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2



“O frati,” dissi, “che per cento milia
perigli siete giunti a l’occidente,
a questa tanto picciola vigilia

d’i nostri sensi ch’è del rimanente
non vogliate negar l’esper̈ıenza,
di retro al sol, del mondo sanza gente.

Considerate la vostra semenza:
fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza” 1

Dante Alighieri, Inferno, Canto XXVI

1 In English, as translated in rhyme by Seth Zimmerman [138] :

“Brothers,” I said, “you who through a hundred thousand
Perils have reached the west, do not deny
To the brief vigil of your senses this final errand:

Before the time remaining to you goes by,
Seek out the uninhabited world beyond the sun;
Make it your last experience before you die.

Think of your origins: you’re not just anyone
You weren’t born to live like brutes;
To pursue knowledge and virtue is your mission!”

3



4



Abstract

Achieving security in practical systems is a hard task. As it is the case
for other critical system properties (i.e. safety), security should be a con-
cern through all the phases of software development, starting with the very
early phases of requirements and design, because of the potential impact of
unwanted behaviour. Moreover, it remains a critical concern throughout a
system’s life-span, because functionality driven updates or re-engineering of a
system can have an impact on its security. The cost of using formal methods
is clearly justified for critical applications. But in the context of a wider class
of industrial applications answers to two questions are important: What are
the gains and limitations of light-weight formal security guarantees achieved
at different abstraction levels? What are the advantages of those techniques
for reasoning about change?

For the first question, we discuss different detailed modelling techniques,
ranging from UML models to CPU cache modelling at the level of binary
code. To tackle the second question, we discuss results on compositionality
and incremental verification techniques which, besides being useful tools for
verification in general, allow re-utilization of existing verification results in
case of changes in the models. We apply these techniques to exemplary secu-
rity properties with focus on confidentiality, and pin down security assump-
tions and guarantees of information flow control across levels of abstraction.
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Chapter 1
Introduction

In recent years, information security has gained increasing attention from
the general public and there is a consensus about its paramount importance
in society. Examples include recent scandals on users private data [125],
leaks of government secret documents and public threats from anonymous
hacker groups to corporate and governmental IT systems worldwide [10, 11].
Long gone are the days where the term ‘computer security’ was associated
exclusively with spies, conspirational theories and cryptography. Today most
successful attacks exploit vulnerabilities related to problems in design or im-
plementation rather than vulnerabilities in cryptographic mechanisms. And
most of the attackers are motivated teenagers, typically not interested in the
mathematical aspects of cryptography1. In the words of Anderson [23]:

“(...) in practice, security is compromised most often not by
breaking dedicated mechanisms such as encryption or security
protocols, but by exploiting weaknesses in the way they are being
used.”

There are several reasons why security is difficult to achieve in practice.
On the one hand, the complexity of modern system architectures is constantly
increasing: software logic evolves, often driven by the market pressure to
deliver new functionalities, and different operating systems and hardware
configurations make each instantiation of an IT system unique. Moreover,
software components from different producers delivered without accurate (if
at all) security guarantees are used together to achieve customized solutions.
On the other hand, attacks can be performed by exploiting design failures at
different levels of abstraction, ranging from vulnerable cryptographic protocol
logic [26] to leakage due to micro-architectural configurations [31].

1Also social aspects of security result in attacks in many cases, but those are very
difficult to control by technological means and are out of the scope of this work.
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1. Introduction

Techniques to tackle this ever ‘moving target’ exist in different areas of
computer science and engineering: from software and hardware formal veri-
fication to testing, but also at the level of business-processes modelling and
risk-analysis. As observed before, security plays a role at different levels of
abstraction and at different phases of the development cycle, and if one wants
to have a high degree of assurance about the security of a system one should
consider them all.

In general, formal methods deliver strong guarantees about software and
hardware behaviour, due to their rigour and precision. It is thus natural to
consider formal methods to validate a system with respect to well-defined,
mathematical descriptions of security. Typically this effort is justified in crit-
ical applications, where unwanted behaviour could have a big impact. Nev-
ertheless, formal methods are difficult to apply in most commercial software-
development scenarios because they require highly specialized designers and
programmers in order to carry out the formalizations and interpret the veri-
fication results. For less critical systems, it has been recognized that formal
methods offer a good cost-benefit relation if used ‘correctly’: focusing on
light-weight methods such as formal specification, requirements validation
and test generation from specifications rather than on full code, machine-
code and hardware verification [92, 66].

Light-weight methods are usually applied at the level of system design,
where models are abstracted from implementation details and are more ame-
nable to automated verification. Since some security problems can be de-
tected already at the specification level, the cost-benefit of applying this
methodology is typically better than repairing design problems at later stages
of development [92]. The de-facto standard for system modelling in industry
is the Universal Modelling Language (UML), thus it is natural to perform
this formal verification on UML models, if one aims at industry acceptance.
It is important to have then a formally defined fragment of UML and a col-
lection of easy to use tools to partially verify the correctness of models with
respect to security properties as it had been presented by [77, 30].

Because of the necessary abstractions made, it is however not enough to
have strong security guarantees on system models to be able to judge the
overall security of a deployed system, which is the ultimate goal. As argued
before, it is difficult to verify the code because of its size and the huge vari-
ety of programming languages and paradigms. Moreover it can be the case
that libraries or components from third parties are used whose source code
is unavailable. Therefore, conformance testing, where the expected system
behaviour is compared to the actual behaviour for selected runs is useful
in gaining confidence about a given system. The main disadvantage of this
method is that it is only statistically accurate: in general it is computation-
ally infeasible to test all possible inputs of a system.

Despite the confidence won with formal or informal validation of a system,
security is a never ending open loop, since regularly new exploits appear
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1. Introduction

that consider properties or interfaces that were not considered at design.
This is prominently illustrated by side-channels: here the attacker exploits
information such as electro-magnetic radiation, timing and shared memory
behaviour to gain possession of confidential data. Many of these side-channels
are difficult to capture since they rely on micro-architectural configurations
such as the duration of processor instructions or the cache behaviour. Closing
these interfaces is sometimes impossible or costly, because of the impact to
other system requirements (i.e. efficiency).

State Name

Stateaction

Models Implementations Running system

class HelloWorldApp {
    public static void main(String[] args) 
{
        System.out.println("Hello World!"); 
    }
}

Figure 1: Roadmap from models to running systems

In the following we summarize the goals of this research and the achieved
results. Security is typically described as the conjunction of one or more se-
curity requirements, abstractly classified as Confidentiality, Availability and
Integrity. In this work we consider mainly Confidentiality: we want to under-
stand how private information is flowing from a group of users to another 2.
We also discuss some preliminary steps towards reasoning about availability
in the context of model-based testing.

There are basically two ways to look at the problem and our contributions:
a) according to the abstraction level modelled and b) according to the security
properties considered. First, we will take the first point of view (see Fig. 1).

UML Models: Requirements We consider the problem of specification
evolution for security at the level of UML models. We extend the UMLsec
[77] notation and verification techniques to reason about changes in the spec-
ification by means of the novel UMLseCh notation in Chapter 3. For some
properties defined in static UML diagrams, we describe sufficient conditions
that soundly preserve the security of already verified models by analysing the
delta implied by the modifications. This fine-grained incremental technique
is an appropriate choice for structural properties because of their locality:
changes of parts of the model usually affect the property in a clearly identi-
fiable, small subset of the specification.

2Nevertheless integrity is the dual of confidentiality when reasoning about information
flow, and some of our results could be applied to reason about integrity.
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1. Introduction

UML Models: System logic For behavioural models, incremental changes
can affect security in non-trivial ways. Therefore we propose to focus on
compositionality results: if one or more components of a given system is
substituted, the overall security of the system can be decided by re-verifying
only the new components given a compositionality condition. In Chapter 4
we extend previous work on verifying non-interference in UML state-charts
and derive compositionality results for interacting objects. We consider a
fragment of UML State-charts that allow one to define a class behaviour, by
taking advantage of the compact representation offered by hierarchical states
and variables for representing the history of the state.

In particular, cryptographic protocols are an important building block for
establishing secure and authentic channels between parties connected over
an insecure channel. For the very specific task of specifying and verifying
such protocols, we follow the approach of Jürjens [77] of using a domain
specific language (DSL) associated to UML sequence diagrams. In Chapter
5 we describe a sound decision procedure for the compositionality of Dolev-
Yao secrecy on processes exchanging cryptographic messages, building on the
aforementioned DSL.

Micro-architecture models At this detailed abstraction level, we focus
on cache configurations and how they can act as a leaking channel for differ-
ent adversaries. Configurations of the CPU play a determinant role on the
security of the system with respect to side-channel attacks, and the change
in configurations is a typical phenomenon of system’s evolution. Avoiding
the use of caches conflicts with efficiency requirements and is therefore not
realistic for a wide range of systems. A promising technique to achieve formal
guarantees about countermeasures striving for a trade-off between security
and other conflicting requirements is quantitative information flow analy-
sis (for example [88]). In Chapter 6 we formalize heuristic countermeasures
proposed in the literature and give strong security guarantees for arbitrary
programs under a well-defined attacker model, and validate our approach
using an automatic tool chain that evaluates compiled programs for various
architectures.

Implementations: Model-based testing Recently, the use of models
to describe the expected behaviour of a system have been proposed in the
context of conformance testing for security properties [35, 78, 135]. However,
the consistency of those models with respect to the properties to be tested
is usually neglected. In Chapter 7 we discuss preliminary results about a
methodology to verify UML models used for model-based testing based on a
black box model of the system, extending previous work on security testing.
We also discuss conditions under which the security relevant properties of
the model are preserved under incremental changes, by using the techniques
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1. Introduction

discussed in 3.

In summary, in this work we propose a set of tools, easy to use by end
users, and addressing the aforementioned problems on Models, Implementa-
tions and Micro-architectures. We believe that it is unrealistic to attempt
to build complex industrial systems with a 100% guarantee of security be-
cause logical or physical interfaces that are vulnerable to attacks are often
only exposed after real attacks take place. To date there is also no standard
single methodology, tool, or model to tackle the whole Software Develop-
ment Life-Cycle. It is thus necessary to provide tools that help to cope with
evolution problems at all levels of abstractions and during the whole life-
cycle. It is also our belief that the idea that systems are going to be secure
because we commit to a single approach (for example rigorous security re-
quirements elicitation, industrial best-practices, strict patch update policies
etc.) is fallacious: we have to work on all phases and at different abstraction
levels, sometimes using different models and different methodologies. More-
over, there is a necessary trade-off between security and costs associated to
formalization efforts, and we advocate for the use of automatic tools and
intuitive specification languages that allow non-experts to use them.

On the theoretical side, the contributions of this thesis are incremen-
tal and compositional analysis of exemplary security properties at different
levels of abstractions and in different model types, ranging from structural
and behavioural UML diagrams to CPU cache models. Practically, we apply
these results in concrete examples from diverse domains, including Smart-
Grids models for non-interference and a full-blown AES implementation for
cache side-channel analysis. We have implemented proof-of-concept tools to
validate our approach, always focusing in easy to use, intuitive modelling lan-
guages and automatic verification. Moreover we have preliminary evidence
that our methods are efficient in the sense that they can handle models of
reasonable size in little time. In the next chapter we discuss in detail the
relation between the different chapters of the thesis, and how do the tech-
niques in each of them combine methodologically to achieve a high degree of
confidence on the security of systems.
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Chapter 2
Methodology

As discussed in the introduction, the problem of constructing secure software
poses many challenges. On the one hand, the complexity of modern system
architectures is constantly increasing, and spans from software logic, oper-
ating systems and diverse hardware configurations, making security design
and verification difficult. On the other hand, new exploits and security holes
are found on a regular basis, due to an increasing interest in the subject by
practitioners, researchers and of course, attackers themselves. Techniques
to tackle this ever ‘moving target’ have been proposed from different cor-
ners of computer science: from formal verification and theoretical computer
science to software-testing (and even hardware testing and verification to
ensure secure systems as a whole). In this chapter we discuss how the tech-
nical results of the subsequent chapters of this thesis are methodologically
organized. There are different dimensions and points of view from which
this analysis can be performed. We will discuss at least three of them: the
vertical dimension (referring to the abstraction levels of the models), the hor-
izontal dimension (discussing techniques for verification under change) and
the relationship between the security properties considered.

2.1 The vertical view

UML Models: Chapters 3, 4, 5
⇓

Micro-architectural models: Chapter 6
⇓

Implementations: Chapter 7

In the next chapters we will thus introduce the results of this thesis for
tackling the complex task of designing and verifying secure systems. Our
goal is to explore three main levels of abstraction and to advance the state
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2. Methodology

of the art of techniques for tackling exemplary security properties in each of
them. Indeed, the ultimate goal is to achieve a secure running system, that is
a deployed software in a concrete hardware environment. To accomplish this,
we start by considering models of the envisaged system and gradually refine
them. For each step in the software development process, it is important to
evaluate security with appropriate techniques.

The UML model level is particularly interesting for the construction of
secure software, since already at design some security flaws can be spotted,
and are less expensive to correct at that stage [92]. For example in distributed
systems that communicate using cryptographic protocols, the Dolev-Yao at-
tacker model, where perfect cryptography is assumed, has been a successful
model to reason about the correctness with respect to security properties.
This line of research has been followed by Jürjens [77] who has also developed
a method to reason systematically about software components communicat-
ing through insecure channels in UML, called UMLsec.

In Chapter 3 we explore an extension to UMLsec to deal with changes in
the system model and to re-use previous verification results on the original
model called UMLseCh. The verification is based mainly on the differences
between model versions and is defined for different UMLsec diagrams, aiming
at sufficient conditions respecting security. This is useful to tackle the con-
tinuous changes in the system model that software usually undergoes. This
is however more challenging when it comes to behavioural models, where an
incremental analysis is less feasible.

We consider the question of non-interference and its compositionality on
Chapter 4, which is a fine-grained analysis that can detect leaks of secret
information that arise in the system logic despite assuming perfect access
control. In Chapter 5 we reason about the composition of processes exchang-
ing cryptographic messages specified in Sequence Diagrams, which is also an
important methodology when deciding on the evolution of a system. This is
because a compositional decision procedure can be helpful when adding or
replacing components of an existing system due to evolution.

As discussed in the introduction, not even full verification is enough to
have exhaustive security on the system for different reasons. One of them
is that they both assume ideal protection of some ‘security primitives’ like
cryptographic functions against leakage. However, micro-architecture config-
uration can be determinant on the presence (and the capacity) of unwanted
side-channels. In Chapter 6 we analyse the role of the cache in confidential-
ity in general way, and describe how to formalise countermeasures to known
attacks by means of quantitative information flow.

Since the model level abstracts from implementation details, it is nec-
essary to have some guarantees on the implementation level. It is however
not easy to verify implementations for different reasons: the availability of
source-code in all components used and the scalability problem of modern
model-checkers. We consider thus the most popular industrial methodology
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2. Methodology

to obtain guarantees on implementation: Testing. In Chapter 7 we describe a
well-founded methodology generating test sequences from UMLseCh models,
thus re-using results of the previous chapter on system evolution, and linking
them to test-specifying languages. We exemplary show how to test security
properties related to preventing Denial of Service attacks (DoS) and access
control, but also comment on how this can be extended to other properties.

Notice that we do not aim at a formal integration of the security guar-
antees obtained at the discussed levels of abstraction: such a task, although
interesting, goes outside the scope of this work. On the other hand, current
industrial environments do not have a formally justified software development
process. We consider different layers of abstraction mainly due to necessity:
any error found in any of these layers would invalidate the over-all security
of the system.

2.2 The horizontal view

From the perspective of model evolution, in this thesis we explore two possi-
ble solutions: on the one hand we consider incremental analysis, were small
changes to a monolithic model are evaluated with respect to a security prop-
erty. On the other hand we also consider a less fine grained analysis by
reasoning about compositionality of security properties. Both analysis have
however advantages depending on the security property considered as we
discuss in the following.

Incremental analysis For some model consistency properties related to
security, where the property quantifies on local model elements, it is possible
to give quite precise sufficient conditions that preserve security in the presence
of small modifications. This modifications can be additions, substitutions or
deletions of different model elements, and can be clearly identified by using
for example the UMLseCh language proposed in Chapter 3. There sufficient
conditions for exemplary UMLsec properties are discussed. Also in Chapter
7, an incremental analysis of the model consistency properties defined for
model-based security testing is discussed.

Compositional analysis The incremental analysis is appropriate when
small parts of the model need to be re-verified. In general, this is not the
case for security properties on behavioural models such as security protocol
interaction or non-interference: small changes of the model may imply a com-
plete reverification. Therefore, we have tackled this problem by considering
a global perspective of the system: if the system model is built up on inter-
acting components (like most modern system architectures) then the effects
of changes to a small number of components to the overall system security
can be easily decided if there exist decision procedures for the composition of
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2. Methodology
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Figure 1: Assumptions and guarantees for information flow control

verification results on the single components. In general, security properties
are not compositional: if A respects a given property and B respects it as
well, is not said that A ⊗ B (their compositions) does. This is for example
the case with secrecy on cryptographic protocols as we discuss on Chapter
5, but also for information-flow properties [95]. In Chapter 5 we discuss a
sound and efficient1 decision procedure that given proof artefacts (depen-
dency trees) on two components can establish whether their composition will
be security preserving or not. In Chapter 4 we prove a compositionality
theorem for non-interference on our system model (UML state-charts) for
one-way composition without call-backs.

2.3 Information flow control and access control

Although we do not provide a formal connection, it is nevertheless interesting
to informally discuss our contributions from the perspective of the security
properties considered and the assumptions they rely on at different abstrac-
tion levels. In fact, when analysing information-flow at the model level,
we are assuming perfect mechanisms for access control, and among others,
perfect cryptography, which guarantees access control when information is
shared through insecure networks. To gain confidence in the correctness of
those mechanisms, we validate them locally using model-based testing and
performing a Dolev-Yao analysis for the cryptographic protocol logic. To gain
even more confidence about primitives, we consider the micro-architectural
abstraction level, using quantitative information-flow related techniques. We

1In the sense that it can handle models of reasonable size in little time.
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2. Methodology

can see this as an (informal) chain of assumptions and guarantees across
abstraction levels, as depicted in Fig. 1.

The assumptions and guarantees discussed here are by no means com-
plete: for example we are not considering operating system access con-
trol mechanisms or semantic security properties of the cryptographic primi-
tives. As already discussed we believe that a complete and formally justified
methodology is unrealistic. It is nevertheless essential to consider different
levels of abstraction and development phases to achieve a good degree of
confidence in the system, since an error in any of them would invalidate
the results at higher abstraction levels or previous phases. For example a
faulty implementation of access control would invalidate a secure abstract
design w.r.t non-interference, and a cryptographic implementation with side-
channels would make a formally verified protocol against the Dolev-Yao ad-
versary meaningless.
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Chapter 3
Security requirements

System under
Validation

Model

Security requirements
validation

The task of evolving software systems such that the desired security re-
quirements are preserved through a system’s lifetime is of great importance
in practice. In this chapter we discuss a model-based approach to support
the evolution of secure software systems. Our approach allows us to verify
of potential future evolutions using an automatic analysis tool. An explicit
model evolution implies the transformation of the model and defines a differ-
ence ∆ between the original model and the transformed one. The proposed
approach supports the definition of multiple evolution paths, and provides
tool support to verify evolved models based on the delta of changes. This
idea is visualized in Fig. 1: The starting point of our approach is a Software
System Model which was already verified against certain security properties.
The model can then evolve within a range of possible evolutions (the evolu-
tion space). We consider the different possible evolutions as evolution paths
each of which defines a delta ∆i. The result is a number of evolved system
models. The main research question is: which of the evolution paths leads to
a target model that still fulfils the security properties of the source model?

Theoretically, one could simply re-run the security analysis done to es-
tablish the security of the original model on the evolved model to decide
whether these properties are preserved after evolution. This would, however,
result in general in a high resource consumption for models of realistic size,
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evolved Evolved System Modeli. The main research question is “Which of the evo-
lution paths leads to a target model that still fulfills the security properties of
the source model?”.

Theoretically, one could simply re-run the security analysis done to estab-
lish the security of the original model on the evolved model to decide whether
these properties are preserved after evolution. This would, however, result in
general in a high resource consumption for models of realistic size, in particular
since the goal in general is to investigate the complete potential evolution space
(rather than just one particular evolution) in order to determine which of the
possible evolutions preserve security. Also, verification efficiency is very critical
if a continuous verification is desired (i.e. it should be determined in real-time
and in parallel to the modelling activity whether the modelled change preserves
security).

We use models specified using the Unified Modeling Language (UML) 1 and
the security extension UMLsec [?]. The UMLsec profile offers new UML lan-
guage elements (i.e., stereotypes, tags, and constraints) to specify typical secu-
rity requirements such as secrecy, integrity, and authenticity, and other security-
relevant information. Based on UMLsec models and the semantics defined for
the different UMLsec language elements, possible security vulnerabilities can be
identified at an early stage of software development. One can thus verify that
the desired security requirements, if fulfilled, enforce a given security policy. This
verification is supported by a tool suite 2 [?].

In this paper we present a general approach for the incremental security
verification of UML models against security requirements inserted as UMLsec
stereotypes. We discuss the possible atomic (i.e. single model element) evolutions
annotated with certain security requirements according to UMLsec. Moreover,
we present sufficient conditions for a set of model evolutions, which, if satisfied,
ensure that the desired security properties of the original model are preserved
under evolution. We demonstrate our general approach by applying it to a rep-
resentative UMLsec stereotype, �� secure dependency ��. As one result of our work,
we demonstrate that the security checks defined for UMLsec allow significant
efficiency gains by considering this incremental verification technique.

1 The Unified Modeling Language http://www.uml.org/
2 Available online via http://www-jj.cs.tu-dortmund.de/jj/umlsectool

Figure 1: Model verification problem for n possible evolution paths

in particular since the goal in general is to investigate the complete potential
evolution space (rather than just one particular evolution) in order to de-
termine which of the possible evolutions preserve security. Also, verification
efficiency is very critical if a continuous verification is desired (i.e. it should
be determined in real-time and in parallel to the modelling activity whether
the modelled change preserves security).

We use models specified using the Unified Modeling Language (UML) 1

and the security extension UMLsec [76]. The UMLsec profile offers new UML
language elements (i.e., stereotypes, tags, and constraints) to specify typical
security requirements such as secrecy, integrity, and authenticity, and other
security-relevant information. Based on UMLsec models and the semantics
defined for the different UMLsec language elements, possible security vulner-
abilities can be identified at an early stage of software development. One can
thus verify that the desired security requirements, if fulfilled, enforce a given
security policy. This verification is supported by a tool suite 2 [82].

In this chapter we present a general approach for the incremental security
verification of UML models against security requirements inserted as UMLsec
stereotypes. We discuss the possible atomic (i.e. single model element) evo-
lutions annotated with certain security requirements according to UMLsec.
Moreover, we present sufficient conditions for a set of model evolutions,
which, if satisfied, ensure that the desired security properties of the original
model are preserved under evolution. We demonstrate our general approach
by applying it to a representative UMLsec stereotype, 〈〈 secure dependency 〉〉.
As one result of our work, we demonstrate that the security checks defined
for UMLsec account for significant efficiency gains by considering this incre-
mental verification technique.

Our technique is based basically in a two-sided type distinction: on the
one hand we reason about the UML type of an atomic change and on the
other hand we distinguish on its evolution type. This technique allows for a
comprehensive class of sufficient conditions if the security properties in ques-

1The Unified Modeling Language http://www.uml.org/
2Available online via http://www-jj.cs.tu-dortmund.de/jj/umlsectool
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tion are of a mainly local nature. In other words, the incremental technique
works well if a small change has an impact in a small neighbourhood. In
subsequent chapters we will discuss compositional techniques which allows
one to reason about more complex security properties.

To explicitly specify possible evolution paths, we have developed a further
extension of the UMLsec profile (called UMLseCh) that allows to precisely
define which model elements are to be added, deleted, and substituted in a
model. Constraints in first-order predicate logic help to coordinate and define
more than one evolution path (and thus obtain the deltas for the analysis).

Note that UMLseCh is not intended as a general-purpose evolution mod-
eling language: it is specifically intended to model the evolution in a security-
oriented context in order to investigate the research questions with respect to
security preservation by evolution (in particular, it is an extension of UMLsec
and requires the UMLsec profile as prerequisite profile). Thus, UMLseCh
does not aim to be an alternative for any existing general-purpose evolution
specification or model transformation approaches (such as [69, 24, 33, 120,
86]), but as a mean to easily reason about the delta induced by a transfor-
mation within the UMLsec framework.

3.1 UMLseCh: Supporting Evolution of UMLsec
Models

In this section we present a further extension of the UML security profile
UMLsec to deal with potential model evolutions, called UMLseCh (that is, an
extension to UML which itself includes the UMLsec profile). Figure 2 shows
the list of UMLseCh stereotypes, together with their tags and constraints,
while Fig. 3 describes the tags.

The UMLseCh tagged values associated to the tags {add} and {substitute}
are strings, their role is to describe possible future model evolutions. UMLseCh
describes possible future changes, thus conceptually, the substitutive or
additive model elements are not actually part of the current system design
model, but only an attribute value inside a change stereotype3. At the con-
crete level, i.e. in a tool, this value is either the model element itself if it can
be represented with a sequence of characters (for example an attribute or an
operation within a class), or a namespace containing the model element.

Note that the UMLseCh notation is complete in the sense that any kind of
evolution between two UMLsec models can be captured by adding a suitable
number of UMLseCh annotations to the initial UMLsec model. This can be
seen by considering that for any two UML models M and N there exists a
sequence of deletions, additions, and substitutions through which the model
M can be transformed to the model N . In fact, this is true even when only

3The type change represents a type of stereotype that includes 〈〈 change 〉〉,〈〈 substitute 〉〉,
〈〈 add 〉〉 or 〈〈 delete 〉〉.
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Stereotype Base Class Tags Constraints Description
change all ref, change FOL formula execute sub-changes

in parallel
substitute all ref, substitute, FOL formula substitute a model

element
add all ref, add, FOL formula add a model

element
delete all ref, delete FOL formula delete a model

element
substitute-all all ref, substitute, FOL formula substitute a

group of elements
add-all all ref, add, FOL formula add a group

of elements
delete-all all ref, delete FOL formula delete a group

of elements

Figure 2: UMLseCh stereotypes

Tag Stereotype Type Multip. Description
ref change, substitute, add, list of strings 1 List of labels

delete, substitute-all, identifying a
add-all, delete-all change

substitute substitute, list of pairs of 1 List of
substitute-all model elements substitutions

add add, add-all list of pairs of 1 List of
model elements additions

delete delete, delete-all list of pairs of 1 List of
model elements deletions

change change list of references 1 List of
simultaneous
changes

Figure 3: UMLseCh tags

considering deletions and additions: the trivial solution would be to sequen-
tially remove all model elements from M by subsequent atomic deletions,
and then to add all model elements needed in N by subsequent additions. Of
course, this is only a thereotical argument supporting the theoretical expres-
siveness of the UMLseCh notation, and this approach would neither be useful
from a modelling perspective, nor would it result in a meaningful incremen-
tal verification strategy. This is the reason that the substitution of model
elements has also been added to the UMLseCh notation, and the incremental
verification strategy explained later in this work will crucially rely on this.

3.1.1 Description of the Notation

In the following we give an informal description of the notation and its se-
mantics.
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substitute

The stereotype 〈〈 substitute 〉〉 attached to a model element denotes the possibil-
ity for that model element to evolve over time and defines what the possible
changes are. It has two associated tags, namely ref and substitute. These
tags are of the form { ref =CHANGE-REFERENCE } and

{ substitute = (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }

with n ∈ N. The tag ref takes a list of sequences of characters as value, each
element of this list being simply used as a reference of one of the changes
modeled by the stereotype 〈〈 substitute 〉〉. In other words, the values contained
in this tag can be seen as labels identifying the changes. The values of
this tag can also be considered as predicates which take a truth value that
can be used to evaluate conditions on other changes (as we will explain in
the following). The tag substitute has a list of pairs of model element as
value, which represent the substitutions that will happen if the related change
occurs. The pairs are of the form (e, e′), where e is the element to substitute
and e′ is the substitutive model element 4. For the notation of this list, two
possibilities exist: The elements of the pair are written textually using the
abstract syntax of a fragment of UML defined in [76] or alternatively the
name of a namespace containing an element is used instead. The namespace
notation allows UMLseCh stereotypes to graphically model more complex
changes (cf. Sect. 3.1.2).

If the model element to substitute is the one to which the stereotype
〈〈 substitute 〉〉 is attached, the element e of the pair (e, e′) is not necessary.
In this case the list consists only of the second elements e′ in the tagged
value, instead of the pairs (this notational variation is just syntactic sugar).
If a change is specified, it is important that it leaves the resulting model in
a syntactically consistent state. In this work however we focus only on the
preservation of security.

Example We illustrate the UMLseCh notation with the following example.
Assume that we want to specify the change of a link stereotyped 〈〈 Internet 〉〉 so
that it will instead be stereotyped 〈〈 encrypted 〉〉. For this, the following three
annotations are attached to the link concerned by the change (cf. Figure 4):

〈〈 substitute 〉〉, { ref = encrypt-link }, { substitute = (〈〈 encrypted 〉〉, 〈〈 Internet 〉〉) }

The stereotype 〈〈 substitute 〉〉 also has a list of optional constraints formu-
lated in first order logic. This list of constraints is written between square
brackets and is of the form [(ref1, CONDITION1), . . . , (refn, CONDITIONn)],

4More than one occurrence of the same e in the list is allowed. However, two occurrences
of the same pair (e, e′) cannot exist in the list, since it would model the same change twice.
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Sendercomp

S:Sender

Sendernode

{ref = encrypt−link}

{substitute = («Internet», «encrypted»)}

«substitute»«Internet»

Receivercomp

R:Receiver

Receivernode

«send»

Figure 4: Example of stereotype substitute

n ∈ N, where, ∀i : 1 ≤ i ≤ n, refi is a value of the list of a tag ref and
CONDITIONn can be any type of first order logic expression, such as A ∧B,
A ∨ B, A ∧ (B ∨ ¬C), (A ∧ B) ⇒ C, ∀x ∈ N.P (x), etc. Its intended use is
to define under which conditions the change is allowed to happen (i.e. if the
condition is evaluated to true, the change is allowed, otherwise the change is
not allowed). As mentioned earlier, an element of the list used as the value
of the tag ref of a stereotype 〈〈 substitute 〉〉 can be used as an atomic predicate
for the constraint of another stereotype 〈〈 substitute 〉〉. The truth value of that
predicate is true if the change represented by the stereotype 〈〈 substitute 〉〉 to
which the tag ref is associated occurred, false otherwise.

To illustrate the use of the constraint, the previous example can be re-
fined. Assume that to allow the change with reference encrypt-link, another
change, simply referenced as change for the example, has to occur. The con-
straint [change] can then be attached to the link concerned by the change. To
express for example that two changes, referenced respectively by change1 and
change2, have to occur first in order to allow the change referenced encrypt-
link to happen, the constraint [change1 ∧ change2] is added to the stereotype
〈〈 substitute 〉〉 modeling the change.

add and delete

Both 〈〈 add 〉〉 and 〈〈 delete 〉〉 can be seen as syntactic sugar for 〈〈 substitute 〉〉.
The stereotype 〈〈 add 〉〉 attached to a parent model element describes a list
of possible sub-model elements to be added as children to the parent model
element. It thus substitutes a collection of sub-model elements with a new,
extended collection.

The stereotype 〈〈 delete 〉〉 attached to a (sub)-model element marks this
element for deletion. Deleting a model element could be expressed as the
substitution of the model element by the empty model element ∅. Both
stereotypes 〈〈 add 〉〉 and 〈〈 delete 〉〉 may also have associated constraints in first
order logic.
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substitute-all

The stereotype 〈〈 substitute-all 〉〉 is an extension of the stereotype 〈〈 substitute 〉〉.
It denotes the possibility for a set of model elements of same type
and sharing common characteristics to evolve over time. In this case,
〈〈 substitute-all 〉〉 will always be attached to the super-element to which the sub-
elements concerned by the substitution belong. As the stereotype
〈〈 substitute 〉〉, it has the two associated tags ref and substitute, of the form
{ ref =CHANGE-REFERENCE } and

{ substitute = (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }.

The tags ref has the same meaning as in the case of the stereotype
〈〈 substitute 〉〉. For the tag substitute the element e of a pair representing a
substitution does not represent one model element but a set of model ele-
ments to substitute if a change occurs. This set can be, for example, a set of
classes, a set of methods of a class, a set of links, a set of states, etc. All the
elements of the set share common characteristics. For instance, the elements
to substitute are the methods having the integer argument “count”, the links
being stereotyped 〈〈 Internet 〉〉 or the classes having the stereotype 〈〈 critical 〉〉
with the associated tag secrecy. Again, in order to identify the model element
precisely, we can use, if necessary, either the UML namespaces notation or,
if this notation is insufficient, the abstract syntax of UMLseCh.

Example To replace all the links stereotyped 〈〈 Internet 〉〉 of a subsystem so
that they are now stereotyped 〈〈 encrypted 〉〉, the following three annotations
can be attached to the subsystem: 〈〈 substitute-all 〉〉, { ref = encrypt-all-links },
and { substitute = (〈〈 Internet 〉〉, 〈〈 encrypted 〉〉) }. This is shown in Figure 5.

A pair (e, e′) of the list of values of a tag substitute here allows us a
parameterization of the values e and e′ in order to keep information of the
different model elements of the subsystem concerned by the substitution.
To allow this, variables can be used in the value of both the elements of a
pair. The following example illustrates the use of the parameterization in the
stereotype 〈〈 substitute-all 〉〉. To substitute all the tags secrecy of stereotypes
〈〈 critical 〉〉 by tags integrity, but in a way that it keeps the values given to
the tags secrecy (e.g. { secrecy = d }), the following three annotations can
be attached to the subsystem containing the class diagram: 〈〈 substitute-all 〉〉,
{ ref = secrecy-to-integrity }, and:

{ substitute = ({ secrecy = X }, { integrity = X }) }.

The stereotype 〈〈 substitute-all 〉〉 also has a list of constraints formulated in
first order logic, which represents the same information as for the stereotype
〈〈 substitute 〉〉.
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Customer

«Internet»
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S:Server

Server

«Internet»

Businesscomp

B:Business

Business

Customercomp

C:Customer

{substitute = («Internet», «encrypted»)}

{ref = encrypt−all−links}

«substitute−all»

System

Figure 5: Example of stereotype substitute-all

change

The stereotype 〈〈 change 〉〉 is a particular stereotype that represents a compos-
ite change. It has two associated tags, namely ref and change. These tags
are of the form { ref =CHANGE-REFERENCES } and { change =CHANGE-
REFERENCES1, . . ., CHANGE-REFERENCESn }, with n ∈ N. The tag ref has
the same meaning as in the case of a stereotype 〈〈 substitute 〉〉. The tag change
takes a list of lists of strings as value. Each element of a list is a value of a tag
ref from another stereotype of type change.5 Each list thus represents the list
of sub-changes of a composite change modeled by the stereotype 〈〈 change 〉〉.
Applying a change modeled by 〈〈 change 〉〉 hence consists in applying all of the
concerned sub-changes in parallel.

Any change being a sub-change of a change modeled by 〈〈 change 〉〉 must
have the value of the tag ref of that change in its condition. Therefore, any
change modeled by a sub-change can only happen if the change modeled
by the super-stereotype takes place. However, if this change happens, the
sub-changes will be applied and the sub-changes will thus be removed from
the model. This ensures that sub-changes cannot be applied by themselves,
independently from their super-stereotype 〈〈 change 〉〉 modeling the composite
change.

5By type change, we mean the type that includes 〈〈 substitute 〉〉, 〈〈 add 〉〉, 〈〈 delete 〉〉 and
〈〈 change 〉〉.
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3.1.2 Complex Substitutive Elements

As mentioned above, using a complex model element as substitutive element
requires a syntactic notation as well as an adapted semantics. An element
is complex if it is not represented by a sequence of characters (i.e. it is
represented by a graphical icon, such as a class, an activity or a transition).
Such complex model elements cannot be represented in a tagged value since
tag definitions have a string-based notation. To allow such complex model
elements to be used as substitutive elements, they will be placed in a UML
namespace. The name of this namespace being a sequence of characters, it
can thus be used in a pair of a tag substitute where it will then represent a
reference to the complex model element. Of course, this is just a notational
mechanism that allows the UMLseCh stereotypes to graphically model more
complex changes. From a semantic point of view, when an element in a pair
representing a substitution is the name of a namespace, the model element
concerned by the change will be substituted by the content of the namespace,
and not the namespace itself. This type of change will request a special
semantics, depending on the type of element. For details about this complex
substitutions we refer to [126].

3.2 Verification Strategy

As stated in the previous section, evolving a model means that we either add,
delete, or / and substitute elements of this model. To distinguish between
big-step and small-step evolutions, we will call “atomic” the modifications
involving only one model element (or sub-element, e.g. adding a method to
an existing class or deleting a dependency). In general there exist evolutions
from diagram A to diagram B such that there is no sequence of atomic
modifications for which security is preserved when applying them one after
another, but such that both A and B are secure. Therefore the goal of our
verification is to allow some modifications to happen simultaneously.

Since the evolution is defined by additions, deletion and substitutions of
model elements, we introduce the sets Add, Del, and Subs, where Add
and Del contain objects representing model elements together with methods
id, type, path, parent returning respectively an identifier for the model ele-
ment, its type, its path within the diagram, and its parent model element.
These objects also contain all the relevant information of the model element
according to its type (for example, if it represents a class, we can query for
its associated stereotypes, methods, and attributes). For example, the class
“Customer” in Fig. 6 can be seen as an object with the subsystem “Book a
flight” as its parent. It has associated a list of methods (empty in this case),
a list of attributes (“Name” of type String, which is in turn a model element
object), a list of stereotypes (〈〈 critical 〉〉) and a list of dependencies (〈〈 call 〉〉
dependency with “Airport Server”) attached to it. By recursively comparing
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Airport server

«call»

pay(Real amount): Boolean

requestFlight(): Flight

«critical»

{high={pay(Real amount)}}
Customer «critical»

{high={pay(Real amount)}}

Name: String

Book a flight
«secure dependency»

Figure 6: Class Diagram Annotated with 〈〈 secure dependency 〉〉

all the attributes of two objects, we can establish whether they are equal.
The set Subs contains pairs of objects as above, where the type, path

(and therefore parent) methods of both objects must coincide. We assume
that there are no conflicts between the three sets, more specifically, the fol-
lowing condition guarantees that one does not delete and add the same model
element:

@ o, o′(o ∈ Add ∧ o′ ∈ Del ∧ o = o′)

Additionally, the following condition prevents adding/deleting a model
element present in a substitution (as target or as substitutive element):

@ o, o′(o ∈ Add ∨ o ∈ Del) ∧ ((o, o′) ∈ Subs ∨ (o′, o) ∈ Subs)

As explained above, in general, an “atomic” modification (that is the
action represented by a single model element in any of the sets above) could
by itself harm the security of the model. So, one has to take into account other
modifications in order to establish the security status of the resulting model.
We proceed algorithmically as follows: we iterate over the modification sets
starting with an object o ∈ Del, and if the relevant simultaneous changes
that preserve security are found in the delta, then we perform the operation
on the original model (delete o and necessary simultaneous changes) and
remove the processed objects until Del is empty. We then continue similarly
with Add and finally with Subs. If at any point we establish the security is
not preserved by the evolution we conclude the analysis. Given a diagram M
and a set ∆ of atomic modifications we denote M [∆] the diagram resulting
after the modifications have taken place. So in general let P be a diagram
property. We express the fact that M enforces P by P (M). Soundness of the
security preserving rules R for a property P on diagram M can be formalized
as follows:

P (M) ∧R(M,∆)⇒ P (M [∆]).

To prove that the algorithm described above is sound with respect to a
given property P , we show that every set of simultaneous changes accepted
by the algorithm preserves P . Then, transitively, if all steps were sound until
the delta is empty, we reach the desired P (M [∆]).
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One can obtain these deltas by interpreting the UMLseCh annotations
presented in the previous section. Alternatively, one could compute the dif-
ference between an original diagram M and the modified M ′. This is nev-
ertheless not central to this analysis, which focuses on the verification of
evolving systems rather than on model transformation itself.

To define the set of rules R, one can reason inductively by cases given
a security requirement on UML models, by considering incremental atomic
changes and distinguishing them according to a) their evolution type (addi-
tion, deletion, substitution) and b) their UML diagram type. In the following
section we will spell-out a set of possible sufficient rules for the sound and
secure evolution of class diagrams annotated with the 〈〈 secure dependency 〉〉

stereotype.

3.3 Application examples

In this section we demonstrate the verification strategy explained in the previ-
ous section by applying it to the case of the UMLsec stereotype
〈〈 secure dependency 〉〉 applied to class diagrams. The associated constraint
requires for every communication dependency (i.e. a dependency annotated
〈〈 send 〉〉 or 〈〈 call 〉〉) between two classes in a class diagram the following condi-
tion holds: if a method or attribute is annotated with a security requirement
in one of both classes (for example { secrecy = {method()} }), then the other
class has the same tag for this method/attribute as well (see Fig. 6 for an ex-
ample). It follows that the computational cost associated with verifying this
property depends on the number of dependencies. We analyze the possible
changes involving classes, dependencies and security requirements as spec-
ified by tags and their consequences to the security properties of the class
diagram.

Formally, we can express this property as follows:

P (M) : ∀C,C ′ ∈M.Classes (∃d ∈M.dependencies(C,C ′)⇒ C.critical = C ′.critical)

where M.Classes is the set of classes of diagram M , M.dependencies(C,C ′)
returns the set of dependencies between classes C and C ′ and C.critical re-
turns the set of pairs (m, s) where m is a method or an object shared in
the dependency and s ∈ {high, secrecy, integrity} as specified in the 〈〈 critical 〉〉
stereotype for that class.

We now analyse the set ∆ of modifications by distinguishing cases on the
evolution type (deletion, addition, substitution) and the UML type.

Deletion

Class: We assume that if a class C̄ is deleted then also the dependencies
coming in and out of the class are deleted, say by deletions D = {o1, ..., on},
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and therefore, after the execution of o and D in the model M (expressed
M [o,D]) property P holds since:

P (M [o,D]) :

∀C,C ′ ∈M.Classes\ C̄ (∃d ∈M [o,D].dependencies(C,C ′)⇒ C.critical = C ′.critical)

and this predicate holds given P (M), because the new set of dependencies
of M [o,D] does not contain any pair of the type (x, C̄), (C̄, x).

Tag in critical: If a security requirement (m, s) associated to in class C̄
is deleted then it must also be removed from other methods having depen-
dencies with C (and so on recursively for all classes CC̄ associated through
dependencies to C̄ ) in order to preserve the secure dependencies requirement.
We assume P (M) holds, and since clearly M.Classes = (M.Classes\CC̄)∪CC̄

it follows P (M [o,D]) because the only modified objects in the diagram are
the classes in CC̄ and for that set we deleted symmetrically (m, s), thus
respecting P .

Dependency: The deletion of a dependency does not alter the property
P since by assumption we had a statement quantifying over all dependencies
(C,C ′), that trivially also holds for a subset.

Addition

Class: The addition of a class, without any dependency, clearly preserves
the security of P since this property depends only on the classes with depen-
dencies associated to them.

Tag in critical: To preserve the security of the system, every time a
method is tagged within the 〈〈 critical 〉〉 stereotype in a class C, the same
tag referring to the same method should be added to every class with de-
pendencies to and from C (and recursively to all dependent classes). The
execution of these simultaneous additions preserves P since the symmetry of
the critical tags is respected through all dependency-connected classes.

Dependency: Whenever a dependency is added between classes C and C ′,
for every security tagged method in C (C ′) the same method must be tagged
(with the same security requirement) in C ′ (C) to preserve P . So if in the
original model this is not the case, we check for simultaneous additions that
preserve this symmetry for C and C ′ and transitively on all their dependent
classes.

Substitution

Class: If class C is substituted with class C ′ and class C ′ has the same
security tagged methods as C then the security of the diagram is preserved.
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Tag in critical: If the tag { requirement =method() } is substituted by
{ requirement’ =method()’ } in class C, then the same substitution must be
made in every class linked to C by a dependency.

Dependency: If a 〈〈 call 〉〉 (〈〈 send 〉〉) dependency is substituted by 〈〈 send 〉〉

(〈〈 call 〉〉) then P is clearly preserved.

Example The example in Fig. 7 shows the Client side of a communication
channel between two parties. At first (disregarding the evolution stereo-
types) the communication is unsecured. In the packages Symmetric and Asym-

metric, we have classes providing cryptographic mechanisms to the Client class.
Here the stereotype 〈〈 add 〉〉 marked with the reference tag {ref} with value
add encryption specifies two possible evolution paths: merging the classes con-
tained in the current package (Channel) with either Symmetric or Asymmetric.
There exists also a stereotype 〈〈 add 〉〉 associated with the Client class adding
either a pre-shared private key k or a public key KS of the server. To coordi-
nate the intended evolution paths for these two stereotypes, we can use the
following first-order logic constraint (associated with add encryption):

[add encryption(add) = Symmetric⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric⇒ add keys(add) = KS : Keys]

The two deltas, representing two possible evolution paths induced by this
notation, can be then given as input to the decision procedure described
for checking 〈〈 secure dependency 〉〉. Both evolution paths respect sufficient
conditions for this security requirement to be satisfied.

3.4 Tool support

The UMLsec extension [76] together with its formal semantics offers the
possibility to verify models against security requirements. Currently, there
exists tool support to verify a wide range of diagrams and requirements. Such
requirements can be specified in the UML model using the UMLsec extension
(created with the ArgoUML editor) or within the source-code (Java or C)
as annotations. As explained in this work, the UMLsec extension has been
further extended to include evolution stereotypes that precisely define which
model elements are to be added, deleted, or substituted in a model (see
also the UMLseCh profile in [126]). To support the UMLseCh notation, the
UMLsec Tool Suite has been extended to process UML models including
annotations for possible future evolutions[134].

Given the sufficient conditions presented in the previous sections, if the
transformation does not violate them then the resulting model preserves
security. Nevertheless, security preserving evolutions may fail to pass the
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<<send>>

+ receive() : Data

<<call>>

SymmetricEncryptionDecryption
{secrecy = {d}}

+ encrypt(d: Data, k: Key) : EncryptedData

+ decrypt(e: EncryptedData, k: Key) : Data

<<critical>>

Symmetric

<<add>>

<<add>>

{add = {<<critical>> secrecy = {d}}}

Client

+ receive() : Data

{ref= add_keys}<<add>>

+ transmit(d: Data)

Client

{add = {     :Keys,k:Keys}}

Channel {ref=add_encryption}<<add>>

<<call>>
AsymmetricEncryptionDecryption
<<critical>>

+ decrypt(e: EncryptedData, priv: PrivKey) : Data

{secrecy = {d}}

{add={Symmetric,Asymmetric}}

Asymmetric

Server

secrecy = {d}}}

Client

+ encrypt(d: Data, pub: PubKey) : EncryptedData

{add = {<<critical>>

KS

[add encryption(add) = Symmetric ⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric ⇒ add keys(add) = KS : Keys]

Fig. 7. An evolving class diagram with two possible evolution paths

include evolution stereotypes that precisely define which model elements are to be
added, deleted, or substituted in a model (see also the UMLseCh profile in [15]).

To support the UMLseCh notation, the UMLsec Tool Suite has been extended
to process UML models including annotations for possible future evolutions.4

On the one hand, given the sufficient conditions presented in the previous sec-
tions, if the transformation does not violate them then the resulting model preserves
security. On the other hand, security preserving evolutions may fail to pass the tests
discussed, and be however valid: With respect to the security preservation analysis
procedures, there is a trade-off between their efficiency and their completeness. Es-
sentially, if one would require a security preservation analysis which is complete in
the sense that every specified evolution which preserves security is actually shown
to preserve security, the computational difficulty of this analysis would be com-
parable to a simple re-verification of the evolved model using the UMLsec tools.
Since the goal was to become more efficient that this alternative in general, the
analysis procedures were geared to efficiency in a trade-off against completeness.
However, on the other hand this means that the lack of completeness is not a prob-
lem in terms of usability, because if a specified evolution could not be established
to preserve security, there is still the option to re-verify the evolved model.

It is of interest that the duration of the check for �� secure dependency �� imple-
mented in the UMLsec tool behaves in a more than linear way depending on the
number of dependencies. In Fig. 8 we present a comparison between the running
time of the verification5 on a class diagram where only 10% of the model elements
4 Available online at http://www-jj.cs.tu-dortmund.de/jj/umlsectool/

manuals new/UMLseCh Static Check SecureDependency/index.htm
5 On a 2.26 GhZ dual core processor

Figure 7: An evolving class diagram with two possible evolution paths

tests discussed, and be however valid: With respect to the security preser-
vation analysis procedures, there is a trade-off between their efficiency and
their completeness. Essentially, if one would require a security preservation
analysis which is complete in the sense that every specified evolution which
preserves security is actually shown to preserve security, the computational
difficulty of this analysis could be comparable to a simple re-verification of
the evolved model using the UMLsec tools. Therefore if a specified evolu-
tion could not be established to preserve security, there is still the option to
re-verify the evolved model.

It is of interest that the duration of the check for 〈〈 secure dependency 〉〉

implemented in the UMLsec tool behaves in a more than linear way depend-
ing on the number of dependencies. In Fig. 8 we present a comparison
between the running time of the verification6 on a class diagram where only
10% of the model elements were modified. One should note that the ineffi-
ciency of a simple re-verification would prevent analyzing evolution spaces of
significant size, or to support online verification (i.e. verifying security evo-
lution in parallel to the modelling activity), which provides the motivation
to profit from the gains provided by the delta-verification presented in this
work. Similar gains can be achieved for other UMLsec checks such as 〈〈 rbac 〉〉,

6On a 2.26 GhZ dual core processor
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Figure 8: Running time comparison of the verification

〈〈 secure links 〉〉 and other domain-specific security properties for smart-cards,
for which sound decision procedures under evolution have been worked out
(see [126]).

3.5 Related Work

There are different approaches to deal with evolution that are related to
our work. Within Software evolution approaches, [93] derives several laws
of software evolution such as “Continuing Change” and “Declining Quality”.
[103] argue that it is necessary to treat and support evolution throughout
all development phases. They extend the UML metamodel by evolution
contracts to automatically detect conflicts that may arise when evolving the
same UML model in parallel. [127] proposes an approach for transforming
non-secure applications into secure applications through requirements and
software architecture models using UML. However, the further evolution of
the secure applications is not considered, nor verification of the UML models.
[74] discussed consistency of models for incremental changes of models. This
work is not security-specific and it considers one evolution path only.

Also related is the large body of work on software verification based on
assume-guarantee reasoning. A difference is that our approach can reason
incrementally without the need for the user to explicitly formulate assume-
guarantee conditions. In the context of Requirements Engineering for secure
evolution there exists some recent work on requirements engineering for se-
cure systems evolution such as [133]. However, this does not target the
security verification of evolving design models. A research topic related to
software evolution is software product lines, where different versions of a
software are considered. For example, Mellado et al. [101] consider product
lines and security requirements engineering. However, their approach does
not target the verification of UML models for security properties. Evolving
Architectures is a similar context with a different level of abstraction. [58]
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discusses different evolution styles for high-level architectural views of the
system. It also discusses the possibility of having more than one evolution
path and describes tool support for choosing the “correct” paths with re-
spect to properties described in temporal logic (similar to our constraints in
FOL). However, this approach is not security specific. On a similar fashion,
but more focused on critical properties, [104] also discusses the evolution of
Architectures.

The UMLseCh notation is informally introduced in [81], however no de-
tails about verification are given. Both the notation and the verification
aspects are treated in more detail in the (unpublished) technical report [126]
of the SecureChange Project. Note that UMLseCh does not aim to be an
alternative for any existing general-purpose evolution specification or model
transformation approaches (such as [69, 24, 33, 120, 86]) or model transfor-
mation languages such as QVT 7 or ATL 8. It will be interesting future work
to demonstrate how the results presented in this work can be used in the
context of those approaches.

7Query/View/Transformation Specification http://www.omg.org/spec/QVT/
8The ATLAS Transformation Language http://www.eclipse.org/atl/
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Chapter 4
Non-interference on UML
state-charts
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Secure Information Flow analysis is a fine-grained methodology for study-
ing the confidentiality and integrity of systems. This kind of analysis (first
introduced by Goguen and Meseguer [61] in 1982) is mathematically defined
over the inputs and outputs visible to groups of users. Its main advantage
over other security analysis methods is that it allows one to pin down subtle
flows of information, usually known as covert-channels, that are difficult to
spot when focusing merely on analysing security mechanisms (such as access
control mechanisms). Although information flow properties assume perfect
access control to guarantee that different groups of users do not see certain
inputs and outputs of other users directly, this is a reasonable assumption:
in fact attackers usually exploit the information that is shared by victims
through common interfaces instead of trying to break directly the access
control mechanisms. In words of Anderson [23] “(...) in practice, security
is compromised most often not by breaking dedicated mechanisms such as
encryption or security protocols, but by exploiting weaknesses in the way
they are being used”.

In the past decades different information flow properties have been pro-
posed for coping with different system models such as non-deterministic sys-
tems, distributed systems and imperative programming languages. At the
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abstract level results about compositionality and refinement have been pub-
lished for many security properties, for example [95, 96, 113]. In the ‘Lan-
guage Based’ realm (i.e. analysis of source code) mature tools for information
flow analysis on annotated code exist, like [4, 60, 6]. All of these are indeed
promising steps towards the industrial application of the fine-granular anal-
ysis offered by the property-centric point of view of Information Flow.

Nevertheless, it seems that production environments are still far from
adopting these techniques. Although formal methods can give very precise
guarantees about the behaviour of systems , it also should be possible to ben-
efit from their insights by non-experts in the field. In the case of information-
flow, many of the verification results at the design-level require a high-level of
mathematical sophistication that is unreasonable to expect to be achievable
by a regular software developer or security expert.

In this chapter we propose a light-weight, automatic strategy for checking
non-interference on a deterministic fragment of UML state-charts. Our aim is
to make a formally sound step towards the usability of these techniques based
in the so-called unwinding theorem, that provides sufficient conditions for
non-interference. We have extended previous work on unwinding to cope with
the complexity of UML state-charts: the use variables for keeping history of
the state, guards for transitions, hierarchical states and actions.

Moreover, we aim at verifying systems where object interaction plays a
fundamental role. To achieve this, we discuss sufficient conditions for deciding
on the composition of the behaviour of already verified components. This is
a key factor in the scalability of our approach, which is also an important
criterion for the success of verification in realistic settings.

To validate our theoretical results, we report on a prototypical machine
implementation that automatically verifies models where our unwinding the-
orem is applicable. We apply this implementation to examples motivated by
a case study from the Smart Grid domain. Since unwinding conditions are
only sufficient conditions, some secure models might be rejected. However
it is important to show that non-trivial secure models are actually accepted
and verified. The case study allows to discuss and validate the utility of our
approach. .

4.1 Preliminaries

In this section we recall some definitions and set the notation for the rest of
the chapter. Starting with the original definition of non-interference by [61]
many other subtle information flow properties have been proposed (mainly
for dealing with non-determinism and distributed systems). In this work we
will nevertheless focus on the original definition for deterministic systems,
because our focus will be the analysis of deterministic automata.
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4. Non-interference on UML state-charts

4.1.1 Non-interference

Assume a system is a deterministic black-box transforming sequences of input
events I into sequences of output events O by means of a semantics function:

[ ] : I → O

We further assume there are two types of users : high users H and low
users 1 L. The sets of input and output events can be divided into the events
a high or low user is allowed to see. Lists of input and output events can then
be filtered according to the type of user allowed to see them by the purging
functions ·|H and ·|L . Non-interference is the property :

∀ −→i [
−→
i ]|L = [

−→
i |L]|L (4.1)

In other words, the output seen by the lower users is independent of the
input by higher users, up to the point that is not even noticeable whether
the high users perform any action on the system.

Some authors (for example [77]) use the equivalent definition (see Ap-
pendix A for a proof):

∀ −→i1 ,
−→
i2
−→
i1 |L =

−→
i2 |L ⇒ [

−→
i1 ]|L = [

−→
i2 ]|L (4.2)

which corresponds to the intuition that two runs where the high user
perform different actions are equivalent to low users. A stronger version of
this property is usually used in the language-based information flow analysis
domain [67, 28, 59].

4.1.2 State-charts

To model the function [·] of the last subsection, consider Mealy machines
[100]. Syntactically, a Mealy machine can be represented by a directed graph
with annotated transitions of the form α/β, meaning that the input event α
triggers the output event β. Formally, a Mealy machine M is defined as a
6-tuple (S, s0,Σ,Γ, T,G) where S is a finite set of states, s0 is an initial state,
Σ is finite input alphabet, Γ is a finite output alphabet, T : S × Σ→ S is a
transition function defined over states and input symbols andG : S×Σ→ Γ is
an output function defined over states and input symbols. A Mealy machine
induces thus a semantics [·] by:

[(σ1, σ2, . . . , σn)] = G(s0, σ1) :: · · · :: G(sn, σn)

1For simplicity of exposition and historical reasons we will discuss about high and low
users in the rest of the chapter. However the definition can be extended to an arbitrary
partition of groups of users. Also we will restrict to analysing non-interference from high
with respect to low (no-down-flows, usually associated to confidentiality), to analyse the
converse (i.e. integrity) one can just switch L for H
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4. Non-interference on UML state-charts

where sn = T (. . . T (T (s0, σ1), σ2) . . . , σn) and :: denotes concatenation.
Notice that the functions T and G are naturally induced by the graph rep-
resentation. In the following we will assume that if an input is not defined
in a given state, the machine enters in a state where no further inputs are
processed and no outputs are produced.

If we further divide the input and output events into high and low events,
we can apply the definition of non-interference to a Mealy machine.

Example 1. Consider the system defined by the state-machine:

α/β α/β�

γ/γ�

A B

where α, β, β′ ∈ L and γ, γ′ ∈ H. Then non-interference does not hold
since:

[(γ, α)]|L = β′ 6= [(γ, α)|L]|L = [α]|L = β

To deal with the so-called ‘state-explosion’ problem, that arises when the
number of states and transitions increases due to the specification of complex
behaviours, other formalisms have been proposed that include the notion of
sub and super-states. More prominently Harel [68] proposed the notion of
statechart that has been used as the basis for UML. This is basically an
extension to Mealy machines that allows the following:

Hierarchical states: Single states can contain sub-states and transitions
among the sub-states up to arbitrary depth. Let A be a super state containing
finitely many sub-states Ai. Then an external state B can have a transition
directly to s or to a sub-state Ai. In the first case the transition is to be
interpreted as to go to the initial sub-state of s. In the second case it simply
goes to si. This allows to modularize certain common behaviours into super-
states, improving considerably the presentation of complex state charts.

Clustering: To graphically summarize events that trigger a transition to
the same state in a group of states, a transition with event γ going out of
a super-state A to state B stands for a transition from each sub-state of A
with event α to B.

Orthogonality and concurrency: In some cases, processes within the sys-
tem are orthogonal between each other, in the sense that they could be
described with two separate state-charts with disjoint inputs. Thus, Harel
state-charts allow multiple sub-state-charts to be modelled as concurrent pro-
cesses within the same state-chart, compressing notably the notation, since
for each two independent Mealy machines with n and m states respectively,
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n ·m states are needed to represent them in a single machine.

Thus formally, a Harel state-chart can be seen as a set (to represent the
concurrent processes) of 6-tuples (Si, s

i
0,Σi,Γi, Ti, Gi) where Si is as a finite

set of super-states and si
0 is an initial super-state. A super-state is defined

as a either a state or a state-chart, such that for every super-state there are
only finitely many nested state-charts. Ti and Gi are then similar as in the
Mealy machine case, where for a given state Ti depends also on the transitions
defined at higher hierarchical states (if any).

Example 2. The following state-chart:

A
B

A2

A1

α

β γ

C

D

δδ

P : Q :

contains a (sub) state-chart P containing a superstate with clustering
running concurrently with (sub) state-chart Q.

Notice that all these extensions are syntactic sugar for improving the
graphical representation: any deterministic Harel state-chart can be repre-
sented by a Mealy-Machine with equivalent semantics, and therefore we can
use the same definition of non-interference given in the previous subsection
for reasoning about the security of Harel State-charts.

4.2 Verification Strategy

Verifying system designs for non-interference is a computationally difficult
task, because the definition uses universal quantifiers on inputs and outputs:
to verify accurately an arbitrary system implies running and comparing all
possible input sequences. Therefore, to achieve a trade-off between security
and efficiency, one usually needs to sacrifice some precision on the verification.
In this section we discuss how to obtain sufficient conditions for the non-
interference analysis on UML state-charts by extending traditional unwinding
theorems for finite state machines. We will first introduce the fragment of
the UML state-charts considered and discuss briefly the unwinding theorem.
Then we report on our extension for UML state-charts.

4.2.1 UML state-charts à la UMLsec

UML has adopted an extension of Harel state-charts to represent the be-
haviour of classes. It allows a list of actions as a consequence of an event,
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including calling methods, updating variables and outputting values. In this
work we will restrict to a fragment of UML state-charts defined as follows :

• Input events labelling transitions can be either methods of the associ-
ated class with concrete parameters or with variables to represent calls
with different parameters or global system events (like the tics of a
system clock).

• Actions associated to an input event can be either outputting an event
(written return event) or a variable assignation, where the variables are
attributes of the associated class or parameters of the input.

• Guards are decidable conditions on the input parameters or the values
of the attributes.

We will restrict to the sub-set of deterministic UML State-charts as de-
fined above. This is similar to the UML state-charts as defined in [77], with
the fundamental difference that there state-charts can be non-deterministic,
resulting in a more complex semantics. The semantics of the deterministic
fragment defined above can be seen as an extension of the Harel state-chart
semantics (based on their Mealy machine translation), where the guards and
variables are syntactic sugar for describing the history of the state and where
parametrized method calls stand for as many transitions as the respective
guard allows.

More precisely: a transition labelled with a parametric input stands for
multiple transitions, one for each concrete value of the parameter. Transitions
where the actions perform variable assignation stand for multiple transitions
with distinct targets (one for each possible value of the assignation). Guards
with condition C represent the fact that in states where C hold then that
particular labelled transition is present, and not present in states where C
does not hold. For an example of a UML state-chart and its semantically
equivalent Mealy machine see Fig. 1. We will discuss this example in detail
in Sect. 4.4.

4.2.2 Unwinding

Unwinding theorems were first proposed by Goguen and Meseguer [62]. They
provide sufficient conditions for non-interference that are efficient to verify
since they rely basically in local conditions of pairs of states. The basic idea
is that if there exist a reflexive relation R of the states in an input/output
state machine M for a policy dividing events in high H and low L such that:

R is locally consistent: given a state s and T (s, h) the state resulting
after a transition triggered by an event h ∈ H then (s, s′) ∈ R. Formally:

∀s∈S,h∈H (s, T (s, h)) ∈ R
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Figure 1: A model of the smart metering payment processing system as an
UML state-chart and a semantically equivalent Mealy Machine for x in range
[1..2] in the parameters of consumed.

R is step-consistent: for all inputs i, if (s1, s2) ∈ R then (T (s1, i), T (s2, i)) ∈
R where T (s1, i) and T (s2, i) are the states resulting from the transition trig-
gered by i in s and t:

∀s1,s2∈S,i∈Σ (s1, s2) ∈ R⇒ (T (s1, i), T (s2, i)) ∈ R

R is output-consistent: if (s1, s2) ∈ R then the output of an event l ∈ L
in s1 is equal to the output of l in s2:

∀s1,s2∈S, l∈L (s1, s2) ∈ R⇒ G(s1, l) = G(s2, l)

then non-interference holds on M for the H and L partition. For a proof
see for example [62, 122].

Example In example 1, (A,B) must be in R because of locality. However,
R is not output consistent and therefore it can not be concluded that the
system is secure (in fact we already showed it is not).
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4.2.3 Unwinding for UML Statecharts

There are two main difficulties for extending the unwinding theorems from
Mealy machines to the subset of UML state-charts as described in Sect.
4.2.1: a) The graphical syntactic sugar of Harel state-charts and b) the use
of variables and guards for keeping history of the state and for parametrizing
inputs. One possibility to verify UML state-charts would be to remove all
syntactic sugar, unfold a semantically equivalent Mealy machine and then
find an unwinding relation satisfying the conditions described in the previ-
ous subsection. This would be however computationally quite expensive in
general: the purpose of the UML state-chart notation is to avoid state and
transition explosion. We have extended the unwinding theorem accordingly
for coping soundly with these differences in the notation in an efficient way.
Intuitively, we statically analyse guarded transitions with actions by simulta-
neously extending an unwinding relation and a tainted set associated to each
state. Tainting keeps track of variables whose value is directly or indirectly
dependent on high inputs, in the spirit of language based information flow
analysis. This information allows to soundly decide on the output consistency
of the relation.

In the following when we refer to a state, we mean a state that does not
contain further nested sub-states. When we refer to the transitions going
out of a state s, we mean all transitions going out of all the super states
containing s. Without loss of generality we will analyse concurrent state-
charts separately: by definition (Sec. 4.1) two concurrent Harel state-charts
have disjoint inputs, and we further assume they also do not share variables
in their UML representation.

Let R′ be a relation over the states of a UML state-chart U , H a subset
of the inputs of U and tainted(si) a set associated to each state si, such that:

Local consistency For a label on the transition t1 from s1 to s2 of the
form

[C1] α(y1) / {return β1, x1 := E1} (4.3)

then s1 is in relation with the initial sub-state of s2 if there exists a
parameter a such that α(a) ∈ H. Moreover x1 ∈ tainted(s2) and tainted(s2) ⊇
tainted(s1).

Step consistency If (s1, s2) ∈ R′ then for every transition t1 of the form
(4.3) with target s′1 originating from s1 and every transition t2:

[C2] α(y2) / {return β2, x2 := E2} (4.4)

with target s′2 originating from s2 then it follows (s′1, s
′
2) ∈ R′. Moreover,

if α(a) ∈ H for some a or there is a variable zi ∈ tainted(si) such that zi ∈ Ci
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or zi ∈ Ei then xi ∈ tainted(s′i) and tainted(s′i) ⊇ tainted(si).

Output consistency If (s1, s2) ∈ R′ with t1 of form (4.3) with a such that
α(a) ∈ L we distinguish two cases:

• If there exists x such that x ∈ tainted(s1) and x ∈ C1 then for all t2 in
s2 of form (4.4) it must follow β1 = β2.

• Otherwise: if there exists t2 of form (4.4) in s2 such that C1 = C2 then
β1 = β2. If no such t2 exists, then for all other t′2 in s2 of form (4.4) it
holds β1 = β2.

Moreover there exists no variable x such that x ∈ tainted(si) and x ∈ βi.

Theorem 1. If U admits a relation R′ as defined above then it respects
non-interference.

Proof. It suffices to show that the relation R induced by R′ on the unfolded
Mealy machine M of U is an unwinding relation. A state in M can be seen
as a pair (s,−→v ) where s is an identifier for a state in U and −→v is a vector of
concrete values v1, . . . , vn for the variables x1, . . . , xn used in U. R is defined
thus as ((s1,

−→v ), (s2,
−→w )) ∈ R⇔ (s1, s2) ∈ R′. Is easy to see that R satisfies

local consistency, because R′ covers all possible transitions induced by high
inputs. Step consistency also holds on R by construction of R′. The extended
definition of output consistency is similar to the original one, except for a) it
is forbidden to output an expression depending on a tainted variable and b)
the output consistency relation is relaxed in case an output is guarded by a
condition not depending on tainted variables. It is not hard to see that a) is a
necessary condition. Now consider (s1, s2) ∈ R′ and w.l.o.g. belonging to the
same connected graph of U . Moreover consider a condition C depending on
variables X ′ = x′1, · · · , x′n such that x′j /∈ tainted(si). By the definition of R′

there exist ancestors p1 and p2 (of s1 and s2 respectively) such that there is a
high transition between p1 and p2 and by definition of tainting this transition
does not change the value of any variable in X ′. For any input η changing the
state of p1 and p2 to p′1 and p′2 respectively then if η ∈ H then the valuation
of X ′ remains unaltered. If η ∈ L triggers an action changing the value of a
variable in X ′ then the transition was triggered on a condition depending on
variables in X ′. By hypothesis variables in X ′ had the same value on p1 and
p2, and therefore η changes the valuation in both states equivalently. The
same reasoning can be done inductively obtaining that the values of X ′ in
s1 and s2 depend on the values of X ′ in p1 and side-effects triggered by low
inputs exclusively. Therefore if C holds in (s1,

−→v ) for a given input trace
starting on p1, then it must also hold in (s2,

−→w ) for an equivalent trace on
the low inputs that reaches s2.

Notice that it would be also sound to simply compare all outputs in s1 and
s2, but this would be too coarse for practical uses, where usually a condition
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and its negation are defined as guards for the same input on a given state,
as we will see in Sect. 4.4. It suffices to compare the outputs guarded by
C and not both the outputs of C and those of ¬C, because in the unfolded
Mealy machine the states where ¬C holds are not necessarily in the minimal
unwinding relation.

4.3 Object interaction

As discussed in Sect. 4.2.1 UML state-charts are commonly used to represent
the behaviour of a class. In the previous section we have discussed unwinding
theorems that can be used to decide on the security of single, monolithic
state-charts. To reason about the security of a system that is built upon
interacting objects, we would need to obtain composed state-charts out of
the state-charts defining the single object’s behaviour. It would be however
desirable to have sufficient conditions that allow to reason on policies on the
single components mainly for achieving scalability. In this section we discuss
the notion of composition we will use and present sufficient conditions that
guarantee that a composition respects non-interference for a given policy.

4.3.1 Composition

We will follow [77] by reasoning at the instance level: we will assume that
the behaviour described by a state-chart is that of an instantiated object 2.

The notion of compositionality we will use is based on message passing
between state-charts: the output messages generated by a state-chart A can
be input messages for a state-chart B but not vice-versa. This corresponds
formally to a special case of parallel composition as defined for example in
[38, 105] where we restrict the feedback only to occur in one direction. In
other words we do not allow call-backs, which are related to recursive method
calls. This is indeed a difficult topic on its own, since subtleties on the
semantic play a fundamental role (as discussed for example in [130]), and goes
outside the scope of this work. Nevertheless, the composition notion defined
here is useful to reason about the security of non-trivial object interaction,
as we will see in Sect. 4.4, and has nice preservation properties for non-
interference.

More precisely, let classes A and B with inputs IA and IB respectively and
outputs OA and OB. A and B are composable if OA∩IB 6= ∅ and OB∩IA = ∅.
The resulting composed object has inputs I = IA ∪ (IB \ OA) and outputs
O = OB ∪ (OA \ IB). Semantically, A ⊗ B is defined by the product of the
states in A and B where the states with at least one output o ∈ OA such

2Therefore if we want to reason about different instantiations of an object we would
need to define as many classes as desired objects.
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Figure 2: State-chart UB and its composition with the state-chart UA

that o ∈ IB cannot be processed by B are discarded, because synchronisation
cannot take place. This is similar to the notion parallel composition in CCS
[105]. The outputs of transitions of A matching inputs of B in every state
are then replaced by the induced outputs in B.

Example 3. Consider the state-charts A and B of Fig. 2. Although in
principle there exist four possible states in the product state-chart A×B we
discard the states where an output of A that is in the interface of B cannot
be processed by B.

4.3.2 Compositionality and non-interference

In general, for scalability reasons, it is desirable that verification results on
single components can be re-used efficiently for deciding on their composition.
In our setting this means, for a given partition of the set of inputs I =
I|H ∪ I|L and outputs O = O|H ∪O|L of the composition A⊗B there exists
sufficient conditions on A and B such that this composition respects non-
interference. This is notably not the case in general for information flow
properties [95]. However, in our case we can derive a positive result in this
sense. We first observe that given a policy on a composition A⊗B, the events
on IB ∩ OA remained unspecified since they are not part of the interface of
the composition. Although formally possible, it is not sound from a security
point of view to mark events from IB ∩OA as high in one component and low
in the other (or vice-versa), and therefore we will exclude that possibility in
the following.

Theorem 2. Let I = I|H ∪ I|L and O = O|H ∪O|L a partition of the input
and output alphabets of A⊗B . If non-interference holds for an extension of
the policy in I and O to the unspecified events in IB ∩OA in A and B, then
non-interference holds on A⊗B.
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Proof. First consider the case where OA = IB (sequential composition).
If there exists a sequence

−→
i of inputs of A ⊗ B such that [

−→
i ]A⊗B|L 6=

[
−→
i |L]A⊗B|L. Then, because of sequentiality and subsequent application of

non-interference of B followed by non interference of A and of B again:

[
−→
i ]A⊗B|L S= [[

−→
i ]A]B|L B= [[

−→
i ]A|L]B|L A= [[

−→
i |L]A|L]B|L B= [[

−→
i |L]A]B|L (4.5)

now observe that:

[
−→
i |L]A⊗B|L S= [[

−→
i |L]A]B|L (4.6)

but by hypothesis (4.5) 6= (4.6), contradiction.
The other cases follow easily by observing that whenever an input iB of

B is not an output of A then A can be extended by adding a single non con-
nected stated with a transition i′B/iB, thus returning to the sequential case
and without harming the sufficient conditions (and similarly when output oA

is not an input to B).

Notice that the hypothesis of Theorem 2 although sufficient, are not nec-
essary: in fact, the Example 3 has a component A violating non-interference
for H = {γ, γ′}, but the composition A⊗B respects it for H = {γ, η}

4.4 Validation

In this section we report on experiments made to implement the enhanced
unwinding technique and the compositionality theorem and apply them on
examples from our case study.

4.4.1 Tool support

There are two basic strategies to construct the relation R′ on a given state-
chart. One possibility is to proceed top down: first put in relation all the
states that respect output consistency and then check for local consistency
and step consistency. It is however not clear how to proceed from there if
the relationship does not respect the unwinding conditions. We have opted
to construct it bottom up: first, put every state in relation with itself. Then
we compute all relationships due to local consistency, and subsequently for
each pair, we enlarge R′ by step consistency. When constructing R′ we do
a preliminary taint analysis, that only holds for forward tainting but could
be imprecise in presence of loops. However it was enough to evaluate our
examples, where tainting occurs only in one step (more accurate taint analysis
are matter of current work). Finally we check for output consistency. If
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output consistency does not hold, we know an unwinding relationship cannot
be built, because there exists no minimal one.

We have prototypically implemented the algorithm described in Sect. 4.2
in Haskell [7] because of its compact and elegant syntax. A state-chart is
represented as a pair of type list of nodes and list of transitions where the
nodes contain the tainting set and a list of 5-tuples:

type Node = (Label,Tainted)

type Transition = (Condition, Input, Output, Origin, Target)

type StateChart = (Nodes,Transitions)

For example, to check for output consistency of a pair in R′ with respect
to a set of low inputs low we have implemented the following code:

compareLowOutput :: StateChart -> Low -> (Node,Node) -> Bool

compareLowOutput (nodes,transitions) low (x,y) =

( null[(tran1,tran2) | (tran1,tran2) <-lowTransitions,

(getInputMethod tran1 == getInputMethod tran2),

(getReturn tran1 /= getReturn tran2)] )

where lowTransitions = (getLowTransitions transitions low x y)

where getLowTransitions is defined as the filtering function including
the exception based on the taint analysis:

getLowTransitions t l x y = [(tran1,tran2) | tran1 <-t , tran2 <-t,

(getLabelOrigin tran1 == getLabel x),

(getLabelOrigin tran2 == getLabel y),

elem (getInputMethod tran1) (map fst l),

(or [isInfixOf z (getCondition tran1)| z <-(snd x)]

|| getCondition tran1 == getCondition tran2 )]

4.4.2 Case study

Smart grids use information and communication technology (ICT) to opti-
mize the transmission and distribution of electricity from suppliers to con-
sumers, allowing smart generation and bidirectional power flows – depending
on where generation takes place. With ICT the Smart Grid enables finan-
cial, informational, and electrical transactions among consumers, grid assets,
and other authorized users[107]. The Smart Grid integrates all actors of
the energy market, including the customers, into a system which supports,
for instance, smart consumption in cars and the transformation of incoming
power in buildings into heat, light, warm water or electricity with minimal
human intervention. Smart grid represents a potentially huge market for the
electronics industry [124]. The importance of the smart grid for the society is
due to the expectation that it will help optimize the use of renewable energy
sources [118] and minimize the collective environmental footprint [49]. Two
basic reasons why the attack surface is increasing with the new technologies
are:
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• The Smart Grid will increase the amount of private sensitive customer
data available to the utility and third-party partners.

• Introducing new data interfaces to the grid through meters, collectors,
and other smart devices create new entry points for attackers.

Among other requirements, confidentiality and privacy of user data is an
important security issue. There are many privacy issues, related to the use of
sensitive personally identifiable information (PII) related to the consumption
of energy, the location of the electric car, etc. This data must be kept secure
from unauthorized access, and the measurement process is subject to strict
lawful requirements in terms of accuracy, dependability and security, see in
particular the European Union directive “Measuring Instruments Directive
2004/22/EC (MID)” [12], published 2004-05-31. See also [72] for a current
version of proposed technologies to solve this power systems management
and associated information exchange issues.

In the following we will model two scenarios in this domain (for details
see [108]).

Scenario 1 Consider for example the behaviour described in Fig. 1. This
models an energy provider that processes the amount energy a user x con-
sumes, described by the event consumed(x) (x is a positive integer, the user’s
ID) representing one unit of energy consumed. After one unit is consumed,
a confirmation ok(t) with the price t of the consumption is sent to the user.
If all consumers of a given region consume more than 100 units, the price of
the unit drops from t to t′. Now, assuming that a given user with id 1 is
not supposed to know about the consume of other users, how can we check
whether this requirement holds for this system?

By setting the events {consumed(x) | x 6= 1} as high, we can check whether
the unwinding conditions hold automatically via our Haskell implementation
(for example input see Appendix B). In this case, our automatically com-
puted minimal unwinding relation rejects the model because of output in-
consistency. Because unwinding only provides an approximation, it would
still be possible that the system is secure. In this case the system turns out
to be is insecure: by just seeing a difference in the reported price in two
consumptions (given that he does not consume himself more than 100 units),
the low user could infer bounds on the number of consumptions of his neigh-
bours. In this case, because of a trade between of security and functionality,
it is difficult to modify the model in order to obtain a secure one. This can be
done formally by providing two input sequences varying on high and showing
that the low outputs differ. Unfortunately this has to be done manually.

A possibility to obtain a positive security guarantee is to modify the
model as follows: a discount is given if a single user consumes more than 100
units. By modelling then two concurrent machines, one accepting only the
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inputs of the low user and the other from high, we can positively prove the
security of the model.

Scenario 2 Now consider the following scenario: an electric vehicle buys
power to a given provider at an agreed priced. It does so at a public recharg-
ing station. For convenience, the car will automatically stop the recharging
when the total consumption exceeds a given price (for example 10 e) or when
the constant capacity k is reached. The behaviour of the single components
and their composed model is depicted in Fig. 3, where for illustrative pur-
poses also the composition is spelled out. To fulfil privacy requirements of
both users and companies, it is desirable that the recharging stations do not
learn the single unit price of the energy sold to the vehicle. In other words,
we want to treat the events setPrice(x), readPrice and getPrice as confidential
for the user represented by the charging station. All other events are public.
We use then Theorem 2 and proceed to verify the single components. In this
case, the behaviour of object V is already violating non-interference, so we
cannot positively verify the composition P ⊗V ⊗C. However, if we no longer
allow the user to have a recharging policy that is dependent on the price by
replacing [t = 10/p] with [t = k], then we can verify the composed model
automatically as secure, because all components respect the information flow
policy.

4.5 Related Work

Starting with the work of Goguen and Meseguer [61], many information-flow
properties have appeared for specific system models and to capture different
notions of security. Rushby discusses unwinding theorems in a more modern
notation [122] along with transitive vs. intransitive information flow policies.
General Unwinding theorems for a wide range of information flow properties
have also been suggested by Mantel in [62]. Mantel has also unified most of
these properties into a common framework, the Modular Assembly Kit for
Security MAKS [96], also deriving new unwinding theorems. This work is
also probably the best reference for a discussion on the different properties
proposed for abstract non-deterministic and distributed system designs.

In the Language-based world, different static approaches have been sug-
gested for verifying information-flow properties, prominently type-based sys-
tems like Volpano-Smith [136] or more recently Barthe et al. [28]. Also works
based on abstract interpretation and analysis of Program Dependency Graphs
[59, 67] give approximations to non-interference for JavaCard-bytecode and
Java respectively. Tools for information flow analysis on annotated code
using these techniques are for example Jif [4], JOANA [60] and STAN [6].
Works in the language-based domain, in particular program slicing, are re-
lated with our analysis, however the non-interference definition at the code
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Figure 3: Single components and composition of the Provider P , the Vehicle
V and the Charging station C

level is generally a stronger property: the language-based definition quanti-
fies over high and low variables, formally seen as inputs at the initial system
state and outputs at the final. It is required that for arbitrary fixed low
inputs (the valuation of the low variables in the initial state) the final state
of the low variables does not change for different initial values of the high
variables. Clearly, this implies non-interference, but it is a particular case
for a non reactive system model, where inputs at the initial program state
determine all outputs in all subsequent states.

Jürjens [77] defined a stereotype for non-interference on state-charts that
is equivalent to the notion used in this chapter for the deterministic case,
but no verification strategy or compositionality results are discussed. In [20]
Alghathbar et al. model flows of information with UML Sequence diagrams
and Horn clauses. However their focus is on high-level information flow poli-
cies where only actors and the messages their exchange are modelled, and no
explicit relation between the information control rules and a semantic prop-
erty is given. To the best of our knowledge, there exist no works extending
unwinding theorems for UML state-charts that consider parametrized events,
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guards and actions with side-effects.
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In this chapter we further explore the question of compositional verifica-
tion, this time for a confidentiality notion that can be defined over composed
processes. In general, the composition of protocols can cause unforeseen
problems (see for example problems on the SAML based single-sign-on used
by Google in [26]). The composition of security properties has been explored
substantially for protocols [64, 50], where most of the work focuses on as-
sume/guarantee reasoning. In this chapter we will follow [75] where this
question is studied for a stream-based representation of processes exchanging
messages for which Dolev-Yao secrecy is required. In particular we will focus
in the composition of processes exchanging cryptographic messages (for ex-
ample a server S composed with a client C) and not in protocol composition
in the standard sense of the literature. However our results could be used to
reason about standard protocol composition as well, as we will discuss in the
following.

We propose a methodology to specify protocols such that given a finite
set of session variables (keys, nonces and principals), compositionality of pro-
cesses exchanging cryptographic messages is decidable in an algorithmical
way. This is equivalent to restrict the analysis of processes to finitely many
runs. Indeed vulnerabilities in authentication protocols have been shown to
be limited to finitely many parallel instantiations [129]. Technically, our anal-
ysis generates finite dependency trees that can be stored for further deciding
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on future compositions. The process of merging such trees can be shown to
be empirically more efficient than re-analysing the composition from scratch,
and constitutes our central contribution. Moreover, this process is relatively
sound and complete with respect to the First Order Logic analysis of [79].

To validate our approach we have implemented our algorithm as an exten-
sion to the UMLsec Tool Suite. On the one hand this validates the usability
of the approach in a formally sound Software Development process, and ex-
tends previous work in the area. On the other hand this has allowed us to
measure the efficiency of our approach given the derivation trees for up to
500 small components (amounting to about 1000 messages). Although we do
not claim that our approach is more efficient than state of the art protocol
verification tools, we believe that the techniques described in this chapter
could be also used in other tools/algorithms.

5.1 Preliminaries

This work is based on previous work by Jürjens in [79] for the verification of
cryptographic protocols in the context of software engineering. The underly-
ing process model used is based on Broy’s stream-processing functions [37].
We recall here briefly the main notions needed for the rest of the paper. A
process is of the form P = (I,O, L, (pc)c∈O∪L) where I ⊆ Channels is called
the set of its input channels and O ⊆ Channels the set of its output channels
and where for each c ∈ Õ def= O∪L, pc is a closed program with input channels
in Ĩ

def= I ∪ L (where L ⊆ Channels is called the set of local channels). From
inputs on the channels in Ĩ at a given point in time, pc computes the output
on the channel c. Each channel defines thus a stream processing function
based on its input variables allowing for a rigorous notion of sequential com-
position. The programs in our context will be written in a domain specific
language defined by the expressions and the program constructs as in Fig. 1.

A process P = (I,O, L, (pc)c∈O) defines a stream-processing function

[[P ]] : StreamI → P(StreamO)

from input streams to sets of output streams. We can then compose two
processes by using the composition of two stream-processing functions f1, f2

with O1 ∩O2 = ∅ as:

f1 ⊗ f2 : StreamI → P(StreamO)

with I = (I1 ∪ I2) \ (O1 ∪O2), O = (O1 ∪O2) \ (I1 ∪ I2)) where f1⊗ f2(~s) def=
{~t�O: ~t�I= ~s�I ∧~t�Oi∈ fi(~s�Ii) (i = 1, 2)} (where ~t ranges over StreamI∪O).
For ~t ∈ StreamC and C ′ ⊆ C, the restriction ~t�C′∈ StreamC′ is defined by
~t�C′ (c) = ~t(c) for each c ∈ C ′.
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E ::= expression

d data value (d ∈ D)

N unguessable value (N ∈ Secret)

K key (K ∈ Keys)

inp(c) input on channel c (c ∈ Channels)

x variable (x ∈ Var)

E1 :: E2 concatenation

{E}e encryption (e ∈ Enc)

Dece(E) decryption (e ∈ Enc)

Signe(E) signature creation (e ∈ Enc)

Exte(E) signature extraction (e ∈ Enc)

p ::= programs

E output expression (E ∈ Exp)

either p or p′ nondeterministic branching

if E = E′ then p else p′ conditional (E, E′ ∈ Exp)

case E of key do p else p′ determine if E is a key (E ∈ Exp)

case E of x :: y do p else p′ break up list into head::tail (E ∈ Exp)

Figure 1: Grammar for simple expressions and programs in the Domain-
Specific Language

Example If f : Stream{a} → P(Stream{b}), f(~s) def= {0.~s, 1.~s}, is the
stream-processing function with input channel a and output channel b that
outputs the input stream prefixed with either 0 or 1, and

g : Stream{b} → P(Stream{c}), g(~s) def= {0.~s, 1.~s}

the function with input (resp. output) channel b (resp. c) that does the same,
then the composition

f ⊗ g : Stream{a} → P(Stream{c}), f ⊗ g(~s) = {0.0.~s, 0.1.~s, 1.0.~s, 1.1.~s}

outputs the input stream prefixed with either of the 2-element streams
0.0, 0.1, 1.0 or 1.1.

5.1.1 Secrecy preservation analysis

To proceed with the Dolev-Yao secrecy analysis, one defines rules to trans-
late programs to first-order logic formulas. With the predicate knows(E) we
express the fact that an adversary may know an expression E during the
execution of the protocol. To verify the secrecy of data s ∈ Secret, one then
has to check whether the adversary can derive knows(s), given the formulas
that arise from the evaluation φ of the single program constructs as in Fig. 3
and the axioms allowing to enlarge its knowledge in Fig. 2. The conjunction
of the formulae φ for all channel programs of a process is called ψ. This for-
mula encloses all the possible interaction of an adversary with the modelled
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∀E1, E2.ˆ
knows(E1) ∧ knows(E2) ⇒ knows(E1 :: E2) ∧ knows({E1}E2) ∧ knows(SignE2

(E1))
˜

∧
ˆ
knows(E1 :: E2) ⇒ knows(E1) ∧ knows(E2)

˜
∧

ˆ
knows({E1}E2) ∧ knows(E−1

2 ) ⇒ knows(E1)
˜

∧
ˆ
knows(Sign

E−1
2

(E1)) ∧ knows(E2) ⇒ knows(E1)
˜

Figure 2: Structural formulas

φ(E) = ∀i1, . . . , in.
[
knows(i1) ∧ . . . ∧ knows(in) ⇒ knows(E(i1, . . . , in))

]
φ(either p or p′) = φ(p) ∧ φ(p′)
φ(if E = E′ then p else p′) = ∀i1, . . . , in.

[
knows(i1) ∧ . . . ∧ knows(in) ⇒

[E(i1, . . . , in) = E′(i1, . . . , in) ⇒ φ(p)]
∧ [E(i1, . . . , in) 6= E′(i1, . . . , in) ⇒ φ(p′)]

]
φ(case E of key do p else p′) = ∀i1, . . . , in.

[
knows(i1) ∧ . . . ∧ knows(in) ⇒

[key(E(i1, . . . , in)) ⇒ φ(p)]
∧ [¬key(E(i1, . . . , in)) ⇒ φ(p′)]

]
φ(case E of x :: y do p else p′) = ∀i1, . . . , in.

[
knows(i1) ∧ . . . ∧ knows(in) ⇒

∀h, t.[E(i1, . . . , in) = h :: t ⇒ φ(p[h/x, t/y])]
∧ [¬∃h, t.E(i1, . . . , in) = h :: t ⇒ φ(p′)]

]
Figure 3: Definition of φ(p).

process, and models the ability of a man in the middle of manipulating all
messages sent and received through an insecure channel.

In the following, we will discuss composition at the level of this First Order
Logic translation and not at the underlying stream processing function level
because the FOL translation contains implicitly all the possible actions and
adversary process could perform (defined by the structural formulas).

5.2 Decision procedure

If we assume that both P and P ′ preserve the secrecy of the data value s,
our goal is to show a procedure so that we can decide if:

ψ(P ⊗ P ′) 0 knows(s).

In general this does not hold. For example consider a process P which
outputs {s}K and a process P ′ which outputs K−1. Independently both
processes preserve the secrecy of s, but when composed an adversary could
trivially compute s.

To achieve this, we will construct proof artefacts on each single process
called derivation trees. Moreover, in order ensure that this trees are finite, we
will require that the number of keys and nonces are also finite and that the
conditions in the “if” constructs of the process programs admit only variables
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that are of type key or nonce, or that clearly specify the form of the admitted
values for the input channels in terms of keys, nonces or closed expressions.
This is not at all restrictive for the definition of practical protocols but is a
key element for the decidability of our approach.

Definition 1 (Subterm). We say that a symbol x is a subterm of the symbol
T and denote it x ∈̂T if one of the following holds:

1. x=T

2. T={T’}K and x ∈̂T’

3. T=SignK{T′} and x ∈̂T’

4. T= h::k and x ∈̂ h or x ∈̂ k

Example s ∈̂ {s}K but is not true that K ∈̂ {s}K. We denote this by K ˆ6∈ {s}K.
This means that an adversary could potentially compute s from {s}K using
the structural formulas with the necessary previous knowledge, but he could
not compute K.

Definition 2 (Inverse). Let x ∈̂ J. We define the cryptographic inverse of a
symbol J with respect to x and denote it J−1(x) in the following way:

1. x−1(x) = ε

2. If J=h::k and x ˆ6∈ h then J−1(x)=k−1(x)

3. If J=h::k and x ˆ6∈ k then J−1(x)=h−1(x)

4. If J=h::k and x ∈̂ k, x ∈̂ h then:

J−1(x) = and(h−1(x), k−1(x))

5. If J={J’}K or J=SignK{J′} then:

J−1(x) = or(J′−1(x),K−1).

Example Let J = {{s}K1}K2 . Then J−1(s) = or(K−1
1 ,K−1

2 ) which we will
interpret later as “to preserve the secrecy s we need to preserve either K−1

1

or K−1
2 ”.

Let ψ(P ) be the first order logic formula associated to P . We define
ψ̄(P ) to be the set of instantiated formulas of ψ(P ) with all possible values
satisfying the constraints in ψ(P ). Since we require that all constraints only
contain variables of type key or nonce, and that the respective sets are finite,
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then ψ̄(P ) is also finite. It is possible to show by induction on the program
constructs that ψ̄(P ) consists of formulas Fi of the form:

knows(Ei)⇒ knows(Ji)

for closed expressions Ei and Ji.
Let Pres(x,P) be the following inductively defined predicate:

[(∀Fi ∈ ψ̄(P ) x ˆ6∈ Ji ) ⇒ Pres(x,P))
∧ ( ∀Fi ∈ ψ̄(P ) (x ∈̂ Ji) ⇒ ((Pres(Ei,P) ∨ Pres(Ji

−1(x),P))
∧ ( (x = {x’}K ∨ x = SignK{x′}) ⇒ (Pres(x’,P) ∨ Pres(K,P))
∧ ((x = h::k ⇒ (Pres(h,P) ∨ Pres(k,P))
∧ ((x = and(h,k) ⇒ (Pres(h,P) ∧ Pres(k,P))
∧ ((x = or(h,k) ⇒ (Pres(h,P) ∨ Pres(k,P)) ]
⇒ Pres(x,P)

and ¬Pres(ε,P).
If we can not derive Pres(x,P) for some x, it follows ¬Pres(x,P).

Theorem 3. If it is possible to derive Pres(x,P) (conversely ¬Pres(x,P)) then
ψ(P ) 0 knows(x) (ψ(P ) ` knows(x)).

Proof In case ¬Pres(ε,P) since knows(ε) ∈ ψ̄(P ) for all P . If ∀Fi ∈ ψ̄(P )
x ˆ6∈ Ji that means that there is no formula in ψ̄(P ) containing x in a conclusive
position, and therefore there is no way to derive knows(x) from the structural
formulas. Now assume it is possible to derive Pres(x,P). We have already
covered the base cases so we can assume that ψ(P ) 0 knows(y) for all the
Pres(y,P) y 6= x needed in the precondition. Since in this formulas all the cases
where we could apply the Structural Formulas are covered, it is impossible
to derive knows(x). The case ¬Pres(x,P) is similar. �

Note that the converse does not hold, that is ψ(P ) 0 knows(x) does not
mean we can derive Pres(x,P), because for some pathological cases we will
have an infinite loop, for example for ψ̄(P ) = knows(x) ⇒ knows(x). It is
although reasonable to expect this loops not to be present in practical cases.
Moreover it is possible to detect this loops in a machine implementation of
the preservation predicate by running an initial check on the formulas, and
avoid infinite recursion. This makes the verification of the Pres(x,P) predicate
sound and complete with respect to the First Order Logic embedding of the
process programs.

5.2.1 Composition

As we derive Pres(s,P) for some symbol s and formulas P , we can build a
derivation tree consisting of the symbols we need to consider to be able to
conclude the preservation status of s. If we generate and store the derivation
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Figure 4: Processes P and P ′ before and after composition

tree for every symbol x appearing in a process P in a relevant position (that
is x ∈̂ Ji for some i), then we can decide whether the composition with pro-
cess P ′ will preserve the secrecy of any given symbol (if we also possess the
derivation trees for P ′). We will illustrate this in the following example.

Example Consider P = ({s}h::t,K
−1
2 ), P ′ = ({h}K2 , t). The symbol de-

pendency trees of both process are depicted in Fig. 4 (the symbols in red
are the ones which secrecy is compromised). Clearly both processes preserve
separately the secrecy of s. To see if the composition also does, we proceed
as follows. We update the information on the tree of s by checking whether
the truth values of h and t are altered by the composition as depicted in
Fig. 4. To do that, we check on the dependency trees of P ′, that obviously
do not preserve the secrecy of t. In the case of h, we have to update that
dependency as well, by looking into P . Since the truth value of h is altered
due to the fact that P leaks K2

−1, the new truth value for s is altered as
well. Therefore, secrecy is not preserved in this composition.

Although as stated in the introduction we do not focus on the composition
of cryptographic protocols on the standard sense, our methodology could be
used to reason about the composition of arbitrary processes, thus in particular
it can also be used to decide on the secrecy preservation of protocols. For
example assume the composition of processes A and B representing a given
protocol between two parties is secure, as well as the composition of processes
C and D representing a second protocol. We sketch possible applications of
our methodology to three standard composition notions:

• Parallel composition, that is the composition that arises when two dis-
tinct protocols are used over the same insecure channel, perhaps at a
different time and for a different purpose, and can be approximated
by evaluating the composition (A ⊗ B) ⊗ (C ⊗ D). This constitutes
an approximation because in practice it can happen that one protocol
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executes before the other and it is never executed again, but by assum-
ing there are arbitrary executions of both protocols we obtain a safe
estimate on possible attacks.

• Sequential composition is similar to parallel composition, but here two
protocols are used one after the other typically with the purpose of
re-using information from the first protocol in the second (for example
a session key). An approximation to sequential composition can also
be obtained by considering (A⊗B)⊗ (C ⊗D), in the sense that false
positive attacks can occur because the sequentiality of the events is lost
in the construction of the trees. This can be improved by considering
a one way update of the dependency tree of (C ⊗D) (instead of going
back and forward as in the normal tree update).

• Vertical composition typically uses the key established in a key agree-
ment to build a secure channel and then runs one or more protocols in
the secure session (that is encrypted with the session key). This is per-
haps the most challenging kind of composition where our approach can
be applied because the dependency tree of the second protocol must be
updated with the new dependency on the key of the first protocol. In
principle this is a feasible task, but requires a deeper study in order to
assess its efficiency.

A thorough analysis of standard protocol composition by means of our
approach is definitively an interesting but challenging task and it is out of
the scope of this chapter.

5.3 An insecure variant of the TLS protocol

As an example we apply our approach to a variant of TLS [25] (not the ver-
sion of TLS in current use) that does not preserve secrecy as a composition of
the client C, the server S and the authority CA . We have that the predicate
for C and S after the programs are translated to F.O.L are (for details on the
translation see [79]) :

ψ(C) = knows(NC :: KC ::SignK−1
C
{C :: KC})

∧ (knows(s2) ∧ knows(s3)⇒ knows({m}y))

ψ(S) = knows(c1) ∧ knows(c2) ∧ knows(c3)
⇒ knows(NS :: { SignK−1

S
{kCS :: c1} }c2)

where {s3}KCA
= S :: x ∧ {DecK−1

C
(s2)}x = y :: NC and {c3}c2 = C :: c2

and key(c2), key(x) and key(y). We assume that the authority CA has already
distributed certificates to all parties and that the adversary is in possession
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{SignK−1
S
{kCS :: NC}}KC

m

∨ kCS

1

Figure 5: Partial dependency tree for m in C

of this information:

knows(KCA)
∧ knows(SignK−1

CA
{S :: KS})

∧ knows(SignK−1
CA
{A :: KA} )

We can also assume that an adversary knows a key KA and its inverse
knows(KA) ∧ knows(K−1

A ) and we define the set Keys for this process:

Keys = {KA,K
−1
A , kCS , kA,KC ,K

−1
C ,KS ,K

−1
S ,KCA,K

−1
CA}

where kCS and kA are symmetric keys. The nonces are Nonces = {NC , NS , NA}.
Now we show that C ⊗ S does not preserve the secrecy of m although C

and S separately do. First of all, in order to be able to apply our approach
and generate the dependency tree, we have to solve the constraints for all the
processes involved. So we have:

ψ̄(C) = knows(NC :: KC ::SignK−1
C
{C :: KC})

∧ [ knows({ Signx−1{y :: NC} }KC
)

∧ knows( SignK−1
CA
{S :: x} )⇒ knows({m}y) ]

where x ∈ {KC ,KS ,KA} (the public keys) and y ∈ {kA, kCS} (the sym-
metric keys). We do not explicit the whole dependency tree for C but we
note that the secrecy of m is preserved because: if y = kCS the adversary
does not have knowledge of kCS ; if y = kA the adversary would need knowl-
edge of Signx−1{kA :: NC} and SignK−1

CA
{S :: x} for some x. Since he only

knows SignK−1
CA
{S :: KS} then x = KS . In that case to gain knowledge of

SignKS
−1{kA :: NC} he needs to posses KS

−1 which he does not. In Figure 5
we depict partially this dependency tree for the case y = kCS , x = KS .

Now, the instantiated formulas for S are:

ψ̄(S) = knows(c1) ∧ knows(c2) ∧ knows(Signc−1
2
{C :: c2})

⇒ knows(NS :: { SignK−1
S
{kCS :: c1} }c2)

with c1 ∈ {NS , NC , NA}, c2 ∈ {KC ,KS ,KA}. The secrecy of m is pre-
served in S simply because m is not a subterm of any formula in S.
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Figure 6: Partial dependency trees for kCS and { SignK−1
S
{kCS :: NC} }KC

in
S

It is interesting nevertheless to draw (partially) the dependency trees of
kCS and { SignK−1

S
{kCS :: c1} }c2 in case c1 = NC and c2 = KA, as depicted

in Figure 6. In fact, if we analyse the composition of C and S, since C leaks
NC and KC , kCS turns to be not secret after composition in the tree of S,
and the same holds for { SignK−1

S
{kCS :: NC} }KC

), resulting in a secrecy
violation for m after updating the original tree in C.

5.3.1 TLS fixed

We now show that the fixed version of TLS obeys to our rules to preserve
secrecy. The predicates for TLS’ are similar as before with the following
changes on C and S:

ψ(C′) = knows(NC :: KC ::SignK−1
C
{C :: KC})

∧ [knows(s2) ∧ knows(s3)⇒ knows({m}y)]

such that {s3}KCA
= S :: x, {DecK−1

C
(s2)}x = y :: NC :: KC where x ∈

{KC ,KS ,KA}, y ∈ {kA, {kCS(z, w) : z, w ∈ Nonces × Keys}} and kCS() is such
that:

∀ x, y, z, w (x 6= z ∨ y 6= w ⇒ kCS(x, y) 6= kCS(z, w))

and we assume the adversary has no previous knowledge of any such key.
The modified server gives:

ψ(S′) = ∀c1, c2, c3, a1, x.
[knows(c1) ∧ knows(c2) ∧ knows(c3) ∧ knows(a1)
⇒ knows(NS :: { SignK−1

S
{kCS(c1, c2) :: c1 :: c2} }c2 :: a1)]
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{SignK−1
S
{kCS(z, w) :: NC :: KC}}KC

m

∨ kCS(z, w)

1

Figure 7: Partial dependency tree for m in case kCS(z, w) in C′

z ∨ w ∨ Signw−1{C :: w}

kCS(z, w)

∨ w−1 ∨KS

1

Figure 8: Partial dependency tree for kCS(z, w) in S′

where {c3}c2 = x :: c2, c2 ∈ Keys and c1 ∈ Nonces.
Now we show that C′ ⊗ S′ preserves the secrecy of m. We have:

ψ̄(C′) = knows(NC :: KC ::SignK−1
C
{C :: KC})

∧ [knows({ Signx−1{y :: NC :: KC} }KC
)

∧ knows( SignK−1
CA
{S :: x} )

⇒ knows({m}y)]

where x ∈ {KC ,KS ,KA} and y ∈ {kA, {kCS(z, w) : z, w ∈ Nonces ×
Keys}}. As in the insecure variant of TLS discussed before, secrecy of m
is guaranteed by the fact that either the adversary does not know any of
the kCS(z, w) keys, or in case y = kA then he can not forge the signature
SignKS

−1{kA :: NC :: KC}.
The dependency tree for m in case y = kCS(z, w) is shown in Figure 7.

The instantiated formulas for S′ are:

ψ̄(S′) = knows(c1) ∧ knows(c2) ∧ knows(Signc−1
2
{C :: c2})

⇒ knows(NS :: { SignK−1
S
{kCS(c1, c2) :: c1 :: c2} }c2)

with c1 ∈ {NS , NC , NA}, c2 ∈ {KC ,KS ,KA}. As in the previous TLS
variant, the secrecy of m is preserved in S′ simply because m is not a subterm
of any formula in S.

Now notice that the dependency tree for kCS(z, w) for any z, w ∈ Nonces×
Keys is the one depicted in Fig. 8. The only choice of w such that the secrecy
of kCS(z, w) is not preserved would be then w = KA, since it is the only
private/public key pair the adversary knows (no other inverses of public keys
are in relevant positions neither in C′ or in S′).

Therefore, if the composition would harm the secrecy of m, the secrecy
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SignK−1
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NC ∨KC ∨ kCS(z, KA) ∨ K−1
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Figure 9: Dependency tree for {SignK−1
S
{kCS(z,KA) :: NC :: KC}}KC

in S′

of:

{SignK−1
S
{kCS(z,w) :: NC :: KC}}KC

must not hold after composition for w = KA, as it results from the tree in
Fig. 7. The secrecy value for {SignK−1

S
{kCS(z,KA) :: NC :: KC}}KC

will not be
harmed by the composition as we can see from Fig. 9 since in both processes
K−1

S is not derivable.

5.4 Validation and Efficiency

We have implemented our approach as an extension to the UMLsec tool sup-
port 1. That is, we can extract the protocol specification from a sequence
diagram using the DSL described in Sect. 5.1 and translate it to First Order
Logic. Since by construction each guard accepts only finitely many messages
(depending on the set of keys and nonces), we can build finite dependency
trees for all relevant symbols by means of a properly generated Prolog pro-
gram.

Since reasoning about composition amounts to join the trees from two
processes, it is reasonable to expect that this is computationally faster com-
pared to re-computing the whole tree for the composed processes. Indeed, we
can at least avoid to recompute the constraint solving for the single processes.
Although we do not have a formal argument to show that the complexity of
our approach is lower than re-verification, we have conducted experiments to
measure the time of the composition, and compare it to the overall process
of constraint-solving and prolog generation.

In Figure 10 we depict this comparison. The first column contains the
number of messages for a single session of the composition and the second
column corresponds to the number of composed processes. The third column
is the time in ms. needed to extract the FOL formulas from the UML diagram
and generate the derivation trees. The last column is the time needed for
deciding the composition given the single derivation trees. It is thus clear

1http://www-jj.cs.tu-dortmund.de/jj/umlsectool
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Duration Duration
(in ms) (in ms)

# # Generation composition
Messages Compositions trees

11 5 3660 47
21 10 6214 88
31 15 9323 114
51 25 15406 198
101 50 31730 401
501 250 182771 1948
1001 500 375474 3963

Figure 10: Execution times of our experiment

that the deciding the composition is very efficient if it is possible to reuse
the precomputed trees and the generation from scratch is about two orders
of magnitude slower. In other words, if we would have a repository of 500
processes that by themselves are secrecy preserving, and we would like to
check whether the composition of any 5 of them is also secrecy preserving, it
would be highly desirable if we could use the existing results as opposed to
re-computing from scratch every time.

5.5 Related Work

The work of security protocol verification is too large to give a full overview.
Overviews of applications of formal methods to security protocols can be
found for example in [13, 99, 123, 77], some examples in [84, 94, 14, 116].
More abstractly, compositional model-checking has been explored in gen-
eral for over two decades starting with Clark [45]. The question of proto-
col composition has been studied by different authors. More prominently,
Datta, Mitchell et al. [50] have defined the PCL (Protocol Composition
Logic), aimed at the verification of security protocol by re-using proofs of
sub-protocols using a Hoare-like logic. The focus of the PCL is authentic-
ity and it uses an unbounded session model. Automatic proofs are only
achieved by a complementary approach using model-checking that only ex-
plores a finite-state system [106] that is not based on PCL. Guttmann [64]
gives results about protocol composition at a lower level, considering un-
structured ‘blank slots’ and compound keys that result from hashes of other
messages. Jürjens [75] has explored the question of composability aiming at
given sufficient conditions under which composition holds. Stoller [129] has
computed bounds of parallel executions that could compromise the authen-
ticity of protocols. These both last approaches aim at giving at a collection
of theorems that if satisfied by two protocols in a composition, ensure a given

69



5. Security protocols

property. That means that one must show (by using a theorem prover, or
by hand) that some properties are satisfied by both protocols (like disjoint-
ness in [65]). Our approach differs from this assume/guarantee reasoning
in that we efficiently check whether the composition of processes harms se-
crecy without making any assumptions (besides secrecy preservation) on the
composed processes, given pre-computed ‘proof artefacts’: the dependency
trees. In other words, we give accurate results about compositions (that are
equivalent to re-verification), by amortizing the cost of verification at an ini-
tial phase. The application of the techniques described in this chapter to
standard protocol composition is interesting future work.
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Chapter 6
Cache side-channel analysis
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In this chapter we discuss results linking abstract interpretation and quan-
titative information flow to measure the leakage of inputs to deterministic
programs with respect to realistic adversary models. The efficiency of the
methodology proposed (backed up by a tool chain) allows for a quick quan-
tification in case of changes in the cache configuration, which constitutes a
useful tool for reasoning about security in evolving micro-architectures.

The motivation of this work is that many modern computer architectures
use caches to bridge the latency gap between the CPU and main memory,.
Caches are small, fast memory that store the contents of previously accessed
main memory locations and can improve the overall performance because
typical memory access patterns tend to be “local”: they call recently accessed
references. On today’s architectures, an access to the main memory (a cache
miss) may imply an overhead about one order of magnitude compared to an
access to the cache (cache hit).

While the use of caches is beneficial for performance, it can have negative
effects on security: An observer who can measure the time of memory lookups
can see whether a lookup is a cache hit or miss, and thus learn partial infor-
mation about the state of the cache. This partial information has been used
for extracting cryptographic keys from implementations of AES [31, 114, 63],
RSA [117], and DSA [15], and can be potentially used for attacking other
programs with secret inputs. In particular AES is vulnerable to such cache-
attacks, because most high-speed software implementations make heavy use
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of look-up tables. Cache attacks are the most effective known attacks against
AES and allow to recover keys within minutes [63].

A number of countermeasures have been proposed against cache attacks.
Trivially, one could avoid the use of caches for sensitive computations, but
this would affect performance, and is thus not generally applicable. Proposal
for mitigation strategies include disabling high-resolution timers, hardening
of schedulers [63], and preloading [114] of tables to eliminate attack vectors
and reduce leakage, respectively. Such strategies are implemented, e.g. in
the OpenSSL 1.0 [8] version of AES, however, as observed by Bernstein [31]
their effectiveness is highly dependent on the OS and the CPU. Without
considering/modelling all implementation details, such mitigation strategies
necessarily remain heuristic. In general, there is no general-purpose counter-
measure against cache attacks that is backed-up by mathematical proof.

In this chapter we propose a novel method for establishing formal secu-
rity guarantees against cache-attacks. The guarantees we obtain are upper
bounds on the amount of information about the input that an adversary can
extract by observing the CPU’s cache state after execution of the program.
They are based on the actual program binary and a concrete processor model
and can be derived entirely automatically. At the heart of our approach is a
novel technique for counting that enables us to connect state-of-the-art tech-
niques for static cache analysis and quantitative information-flow analysis.

Technically, we build on work on static cache analysis [21] that was pri-
marily used for the estimation of worst-case execution time by abstract inter-
pretation [47]. There, two abstract domains for cache-states are introduced;
one of them captures a superset of the memory locations that may be in
the cache, the other captures a subset of the memory locations that must
be in the cache. Soundness of these abstractions means that each of them
computes a superset of the set of reachable cache-states. We combine this
technique with results from quantitative-information-flow analysis that en-
able establishing bounds for the amount of information that a program leaks
about its input. Our approach relies on the fact that (an upper bound on)
the number of reachable states of a program corresponds to (an upper bound
on) the number of leaked bits [128, 90].

We develop a novel technique for counting the number of cache states rep-
resented by the abstract states of the static cache analyses described above
and give a concise implementation of our counting procedures in Haskell [7].
We connect this counting engine to the AbsInt a3 [1], the state-of-the-art
tool for static cache analysis. a3 efficiently analyses binary code based on
accurate models of several modern embedded processors with a wide range
of cache types (e.g. data caches, instruction caches, or mixed) and replace-
ment strategies. Using this tool-chain, we perform an analysis of a binary
implementation of 128-bit AES from the PolarSSL library [5], based on a
32-bit ARM processor with a 4-way set associative data cache with LRU re-
placement strategy and different cache sizes. We analyse this implementation
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with and without the preloading countermeasure applied and for two differ-
ent adversary models, giving formal bounds for the leakage with different
cache configurations.

6.1 Preliminaries

In this section we summarize useful concepts from quantitative information-
flow analysis. In particular, we introduce measures of confidentiality based
on information theory in Section 6.1.1, and we present techniques for their
approximation in Section 6.1.2.

6.1.1 Quantifying Information Leaks

A (deterministic) channel is a function C : S → O mapping a finite set of
secrets S to a finite set of observations O. We characterize the security of a
channel in terms of the difficulty of guessing the secret input from the obser-
vation. This difficulty can be captured using information-theoretic entropy,
where different notions of entropy correspond to different kinds of guess-
ing [41]. In this work, we focus on min-entropy as a measure, because it is
associated with strong security guarantees [128].

Formally, we model the choice of a secret input by a random variable X
with ran(X) = S and the corresponding observation by a random variable Y
with ran(Y ) = O. The dependency between X and Y is formalized as a
conditional probability distribution PY |X with PY |X(o, s) = 1 if C(s) = o,
and 0 otherwise. We consider an adversary that wants to determine the value
of X from the value of Y , where we assume that X is distributed according
to PX . The adversary’s a priori uncertainty about X is given by the min-
entropy [121]

H∞(X) = − log2 max
s
PX(s)

of X, which captures the probability of correctly guessing the secret in one
shot. The adversary’s a posteriori uncertainty is given by the conditional
min-entropy H∞(X|Y ), which is defined by

H∞(X|Y ) = − log2

∑
o

PY (o) max
s
PX|Y (s, o)

and captures the probability of guessing the value of X in one shot when the
value of Y is known.

The (min-entropy) leakage L of a channel with respect to the input dis-
tribution PX is the reduction in uncertainty about X when Y is observed,

L = H∞(X)−H∞(X|Y ) ,

and is the logarithm of the factor by which the probability of guessing the
secret is reduced by the observation. Note that L is not a property of the

73



6. Cache side-channel analysis

channel alone as it also depends on PX . We eliminate this dependency as
follows.

Definition 3 (Maximal Leakage). The maximal leakage ML of a channel C
is the maximal reduction in uncertainty about X when Y is observed

ML(C) = max
PX

(H∞(X)−H∞(X|Y )) ,

where the maximum is taken over all possible input distributions.

For computing an upper bound for the maximal leakage of a deterministic
channel, it suffices to compute the size of the range of C. While these bounds
can be coarse in general, they are tight for uniformly distributed input.

Lemma 1.
ML(C) ≤ log2 |C(S)| ,

where equality holds for uniformly distributed PX .

Proof. The maximal leakage of a (probabilistic) channel specified by the dis-
tribution PY |X can be computed by ML(PY |X) = log2

∑
o maxs PY |X(o, s),

where the maximum is assumed (e.g.) for uniformly distributed input [36, 91].
For deterministic channels, the number of non-zero (hence 1) summands
matches |C(S)|.

6.1.2 Static Analysis of Channels

We consider channels of programs, which are channels that are given by the
semantics of (deterministic, terminating) programs. In this setting, the set of
secrets is a part of the initial state of the program, and the set of observables
is a part of the final state of the program. Due to Lemma 1, computing upper
bounds on the maximal leakage of a program can be done by determining
the set of final states of the program. Computing this set from the program
code requires computation of a fixed-point and is not guaranteed to termi-
nate for programs over unbounded state-spaces. Abstract interpretation [47]
overcomes this fundamental problem by resorting to an approximation of the
state-space and the transition relation. By choosing an adequate approxima-
tion one can enforce termination of the fixed-point computation after a finite
number of steps. The soundness of the analysis follows from the soundness of
the abstract domain, which is expressed in terms of a concretization function
(denoted γ) relating elements of the abstract domain to concrete properties
of the program, ordered by implication.

For the purpose of our work, we define soundness with respect to a chan-
nel, i.e., we will use a concretization function mapping to sets of observables
(where implication corresponds to set inclusion).
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Definition 4. An abstract element t] is sound for a concretization function
γ with respect to a channel C : S → O if and only if C(S) ⊆ γ(t]).

The following theorem is an immediate consequence from Lemma 1; it
states that a counting procedure for γ(t]) can be used for deriving upper
bounds on the amount of information leaked by C.

Theorem 4. Let t] be sound for γ with respect to C. Then

ML(C) ≤ log2

∣∣∣γ(t])
∣∣∣ .

For a more detailed account of the connection between abstract interpre-
tation and quantitative information-flow, see [90].

6.2 Cache Channels

In this section, we define channels corresponding to two adversary models
that can only observe cache properties. We also revisit two abstract domains
for reasoning about cache-states and show how they relate to those channels.
We begin by briefly explaining the technical functioning of CPU caches.

6.2.1 Caches

Typical caches work as follows. The main memory is partitioned into blocks of
size β that are referenced using locations loc. A cache consists of a number of
sets, each containing a fixed number of lines that can each store one memory
block. The size A of the cache sets is called the associativity of the cache.
Each memory block can reside in exactly one cache set, which is determined
by the block’s location. We can formally define a single cache set as a mapping

t : {1, . . . , A} → loc ∪ {⊥} ,

from line numbers to locations, where ⊥ represents an empty line. A cache
is a tuple of independent cache sets. For simplicity of presentation, we focus
on single cache sets throughout the chapter, except for the case study in
Section 6.5.

There exists different replacement strategies to deal with the state of the
cache upon a memory request. Here we focus on the LRU (Least Recently
Used) strategy, which is used e.g. in the Pentium I processor. With LRU,
each cache set forms a queue. When a memory block is requested, it is ap-
pended to the head of the queue. If the block was already stored in the cache
(cache hit), it is removed from its original position; if not (cache miss), it
is fetched from main memory. Due to the queue structure of sets, memory
blocks age when other blocks are looked up, i.e. they move towards the tail of
the queue and (due to the fixed length of the queue) are eventually removed.
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For a formalization of the LRU set update function see [21] or Appendix A.2.
For a formalization of alternative update functions, such as FIFO (First In
First Out) see [119]. Depending on the concrete processor model, data and
instructions are processed using dedicated caches or a common one [21]. Un-
less mentioned otherwise (e.g. in the experiments for AES), our results hold
for any cache analysis that is sound.

6.2.2 Two Adversary Models Observing the Cache

We consider a scenario where multiple processes share a common CPU. We
assume that one of these processes is adversarial and tries to infer information
about the computations of a victim process by inspecting the cache after
termination. We distinguish between two adversaries Advprec and Advprob.
Both adversaries can modify the initial state of the cache with memories in
their virtual memory space, which we assume is not shared between processes,
but they differ in their ability of observing the final cache state:

Advprec : This adversary can observe the precise content of the cache at the
end of the victim’s computation.

Advprob : This adversary can observe which blocks of his virtual memory
space are in the cache after the victim’s computation.

The channel corresponding to the adversary Advprec simply maps the victim’s
input to the corresponding final cache state. The channel corresponding to
Advprob can be seen as an abstraction of the channel corresponding to Advprec,
as it can be described as the composition of the channel of Advprec with a
function blur that maps all memory blocks not belonging to the adversary’s
virtual memory space to one undistinguishable element. Advprob corresponds
to the adversaries encountered in synchronous “prime and probe” attacks
[114], which observe the cache-state by performing accesses to different loca-
tions and use timing measurements to distinguish whether they are contained
in the cache or not.

Considering that our adversary models allow some choice of the initial
state, they formally define families of channels that are indexed by the ad-
versarially chosen part of the initial cache. To give an upper bound on the
leakage of all channels in those families we would need relational information,
which is not supported by the existing cache analysis tools. One possible
solution is to consider an abstract initial state approximating all possible ad-
versary choices, which leads to imprecision in the analysis. In the particular
case of a LRU replacement strategy, we can use the following property:

Proposition 1. For caches with LRU strategy, the leakage to Advprec (Advprob)
w.r.t. any initial cache state containing only memory locations from the ad-
versary’s memory space corresponds to the leakage to Advprec (Advprob) w.r.t.
an empty initial cache state.
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This result follows from the following observation: for each initial cache
state containing locations disjoint from the victim’s memory space, the first i
lines of the final cache state will contain the locations accessed by the victim,
and the remaining lines will contain the first A−i locations of the initial state
shifted to the right, where i depends on that particular run of the victim.
That is, modulo the adversarial locations, the number of possible final cache
states corresponding to an empty initial state matches the number of final
cache states corresponding to an initial state that does not contain locations
from the victim’s memory space. The assertion then follows immediately
from Theorem 4. Proposition 1 will be useful in our case study, since the
analysis we use provides a more accurate final state when run with an initial
empty cache.

6.2.3 Abstract Domains for Cache Analysis

Alt et al. [21] propose abstract interpretation techniques for cache analysis
and prove their soundness with respect to reachability of cache states, which
corresponds to soundness w.r.t the channel of Advprec according to Defini-
tion 4. In particular, they present two abstract domains for cache-states: The
first domain corresponds to a may-analysis and represents the set of memory
locations that possibly reside in the cache. The second domain corresponds
to a must-analysis and represents the set of memory locations that are defi-
nitely in the cache. In both cases, an abstract cache set is represented as a
function

t] : {1, . . . , A} → 2loc

mapping set positions to sets of memory locations. In the following we will
use t1] and t2] for abstract sets corresponding to the may and must analysis
respectively. For the may analysis, the concretization function γ∪ is defined
by

γ∪(t1]) = {t | ∀j ∈ {1, . . . , A} : t(j) =⊥ ∨ ∃i ≤ j : t(j) ∈ t1](i)} .

This definition implies that each location that appears in the concrete state
appears also in the abstract state, and the position in the abstract state is
a lower bound for the position in the concrete. For the must analysis, the
concretization function γ∩ is defined by

γ∩(t2]) = {t | ∀i ∈ {1, . . . , A} : ∀a ∈ t2](i) : ∃ j ≤ i : t(j) = a} .

This definition implies that each location that appears in the abstract state
is required to appear in the concrete, and its position in the abstract is an
upper bound for its position in the concrete.

Example 4. Consider the following program running on a 4-way fully asso-
ciative (i.e. only one set) data cache where . . . x . . . stands for an instruction
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that references location x, and let e, a, b are pairwise distinct locations.

if . . . e . . . then . . . a . . . else . . . b . . .

With an empty initial abstract cache before execution, the abstract may- and
must-analyses return

t1
] = [{a, b}, {e}, {}, {}] and t2

] = [{}, {e}, {}, {}]

as final states, respectively. The following caches states are contained in their
respective concretizations:

[a,⊥,⊥,⊥], [a, b, e,⊥], [⊥, e, a, b] ∈ γ∪(t1])

[a, e,⊥,⊥], [e,⊥,⊥,⊥], [⊥, e, a, b] ∈ γ∩(t2])

Notice that both concretizations include the two possible states [a, e,⊥,⊥]
and [b, e,⊥,⊥] (which is due to the soundness of the analyses) but also im-
possible states (which is due to the imprecision of the analysis). In particular,
states in which empty cache lines are followed by non-empty cache lines are
artifacts of the abstraction (i.e. they cannot occur according to the concrete
cache semantics from [21], as we prove in the Appendix). More precisely, we
have

∀i, j ∈ {1, . . . , A} : t(i) =⊥ ∧ j > i =⇒ t(j) = ∅ . (6.1)

It is hence sufficient to consider only the concrete states that also satisfy (6.1),
which enables us to derive tighter bounds in Section 6.3. For simplicity of
notation we will implicitly assume that (6.1) is part of the definition of γ∪

and γ∩.
To obtain the channel corresponding to the adversary model Advprob, we

just need to apply blur to the concretization of the must and may cache
analysis, which is equivalent to first applying blur to the sets appearing in
the abstract elements and then concretizing.

6.3 Counting Cache States

We have introduced channels corresponding to two adversaries, together with
sound abstract interpretations. The final step needed for obtaining an auto-
matic quantitative information-flow analysis from Theorem 4 are algorithms
for counting the concretizations of the abstract cache states presented in Sec-
tion 6.2.3, which we present next. As before, we restrict our presentation to
single cache sets. Counting concretizations of caches with multiple sets can
be done by taking the product of the number of concretizations of each set.
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6.3.1 Concrete states respecting may

We begin by deriving a formula for counting the concretizations of an abstract
may-state t1

]. To this end, let ni =
∣∣t1](i)

∣∣, n∗i =
∑i

j=1 nj , for all i ∈
{1, . . . , A} and n∗ = n∗A. The definition of γ∪(t1]) informally states that
when reading the content of t] and t ∈ γ∪(t1]) from head to tail in lockstep,
each non-empty line in t has appeared in the same or a previous line of t1].
That is, for filling line k of t there are n∗k possibilities, of which k − 1 are
already used for filling lines 1, . . . , k− 1. The number of concrete states with
a fixed number i of non-empty lines is hence given by

i∏
k=1

(n∗k − (k − 1)) (6.2)

As the definition of γ∪ does not put a lower bound on the number i of
nonempty lines, we need to consider all i ∈ {1, . . . , A}. We obtain the fol-
lowing explicit formula for the number of concretizations of t1].

Proposition 2 (Counting May).

∣∣∣γ∪(t1])
∣∣∣ =

A∑
i=0

i∏
k=1

(n∗k − (k − 1))

Example 5. When applied to the abstract may-state t1] = [{a, b}, {e}, {}, {}]
obtained from the analysis of the program in Example 4 we obtain

∣∣γ∪(t1])
∣∣ =

11, which illustrates that the bounds obtained by Proposition 2 can be coarse.

6.3.2 Concrete states respecting must

For counting the concretizations of an abstract must-state t2
], let mi =∣∣t2](i)

∣∣, m∗i =
∑i

j=1mj , for all i ∈ {1, . . . , A} and m∗ = m∗A. The def-
inition of γ∩ informally states that when reading the lines of an abstract
state t2] and a concrete state t ∈ γ∩(t2]) from head to tail in lockstep, each
element of t2] has already appeared in the same or a previous line of t. More
precisely, the mj elements contained in line j of t2] appear in lines 1, . . . , j
of t, of which m∗j−1 are already occupied by the must-constraints of lines
1, . . . , j− 1. This leaves

(
j−m∗j−1

mj

)
mj ! possibilities for placing the elements of

t2
](j), which amounts to a total of

A∏
j=1

(
j −m∗j−1

mj

)
mj ! (6.3)

possibilities for placing all elements in t2
]. However, notice that m∗ ≤ A is

possible, i.e. must-constraints can leave cache lines unspecified. The number
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of possibilities for filling those unspecified lines is
A∏

k=m∗+1

(`− (k − 1)) , (6.4)

where ` = |loc| is the number of possible memory locations.
Finally, observe that (6.3) and (6.4) count concrete states in which each

line is filled. However, the definition γ∩ only mandates that at least m∗

lines of each concrete state be filled. We account for this by introducing
a variable i that ranges from m∗ to A. We modify (6.3) by choosing from
min(i, j) instead of j positions1 and we modify (6.4) by replacing the upper
bound by i. This yields the following for explicit formula for the number of
concretizations of t2].

Proposition 3 (Counting Must).∣∣∣γ∩(t2])
∣∣∣ =

A∑
i=m∗

 A∏
j=1

(
min(i, j)−m∗j−1

mj

)
mj !

i∏
k=m∗+1

(`− (k − 1))


Example 6. When applied to the must-state t2

] = [{}, {e}, {}, {}] and a
set of locations loc = {a, b, c, d, e}, Proposition 3 yields a number of 81 con-
cretizations of t2]. This over-approximation stems from the fact that the
abstract state requires only the containment of e and that the rest of the lines
can be chosen from loc.

We next tackle this imprecision by considering the intersection of may
and must.

6.3.3 Concrete states respecting must and may

For computing the number of concrete states respecting both t2
] and t1

] we
reuse the notation introduced in Sections 6.3.1 and 6.3.2. As in Section 6.3.2
we use (6.3) for counting the cache lines constrained by the must-information.
However, instead of filling the unconstrained lines with all possible memory
locations, we now choose only from the lines specified by the may-information.
The counting is similar to equation (6.2), the difference being that, as in (6.4),
the product starts with k = m∗+1 because the content of m∗ lines is already
fixed by the must-constraints. The key difference to (6.4) is that now we
pick only from at most n∗k lines instead of ` lines. We obtain the following
proposition.

Proposition 4 (Counting May and Must).∣∣∣γ∪(t1]) ∩ γ∩(t2])
∣∣∣ ≤ A∑

i=m∗

 A∏
j=1

(
min(i, j)−m∗j−1

mj

)
mj !

i∏
k=m∗+1

(n∗k − (k − 1))


1The index j still needs to go up to A in order to collect all constraints
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Two comments are in order. First, notice that the inequality Proposi-
tion 4 stems from the fact that the lines unconstrained by the must-information
may be located at positions j < k. Using the constraint n∗j instead of n∗k
would lead to tighter bounds, however, an explicit formula for this case re-
mains elusive. Second, observe that the rightmost product is always non-
negative. For this it is sufficient to prove that the first factor n∗m∗+1 −m∗ is
non-negative, because the value of subsequent factors decreases by at most 1.
Assume that n∗m∗+1 −m∗ < 0 (and hence n∗m∗ < m∗). By (6.1), n∗j < j im-
plies that line j is empty for all concrete states, which for j = m∗ contradicts
the requirement that all states contain at least m∗ lines.

Example 7. When applied to the abstract cache states t1] = [{a, b}, {e}, {}, {}]
and t2] = [{}, {e}, {}, {}] from Example 4, Proposition 4 delivers a total of 9
concrete states.

It is easy to see that the expression in Proposition 4 can be evaluated
in time O(A3) because both the factorial and and n∗i can be computed in
linear time and they are nested in two loops of length at most A. Although
efficient, an approximation using Proposition 4 can be coarse: In Example 7
we computed a bound of 9 states, although (as is easily verified manually)
there are only 4 concrete states respecting the constraints of both abstract
states. We have developed more accurate (but more complex) variants of
Proposition 4 that yield the exact bounds for this example, however, they
are also not tight in general.

In the absence of a closed expression for the exact number of concrete
states, one can proceed by enumerating the set of all concrete states re-
specting may, and filtering out those not respecting must. We present an
implementation of the exact counting by enumeration in Section 6.4.2 The
price to pay for this brute-force approach is a worst-case time complexity
of O(A!), e.g. if there are no must-constraints and the first location of the
abstract may-state contains A or more locations. This is not a limitation for
the small associativities often encountered in practice (A = 2 or A = 4), how-
ever, for fully associative caches in which A equals the total number of lines
of the cache, the approximation given by Proposition 4 is the more adequate
tool.

6.3.4 Counting for Probing Adversaries

For counting the possible observations of Advprob for arbitrary replacement
strategies, we can apply the techniques presented above to previously blurred
abstract states. For the case of a LRU strategy, we obtain the following better
bounds.

Proposition 5. The number of observations Advprob can make is bounded
by

min(n∗, A)−m∗ + 1
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The assertion follows from the fact that, after the computation, each cache
set will first contain the victim’s locations (which Advprob cannot distinguish),
and then a fixed sequence of locations from the adversary’s virtual memory
whose length only depends on the number of the victim’s blocks. I.e., when
starting from an empty cache set, the adversary can only observe the length
of the final cache set. This size is at least m∗ (because at least that number
of lines must be filled), and at most min(n∗, A). The additional 1 accounts
for the empty state.

6.4 Implementation

In this section we report on the implementation of a tool for quantifying cache
leaks. Its building blocks are the AbsInt a3 tool for static cache analysis, and
a novel counting engine for cache-states based on the results presented in
Section 6.3.

6.4.1 Abstract Interpreter

The AbsInt a3 [1] is a suite of industral-strength tools for the static analy-
sis of embedded systems. In particular, a3 comprises tools (called aiT and
TimingExplorer) for the estimation of worst-case execution times based on
the static cache analysis by Alt et al. [21]. The tools cover a wide range
of CPUs, such as ERC32, TriCore, M68020, LEON3 and several PowerPC
models (aiT), as well as CPU models with freely configurable LRU cache
(TimingExplorer). We base our implementation on the TimingExplorer for
reasons of flexibility.

The TimingExplorer receives as input a program binary and a cache
configuration and delivers as output a control flow graph in which each
(assembly-level) instruction is annotated by the corresponding abstract may
and must information, where memory locations are represented by strings,
abstract cache lines are lists of memory locations, abstract sets are lists of
abstract lines, and abstract caches are lists of abstract sets. We extract the
annotations of the final state of the program, and provide them as input to
the counting engine.

6.4.2 Counting Engine

We implemented an engine for counting the concretizations of abstract cache
states according to the development in Section 6.3. Our language of choice is
Haskell [7], because it allows for a concise representation of sums, products,
and enumerations using list comprehensions. We have implemented both
the approximate counting described in the previous section, and an exact
counting (which as discussed above can be more than exponential in worst
case).
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We use the following data types for representing abstract cache sets, which
matches the output of the TimingExplorer described above.

type Loc = String type ConcreteSet = [Loc]
type AbstractLine = [Loc] type AbstractSet = [AbstractLine]

The function allStates is the core of the exact counting of concrete cache
states in the intersection defined by may and must.

allStates :: AbstractSet -> AbstractSet -> [ConcreteSet]
allStates may must = filter (checkMust must) (genAllMay may)

As described in Section 6.3.3, this is achieved by enumerating all concrete
states that satisfy a given set of may-constraints (done by genAllMay), and
keeping only those that also satisfy the must-constraints (done by filtering
with checkMust). At the core of the function genAllMay is the following
function genMay that returns all concretizations of the same length as the
given abstract set,

genMay:: AbstractSet -> [ConcreteSet]
genMay (a:as) = [c:cs| c<-a, cs<-genMay (carry (delete c a) as)]
genMay [] = [[]]

where it relies on a function carry that carries unused may-constraints to
the next line of the abstract state.

Finally, the function checkMust tests whether a concrete set satisfies the
must-constraints, by checking whether all elements in line number n (denoted
by as!!(n-1)) of the abstract state also appear in the prefix of length n of
the concrete state.

checkMust :: AbstractSet -> ConcreteSet -> Bool
checkMust as cs = and [elem a (take n cs)| n<-[1..length as],

a<-as!!(n-1)]]

For the approximate counting we have a countMay function:

countMay :: AbstractSet -> Int
countMay xs = sum [ productMay xs i 1 | i <- [0..n]]

where n = length xs

that uses an auxiliary productMay:

productMay :: AbstractSet -> Int -> Int -> Int
productMay xs up low = product [ (star xs j) - (j-1) | j <- [low..up]]

This modularization is useful for the countMayAndMust procedure (which
also uses a similar abstraction for the internal product of the countMust
function):

countMayAndMust :: AbstractSet -> AbstractSet -> Int
countMayAndMust xs ys = sum [ (productMay xs i ((star ys n) + 1))

*(productMust ys i) | i <-[(star ys n)..n] ]
where n = length xs
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6.5 Case Study

In this section we report on a case-study where we use the methods devel-
oped in this chapter for analyzing the cache side-channel of a widely used
AES implementation on a realistic processor model with different cache con-
figurations.

6.5.1 Target Implementations

Code. We analyze the implementation of 128 bit AES encryption from the
PolarSSL library [5], a lightweight crypto suite for embedded platforms. As is
standard for software implementations of AES, the code consists of single loop
(corresponding to the rounds of AES) in which heavy table lookups are per-
formed to indices computed using bit-shifting and masking, see Appendix B.2
for details. We also analyze a modified version of this implementation, where
we add a loop that loads the entire lookup table into the cache before encryp-
tion. This preloading has been suggested as countermeasure against cache
attacks because, intuitively, all lookups during encryption will hit the cache.

Platform. We compile the AES C source code into a binary for the
ARM7TDMI [2] CPU using the GNU ARM GCC compiler [3]. Although the
original ARM7TDMI does not have any caches, the AbsInt TimingExplorer
supports this CPU with the possibility of specifying arbitrary configurations
of data/instruction/mixed caches with LRU strategy. For our experiments
we use data caches with sizes of 16-128 KB, associativity of 4 ways, and a
line size of 32 Bytes, which are common configurations in practice.

6.5.2 Improving Precision by Partitioning

The TimingExplorer can be very precise for simple expressions, but loses
precision when analyzing array lookups to non-constant indexes. This source
of imprecision is well-known in static analysis, and abstract interpretation
offers techniques to regain precision, such as abstract domains specialized for
arrays, or automatic refinement of transfer functions. For our analysis, we use
results on trace partitioning [98], which consists in performing the analysis
on a partition of all possible runs of a program, each partition yielding more
precise results.

We have implemented a simple trace partitioning strategy using program
transformations that do not modify the data cache (which is crucial for the
soundness of our approach). For each access to the look-up table, we in-
troduce conditionals on the index, where each branch corresponds to one
memory block, and we perform the table access in all branches. As the
conditionals cover all possible index values for the table access, we add one
memory access to the index before the actual table look-up, which does not
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change the cache state for an LRU cache strategy, since the indices have to
be fetched before accessing the table anyway. An example of the AES code
with trace partitioning can be found in Appendix B.2.

Note that the same increase in precision could be achieved without pro-
gram transformation if the trace partitioning were implemented at the level
of the abstract interpreter, which would also allow us to consider instruction
caches and cache strategies beyond LRU. Given that the TimingExplorer is
closed-source, we opted for partitioning by code transformation.

6.5.3 Results and Security Interpretation

The results of our analysis with respect to the adversary Advprec are depicted
in Figure 1. For AES without preloading of tables, the bounds we obtained
exceed 160 bits for all cache sizes. For secret keys of only 128 bits, they
are not precise enough for implying meaningful security guarantees. With
preloading, however, those bounds drop down to 55 bits for caches sizes of
16KB and to only 1 bit for sizes of 128KB, showing that only a small (in the
128KB case) fraction of the key bits can leak in one execution.

The results of our analysis with respect to the (less powerful, but more
realistic) adversary Advprob are depicted in Figure 2. As for Advprec, the
bounds obtained without preloading exceed the size of the secret key. With
preloading, however, they remain below 6 bits and even drop to 0 bits for
caches of 128KB, giving a formal proof of noninterference for this implemen-
tation and platform.

To formally argue tightness of the non-zero bounds, we would need to
show that this information can be effectively recovered (i.e. devise an attack),
which is out of the scope of this work. Manual inspection of the final cache
states shows that the non-zero bounds stem from AES tables sharing the
same set with other memory locations used by the AES code, which may
indeed be exploitable.

6.6 Related work

Timing attacks against cryptosystems date back to [85]. They can be divided
into those exploiting timing variations due to control-flow [85, 39] and those
exploiting timing variations of the execution platform, e.g. due to caches [115,
31, 117, 114, 16, 18], or branch prediction units [17]. In this work we focus
solely on caching.

The literature on cache attacks is stratified according to a variety of dif-
ferent adversary models: In time-driven attacks[31, 18] the adversary can
observe the overall execution time of the victim process and estimate the
overall number of cache hits and misses. In trace-driven attacks [16] the
adversary can observe whether a cache hit or miss occurs, for every single
memory access of the victim process. In access-driven attacks [117, 114] the
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Figure 1: Upper bounds for the maximal leakage w.r.t. the adversary Advprec

and a 4-way set associative cache with 32B lines of sizes 16KB-128KB

adversary can probe the cache either during computation (asynchronous at-
tacks) or after completion (synchronous attacks) of the victim’s computation,
giving him partial information about the memory locations accessed by the
victim. Finally, some attacks assume that the adversary can choose the cache
state before execution of the victim process [114], whereas others require that
the cache does not contain the locations that looked-up by the victim during
execution [18]. The information-theoretic bounds we derive hold for single
executions of synchronous access-driven adversaries, where we consider ini-
tial states that are either empty or do not contain the victim’s data. The
derivation of bounds for alternative adversary models is left future work.

A number of mitigation techniques have been proposed to counter cache
attacks. Examples include coding guidelines [46] for thwarting cache attacks
on x86 CPUs, or novel cache-architectures that are more resistant to cache
attacks [137]. One commony proposed technique is preloading of tables [114,
31]. However, as observed by [114],

[. . . ], it should be ensured that the table elements are not evicted
by the encryption itself, by accesses to the stack, inputs or out-
puts. Ensuring this is a delicate architecture-dependent affair
[. . . ].”

The methods developed in this chapter enable us to perform a formal anal-
ysis of the preloading heuristic. A model for statistical estimation of the
effectiveness of AES cache attacks based on sizes of cache lines and lookup
tables has been presented in [131]. The goal of our work is different in that
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Figure 2: Upper bounds for the maximal leakage w.r.t. the adversary Advprob

and a 4-way set associative cache with 32B lines of sizes 16KB-128KB

we aim for provable security guarantees based on accurate processor models
and the actual code.

Technically, our work builds on methods from quantitative information-
flow analysis (QIF) [43], where the automation by reduction to counting
problems appears in [27, 109, 71, 102], and the connection to abstract in-
terpretation in [90]. Prior applications of QIF to side-channels in cryptosys-
tems [87, 88, 91] are limited to stateless systems. For the analysis of caches,
we rely on the abstract domains from [21] and their implementation in the
AbsInt TimingExplorer [1]. Finally, our work goes beyond language-based
approaches that consider caching [19, 70] in that we rely on more realistic
models of caches and aim for more permissive, quantitative guarantees.
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Chapter 7
Model-Based Testing

mechanisms

Access ControlLocal
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In this chapter we discuss preliminary results on availability properties,
that although not the main focus of this thesis, constitute an interesting and
promising research direction. Moreover, some of the technical framework
to reason about change discussed in Chapter 3 can be instantiated for the
properties and notation under consideration. This is possible because the
models used for the test generation are UML state-charts and the security
consistency properties are of a structural nature.

Typically, UML models verified against security properties are explicit
models of the system design as we have seen in the previous chapters. In
conformance Model-Based Testing (MBT) the expected behaviour of an ap-
plication is described, seen thus as a blackbox. In this chapter we propose
an extension to UMLsec that allows to verify the consistence of models used
for black-box MBT with respect to the security properties that are to be
tested. We will show results on two security properties, but our approach
can be generalized to other security properties related with access control
and availability. These two properties assume an operating system with a
finite number of states, that represent stages on the system’s life-cycle (i.e.
‘initialized’, ‘operation ready’, ‘blocked’ and ‘terminated’). The requirement
is that only authorized applications may set the system into the ‘terminated’
status, and that whenever in that status, it is impossible by any other oper-
ation to revert it. Although inspired on actual requirements on smart-cards,
these two properties are of interest to a wide range of devices: for exam-
ple, it would be convenient to be able to remotely set stolen mobile phones
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or laptops into a non-revertible non-operating status, while having strong
guarantees that this can not be done by malicious applications.

To validate our approach, we demonstrate our results by experimental
semi-automatic generation of test schemas using the language introduced in
[53] on the Global Platform Specification for smart cards [9] and its evolution
from V 2.1.1 to V2.2. We also report on prototypical tool support for our
approach.

7.1 Consistency verification with UMLsec

In this section we describe our approach for well-founded security MBT and
we explain how to profit from the UMLseCh approach for security annotated
models presented in Chapter 3. Our main objective is that the model that
is used for test generation is verified for consistency with respect to the
considered security properties, and this consistency should hold also after the
model has evolved. If not, the model may authorize an incorrect behaviour
and the produced tests will expect from the System Under Test (SUT) to
present the same erroneous behaviour as the model.

7.1.1 Security properties

We will illustrate our approach using the following two properties (originally
defined for the Global Platform [9]) that are critical for a device issuer/owner
in order to have control over compromised running devices.

Security Property 1, locked-status: For any execution, whenever the
system is set to the state TERMINATED by means of an operation performed
by a privileged application, then it should not be possible to revert to another
state.

This property ensures that whenever an application with enough priv-
ileges terminates the system, the system cannot be put back in operation.
This is an important feature to control devices running malicious applications
or that have been compromised in some way (for example stolen or lost).

Security Property 2, authorized-status: It should not be possible for
an application that does not have the given privilege to set the system into a
given state TERMINATED.

Conversely, to avoid the Denial of Service (DoS) attacks on the system,
only applications with sufficient privileges should be able to terminate it.
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7.1.2 Extending UMLsec for these security properties

Assuming the SUT has a variable state representing the card status, we model
the expected behaviour of the SUT as a statechart where its states represent
the status of the card’s life-cycle. We further assume there is a command
set status, only executable by privileged applications to change the card’s
status from one to another, and this is the event triggering all transitions
in the model. To model failed attempts i.e change the card’s status by a
non privileged application, we allow internal transitions in a given state to
represent them, for which the consequence is that a variable statusWord is
affected with an error message.

Under these assumptions, a statechart in which from one state having
the value {status} there are not only incoming but also outcoming transi-
tions (with satisfiable guards, otherwise they would be superfluous) would
be trivially violating the Security Property 1. This would contradict the
property to test and could be the source of misinterpretations of the testing
results. Potentially, it could also mean that the system specification is con-
tradictory with respect to the wished security properties. To avoid this, we
can extend UMLsec with a stereotype 〈〈 locked-status 〉〉 together with a tag
{status} where a specific status can be defined. Semantically, a statechart
annotated with this stereotype would require that there are not outgoing
transitions from the state specified in {status}.

Similarly, we can define a stereotype 〈〈 authorized 〉〉 with two tags {status}
and {permission}. This stereotype enforces that there exists no incoming
transition to the status specified in {status} with a guard NOT containing
{permission}. Under the assumption that in each transition from state to
state we check for given application privileges, this stereotype would avoid
having a model trivially violating Security Property 2.

These properties can be checked statically on UML statecharts since we
are not aiming at verifying behavioural properties, but at ensuring a struc-
tural property as a precondition to the testing process. For example, the
check performed by 〈〈 authorized 〉〉 on a statechart could be summarized by
the following algorithm, where Status is the state corresponding to the value
of {status} and the auxiliary function IncomingTransitions() returns all the
incoming transitions relatively to that status.

Transitions := Status.IncomingTransitions();
for T in Transitions do
if Permission not in T.Guard
return false;

In a similar way define the algorithm for 〈〈 locked-status 〉〉, where we check
whether Status.OutgoingTransistions() is empty.
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7.1.3 Transformation Rules of UMLsec stereotypes to Schemas

We model the SUT expected behaviour with a statechart where its states
represent the status of the card’s life-cycle. We further assume there is a
command set status, only executable by privileged applications to change
the card’s status from one to another, and this is the event triggering all
transitions in the model. To model failed attempts i.e change the card’s
status by an non privileged application, we allow internal transitions in a
given state to represent them, for which the consequence is that a variable
statusWord is affected with an error message.

Under these assumptions, property 1 requires (written as a Hoare triple):

{state = TERMINATED} set status+ {state = TERMINATED}

that is, if we reach the state TERMINATED, then after an arbitrary
number of calls to any operation, the resulting status should be the same. In
other words, there should be no outgoing transitions from that status in the
state-chart to states different than TERMINATED. To verify this, we have
extended UMLsec with the 〈〈 locked-status 〉〉 stereotype with a {status} tag,
that tries to find a counterexample to property 1 by negating it, that is we
look for violating outgoing transitions in the model.

The second property can be written in a triple as:

{state 6= TERMINATED} set status+ {state 6= TERMINATED}

assuming that the application executing the operations has not enough
privileges. For this, we have defined a stereotype 〈〈 authorized 〉〉 with two tags
{status} and {permission}. This stereotype enforces that there exists no
incoming transition to the status specified in {status} with a guard NOT
containing {permission}. Under the assumption that in each transition from
state to state we check for given application privileges, this stereotype would
avoid having a model trivially violating Security Property 2. These properties
can be checked statically on UML statecharts since we are not aiming at
verifying behavioural properties, but at ensuring a structural property as a
precondition to the testing process.

At the end of the verification process our goal is to export test schemas
based on the properties specified before, encapsulating the expected be-
haviour of the system after executing particular instructions that could po-
tentially violate the property and make the system not to behave as expected.
This generation represents thus the link from UMLseCh to testing, since we
can automatically generate test sequences from schemas. Moreover, we ex-
port also the delta of changes as specified with UMLseCh (see Section 4.4),
from which we will trigger the automatic test generation for the evolved parts
of the model.
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7.2 Handling change

To reason about model evolution, as discussed in Chapter 3 we have defined
a set of sufficient conditions that if respected by the delta specified in with
UMLseCh will guarantee the preservation of the security properties on the
evolved model. That is, we define rules for each evolution type (addition, dele-
tion, substitution) and for each UML type (that is relevant for the property,
in this case, transitions, guards and states). In other words, by parsing the
evolution stereotypes (〈〈 add 〉〉, 〈〈 del 〉〉,〈〈 substitute 〉〉) we obtain a set of atomic
elements ∆ = o1, . . . , on that we can classify by its evolution type and UML
type. We can then evaluate ∆ element by element with the sufficient con-
ditions, and in each step obtain a model that satisfies the desired property
(otherwise we stop and report an error).

The definition of the stereotype 〈〈 locked-status 〉〉 with tag { status =Status }
requires that no outgoing transition from a state with label Status exists. On
the other hand, the stereotype 〈〈 authorized-status 〉〉 with tag { status =Status }
and { permission =Permission } requires that every incoming transition to a
state with label Status has within its guard the substring Permission.

Sufficient conditions for the preservation of both properties are given in
the following. Note that most of the soundness proofs follow directly from
the definition of the properties, and therefore are not explicitly given.

Deletion

State, Transition Deleting a state including all incoming and outgoing
transitions (otherwise the resulting state chart would not be syntactically
valid) does not alter neither of the two security properties. The same holds
for deletion of a transition in both cases. The proofs follow directly from the
definition.

Guard with respect to 〈〈 authorized-status 〉〉: Let D = {o1, ..., on} the set
of objects to be deleted . Let P be the security property with respect to
stereotype 〈〈 authorized-status 〉〉, P is satisfied in the modified model if the
following condition is fulfilled. If the deleted guard contains the condition
{ permission =Permission } and the transition corresponding to this guard has
target state which is labeled as Status, the transition itself should be deleted.
Formally, this is described by the rule:

∀o∈D(o.type = guard ∧ Permission ∈ o.permission ∧
o.parentTransition.targetState.label = Status)⇒
∃o′∈D(o′ = o.parentTransition)
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Addition

State From the definition of both stereotypes, it follows that addition of a
new state without any transition does not violate the security property from
a state machine.

Transition with respect to 〈〈 locked-status 〉〉: Let A = {o1, ..., on} the set of
objects to be added. Let P be the security property defined by the stereotype
〈〈 locked-status 〉〉. P will be satisfied in the model after the additions in A if the
source state from new transition o is labeled as Status, then the target state
from the transition should be labeled as Status too, i.e. the new transition
should have the same state as source and target. We can express this rule as
follows:

∀o∈A(o.type = transition ∧ o.sourceState.label = Status)⇒
(o.targetState = o.sourceState)

The proof follows directly from the definition of P .
In the case of 〈〈 authorized-status 〉〉: Let A = {o1, ..., on} the set of objects

to be added. P is satisfied after committing each o in the set A if the following
condition is fulfilled;

∀o∈A(o.type = transition ∧ o.targetState.label = Status)⇒
∃o′∈A(o′ = o.guard ∧ Permission ∈ o′.permission)

Again, this follows easily from the definition.

Guard Addition of a new guard does not alter the security properties.

Substitution

Let S = {((o1, o
′
1), ..., (on, o

′
n))} the set of objects pairs to be substituted.

State with respect to 〈〈 locked-status 〉〉: In case that a state o , which is not
labelled as Status, is substituted with a State o′ , which is labelled as Status,
o′ should have no outgoing transition to preserve the secure requirement of the
system. In the case of 〈〈 authorized-status 〉〉: If a state o , which is not labelled
as Status, is substituted with a state o′ , which is labelled as Status, all
incoming transitions to o′ should have a guard, which contains the condition
{ permission= Permission } to preserve the secure requirement of the system.

Transition Both cases are similar to their respective rules for the addition
of a transition.
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Guard with respect to 〈〈 locked-status 〉〉: Substitution of a guard does not
alter the secure properties of the system. In the case of 〈〈 authorized-status 〉〉:
a guard o which contains { permission =Permission } can be substituted with
a guard o′ containing this condition as well.

7.3 Validation

We have applied our methodology to a real case study: the Global Plat-
form [9] in the context of the SecureChange project. The Global Platform
is a non-profit organization involving over 60 industry members (including
American Express, MasterCard, Visa, Nokia, Sun and Gemalto) that de-
fines a publicly available smart card application management specification.
The goal of this specification is to be a hardware and operating neutral sys-
tem and to cover a wide range of security critical industrial applications and
therefore focuses on many security aspects. For example precise protocols
for the communication of the card with an application provider or central
server are defined aiming at guaranteeing confidentiality, integrity and au-
thenticity aspects of both over-the-air and terminal connections. Moreover,
Global Platform supports external software updates. Implementations of the
specification with tailored applications include Financial, Mobile telecommu-
nications, Government initiatives, Healthcare, Retail merchants and Transit
domains.

The scope of our work is the management of the card life cycle, from the
card’s production until its destruction. We have created test models for the
version on the Card Life Cycle Scope of Global Platform 2.1.1 respecting the
assumptions mentioned in the previous section: each status of the statechart
correspond to a state of the card and each transition’s guard from state to
state checks for certain application privileges.

7.3.1 Correctness Verification with UMLsec

We have verified a life-cycle testing model representing the expected be-
haviour of the card according to the Global Platform 2.1.1 Specification with
respect to the stereotypes 〈〈 locked-status 〉〉 and 〈〈 authorized-status 〉〉 using the
UMLsec verification tool, which we have extended for these new stereotypes.
The UMLsec tool takes a statechart diagram in XMI format as an input and
runs the proposed verification process on it. For illustrative purposes a frag-
ment of a violating statechart w.r.t 〈〈 locked-status 〉〉 for the Global Platform
2.1.1 life cycle is shown on Fig. 1. In this statechart, there is a transition
coming out from TERMINATED to SECURED, which is a contradiction to the
desired property. This is reported to the user, who can correct the model
accordingly and re-verify it.
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Figure 1: Example of a violating fragment of the GP 2.1.1 Life-Cycle mod-
elled with ArgoUML

7.3.2 Schemas for the Security Properties

Although the formalization used (Hoare triples) to express the intention of the
test can be generally applicable to any testing generation language, we have
explored the automatic generation of schemas using the SmartTesting lan-
guage [53]. Using transformation rules based on Hoare triples automatically
generated with the instantiated permission and relevant state information,
we have obtained the following test schema that reflects the security prop-
erty w.r.t. to the test intention we have defined. We needed only to define
manually the existing model instance, for which we want to generate tests:

for each literal $X from TERMINATED
for each literal $Y from TERMINATED
for each $Z from any operation
use any operation at least once
to reach state respecting (self.selectedApp.cardTermPriv = true)
on instance ’card’ then
use APDU_Set_Status any number of times
to reach state respecting (self.state=$X)
on instance ’card’’ then
use $Z at least once
to reach state respecting (self.state = $Y)
on instance ’card’

Informally the test intention associated to this schema is:

• set the status of the card to TERMINATED;

• try all operations (to see if they behave as predicted by the model, i.e.
by returning a status word of error).

The test intention for the authorized-status security property that we
exhibit, is defined informally as a scenario to test the nominal case of failure
of this security property:
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• select any application without the Card Terminate Privilege

• set the card to a state different than terminated

• try to use the set status command to reach the TERMINATED with
an unprivileged application and check that the system behaves as pre-
dicted.

Then from the verified stereotype and the exported Hoare triple, we gen-
erate the corresponding test schema:

for each litteral $STATE from LIST
use any operation any number of times
to reach self.selectedApp.cardTermPriv = false
and self.state =$STATE
on instance ’card’
then use APDU_Set_Status( , , CARD, TERMINATED, )

where LIST = OP READY, INITIALIZED, SECURED, CARD LOCKED.

7.4 Related work

Recently, the use of models to describe the expected behaviour of a system
have been proposed in the context of conformance testing for security prop-
erties [35, 78, 135]. There exist different approaches to model-based testing.
One possibility is the test generation based on model-checkers by generating
execution sequences that contradict the properties (see [57, 22] for exam-
ple). This properties as proposed by M. Dwyer [51] can be defined by a
temporal pattern. Other possibility is the translation of security properties
into test target to cover test needs associated to the properties. This ap-
proach uses the same set of actions of the model. Some elements to drive
the test generation can be added. For example, in input/Output Symbolic
or Labelled Transition Systems [73, 56] two trap states named Accept and
Refuse are added. The Accept states are used as end states for the test gen-
eration while the Refuse states allow for cutting the traces not wanted in
the generated tests. These formalisms are for example used in tools such as
TGV [73], STG [44], TorX [132], Agatha [34]. Some approaches are based
on the definition of scenarios for the test in the model. In [32][29], test cases
are issued from UML diagrams as a set of trees. The scenarios are extracted
by a breadth-first search on the trees. A similar approach is implemented
in the tool Telling TestStories [52], based on defining a test model from el-
ementary test sequences made of an initial state, a test story and test data.
In [83] the authors propose an approach for systematically generating test
sequences for security properties in a model-based way that can be used to
test the implementation for vulnerabilities.
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In [40] authors use scenarios based on regular expressions, to enrich the
test generation test suite produced by the Smartesting Test Designer Tool,
which cannot generate tests for dynamic system properties. Their work, is
an adaptation for UML base on the work done in [97]. This language was
designed during an industrial project dedicated to testing the conformance
of a system to a security policy. In the smart-card application domain, in
[42] Chetali has pointed out the need to have an automated and formally
sound approach allowing to prove security properties in the context of security
certification, and the requirements such an approach should fulfil. The results
discussed in this chapter are a step towards this direction.
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Chapter 8
Conclusions

This thesis discusses the preservation of exemplary security properties of
models in different evolution scenarios and at different levels of abstraction,
focusing on confidentiality properties. For structural properties, we consid-
ered selected classes of changes in models such as addition, deletion, and
substitution of model elements based on UMLsec diagrams. Assuming that
the starting UMLsec diagrams are secure, which one can verify using the
UMLsec tool framework, our goal was to re-use these existing verification re-
sults to minimize the effort for the security verification of the evolved UMLsec
diagrams. In case of model consistency properties that are local enough, we
have discussed a fine-grained incremental analysis. This technique can be ap-
plied to discuss the preservation of UMLsec security properties on structural
diagrams such as class diagrams, deployment diagrams and for some proper-
ties even on state-charts. For example, the two model consistency properties
considered as a basis for a sound model-based-testing analysis are defined
on UML state-charts and because of their local nature we have been able
to spell out sufficient conditions for the preservation of security after atomic
changes. A prototypical implementation of this verification techniques has
been implemented that has also been used as a basis for evaluating the prac-
tical efficiency of our methodology, allowing us to preliminary demonstrate
the feasibility of this methodology.

On the other hand we have presented a light-weight verification strategy
for state-charts that is sound with respect to classical non-interference. Our
technique is fully automatic and can help to bridge the gap between theory
and practice for information-flow in secure-software development in industrial
context, by applying our results to a non-trivial subset of UML Statecharts,
extending previous work in the area. On a technical level, we have shown
how to link unwinding theorems defined in input/output state-machines with
verification techniques related to the imperative programming language do-
main. With respect to model evolution, we have shown that non-interference
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is compositional in this setting for the composition notion used in UMLsec.
This is a useful result for reasoning about changes in the model, since in
the software life-span components might be added, deleted or substituted for
which it will be desirable to reuse existing verification results. To validate our
approach we have modelled interesting aspects of a Smart Metering scenario
where subtle information flows related to confidentiality can be captured by
non-interference. These examples show that although approximate, our un-
winding theorems are fine-grained enough to verify non-trivial state-charts.
We have also prototypically implemented the construction and the verifi-
cation of the newly defined unwinding relation and unwinding conditions.
This implementation allowed us to verify the examples of the case study and
discuss about the practical efficiency of the procedure.

Because the non-interference analysis performed on UML State-charts as-
sumes some kind of access control to separate the inputs and outputs of differ-
ent groups of users, we have also analysed cryptographic protocols, which are
an important building block for network access control. We have shown a de-
cision procedure for the compositionality of secrecy in the setting of processes
exchanging symbolic cryptographic messages that is sound and complete with
respect to previous work on First Order Logic protocol verification. We illus-
trate our approach by applying it to an insecure variant of TLS and its fix.
To reason empirically about the efficiency of our approach, we compare the
running time of the composition of multiple processes. Tool support, based
on Prolog, supports the validation of protocols specified using UML Sequence
diagrams.

To be able to justify perfect cryptography as it is assumed by the Dolev-
Yao analysis one should use cryptographic implementations that are se-
cure against side-channel attacks. We have shown that cache side-channels
can be automatically quantified using static cache analysis and quantita-
tive information-flow analysis. We have demonstrated the practicality of
this approach by deriving information-theoretic security guarantees for an
off-the-shelf implementation of 128-bit AES (with and without a commonly
suggested countermeasure) on a realistic model of an embedded CPU.

In summary, we have contributed incremental and compositional tech-
niques to reason about confidentiality at different levels of abstraction and
highlighted their informal relation. These reasoning tools allow to handle
changes to models and their impact to the overall security of the system. The
feasibility of our approach is backed up by proof-of-concept implementations
that have allowed us also to discuss heuristically about the computational
time required by our algorithms.

As it is the case with most doctoral works, there are many directions in
which our work could be extended. In general, a formal soundness of the
way we link different security properties and levels of abstraction constitutes
an interesting and challenging topic for future work. Also, extensions to
other information flow properties for non-deterministic state-machines are
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interesting to study in the context of UML. The study of more complex sub-
set of the state-charts, allowing for example call-backs and recursion is a
challenging and interesting subject. Moreover, studying the preservation of
non-interference on code generated from secure UML specifications (refine-
ment) constitutes also a necessary step towards industrial acceptance of these
verification techniques. Improvements on the precision of our approximations
through unwinding theorems is an important topic as well. With respect to
our work in CPU caches and side-channel analysis, it would be interesting
to develop abstract cache domains that enable the derivation of bounds that
hold for an arbitrary number of executions of the victim process, and to ex-
tend our quantification to account for alternative adversary models, such as
asynchronous, trace-based, and timing-based.

Finally, a thorough analysis of the usability and efficiency of the proposed
approach would certainly be necessary to determine the precise applicability
in industrial domains. We have discussed some preliminary results in this
direction, but it would be interesting future work to systematically validate
them with different groups of users and in a realistic production environment.
This however goes outside of the scope of our research.
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Appendix A
Omitted proofs

A.1 Chapter 4

Although not difficult, the following argument is normally not explicitly given
when referring to non-interference.

Theorem 5. The property:

∀ −→i [
−→
i ]|L = [

−→
i |L]|L (A.1)

is equivalent to:

∀ −→i1 ,
−→
i2
−→
i1 |L =

−→
i2 |L ⇒ [

−→
i1 ]|L = [

−→
i2 ]|L (A.2)

Proof. (A.1) ⇒ (A.2): Since (A.1) holds for any input sequence
−→
i it holds

in particular for two arbitrary
−→
i1 ,
−→
i2 such that

−→
i1 |L =

−→
i2 |L. Then it follows:

∀ −→i1 ,
−→
i2 [
−→
i1 ]|L = [

−→
i1 |L]|L = [

−→
i2 |L]|L = [

−→
i2 ]|L

(A.2)⇒ (A.1): Follows directly from the definition of (A.2) and (A.1) for−→
i1 =

−→
i and

−→
i2 =

−→
i |L since

−→
i2 |L = (

−→
i |L)|L =

−→
i |L.

A.2 Chapter 6

The concrete cache updating function for a set t for access of a location m
as defined in [21] defines a new set t′ as follows
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A. Omitted proofs

U(t,m) =



t′(1) = m,
t′(i) = t(i− 1) | i = 2 . . . h,
t′(i) = t(i) | i = h+ 1 . . . A; if ∃h : t(h) = m

t′(1) = m,
t′(i) = t(i− 1) for i = 2 . . . A; otherwise

This can be generalized for a list 〈m1, . . . ,mk〉 of locations:

U(t, 〈m1, . . . ,mk〉) = U(U(. . .U(t,m1) . . . ),mk)

Lemma 2. Let Φ be the following property over cache sets t:

Φ(t) : t(k) = ∅ ⇒ ∀ k′ > k t(k′) = ∅.

Then if an initial concrete state t satisfies Φ, then the final concrete state
after the update of a sequence of memory references by means of the cache
update function U also respects Φ.

Proof. We consider the case where the cache consists of only one cache set
(the generalization is similar). We apply induction on the list of memory
references for:

t′ = U(t, 〈m1, . . . ,mk〉)
If the list is empty, the claim follows trivially. Otherwise, there are two

cases:

∃h : t(h) = m: As m is in the cache, it is shifted to the first position and
all other locations are placed afterwards. Therefore Φ holds on the resulting
cache.

otherwise: As m is not in the cache, it is inserted in the first positions
and the existing locations are placed afterwards. Therefore Φ holds on the
resulting cache.
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Appendix B
Code snippets

B.1 Chapter 4

In this appendix we spell out the complete set of types used for the imple-
mentation:

type Label = String

type Variable = String

type Condition = String

type Parameter = String

type Method = String

type Return = String

type High = [Input]

type Low = [Input]

type Tainted = [Variable]

type Node = (Label,Tainted)

type MethodCall = (Method,Parameter)

type Input = MethodCall

type Action = (Variable,String)

type Output = (Action,Return)

type Origin = Label

type Target= Label

type Transition = (Condition, Input, Output, Origin, Target)

type Nodes = [Node]

type Transitions = [Transition]

type StateChart = (Nodes,Transitions)

Thus, in the example of the vehicle component V in Sect 4.4 we have that
the nodes are (after the tainting analysis):

[("x",["p","price"]),("y",["p","price"])]

and the transition list is:

117



B. Code snippets

[("",("readPrice",""),(("p","getPrice"),""),"x","x"),

("",("charge",""),(("",""),"start"),"x","y"),

("",("tic",""),(("t","t+1"),""),"y","y"),

("t=10/p || t = k",("tic",""),(("",""),"stop"),"y","x")]

The security policy can be written as:

h = [("readPrice",""),("setPrice",""),("getPrice","")]

l = [("tic",""),("start",""),("stop",""),("charge","")]

The computed transition relation is a list of type [(Node,Node)]:

[(("x",["p","price"]),("x",["p","price"])), (("y",["p","price"]),("y",["p","price"]))]

and output consistency fails when the pair (y, y) is evaluated. By replac-
ing the transition:

("t=10/p || t = k",("tic",""),(("",""),"stop"),"y","x")

with

("t = k",("tic",""),(("",""),"stop"),"y","x")

the component V can be verified as secure.

B.2 Chapter 6

In the encrypting process of the AES code as implemented in [5], access to the
look-up tables are performed for example in the various AES forward rounds.
For encryption for example, the forward rounds are initially contained in a
loop,

for(j = (nr >> 1) - 1; j > 0; j--) {

AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);

AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);

}

where for a 128 bit key nr=10. The AES forward round is defined as:

#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \

{ \

X0 = *RK++ ^ FT0[ ( Y0 ) & 0xFF ] ^ \

FT1[ ( Y1 >> 8 ) & 0xFF ] ^ \

FT2[ ( Y2 >> 16 ) & 0xFF ] ^ \

FT3[ ( Y3 >> 24 ) & 0xFF ];

...

}

For partitioning (see 6.5.2) we have defined a function TEST INDEX as follows:
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B. Code snippets

#define TEST_INDEX(i,a,v) { \

if(i<4) { \

v = a[i]; \

} \

else{ \

if(i<12){ \

v = a[i]; \

} \

...

if(i<252){ \

v = a[i]; \

}\

else {\

v = a[i];\

}

...

}

This code checks the range of the index i within a partition of the possible
index range of table a. In this case i ranges from 0 to 255, partitioned in 33
sub-ranges of length at most 8 corresponding to the sets associated to the
table blocks within a given sub-range. Then we have changed the original
look-up by the following semantically equivalent code.

#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \

{ \

/* temporary variable */ \

unsigned long t; \

\

TEST_INDEX(Y0,FT0,t); \

X0 = *RK++ ^ t; \

TEST_INDEX(Y1 >> 8,FT1,t); \

X0 ^= t; \

TEST_INDEX(Y2 >> 16,FT2,t); \

X0 ^= t; \

TEST_INDEX(Y3 >> 24,FT3,t); \

X0 ^= t;

...}
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