5th International Conference on High Speed Forming 2012

April 24-26 2012, Dortmund

Coupled FEM-Simulation of Magnetic Pulse Welding for Nonsymmetric Applications

Prof. Dr. h. c. Dr.-Ing. Eckart Uhlmann Dipl.-Ing. Alexander Ziefle Dipl.-Ing. Christoph König Dipl.-Ing. (FH) Lukas Prasol, M.Sc.

Institute for Machine Tools and Factory Management University of Technology Berlin www.iwf.tu-berlin.de

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Content

- Introduction
- Process details
- Model details
- Simulations
- Validation
- Conclusion

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Introduction

Motivation

- High process forces
 - Necessitiv to manifest development and calculation procedures for tool coil design
- Complex physical process of binding
 - Necessity of model to indicate process parameters with guaranteed weldability
- Different specifications of impulse forming machine
 - Necessity of flexible model capable to reproduce the discharge behaviour

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Introduction – Process Variants of Pulse magnetic Forming

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Process Details – Process Principle of Pulse magnetic Forming

Compression

Flat Forming

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Process details – Process Principle of Pulse magnetic Welding

- Due to magnetical pressure, the tube is accelerated to the center
- At the collision point high pressures are developing
 - A material jet is created at the collision point
- Material within the contact zone changes to a highly viscous state
 - This results in the formation of a wavy interface

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Process details – Process Conditions of Pulse magnetic Welding

Kreye, "Schweißen und Schneiden", 1985, Vol. 37, pp 297-302

Process parameters at shock welding processes according to Kreye:

- Collision velocity v_P
- Collision point velocity v_{cp}
- Collision angle α

Further dependencies:

- Charging energy W_E
- Distance between probes d
- Overlap distance of probes d_o

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Process Details – relevant Parameters at Pulse magnetic Welding of Sheet Metals

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Model Details – Coupling Concept

- Capacitor Banks, cables and collector were modeled as a simple RCL-circuit
- Tool coil and workpiece were represented as FEM model
- Electromagnetic Simulation was carried out first in order to calculate the process forces
- Process forces were imposed on the mechanical model

IPK

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Model Details – Geometry used for Simulations

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK ĩNF

Model Details – explicit Material Model

Process conditions

- Strain rates of ε = 5.5 10⁵ 1/s
- Pressures of $p \le 10$ GPa
- Process time of t \leq 500 µs
- => Necessity of material model applicable for high strain rates and with Equation of state (EOS) in order to deal with pressures above the yield stress

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

IPK

Simulation – Mesh

Electromagnetic Simulation

- To reproduce the skineffect, thin surface layers are needed in electrical conductive parts
- Air domain with infinite boundary
- Bolt geometry inside tube was negelected for elctromagnetic simulation

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Simulation – Mesh

Explicit structural Simulation

- · Aspect ratios of elements close to 1
- Air domain was neglected
- Maximum time step size Δt_{max} is restricted by the minimum cell height Δx_{min} . This relation is described by the courant-condition:

$$\Delta t_{max} \leq \frac{\Delta x_{max}}{c}$$

IPK INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

 Voltage development at the capacitor during discharge process

t = 27 μs

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK WF

Simulation – Results 2D Case

- Magnetic forces F_{mag} were stored in data file
- Current I and voltage V of discharge circuit were validated with measurements
- Magnetic flux density component parallel to the tool coil axis (B_y) was validated with measurements
- Process forces inside the tool coil as well as the field former can be evaluated

IPK INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK WF

Simulation – Results 3D Case

- Magnetic forces F_{mag} were stored in data file
- Current I and voltage V of discharge circuit were validated with measurements
- Magnetic flux density component parallel to the tool coil axis (B_y) was validated with measurements
- Process forces inside the tool coil as well as the field former can be evaluated

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK WF

Results

- Propagation of the shock
 wave is shown
- Plastic deformation at the surface can be used as welding criterium
- Better insights in strain hardening effects and deformation of the joint
- Result can be further
 processed for stress analysis

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Validation – magnetic Flux Density

- Measurement of maximum magnetic flux density B_{y, max}
- Measurements were carried out with calibrated hall sensor as well as self-applied flat wound measurement coil
- Qualification of the discharge current with rogowski coil

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Validation – magnetic Flux Density

- Measurement of maximum magnetic flux density B_{y, max}
- Measurements were carried out with calibrated hall sensor as well as self-applied flat wound measurement coil
- Qualification of the discharge current with rogowski coil

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

IPK

Validation – Discharge Current

 Discharge current was measured by use of a rogowski coil

 $I(t) = m U_{rog}(t)$

- Increasing distance between workpiece and field former during the deformation

 change of the mutual inductance
- Amplitude as well as frequency show good agreement for both cases

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Conclusion

- Pulse magnetic forming machine was modelled as equivalent discharge FEM circuit, whereas the tool coil and the work piece are modelled as FEM model
- Good qualitative and quantitative assessment of the inherent physical processes enabling to conduct an optimisation of geometry
- Pressure as well as the calculated plastic work are important process indicators and can eventually be used as welding criterion
- Simulations were validated with magnetic flux density measurements as well as current
 measurements

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Thank you very much for your attention!

Institute for Machine Tools and Factory Management Technische Universität Berlin Pascalstr. 8-9 10587 Berlin Germany

Alexander Ziefle Tel.: +49 30 / 314-24450 Email: ziefle@iwf.tu-berlin.de

www.iwf.tu-berlin.de

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

