Simulation of electromagnetically formed joints

R. Neugebauer, V. Psyk, C. Scheffler

AGENDA

- Introduction: joining by electromagnetic forming
- Simulation strategy and modeling
- Numerical joint analysis
- Experimental verification
- Summary: numerical joint design

Joining by EMF – Joining mechanisms

Joining by EMF – Joining mechanisms

Metallic bonding

Applicable for metal-metal joints only. Requires extremely high energy. Aprupt failure of the joint.

Joining by electromagnetic compression – Exemplary material combinations

Joining by EMF – Joining mechanisms

Interference-fit

Joint strength is very sensitive to part cleanliness.

High joint strength might require **long joining area**.

Metallic bonding

Applicable for **metal-metal joints** only.

Requires extremely high energie.

Abrupt failure of the joint.

© Fraunhofer IWU

Prof. Neugebauer

Historical development of joining by electromagnetic forming

Numerical modeling

Input variables

© Fraunhofer IWU Prof. Neugebauer

Archivierungsangab

Exemplary joining task and regarded cross section geometries

Tubular joining partner

Material:	C35
Outer diameter:	42.4 mm
Wall thickness	3.2 mm

Pulsed power generator

Capacitance:	330 µF
Inner inductance:	0.15 µH
Inner resistance:	$5\mathrm{m}\Omega$

Tool coil

Diameter:	102.4 mm
Length (winding):	120 mm
Number of turns:	6

Fieldshaper

Length of con-	
centration zone:	35 mm
Diameter of con-	
centration zone:	44.9 mm

Shaft

Modeling of the exemplary joining task – **Geometrical setup**

Tubular joining partner

Material:	C35
Outer diameter:	42.4 mm
Wall thickness	3.2 mm

Pulsed power generator

Capacitance:	330 µF
Inner inductance:	0.15 µH
Inner resistance:	$5~\mathrm{m}\Omega$

Tool coil

Diameter:	102.4 mm
Length (winding):	120 mm
Number of turns:	6

Fieldshaper

Length of con-	
centration zone:	35 mm
Diameter of con-	
centration zone:	44.9 mm

IWU

© Fraunhofer IWU Prof. Neugebauer

Archivierungsangabe

Material modeling

© Fraunhofer IWU Prof. Neugebauer

Archivierungsangat

IWU

Material modeling

IWU

Archivierungsangab

Material modeling

Magnetic field intensity

No significant influence of nonlinear magnetization detected

➔ Influence disregarded in the numerical analysis of the joining process

Results of the numerical analyses – Joining by EMF

Archivierungsangabe

Results of the numerical analyses – Joining by EMF

Results of the numerical analyses – Testing of the joint

Shaft geometry I

Max. displacement	2.7 mm	
Rise of gap volume	97%	
Max. local strain	0.45	
Strain energy	1.0 kJ	
Maximum torque	2300 Nm	۱

Shaft geometry II

0.04 0.09

0.13

0.18 0.22

0.26

0.31

0.35

0.40

0.44

Т

Plastic strain in

Max. displacement	5.3 mm
Rise of gap volume	136%
Max. local strain	0.44
Strain energy	0.9 kJ
Maximum torque	1500 Nm

0.05 0.09 0.14 0.18 0.23 0.27 0.32 0.32 0.36 0.41 0.45

Experimental verification – Joining by EMF

Experimental verification – Testing of the joint

Torque measurement device at Chemnitz University of Technology, Institute of Engineering Design and Drive Technology

© Fraunhofer IWU Prof. Neugebauer

Archiv

Experimental verification – Joint strength

🗾 Fraunhofer

Archivierungsangabei

Experimental verification – Joint strength

Summary

- A form-fit joint was designed on the basis of numerical investigations.
 - Simulation of the electromagnetic joining process and
 - Subsequent simulation of the torque loading
- Nonlinear magnetization of ferromagnetic materials has only minor influence in EMF-technologies.
- Strain rate dependency was considered via a scaling the static yield stress.
- The overall strain energy stored in the workpiece after joining is decisive with regard to the transferable torque.
- Knowing the max. displacement and strain is not sufficient for joint design.
- Experimental verification showed good qualitative and quantitative agreement with the simulation considering the achievable torque. (Failure type could not be predicted via this modeling.)

