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introduced in [Hallin, Paindaveine and Šiman, Annals of Statistics

2010, 635-703] for multiple-output regression problems. The polyhe-

dral contours provided by the empirical counterpart of that concept,

however, cannot adapt to nonlinear and/or heteroskedastic depen-

dencies. This paper therefore introduces local constant and local lin-

ear versions of those contours, which both allow to asymptotically

recover the conditional halfspace depth contours of the response. In

the multiple-output context considered, the local linear construction

actually is of a bilinear nature. Bahadur representation and asymp-

totic normality results are established. Illustrations are provided both

on simulated and real data.
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1. Introduction. A multiple-output extension of Koenker and Bas-

sett’s celebrated concept of regression quantiles was recently proposed in

Hallin, Paindaveine, and Šiman [18] (hereafter HPŠ). That extension pro-

vides regions that are enjoying, at population level, a double interpretation

in terms of quantile and halfspace depth regions. In the empirical case, those

contours are polyhedral, and computable via parametric linear programming

techniques.

Denote by (X′
i,Y

′
i)
′ = (Xi1, . . . ,Xip, Yi1, . . . , Yim)′, i = 1, . . . , n, an ob-

served n-tuple of independent copies of (X′,Y′)′, where Y := (Y1, . . . , Ym)′

is an m-dimensional response and X := (1,W′)′ a p-dimensional random

vector of covariates. For any τ ∈ (0, 1) and any direction u in the unit

sphere Sm−1 of the m-dimensional space of the response Y, the HPŠ concept

produces a hyperplane πτu (π
(n)
τu in the empirical case) which is defined as

the classical Koenker and Bassett regression quantile hyperplane of order τ

once (0′
p−1,u

′)′ has been chosen as the “vertical direction” in the compu-

tation of the relevant L1 deviations. More specifically, decompose y ∈ R
m

into (u′y)u + ΓΓΓu(ΓΓΓ′
uy), where ΓΓΓu is such that (u,ΓΓΓu) is an m ×m orthog-

onal matrix; then the directional quantile hyperplanes πτu and π
(n)
τu are the

hyperplanes with equations

(1.1) u′y−c′τττΓΓΓ
′
uy−a′

τττ (1,w
′)′ = 0 and u′y−c

(n)′
τττ ΓΓΓ′

uy−a
(n)′
τττ (1,w′)′ = 0

(w ∈ R
p−1) minimizing, with respect to c ∈ R

m−1 and a ∈ R
p,

(1.2) E[ρτ (u
′Y − c′ΓΓΓ′

uY − a′X)] and
n∑

i=1

ρτ (u
′Yi − c′ΓΓΓ′

uYi − a′Xi),

respectively, where

ζ 7→ ρτ (ζ) := ζ(τ−I[ζ < 0]) = max{(τ−1)ζ, τζ} = (|ζ|+(2τ−1)ζ)/2, ζ ∈ R

as usual denotes the well-known τ -quantile check function.
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HPŠ show that πτu and π
(n)
τu equivalently can be defined, in a more sym-

metric way, as the hyperplanes with equations

(1.3) b′
τττy − a′

τττ (1,w
′)′ = 0 and b

(n)′
τττ y − a

(n)′
τττ (1,w′)′ = 0,

minimizing, with respect to b ∈ R
m satisfying b′u = 1 and a ∈ R

p, the L1

criteria

(1.4) E[ρτ (b
′Y − a′X)] and

n∑

i=1

ρτ (b
′Yi − a′Xi),

respectively.

For p = 1, the multiple-output regression model reduces to a multivariate

location one: aτττ and a
(n)
τττ reduce to scalars, aτττ and a

(n)
τττ , while the equations

describing πτu and π
(n)
τu take the simpler forms

(1.5) u′y − c′τττΓΓΓ
′
uy − aτττ = 0 and u′y − c

(n)′
τττ ΓΓΓ′

uy − a
(n)
τττ = 0,

respectively. Those location quantile hyperplanes πτu and π
(n)
τu are studied

in detail in HPŠ, where it is shown that their fixed-τ collections charac-

terize regions and contours that actually coincide with the Tukey halfspace

depth ones. Consistency, asymptotic normality and Bahadur-type represen-

tation results for the π
(n)
τu ’s are also provided there, together with a linear

programming method for their computation.

Those results establish a strong and quite fruitful link between two seem-

ingly unrelated statistical worlds—on one hand the typically one-dimensional

concept of quantiles, deeply rooted into the strong ordering features of the

real line and L1 optimality, with linear programming algorithms, and tra-

ditional central-limit asymptotics; the intrinsically multivariate concept of

depth on the other hand, with geometric characterizations, computation-

ally intensive combinatorial algorithms, and nonstandard asymptotics. From

their relation to depth, quantile hyperplanes and regions inherit a vari-

ety of geometric properties—connectedness, nestedness, convexity, affine-

equivariance... while, through its relation to quantiles, depth accedes to L1
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optimality, feasible linear programming algorithms, and tractable asymp-

totics.

The situation is less satisfactory in the general regression case (p ≥ 2).

The above definitions still produce regions and contours indexed by τ and, in

the empirical case, efficient linear programming methods are still available;

see [28]. Those regions and contours still admit an interpretation in terms of

(joint) directional quantiles. However, that interpretation is only remotely

related to the regression problem under study. If indeed Y = (Y1, . . . , Ym)′

is a response and X = (1,W′)′ a vector of covariates, the objective is an

analysis of the influence of the covariate(s) W on the response Y, that is, a

study of the distribution of Y conditional on W. The contours of interest,

thus, are the collection of the population conditional quantile/depth contours

of Y, indexed by the values w ∈ R
p−1 of W—that is, for each w, the collec-

tion of conditional (on W = w) location (p = 1) quantile/depth contours.

Equations (1.2) or (1.4) being of a global (with respect to W or X) nature,

the resulting hyperplanes and contours, unfortunately, in general carry very

little information about conditional distributions, and rather produce some

averaged (over the covariate space) quantile/depth contours.

Of course, this problem is not specific to the multiple-output context. In

the traditional single-output setting, it has motivated weighted, local poly-

nomial and nearest-neighbor versions of quantile regression, among others.

We refer to [39–41] for conceptual insight and practical information, to [3,

7, 16, 17, 24, 42] for some recent asymptotic results, and to [1, 4, 13, 14, 20–

22, 34] for some less recent ones.

Our objective in this paper is to extend those local estimation ideas to

the HPŠ concept of multiple-output regression quantiles. Since local con-

stant and local linear methods have been shown to perform extremely well

in the single-output single-regressor case ([40]), we will concentrate on local
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constant and local bilinear approaches—in the multiple-output context, in-

deed, it turns out that the adequate extension of locally linear procedures

are of a bilinear nature. Just as in the single-output case, the local methods

we propose in this paper will not require any a priori knowledge of the trend

and will still allow to characterize asymptotically the whole conditional dis-

tribution of Y given W = w for any w ∈ R
p−1.

A major application of this local approach to multiple-output quantile

regression is the analysis of multivariate growth charts. Growth charts (ref-

erence curves, percentile curves) have been used for a long time by practi-

tioners in order to assess the impact of regressors on the quantiles of some

given single variable of interest. Many methods have been developed (see,

e.g., [2, 5, 36, 38], and the references therein), including single-response quan-

tile regression (see [12, 37]). Only a few attempts have been made, mainly

in the bivariate case ([11, 30]), to adapt that daily practice instrument to

a multiple-response context. The only method available for that case is, to

the best of our knowledge, the recent proposal by [35], that defines a new

concept of dynamic quantile regression contours. Our local methodology,

which is based on entirely different principles, appears as a natural alterna-

tive. See [26] for a real-data example of bivariate growth charts based on the

methods we are describing here.

The rest of this paper is organized as follows. Section 2 defines the (popu-

lation) conditional regression quantile regions and contours we would like to

estimate in the sequel. This estimation will make use of (empirical) weighted

multiple-output regression quantiles, which we introduce in Section 3. Sec-

tion 4 explains how these weighted quantiles lead to local constant (Sec-

tion 4.2) and local bilinear (Section 4.3) quantiles. Section 5 provides asymp-

totic results (Bahadur representation and asymptotic normality) both for

the local constant and local bilinear cases. In Section 6, simulated and real
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data are used to demonstrate the usefulness of the proposed local quantile

regions. Finally, the Appendix collects proofs of asymptotic results.

2. Conditional multiple-output quantile regression. As in the In-

troduction, consider the regression setup involving them-variate response Y

and the p-variate covariate X = (1,W′)′, with the objective of analyzing the

distribution of Y conditional on W, that is, of fully investigating the de-

pendence of Y on W—in strong contrast with traditional regression, where

investigation is limited to the mean of Y conditional on W. The relevant

quantile hyperplanes, depth regions and contours of interest are the location

quantile/depth regions and contours associated (in the sense of HPŠ) with

the m-dimensional distributions of Y conditional on W—more precisely,

with the distributions PY|W=w0 of Y conditional on W = w0 (w0 ∈ R
p−1).

We now carefully define these objects, that we will call w0-conditional τττ -

quantile hyperplanes, regions and contours.

Let τ ∈ (0, 1) and u ∈ Sm−1 := {u ∈ R
m : ‖u‖ = 1} (the unit sphere

in R
m), and write τττ := τu. Denoting by w0 some fixed point of R

p−1 at

which the marginal density fW of W does not vanish (in order for the

distribution of Y conditional on W = w0 to make sense), define the extended

and restricted w0-conditional τττ -quantile hyperplanes of Y as the (m+p−2)-

dimensional and (m− 1)-dimensional hyperplanes

(2.1) πππτττ ;w0
:= {(w′,y′)′ ∈ R

p−1 × R
m |b′

τττ ;w0
y − aτττ ;w0

= 0}

and

(2.2) πτττ ;w0
:= {(w′

0,y
′)′ ∈ R

p−1 × R
m |b′

τττ ;w0
y − aτττ ;w0

= 0},

respectively, where aτττ ;w0
and bτττ ;w0

minimize

(2.3) Ψτ ;w0
(a,b) := E[ρτ (b

′Y − a) |W = w0] subject to b′u = 1,
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with the check function ρτ defined in Page 2. Comparing (2.3) with (1.4) im-

mediately shows that πτττ ;w0
is the (location) (m− 1)-dimensional τττ -quantile

hyperplane of Y associated with the distribution of Y conditional on W =

w0. Of course, πτττ ;w0
is also the intersection of πππτττ ;w0

with the m-dimensional

hyperplane Cw0
:= {(w′

0,y
′)′ |y ∈ R

m}. This, and the fact that πππτττ ;w0
is

“parallel to the space of covariates” (in the sense that if (w′
0,y

′
0)

′ ∈ πππτττ ;w0
,

then (w′,y′
0)

′ ∈ πππτττ ;w0
for all w), fully characterizes πππτττ ;w0

.

Associated with πππτττ ;w0
are the extended upper and lower w0-conditional

τττ -quantile halfspaces

HHH+
τττ ;w0

:= {(w′,y′)′ ∈ R
p−1 × R

m |b′
τττ ;w0

y − aτττ ;w0
≥ 0}

and

HHH−
τττ ;w0

:= {(w′,y′)′ ∈ R
p−1 × R

m |b′
τττ ;w0

y − aτττ ;w0
< 0},

together with the extended (cylindrical) w0-conditional quantile/depth re-

gions

(2.4) RRRw0
(τ) :=

⋂

u∈Sm−1

{HHH+
τu;w0

}

and their boundaries ∂RRRw0
(τ), the extended w0-conditional quantile/depth

contours. The intersections of those extended regions RRRw0
(τ) (resp., con-

tours ∂RRRw0
(τ)) with Cw0

are the restricted w0-conditional quantile/depth

regions Rw0
(τ) (resp., contours ∂Rw0

(τ)), that is, the location HPŠ regions

(resp., contours) for Y, conditional on W = w0. It follows from HPŠ that

those regions are compact, convex, and nested. As a consequence, the re-

gions RRRw0
(τ) are closed, convex, and nested.

Finally, define the nonparametric τ -quantile/depth regions as

RRR(τ) :=
⋃

w0∈Rp−1
Rw0

(τ) =
⋃

w0∈Rp−1

(
RRRw0

(τ) ∩ Cw0

)

and write ∂RRR(τ) for their boundaries. The regions RRR(τ) are still closed and

nested but they adapt to the general dependence of Y on W: in particu-
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lar, ∂RRR(τ), for any τ , goes through all corresponding ∂Rw0
(τ)’s, w0 ∈ R

p−1.

Consequently, the regions RRR(τ) in general are no longer convex.

The fixed-w0 collection (over τ ∈ (0, 1/2)) of the w0-conditional location

quantile/depth contours ∂Rw0
(τ) (which, by construction, are the inter-

sections of ∂RRR(τ) with the “vertical hyperplanes” Cw0
) will be called w0-

quantile/depth cut or simply w0-cut. Such cuts are of crucial interest, since

they entirely characterize the distribution of Y conditional on W = w0,

hence provide a full description of the dependence of the response Y on the

regressors W. Note that the nonparametric contours ∂RRR(τ), via the location

depth interpretation, for fixed w0, of the ∂Rw0
(τ)’s, inherit a most interest-

ing interpretation as “regression depth contours”. Clearly, this concept of re-

gression depth, that defines regression depth of any point (w′,y′)′ ∈ R
m+p−1,

is not of the same nature as the regression depth concept proposed in [31],

that defines the depth of any regression “fit” (i.e., of any regression hyper-

plane).

3. Weighted multiple-output empirical quantile regression. Un-

der the assumption of absolute continuity of the distribution of W, the

number of observations, in a sample of size n, belonging to Cw0
clearly

is (a.s.) zero, which implies that no empirical version of the conditional

regression hyperplanes (2.1) or (2.2) can be constructed. If nonparamet-

ric τ -quantile regions or contours, or simply some selected cuts, are to be

estimated, local smoothing techniques have to be considered. Those local

techniques will typically be based on weighted versions, involving adequate

sequences ωωω
(n)
w0

= (ω
(n)
w0,i

, i = 1, . . . , n) of weights, of the original concept of

empirical quantile regression hyperplanes developed in HPŠ. In this section,

we provide general definitions and basic results for such weighted concepts,

under fixed sample size n and fixed weights ωi. In Section 4, we will then

consider sequences of kernel-based weights to be used in the local approach.
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Consider a sample of size n, with observations (X′
i,Y

′
i)
′ = ((1,W′

i),Y
′
i)
′,

i = 1, . . . , n, along with n nonnegative weights ωi satisfying (without any

loss of generality)
∑n
i=1 ωi = n (ωi ≡ 1 then yields the unweighted case). The

definitions of HPŠ extend, mutatis mutandis, quite straightforwardly, into

the following weighted versions. The coefficients a
(n)
τττ ;ω ∈ R

p and b
(n)
τττ ;ω ∈ R

m

of the weighted empirical τττ -quantile hyperplane

(3.1) πππ
(n)
τττ ;ω := {(w′,y′)′ ∈ R

p−1 × R
m |b

(n)′
τττ ;ω y − a

(n)′
τττ ;ω (1,w′)′ = 0}

(an (m + p − 2)-dimensional hyperplane) are defined as the minimizers,

under b′u = 1, of

(3.2) Ψ(n)
τ ;ω(a,b) :=

1

n

n∑

i=1

ωiρτ (b
′Yi − a′Xi) subject to b′u = 1.

As usual in the empirical case, the minimizer may not be unique, but the

minimizers always form a convex set. When substituted for the πππτττ ;w0
’s in the

definitions of upper and lower conditional τττ -quantile halfspaces, those πππ
(n)
τττ ;ω’s

also characterize upper and lower weighted τττ -quantile halfspaces HHH(n)+
τττ ;ω and

HHH(n)−
τττ ;ω , with weighted τ -quantile regions and contours

RRR(n)
ω (τ) :=

⋂

u∈Sm−1

{HHH(n)+
τu;ω} and ∂RRR(n)

ω (τ),

respectively.

Note that the objective function in (3.2) rewrites as

Ψ(n)
τ ;ω(a,b) =

1

n

n∑

i=1

ρτ (b
′Yi;ω − a′Xi;ω),

with Xi;ω := ωiXi and Yi;ω := ωiYi. As an important consequence, the

weighted quantile hyperplanes, contours and regions can be computed in

the same way as their non-weighted counterparts because the corresponding

algorithm in [28] allows to have (Xi)1 6= 1. Due to the quantile crossing

phenomenon, however, and contrary to the population regions and contours
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defined in the previous section, the RRR(n)
ω (τ)’s need not be nested for p ≥ 2;

if nestedness is required, one may rather consider the regions

RRR
(n)
ω∩(τ) :=

⋂

0<t≤τ

{RRR(n)
ω (t)}.

The necessary sample subgradient conditions for (a
(n)′
τττ ;ω,b

(n)′
τττ ;ω )′ can be de-

rived as for the unweighted case. They state in particular that

(3.3)
1

n

n∑

i=1

ωi I[b
(n)′
τττ ;ωYi − a

(n)′
τττ ;ωXi < 0] ≤ τ ≤

1

n

n∑

i=1

ωi I[b
(n)′
τττ ;ωYi − a

(n)′
τττ ;ωXi ≤ 0],

which controls the probability contents of HHH(n)−
τττ ;ω with respect to the distri-

bution putting probability mass ωi/n on (W′
i,Y

′
i)
′, i = 1, . . . , n. The width

of the interval in (3.3) depends only on the weights ωi associated with those

data points (W′
i,Y

′
i)
′ that belong to πππ

(n)
τττ ;ω. Another consequence worth men-

tioning is that there always exists a πππ
(n)
τu;ω hyperplane containing at least

(m + p − 1) data points of the form (ωiWi, ωiYi). With probability one,

thus, the intersection defining the regions RRR(n)
ω (τ) is finite.

Note that, unlike the extended conditional quantile hyperplanes (2.1),

the weighted empirical quantile hyperplanes (3.1) involve an unrestricted

coefficient a ∈ R
p. As a consequence, πππ

(n)
τττ ;ω is not necessarily parallel to

the space of covariates (as defined in Page 7). That degree of freedom will

be exploited in the local linear approach described in Section 4.3 (in an

augmented regressor space, though, which makes it bilinear rather than

linear). If we impose the constraint a = (a1, 0, . . . , 0)
′ in (3.1), we obtain

hyperplanes of the form

(3.4) πππ
(n)
τττ ;ω := {(w′,y′)′ ∈ R

p−1 × R
m |b

(n)′
τττ ;ω y − (a

(n)
τττ ;ω)1 = 0}.

The corresponding minimization problem yields hyperplanes that are paral-

lel to the space of covariates, hence cylindrical weighted regions and contours
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that are “horizontal”. For the sake of simplicity, we avoid introducing a spe-

cific notation for them; such cylindrical contours will be considered in the

local constant approach described in Section 4.2.

Finally, it should be pointed out that (y and/or w)-affine-invariant weights

ωi := ω(Wi,Yi) imply good (y and/or w)-affine-equivariance properties of

the corresponding weighted quantile hyperplanes, halfspaces, regions, and

contours considered.

4. Local multiple-output quantile regression.

4.1. From weighted to local quantile regression. The weighted quantiles

of Section 3 have an interest on their own. They can be used for handling

multiple identical observations (allowing, for instance, for bootstrap proce-

dures), or for downweighting observations that are suspected to be outliers

or leverage points. Above all, weighted regression quantiles allow for a non-

parametric approach to regression quantiles that will take care of the draw-

backs of the unweighted approach of HPŠ (see the example considered in

the Introduction). In particular, adequate sequences of weights will allow to

estimate the conditional contours described in Section 2, thus extending to

the multiple-output case the local constant and local linear approaches to

regression quantiles proposed, for instance, by [39, 40] in the single-output

context.

The basic idea is very standard: in order to estimate w0-conditional quan-

tile hyperplanes, regions or contours, we will consider weighted quantile hy-

perplanes, regions or contours, with sequences of weights ω
(n)
i := ω

(n)
w0

(Wi)

based on weight functions of the form

(4.1) w 7→ ω(n)
w0

(w) := det(H
(n)
0 )−1K

(
(H

(n)
0 )−1(w −w0)

)
,

where H
(n)
0 is a sequence of symmetric positive definite (p−1)×(p−1) band-

width matrices and K is a nonnegative kernel (density) function over R
p−1.
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The literature proposes a variety of possible kernels, and there is no com-

pelling reason for not considering the most usual ones, such as

(i) the rectangular (uniform) kernel K1(w) = 2−(p−1) I[w ∈ [−1, 1]p−1],

(ii) the Epanechnikov kernelK2(w) =
(p2 − 1)Γ(p−1

2 )

4π(p−1)/2
(1 − w′w) I[w′w ≤ 1],

or

(iii) the (spherical) Gaussian kernel K3(w) = (2π)−(p−1)/2 exp(−w′w/2).

As for the bandwidth matrices, we will restrict to the simple scalar case,

that is, to H
(n)
0 = hnIp−1 and write Kh(w − w0) for the weight ω

(n)
w0

(w).

Since we typically intend to compute by means of parametric program-

ming, for any fixed τ ∈ (0, 1), the directional quantile hyperplanes for

all u ∈ Sm−1, we should use the same weights for all of them. This is why

we only consider u-independent (actually, even τττ -independent) bandwidths.

However, exact computation of all quantiles (for each fixed τ) is possible in

the local constant case, but not in the local bilinear one. In the latter case,

quantile contours will be approximated by sampling the unit sphere, which

of course allows us, if we wish, to have u-dependent bandwidths.

The weights considered above cover both kernel and nearest-neighbor

quantile regression but exclude more sophisticated techniques such as double-

kernel-, supersmoother- or LOWESS-based modifications. On the other hand,

the choice of weights has no impact on computational issues, and special

kernels (and bandwidths) can be selected for extreme w0’s to take care of

boundary effects, for instance.

4.2. Local constant quantile contours. If we only care about w0-conditional

contours, that is, w0-cuts, for a selected number of w0 values, the above

weighting scheme can be applied in the computation of weighted cylindrical

regions generated by the hyperplanes in (3.4) (that are parallel to the space

of covariates); more precisely, these cylindrical regions, with edges that are
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parallel to the space of covariates, are obtained by computing the inter-

section (over all directions u, for fixed τ) of the upper quantile halfspaces

associated with the quantile hyperplanes in (3.4); see Figure 1(a).

The intersection with the w = w0 hyperplane of these cylindrical regions

yields a local constant estimate, ∂R̂
(n)const
w0

(τ) say, of the corresponding pop-

ulation w0-cut ∂Rw0
(τ); see Section 5 for asymptotic results. Of course, the

resulting local constant τ -quantile/depth contours, namely

∂R̂RR
(n)const

(τ) :=
⋃

w0∈Rp−1
∂R̂(n)const

w0
(τ),

are not (globally) cylindrical, but rather adapt to the underlying possibly

nonlinear and/or heteroskedastic dependence structures.

(a) (b)

Fig 1. Construction of the local constant (a) and local bilinear (b) τ -quantile regions from
the intersection (over all possible directions u) of the upper quantile halfspaces associated
with the constrained-to-be-parallel-to-the-space-of-covariates (a) or unconstrained (b) (τu)-
quantile hyperplanes.

This approach, which constitutes a generalization of the local constant

approach adopted elsewhere for single-output regression, has many advan-

tages. The main one is parsimony: each quantile hyperplane involved in the

construction of the weighted contours only entails m parameters, that is,



14 M. HALLIN, Z. LU, D. PAINDAVEINE, AND M. ŠIMAN

considerably less than the local bilinear approach described in the next sec-

tion. On the other hand, the local constant approach does not provide any

information on, nor does take any advantage of, the behavior of w-cuts for w

values in the neighborhood of w0, and its boundary performances are likely

to be poor. These two reasons, in traditional contexts, have motivated the

development of local linear and local polynomial methods; see [8] for a clas-

sical reference. Local linear methods were successfully used in single-output

quantile regression ([39–42]). Considering them in the present context, thus,

is a quite natural idea.

4.3. Local bilinear quantile contours. Assume that the distribution of

(W′,Y′)′ is smooth enough that the coefficients of w-conditional quan-

tile hyperplanes are differentiable with respect to w. Getting back to the

first characterization (1.1)-(1.2) of quantile hyperplanes, the (restricted) w0-

conditional τττ -quantile hyperplane of Y defined in (2.2)-(2.3) has equation

(in y—of course, in w, we just have w = w0)

u′y −
(
aτττ ;w0

, c′τττ ;w0

)(
1

ΓΓΓ′
uy

)
= 0.(4.2)

The same hyperplane equation, relative to a point w in the neighborhood

of w0, takes the form

u′y −
(
aτττ ;w0

, c′τττ ;w0

)(
1

ΓΓΓ′
uy

)
(4.3)

−(w − w0)
′
(
ȧτττ ;w0

, ċ′τττ ;w0

)(
1

ΓΓΓ′
uy

)
+ o(‖w − w0‖) = 0,

where ȧτττ ;w0
stands for the gradient of w 7→ aτττ ;w and ċτττ ;w for the Jacobian

matrix of w 7→ cτττ ;w, respectively, both taken at w = w0. In order to ex-

press this equation into the equivalent quantile formulation in (1.3)-(1.4),

note that we have bτττ ;w0
= u − ΓΓΓucτττ ;w0

, which entails ḃτττ ;w0
= −ΓΓΓuċτττ ;w0

,



LOCAL MULTIPLE-OUTPUT QUANTILE REGRESSION 15

where ḃτττ ;w0
is the Jacobian matrix of w 7→ bτττ ;w at w = w0. Neglecting

the o(‖w − w0‖) term, (4.3) then rewrites, after some algebra, as

(
b′
τττ ;w0

− w′
0ḃ

′
τττ ;w0

)
y(4.4)

−
(
aτττ ;w0

− w′
0ȧτττ ;w0

, ȧ′
τττ ;w0

, −(vec ċτττ ;w0
)′
)



1

w

w ⊗ (ΓΓΓ′
uy)


 = 0.

Letting x̄ := (1, w̄′)′ := (1,w′, (w ⊗ ΓΓΓ′
uy)′)′, the latter equation is of the

form

βββ′
τττy −ααα′

τττ (1, w̄
′)′ = 0,

with βββ′
τττu =

(
b′
τττ ;w0

−w′
0ḃ

′
τττ ;w0

)
u = b′

τττ ;w0
u = 1, since ḃ′

τττ ;w0
u = −ċ′τττ ;w0

ΓΓΓ′
uu =

0. Comparing with (1.3), this suggests a local linear approach based on

weighted quantile hyperplanes (in the mp-dimensional regressor-response

space associated with the augmented regressor x̄, that is, the (w̄′,y′)′-space),

yielding weighted empirical quantile hyperplanes with equations

(4.5) βββ(n)′
τττ ;ω y −ααα

(n)′
τττ ;ω (1, w̄′)′ = 0,

based on the same sequences of weights ω
(n)
i := ω

(n)
w0

(Wi), i = 1, . . . , n, as in

Section 4.1. Interpretation of the results, however, is easier from (4.3) than

from (4.4). The left-hand side of (4.3) indeed splits naturally into two parts of

independent interest: (i) the first one, made of the first two terms, yields the

equation of the w0-conditional τττ -quantile hyperplane of Y, hence provides

the required information for constructing the empirical w0-cuts, whereas

(ii) the second part (the third term) provides the linear (linear with respect

to (w − w0); actually, bilinear in (w − w0) and ΓΓΓ′
uy) correction required

for a small perturbation (w −w0) of the value of the conditioning variable.

Therefore, the important quantities to be recovered from ααα
(n)
τττ ;ω and βββ(n)

τττ ;ω are

estimations of these two parts, which are easily obtained by
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(i) letting w = w0 in (4.5), which yields the equation

βββ(n)′
τττ ;ω y −ααα

(n)′
τττ ;ω (1,w′

0, (w0 ⊗ΓΓΓ′
uy)′)′ = 0

of an empirical hyperplane providing an estimate of the two first terms

in (4.3), namely, the w0-conditional τττ -quantile hyperplane;

(ii) subtracting the latter equation from (4.5), which provides the bilinear

correction term.

The bilinear nature of the local approximation in (ii) is easily explained

by the fact that, in general, unless the w0-conditional and w-conditional

τττ -quantile hyperplanes are parallel to each other, no higher-dimensional

hyperplane can run through both (for instance, two mutually skew non-

intersecting straight lines in R
3 do not span a plane). Omitting the addi-

tional W ⊗ (ΓΓΓ′
uY) regressors (in (i) above) may result in inconsistent esti-

mators of the w0-conditional τττ -quantile hyperplanes. The resulting regions

in R
m+p, are not polyhedral anymore, but delimited by ruled quadrics (hy-

perbolic paraboloids for m = 2 and p = 1), the intersections of which with

the w = w0 hyperplane yield polyhedral estimated w0-cuts; see Figure 1(b).

The local bilinear approach is more informative than the local constant

one, and should be more reliable at boundary points; however, due to the

presence of the regressors W and W⊗ (ΓΓΓ′
uY) in (4.5), it may suffer from a

substantial increase of the covariate space dimension, hence of the number

of free parameters (mp free parameters instead of m for the local constant

method).

5. Asymptotics. Throughout this section, we fix w0 ∈ R
p−1 and τττ =

τu ∈ (0, 1) × Sm−1, and we write, for notational simplicity, Yu := u′Y and

Y⊥
u := ΓΓΓ′

uY. Asymptotic results require some regularity assumptions on the

density of the observations, the kernel, and the bandwidth.

Assumption (A1)(i) The n-tuple (W′
i,Y

′
i)
′, i = 1, . . . , n is an i.i.d. sample
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from (W′,Y′)′. (ii) The density w 7→ fW(w) of W is continuous and strictly

positive at w0. (iii) For any t ∈ R
m−1, the density s 7→ fYu|Y⊥

u
=t,W=w(s)

of Yu conditional on Y⊥
u = t and W = w is continuous with respect to s

in a neighborhood of aτττ ;w0
+ c′τττ ;w0

t, uniformly in w over a neighborhood

of w0, and continuous with respect to w in a neigborhood of w0 for all s

in a neighborhood of aτττ ;w0
+ c′τττ ;w0

t. (iv) The density fY
⊥
u
|W=w(t) of Y⊥

u

conditional on W = w is continuous with respect to w over a neighborhood

of w0, except perhaps for a set of t of (fY⊥
u -)measure zero. (v) The m×m

matrix

(5.1)

Gτττ ;w0
:=

∫

Rm−1

(
1 t′

t tt′

)
fYu|Y⊥

u
=t,W=w0(aτττ ;w0

+ c′τττ ;w0
t) fY

⊥
u
|W=w0(t) dt

is finite and positive definite.

Assumption (A2) (i) The kernel functionK is a bounded density over R
p−1

that has a compact support (SK , say). (ii)
∫
Rp−1 wK(w) dw = 0 and µµµK2 :=

∫
Rp−1 ww′K(w) dw is finite and positive definite

Assumption (A3) The bandwidth hn is such that limn→∞ hn = 0 and

limn→∞ nhp−1
n = ∞.

The conditions we are imposing in Assumption (A1) are quite mild. For

example, (A1)(ii) is the same as Condition (A)(iii) in [9] and (A1)(i) in [17];

(A1)(iii)-(v) are similar to Condition (A)(i, iv) in [9] and Condition (A1)(ii)

in [17], where the existence and positive-definiteness ensure the invertibility

of Gτττ ;w0
in Theorem 5.1.

Assumptions (A2) and (A3) on the kernel function and the bandwidth also

are quite standard in the nonparametric literature. For example, any com-

pactly supported symmetric density function with second-order moments

satisfies Assumption (A2). The compact support of K in Assumption (A2)
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is only a technical assumption to simplify the proof of theorems. In prac-

tice, Gaussian kernels can be considered; indeed, at the cost of more in-

volved proof, the compact support assumption in Theorems 5.1-5.2 can

be replaced with the assumption that both CK0 :=
∫

Rp−1 K2(w) dw and

CK2 :=
∫
Rp−1 ww′K2(w) dw are finite. As for Assumption (A3), it is the

usual one in the i.i.d. setting.

Let XXX c
u := (1,Y⊥′

u )′ and XXX ℓ
u := (1,Y⊥′

u )′ ⊗ (1, (W − w0)
′)′, where the

superscript c and ℓ stand for the local constant and local bilinear cases,

respectively. For (W,Y) = (Wi,Yi), we use the notation Yiu, Y⊥
iu, XXX c

iu,

XXX ℓ
iu, etc. in an obvious way.

Referring to (4.2) for the notation, the parameter of interest for the local

constant case is θθθc = θθθcτττ ;w0
:= (aτττ ;w0

, c′τττ ;w0
)′, whereas, in the local bilinear

case (see (4.3)), we rather have to estimate

(5.2) θθθℓ = θθθℓτττ ;w0
:= vec

(
aτττ ;w0

c′τττ ;w0

ȧτττ ;w0
ċ′τττ ;w0

)
.

The local constant and local bilinear methods described in the previous

sections provide estimators of the form θ̂θθ
c(n)

:= (â, ĉ′)′ and

(5.3) θ̂θθ
ℓ(n)

:= vec

(
â ĉ′

ˆ̇a ˆ̇c′

)

(we should actually discriminate between (â, ĉ′) = (âc, ĉc′) and (â, ĉ′) =

(âℓ, ĉℓ′), but will not do so in order to avoid making the notation too heavy);

those estimators are defined as the corresponding minimizer θθθr of

(5.4)
n∑

i=1

Kh(Wi − w0)ρτ (Yiu − θθθr′XXX r
iu), r = c, ℓ.

The following result provides Bahadur representations for θ̂θθ
c(n)

and θ̂θθ
ℓ(n)

.
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Theorem 5.1. (Bahadur representations) Let Assumptions (A1), (A2)(i),

and (A3) hold, assume that w 7→ (aτττ ;w, c
′
τττ ;w)′ is continuously differentiable

at w0, and write ψτ (y) := τ − I[y < 0]. Then, as n→ ∞,√
nhp−1

n Mr
h

(
θ̂θθ
r(n)

− θθθr
)

=
ηηηrτττ ;w0√
nhp−1

n

n∑

i=1

K

(
Wi − w0

hn

)
ψτ (Z

r
iu(θθθ))(Mr

h)
−1XXX r

iu + oP(1),(5.5)

where Zriu(ϑϑϑ) := Yiu−ϑϑϑ
′XXX r

iu (r = c, ℓ), Mc
h := Im, Mℓ

h := Im⊗diag(1, hnIp−1),

(5.6)

ηηηcτττ ;w0
:=

1

fW(w0)
G−1
τττ ;w0

, and ηηηℓτττ ;w0
:=

1

fW(w0)
G−1
τττ ;w0

⊗ diag
(
1, (µµµK2 )−1),

with Gτττ ;w0
defined in (5.1) (the result for the local constant case does not

require (A2)(ii)).

This result, along with Assumption (A4) below, entails the asymptotic

normality of θ̂θθ
r(n)

, r = c, ℓ. That assumption deals with the existence, at

w = w0, of the second derivatives of w 7→ (aτττ ;w, c
′
τττ ;w)′. With cτττ ;w =:

(cτττ ;w,1, . . . , cτττ ;w,m−1)
′, denote by ȧτττ ;w and ċτττ ;w,j the (p − 1) × 1 vectors of

first derivatives and by äτττ ;w and c̈τττ ;w,j the (p−1)×(p−1) matrices of second

derivatives (when they exist) of w 7→ aτττ ;w and w 7→ cτττ ;w,j, respectively

(recall that ȧτττ ;w and ċτττ ;w = (ċτττ ;w,1, . . . , ċτττ ;w,m−1)
′ were already defined

in page 14). Finally, write c̈′τττ ;w for the (p − 1) × (m − 1)(p − 1) matrix

(c̈τττ ;w,1, . . . , c̈τττ ;w,m−1).

Assumption (A4) (i) The function w 7→ (aτττ ;w, c
′
τττ ;w)′ is twice continuously

differentiable at w = w0, that is, äτττ ;w and c̈τττ ;w exist in a neighborhood of w0

and are continuous with respect to w at w0. (ii) The function w 7→ fW(w)

is continuously differentiable at w = w0, that is, the (p−1)×1 vector of first

derivatives of fW, ḟW(w), exists in a neighborhood of w0 and is continuous

with respect to w at w0.
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The following matrices are involved in the asymptotic bias and variance

expressions of the asymptotic normality result in Theorem 5.2 below. Define

ΣΣΣcw := τ(1 − τ)fW(w)CK0 ηηη
c
τττ ;w

[∫

Rm−1

fY⊥
u
|W=w(t)

(
1 t′

t tt′

)
dt

]
ηηηcτττ ;w,(5.7)

ΣΣΣℓw := τ(1 − τ)fW(w)ηηηℓτττ ;w

×

[ ∫

Rm−1

fY⊥
u
|W=w(t)

(
1 t′

t tt′

)
dt⊗ diag

(
CK0 , C

K
2

)]
ηηηℓτττ ;w,(5.8)

and, for r = c, ℓ,

Br
w := fW(w)ηηηrτττ ;w(5.9)

×
∫

Rm−1

fYu|Y⊥
u

=t,W=w(aτττ ;w + c′τττ ;wt)fY⊥
u
|W=w(t)

(
1
t

)
⊗
[
Br

w;0

(
1
t

)]
dt,

where (putting c̈τττ ;w,0 := äτττ ;w) Bc
w;0 is the 1 ×m matrix with jth entry

Bc
w;0,j := tr

[(
c̈τττ ;w,j−1 + 2

ċτττ ;w,j−1(ḟ
W(w))′

fW(w)

)
µµµK2

]
, j = 1, . . . ,m,

and Bℓ
w;0 denotes the p×m matrix with (i, j)th entry

Bℓ
w;0,ij := tr

[
c̈τττ ;w,j−1

∫

Rp−1

wi−1ww′K(w) dw

]
, i = 1, . . . , p j = 1, . . . ,m;

here, we wrote w = (w1, w2, . . . , wp−1)
′, w0 = 1. We then have

Theorem 5.2. (Asymptotic normality) Let Assumptions (A1)-(A4) hold.

Then, for r = c, ℓ,

(5.10)

√
nhp−1

n Mr
h

(
θ̂θθ
r(n)

− θθθr −
h2

2
Br

w0

)
L
→ N (0,ΣΣΣr

w0
),

as n → ∞, where
L
→ denotes convergence in distribution (the result for the

local bilinear case does not require (A4)(ii)).

Remark 1: The local bilinear fitting has the expression of bias that is

independent of ḟW. In contrast, the local constant fitting has a large bias
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at the regions where the derivative of fW is large, that is, it cannot adapt

to highly-skewed designs (see [8, 10]). Another important advantage of local

bilinear fitting over the local constant approach is its much better boundary

behavior. This advantage often has been emphasized in the usual regression

settings when the regressors take values on a compact subset of R
p−1. For

example, considering a univariate random regressorW (p = 2) with bounded

support ([0, 1], say), it can be proved, using an argument similar to the one

developed in the corresponding proof in [8], that asymptotic normality (with

the same rate) still holds at boundary points of the form chn, where c ∈ R
+
0 ,

with asymptotic bias and variances of the same form as in the local bilinear

(r = ℓ) versions of (5.9) and (5.8), with p = 2, w0 replaced by w0 = 0+, and
∫

Rp−1 by
∫∞
−c; see, for example, page 666 of [17].

Remark 2: In practice, we may be concerned with the estimation of the

quantile regression functions at different τττ ’s simultaneously. Restricting to

the estimation of (θθθ′τττ1;w0
, θθθ′τττ2;w0

)′, with τττk ∈ (0, 1)×Sm−1, k = 1, 2, it can be

shown by proceeding as in the proof of Theorem 5.2 that (θ̂θθ
′

τττ1;w0
, θ̂θθ

′

τττ2;w0
)′ is

asymptotically normal with a block-diagonal asymptotic covariance matrix,

that is, θ̂θθτττ1;w0
and θ̂θθτττ2;w0

are asymptotically independent for τττ1 6= τττ2.

6. Simulated and real data illustrations. This section illustrates

the use of the proposed local quantile regions on simulated data (Section 6.1)

and on real data (Section 6.2).

6.1. Simulated data. We first generated 999 points from the model (Y1, Y2) =

(W,W 2) + (1 + 3
2(sin(π2W ))2)εεε, where W ∼ U([−2, 2]) is independent of the

bivariate standard normal vector εεε, and plotted the τ = .2 and τ = .4 HPŠ

regression quantile contours obtained by using the covariate vector X =

(1,W )′ (Figure 2(a)) or X = (1,W,W 2)′ (Figure 2(b)). More precisely, these

figures provide cuts of the HPŠ contours by hyperplanes orthogonal to the
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w-axis at fixed w-values −1.89,−1.83,−1.77, . . . , 1.89.

Clearly, the results are very poor : Figure 2(a) does not reveal the trend

nor the heteroskedasticity pattern in the data. Although it is obtained by

fitting the true regression function, Figure 2(b) does much better with the

trend, but still fails to model the heteroskedasticity correctly. Instead of pro-

viding genuine conditional quantile/depth contours, the HPŠ methodology,

as announced in the Introduction, produces some averaged (over the w-

space) contours.

In contrast, the cuts obtained from the proposed local constant and lo-

cal bilinear methods—that do not use any knowledge on the true regression

function—exhibit a very good agreement with the population contours (see

Figures 2(c)-(e) to which we refer for details); both trend and heteroskedasc-

ticity components are now appropriately recovered. Note that, compared to

the local constant approach, the local bilinear one does better, as expected,

close to the boundary of the regressor space (in particular, the local constant

approach seems to miss the decay of the conditional scale when w converges

to −2). Similar comments can be made for smaller sample sizes; see Figure 3,

that is based on 499 data points.

The second example involves a homoskedastic setup and a heteroskedastic

one. More specifically, we generated n = 999 points from the homoskedastic

model (Y1, Y2) = (W,W 2)+εεε and from the heteroskedastic model (Y1, Y2) =

(W,W 2) + (1 + W 2)εεε, where W ∼ U([−2, 2]) and εεε ∼ N (0, 1/4)2 are mu-

tually independent. As above, cuts of the local constant and local bilin-

ear (τ = 0.2 and τ = 0.4) quantile regions, associated with the values

w ∈ {−1.89,−1.83,−1.77, . . . , 1.89}, are provided in Figure 4. Parallel to

the previous example, these cuts remarkably approximate their population

counterparts. In particular, the inner regions mimic the trend faithfully even

for quite extreme regressor values. Again, the local bilinear method seems
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to provide a better boundary behavior than its local constant counterpart;

the latter indeed seems to underestimate the conditional scale for extreme

value of W .

6.2. A real data example. In order to illustrate the data-analytic power

of the proposed method, we consider the “body girth measurement” dataset

from [19], that was already investigated in HPŠ. The dataset consists of

joint measurements of nine skeletal and twelve body girth dimensions, along

with weight, height, and age, in a group of 247 young men and 260 young

women. As in HPŠ, we discard the male observations, we restrict to the calf

maximum girth (Y1) and the thigh maximum girth (Y2) for the response, and

we use a single random regressor W (weight, height, age, or BMI). Figures 5

and 6 provide cuts—for the same w- and τ -values as in HPŠ—obtained from

the proposed local constant and local bilinear approaches, respectively.

These cuts confirm most of the global analysis conducted in HPŠ and

moreover reveal some interesting new features. For instance,

(a) for the dependence on weight, the local bilinear approach confirms

the positive trend in location, the increase in dispersion, and the evo-

lution of “principal directions” (as weight increases, the first “prin-

cipal direction” rotates from horizontal to vertical), and it further

indicates that high weights give rise to simultaneously large extreme

values in Y1 and Y2. The differences, for low and high values of the co-

variate (weight), between the contours resulting from the local bilinear

and local constant approaches illustrate the sensitivity of the latter to

boundary effect.

(b) for the dependence on age, the local regression quantile regions, par-

allel to their global HPŠ counterparts, do indicate that the location

and the first principal direction (along the main bisector) are constant

over age. Still as in HPŠ, the local approaches confirm that the shapes
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(a) (b)

(c) (d)

(e) (f)

Fig 2. For 999 points following the model (Y1, Y2) = (W,W 2)+(1+ 3

2
(sin(π

2
W ))2)εεε, where

W ∼ U([−2, 2]) and εεε ∼ N (0, 1)2 are independent, the plots above show cuts, by hyper-
planes orthogonal to the w-axis at fixed w-values −1.89,−1.83,−1.77, . . . , 1.89, of (a) the
HPŠ regression quantile regions with the single random regressor W , (b) the HPŠ regres-
sion quantile regions with the random regressors W and W 2, and (c-d) the proposed local
constant and local bilinear regression quantile regions (in each case, τ = .2 and τ = .4 are
considered). For the sake of comparison, the corresponding population (conditional) halfs-
pace depth regions are provided in (e). The conditional scale function w 7→ 1+ 3

2
(sin(π

2
w))2

is plotted in (f). Local methods use a Gaussian kernel and bandwidth value H = .37, and
360 equispaced directions u ∈ S1 were used to obtain results in (d).
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(a) (b)

(c) (d)

(e) (f)

Fig 3. For 499 points following the model (Y1, Y2) = (W,W 2)+(1+ 3

2
(sin(π

2
W ))2)εεε, where

W ∼ U([−2, 2]) and εεε ∼ N (0, 1)2 are independent, the plots above show cuts, by hyper-
planes orthogonal to the w-axis at fixed w-values −1.89,−1.83,−1.77, . . . , 1.89, of (a) the
HPŠ regression quantile regions with the single random regressor W , (b) the HPŠ regres-
sion quantile regions with the random regressors W and W 2, and (c-d) the proposed local
constant and local bilinear regression quantile regions (in each case, τ = .2 and τ = .4 are
considered). For the sake of comparison, the corresponding population (conditional) halfs-
pace depth regions are provided in (e). The conditional scale function w 7→ 1+ 3

2
(sin(π

2
w))2

is plotted in (f). Local methods use a Gaussian kernel and bandwidth value H = .41, and
360 equispaced directions u ∈ S1 were used to obtain results in (d).
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(a) (b)

(c) (d)

(e) (f)

Fig 4. Local multiple-output quantile regression with Gaussian kernel and ad-hoc bandwidth
H = .37: cuts through w ∈ {−1.89,−1.83,−1.77, . . . , 1.89} for τ = 0.2 and τ = 0.4
corresponding to n = 999 random points drawn from a homoskedastic model (Y1, Y2) =
(W, W 2) + εεε ((a), (c)) or a heteroskedastic model (Y1, Y2) = (W,W 2) + (1 + W 2)εεε ((b),
(d)), where W ∼ U([−2, 2]) and εεε ∼ N (0, 1/4)2 are independent. Cuts are obtained either
from the local constant method ((a), (b)) or the local bilinear one ((c), (d)). Color scaling
of the points (resp., of the cuts) mimics their regressor values whose higher values are
indicated by lighter red (resp., lighter green). For the sake of comparison, the population
(conditional) halfspace depth regions are provided in (e) and (f).
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(weight) (age)

(BMI) (height)

Fig 5. Four empirical (local constant) regression quantile plots from the body girth measure-
ments dataset (women subsample; see [19]). Throughout, the bivariate response (Y1, Y2)

′

involves calf maximum girth (Y1) and thigh maximum girth (Y2), while a single random re-
gressor is used: weight, age, BMI, or height. The plots are providing, for τ = .01, .03, .10,
.25, and .40, the cuts of the local constant regression τ -quantile contours, at the empirical
p-quantiles of the regressors, for p=.10 (black), .30 (blue), .50 (green), .70 (cyan) and .90
(yellow). Data points are shown in red (the lighter the red color, the higher the regressor
value). The results are based on a Gaussian kernel and bandwidth H = 1.3 × σwn−1/5,
where σw stands for the empirical standard deviation of the regressor (the corresponding
cuts obtained from linear regression are provided in Figure 7 of HPŠ).
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(weight) (age)

(BMI) (height)

Fig 6. Same quantities as in Figure 5, here obtained from the local bilinear approach,
with the same kernel and bandwidth as in Figure 5 (the computation was based on 360
equispaced directions u ∈ S1).



LOCAL MULTIPLE-OUTPUT QUANTILE REGRESSION 29

of outer contours vary quite significantly with age, indicating an in-

creasing (with age) simultaneous variability of both calf and thigh girth

largest values. Now, compared to HPŠ, the local bilinear approach fur-

ther shows that young women present a large simultaneous variability

of both calf and thigh girth smallest values;

(c) for the dependence on height, the local methods confirm the regression

effect specific to inner contours. The local bilinear approach further

shows that there is also a regression effect for outer contours, that, as

height increases, get more widespread in the direction u corresponding

to simultaneously large values of both responses).

This short application demonstrates how the local quantile regression

analysis proposed here complements and refines the findings obtained from

the global approach introduced in HPŠ by revealing the possible non-linear,

heteroskedastic, skewness ... features of the distributions of Y conditional

on W = w. We refer to [26] for a further application, in the context of

bivariate growth charts.

APPENDIX A: PROOFS OF ASYMPTOTIC RESULTS

In this appendix, we prove Theorems 5.1 and 5.2. We will actually only

prove the results in the local bilinear case (the proofs for the local constant

case are entirely similar). The proofs rely on several lemmas, that require

introducing some further notation.

Referring to (5.2)-(5.3), we let

θθθℓ = vec

(
aτττ ;w0

c′τττ ;w0

ȧτττ ;w0
ċ′τττ ;w0

)
=: vec

(
̟̟̟ ′

w0

˙̟̟̟ ′
w0

)

and

θ̂θθ
ℓ(n)

= vec

(
â ĉ′

ˆ̇a ˆ̇c′

)
=: vec

(
̟̟̟̂ ′

w0

̟̟̟̂̇ ′
w0

)
.
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Denote by ̟̟̟1 = (a1, c
′
1)

′ and ˜̟̟̟ 1 = (ã1, c̃
′
1)

′ two arbitrary vectors of R
m,

by ̟̟̟2 = (a2, c
′
2)

′ and ˜̟̟̟ 2 = (ã2, c̃
′
2)

′ two arbitrary m × (p − 1) matrices.

Letting Hn :=

√
nhp−1

n , write then

ϕϕϕ := HnMℓ
h vec

(
(̟̟̟1 − ̟̟̟w0

)′

(̟̟̟2 − ˙̟̟̟ w0
)′

)
, ϕ̃ϕϕ := HnMℓ

h vec

(
( ˜̟̟̟ 1 − ̟̟̟w0

)′

( ˜̟̟̟ 2 − ˙̟̟̟ w0
)′

)
,

and

(A.1) ϕϕϕ(n) := HnMℓ
h vec

(
( ̟̟̟̂w0

− ̟̟̟w0
)′

( ̟̟̟̂̇w0
− ˙̟̟̟ w0

)′

)
,

and note that

ϕϕϕ(n) =

√
nhp−1

n Mℓ
h

(
θ̂θθ
ℓ(n)

− θθθℓ
)
.

Put Whi := (Wi − w0)/hn, Khi := K(Whi) and

XXX ℓ
hiu := (Mℓ

h)
−1XXX ℓ

iu = (1,Y⊥′
iu )′ ⊗ (1,W′

hi)
′.

Let Zℓiu = Zℓiu(θθθℓ) := Yiu − θθθℓ′XXX ℓ
iu as in Theorem 5.1, and define

Tni := hnȧ
′
τττ ;w0

Whi + hn(vec ċτττ ;w0
)′(Y⊥

iu ⊗Whi),

Z∗
ni(ϕϕϕ) := Zℓiu −H−1

n ϕϕϕ′XXX ℓ
hiu, Uni = Uni(ϕϕϕ) := Tni +H−1

n ϕϕϕ′XXX ℓ
hiu

(note that these latter two quantities depend on the choice of ̟̟̟1 and ̟̟̟2).

The following properties will be useful in the sequel:

(A.2) Zℓiu = Yiu − (aτττ ;w0
+ c′τττ ;w0

Y⊥
iu) − Tni,

(A.3)

Z∗
ni(ϕϕϕ) = Yiu − (aτττ ;w0

+ c′τττ ;w0
Y⊥
iu) − Uni(ϕϕϕ) = Yiu −

(
vec(̟̟̟1, ̟̟̟2)

′)′XXX ℓ
iu.

Let C be a generic constant whose value may vary from line to line. Since K

is a bounded density with a bounded support, we have, whenever Khi > 0,

(A.4) ‖Whi‖ ≤ C and ‖XXX ℓ
hiu‖ ≤ C(1 + ‖Y⊥

iu‖),
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and, when moreover ‖ϕϕϕ‖ ≤M ,

(A.5) |Tni| ≤ Chn(1 + ‖Y⊥
iu‖) and |Uni| ≤ C(hn +H−1

n )(1 + ‖Y⊥
iu‖).

It follows from the definition of θ̂θθ
ℓ(n)

as the argmin of (5.4) that

(A.6) ϕϕϕ(n) = argminϕϕϕ∈Rmp

n∑

i=1

Khiρτ (Z
∗
ni(ϕϕϕ)).

Recalling that ψτ (y) := τ − I[y < 0], define

(A.7) Vn(ϕϕϕ) := H−1
n

n∑

i=1

Khiψτ (Z
∗
ni(ϕϕϕ))XXX ℓ

hiu.

In order to prove Theorem 5.1, we need the following lemma.

Lemma A.1. Let Vn(·) : R
mp → R

mp be a sequence of functions that

satisfies the following two properties:

(i) for all λ ≥ 1 and all ψψψ ∈ R
mp, −ψψψ′Vn(λψψψ) ≥ −ψψψ′Vn(ψψψ) a.s.;

(ii) there exist a p × p positive definite matrix D and a sequence of mp-

dimensional random vectors An satisfying ‖An‖ = OP(1) such that,

for all M > 0, sup‖ψψψ‖≤M ‖Vn(ψψψ) + (Gτττ ;w0
⊗ D)ψψψ − An‖ = oP(1),

where Gτττ ;w0
is given in (5.1).

Then, if ψψψn is such that ‖Vn(ψψψn)‖ = oP(1), it holds that ‖ψψψn‖ = OP(1) and

(A.8) ψψψn = (Gτττ ;w0
⊗ D)−1An + oP(1).

Proof. The proof follows along the same lines as in page 809 of [23]; details

are left to the reader. �

The proof of Theorem 5.1 then consists in checking that the assumptions

of Lemma A.1 hold for Vn defined in (A.7). To do this, we will make use of

the next lemma.
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Lemma A.2. Under Assumptions (A1)-(A3),

E
[
Khi|ψτ (Z

∗
ni(ϕϕϕ)) − ψτ (Z

∗
ni(ϕ̃ϕϕ))|

]
≤ CE

[
KhiI[|Z

∗
ni(ϕ̃ϕϕ)| < CH−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖]
]

≤ Chp−1
n H−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖,

and

E
[
K2
hi|ψτ (Z

∗
ni(ϕϕϕ)) − ψτ (Z

∗
ni(ϕ̃ϕϕ))|2

]
≤ CE

[
K2
hiI[|Z

∗
ni(ϕ̃ϕϕ)| < CH−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖]
]

≤ Chp−1
n H−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖.

for any (ϕϕϕ, ϕ̃ϕϕ) such that max(‖ϕϕϕ‖, ‖ϕ̃ϕϕ‖) ≤M , and n large enough.

Proof. The claim, in this lemma, is similar to that of Lemma A.3 in [17],

which essentially follows from the same argument as in the time series case

(cf. [25]). However, the details of the proof here are quite different.

It follows from (A.4) that

Khi|ψτ (Z
∗
ni(ϕϕϕ)) − ψτ (Z

∗
ni(ϕ̃ϕϕ))| = Khi |I[Z

∗
ni(ϕϕϕ) < 0] − I[Z∗

ni(ϕ̃ϕϕ) < 0]|

= Khi |I[Z
∗
ni(ϕ̃ϕϕ) < H−1

n (ϕϕϕ− ϕ̃ϕϕ)′XXX ℓ
hiu] − I[Z∗

ni(ϕ̃ϕϕ) < 0]|

≤ Khi I[|Z
∗
ni(ϕ̃ϕϕ)| < CH−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖(1 + ‖Y⊥
iu‖)].

Hence, from (A.3) and the mean value theorem, we obtain

E
[
Khi|ψτ (Z

∗
ni(ϕϕϕ)) − ψτ (Z

∗
ni(ϕ̃ϕϕ))|

]

≤ E
[
KhiI[|Z

∗
ni(ϕ̃ϕϕ)| < CH−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖(1 + ‖Y⊥
iu‖)]

]

= E
[
KhiP[ |Z∗

ni(ϕ̃ϕϕ)| < CH−1
n ‖ϕϕϕ− ϕ̃ϕϕ‖(1 + ‖Y⊥

iu‖) |Y
⊥
iu,Wi]

]

= E
[
KhiF

Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu + Uni(ϕ̃ϕϕ) + CH−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖(1 + ‖Y⊥
iu‖)

)]

−E
[
KhiF

Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu + Uni(ϕ̃ϕϕ) − CH−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖(1 + ‖Y⊥
iu‖)

)]

≤ E
[
Khi(1 + ‖Y⊥

iu‖)f
Yu|(Y⊥

u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu + Uni(ϕ̃ϕϕ) + λCH−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖(1 + ‖Y⊥
iu‖)

)]

×2CH−1
n ‖ϕϕϕ− ϕ̃ϕϕ‖,
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for some λ ∈ (−1, 1). Assumptions (A1)-(A3), together with (A.5), therefore

yield that, for ϕϕϕ, ϕ̃ϕϕ ∈ {ϕϕϕ : ‖ϕϕϕ‖ ≤M} and n large enough,

E
[
Khi |ψτ (Z

∗
ni(ϕϕϕ)) − ψτ (Z

∗
ni(ϕ̃ϕϕ))|

]

≤ CH−1
n ‖ϕϕϕ− ϕ̃ϕϕ‖E

[
Khi

∫

Rm−1

(1 + ‖t‖)fYu|(Y⊥
u

=t,W)(aτττ ;w0
+ c′τττ ;w0

t)fY⊥
u
|W(t) dt

]

= Chp−1
n H−1

n ‖ϕϕϕ− ϕ̃ϕϕ‖fW(w0)

×
∫

Rm−1

(1 + ‖t‖)fYu|(Y⊥
u

=t,W=w0)(aτττ ;w0
+ c′τττ ;w0

t)fY
⊥
u
|W=w0(t) dt,

which proves the first inequality of Lemma A.2. The second one can be

proved similarly. �

Lemma A.3. Under Assumptions (A1)-(A3), we have that, as n→ ∞,

(A.9) sup
‖ϕϕϕ‖≤M

‖Vn(ϕϕϕ) − Vn(0) − E[Vn(ϕϕϕ) − Vn(0)]‖ = oP(1).

Proof. The proof of this lemma is quite similar, in view of Lemma A.2,

to that of Lemma A.4 in [17]. Details are therefore omitted. �

Lemma A.4. Under Assumptions (A1)-(A3), we have that, as n→ ∞,

(A.10) sup
‖ϕϕϕ‖≤M

‖E[Vn(ϕϕϕ) − Vn(0)] + (Gτττ ;w0
⊗ D)ϕϕϕ‖ = o(1),

where D = fW(w0) diag(1,µµµK2 ).

Proof. Note that

Vn(ϕϕϕ) − Vn(0) = H−1
n

n∑

i=1

Khi[ψτ (Z
∗
ni(ϕϕϕ)) − ψτ (Z

ℓ
iu)]XXX ℓ

hiu.(A.11)

It follows from (A.2)-(A.3) that

E[Vn(ϕϕϕ) − Vn(0)] = nH−1
n E

[
Khi(I[Z

ℓ
iu < 0] − I[Z∗

ni(ϕϕϕ) < 0])XXX ℓ
hiu

]

= Hnh
−(p−1)
n E

[
Khi

(
F Yu|(Y⊥

u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu + Tni)

−F Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu + Uni)

)
XXX ℓ
hiu

]
.
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Then, similar to the proof of Lemma A.2, by the mean value theorem, since

Uni − Tni = H−1
n XXX ℓ′

hiuϕϕϕ, there exists ξ ∈ (0, 1) such that

sup
‖ϕϕϕ‖≤M

‖E[Vn(ϕϕϕ) − Vn(0)] + (Gτττ ;w0
⊗ D)ϕϕϕ‖

= sup
‖ϕϕϕ‖≤M

‖(Gτττ ;w0
⊗ D)ϕϕϕ

−h−(p−1)
n E

[
Khif

Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu + Tni + ξH−1

n XXX ℓ′
hiuϕϕϕ)XXX ℓ

hiuXXX
ℓ′
hiuϕϕϕ

]
‖

= sup
‖ϕϕϕ‖≤M

‖{(Gτττ ;w0
⊗ D) − h−(p−1)

n E
[
Khif

Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu)XXX ℓ

hiuXXX
ℓ′
hiu

]
}ϕϕϕ

−h−(p−1)
n E

[
Khi(f

Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu + Tni + ξH−1

n XXX ℓ′
hiuϕϕϕ

−fYu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu))XXX ℓ

hiuXXX
ℓ′
hiuϕϕϕ

]
‖

≤ C ‖(Gτττ ;w0
⊗ D) − h−(p−1)

n E
[
Khif

Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu)XXX ℓ

hiuXXX
ℓ′
hiu

]
‖

+C sup
‖ϕϕϕ‖≤M

h−(p−1)
n E

[
Khi|f

Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu + Tni + ξH−1

n XXX ℓ′
hiuϕϕϕ)

−fYu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥
iu)| ‖XXX ℓ

hiuXXX
ℓ′
hiu‖

]

= o(1),

where we used Assumptions (A1) and (A2), together with (A.5). �

Lemma A.5. Let Assumptions (A2) and (A3) hold. Then the random

vector ϕϕϕ(n) defined in (A.1) satisfies ‖Vn(ϕϕϕ
(n))‖ = oP(1).

Proof. The proof follows from a similar argument to that of Lemma A.2

in Page 836 of [33]. �

Lemma A.6. Under Assumptions (A1)-(A3), for any d ∈ R
mp,

lim
n→∞

E
[
{d′(Vn(0) − E[Vn(0)])}2

]

= τ(1 − τ)fW(w0)

∫

Rp−1

∫

Rm−1

([(1, t′) ⊗ (1,w′)]d)2fY⊥
u
|W=w0(t)K2(w) dt dw.
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Proof. Set ṽi = Khiψτ (Z
ℓ
iu)d′XXX ℓ

hiu = Khiψτ (Z
ℓ
iu)[(1,Y⊥′

iu ) ⊗ (1,W′
hi)]d.

A simple calculation yields

(A.12) E
[
{d′(Vn(0) − E[Vn(0)])}2

]
= H−2

n nVar[ṽ1] = h−(p−1)
n Var[ṽ1].

Note that, for k = 1, 2,

lim
n→∞

h−(p−1)
n E

[
Kk
h1I[Z

ℓ
1u < 0](d′XXX ℓ

h1u)k
]

= lim
n→∞

h−(p−1)
n E

[
Kk
h1F

Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥

1u + Tn1)(d
′XXX ℓ

h1u)k
]

= τfW(w0)

∫

Rp−1

∫

Rm−1

Kk(w) ([(1, t′) ⊗ (1,w′)]d)kfY
⊥
u
|W=w0(t) dt dw,

which leads to

lim
n→∞

h−(p−1)
n E[ṽ1]

= lim
n→∞

h−(p−1)
n E

[
Kh1(τ − I[Zℓ1u < 0])(d′XXX ℓ

h1u)
]

= (τ − τ)fW(w0)

∫

Rp−1

∫

Rm−1

K(w) ([(1, t′) ⊗ (1,w′)]d)fY⊥
u
|W=w0(t) dtdw = 0

and

lim
n→∞

h−(p−1)
n E[ṽ2

1 ]

= lim
n→∞

h−(p−1)
n E

[
K2
h1(τ

2 − 2τI[Zℓ1u < 0] + I[Zℓ1u < 0])(d′XXX ℓ
h1u)2

]

= τ(1 − τ)fW(w0)

∫

Rp−1

∫

Rm−1

K2(w) ([(1, t′) ⊗ (1,w′)]d)2fY
⊥
u
|W=w0(t) dt dw.

Therefore,

lim
n→∞

h−(p−1)
n Var[ṽ1]

=
(

lim
n→∞

h−(p−1)
n E[ṽ2

1 ]
)
−
(
h−(p−1)
n (E[ṽ1])

2
)

= τ(1 − τ)fW(w0)

∫

Rp−1

∫

Rm−1

K2(w) ([(1, t′) ⊗ (1,w′)]d)2fY
⊥
u
|W=w0(t) dt dw,

which, together with (A.12), establishes the result. �
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Proof of Theorem 5.1. The proof consists in checking that the con-

ditions of Lemma A.1 are satisfied. Lemmas A.3 and A.4 entail condi-

tion (ii) of Lemma A.1, with D = fW(w0) diag(1,µµµK2 ) (which yields to

(Gτττ ;w0
⊗ D)−1 = ηηηℓτττ ;w0

) and

An = Vn(0) = H−1
n

n∑

i=1

Khiψτ (Z
ℓ
iu)XXX ℓ

hiu,

which, by Lemma A.6, is OP(1). As for Condition (ii) of Lemma A.1, the

fact that

λ 7→ −ϕϕϕ′Vn(λϕϕϕ) = H−1
n

n∑

i=1

Khiψτ (Z
ℓ
iu − λH−1

n ϕϕϕ′XXX ℓ
hiu)(−ϕϕϕ′XXX ℓ

hiu)

is non-decreasing directly follows from the fact y 7→ ψτ (y) is non-decreasing.

Since, moreover, ‖Vn(ϕϕϕ
(n))‖ is oP(1) (this follows from Lemma A.5 and

Assumptions (A2)-(A3)), Lemma A.1 applies and establishes the result. �

Proof of Theorem 5.2. On the basis of the Bahadur representation

of Theorem 5.1, the asymptotic normality of θ̂θθ
ℓ(n)

follows exactly as in the

corresponding proofs for usual nonparametric regression in the i.i.d. case

(see, e.g., [8]), yielding the asymptotic normality with the bias (i.e., the

expectation) of the first term on the right-hand side of (5.5) as

E

[
ηℓτττ ;w0√
nhp−1

n

n∑

i=1

Kh1ψτ (Z
ℓ
iu)XXX ℓ

hiu

]

=
ηℓτττ ;w0√
nhp−1

n

nE
[
Kh1ψτ (Z

ℓ
1u)XXX ℓ

h1u

]

= ηℓτττ ;w0

√
nhp−1

n h−(p−1)
n E

[
Kh1

(
F Yu|(Y⊥

u
,W)(aτττ ;W + c′τττ ;WY⊥

1u)

−F Yu|(Y⊥
u
,W)(aτττ ;w0

+ c′τττ ;w0
Y⊥

1u + Tn1)
)
XXX ℓ
h1u

]

=

√
nhp−1

n

(
h2
n

2
Bℓ

w0
+ o(h2

n)

)
,
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where the last equality is derived from a first-order Taylor expansion of

y 7→ F Yu|(Y⊥
u
,X)(y) and a second-order Taylor expansion of w 7→ (aτττ ;w, c

′
τττ ;w)′

at w = w0 (these expansions exist in view of Assumptions (A1) and (A4)).

The o(h2
n) term is taken care of by Assumption (A3). The asymptotic vari-

ance of the theorem readily follows from Lemma A.6. Details are omitted. �
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