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Abstract. The security of energy supply has again become a similarly hot topic as it

was during the oil crises in the 1970s, not least due to the recent historical oil price

peaks. In this paper, we analyze the energy security situation of the G7 countries using

a statistical risk indicator and empirical energy data for the years 1978 through 2010.

We find that Germany’s energy supply risk has risen substantially since the oil price

crises of the 1970s, whereas France has managed to reduce its risk dramatically, most

notably through the deployment of nuclear power plants. As a result of the nuclear

phase-out decision of 2011, Germany’s supply risk can be expected to rise further and

to approach the level of Italy. Due to its resource poverty, Italy has by far the highest

energy supply risk among G7 countries.
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1 Introduction

The confluence of continuing instability in the Middle East, a growing resource nation-

alism, and a surge of oil demand by emerging countries, particularly China, has made

energy supply security a high policy priority in the European Union (COM 2008a).

Along with the almost ever-increasing significance of this topic, there is a growing

number of contributions to the literature that have developed and employed quanti-

tative security measures, with SOVACOOL et al. (2011), Lefèvre (2010, 2007), Löschel et

al. (2010), SOVACOOL and BROWN (2010), Vivoda (2010), Frondel and Schmidt (2009),

Constantini et al. (2007), Kemmler and Spreng (2007), Scheepers et al. (2006, 2007), and

Jansen et al. (2004) being among the most recent studies.

This article uses the statistical indicator of the long-term primary energy supply

risk conceived by Frondel and Schmidt (2009) to empirically analyze both the past and

future energy security situation of G7 countries. With this example, we will demon-

strate that this indicator is both useful and meaningful: The inter-temporal picture

drawn on the basis of this paper’s risk calculations appears to be perfectly in line with

our qualitative risk analysis of these countries’ past primary energy supply mixes.

In essence, the employed risk indicator condenses empirical information on the

imports of fossil fuels, such as oil, gas, and coal, originating from a multitude of export

countries, as well as data on the indigenous contribution to the domestic supply of all

kinds of energy sources, including biofuels and other renewable energies. The empir-

ical outcome is a single figure that characterizes the long-term total risk of a country’s

reliance on fossil fuel imports at a given point in time. While taking account of all

energy sources used in a country, both renewable and non-renewable, the basic ingre-

dients of the risk indicator are: (1) a country’s own contribution to the total domestic

supply of any fuel vis-a-vis the fuels’ import shares, (2) proxies for the probabilities of

supply disruptions in export countries, and (3) the diversification of the primary en-

ergy mix, that is, the variety of energy sources and technologies employed to satisfy

demand.

Given the multitude of facets underpinning the notion of energy security, includ-
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ing physical, economic, social and environmental dimensions (see SOVACOOL, 2010), it

appears to be hardly possible to integrate all of these aspects into a single indicator. The

present approach, for example, ignores both resource prices and their volatility, as well

as demand reductions, which are postulated by Jansen and Seebregts (2010:1655) to be

most effective towards achieving a more secure energy economy. Rather, the concept

employed here follows conventional tacks that take the demand for energy as exoge-

nously given, thereby focusing on the supply side of primary energy sources. Our aim

is to illustrate how the conceived measure of energy security can serve as an indica-

tor of physical availability or vulnerability based on a comparative analysis of the G7

countries.

In the terminology of Löschel et al. (2010), who distinguish between ex-post and

ex-ante indicators, Frondel and Schmidt’s (2009, 2011) concept should be regarded as

an ex-ante indicator, which, according to Löschel et al. (2010:1668), basically addresses

the issue of whether one may expect major welfare losses due to future frictions in a

country’s energy markets. It is therefore to be emphasized that the concept employed

in our article gauges the potential long-term supply risk as contrasted by the actual

supply risk. While the potential supply risk captures the notion of subjective or per-

ceived energy security, the actual supply risk is, along the lines of the efficient market

hypothesis (Fama, 1970), best indicated in functioning energy markets by market price

signals. This distinction can give rise to a circumstance in which the the actual sup-

ply risk does not change at all over some interval in the past, even when Frondel and

Schmidt’s (2009) ex-ante indicator points to a drastic increase in the potential supply

risk over that interval. Such a case would show that these author’s concept is not an

appropriate ex-post indicator, which according to Löschel et al. (2010:1668) should at-

tempt to answer the question of whether the energy markets caused a major friction to

the economy in the past.

The following section provides for a concise summary of the empirical concept

that Frondel and Schmidt (2009) suggest for measuring a country’s long-term energy

supply risk. In Section 3, this concept is applied to empirical data of G7 Countries

provided by the International Energy Agency (IEA) for the years 1978-2010, as well as
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to projections for 2020, followed by an in-depth analysis to provide for a qualitative

explanation of the outcomes of our risk calculations. The last section summarizes and

concludes.

2 An Empirical Supply Risk Measure

While there are several competing concepts, Frondel and Schmidt (2009) build on the

inspiring work of Jansen et al. (2004) in that their risk indicator strongly relies on the

notion of diversity. Yet, in contrast to Jansen et al. (2004), who base their energy secu-

rity indicator on Shannon’s (1948) diversity measure, the risk indicator’s fundamental

basis is Herfindahl’s (1950) concentration index. This choice is due to Frondel and

Schmidt’s scepticism concerning whether any meaningful security indicator may be

based on Shannon’s diversity measure.

Denoting the probability of supply disruptions in export country j by rj , Frondel

and Schmidt (2009) suggest the following quadratic form as a measure capturing a

nation’s supply risk related to fuel f :

riskf := xT
f ·R · xf = x2fd · rd +

J∑
j=1

x2fj · rj, (1)

where the share of export country j in the domestic supply of energy resource f is

designated by xfj , and the respective indigenous contribution by xfd. By definition,

xfd + xf1 + ...+ xfj + ...+ xfJ = 1, f = 1, ..., F. (2)

Matrix R, which can be designated as risk matrix, is diagonal, with the diagonal el-

ements being captured by vector rT := (rd, r1, ..., rj, ..., rJ), which may be denoted as

risk vector. Arguably, the probability of a long-term disruption of a nation’s own con-

tribution to domestic supply can be assumed to equal zero: rd = 0, notwithstanding

potential transient short-term supply disruptions. It bears noting that this specific set-

ting is inconsequential. In fact, by refraining from this specific setting, instead allowing

that rd lies somewhere in the interval [0;1], the import country may be treated in the

same way as any other fuel-providing export country.
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From the perspective of an import country, the components of share vector

xf defined by xT
f := (xfd, xf1, ..., xfj, ..., xfJ) are the primary instruments to improve

supply security. If xfd equals unity, a nation is autarkic with respect to fuel f . In this

polar case, the supply risk related to fuel f , as defined by (1), takes on the minimum

value of zero, indicating a perfectly secure fuel supply. In the opposite polar case, in

which the total supply of fuel f exclusively originates from a highly instable export

country such that rj = 1, riskf takes on the maximum value of unity. In short, the

fuel-specific risk defined by (1) is normalized: 0 ≤ riskf ≤ 1.

Definition (1) comprises three major aspects of energy security: (1) a country’s

own contribution xfd to the total domestic supply of fuel f , (2) the political and eco-

nomic stability of export countries as captured by risk vector r, and (3) the diversifica-

tion of imports as reflected by vector xf . The role of diversification is incorporated in

the fuel-specific indicator riskf by building on Herfindahl’s (1950) index, with which

one can measure the concentration of fuel imports:

Hf := s2f1 + ...+ s2fj + ...+ s2fJ , (3)

where sfj denotes the share of export country j in total imports of fuel f . The share sfj

relates to country j’s contribution xfj to the total domestic supply of fuel f as follows:

xfj = sfj(1− xfd). (4)

According to this expression, increasing the indigenous contribution xfd decreases xfj ,

thereby alleviating the import dependency with respect to fuel f and, hence, riskf .

To measure a nation’s entire vulnerability with respect to all kinds of fuels and

energy sources, Frondel and Schmidt (2009) suggest evaluating the following general-

ization of the fuel-specific supply risk defined by (1):

risk := wT ·XT ·R ·X ·w = wT ·Π ·w. (5)

wT := (w1, ..., wf , ..., wF ) represents a vector whose non-negative components wf reflect

the shares of the various fuels and energy sources in a nation’s total energy consump-

tion and, hence, add to unity: w1 + ...+wF = 1. The columns of matrix X comprise the
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indigenous as well as the export country’s contributions to the domestic supply of each

of the F fuels and energy sources:

X :=



x1d . xfd . xFd

x11 . xf1 . xF1

. . . . .

x1j xfj xFj

. . . . .

x1J . xfJ . xFJ


. (6)

The diagonal elements πff of the product matrix Π := XT · R · X are identical to the

fuel-specific supply risks: πff = riskf =
∑J

j x
2
fjrj ≥ 0. Non-vanishing off-diagonal

elements, πf1f2 =
∑J

j xf1jxf2jrj > 0, where f1, f2 = 1, ..., F, f1 6= f2, take account of the

fact that, for instance, oil supply disruptions in an export country may be correlated

with those of gas. Finally, it bears noting that the total supply risk (5) is normalized

and, hence, falls between zero and unity. In practice, though, the indicator’s concrete

outcome is typically much smaller than unity.

Before employing these concepts to empirical data for the G7 countries, it deserves

noting that, of course, any selection of a diversification indicator, such as Shannon’s di-

versity measure or Herfindahl’s concentration index, bears its specific, as well as com-

mon, problems, such as the dependence of its values on the partitioning of options

(STIRLING, 2010:156). In our example, partitioning of options refers to either the diver-

sity of export countries or the variety of energy sources and technologies employed to

satisfy demand. With respect to the latter aspect, the question arises at what scale of

contributions is a technology option, such as photovoltaics, considered to add to the

diversity of the energy system (STIRLING, 2010:158).

Whether renewable technologies are split up into a multitude of diverse technolo-

gies with so far rather small contributions to the energy mix or are combined to a single

category is irrelevant for risk indicator (5), however, as long as we treat renewables

like a domestic fuel, that is, attribute no risk to these technologies – a treatment that

is clearly contentious, but seems to be appropriate for our long-term perspective, in

which renewables diminish the import of fossil fuels. Furthermore, basing risk indica-
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tor (5) on Herfindahl’s concentration index makes it quite robust with respect to either

aggregating or separating fuel imports from a range of export countries with small

contributions to the domestic energy demand. This is due to the fact that the share

xfj of export country j in the domestic supply of energy resource f is squared in both

the Herfindahl index and risk indicator (1), thereby under-weighing the importance of

such export countries in our evaluation of the energy supply risks of G7 countries.

3 Energy Supply Risks of G7 Countries

On the basis of primary energy data provided by the International Energy Agency

(IEA), we now employ these concepts to compare the past and future energy supply

risks of the G7 countries. The probabilities rj of supply disruptions in individual ex-

port countries are identified primarily by applying the OECD (2008) system used for

assessing country credit risks, where countries are classified into eight risk categories

(0-7), with 7 standing for the highest risk category. Examples of these country-specific

classifications, which have been re-weighted to lie within the range of zero to unity, are

displayed in Table 1 of the appendix. Although these classifications are commonly used

to gauge loan loss risks, they should satisfactorily characterize a country’s political and

economic situation, as political risks and other risk factors are also integrated into the

OECD assessment.

These classifications are assumed here to be inter-temporally constant, an assump-

tion that turns out to be inconsequential, as the classification of an individual country

hardly changes over time. Alternatively using the contemporaneous classification of

each country leaves our results almost unaltered. Furthermore, our calculations are

based on the assumption that nuclear power, as well as renewable energy sources,

should be treated as a domestic resources. The explanation for this treatment is that

nuclear fuels are frequently imported in times when prices are low and stored up to

several decades before used in nuclear power plants. This treatment of nuclear fuels

as quasi-domestic energy source is also the prevailing practice in international energy

statistics.
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Using the country-specific primary energy mixes reported in the appendix, as well

as the fuel import shares that can be obtained from the IEA statistics, the application

of risk indicator (5) reveals that Germany’s and Italy’s energy supply risks rose sub-

stantially over the period from 1978 to 2010, whereas France and Japan have managed

to reduce their risks dramatically, thereby reaching an almost similarly relaxed energy

security situation as the U. S. and the U. K. (Figure 1). Together with Canada, whose

energy supply risk is close to zero, these are the resource-rich G7 countries.

Figure 1: Long-term Primary Energy Supply Risks of G7 Countries (Reference Point:

Germany 1980:100).

Today, Germany’s energy supply risk is only surpassed by that of Italy. In the past,

this was not always the case: At the beginning of the 1980s, France and Japan exhibited

much larger energy supply risks than Germany. In contrast to Germany, though, France

has been able to reduce its risk, above all through the massive deployment of nuclear

power plants. As a consequence, the contribution of nuclear power to the primary

energy mix increased from about 8% in 1980 to nearly 42.3% in 2010 (see Table 2 of the

appendix), whereas the share of oil decreased from about 56% to 30% between 1980

and 2010. Among all G7 countries, France displays by far the largest share of nuclear

energy, being one major reason for its rather relaxed supply situation today.

Japan reduced its energy supply risk in comparable dimensions as France. Part of

the story has been an increase in the share of nuclear power, from 6% in 1980 to slightly
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more than 13% in 2010 (see Table 3). In addition, in line with the government’s formal

energy security strategy of the 1970s that – amongst other things – consisted of re-

ducing dependency on petroleum and diversifying domestic energy supply (Sovacool,

Brown, 2010:97), Japan improved the diversity of supply by increasing the relative con-

tributions of natural gas and hard coal. In this way, the former dominance of oil was

diminished substantially, with the oil share being reduced from about 75% to 46% in

2010. Not least, Japan spread its gas imports among a growing number of exporting

countries, thereby achieving a significant reduction of its gas-specific risk (Figure 2).

Brown coal, finally, is not used at all due to the lack of any reserves in Japan, while

renewable energy technologies play only a minor role.

Figure 2: Gas-Specific Risks.

In sharp contrast to Japan’s diversification strategy, Germany’s imports of oil and

gas has concentrated more and more on Russia, thereby substituting the former depen-

dence on OPEC oil with a strong reliance on Russia’s oil, gas, and coal reserves. At

present, Russia is by far Germany’s most important oil provider, being responsible for

as much as about 40% of total oil supply. As a consequence, Germany’s oil supply risk

– in terms of the fuel-specific indicator (1) – has more than doubled between 1980 and

2010 (Figure 3). Furthermore, the drastic decline of Germany’s relative contribution to

its domestic gas supply has been encountered by surging gas imports from Russia. The

current contribution of Russia to Germany’s gas supply amounts to about 35% and,
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hence, is virtually as high as Russia’s oil supply share. By contrast, Russia’s abundant

energy reserves played only a minor role for Germany in the 1970s. As a consequence,

Germany’s gas supply risk has more than doubled since then, being now higher than

Japan’s gas-specific risk (Figure 2).

Figure 3: Oil-Specific Risks.

That Germany’s energy supply risk has grown substantially since the oil price

crises of the 1970s has another reason in the decline of German hard coal production.

This decline is due to the large gap between domestic production cost and world mar-

ket prices of coal (Frondel et al. 2007). Within the next decades, Germany’s long-term

energy supply risk is likely to rise much further: Given the nuclear phase-out deci-

sion of 2011, which stipulates the end of nuclear power in Germany at 2022, and the

foreseen dismantling of the hard coal subsidies by 2018, our calculations suggest that

Germany’s energy supply risk can be expected to rise even if the national goal of a 35%

share of electricity production from renewable energies will be reached in 2020 (Figure

1). A major reason is that, based on the present share in electricity production of about

20%, the required increase in “green” electricity is much lower than the contribution of

nuclear power, which amounted to almost 25% in 2010. By contrast, given the projec-

tions for 2020 presented in Table 4 and the other tables of the appendix, our calculations

of the future energy supply risks of other G7 countries indicate that their risks either

stagnate or further decrease, as is forecasted for Italy for example.
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Similar to Germany, the long-term supply risk of Italy has increased significantly

over the last decades. Italy displays by far the highest energy supply risk across G7, ow-

ing primarily to its lack of resources and its highly undiversified energy mix: For Italy,

brown coal and nuclear energy do not contribute to the energy supply at all, while oil

and gas play an overwhelming role (Table 5). It is thus all the more critical that Italy de-

pends so heavily on oil and gas imports, with import shares amounting to 94% and 90%,

respectively. It is not surprising, therefore, that the oil- and gas-specific risks of Italy are

the highest among all G7 countries (see Figures 2 and 3), as well as the fuel-specific risk

regarding hard coal (Figure 4). The hard-coal specific risk has increased substantially

since 2000 due to the rising share of imports from Indonesia, which increased from

some 10% to about 30% in 2010, whereas the hard coal imports from highly reliable

countries such as Australia, Canada, and the U. S. shrank. With the highest risks with

respect to oil, gas, and hard coal, it is no wonder that Italy faces the highest energy

supply risk altogether.

Relative to the risk values of Italy and Germany, there is a large gap between the

energy supply risks of both these nations and the resource-rich countries of Canada,

U. K. , and the U. S. While Canada’s supply risk has remained negligible for decades,

the U. S. risk has risen moderately since the oil crises of the 1970s. Mainly, this increase

can be attributed to the growing share of oil imports due to the decline in domestic oil

production, resulting in an increase of the oil-specific risk (Figure 3). In contrast, the

coal- and gas-specific risks appear to be insignificant. Given these low risk judgments,

the enormous efforts in producing bio-ethanol, derived mainly from maize and spurred

by tax incentives (IEA 2006e:387), seem to be irrelevant for energy security reasons. In

2006, the U. S. became the world’s largest producer of bio-ethanaol (IEA 2006e:387),

thereby employing large fractions of more than one third of its annual maize production

for this task.

Finally, there has been a moderate increase in the total energy supply risk of the

U. K., most notably because the hard-coal specific risk has grown significantly (Figure

4), whereas the oil- and gas-specific risks have remained zero. One reason for the in-

crease in the hard-coal specific risk between 1995 and 2007 was the declining domestic
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production. Its share in total supply fell from 77% in 1995 to 30% in 2007. The other

reason for the increase in the hard-coal specific risk was the increasing dependence on

coal imports from Russia and South Africa. Whereas the U. K. imported a negligible

share of 0.2% of its coal demand from each of these countries in 1995, the share of Rus-

sian and South African imports had grown to 37.3% and 20.8%, respectively, until 2007.

The sharp decline in the U. K.’s hard coal risk between 2007 and 2010 can be ascribed to

the same reasons, that is, the dependence on Russian and South African coal imports,

which declined markedly to 21.8% and 1.7%, respectively. In contrast, during these

four years, the domestic hard coal production increased to 41%.

Figure 4: Hard-Coal-Specific Risks.

4 Summary and Conclusion

Applying Frondel and Schmidt’s (2009) risk indicator to primary energy data of the G7

countries, this article suggests that these countries can be classified into three groups

concerning their long-term primary energy supply risks. The first group consists of

the energy-rich countries Canada, the U. K. and the U. S., whose energy security situ-

ation appears to be rather relaxed: The calculated risk values are quite moderate and

stable. Most important for this result is that, although not entirely self-sufficient, these

countries’ fuel imports are divided among relatively stable exporting countries.
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France and Japan, the members of the second group, have managed to reduce

their risks by increasing the share of nuclear power, which was the dominant strategy

of France, and diversifying both their primary energy mixes and supply structures, a

strategy that has been successfully pursued in Japan. Germany and Italy, finally, are the

only G7 countries whose energy supply risks rose substantially over the period from

1978 to 2010. Among other reasons, in Italy this was due to the phase-out of nuclear

power, which is treated here, as well as in international energy statistics, as a quasi-

domestic resource.

Partly, our results are in sharp contrast to the quantitative findings of other stud-

ies, such as Sovacool and Brown (2010), who conclude that the U. S. has the lowest

energy security of all the 22 OECD countries incorporated in their analysis. This out-

come, which is quite the opposite of our finding, is due to the discrepancies with respect

to the dimensions of energy security considered. While our analysis has a clear focus

on the aspect of physical availability, the study of Sovacool and Brown (2010) takes

account of four dimensions, availability, affordability, energy efficiency, and environ-

mental stewardship. It is particularly the environmental dimension, measured by the

absolute emissions of sulfur and carbon dioxides, that contributes to the poor perfor-

mance of the U. S. in the analysis of Sovacool and Brown (2010:93). Actually, the U. S. is

one of the two largest contributors to these environmental externalities in the world.

All in al, though, our qualitative analysis of the primary energy mixes and the

diversification of fuel imports substantiates our risk calculations, thereby reconfirming

the picture drawn in Figure 1. With particular respect to Germany, a key reason for

the increased energy supply risk is its strong dependence on Russian oil and gas, and,

most recently, its increased hard coal imports from Russia. At present, Russia is by far

Germany’s most important oil and gas provider, being responsible for as much as about

40% of total oil supply and about 35% of total gas supply. With the recent completion of

the new gas pipeline called Nord Stream that traverses the Baltic Sea and ends in Ger-

many, it is most likely that Western Europe’s reliance on Russian gas will grow much

further, not least due to the shrinking gas production of the U. K. and the Netherlands.
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Appendix

Table 1: Normalized OECD Risk Indicators.
Country Risk Country Risk

Algeria 3/7 Netherlands 0

Angola 6/7 Nigeria 6/7

Canada 0 Norway 0

China 2/7 Poland 2/7

Colombia 4/7 Russia 3/7

Ecuador 1 Saudi-Arabia 2/7

Germany 0 South Africa 3/7

Iran 6/7 U.S. 0

Iraq 1 United Arab Emirates 2/7

Kuwait 2/7 United Kingdom 0

Libya 1 Venezuela 6/7

Mexico 2/7 Others 1

Sources: OECD (2008). Note: 1 stands for extremely instable

countries, whereas 0 indicates extremely stable countries.

Table 2: Primary Energy Mix of France.
1978 1980 1985 1990 1995 2000 2005 2010 2020

Oil 61.1 55.9 40.6 38.4 35.3 33.9 33.1 29.6 32.1

Gas 10.1 11.2 11.9 11.4 12.3 13.9 14.9 16.3 14.8

Hard Coal 16.1 16.6 12.2 8.5 6.7 5.8 5.2 4.6 4.5

Nuclear Power 4.3 8.2 28.3 36.0 40.8 42.0 42.6 42.3 41.6

Brown Coal 0.4 0.4 0.3 0.4 0.2 0.0 0.0 0.0 0.0

Renewables etc. 8.0 7.7 6.7 5.3 4.7 4.4 4.2 7.2 7.0

Note: Shares are based on IEA (2004(abc), 2006(abc), 2011(abc)). Renewables include hydro-,

wind-, and solar power as well as biomass. Shares for 2020 are based on COM (2008b).
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Table 3: Japan’s Primary Energy Mix.
1978 1980 1985 1990 1995 2000 2005 2010 2020

Oil 74.9 68.0 55.8 57.1 53.7 50.4 47.4 46.0 36.3

Gas 4.7 6.2 9.6 9.9 10.6 12.6 13.4 15.9 18.4

Hard Coal 13.9 17.2 19.7 17.4 17.7 17.5 21.0 21.9 21.5

Nuclear Power 4.6 6.2 11.9 11.8 15.2 16.1 15.0 13.2 18.5

Brown Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Renewables etc. 1.9 2.4 3.0 3.8 2.8 3.4 3.2 3.0 5.3

Note: Shares are based on IEA (2004(abc), 2006(abc), 2011(abc)). Renewables include hydro-,

wind-, and solar power as well as biomass. Shares for 2020 are based on IEA (2008).

Table 4: Germany’s Primary Energy Mix.
1978 1980 1985 1990 1995 2000 2005 2010 2020

Oil 45.0 40.8 34.3 35.3 39.6 38.3 37.5 31.8 35.2

Gas 13.3 14.2 13.5 15.4 19.6 20.9 23.4 24.0 25.3

Hard Coal 15.9 17.5 16.2 15.5 14.8 13.4 12.5 12.1 9.2

Nuclear Power 3.2 4.0 10.0 11.2 11.7 12.9 13.2 11.1 4.1

Brown Coal 22.6 21.7 24.0 20.6 11.9 11.3 11.1 11.0 8.6

Renewables etc. 0.0 1.8 2.0 2.0 2.4 3.2 2.3 10.0 17.6

Note: Shares are based on IEA (2004(abc), 2006(abc), 2011(abc)). Renewables include hydro-,

wind-, and solar power as well as biomass. Shares for 2020 are based on IER, RWI, ZEW (2010).

Table 5: Italy’s Primary Energy Mix.
1978 1980 1985 1990 1995 2000 2005 2010 2020

Oil 70.6 69.4 61.0 58.5 57.7 51.3 44.2 39.0 40.0

Gas 16.6 16.3 20.0 25.6 27.7 33.7 38.0 39.9 40.2

Hard Coal 6.8 8.4 11.2 9.6 7.6 7.3 8.9 8.2 9.4

Nuclear Power 0.9 0.4 1.3 0.0 0.0 0.0 0.0 0.0 0.0

Brown Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Renewables etc. 5.1 5.5 6.5 6.3 7.7 7.7 8.9 12.9 10.4

Note: Shares are based on IEA (2004(abc), 2006(abc), 2011(abc)). Renewables include hydro-,

wind-, and solar power as well as biomass. Shares for 2020 are based on COM (2008b).
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Table 6: U. S. Primary Energy Mix.
1978 1980 1985 1990 1995 2000 2005 2010 2020

Oil 48.5 44.4 43.4 40.0 38.4 38.7 40.7 36.2 39.3

Gas 24.4 26.3 23.1 22.8 24.4 23.8 22.0 25.3 21.0

Hard Coal 14.9 20.0 18.9 22.4 24.3 22.6 22.0 25.3 21.5

Nuclear Power 4.1 3.8 7.0 8.3 7.9 9.0 9.1 9.8 9.4

Brown Coal 0.6 0.8 1.3 1.3 1.3 1.0 1.1 1.0 1.0

Renewables etc. 7.5 3.4 6.3 5.2 3.7 4.9 5.1 2.4 7.8

Note: Shares are based on IEA (2004(abc), 2006(abc), 2011(abc)). Renewables include hydro-,

wind-, and solar power as well as biomass. Shares for 2020 are based on IEA (2008).

Table 7: U. K. Primary Energy Mix.
1978 1980 1985 1990 1995 2000 2005 2010 2020

Oil 45.4 40.8 38.7 38.9 37.9 36.2 36.1 31.9 39.0

Gas 17.6 20.0 22.9 22.2 29.2 37.8 36.5 41.5 34.5

Hard Coal 32.2 34.2 30.5 29.7 21.0 14.8 16.2 15.0 17.4

Nuclear 4.6 4.8 7.8 8.1 10.4 9.6 9.1 8.0 3.3

Brown Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Renewables etc. 0.2 0.2 0.2 1.0 1.5 1.6 2.1 3.6 5.8

Note: Shares are based on IEA (2004(abc), 2006(abc), 2011(abc)). Renewables include hydro-,

wind-, and solar power as well as biomass. Shares for 2020 are based on COM (2008b).

Table 8: Canada’s Primary Energy Mix.
1978 1980 1985 1990 1995 2000 2005 2010 2020

Oil 48.5 46.1 36.3 36.9 33.6 35.0 35.6 35.9 35.9

Gas 24.4 23.6 25.8 26.2 29.1 29.6 29.5 30.2 30.2

Hard Coal 6.4 7.0 7.3 5.4 4.4 6.5 5.3 2.9 2.9

Nuclear Power 4.7 4.1 8.4 9.3 11.0 7.6 8.8 9.2 9.2

Brown Coal 3.0 3.5 5.7 5.3 6.2 5.5 5.4 5.7 5.7

Renewables 13.3 15.7 16.5 16.9 15.7 15.8 15.4 16.1 16.1

Note: Shares are based on IEA (2004(abc), 2006(abc), 2011(abc)). Renewables include hydro-,

wind-, and solar power as well as biomass. Shares for 2020 are identical to 2010 by assumption.
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