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Abstract

In high speed metal forming, determination of contact stresses applied to forming dies is 
necessary in order to identify the requirements to the die material. Contact stresses 
greatly control the die design due to their effects on die durability. Very high contact 
stresses and fracture under impulsive loading have been reported in literature on contact 
type of high speed forming. In pulsed forming operations using electro-hydraulic forming 
(EHF), a work piece is often accelerated into the die cavity of a desired shape resulting in 
a substantial impact pressure on the die. Contact algorithm and mesh size play an 
essential role in providing accurate results in such high speed processes. Using the soft 
contact model with an appropriate control of the penetration value provided stable and 
consistent contact stresses. 
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1 Introduction

Electro-hydraulic forming (EHF) is a high speed metal forming process where the blank is 
forced into the die cavity by a shock wave that propagates through a chamber filled with 
liquid and delivers a pressure pulse to a sheet metal blank. The shockwave produces a 
force sufficient to deform the blank against a forming surface defined by a cavity in a die 
[1]. The shock wave is produced in a fluid filled chamber by the high-voltage discharge of 
capacitors between two electrodes positioned in the chamber shown in Figure 1. The
process is extremely fast; uses lower-cost, single-sided tooling; and potentially derives 
significantly increased formability from many sheet metal materials because it involves 
elevated strain rates [2].  

Figure 1: Design of the electrohydraulic forming tool. 

Beneficial for material formability, high strain rates and high blank velocity are 
disadvantageous from the die durability perspective. This became apparent during the 
experimental work accomplished in EHF project at Ford Research and Advanced 
Engineering, as a number of die durability issues were encountered. Examples of the
failure modes observed in different die configurations are: 

Complete die failure, in an experimental die built from epoxy powder composites, the 
die was broken into several pieces due to low strength of selected die material. 
Appearance of a major, through the thickness, crack. 
Local cracking in the highly loaded areas.

Reduced die durability coupled with lack of existing EHF die design/durability 
guidelines made research and development of such guidelines mandatory. In general, 
failures of EHF dies, as any other stamping dies, can be attributed to wear, plastic 
deformation, and fatigue. Finite element analysis (FEA) is a very important part of this 
research, as it predicts the amount of plastic deformation in the die, and its output is used 
in fatigue analysis, in die wear estimation, and in the die material selection.

2 Problem Statement

Die durability is very sensitive to the contact stresses. The field of die design for high 
speed forming is relatively new, and modern applications are still emerging. The 
foundation of shock compression science is based upon observations and analysis of the 
mechanical responses of solid samples to shock-loading pulses [3]. Most of the work done 
in the area of fast, transient loading is experimental in nature. This is either due to 
complexities of geometry, the nonlinearity of the material behaviour or both. Closed form 
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analytical solutions are generally rare and apply only to some small subset of the overall 
problem. Numerical solutions, in the form of finite difference and finite element codes, 
have been successfully used in the past. However, the computer codes available for 
dynamic analysis are quite complex [3]. Considerable experience with both the codes and 
the physical problems they are intended to solve is vital. There are several occurrences
where different users with different backgrounds get quite different results. Codes have a
number of free parameters that must be set by users. This is a major requirement that if 
not met properly, incorrect physics is being computed and correlation between 
calculations and experiments is rare.  

Further, for each calculation the user must be sure to use an appropriate mesh that 
should provide converging solution. Once the mesh is chosen, an appropriate artificial 
viscosity should be selected to avoid damping the solution and artificial ringing. In 
dynamic calculations, the location of the stress or pressure gradient is a function of time 
as well as the space. In many instances wave propagation and their reflection from
material interfaces and geometric boundaries control the response. 

3 Limiting Stress in High Rate Forming Impact

3.1 Determination of Correct Impact Stresses

The most popular method of modeling contact interaction is based on the geometrical 
analysis of mutual position of boundary nodes of each mesh [2]. At every integration step, 
it is being verified whether a boundary node of the blank has penetrated through the 
certain element of the surface mesh of the die. If it happens, it is necessary to make 
certain corrections bringing the node back on the surface of the die and let the node slide 
along the die’s surface instead of penetrating through this surface. A significant downside 
of this approach is in occasional penetration of the node through the surface. It usually 
happens due to insufficient accuracy of calculations and logical gaps in the contact 
algorithm. As soon as the blank’s node penetrates into the die’s surface, it is unable to 
return back, and further calculations are erroneous. 

Several simulations were run for the test problems for which the analytical solutions 
exist: elastic impact of steel bar to steel bar and steel bar to steel sheet plate impact were
simulated according to the schematic in Figure 2. In this elastic impact the contact stress 
is vc where is the material density, c is the elastic wave speed, and v is the 
change in particle velocity [4].

                  
Figure 2: Sheet plate, meshed with shell elements impacting a bar meshed with 
tetrahedral elements. 
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For common steel at impact velocity of 100m/s this stress value is around 2GPa. 
Initial attempts to analyze these problems showed excessive contact stresses. Figure 3 
shows that unphysical stress values can substantially exceed 2GPa.  

Figure 3: Unphysical peak in contact pressure in element A of the impacted bar  

Those incorrect reported values cannot be carried over for further design steps. 
Simulation parameters and model formulation must be revised, and solution correctness 
judged. The analytical solution for this impact test is presented in the following section. 

3.2 Modelling of Dynamic Problems

Electro-hydraulic forming of sheet metals is a dynamic problem. In simulations of such 
physical problems it becomes necessary to recognize two important factors:

The rate at which our observed phenomenon changes;
The fact that information is propagated at a finite speed

In mechanical systems, this means taking into account both strain rate and wave 
propagation effects, [3]. 

Waves in rods and rod-like structures have been considered to create a state of 
uniaxial stress. In this configuration, however it is impossible to reach very high tri-axiality 
stress states. With velocity increases, 2D and 3D effects begin to dominate the rod 
deformation. Plasticity and material failure govern the magnitude of the stress the rod can 
carry. Typical idealized stress-strain curves used in computations for materials in such 
configurations are derived from typical uniaxial stress experiments routinely performed 
under quasi-static loading conditions.  

In order to examine other possible states of die material in pulsed forming 
conditions, we need to achieve higher level of stresses: we study a thin plate, known as 
the flyer striking a thicker plate. Waves will radiate into the stationary plate and the flyer 
plate in the thickness direction as well as in the transverse direction. However, until these 
reflect from the lateral boundary and return to the centre, a state of uniaxial strain (but 3D 
stress) will exist there. This change in geometry can achieve hydrodynamic stress state 
(or pressures) substantially higher than strength of the material at high strain rates.
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3.3 Shock Waves in Solids

Uniaxial strain state can be visualized where the deformation is restricted to one 
dimension such as in the case of plane waves propagating through a material dimensions, 
and constraints are such that the lateral strains are equal to zero, see [5], [6], and [7], for 
more detailed description.

Figure 4: Schematic of Stress-strain curve for uniaxial tensile test (upper) vs. Stress-
strain curve for uniaxial strain states (lower). 

The following expression for 1 can be obtained as in [3]: 
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where
)21(3

EK is the bulk modulus, 1 is the max principal stress, 1 is the 

corresponding principal strain and Y0 is the static yield strength. In terms of pressure the 
above equation is expressed as

01 3
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This is the stress-strain relation for the uniaxial strain loading described in [3]. For
uniaxial stress state, stress-strain relation is 11 E with the relation taking the form 
reported in a typical uniaxial tensile test shown in Figure 4. Thus, the most important 
difference between the uniaxial stress and uniaxial strain states is the bulk compressibility. 
In this case the stress continues to increase regardless of the yield stress or strain 
hardening. The stress-strain curve takes the form shown in Figure 4. 

For the case of elastic 1 D strain we obtain 
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11 )1)(21(
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from which we notice an increase in modulus by
)1)(21(

)1( . In Figure 4 we also 

notice that the yield point for the uniaxial strain is referred to as the Hugoniot Elastic Limit, 
HEL , which represents the maximum stress for 1D elastic wave propagation.

The upper curve in Figure 4 is known as the Hugoniot curve. If the material is 
strengthless ( 0Y = 0), it would follow a curve called the hydrostat and characterized

by
V
VP , where V is the original volume. For an elastic perfectly plastic material the

hydrostat curve has a constant deviation below the Hugoniot curve by 03
2 Y . If the material 

hardens with increasing strain, the difference between the Hugoniot and hydrostat curves
increases. From such a figure we can deduce that the maximum stress in an 

elastic/plastic impact will have a slope less than
)1)(21(

)1( . 

4 Impact Stress values in FEA simulations

The previous section sets the boundaries for the limiting stress in impact of deformable 
solids. This can be used to identify the unphysical high stress values which can be
obtained in impact simulations. This is necessary in the die design process for EHF 
because using of artificially high stress values in die design can be prohibiting to this 
technology or lead to excessively high cost of die material and its surface treatment.

Judging the accuracy of FEA solution is not easily achieved in the impact 
applications. Convergence may not be noticed because of other factors, such as 
penetration and hour glassing associated with solid elements which can return misleading 
values or even worse, cause instability. The following simulation was run on elastic steel 
bar to bar impact at velocity of 100 m/s in LS Dyna with the standard penalty formulation
[Soft = 0, *CONTACT_SURFACE_TO_SURFACE contact with the SSTYP = MSTYP = 3,
SLSFAC = 0.1, no artificial viscosity applied and the default values used for all other 
parameters] with bars meshed into 1 mm hexahedra solid elements as shown in Figure 5.

            
Figure 5: Bar to bar impact model meshed with 1 mm hexahedra elements  
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The pattern of the stresses doesn’t agree with the analytical solution of 2 GPa 
contact stress. According to Figure 6 a maximum stress appeared near the edges. It 
should be emphasized that the solution was very sensitive to contact type used.

Figure 6: Bar to bar impact with incorrect stress values distribution at selected elements

Consistent stress values, as shown in Figure 7, were achieved with one side of 
contact formulated into segments SSTYP = 0 and the other as a part type MSTYP = 3. 
Searching for the penetrating nodes and contact force update were required to be at high 
frequency. In LS Dyna bucket sorting identifies the nearest segment for each slave node. 
Number of cycles between bucket sorts was set to 1.  For the same reason, the number of 
cycles between contact force update for penalty formulation was also set to 1. Those 
options help to keep penetration at the minimum level.

Figure 7: Bar to bar impact with uniform stress values distribution
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Also according to [8], bulk viscosity TYPE 1 was used with coefficients Q1= 1.5, 
Q2= 0.06. Soft= 1 penalty formulation was used that takes into account the nodal masses 
and global time step size in contact stiffness calculations to achieve better stability. Proper 
artificial viscosity and hour glassing control were necessary and lead to uniform solution 
for all contacting elements.

Artificial viscosity is included in Euler and Lagrange codes to allow the code to
handle the shock waves which are mathematically discontinuous, and to provide grid 
stabilization for quadrilateral and hexahedral elements which use one point (reduced) 
evaluation element formulation as indicated in [3]. It is worth noting that higher contact 
stiffness helped to reduce the penetration. However, values exceeding the maximum 
stress introduced in the previous sections were obtained. Same was noticed with improper 
values for penetrating node searching parameters. 

Theoretically, the ideal mesh should be uniform in all directions and get
convergence for the critical values of the problem. However, it should be fine enough to 
give accurate results so that further refinement dramatically runs up the cost of computing 
with negligible improvement in accuracy [3]. To investigate this, a 38o V-die was used in 
an EHF simulation to form a blank of DP-500 1 mm sheet as shown in Figure 8. 

Figure 8: EHF Forming, half model, of a DP-500 blank meshed with 0.25 mm solid
elements in a V-die meshed with 0.5 mm solid elements

Figure 9: Stress values in a V-die during EHF process forming of DP-500 blank
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The contact model with the suggested parameters provided stable numerical 
solution. Only minimized penetration was observed with reference to previously reported 
results. The max contact stress in the die never exceeded the max physical ceiling 
introduced in the previous section as it is shown in Figure 9. The maximum stresses were 
observed at the die corner where fracture of the die is possible.  

The standard penalty formulation used in the above simulation with LS Dyna has a 
considerable influence on the solution stability. Equation (4) shows that the stiffness factor 

ik for the master segment is given in terms of bulk modulus iK , the volume iV and the 

face area iA for the brick element, [9].  This coupling between the element dimensions 
with the penalty force calculation does not lend itself to solution stability with volume and 
area continuously changing during impact. Penetration can be completely avoided and 
contact forces calculations decoupled from the element dimensions by using the contact 
formulation presented in [2]. Using the soft contact represented by Equation (5), the
contact force is localized in a small neighbourhood of mesh elements and it increases to 
infinity, theoretically, when the distance between surfaces in contact is approaching zero.

i

iisi
i V

AKfk
2

(4) 

where sif is a scale factor for the interface stiffness. 

0

0
0

0
,

11

hhat

hhat
hh

K

F (5) 

where F is the absolute value of the contact force, h is the actual distance between 
the impacting entities, and 0h is the width of the layer where the contact force is different 
from zero, and K  is a coefficient dependent on the model simulation. 

5 Conclusion

The used contact algorithm in impact simulations substantially affects the accuracy of the 
contact stress. This appears in the stability of the solution observed between different 
codes. The user has to take great care to assure that the solution reflect the true physics
of the problem. Analysis of contact stresses was conducted in blank impact simulations 
with different contact algorithms to avoid the so called mesh sensitivity. Inter-penetration 
was minimized along with better control over artificial viscosity and hour glassing to 
assure the stresses are closest to experimental results.
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