (6.8). In each nonlocal
term (t†m,rtm,r′ or t†m,rt†−m,r′ or tm,rt−m,r′ with r , r′) all creation operators t†m,r are
multiplied by the singlet annihilation sr and the annihilation operators tm,r by the
singlet creation s†r . Local terms remain unchanged because they do not change the
local singlet number. Finally all singlet operators are replaced by the condensate value
s(T) =

〈
s†

〉
=

〈
s
〉

with s ∈ [0,1]. In a nutshell, a factor s2 appears in front of each nonlocal
term. This is a way to account for the hard-core property at finite temperature.

This implies a dependence of the dispersion on s and hence on temperature
[Troyer et al.(1994), Exius et al.(2010), Normand & Rüegg(2011)], denoted by ωs(T)(h, l).
The self-consistent solution is found from the hard-core condition

1 =
〈
s†r sr+

∑
m

t†m,rtm,r

〉
(6.43)
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leading to

s2(T) = 1−3z/(1+3z) (6.44)

with

z =
∫ 1/2

−1/2
dh

∫ 1/2

−1/2
dl e−βωs(T)(h,l) , (6.45)

see [Troyer et al.(1994)]. Figure 6.14 compares the result (solid line) of this simple
approximation to INS data [Zheludev et al.(2008), Náfrádi et al.(2011)]. Up to 15 K
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Figure 6.14: Spin gap in IPA-CuCl3 vs. temperature T. Lines show theoretical
results from CUTs and finite-temperature mean-field (solid line) and from the
nonlinear σ model (dashed line), respectively. Inset: Temperature dependence of
the condensate fraction s2.

the experimental data is matched perfectly. We attribute the discrepancy at higher
temperatures to the insufficient treatment of the hard-core constraint by the above
approach (for 15 K the condensate fraction s2 is only 0.77). Note that we only apply the
mean-field theory to the dispersion obtained from sCUT, not to the original spin model
as done previously [Rüegg et al.(2005), Normand & Rüegg(2011)] because IPA-CuCl3
is not far enough in the dimer limit. The results follow directly from the effective low-
energy model Hbilinear

IPA-CuCl3,eff (6.8) at T= 0 with x= J2/J3 = 0.42, y= J1/J3 =−0.8, z= J4/J3 =−0.1
and J3 = 2.929 meV. No additional parameters were adjusted.

For comparison, we also include ∆(T) as derived from the nonlinear σ model on
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one-loop level [Sénéchal(1993)] in figure 6.14 (dashed line). It is obtained from

C =
∫ 1/2

−1/2
dh

∫ 1/2

−1/2
dl

coth
(
βω(h, l,T)/2

)
ω(h, l,T)

(6.46)

with

ω(h, l,T) :=
√
ω2(h, l)+∆2(T)−∆2(0) . (6.47)

The constant C is determined for T = 0. Interestingly, this approach describes the
experimental data less accurately if the experimental dispersion at T= 0 is used forω(h, l)
(6.16), cf. reference [Náfrádi et al.(2011)]. We presume that the hard-core constraint is
not accounted for sufficiently well by equation (6.46).

6.5 Chapter summary

In this chapter we showed that the available experimental evidence for isopropy-
lammonium trichlorocuprate(II) (CH3)2CHNH3CuCl3 (IPA-CuCl3) is consistent with a
quantitative model of weakly coupled asymmetric ferro-antiferromagnetic spin S = 1/2

Heisenberg ladders (AFASHLs) with hard-core triplons as excitations. The mag-
netic couplings in IPA-CuCl3 were determined by an analysis of inelastic neutron
scattering (INS) data and of the temperature dependence of the magnetic susceptibility
based on self-similar continuous unitary transformations (sCUTs) and high temper-
ature series expansions (HTSEs), respectively. The magnetic couplings describing
IPA-CuCl3 best are J1 ≈ −2.3 meV, J2 ≈ 1.2 meV, J3 ≈ 2.9 meV and J4 ≈ −0.3 meV.

Based on the determined microscopic model for IPA-CuCl3 we used sCUTs based
on the generator Ggs(`) introduced in chapter 3 to describe the quasiparticle decay in
IPA-CuCl3. The theoretical results agree very well with the experimental data, leading
further support for the advocated microscopic model.

The derived microscopic model also passes three additional checks. Firstly, the BEC
of the energetically lowest modes is well described. Secondly, the upper critical field
Hc2 agrees to experimental data and, finally, the temperature dependence of the spin
gap matches recent data from spin-echo neutron scattering.

Concomitantly, we exemplarily showed how CUT results in one dimension at zero
temperature and zero magnetic field can be extended to render a quantitative descrip-
tion in two dimensions at finite temperature and finite magnetic field possible.
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Chapter 7

Summary & Outlook

7.1 Summary

In this section the results of the present thesis are summarized. It is divided into
three parts: (i) Physical aspects concerning spontaneous quasiparticle decay (SQPD) in
dimerized quantum antiferromagnets. (ii) Methodical aspects concerning continuous
unitary transformations (CUTs) in systems with SQPD and (iii) their applications in
low-dimensional spin systems.

7.1.1 Spontaneous quasiparticle decay

The first part of this thesis consists of an introduction to SQPD in dimerized quantum
antiferromagnets. For a sufficiently large dimerization the elementary excitations are
given by gapped spin S= 1 triplon quasiparticles. Although these triplons are protected
by a gap at low energies they may decay spontaneously at temperature T = 0 into two or
more triplons at higher energies. Such a SQPD can only occur in systems which fulfill
two conditions. Firstly, the one-triplon dispersion and the two-triplon continuum have
to overlap and, secondly, decay processes have to exist enabling a single triplon to
decay into the continuum.

The introduction to SQPD in dimerized quantum antiferromagnets is given on
the basis of an one-dimensional bosonic toy model which fulfills the two conditions
mentioned above. A nice feature of the discussed toy model is that its self-energy
can be calculated analytically in leading order. Therefore, the SQPD occurring in that
model can be discussed in detail.

Interestingly, the SQPD in the model can not be described by adapting the concepts
commonly used in Fermi liquids based on Lorentzian excitations. For example, close
to the merging point of the one-particle dispersion and the two-particle continuum the
width of the excitations inside the continuum is always arbitrarily large compared to the
distance to the lower edge of the continuum. This is in marked contrast to a standard
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Fermi liquid where the quasiparticles become better and better defined by approaching
the Fermi surface. In addition, using the usual formula to determine the quasiparticle
weight always leads to weights larger than one which is physically meaningless. In this
sense the quasiparticle concept breaks down. Nevertheless, the vicinity of a resonance,
but not its tails, inside the continuum is well described by a Lorentzian, i.e. by the real
part of the self-energy.

Furthermore, we discussed the influence of two-particle interactions and next-
nearest-neighbor hopping on the SQPD. Level repulsion between the one-particle
branch and the two-particle bound state occurs if the two-particle interaction is large
enough to produce a bound state in the region of the Brillouin zone where the one-
particle dispersion would merges with the two-particle continuum. As a result, at
first the two-particle bound state merges with the two-particle continuum and starts to
decay while the one-particle branch is pushed below the lower edge of the continuum.
Whether the one-particle branch is stable in the whole Brillouin zone or merges with
the continuum at a small momentum and ceases to exist depends on the strength of the
two-particle interaction.

Next-nearest-neighbor hopping can lead to stable excitation within the whole Bril-
louin zone. In the model discussed this is the case when the next-nearest-neighbor
hopping shifts the minimum of the one-particle dispersion to momenta Q < π.

7.1.2 Method: Continuous unitary transformations

The main topic of the present thesis is how to describe SQPD by means of CUTs.
In general CUTs are used to derive effective low-energy models in a systematic way.
By introducing a continuous auxiliary variable a flow equation for the Hamiltonian
is derived. The right side of the differential equation is given by a commutator of a
generator and the Hamiltonian itself. Then the crucial point is to choose a generator
which simplifies the initial Hamiltonian reliably.

The starting point to describe SQPD in the framework of CUTs is a well-established
and frequently used generator which generates quasiparticle conserving effective
Hamiltonians. Although this generator exhibits many favorable properties there are
two drawbacks if one wants to describe systems with unstable quasiparticles. Firstly,
the generator interprets the energetically lowest states above the ground state as
the elementary excitations. In systems with SQPD this might result in a misleading
quasiparticle picture since states with very low or zero spectral weight are regarded as
the elementary excitations. Additionally, the rearrangement during the flow, which
generates this misleading quasiparticle picture, causes convergence problems in
practice. Secondly, by construction the generator produces an effective Hamiltonian
with stable excitations. All information about decay is stored in the transformation.
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This makes an additional transformation of observables indispensable.
To circumvent these disadvantages a new generator is introduced here. This

adapted generator leads to an effective Hamiltonian formulated in second quantization
where only the ground state is completely decoupled. The effective Hamiltonian still
contains information about the decay. A significant advantage of the adapted generator
is that even in the case of unstable quasiparticles it yields a robust flow. As a concomi-
tant caveat, the analysis of the effective model is more difficult, which is a consequence
of the more involved physics one wants to describe.

To illustrate our general considerations about the description of SQPD by CUTs
we perform self-similar continuous unitary transformations (sCUTs) on the model of
asymmetric spin S= 1/2 Heisenberg ladders. Thereby, the concept of sCUTs is illustrated
in detail.

7.1.3 Applications: Spontaneous quasiparticle decay in low-

dimensional spin systems

Asymmetric spin ladders

Not the least because of their relation to high-temperature superconductivity symmetric
antiferromagnetic spin S= 1/2 Heisenberg ladders are widely studied by many different
approaches including CUTs. In symmetric ladders the reflection symmetry about the
centerline implies stable excitations. By adding an additional interaction this symmetry
can be broken, which induces SQPD.

Starting with the symmetric ladder we illustrate the calculation of the low-energy
spectrum by sCUTs. By opposing the symmetric and asymmetric case we illustrate
our former general considerations about the description of SQPD by means of CUTs.
We perform tridiagonalizations in momentum space to calculate spectral densities of
the effective models generated by CUTs adapted for SQPD. States which consist of up
to three quasiparticles are considered. In particular, the dynamical structure factors
are calculated to make a direct comparison with inelastic neutron scattering (INS) data
possible. This makes an additional CUT of observables necessary.

For the case of an asymmetric antiferromagnetic spin S = 1/2 Heisenberg ladder
(AASHL) SQPD is found, but it remains weak because for larger antiferromagnetic di-
agonal coupling the triplon mode drops below the continuum preventing decay. Much
larger SQPD occurs in asymmetric ferro-antiferromagnetic spin S = 1/2 Heisenberg
ladders (AFASHLs). Here the symmetry breaking coupling is ferromagnetic which
prevents the decrease of the mobility of the quasiparticles. Hence for larger values of
the symmetry breaking coupling still SQPD occurs and it is significant.

The SQPD in AASHLs as well as in AFASHLs is influenced by two-particle interac-
tions. Results for the dynamical structure factor support the scenario of level repulsion
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if two-particle interactions are strong enough.

The results show, that the concept of CUTs can be extended to systems that exhibit
unstable quasiparticles.

IPA-CuCl3

To apply the above developments to an experimental system, in the last chapter of the
present thesis the salt isopropylammonium trichlorocuprate(II) (CH3)2CHNH3CuCl3
(IPA-CuCl3) is discussed. Although INS performed in 2006 has revealed IPA-CuCl3 as
a system of weakly coupled AFASHLs a determination of the values of the magnetic
couplings was still missing. Using sCUTs and high temperature series expansions
(HTSEs) allow us to analyze data of INS and of magnetic susceptibility to establish
a microscopic model for IPA-CuCl3 by determining the four magnetic couplings J1 ≈
−2.3 meV, J2 ≈ 1.2 meV, J3 ≈ 2.9 meV and J4 ≈ −0.3 meV.

Based on the microscopic model we use sCUTs adapted for SQPD to describe the
recently observed SQPD in IPA-CuCl3. Theory and experiment agree very well without
further adjustment of parameters which supports the established microscopic model.

Additionally, we show how the application range of classical and mean-field ap-
proaches can be extended by starting from an effective model previously determined
by CUTs which incorporate quantum fluctuations. In this way the Bose-Einstein
condensation (BEC) of triplons in an external magnetic field and the temperature depen-
dence of the gap are calculated. Again the results are consistent with the experimental
data.

In conclusion, we show that CUTs are a powerful tool to describe the low energy
physics of low-dimensional dimerized quantum antiferromagnets, even in the presence
of unstable excitations. The systematically derived effective models can readily serve as
starting point for further calculations for phenomena such as BEC or finite temperature
properties.

7.2 Outlook

Unstable quasiparticles are a commonly occurring phenomena in many-particle sys-
tems. Thus, extending the applicability of CUTs to systems with SQPD leads to a large
number of additionally possible investigations.

In one dimension SQPD also has been observed in the spin S = 1 antiferromagnet
CsNiCl3 [Zaliznyak et al.(2001)]. Since the S = 1 chain is included in the AFASHL an
investigation of the SQPD occurring in CsNiCl3 should be possible in very much the
same way as it has been done in this thesis for the AFASHL.

Our calculations on the one-dimensional bosonic toy model suggest that in the
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incommensurate region of the phase digram of the AASHL always stable excitations
below the continuum exist. However, for small momenta the weight of these excitations
should be very small so that most of the spectral weight should be gathered inside the
continuum. A test of this hypothesis might be possible by CUTs.

The method of CUTs is not restricted to one-dimensional systems. Therefore, one
could try to describe the SQPD in the two-dimensional quantum spin S = 1/2 system
piperazinium hexachlorodicuprate (PHCC) by CUTs. A complete two-dimensional
analysis of IPA-CuCl3 making the used mean-field approximations dispensable should
be possible as well.

Unfortunately, the analysis of the effective model generated by CUTs designed for
system with unstable excitations is very elaborate. To achieve the right one-particle
dispersion also states consisting of up to three particles have had to be considered. This
is hardly possible in two dimensions. One way to simplify the analysis of the effective
model is to decouple more states during the CUT.

Convergence of the CUT is generically hindered by energetically overlapping states.
In systems with SQPD the one-particle dispersion and the two-particle continuum
overlap. But usually, in gapped systems the one-particle dispersion does not merge
with the three-particle continuum. In that case it should be possible to eliminate all
processes leading from one-particle states to three-particle states by the CUT. Such a
CUT would not decouple the one- and two-particle sector from higher particle states
since processes which induce the one-particle decay also yield decay from two particles
into three particles. Nevertheless, for such a CUT it is possible that an analysis of the
effective model with states only in the one- and two-particle sector yields reasonable
results. Such a calculation would also be possible in two dimensions. At this level,
it is also conceivable to include self-consistency by diagrammatic approaches with
justifiable expenditure. Diagrammatic approaches could also be used to calculate finite
temperature properties of an effective model previously determined by a CUT.

Although the theoretical part about the adapted CUT is quite general, only the case
of a unique ground state is discussed in detail. Generalizations where the adapted
CUT separates a complete low-energy subspace can also be considered. This is already
done to generate generalized t− J models from the Hubbard model for finite doping
[Hamerla(2009), Hamerla et al.(2010)].
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Appendix A

Lanczos tridiagonalization

To calculate the coefficients an(Q) and bn(Q) of the continued fraction representation of
a Green function

G(Q,ω) =
1

ω− a0(Q)−
b2

1(Q)

ω− a1(Q)−
b2

2(Q)

. . .

(A.1)

a Lanczos tridiagonalization can be used [Viswanath & Müller(1994)]. The Lanczos
recursion scheme for a Hamiltonian H(Q) and a starting vector

∣∣∣ψ0
〉

is given by∣∣∣ψ0
〉

(A.2a)∣∣∣ψ1

〉
=

(
H(Q)− a0(Q)

)∣∣∣ψ0
〉

(A.2b)∣∣∣ψ2
〉
=

(
H(Q)− a1(Q)

)∣∣∣ψ1

〉
− b2

1(Q)
∣∣∣ψ0

〉
(A.2c)∣∣∣ψ3

〉
=

(
H(Q)− a2(Q)

)∣∣∣ψ2
〉
− b2

2(Q)
∣∣∣ψ1

〉
(A.2d)

...

with

an(Q) =

〈
ψn

∣∣∣H(Q)
∣∣∣ψn

〉〈
ψn

∣∣∣ψn
〉 for n = 0,1,2, . . . (A.2e)

b2
n(Q) =

〈
ψn

∣∣∣ψn
〉〈

ψn−1
∣∣∣ψn−1

〉 for n = 1,2,3, . . . (A.2f)

b0(Q) =0 . (A.2g)
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The Lanczos recursion scheme generates a set of orthogonal states
∣∣∣ψn

〉
. In the gener-

ated basis
{∣∣∣ψn

〉}
the matrix of the Hamiltonian H is tridiagonal, where the an(Q) are the

diagonal matrix elements and the bn(Q) are the elements on the second diagonal. All
other matrix elements are zero.

A.1 Termination: General theory

A Green functionG(Q,ω) (A.1) at fixed momentum Q represented by a finite continued
fraction has poles at the zeros of the denominator. Thus, the Green function G(Q,ω)
is a collection of δ-peaks. One standard approach to obtain a continuous density is to
introduce a slight broadening of G(Q,ω) via ω→ ω+ iδ with a small real number δ.
This procedure corresponds to smearing out δ-peaks as Lorentzian function of width
δ. The caveat is that also all truly sharp features such as band edges or van Hove
singularities are smeared out. However, a notably improved resolution of G(Q,ω)
can be achieved by introducing an appropriate termination of the continued fraction
[Viswanath & Müller(1994)].

In actual calculations the states
∣∣∣ψn

〉
always have a finite size. If one wants to simu-

late an infinite large system in the thermodynamic limit one has to stop the recursion
before the finiteness of the considered subspace becomes conspicuous.

The lower band edge El(Q) and the upper band edge Eu(Q) of the Green function
G(Q,ω) are connected to the limits a∞(Q) := lim

n→∞
an(Q) and b∞(Q) := lim

n→∞
bn(Q) of the

Lanczos coefficients via

Eu(Q) = a∞(Q)+2b∞(Q) (A.3a)

El(Q) = a∞(Q)−2b∞(Q) , (A.3b)

see e.g. [Pettifor & Weaire(1985)]. By assuming that for all n > n0 the coefficients an(Q)
and bn+1(Q) can sufficiently well be approximated by a∞(Q) and b∞(Q), the continued
fraction of the Green function G(Q,ω) can be terminated by the square root terminator
T(Q,ω) given by

T(Q,ω) =
1

2b2
∞(Q)

(
ω− a∞(Q)−

√
−D(Q,ω)

)
for ω ≥ Eu(Q) (A.4a)

T(Q,ω) =
1

2b2
∞(Q)

(
ω− a∞(Q)− i

√
D(Q,ω)

)
for El(Q) ≤ ω ≤ Eu(Q) (A.4b)

T(Q,ω) =
1

2b2
∞(Q)

(
ω− a∞(Q)+

√
−D(Q,ω)

)
for ω ≤ El(Q) (A.4c)
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with

D(Q,ω) = 4b2
∞(Q)− (ω− a∞(Q))2 . (A.4d)

In this way one can reliably approximate the thermodynamic limit of the Green function
G(q,ω) by calculations in a finite subspace.

The discussed way of termination is ideal for square root singularities at the band
edges as given in one-dimensional systems with quadratic dispersions. Otherwise,
other termination are better suited, but also technically more difficult.

A.2 Termination: Details

In figure A.1a the Lanczos coefficients an(Q) and bn(Q) for the two-triplon dynamical
spin structure factor Szz

2 (Q,ω) for Q = 0.1π are depicted, cf. equation (4.31) in section

4.1.2. We have restricted our system size by considering vectors
∣∣∣Q,d1

〉S=1

m=0
with d1 <

4000 only. Thus, our vector space has the dimension 3999. At least up to n = 1500
the coefficients show no sign of finiteness, i.e., they behave consistently to equation
(A.3), see inset in figure A.1a. To approximate the limits a∞(Q) and b∞(Q) we use the
arithmetic mean of an(Q) and bn(Q) for n ∈ [1400,1490]. Finally, we use the directly
calculated coefficients an(Q) and bn+1(Q) for n = 0 . . .1399 and subsequently the square
root terminator defined by the approximate limits for a∞(Q) and b∞(Q). By doing this,
we assume that all following coefficients an(K) and bn+1(K) with n ≥ 1400 are constant.
All results shown in figure 4.9 in section 4.1.2 are terminated in that way.

Figure A.1b shows the results for the coefficients an(Q) and bn(Q) of the Green
function G(Q,ω) (4.38) for the spectral density ρ(Q,ω) discussed in section 4.2.2 for
x = 0.5, y = 0.1 and Q = 0.1π. First it appears that both coefficients an(Q) and bn(Q)
(n / 115) converge to fixed values a∞(Q) and b∞(Q) as it should be for a bounded
and gapless spectral density of an infinite large system [Pettifor & Weaire(1985)]. The
existence of an upper boundary of the spectral density ρ(Q,ω) is a consequence of
our restriction to a subspace which contains three quasiparticles at maximum. But
for n ' 115 both coefficients start to change their values again noticeably. This is a
consequence of the fact that we had to restrict the relative distances d1 and d1 + d2

to a maximum of 119 rungs (cf. equation (4.39)) in our numerical calculations. Note,
that the dimension of the subspace (4.39) with 0 < d1,d1+ d2 < 120 is 21183. Here we
compute the average value of an(Q) and bn(Q) for n= 80 . . .100 (cf. figure A.1b) to obtain
a good approximation for the limits a∞(Q) and b∞(Q). Subsequently, we use the directly
calculated coefficients an(Q) and bn+1(Q) for n = 0 . . .79 and a terminator defined by the
approximate limits for a∞(Q) and b∞(Q). All results for the spectral density ρ(Q,ω)
depicted in figure 4.15a are obtained in this way.
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Terminated continued fractions are also used to determine the width of
the excitations via the self-energy Σ(Q,ω) in the asymmetric antiferromagnetic
spin S = 1/2 Heisenberg ladder (AASHL) (see figure 4.23), in the asymmetric
ferro-antiferromagnetic spin S = 1/2 Heisenberg ladder (AFASHL) (see figure 5.9) and
in isopropylammonium trichlorocuprate(II) (CH3)2CHNH3CuCl3 (IPA-CuCl3) (see
figure 6.5 and figure 6.9). In table A.1 the number n of directly calculated coefficients
and the interval [n+1,nmax] used to determine an approximation for the limits a∞(Q)
and b∞(Q) are listed. For all momenta Q the same n and the same interval [n+1,nmax]
have been used for a given pair (x, y) of interactions.

Table A.1: Number n of directly calculated coefficients and the interval [n+1,nmax]
used to determine an approximation for the limits a∞(Q) and b∞(Q) for different
interactions x and y.

x y n [n+1,nmax]

0.50 0.10 79 [80,100]

0.50 0.25 79 [80,100]

0.50 0.50 79 [80,100]

0.75 0.10 59 [60,75]

0.75 0.25 59 [60,75]

0.75 0.50 69 [70,90]

1.00 0.10 49 [50,60]

1.00 0.25 49 [50,60]

1.00 0.50 49 [50,60]

0.50 -0.10 79 [80,100]

0.50 -0.25 69 [70,90]

0.50 -0.50 69 [70,90]

0.75 -0.10 59 [60,75]

0.75 -0.25 59 [60,75]

0.75 -0.50 59 [60,75]

1.00 -0.10 49 [50,60]

1.00 -0.25 49 [50,60]

1.00 -0.50 49 [50,60]

IPA-CuCl3 69 [70,90]
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(a) Coefficients an(Q) and bn(Q) for the two-triplon dynamical spin structure factor
Szz

2 (Q,ω) for Q = 0.1π, cf. equation (4.31) in section 4.1.2.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 20 40 60 80 100 120 140
n

an(Q)

bn(Q)

(b) Coefficients an(Q) and bn(Q) of the spectral density ρ(Q,ω) discussed in section
4.2.2 for x = 0.5, y = 0.1 and Q = 0.1π. The restriction of the considered subspace
becomes conspicuous at n ≈ 115.

Figure A.1: Coefficients from Lanczos tridiagonalization.
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Appendix B

Flow equations for hard-core toy model

Below the differential equations for the two hard-core bosons toy model discussed in
section 3.3.2 are listed. To improve legibility all `-dependencies are neglected.

B.1 Flow equations for the generator GM

Using the generator GM given by equation (3.69) yields the flow equations

∂h∅∅
∂`
= −2

(
h{1}∅

)2−2
(
h{2}∅

)2−2
(
h{1,2}∅

)2
(B.1a)

∂h{1}{1}
∂`
= 4

(
h{1}∅

)2
+2

(
h{1,2}∅

)2−2
(
h{1,2}{1}

)2−4 h{2}∅ h{1,2}{1} −2
(
h{2}{1}

)2
(B.1b)

∂h{2}{2}
∂`
= 4

(
h{2}∅

)2
+2

(
h{1,2}∅

)2−2
(
h{1,2}{2}

)2−4 h{1}∅ h{1,2}{2} +2
(
h{2}{1}

)2
(B.1c)

∂h{2}{1}
∂`
= h{2}{1}

(
h{1}{1}−h{2}{2}

)
−2 h{1}∅ h{1,2}{1} −2 h{2}∅ h{1,2}{2} −2 h{1,2}{1} h{1,2}{2} (B.1d)

∂h{1,2}{1,2}
∂`

= 8 h{1}∅ h{1,2}{2} +8 h{2}∅ h{1,2}{1} +4
(
h{1,2}{1}

)2
+4

(
h{1,2}{2}

)2
(B.1e)

∂h{1}∅
∂`
= −h{1}∅ h{1}{1}−2 h{1,2}∅

(
h{2}∅ +h{1,2}{1}

)
−2 h{2}∅ h{2}{1} (B.1f)

∂h{2}∅
∂`
= −h{2}∅ h{2}{2}−2 h{1,2}∅

(
h{1}∅ +h{1,2}{2}

)
(B.1g)

∂h{1,2}∅
∂`

= −h{1,2}∅
(
h{1}{1}+h{2}{2}+h{1,2}{1,2}

)
(B.1h)

∂h{1,2}{1}
∂`

= 2 h{1,2}∅
(
2 h{1}∅ +h{1,2}{2}

)
−h{1,2}{1,2}

(
h{2}∅ +h{1,2}{1}

)
−h{1,2}{1} h{2}{2} (B.1i)

∂h{1,2}{2}
∂`

= 2 h{1,2}∅
(
2 h{2}∅ +h{1,2}{1}

)
−h{1,2}{1,2}

(
h{1}∅ +h{1,2}{2}

)
−h{1,2}{2} h{1}{1}+2 h{2}{1}

(
2 h{2}∅ +h{1,2}{1}

)
. (B.1j)
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B.2 Flow equations for the generator Gpc

Using the generator Gpc given by equation (3.70) yields the flow equations

∂h∅∅
∂`
= −2

(
h{1}∅

)2−2
(
h{2}∅

)2−2
(
h{1,2}∅

)2
(B.2a)

∂h{1}{1}
∂`
= 4

(
h{1}∅

)2
+2

(
h{1,2}∅

)2−2
(
h{1,2}{1}

)2−4 h{2}∅ h{1,2}{1} (B.2b)

∂h{2}{2}
∂`
= 4

(
h{2}∅

)2
+2

(
h{1,2}∅

)2−2
(
h{1,2}{2}

)2−4 h{1}∅ h{1,2}{2} (B.2c)

∂h{2}{1}
∂`
= −2 h{1}∅ h{1,2}{1} −2 h{2}∅ h{1,2}{2} −2 h{1,2}{1} h{1,2}{2} (B.2d)

∂h{1,2}{1,2}
∂`

= 8 h{1}∅ h{1,2}{2} +8 h{2}∅ h{1,2}{1} +4
(
h{1,2}{1}

)2
+4

(
h{1,2}{2}

)2
(B.2e)

∂h{1}∅
∂`
= −h{1}∅ h{1}{1}−2 h{1,2}∅

(
h{2}∅ +h{1,2}{1}

)
−h{2}∅ h{2}{1} (B.2f)

∂h{2}∅
∂`
= −h{2}∅ h{2}{2}−2 h{1,2}∅

(
h{1}∅ +h{1,2}{2}

)
−h{1}∅ h{2}{1} (B.2g)

∂h{1,2}∅
∂`

= −h{1,2}∅
(
h{1}{1}+h{2}{2}+h{1,2}{1,2}

)
(B.2h)

∂h{1,2}{1}
∂`

= 2 h{1,2}∅
(
2 h{1}∅ +h{1,2}{2}

)
−h{1,2}{1,2}

(
h{2}∅ +h{1,2}{1}

)
−h{1,2}{1} h{2}{2}+h{2}{1}

(
2 h{1}∅ +h{1,2}{2}

)
(B.2i)

∂h{1,2}{2}
∂`

= 2 h{1,2}∅
(
2 h{2}∅ +h{1,2}{1}

)
−h{1,2}{1,2}

(
h{1}∅ +h{1,2}{2}

)
−h{1,2}{2} h{1}{1}+h{2}{1}

(
2 h{2}∅ +h{1,2}{1}

)
. (B.2j)
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B.3 Flow equations for the generator GDEO

Using the generator GDEO given by equation (3.71) yields the flow equations

∂h∅∅
∂`
= −2

(
h{1}∅

)2−2
(
h{2}∅

)2−2
(
h{1,2}∅

)2
(B.3a)

∂h{1}{1}
∂`
= 4

(
h{1}∅

)2
+2

(
h{2}∅

)2
+2

(
h{1,2}∅

)2
(B.3b)

∂h{2}{2}
∂`
= 4

(
h{2}∅

)2
+2

(
h{1}∅

)2
+2

(
h{1,2}∅

)2
(B.3c)

∂h{2}{1}
∂`
= 2 h{1}∅ h{2}∅ (B.3d)

∂h{1,2}{1,2}
∂`

= −4
(
h{1}∅

)2−4
(
h{2}∅

)2
(B.3e)

∂h{1}∅
∂`
= −h{1}∅ h{1}{1}−h{1,2}∅

(
h{2}∅ +h{1,2}{1}

)
−h{2}∅ h{2}{1} (B.3f)

∂h{2}∅
∂`
= −h{2}∅ h{2}{2}−h{1,2}∅

(
h{1}∅ +h{1,2}{2}

)
−h{1}∅ h{2}{1} (B.3g)

∂h{1,2}∅
∂`

= −h{1,2}∅
(
h{1}{1}+h{2}{2}+h{1,2}{1,2}

)
−2 h{1}∅ h{2}∅ −h{1}∅ h{1,2}{1} −h{2}∅ h{1,2}{2} (B.3h)

∂h{1,2}{1}
∂`

= h{1,2}∅
(
3 h{1}∅ +h{1,2}{2}

)
+h{1}∅ h{2}{1}+h{2}∅ h{1}{1} (B.3i)

∂h{1,2}{2}
∂`

= h{1,2}∅
(
3 h{2}∅ +h{1,2}{1}

)
+h{2}∅ h{2}{1}+h{1}∅ h{2}{2} . (B.3j)
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B.4 Flow equations for the generator Ggs

Using the generator Ggs given by equation (3.72) yields the flow equations

∂h∅∅
∂`
= −2

(
h{1}∅

)2−2
(
h{2}∅

)2−2
(
h{1,2}∅

)2
(B.4a)

∂h{1}{1}
∂`
= 4

(
h{1}∅

)2
+2

(
h{1,2}∅

)2−2 h{2}∅ h{1,2}{1} (B.4b)

∂h{2}{2}
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= 4

(
h{2}∅

)2
+2

(
h{1,2}∅

)2−2 h{1}∅ h{1,2}{2} (B.4c)

∂h{2}{1}
∂`
= −h{1}∅ h{1,2}{1} −h{2}∅ h{1,2}{2} (B.4d)

∂h{1,2}{1,2}
∂`

= 4 h{1}∅ h{1,2}{2} +4 h{2}∅ h{1,2}{1} (B.4e)

∂h{1}∅
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= −h{1}∅ h{1}{1}−h{1,2}∅

(
2 h{2}∅ +h{1,2}{1}

)
−h{2}∅ h{2}{1} (B.4f)

∂h{2}∅
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= −h{2}∅ h{2}{2}−h{1,2}∅

(
2 h{1}∅ +h{1,2}{2}

)
−h{1}∅ h{2}{1} (B.4g)

∂h{1,2}∅
∂`

= −h{1,2}∅
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h{1}{1}+h{2}{2}+h{1,2}{1,2}

)
−h{1}∅ h{1,2}{1} −h{2}∅ h{1,2}{2} (B.4h)

∂h{1,2}{1}
∂`

= h{1,2}∅
(
4 h{1}∅ +h{1,2}{2}

)
+2 h{1}∅ h{2}{1}−h{2}∅ h{1,2}{1,2} (B.4i)
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)
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Bond operator representation

A pair of spin S = 1/2 operators S1 and S2 can be represented by a bond operator
representation [Chubukov(1989), Sachdev & Bhatt(1990)], where the spin components
Sα1 and Sα2 with α ∈ {

x, y,z
}

are represented by bond operators t†α (tα) via the equations

Sα1 :=
1
2

 (
t†α+ tα

)
− i

∑
β,γ

εαβγ t†βtγ

 (C.1a)

Sα2 :=
1
2

−(
t†α+ tα

)
− i

∑
β,γ

εαβγ t†βtγ

 . (C.1b)

The bond operators t†α (tα) obey the hard-core commutation relations (3.98).

An eigenbasis of the operator S1S2 is given by the singlet state

∣∣∣singlet
〉

:=
1√
2

(∣∣∣ ↑↓ 〉− ∣∣∣ ↓↑ 〉) (C.2a)

and the triplet states

t†x
∣∣∣singlet

〉
:=

∣∣∣x〉 = −1√
2

(∣∣∣ ↑↑ 〉− ∣∣∣ ↓↓ 〉) (C.2b)

t†y
∣∣∣singlet

〉
:=

∣∣∣y〉 = i√
2

(∣∣∣ ↑↑ 〉+ ∣∣∣ ↓↓ 〉) (C.2c)

t†z
∣∣∣singlet

〉
:=

∣∣∣z〉 = 1√
2

(∣∣∣ ↑↓ 〉+ ∣∣∣ ↓↑ 〉) . (C.2d)
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In this basis the spin operators (C.1) have the matrix representation

Sx
1 =

1
2


0 1 0 0
1 0 0 0
0 0 0 −i
0 0 i 0

 Sx
2 =

1
2


0 −1 0 0
−1 0 0 0
0 0 0 −i
0 0 i 0

 (C.3a)

Sy
1 =

1
2


0 0 1 0
0 0 0 i
1 0 0 0
0 −i 0 0

 Sy
2 =

1
2


0 0 −1 0
0 0 0 i
−1 0 0 0
0 −i 0 0

 (C.3b)

Sz
1 =

1
2


0 0 0 1
0 0 −i 0
0 i 0 0
1 0 0 0

 Sz
2 =

1
2


0 0 0 −1
0 0 −i 0
0 i 0 0
−1 0 0 0

 (C.3c)

yielding

S1S2 =
1
4


−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (C.4)

The basis vectors (C.2) are not building an eigenbasis of the operator Sz
tot = Sz

1+Sz
2.

Therefore, in the presence of an external magnetic field proportional to Sz
tot one usually

changes into a basis where the operator Sz
tot is diagonal, too. A possible basis is1

∣∣∣singlet
〉

:=
1√
2

(∣∣∣ ↑↓ 〉− ∣∣∣ ↓↑ 〉) (C.5a)

t†+
∣∣∣singlet

〉
:= −

∣∣∣ ↑↑ 〉 (C.5b)

t†0
∣∣∣singlet

〉
:=

1√
2

(∣∣∣ ↑↓ 〉+ ∣∣∣ ↓↑ 〉) (C.5c)

t†−
∣∣∣singlet

〉
:=

∣∣∣ ↓↓ 〉 (C.5d)

where the indices +,− and 0 denote the corresponding eigenvalues 1,−1 and 0 of the
operator Sz

tot.

The bond operators t†x, t†y and t†z appearing in equation (C.2) and the operators t†+, t
†
−

1In the literature different definitions of t†+ exist as well. Here we use the definition with the minus
sign, as used, e.g., in [Matsumoto et al.(2004)]. The definition without the minus sign is used e.g. in
[Knetter & Uhrig(2000)].
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and t†0 appearing in equation (C.5) are connected by

t†x =
1√
2

(
t†++ t†−

)
(C.6a)

t†y =
−i√

2

(
t†+− t†−

)
(C.6b)

t†x = t†0 . (C.6c)

For sums over x, y and z we usually use the index α. For sums over +,− and 0 we use
the index m. Additionally, we use the definition m := −m.

Within this thesis, spin interactions Si(r)S j(r′) with i, j ∈ {1,2} acting on the same
dimer (r = r′) or acting on different dimers (r , r′) are considered. The equations listed
below specify how the spin interactions are represented by the operators t†x, t†y and t†z
and t†+, t

†
− and t†0.

For r = r′ the only non-trivial combination for Si(r)S j(r)′ is

S1(r)S2(r) = −3
4
14+

∑
α

t†α,rtα,r (C.7a)

= −3
4
14+

∑
m

t†m,rtm,r . (C.7b)

For r , r′ four possible combinations Si(r)S j(r′) exist

4 S1(r)S1(r′) = T2 (r,r′)+T3+ (r,r′)+T4 (r,r′) (C.8a)

4 S2(r)S2(r′) = T2 (r,r′)−T3+ (r,r′)+T4 (r,r′) (C.8b)

4 S1(r)S2(r′) = −T2 (r,r′)+T3− (r,r′)+T4 (r,r′) (C.8c)

4 S2(r)S1(r′) = −T2 (r,r′)−T3− (r,r′)+T4 (r,r′) (C.8d)

with

T2(r,r′) =
∑
α

(
t†α,rtα,r′ + t†α,rt

†
α,r′

)
+H.c. (C.9a)

T3±(r,r′) =
∑
α,β,γ

iεαβγ
(
t†α,rt

†
β,r′tγ,r′ ± t†α,r′t

†
β,rtγ,r

)
+H.c. (C.9b)

T4(r,r′) =
∑
α,β

(
t†α,rtβ,rt

†
β,r′tα,r′ − t†α,rtβ,rt

†
α,r′tβ,r′

)
(C.9c)
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or

T2(r,r′) =
∑

m

(
t†m,rtm,r′ + t†m,rt

†
m,r′

)
+H.c. (C.10a)

T3±(r,r′) = −
(
t†+,rt

†
−,r′ − t†−,rt

†
+,r′

)
t0,r′ ∓

(
t†+,r′t

†
−,r− t†−,r′t

†
+,r

)
t0,r

− t†0,r
(
t†+,r′t+,r′ − t†−,r′t−,r′

)
∓ t†0,r′

(
t†+,rt+,r− t†−,rt−,r

)
+ t†0,r′

(
t†+,rt+,r′ − t†−,rt−,r′

)
± t†0,r

(
t†+,r′t+,r− t†−,r′t−,r

) (C.10b)

T4(r,r′) =
[
t†0,rt0,r′

(
t†+,r′t+,r+ t†−,r′t−,r

)
+H.c.

]
−

[
t†0,rt

†
0,r′

(
t+,rt−,r′ + t−,rt+,r′

)
+H.c.

]
+

(
t†+,rt+,r− t†−,rt−,r

)(
t†+,r′t+,r′ − t†−,r′t−,r′

)
.

(C.10c)



Appendix D

Analysis of the effective model

Here we present details of the analysis of the effective Hamiltonians for the asymmetric
ladder generated by continuous unitary transformations (CUTs). More details are
given in the references [Knetter et al.(2003a)], [Knetter(2003)] and [Kirschner(2004)] for
the special case of a particle conserving effective Hamiltonian.

The generators Gpc(`) and Ggs,1p(`) isolate the one-particle subspace from all other
subspaces (cf. figure 3.1 and figure 3.5). Therefore, the one-particle eigenvalues can be
calculated solely by equation (D.2) without considering states with a higher particle
number. In the case of the generator Gpc(`) also the two-particle space is isolated. Thus
the two-particle eigenvalues can be obtained by equation (D.3) and equation (D.12).

The effective Hamiltonians obtained by the generator Ggs(`) still contain interactions
between the one-particle subspace and other subspaces (cf. figure 3.3). Consequently,
a diagonalization in the one-particle subspace only gives an approximation for the
eigenvalues of the effective Hamiltonian, namely an upper bound for the eigenvalues
if the ground state energy is sufficiently well described. The results for the eigenvalues
can be improved by considering higher particle subspaces as well (see figure D.1).

In this thesis we consider subspaces which consist of states which contain up to
three triplons.

The Fourier transformed one-, two- and three-particle states are given by

∣∣∣Q,α0
〉
=

1√
N

∑
r

eiQr
∣∣∣r,α0

〉
(D.1a)

∣∣∣Q,α0
〉∣∣∣d1,α1

〉
=

1√
N

∑
r

e
iQ

(
r+

d1
2

) ∣∣∣r,α0
〉∣∣∣r+d1,α1

〉
(D.1b)

∣∣∣Q,α0
〉∣∣∣d1,α1

〉∣∣∣d2,α2
〉
=

1√
N

∑
r

e
iQ

(
r+

2d1+d2
3

) ∣∣∣r,α0
〉∣∣∣r+d1,α1

〉∣∣∣r+d1+d2,α2
〉

(D.1c)

with d1,d2 > 0. In any practical calculation the relative distances d1 and d2 must be
truncated to make the subspace finite. Note that due to the hard-core algebra it is not
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0,0

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

0,0

1,1

0,0

1,1 1,2

2,1 2,2

(a) (b) (c)

Figure D.1: Considered subspaces to analyze the effective Hamiltonian obtained
by the generator Ggs(`). The generator Ggs(`) only isolates the part H0

0. Colored
blocks illustrate interactions which are included. Grey blocks illustrate neglected
interactions. Panel (a) describes an analysis within the one-triplon subspace. Panel
(b) describes an analysis within the one- and two-triplon subspace. Panel (c) de-
scribes an analysis within the one-, two- and three-triplon subspace, see equations
(D.1)

possible that two particles occupy the same rung. Below, the action of the various parts
of the effective Hamiltonians are given.

D.1 Heff

∣∣∣1
1

The action of the operator Heff
∣∣∣1
1 on the one-triplon state

∣∣∣Q,β0
〉

is given by

Heff
∣∣∣1
1

∣∣∣Q,β0
〉
=

∑
l0,α0

α0

β0

[
cH|11

]
l0

eiQl0
∣∣∣Q,α0

〉
(D.2a)

with

α0

β0

[
cH|11

]
l0

:=
〈
r,α0

∣∣∣ Heff
∣∣∣1
1

∣∣∣r+ l0,β0
〉

(D.2b)

and l0 ∈ Z. Note that due to the translational symmetry only the relative distance
l0 between the states

∣∣∣r,α0
〉

and
∣∣∣r+ l0,β0

〉
occurs in the coefficient

α0

β0

[
cH|11

]
l0

. In the

special case of a SU(2) symmetric Hamiltonian the coefficients
α0

β0

[
cH|11

]
l0

obey the re-

lation
α0

β0

[
cH|11

]
l0
= δα0,β0

[
cH|11

]
l0

. The used truncation scheme (cf. section 3.4.3) causes
α0

β0

[
cH|11

]
l0
= 0 for |l0| > D2. All other coefficients

α0,α1,...,αNc

β0,β1,...,βNa

[
cH|Nc

Na

]d1,...,dNc

l0,l1,...,lNa
which appear

in the following are affected by the truncation scheme in an analogous way.
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The action of the operator Heff
∣∣∣1
1 on the two-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
is given by

Heff
∣∣∣1
1

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
=

∑
l0>−l1
α0

α0

β0

[
cH|11

]
l0

eiQ
l0
2
∣∣∣Q,α0

〉∣∣∣l0+ l1,β1

〉

+
∑

l0<−l1
α0

α0

β0

[
cH|11

]
l0

eiQ
l0
2
∣∣∣Q,β1

〉∣∣∣− (l0+ l1) ,α0
〉

+
∑
l0<l1
α0

α0

β1

[
cH|11

]
l0

eiQ
l0
2
∣∣∣Q,β0

〉∣∣∣− (l0− l1) ,α0
〉

+
∑
l0>l1
α0

α0

β1

[
cH|11

]
l0

eiQ
l0
2
∣∣∣Q,α0

〉∣∣∣l0− l1,β0
〉
.

(D.3)



214 Analysis of the effective model

The action of the operator Heff
∣∣∣1
1 on the three-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉

is given
by

Heff
∣∣∣1
1

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉
=

∑
l0>−l1
α0

α0

β0

[
cH|11

]
l0

eiQ
l0
3
∣∣∣Q,α0

〉∣∣∣l0+ l1,β1

〉∣∣∣l2,β2
〉

+
∑

−(l1+l2)<l0<−l1
α0

α0

β0

[
cH|11

]
l0

eiQ
l0
3
∣∣∣Q,β1

〉∣∣∣− (l0+ l1) ,α0
〉∣∣∣l0+ l1+ l2,β2

〉

+
∑

l0<−(l1+l2)
α0

α0

β0

[
cH|11

]
l0

eiQ
l0
3
∣∣∣Q,β1

〉∣∣∣l2,β2
〉∣∣∣− (l0+ l1+ l2) ,α0

〉

+
∑

−l2<l0<l1
α0

α0

β1

[
cH|11

]
l0

eiQ
l0
3
∣∣∣Q,β0

〉∣∣∣− (l0− l1),α0
〉∣∣∣l0+ l2,β2

〉

+
∑
l0>l1
α0

α0

β1

[
cH|11

]
l0

eiQ
l0
3
∣∣∣Q,α0

〉∣∣∣l0− l1,β0
〉∣∣∣l1+ l2,β2

〉

+
∑

l0<−l2
α0

α0

β1

[
cH|11

]
l0

eiQ
l0
3
∣∣∣Q,β0

〉∣∣∣l1+ l2,β2
〉∣∣∣− (l0+ l2) ,α0

〉

+
∑
l0<l2
α0

α0

β2

[
cH|11

]
l0

eiQ
l0
3
∣∣∣Q,β0

〉∣∣∣l1,β1

〉∣∣∣− (l0− l2) ,α0
〉

+
∑

l2<l0<l1+l2
α0

α0

β2

[
cH|11

]
l0

eiQ
l0
3
∣∣∣Q,β0

〉∣∣∣− (l0− l1− l2) ,α0
〉∣∣∣l0− l2,β1

〉

+
∑

l0>l1+l2
α0

α0

β2

[
cH|11

]
l0

eiQ
l0
3
∣∣∣Q,α0

〉∣∣∣l0− l1− l2,β
〉∣∣∣l1,β1

〉
(D.4)

D.2 Heff

∣∣∣2
1

The action of the operator Heff
∣∣∣2
1 on the one-triplon state

∣∣∣Q,β0
〉

is given by

Heff
∣∣∣2
1

∣∣∣Q,β0
〉
=
∑
l0,d1
α0,α1

α0,α1

β0

[
cH|21

]d1

l0
e

iQ
(
l0−

d1
2

) ∣∣∣Q,α0
〉∣∣∣d1,α1

〉
(D.5a)

with

α0,α1

β0

[
cH|21

]d1

l0
:=

〈
r,α0

∣∣∣〈r+d1,α1
∣∣∣ Heff

∣∣∣2
1

∣∣∣r+ l0,β0
〉
. (D.6)
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The action of the operator Heff
∣∣∣2
1 on the two-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
is given by

Heff
∣∣∣2
1

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
=

∑
l0>−l1+d1,d1

α0,α1

α0,α1

β0

[
cH|21

]d1

l0
e

iQ
(

4l0+l1−2d1
6

) ∣∣∣Q,α0
〉∣∣∣d1,α1

〉∣∣∣l0+ l1−d1,β1

〉

+
∑

−l1<l0<−l1+d1,d1
α0,α1

α0,α1

β0

[
cH|21

]d1

l0
e

iQ
(

4l0+l1−2d1
6

) ∣∣∣Q,α1

〉∣∣∣l0+ l1,β1

〉∣∣∣− (l0+ l1)+d1,α2
〉

+
∑

l0<−l1,d1
α0,α1

α0,α1

β0

[
cH|21

]d1

l0
e

iQ
(

4l0+l1−2d1
6

) ∣∣∣Q,β1

〉∣∣∣− (l0+ l1) ,α0
〉∣∣∣d1,α1

〉

+
∑

l0<l1,d1
α0,α1

α0,α1

β1

[
cH|21

]d1

l0
e

iQ
(

4l0−l1−2d1
6

) ∣∣∣Q,β0
〉∣∣∣− l0+ l1,α0

〉∣∣∣d1,α1

〉

+
∑

l1<l0<l1+d1,d1
α0,α1

α0,α1

β1

[
cH|21

]d1

l0
e

iQ
(

4l0−l1−2d1
6

) ∣∣∣Q,α0
〉∣∣∣l0− l1,β0

〉∣∣∣− l0+ l1+d1,α1

〉

+
∑

l0>l1+d1,d1
α0,α1

α0,α1

β1

[
cH|21

]d1

l0
e

iQ
(

4l0−l1−2d1
6

) ∣∣∣Q,α0
〉∣∣∣d1,α1

〉∣∣∣l0− (l1+d1) ,β0
〉
(D.7)

D.3 Heff

∣∣∣1
2

The action of the operator Heff
∣∣∣1
2 on the two-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
is given by

Heff
∣∣∣1
2

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
=

∑
l0,α0

α0

β0,β1

[
cH|12

]
l0,l1

e
iQ

(
l0+

l1
2

) ∣∣∣Q,α0
〉

(D.8a)

with

α0

β0,β1

[
cH|12

]
l0,l1

:=
〈
r,α0

∣∣∣ Heff
∣∣∣1
2

∣∣∣r+ l0,β0
〉∣∣∣r+ l0+ l1,β1

〉
. (D.8b)
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The action of the operator Heff
∣∣∣1
2 on the three-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉

is given
by

Heff
∣∣∣1
2

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉
=

∑
l0>−(l1+l2)

α0

α0

β0,β1

[
cH|12

]
l0,l1

e
iQ

(
3l0+l1−l2

6

) ∣∣∣Q,α0
〉∣∣∣l0+ l1+ l2,β2

〉

+
∑

l0<−(l1+l2)
α0

α0

β0,β1

[
cH|12

]
l0,l1

e
iQ

(
3l0+l1−l2

6

) ∣∣∣Q,β2
〉∣∣∣− (l0+ l1+ l2) ,α0

〉

+
∑
l0<l1
α0

α0

β1,β2

[
cH|12

]
l0,l2

e
iQ

(
3l0+l1+2l2

6

) ∣∣∣Q,β0
〉∣∣∣− l0+ l1,α0

〉

+
∑
l0>l1
α0

α0

β1,β2

[
cH|12

]
l0,l2

e
iQ

(
3l0+l1+2l2

6

) ∣∣∣Q,α0
〉∣∣∣l0− l1,β0

〉

+
∑

l0>−l1
α0

α0

β0,β2

[
cH|12

]
l0,l1+l2

e
iQ

(
3l0+l1+2l2

6

) ∣∣∣Q,α0
〉∣∣∣l0+ l1,β1

〉

+
∑

l0<−l1
α0

α0

β0,β2

[
cH|12

]
l0,l1+l2

e
iQ

(
3l0+l1+2l2

6

) ∣∣∣Q,β1

〉∣∣∣− (l0+ l1) ,α0
〉

(D.9)

D.4 Heff

∣∣∣3
1

The action of the operator Heff
∣∣∣3
1 on the one-triplon state

∣∣∣Q,β0
〉

is given by

Heff
∣∣∣3
1

∣∣∣Q,β0
〉
=
∑

l0,d1,d2
α0,α1,α2

α0,α1,α2

β0

[
cH|31

]d1,d2

l0
e

iQ
(
l0−

2d1+d2
3

) ∣∣∣Q,α0
〉∣∣∣d1,α1

〉∣∣∣d2,α2
〉

(D.10a)

with

α0,α1,α2

β0

[
cH|31

]d1,d2

l0
:=

〈
r,α0

∣∣∣〈r+d1,α1
∣∣∣〈r+d1+d2,α2

∣∣∣ Heff
∣∣∣3
1

∣∣∣r+ l0,β0
〉
. (D.10b)
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D.5 Heff

∣∣∣1
3

The action of the operator Heff
∣∣∣1
3 on the three-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉

is given
by

Heff
∣∣∣1
3

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉
=

∑
l0,α0

α0

β0,β1,β2

[
cH|13

]
l0,l1,l2

e
iQ

(
l0+

2l1+l2
3

) ∣∣∣Q,α0
〉

(D.11a)

with

α0

β0,β1,β2

[
cH|13

]
l0,l1,l2

:=
〈
r,α0

∣∣∣ Heff
∣∣∣1
3

∣∣∣r+ l0,β0
〉∣∣∣r+ l0+ l1,β1

〉∣∣∣r+ l0+ l1+ l2,β0
〉
. (D.11b)

D.6 Heff

∣∣∣2
2

The action of the operator Heff
∣∣∣2
2 on the two-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
is given by

Heff
∣∣∣2
2

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
=
∑
l0,d1
α0,α1

α0,α1

β0,β1

[
cH|22

]d1

l0,l1
e

iQ
(
l0+

l1−d1
2

) ∣∣∣Q,α0
〉∣∣∣d1,α1

〉
(D.12a)

with

α0,α1

β0,β1

[
cH|22

]d1

l0,l1
:=

〈
r,α0

∣∣∣〈r+d1,α1
∣∣∣ Heff

∣∣∣2
2

∣∣∣r+ l0,β0
〉∣∣∣r+ l0+ l1,β1

〉
. (D.12b)
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The action of the operator Heff
∣∣∣2
2 on the three-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉

is given
by

Heff
∣∣∣2
2

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉

=
∑

l0>−(l1+l2)+d1,d1
α0,α1

α0,α1

β0,β1

[
cH|22

]d1

l0,l1
e

iQ
(

2l0+l1−d1
3

) ∣∣∣Q,α0
〉∣∣∣d1,α1

〉∣∣∣l0+ l1+ l2−d1,β2
〉

+
∑

−(l1+l2)<l0<−(l1+l2)+d1,d1
α0,α1

α0,α1

β0,β1

[
cH|22

]d1

l0,l1
e

iQ
(

2l0+l1−d1
3

) ∣∣∣Q,α0
〉∣∣∣l0+ l1+ l2,β2

〉∣∣∣− (l0+ l1+ l2)+d1,α1

〉

+
∑

l0<−(l1+l2)
d1,α0,α1

α0,α1

β0,β1

[
cH|22

]d1

l0,l1
e

iQ
(

2l0+l1−d1
3

) ∣∣∣Q,β2
〉∣∣∣− (l0+ l1+ l2) ,α0

〉∣∣∣d1,α1

〉

+
∑

−l1<l0<d1,d1
α0,α1

α0,α1

β0,β2

[
cH|22

]l1+d1

l0,l1+l2
e

iQ
(

2l0+l2−d1
3

) ∣∣∣Q,α0
〉∣∣∣l0+ l1,β1

〉∣∣∣− r+d1,α1

〉

+
∑

l0<−l1,d1
α0,α1

α0,α1

β0,β2

[
cH|22

]l1+d1

l0,l1+l2
e

iQ
(

2l0+l2−d1
3

) ∣∣∣Q,β1

〉∣∣∣− (l0+ l1) ,α0
〉∣∣∣l1+d1,α1

〉

+
∑

l0>d1,d1
α0,α1

α0,α1

β0,β2

[
cH|22

]l1+d1

l0,l1+l2
e

iQ
(

2l0+l2−d1
3

) ∣∣∣Q,α0
〉∣∣∣l1+d1,α1

〉∣∣∣l0−d1,β1

〉

+
∑

l0<l1,d1
α0,α1

α0,α1

β1,β2

[
cH|22

]d1

l0,l2
e

iQ
(

2l0+l2−d1
3

) ∣∣∣Q,β0
〉∣∣∣− l0+ l1,α0

〉∣∣∣d1,α1

〉

+
∑

l1<l0<l1+d1,d1
α0,α1

α0,α1

β1,β2

[
cH|22

]d1

l0,l2
e

iQ
(

2l0+l2−d1
3

) ∣∣∣Q,α0
〉∣∣∣l0− l1,β0

〉∣∣∣− l0+ l1+d1,α1

〉

+
∑

l0>l1+d1,d1
α0,α1

α0,α1

β1,β2

[
cH|22

]d1

l0,l2
e

iQ
(

2r+l2−d1
3

) ∣∣∣Q,α0
〉∣∣∣d1,α1

〉∣∣∣l0− (l1+d1) ,β0
〉

(D.13)

D.7 Heff

∣∣∣3
2

The action of the operator Heff
∣∣∣3
2 on the two-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
is given by

Heff
∣∣∣3
2

∣∣∣Q,β0
〉∣∣∣l1,β1

〉
=

∑
l0,d1,d2
α0,α1,α2

α0,α1,α2

β0,β1

[
cH|32

]d1,d2

l0,l1
e

iQ
(
l0+

3l1−4d1−2d2
6

) ∣∣∣Q,α0
〉∣∣∣d1,α1

〉∣∣∣d2,α2
〉

(D.14a)
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with

α0,α1,α2

β0,β1

[
cH|32

]d1,d2

l0,l1
:=

〈
r,α0

∣∣∣〈r+d1,α1
∣∣∣〈r+d1+d2,α2

∣∣∣ Heff
∣∣∣3
2

∣∣∣r+ l0,β0
〉∣∣∣r+ l0+ l1,β1

〉
.

(D.14b)

D.8 Heff

∣∣∣2
3

The action of the operator Heff
∣∣∣2
3 on the three-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉

is given
by

Heff
∣∣∣2
3

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉

:=
∑
l0,d1
α0,α1

α0,α1

β0,β1,β2

[
cH|23

]d1

l0,l1,l2
e

iQ
(
l0+

4l1+2l2−3d1
6

)∣∣∣Q,α0
〉∣∣∣d1,α1

〉
(D.15a)

with

α0,α1

β0,β1,β2

[
cH|23

]d1

l0,l1,l2
:=

〈
r,α0

∣∣∣〈r+d1,α1
∣∣∣ Heff

∣∣∣2
3

∣∣∣r+ l0,β0
〉∣∣∣r+ l0+ l1,β1

〉∣∣∣r+ l0+ l1+ l2,β2
〉
.

(D.15b)

D.9 Heff

∣∣∣3
3

The action of the operator Heff
∣∣∣3
3 on the three-triplon state

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉

is given
by

Heff
∣∣∣3
3

∣∣∣Q,β0
〉∣∣∣l1,β1

〉∣∣∣l2,β2
〉
=
∑

l0,d1,d2
α0,α1,α2

α0,α1,α2

β0,β1,β2

[
cH|33

]d1,d2

l0,l1,l2
e

iQ
(
l0+

2(l1−d1)+(l2−d2)
3

) ∣∣∣Q,α0
〉∣∣∣d1,α1

〉∣∣∣d2,α2
〉

(D.16a)

with

α0,α1,α2

β0,β1,β2

[
cH|33

]d1,d2

l0,l1,l2
:=〈

r,α0
∣∣∣〈r+d1,α1

∣∣∣〈r+d1+d2,α2
∣∣∣ Heff

∣∣∣3
3

∣∣∣r+ l0,β0
〉∣∣∣r+ l0+ l1,β1

〉∣∣∣r+ l0+d1+d2,β2
〉
.

(D.16b)

D.10 Spin subspace S = 1, m = 0

Due to the SU(2) spin symmetry it is possible to reduce the computational effort. The
one-, two- and three-triplon states with S = 1 and m = 0 are listed in table D.1. Since
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Table D.1: States of the S = 1 and m = 0 subspace.∣∣∣Q〉S=1

m=0

∣∣∣z〉∣∣∣Q,d1

〉S=1

m=0
i√
2

(∣∣∣x, y〉− ∣∣∣y,x〉)∣∣∣Q,d1,d2,1
〉S=1

m=0
−

√
3

20

(∣∣∣z,x,x〉+ ∣∣∣z, y, y〉+ ∣∣∣x,z,x〉+ ∣∣∣y,z, y〉)
−

√
2
30

(
2
∣∣∣z,z,z〉− ∣∣∣x,x,z〉− ∣∣∣y, y,z〉)∣∣∣Q,d1,d2,2

〉S=1

m=0
1
2

(∣∣∣z,x,x〉+ ∣∣∣z, y, y〉− ∣∣∣x,z,x〉− ∣∣∣y,z, y〉)∣∣∣Q,d1,d2,3
〉S=1

m=0
1√
3

(∣∣∣x,x,z〉+ ∣∣∣y, y,z〉+ ∣∣∣z,z,z〉)

they are independent of the total momentum Q and the relative distances d1 and d2 we
omit the dependence on these parameters.



Appendix E

Fourier transformed effective
observables

Let Oeff(r) be a local effective observable given as a sum over terms of local creation and
annihilation operators. We use the notation defined in equation (3.103). The action of
the local effective observable Oeff(r) on the vacuum state |0〉 is given by

Oeff(r)
∣∣∣0〉 =∑

i≥0

Oeff(r)
∣∣∣i
0

∣∣∣0〉 (E.1a)

=
[
cO|00

]∣∣∣0〉
+

∑
d0,α0

α0
[
cO|10

]d0 ∣∣∣r+d0,α0
〉

+
∑
d0,d1
α0,α1

α0α1
[
cO|20

]d0,d1
∣∣∣r+d0,α0

〉∣∣∣r+d0+d1,α1

〉

+
∑

d0,d1,d2
α0,α1,α2

α0α1α2
[
cO|30

]d0,d1,d2 ∣∣∣r+d0,α0
〉∣∣∣r+d0+d1,α1

〉∣∣∣r+d0+d1+d2,α2
〉

+ . . .

(E.1b)

with d0 ∈Z and d1,d2, . . . > 0. The Fourier transformation of the state Oeff(r) |0〉 is defined
as

Oeff(Q)
∣∣∣0〉 :=

1√
N

N∑
r=0

eiQrOeff(r)
∣∣∣0〉 . (E.2)

Each part Oeff(r)
∣∣∣i
0 of Oeff(r) can be investigated separately. The Fourier transformation

of the one-particle sector is given by
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Oeff(Q)
∣∣∣1
0

∣∣∣0〉 = 1√
N

N∑
r=0

eiQr
∑
d0,α0

α0
[
cO|10

]d0 ∣∣∣r+d0,α0
〉

(E.3a)

=
∑
d0,α0

α0
[
cO|10

]d0 e−iQd0
∣∣∣Q,α0

〉
(E.3b)

=
∑
α0

α0
[
CO|10

(Q)
]∣∣∣Q,α0

〉
(E.3c)

with

α0
[
CO|10

(Q)
]

:=
∑
d0

α0
[
cO|10

]d0 e−iQd0 . (E.3d)

The two-particle sector is given by

Oeff(Q)
∣∣∣2
0

∣∣∣0〉 = 1√
N

N∑
r=0

eiQr
∑
d0,d1
α0,α1

α0,α1
[
cO|20

]d0,d1
∣∣∣r+d0,α0

〉∣∣∣r+d0+d1,α1

〉
(E.4a)

=
1√
N

N∑
r=0

∑
d0,d1
α0,α1

α0,α1
[
cO|20

]d0,d1 eiQ(r−d0)
∣∣∣r,α0

〉∣∣∣r+d1,α1

〉
(E.4b)

=
∑
d0,d1
α0,α1

α0,α1
[
cO|20

]d0,d1 e
−iQ

(
2d0+d1

2

)
1√
N

N∑
r=0

e
iQ

(
(r+

d1
2

)∣∣∣r,α0
〉∣∣∣r+d1,α1

〉
(E.4c)

=
∑
d0,d1
α0,α1

α0,α1
[
cO|20

]d0,d1 e
−iQ

(
2d0+d1

2

)∣∣∣Q,α0
〉∣∣∣d1,α1

〉
(E.4d)

=
∑
d1
α0,α1

α0,α1
[
CO|20

(Q)
]d1

∣∣∣Q,α0
〉∣∣∣d1,α1

〉
(E.4e)

with

α0,α1
[
CO|20

(Q)
]d1 :=

∑
d0

α0,α1
[
cO|20

]d0,d1 e
−iQ

(
2d0+d1

2

)
(E.4f)

and d1 > 0. Finally, the three-particle sector is given by
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Oeff(Q)
∣∣∣3
0

∣∣∣0〉
=

1√
N

N∑
r=0

eiQr
∑

d0,d1,d2
α0,α1,α2

α0,α1,α2
[
cO|30

]d0,d1,d2 ∣∣∣r+d0,α0
〉∣∣∣r+d0+d1,α1

〉∣∣∣r+d0+d1+d2,α2
〉

(E.5a)

=
∑

d0,d1,d2
α0,α1,α2

α0,α1,α2
[
cO|30

]d0,d1,d2 e
−iQ

(
3d+2d1+d2

3

)∣∣∣Q,α0
〉∣∣∣d1,α1

〉∣∣∣d2,α2
〉

(E.5b)

=
∑
d1,d2

α0,α1,α2

α0,α1,α2
[
CO|30

(Q)
]d1,d2 ∣∣∣Q,α0

〉∣∣∣d1,α1

〉∣∣∣d2,α2
〉

(E.5c)

with

α0,α1,α2
[
CO|30

(Q)
]d1,d2 :=

∑
d0

α0,α1,α2
[
cO|30

]d0,d1,d2 e
−iQ

(
3d0+2d1+d2

3

)
(E.5d)

and d1,d2 > 0.

E.1 Spin subspace S = 1, m = 0

Let us consider the local observable

O(r) = Sz
1(r) (E.6a)

=
1
2

[(
t†z,r+ tz,r

)
− i

(
t†x,rty,r− t†y,rtx,r

)]
. (E.6b)

Applying Sz
1(r) on an arbitrary state with total spin S = 0 and m = 0 yields a state

with total spin S = 1 and m = 0. If the continuous unitary transformation (CUT) does
not break the SU(2) symmetry during the flow, this property can be used to simplify
equations (E.3), (E.4) and (E.5).

The action of the operator Sz
1,eff(Q)

∣∣∣1
0 on the vacuum state |0〉 is given by

Sz
1,eff(Q)

∣∣∣1
0

∣∣∣0〉 = CS=1,m=0
Sz

1|
1
0

(Q)
∣∣∣Q〉S=1

m=0
(E.7a)

with

CS=1,m=0
Sz

1|
1
0

(Q) :=
∑
d0

z[
cSz

1|
1
0

]d0 e−iQd0 . (E.7b)
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Analogously, the action of the operator Sz
1,eff(Q)

∣∣∣2
0 on the vacuum state |0〉 is given by

Sz
1,eff(Q)

∣∣∣2
0

∣∣∣0〉 =∑
d1

[
CS=1,m=0

Sz
1|

2
0

(Q)
]d1

∣∣∣Q,d1

〉S=1

m=0
(E.8a)

with

[
CS=1,m=0

Sz
1|

2
0

(Q)
]d1 :=

i√
2

∑
d0

(
xy[

cSz
1|

2
0

]d0,d1 − yx[
cSz

1|
2
0

]d0,d1
)

e
−iQ

(
2d0+d1

2

)
. (E.8b)

The action of Sz
1,eff(Q)

∣∣∣3
0 on the vacuum state |0〉 is more difficult due the fact that in the

three-particle space for each Q, d1 and d2 three states with S = 1 and m = 0 exist. It is
given by

Sz
1,eff(Q)

∣∣∣3
0

∣∣∣0〉 =∑
d1,d2

3∑
a=1

a[
CS=1,m=0

Sz
1|

3
0

(Q)
]d1,d2 ∣∣∣Q,d1,d2,a

〉S=1

m=0
(E.9a)

with

1[
CS=1,m=0

Sz
1|

3
0

(Q)
]d1,d2 :=

1√
60

∑
d0

(
2

xxz[
cSz

1|
3
0

]d0,d1,d2
+2

yyz[
cSz

1|
3
0

]d0,d1,d2

−3
zxx[

cSz
1|

3
0

]d0,d1,d2 −3
zyy[

cSz
1|

3
0

]d0,d1,d2

−3
xzx[

cSz
1|

3
0

]d0,d1,d2 −3
yzy[

cSz
1|

3
0

]d0,d1,d2

−4
zzz[

cSz
1|

3
0

]d0,d1,d2
)

e
−iQ

(
3d0+2d1+d2

3

)
(E.9b)

and

2[
CS=1,m=0

Sz
1|

3
0

(Q)
]d1,d2 :=

1
2

∑
d0

(
zxx[

cSz
1|

3
0

]d0,d1,d2
+

zyy[
cSz

1|
3
0

]d0,d1,d2

− xzx[
cSz

1|
3
0

]d0,d1,d2 − yzy[
cSz

1|
3
0

]d0,d1,d2
)

e
−iQ

(
3d+2d1+d2

3

) (E.9c)

and

3[
CS=1,m=0

Sz
1|

3
0

(Q)
]d1,d2 :=

1√
3

∑
d0

(
xxz[

cSz
1|

3
0

]d0,d1,d2
+

yyz[
cSz

1|
3
0

]d0,d1,d2

+
zzz[

cSz
1|

3
0

]d0,d1,d2
)

e
−iQ

(
3d0+2d1+d2

3

)
.

(E.9d)
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E.2 Lattice symmetry

For all discussed ladder models (cf. chapter 4, chapter 5 and chapter 6) the lattice is
invariant under a rotation by 180 degrees. This symmetry yields to relations between
the coefficients for a spin S1 acting on leg 1 and the coefficients for a spin S2 acting on
leg 2. These relations are given by

α0
[
cSz

2|
1
0

]d0
= − α0

[
cSz

1|
1
0

]−d0 (E.10a)

α0,α1
[
cSz

2|
2
0

]d0,d1
=

α1,α0
[
cSz

1|
2
0

]−(d0+d1),d1 (E.10b)
α0,α1,α2

[
cSz

2|
3
0

]d0,d1,d2
= − α2,α1,α0

[
cSz

1|
3
0

]−(d0+d1+d2),d2,d1
. (E.10c)

Therefore, it is sufficient to consider S1 only. All quantities for S2 can be deduced from
S1.
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Appendix F

Inelastic neutron scattering theory

Since neutrons possess a magnetic momentum, inelastic neutron scattering (INS) can
be used to probe the magnetic structure of matter. A detailed description of INS can be
found , for example, in the book “Theory of thermal neutron scattering” by Marshall and
Lovesey [Marshall & Lovesey(1971)] or in the book “Introduction to the theory of thermal
neutron scattering” by squires [Squires(1978)].

In this appendix we only quote the relevant formulae to compare theoretical re-
sults to data provided by INS measurements. Especially, we focus on the case of the
asymmetric spin S = 1/2 Heisenberg ladder.

F.1 Dynamical structure factor

For compounds with only one type of magnetic (spin S= 1/2) ions the partial differential
cross section of INS is proportional to the dynamical structure factor given by

Sαβ (Q,ω) =
1

2π

∫ ∞

−∞
dt eiωt

〈
Sα (−Q, t)Sβ (Q,0)

〉
(F.1)

depending on the momentum transfer Q and on the energy transfer ω. The time
dependence of the Fourier transformed spin operators Sα (Q, t) with α ∈ {

x, y,z
}

is
given by the Heisenberg picture

Sα (Q, t) = eiHt Sα (Q)e−iHt (F.2)

and the Fourier transformation is defined by

Sα (Q) =
1√
N

1√
Nb

∑
r,b

eiQ(r+b) Sα (r+b) , (F.3)
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where r denotes lattice vectors and b denotes basis vectors. The total number of lattice
vectors is given by N and the number of basis vectors per unit cell by Nb. Note, for
Q = 0 the Fourier transformation Sα (Q) is proportional to the α-component of the total
spin

Sα (Q = 0) =
1√
N

1√
Nb

∑
r,b

Sα (r+b) (F.4a)

=
1√
N

1√
Nb

Sαtotal . (F.4b)

The fluctuation-dissipation theorem [Kubo(1966)]

Sαβ (Q,ω) = − 1
π

1
1− e−ω/T

ImGαβ(Q,ω) (F.5)

with the temperature T yields a connection between the dynamical structure factor
Sαβ (Q,ω) and the imaginary part of the Green function Gαβ(Q,ω) given by

Gαβ(Q,ω) =
∫ ∞

−∞
dt eiωt Gαβ(Q, t) (F.6)

with

Gαβ(Q, t) = −iθ(t)
〈[

Sα (−Q, t) ,Sβ (Q,0)
]〉
. (F.7)

F.1.1 Sum rule

The sum rule for the dynamical structure factor Sαα (Q,ω) for the above definitions is
given by

I =
∫ π

−π

dDQ
(2π)D

∫ ∞

−∞
dω Sαα (Q,ω) (F.8a)

=
1
NNb

∑
r,r′

∑
b,b′

δ(r+b− r′−b′) Sα(r+b)Sα(r′+b′) (F.8b)

=
1
NNb

∑
r

∑
b,b′

Sα(r+b)Sα(r+b)︸               ︷︷               ︸
S2

(F.8c)

= S2Nb (F.8d)

with the total spectral weight I.
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rr−1r−2 r+2r+1
1

2

a
b

Figure F.1: Schematic representation of a Heisenberg spin ladder. Circles indicate
spins with spin S = 1/2. The lattice is one-dimensional. Different rungs are labelled
by r and their distance a is typically set to one. Ladder rungs are defined by the
vector b. Spins of the lower leg are denoted by S1(r) and spins of the upper leg are
denoted by S2(r).

F.2 Spin ladder

Figure F.1 depicts the configuration of spins in a Heisenberg spin ladder. Spins of the
lower leg are denoted by S1(r) and spins of the upper leg are denoted by S2(r). Different
rungs of this one-dimensional lattice are labelled by r, where the distance a between
them is typically set to one. Although the lattice is one-dimensional, in general the
basis vector b defining the ladder rungs has a component perpendicular to the ladder
direction. Therefore, we divide the basis vector b and the momentum Q in components
along the ladder and perpendicular to it, i.e.

b = (b,b⊥)T (F.9)

and

Q = (Q,Q⊥)T . (F.10)

In that case equation (F.3) becomes

Sα (Q) =
eiQ b

2
√

2N

∑
r

eiQr
(
e−iQ b

2 Sα1 (r)+eiQ b
2 Sα2 (r)

)
. (F.11)

For temperature T = 0 the expectation values 〈.〉 in equation (F.1) and equation (F.7) are
given by the ground state expectation value

〈
g
∣∣∣ . ∣∣∣g〉. After the discussed continuous

unitary transformations (CUTs) the ground state is represented by the vacuum state
|0〉 =U†

∣∣∣g〉 and the spin operators are given by Sαeff(r) =U†Sα(r)U.



230 Inelastic neutron scattering theory

F.2.1 Sum rule

In chapter 4, chapter 5 and chapter 6 the dynamical structure factor Szz (Q,ω) is dis-
cussed for the cases Qb = 0 and Qb = π. For Qb = 0 equation∫ π

−π

dQ
2π

〈
Sα(−Q)Sα(Q)

〉∣∣∣∣
Qb=0

=
1

2N
∑

r

〈(
Sα1 (r)+Sα2 (r)

)2 〉
(F.12a)

holds and for Qb = π equation∫ π

−π

dQ
2π

〈
Sα(−Q)Sα(Q)

〉∣∣∣∣
Qb=π

=
1

2N
∑

r

〈(
Sα1 (r)−Sα2 (r)

)2 〉
(F.12b)

holds. The integral over the sum of these two contributions yields the total spectral
weight

I =
∫ π

−π

dQ
2π

〈
Sα(−Q)Sα(Q)

〉∣∣∣∣
Qb=0

+

∫ π

−π

dQ
2π

〈
Sα(−Q)Sα(Q)

〉∣∣∣∣
Qb=π

(F.13a)

=
1
N

∑
r

〈(
Sα1 (r)

)2
+

(
Sα2 (r)

)2 〉
(F.13b)

= 2S2 =
1
2
. (F.13c)

F.2.2 Spin subspace S = 1, m = 0

In a SU(2) symmetric system it is sufficient to consider Szz (Q,ω). The action of the
Fourier transformation Sz

eff(Q) of the effective spin operator Sz
eff(r) on the vacuum state

|0〉 is given by

Sz
eff (Q)

∣∣∣0〉 = eiQ b
2

√
2N

∑
r

eiQr
(
e−iQ b

2 Sz
1,eff(r)+eiQ b

2 Sz
2,eff(r)

) ∣∣∣0〉 (F.14a)

=
eiQ b

2
√

2

(
e−iQ b

2 Sz
1,eff (Q)+eiQ b

2 Sz
2,eff (Q)

) ∣∣∣0〉 (F.14b)

=
eiQ b

2
√

2

∑
i

(
e−iQ b

2 Sz
1,eff (Q)

∣∣∣i
0+eiQ b

2 Sz
2,eff (Q)

∣∣∣i
0

) ∣∣∣0〉 . (F.14c)
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The one-particle part is given by

eiQ b
2

√
2

(
e−iQ b

2 Sz
1,eff (Q)

∣∣∣1
0+eiQ b

2 Sz
2,eff (Q)

∣∣∣1
0

) ∣∣∣0〉
=

eiQ b
2

√
2

∑
d0

(
z[

cSz
1|

1
0

]d0 e−iQd0 e−iQ b
2 +

z[
cSz

2|
1
0

]d0 e−iQd0 eiQ b
2

) ∣∣∣Q〉S=1

m=0

(F.15a)

=
eiQ b

2
√

2

∑
d0

z[
cSz

1|
1
0

]d0
(
e−iQd0 e−iQ b

2 −eiQd0 eiQ b
2

) ∣∣∣Q〉S=1

m=0
(F.15b)

= −
√

2ieiQ b
2

∑
d0

z[
cSz

1|
1
0

]d0 sin(Qd0+Qb/2)
∣∣∣Q〉S=1

m=0
(F.15c)

= CS=1,m=0
Sz|10

(Q)
∣∣∣Q〉S=1

m=0
(F.15d)

with

CS=1,m=0
Sz|10

(Q) = −
√

2ieiQ b
2

∑
d0

z[
cSz

1|
1
0

]d0 sin(Qd0+Qb/2) . (F.16)

Analogously, the two-particle part is given by

eiQ b
2

√
2

(
e−iQ b

2 Sz
1,eff (Q)

∣∣∣2
0+eiQ b

2 Sz
2,eff (Q)

∣∣∣2
0

) ∣∣∣0〉 =∑
d1

[
CS=1,m=0

Sz|20
(Q)

]d1
∣∣∣Q,d1

〉S=1

m=0 (F.17)

with[
CS=1,m=0

Sz|20
(Q)

]d1
= eiQ b

2

∑
d0

(
xy[

cSz
1|

2
0

]d0,d1 − yx[
cSz

1|
2
0

]d0,d1
)
sin(Q (2d0+d1/2)+Qb/2) . (F.18)

The three-particle sector is considerably more involved. Nevertheless, we can write

eiQ b
2

√
2

(
e−iQ b

2 Sz
1,eff (Q)

∣∣∣3
0+eiQ b

2 Sz
2,eff (Q)

∣∣∣3
0

) ∣∣∣0〉 =∑
d1,d2

3∑
a=1

a[
CS=1,m=0

Sz|30
(Q)

]d1,d2 ∣∣∣Q,d1,d2,a
〉S=1

m=0

(F.19)

with

a[
CS=1,m=0

Sz|30
(Q)

]d1,d2
=

eiQ b
2

√
2

(
e−iQ b

2
a[

CS=1,m=0
Sz

1|
3
0

(Q)
]d1,d2

+eiQ b
2

a[
CS=1,m=0

Sz
2|

3
0

(Q)
]d1,d2

)
.

(F.20)

For the definition of
a[

CS=1,m=0
Sz

1|
3
0

(Q)
]d1,d2 see equation (E.9b), equation (E.9c) and equa-
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tion(E.9d). The definition of
a[

CS=1,m=0
Sz

2|
3
0

(Q)
]d1,d2 is analogous.



Appendix G

Magnetization

In this appendix details about the description of the ordered regime, also known as Bose-
condensed phase, of isopropylammonium trichlorocuprate(II) (CH3)2CHNH3CuCl3
(IPA-CuCl3) in a magnetic field are given. Results are discussed in section 6.3. The
calculations are analogous to the calculations performed by Matsumoto et al. to describe
the field-induced transitions in TlCuCl3 [Matsumoto et al.(2004)]. The crucial difference
to Matsumoto et al. is that we start from an effective model generated by self-similar
continuous unitary transformations (sCUTs) instead of the initial spin model. Hence
we are able to describe physical situations much further away from the dimer limit.

We start from the bilinear part of the two-dimensional effective model for IPA-CuCl3
in real space in a magnetic field (6.41) given by

Hbilinear
IPA-CuCl3,eff =Hbilinear

1D,eff +Hbilinear
int,eff +Hh (G.1a)

with

Hbilinear
1D,eff = J3

∑
r,s

∑
m

∑
d

[
cH1D|11

]
d

t†m,r,stm,r+d,s (G.1b)

Hbilinear
int,eff = J4

∑
r,s

∑
δ,δ′

∑
m

[
cSm

1 |
1
0

]δ[
cSm

2 |
1
0

]δ′ [
t†m,r,s

(
t†m,r+1+(δ′−δ),s+1+ tm,r+1+(δ′−δ),s+1

)
+H.c.

]
(G.1c)

Hh = −h
∑
r,s

(
t†+,r,st+,r,s− t†−,r,st−,r,s

)
(G.1d)

with the bond operators t†m,r,s (tm,r,s), cf. appendix C, acting on site r = (r,s) with spin
polarization m ∈ {+,−,0} (m=−m). Following Matsumoto et al. [Matsumoto et al.(2004)]
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we perform a local transformation

|s̃r〉 = u |sr〉+veiQ0r
(

f
∣∣∣t+,r〉+ g

∣∣∣t−,r〉) (G.2a)∣∣∣t̃+,r〉 = u
(

f
∣∣∣t+,r〉+ g

∣∣∣t−,r〉)−veiQ0r |sr〉 (G.2b)∣∣∣t̃0,r
〉
=

∣∣∣t0,r
〉

(G.2c)∣∣∣t̃−,r〉 = f
∣∣∣t−,r〉− g

∣∣∣t+,r〉 (G.2d)

in real space with r-independent coefficients

u = cos(θ) (G.3a)

v = sin(θ) (G.3b)

f = cos(ϕ) (G.3c)

g = sin(ϕ) (G.3d)

and the wave vector Q0 = (π,0) of the minimum of the dispersion.

After the transformation (G.2) the vacuum energy E0 per site is given by

E0/J3 =
(
ε+g2+ε− f 2

)
v2+2u2v2 (Λ1D+Λint)+4u2v2 f g Λint (G.4)

with

εm =
[
cH1D|11

]
0
+m

h
J3

(G.5a)

Λ1D :=
D2∑

d=−D2

(−1)d
[
cH1D|11

]
d

(G.5b)

Λint :=z
DO

1∑
δ,δ′=−DO

1

(−1)1+(δ′−δ)
[
cSm

1 |
1
0

]δ[
cSm

2 |
1
0

]δ′
(G.5c)

and z = J4/J3. Transformation (G.2) also leads to terms linear in t̃†−,r+ t̃−,r and linear in
t̃†+,r+ t̃+,r whose prefactors c− and c+ are proportional to

c− ∝ uv
[(
ε+g2+ε− f 2

)
+2

(
u2−v2

)
(Λ1D+Λint)+4

(
u2−v2

)
f g Λint

]
(G.6a)

c+ ∝ v
[
(ε+−ε−) f g+2u2

(
f 2− g2

)
Λint

]
(G.6b)

Demanding that these two coefficents vanish fixes the anglesθ andϕ and also optimizes
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E0. A Fourier transformation

t̃†α,r :=
1√
N

1√
N

∑
Q

eiQr b†α,Q (G.7a)

t̃α,r :=
1√
N

1√
N

∑
Q

eiQr bα,Q (G.7b)

(G.7c)

of the bilinear part of the rotated Hamiltonian leads to

Hbilinear
rotated = J3

∑
Q

[
ε0(Q) b†0,Qb0,Q+

∆0(Q)
2

(
b†0,Qb†0,−Q+ b0,Qb0,−Q

)
+ε+(Q) b†+,Qb+,Q+

∆+(Q)
2

(
b†+,Qb†+,−Q+ b+,Qb+,−Q

)
+ε−(Q) b†−,Qb−,Q+

∆−(Q)
2

(
b†−,Qb†−,−Q+ b−,Qb−,−Q

)
+ε±(Q)

(
b†+,Qb−,Q+ b†−,Qb+,Q

)
+∆±(Q)

(
b†+,Qb†−,−Q+ b+,Qb−,−Q

) ]
.

(G.8)

The appearing coefficients are given by

ε−(Q) =
(
u2−v2

)(
ε+g2+ε− f 2

)
−8u2v2 (Λ1D+Λint)−16u2v2 f g Λint

+
(
u4+v4

)
Ξ(Q)−4u2v2 f g Λ(Q)

(G.9a)

ε0(Q) =ε0−v2
(
ε+g2+ε− f 2

)
−4u2v2 (Λ1D+Λint)−8u2v2 f g Λint+u2 Ξ(Q) (G.9b)

ε+(Q) =ε+ f 2+ε−g2−v2
(
ε+g2+ε− f 2

)
−4u2v2 (Λ1D+Λint)−8u2v2 f g Λint

+u2 Ξ(Q)
(G.9c)

ε±(Q) =u f g (ε+−ε−)−2uv2
(

f 2− g2
)
Λint−uv2

(
f 2− g2

)
Λ(Q) (G.9d)

∆−(Q) =−2u2v2 Ξ(Q)+2
(
u4+v4

)
f g Λ(Q) (G.9e)

∆0(Q) =u2 Λ(Q) (G.9f)

∆+(Q) =−2u2 f g Λ(Q) (G.9g)

∆±(Q) =u3
(

f 2− g2
)
Λ(Q) (G.9h)

with

Ξ(Q) =2
D2∑
d=1

[
cH1D|11

]
d

cos(Qxd)+Λ(Q) (G.10a)

Λ(Q) =2z
DO

1∑
δ,δ′=−DO

1

[
cSm

1 |
1
0

]δ[
cSm

2 |
1
0

]δ′
cos(Qx (1+δ′−δ)+Qz) . (G.10b)



236 Magnetization

The Hamiltonian (G.8) can be diagonalized by two separate Bogoliubov transforma-
tions. Since the m = 0 mode in the Hamiltonian (G.8) does not mix with the two other
modes m = +,−, the dispersion ω0(Q) of the m = 0 mode is simply given by

ω0(Q) =
√
ε2

0(Q)−∆2
0(Q) . (G.11)

The remaining part of the Hamiltonian (G.8) can be written as

Hbilinear
rotated,± =

J3

2

∑
Q

[
β†QM(Q)βQ−

(
ε+(Q)+ε−(Q)

)]
(G.12)

with

βQ =


b
+,Q

b−,Q
b†
+,−Q

b†−,−Q

 (G.13)

and

M(Q) =


ε+(Q) ε±(Q) ∆+(Q) ∆±(Q)
ε±(Q) ε−(Q) ∆±(Q) ∆−(Q)
∆1(Q) ∆±(Q) ε+(Q) ε±(Q)
∆±(Q) ∆−(Q) ε±(Q) ε−(Q) .

 (G.14)

The matrix (G.14) has two positive eigenvalues where we denote the smaller one by
ω+(Q) and the larger one by ω−(Q). By construction the other two eigenvalues are
−ω+(Q) and −ω−(Q). Figure 6.13 in section 6.3 depicts ω−(Q), ω0(Q) and ω+(Q) for
Q =Q0 = (π,0).
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B. Lüthi& R. S. Eccleston (1996). Magnetic resonances and magnetization in the
spin ladder compound (VO)2P2O7. Solid State Communications 100(6), 381–384.
URL http://www.sciencedirect.com/science/article/pii/0038109896000002. 4
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