5th International Conference on High Speed Forming 2012

April 24-26 2012, Dortmund

Pulsed magnetic forming of the magnesium alloy AZ31 – Comparison to quasi-static forming

Prof. Dr. h. c. Dr.-Ing. Eckart Uhlmann Dipl.-Ing. (FH) Lukas Prasol, M.Sc.

Dipl.-Ing. Christoph König

Dipl.-Ing. Alexander Ziefle

Institute for Machine Tools and Factory Management Berlin Institute of Technology www.iwf.tu-berlin.de

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Content

- Introduction
- Forming of Mg-alloy
- Process
- Experimental Setup
- Experimental Results
- Conclusion
- Outlook

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Introduction

Motivation

VW up! Lite

- Lightweight designs preserve resources and thus eco-efficient
- Modular design using different materials
- Magnesium-based alloy lighter than steel or aluminium
- Magnesium alloy have high specific strength

material

Presentation of the specific strength of different materials

aluminium

- axle parts made of magnesium
- hardened steel
- conventional steel

Picture: Droeder, K. G.: Untersuchungen zum Umformen von Feinblechen aus Magnesiumknetlegierungen. Dissertation, Universität Hannover, 1999

Picture: Autobild

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Forming of Mg-alloy

Conditions

- · Magnesium alloys have hexagonal lattice structure
- · Limited formability at room temperature
- High speed forming is an approach

 Formability of magnesium alloy AZ80 increases at high strain rates and temperatures¹

¹ El-Magd: "Einfluss der Umformgeschwindigkeit und -temperatur auf das Umformvermögen metallischer Werkstoffe unter Druckbelastung (Teilprojekt 1) und Zugbelastung (Teilprojekt 2)". In: Erweiterung der Formgebungsgrenzen bei Umformprozessen, Final report DFG-SPP 1074 - Ergebnisse aus 48 Forschungsprojekten (1999-2005)

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Process

Electromagnetic Forming

- Alternating current through tool coil
- Temporarily varying magnetic field
 induces electrical currents inside workpiece
- Lorentz force acts on a current-carrying workpiece inside the magnetic field
- Process duration of 50 µs to 200 µs
- Non-contact forming
- Joining of different, also non-metallic materials
- High flexibility due to simple adjustment of the tool to workpiece geometries

Experimental Setup

Approach

- Development of experimental setups ٠ for high-speed forming and guasi-static forming
- Warranty of comparing boundary conditions .
- Forming of magnesium alloy AZ31 ٠
 - Different strain rates
 - Different deformation
- Evaluation of formed geometries ٠
 - Evaluation of geometrical structure
 - Evaluation of hardness
 - Evaluation of texture

© by IWF, TU Berlin

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Experimental Setup

Process chain

- Sample preparation
 - \circ Sample generation
 - o Grid generation
- Preparation of experimental setup
- Experimental procedure
 - \circ High-speed photography
- Data evaluation
 - Optical measurement (GOM)
 - o Hardness
 - o Texture

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Experimental Setup

Definition of punch geometry

- Experimental setup for high-speed form
- Defined boundary conditions
- Creation of defined forming geometry
- Production of a defined punch
 - Hardness of 750 HV 30 in according to Erichsen-Test

© by IWF, TU Berlin

IPK INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK NF

Deformation

- Maximum deformation d_F at different strain rates at room temperature
- No occurance of cracks in the deformation area
- Different forming geometries
 - o Quasi-static forming
 - Maximum force in the center of the punch
 - Friction between punch and workpiece
 - High-speed forming
 - Maximum force outside of coil center

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK WF

Plastic strain

- Differences in plastic strain at same deformation in dependence of strain rates in investigated area
- Significantly larger maximum strains for quasi-statically deformed workpieces
- No occurance of cracks in the deformation area at reached deformation d_F
 - Deformation d_F > 3 mm leads to failure of workpiece at quasi-static forming
 - At high-speed forming deformation d_F up to 6 mm were realized

Quasi-static forming

Deformation d _F	Maximum plastic strain ϵ_{pl}
1.7 mm	8.0 %
2.0 mm	11.5 %
2.9 mm	13 %

High-speed forming

Deformation d _F	Maximum plastic strain ϵ_{pl}
1.8 mm	3.8 %
2.2 mm	4.8 %
3.0 mm	6.0 %

IPK

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK NF

Hardness

- Significant differences in Vickers hardness (HV) in dependence of strain rate
- Average difference of 11 HV
 between both processes
- Initial hardness of AZ31 63 HV
 - Increase of average hardness HV of 19 % at quasi-static forming
 - Increase of average hardness HV of 37 % at high-speed forming

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Texture

- Formation of different grain structures in dependence of strain rates can be suggested
- High-speed forming
 - \circ Quasi-adiabatic process
- Quasi-static forming
 - \circ Hardening process

Quasi-static forming

 Parameter:

 $ε_{pl}$ = 11.5 %

 φ = 0.002 s⁻¹

High-speed forming

Parameter: $\epsilon_{pl} = 4.8 \%$ $\phi = 630 \text{ s}^{-1}$

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Conclusion

- Realization of different deformations at different strain rates with comparable boundary conditions
- Forming geometries were generated by different methods
- Generated forming geometries exhibit different characteristics due to different local maxima in forces
- Realized strains in deformation area at the same forming geometries vary depending on the strain rates
- Due to different strain rates the Vickers hardness in the deformation area varies

IPK

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Outlook

- Simulation of the whole forming process
 - o Circuit
 - \circ Electomagnetic simulation
 - $_{\odot}\,$ Thermal simulation
 - \circ Structural simulation
- High-speed adjusted material model
- Investigation of influence on maximum forming geometry in dependence of different coil geometries

WERKZEUGMASCHINEN UND FABRIKBETRIEB

TECHNISCHE UNIVERSITÄT BERLIN

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

Thank you very much for your attention!

Institute for Machine Tools and Factory Management Berlin Institute of Technology Pascalstr. 8-9 10587 Berlin Germany

Lukas Prasol Tel.: +49 30 / 314 - 23568 Email: prasol@iwf.tu-berlin.de

www.iwf.tu-berlin.de

INSTITUT PRODUKTIONSANLAGEN UND KONSTRUKTIONSTECHNIK

