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Introduction 

Motivation 

• High process forces 
o Necessitiy to manifest development and 

calculation procedures for tool coil 
design 

• Complex physical process of binding 
o Necessity of model to indicate process 

parameters with guaranteed weldability  
• Different specifications of impulse 

forming machine 
o Necessity of flexible model capable to 

reproduce the discharge behaviour  
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Introduction – Process Variants of Pulse magnetic Forming 
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Process Details – Process Principle of Pulse magnetic Forming 
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Process details – Process Principle of Pulse magnetic Welding  

• Due to magnetical pressure, the tube is accelerated to the center 

 

• At the collision point high pressures are developing 

• A material jet is created at the collision point  

 

• Material within the contact zone changes to a highly viscous state 

• This results in the formation of a wavy interface 
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Process details – Process Conditions of Pulse magnetic Welding  

Process parameters at shock welding 
processes according to Kreye: 

•  Collision velocity vP 

•  Collision point velocity vcp 

•  Collision angle α 

Further dependencies: 

•  Charging energy WE 

•  Distance between probes d 

•  Overlap distance of probes dO 

 
Kreye, „Schweißen und Schneiden“, 1985, Vol. 37, pp 297-302 
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Process Details – relevant Parameters at Pulse magnetic Welding of 
Sheet Metals 
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Before welding 
b:   Breadth of metal sheet 
t:  Thickness of metal sheet 
d:   Distance of not yet welded metal sheets 
dO:  Overlapping of not yet welded metal sheets 

lS: Length of weld seam 
bSx: Breadth of weld seam S1/S2 
tS:    Depth of weld seam 



Model Details – Coupling Concept 

• Capacitor Banks, cables and collector 
were modeled as a simple RCL-circuit  

• Tool coil and workpiece were 
represented as FEM model 

• Electromagnetic Simulation was carried 
out first in order to calculate the process 
forces 

• Process forces were imposed on the 
mechanical model 
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Model Details – Geometry used for Simulations 
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Model Details – explicit Material Model 

Process conditions 

• Strain rates of ε = 5.5 105 1/s 

• Pressures of p ≤ 10 GPa 

• Process time of t ≤ 500 µs 

 

=> Necessity of material model 
applicable for high strain rates and 
with Equation of state (EOS) in 
order to deal with pressures above 
the yield stress 
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Simulation – Mesh  

Electromagnetic Simulation 
 
• To reproduce the skineffect, thin surface layers are needed 

in electrical conductive parts 
• Air domain with infinite boundary 
• Bolt geometry inside tube was negelected 

for elctromagnetic simulation 
 



Simulation – Mesh 

 
Explicit structural Simulation 
 
• Aspect ratios of elements close to 1 
• Air domain was neglected 
• Maximum time step size Δtmax is restricted by 

the minimum cell height Δxmin. This relation is 
described by the courant-condition: 
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Simulation – Results 2D Case 

• Voltage development at the capacitor during discharge 
process 

Magnetic Field 
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Simulation – Results 2D Case 

• Magnetic forces Fmag were stored in 
data file 

• Current I and voltage V of 
discharge circuit were validated 
with measurements 

• Magnetic flux density component 
parallel to the tool coil axis (By) was 
validated with measurements 

• Process forces inside the tool coil 
as well as the field former can be 
evaluated  
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Simulation – Results 3D Case 
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• Magnetic forces Fmag were stored in 
data file 

• Current I and voltage V of 
discharge circuit were validated 
with measurements 

• Magnetic flux density component 
parallel to the tool coil axis (By) was 
validated with measurements 

• Process forces inside the tool coil 
as well as the field former can be 
evaluated  



Results 

• Propagation of the shock 
wave is shown 

• Plastic deformation at the 
surface can be used as 
welding criterium 

• Better insights in strain 
hardening effects and 
deformation of the joint 

• Result can be further 
processed for stress analysis 
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Validation – magnetic Flux Density 
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• Measurement of 
maximum magnetic 
flux density By, max 

• Measurements were 
carried out with 
calibrated hall sensor 
as well as self-applied 
flat wound 
measurement coil 

• Qualification of the 
discharge current with 
rogowski coil 

 



Validation – magnetic Flux Density 

• Measurement of 
maximum magnetic 
flux density By, max 

• Measurements were 
carried out with 
calibrated hall sensor 
as well as self-applied 
flat wound 
measurement coil 

• Qualification of the 
discharge current with 
rogowski coil 
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Validation – Discharge Current 

• Discharge current was 
measured by use of a  
rogowski coil 

   

• Increasing distance between 
workpiece and field former 
during the deformation 
-> change of the mutual 
inductance  

• Amplitude as well as frequency 
show good agreement for both 
cases 
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Process: 

Compression with 
Fieldformer  
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Process: 

Compression with 
Fieldformer and workpiece 
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Conclusion 

• Pulse magnetic forming machine was modelled as equivalent discharge FEM circuit, whereas 

the tool coil and the work piece are modelled as FEM model 

• Good qualitative and quantitative assessment of the inherent physical processes enabling to 

conduct an optimisation of geometry 

• Pressure as well as the calculated plastic work are important process indicators and can 

eventually be used as welding criterion 

• Simulations were validated with magnetic flux density measurements as well as current 

measurements 
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