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Abstract

Nonparametric estimation of tail dependence can be based on a standardization of the marginals if
their cumulative distribution functions are known. In this paper it is shown to be asymptotically more
efficient if the additional knowledge of the marginals is ignored and estimators are based on ranks. The
discrepancy between the two estimators is shown to be substantial for the popular Clayton model. A
brief simulation study indicates that the asymptotic conclusions transfer to finite samples.

Keywords and Phrases: asymptotic variance, nonparametric estimation, rank-based inference, tail copula,
tail dependence

AMS Subject Classification: Primary 62G32 ; secondary 62G05

1 Introduction

Suppose (X,Y ), (X1, Y1), . . . , (Xn, Yn) are independent random vectors with joint cdf H and continuous
marginal cdfs F and G. The cdf C of (U, V ) = (F (X), G(Y )) is called the copula of (X,Y ) and satisfies
the relationship H(x, y) = C(F (x), G(y)). The lower and upper tail copulas of (X,Y ) (or the lower and
upper functions of tail dependence) are defined as the following directional derivatives of the copula C

and its associated survival copula C̄(u, v) = u+ v − 1 + C(1− u, 1− v) at the point (0, 0):

ΛL(x, y) = lim
t→0

Pr(F (X) ≤ tx | G(Y ) ≤ ty) = lim
t→0

C(tx, ty)
t

,

ΛU (x, y) = lim
t→0

Pr(F (X) ≥ 1− tx | G(Y ) ≥ 1− ty) = lim
t→0

C̄(tx, ty)
t

,

where (x, y) ∈ [0,∞]2\{(∞,∞)}. Note that C̄ is the joint cdf of the vector (1−U, 1−V ). Tail copulas and
variants thereof characterize extremal dependence of the vector (X,Y ), see de Haan and Ferreira (2006).
One of the variants of ΛU is given by the stable tail dependence function l(x, y) = x+ y − ΛU (x, y). The
restriction of ΛU to the unit sphere with respect to the ‖·‖1-norm, i.e., the function A(t) = ΛU (1−t, t) for
t ∈ [0, 1], is called Pickands dependence function, see Pickands (1981). Since tail copulas are homogeneous
in the sense that ΛU (sx, sy) = sΛU (x, y) for all s > 0, the Pickands dependence function and the upper
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tail copula are one-to-one. Similar remarks can be made for lower tail copulas, even though their variants
are less prominent. Of course, the popular coefficients of tail dependence are included in the concept of
tail copulas and are given by λL = ΛL(1, 1) and λU = ΛU (1, 1).
Assuming that (U, V ) is in the domain of attraction of a bivariate extreme value distribution, the estima-
tion of tail copulas has been addressed by Huang (1992). The underlying idea of her estimator (and of
several variants) can be summarized as follows. For the sake of brevity we restrict ourselves to lower tail
copulas and we begin by supposing that the marginal distributions are known to the statistician. In that
case, a natural estimator for C is given by the empirical distribution function of the standardized sample
(U1, V1), . . . (Un, Vn), i.e., C̃n(u, v) = n−1

∑n
i=1 I{Ui ≤ u, Vi ≤ v}. A promising estimator for ΛL is then

given by

Λ̃L(x, y) =
n

k
C̃n

(
kx

n
,
ky

n

)
=

1
k

n∑
i=1

I{F (Xi) ≤ kx/n,G(Yi) ≤ ky/n},

where k = kn is a constant that needs to be chosen by the statistician. Relaxing the assumption of having
knowledge of the marginal distributions we must replace C̃n(u, v) by the empirical copula Ĉn. With the
pseudo observations Ûi = Fn(Xi) and V̂i = Gn(Yi), where Fn and Gn denote the marginal empirical
distribution functions, the empirical copula is defined as Ĉn(u, v) = n−1

∑n
i=1 I{Ûi ≤ u, V̂i ≤ v}. Hence,

we can define

Λ̂L(x, y) =
n

k
Ĉn

(
kx

n
,
ky

n

)
=

1
k

n∑
i=1

I{F̂ (Xi) ≤ kx/n, Ĝ(Yi) ≤ ky/n}.

The asymptotics of these estimators (or slight variants thereof) have been investigated in Huang (1992);
Drees and Huang (1998); Schmidt and Stadtmüller (2006); Einmahl et al. (2012); Bücher and Dette
(2011), among others. In order to control the bias of the estimators one needs to assume a second order
condition on the speed of convergence in the defining relation for Λ. Suppose that

|ΛL(x, y)− tC(x/t, y/t)| = O(B(t))

for t → ∞ locally uniformly in (x, y), where B : [0,∞) → [0,∞) satisfies limt→∞B(t) = 0. Then for
k →∞, k = o(n) such that

√
kB(n/k) = o(1) it is well known that

√
k(Λ̃L(x, y)− ΛL(x, y)) BΛ(x, y)

in the space (`∞([0, T ]2), ‖ · ‖∞) for each T > 0, see, e.g., Schmidt and Stadtmüller (2006). Here, BΛL

denotes a tight centered Gaussian field with covariance structure given by

Cov{BΛ(x, y),BΛ(s, t)} = ΛL(x ∧ s, y ∧ t).

Note that the definition of BΛ can be extended to the set [0,∞]2 \ {(∞,∞)}. Using the margin-free
estimator Λ̂L, and assuming that the partial derivatives Λ̇L,1 = ∂

∂xΛL and Λ̇L,2 = ∂
∂yΛL exist and are

continuous on (0,∞)2, it holds
√
k(Λ̂L(x, y)− ΛL(x, y)) GΛ(x, y),

where the process GΛ can be expressed as

GΛ(x, y) = BΛ(x, y)− Λ̇L,1(x, y)BΛ(x,∞)− Λ̇L,2(x, y)BΛ(∞, y),
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see Einmahl et al. (2012); Bücher and Dette (2011). In the case of unknown marginal distributions, a
statistician being interested in tail dependence has no choice between the estimators Λ̃L and Λ̂L and has
to rely on Λ̂L. The question of interest of this note deals with case of having knowledge of the marginal
distributions. Then we are confronted with the question of which estimator to prefer, and observing that
Λ̃L exploits additional knowledge and has the somewhat easier limiting distribution might suggest to use
this estimator. We are going to show that this conclusion is misleading: even though Λ̂L is discarding
what appears to be pertinent information, this estimator is always preferable from an asymptotic point-
of-view. This result is in-line with a recent observation by Genest and Segers (2010) for the ordinary
empirical copula process, where the rank-based estimator for the copula is more efficient for a broad class
of positively associated copulas. For a similar observation regarding the analysis of censored data see,
e.g., Portnoy (2010).
The remainder of this note is organized as following. In Section 2 we discuss the bias and the asymptotic
variance of the two estimators Λ̃L and Λ̂L. While the bias is shown to be (almost) the same for both
estimators the variance of Λ̂L is shown to be substantially smaller. We investigate our findings for the
example of a Clayton tail copula both theoretically and by means of a small simulation study.

2 Main result

In the subsequent developments we restrict ourselves to the investigation of lower tail dependence. Similar
results hold in the upper tail. We are going to show that both estimators Λ̃L and Λ̂L share a comparable
bias under usual second order conditions, whereas the variance of Λ̂L is substantially smaller than that
of Λ̃L. We begin with the discussion of the bias which can be derived from the decompositions

√
k(Λ̃L(x, y)− ΛL(x, y)) =

√
k

{
n

k
C̃n

(
kx

n
,
ky

n

)
− n

k
C

(
kx

n
,
ky

n

)}
+
√
k

{
n

k
C

(
kx

n
,
ky

n

)
− ΛL(x, y)

}
,

√
k(Λ̂L(x, y)− ΛL(x, y)) =

√
k

{
n

k
Ĉn

(
kx

n
,
ky

n

)
− n

k
C

(
kx

n
,
ky

n

)}
+
√
k

{
n

k
C

(
kx

n
,
ky

n

)
− ΛL(x, y)

}
.

(1.1)

The first summands in each line are the leading terms and converge weakly towards BΛ and GΛ, respec-
tively. Whereas the leading term in the first line in unbiased for every n, its counterpart in the second
line is at least asymptotically unbiased. The summands on the right-hand side of the preceding decom-
position are the same for both estimators and constitute the term which determines the asymptotic bias.
Depending on the second order condition and on the limit behavior of

√
kB(n/k) for n → ∞ it may

converge to 0 or to some function g, or its absolute value may blow up to ∞.
For these reasons an (asymptotic) comparison of the estimators Λ̃L and Λ̂L must be based on a discussion
of their asymptotic (co)variance. The following Theorem, in which we abbreviate ΛL by Λ, is our main
result.

Theorem 2.1. Suppose that the partial derivatives of the tail copula Λ̇1 and Λ̇2 exist and are continuous
on (0,∞)2. Then

Cov{GΛ(x, y),GΛ(s, t)} ≤ Cov{BΛ(x, y),BΛ(s, t)}

for all x, y, s, t ≥ 0. In particular, Var(GΛ(x, y)) ≤ Var(BΛ(x, y)).
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Proof. The assertion is trivial if any of the variables equals zero, hence suppose x, y, s, t > 0. Multiplying
out we have

Cov{GΛ(x, y),GΛ(s, t)} − Cov{BΛ(x, y),BΛ(s, t)} =
4∑
i=1

Ai −
8∑
i=5

Ai

where Ai = Ai(x, y, s, t) is defined as

A1 = Λ̇1(x, y)Λ̇1(s, t)(x ∧ s) A2 = Λ̇1(x, y)Λ̇2(s, t)Λ(x, t)

A3 = Λ̇2(x, y)Λ̇1(s, t)Λ(s, y) A4 = Λ̇2(x, y)Λ̇2(s, t)(y ∧ t)
A5 = Λ̇1(s, t)Λ(x ∧ s, y) A6 = Λ̇2(s, t)Λ(x, y ∧ t)
A7 = Λ̇1(x, y)Λ(x ∧ s, t) A8 = Λ̇2(x, y)Λ(s, y ∧ t).

For symmetry reasons we may suppose that x ≤ s. We will now prove that each summand Ai with
i = 1, . . . , 4 can be matched with a summand Aj , j = 5, . . . , 8, such that Ai−Aj ≤ 0. This is done in the
following way:

A1 −A5 = Λ̇1(s, t){Λ̇1(x, y)x− Λ(x, y)}
A2 −A7 = Λ̇1(x, y){Λ̇2(s, t)Λ(x, t)− Λ(x, t)}
A3 −A8 = Λ̇2(x, y){Λ̇1(s, t)Λ(s, y)− Λ(s, y ∧ t)}
A4 −A6 = Λ̇2(s, t){Λ̇2(x, y)(y ∧ t)− Λ(x, y ∧ t)}.

Note that Λ(x, y)/x = Λ(1, y/x) together with monotonicity of Λ(1, ·) implies that the function x 7→
Λ(x, y)/x is non-increasing. Hence, for all x, y > 0

Λ̇1(x, y)x ≤ Λ(x, y), Λ̇2(x, y)y ≤ Λ(x, y), (1.2)

where the second inequality follows analogously to the first one. This implies A1−A5 ≤ 0. The assertion
A2 − A7 ≤ 0 follows by boundedness of the partial derivative, i.e., 0 ≤ Λ̇2 ≤ 1. Regarding the remaining
two differences we distinguish two cases, namely y ≤ t and y > t. In the former case, A3−A8 ≤ 0 follows
again from the upper bound 1 for Λ̇1, while A4 − A6 ≤ 0 follows from (1.2). In the case y > t, we can
exploit Λ(s, y) ≤ s and (1.2) to conclude on A3 −A8 ≤ 0. Regarding the last difference, we estimate

Λ̇2(x, y)t ≤ Λ(x, y)t/y = Λ(xt/y, t) ≤ Λ(x, t)

and hence A4 −A6 ≤ 0. The proof is finished.

Remark 2.2.
a) In contrast to the copula-pendant, i.e., Proposition 1 in Genest and Segers (2010), Theorem 2.1 holds
for every tail copula and not only for a subclass. An heuristic explanation for this observation is that
tail-dependent random variables are strongly positively associated (at least in the tails). A copula being
left-tail decreasing is positively associated as well, and this is exactly the class of copulas for which Genest
and Segers (2010) showed the superiority of the rank-based copula estimator.

b) As a consequence of Theorem 2.1, by the same arguments as in Proposition 3 in Genest and Segers
(2010), we can conclude that any real-valued estimator θ̂ = Φ(Λ̂L) that is a non-decreasing and sufficiently
smooth functional of Λ̂L is preferable to the competitor θ̃ = Φ(Λ̃L) from an asymptotic variance point-of-
view. We omit the details of this observation.
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Example 2.3. The lower tail copula arising from the bivariate Clayton copula is given by

ΛL(x, y) = lim
t→0

t−1{(xt)−θ + (yt)−θ − 1}−1/θ = lim
t→0

(x−θ + y−θ − tθ)−1/θ = (x−θ + y−θ)−1/θ,

where θ > 0. The first order partial derivatives are calculated as

Λ̇L,1(x, y) = (x−θ + y−θ)−(1+θ)/θx−(1+θ), Λ̇L,2(x, y) = (x−θ + y−θ)−(1+θ)/θy−(1+θ).

In Figure 1 we plot the graphs of the asymptotic variances of the estimators Λ̃L and Λ̂L on the unit cube
[0, 1]2 for θ = 1 corresponding to a coefficient of tail dependence of 0.5. The difference is seen to be
substantial, especially close to the axis.
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Figure 1: The graphs of Var(G(x, y)) (left, unknown marginals), of Var(B(x, y)) (middle, known marginals) and of
the relative efficiency Var(G(x, y))/Var(B(x, y)) (right) for the Clayton tail copula with parameter θ = 1 and for
(x, y) ∈ [0, 1]2.

In order to investigate the influence of the parameter θ we restrict ourselves to the estimation of the
coefficient of lower tail dependence. The calculations above show that λL = ΛL(1, 1) = 2−1/θ for the
Clayton tail copula. The competitive estimators are λ̃L = Λ̃L(1, 1) and λ̂L = Λ̂L(1, 1), and a careful
calculation reveals that their asymptotic variances are given by

Var(BΛ(1, 1)) = 2−1/θ, Var(GΛ(1, 1)) = 2−1/θ{1 + 2−1/θ−1 + 2−2/θ−1 − 2−1/θ+1}.

In Figure 2, these variances are plotted as a function of θ. It can be seen that the rank-based estimator
becomes substantially better with increasing degree of tail dependence.
Finally, we investigate the finite-sample performance of the estimators for λL by means of a small sim-
ulation study. To this end, we simulate i.i.d. samples of size n = 1.000 of the Clayton tail copula with
parameter θ = 0.5 such that the coefficient of tail dependence is λL = 0.25. Our objective is the es-
timation of λL and we investigate both the squared bias and the asymptotic variance as a function of
the parameter k. As usual in extreme value theory, larger values of k result in a larger bias, whereas
the variance decreases in k. The results, which are based on 10.000 repetitions, are plotted in Figure 3.
We clearly see the expected superiority of λ̂L in Variance and Mean Squared Error. The bias of both
estimators is indeed comparable as indicated by decomposition (1.1) at the beginning of this Section.
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Figure 2: Left: Asymptotic Variance Var(G(1, 1)) (dashed line) and Var(B(1, 1)) (solid line) for the Clayton tail
copula as a function of θ. Right: Asymptotic relative efficiency Var(G(1, 1))/Var(B(1, 1))
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Figure 3: Squared Bias (dashed lines), Variance (dotted lines) and MSE (solid lines) of the estimators Λ̂L(1, 1)
(black lines) and Λ̃L(1, 1) (gray lines) for λL = 0.25 in the Clayton tail copula model, as a function of the parameter k.

Note also that the difference in variance entails a different “optimal” choice of k for the two estimators,
which is seen to be slightly larger for the estimator based on known marginals. This discrepancy reveals
that there is no perfect global answer to the question of where the tail begins.
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