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Abstract

We consider quantile regression processes from censored data under dependent data

structures and derive a uniform Bahadur representation for those processes. We also

consider cases where the dimension of the parameter in the quantile regression model

is large. It is demonstrated that traditional penalization methods such as the adaptive

lasso yield sub-optimal rates if the coefficients of the quantile regression cross zero. New

penalization techniques are introduced which are able to deal with specific problems

of censored data and yield estimates with an optimal rate. In contrast to most of

the literature, the asymptotic analysis does not require the assumption of independent

observations, but is based on rather weak assumptions, which are satisfied for many

kinds of dependent data.
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1 Introduction

Quantile regression for censored data has found considerable attention in the recent lit-

erature. Early work dates back to Powell (1984), Powell (1986) and Newey and Powell

(1990) who proposed quantile regression methods in the case where all censoring variables

are known [see also Fitzenberger (1997)]. Ying et al. (1995) introduced median regression

in the presence of right independent censoring. Similar ideas were considered by Bang and

Tsiatis (2002) and later Zhou (2006).
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All these papers have in common that the statistical analysis requires the independence of

the censoring times and covariates. Portnoy (2003) and Portnoy and Lin (2010) replaced

this rather strong assumption by conditional independence of survival and censoring times

conditional on the covariates. The resulting iterative estimation procedure was based on the

principle of mass redistribution that dates back to the Kaplan-Meier estimate. An alterna-

tive and very interesting quantile regression method for survival data subject to conditionally

independent censoring was proposed by Peng and Huang (2008) and Huang (2010) who ex-

ploited an underlying martingale structure of the data generating mechanism. In particular,

in the four last-mentioned papers weak convergence of quantile processes was considered.

This is an important question since it allows to simultaneously analyze the impact of co-

variates on different regions of the conditional distribution. We also refer to the recent work

of Wang and Wang (2009), Leng and Tong (2012) and Tang et al. (2012) who discussed

quantile regression estimates that cope with censoring by considering locally weighted dis-

tribution function estimators and employing mass-redistribution ideas. All of the references

cited above have in common that the asymptotic analysis is rather involved and relies heav-

ily on the assumption of independent observations. An important and natural question is,

whether, and how far, this assumption can be relaxed. One major purpose of the present

paper is to demonstrate that a sensible asymptotic theory can be obtained under rather weak

assumptions on certain empirical processes that are satisfied for many kinds of dependent

data. We do so by deriving a uniform Bahadur representation for the quantile process. In

some cases, we also discuss the rate of the remainder term.

The second objective of this paper deals with settings where the dimension of the parameter

of the quantile regression model is large. In this case the estimation problem is intrinsically

harder. Under sparsity assumptions penalized estimators can yield substantial improvements

in estimation accuracy. At the same time, penalization allows to identify those components

of the predictor which have an impact on the response. In the uncensored case, penalized

quantile regression has found considerable interest in the recent literature [see Zou and Yuan

(2008), Wu and Liu (2009) and Belloni and Chernozhukov (2011) among others]. On the

other hand - to the best knowledge of the authors - there are only three papers which discuss

penalized estimators in the context of censored quantile regression. Shows et al. (2010)

proposed to penalize the estimator developed in Zhou (2006) by an adaptive lasso penalty.

These authors assumed unconditional independence between survival and censoring times

and considered only the median. Wang et al. (2012) proposed to combine weights that

are estimated by local smoothing with an adaptive lasso penalty. The authors considered

a model selection at a fixed quantile and did not investigate process convergence of the

corresponding estimator.

In contrast to that, Wagener et al. (2012) investigated sparse quantile regression models

and properties of the quantile process in the context of censored data. As Shows et al.

(2010), these authors assumed independence of the censoring times and predictors, which
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may not be a reasonable assumption in many practical problems and moreover might lead

to inefficient estimators [see the discussion in Koenker (2008) and Portnoy (2009)]. An even

more important point reflecting the difference between the philosophy of quantile versus

mean regression was not considered in the last-named paper. In contrast to mean, quantile

regression is concerned with the impact of predictors on different parts of the distribution.

This implies that the set of important components of the predictor could vary for different

quantiles. For example, it might be possible that a certain part of the predictor has a strong

influence on the 95%-quantile of the distribution of the response, while a different set relates

to the median. Also, quantile coefficients might cross zero as the probability for which the

quantile regression is estimated varies. Traditional analysis of penalized estimators, including

the one given in Wagener et al. (2012), fails in such situations. At the same time, it might

not be reasonable to exclude covariates from the model just because they have zero influence

at a fixed given quantile. All those considerations demonstrate the need for penalization

techniques that take into account the special features of quantile regression. To the best of

our knowledge, no results answering these questions are available in the context of censored

quantile regression.

Therefore the second purpose of the present paper is to construct novel penalization tech-

niques that are flexible enough to deal with the particular properties of censored quantile

regression, and to provide a rigorous analysis of the resulting quantile regression processes.

One major challenge for the theoretical analysis of censored regression quantiles in the present

setting is the sequential nature of the underlying estimation procedures. While in other set-

tings estimators for different quantiles do not interact, the situation is fundamentally different

in the case of censored data when iterative procedures need to be applied. In the course

of our analysis, we demonstrate that using traditional generalizations of concepts from the

mean regression setting can result in sub-optimal rates of convergence. As a solution of

this problem we propose penalties that avoid this problem and additionally allow to analyze

the impact of predictors on quantile regions instead of individual quantiles. Finally, all our

results hold for a wide range of dependence structures thus considerably extending the scope

of their applicability.

The remaining part of the paper is organized as follows. The basic setup is introduced

in Section 2. In Section 3, we concentrate on the properties of the unpenalized estimator

in settings where the realizations need not be independent and derive a uniform Bahadur

representation. Various ways of penalizing the censored quantile process and the properties

of the resulting estimators are discussed in Section 4. A small simulation study illustrating

the findings in this section is presented in Section 5. Finally, all proofs and technical details

are deferred to an appendix in Section 6.
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2 Censored quantile regression

We consider a censored regression problem with response Ti, predictor Zi and censoring

time Ci, where the random variables Ti and Ci may be dependent, but conditionally on

the d-dimensional covariate Zi the response Ti and the censoring time Ci are independent.

As usual we assume that instead of Ti we only observe Xi = Ti ∧ Ci, and the indicator

δi = I{Xi = Ti}. Let {Ti, Ci,Zi}ni=1 denote n identically distributed copies of the random

variable (T1, C1,Z1). The aim consists in statistical inference regarding the quantile function

of the random variable T conditional on the covariate vector Z on the basis of the sample

{Xi,Zi, δi}ni=1. In particular we would like to study the influence of the components of the

predictor on different quantiles of the distribution of T . Following Portnoy (2003) and Peng

and Huang (2008), we assume that the conditional quantile functions of T are linear in Z,

i.e.

Qτ (T |Z) := inf{t : P (T ≤ t|Z) ≥ τ} = Ztβ(τ) (2.1)

for τ ∈ [τL, τU ] ⊂ [0, 1). Combining ideas from the above references, an estimator for the

coefficient function β(τ)τ∈[τL,τU ] can be constructed in an iterative manner. To be precise,

consider a uniformly spaced grid

τL < τ1 < ... < τNτ (n) = τU (2.2)

with width an = o(n−1/2) and set bn := an/(1− τU). The estimator for β(τ) is now defined

as a piecewise constant function. We follow Portnoy (2003) by assuming that there is no

censoring below the τL’th quantile where τL > 0. Setting τ0 = τL, the estimator β̂(τL) is

defined as the classical Koenker and Bassett (1978) regression quantile estimator without

taking censoring into account. For j = 1, . . . , Nτ(n) the estimator β̂(τj) of β(τj) is then

sequentially defined as any value from the set of minimizers of the convex function

H̃j(b) :=
1

n

∑
i

(
δi|Xi − Ztib| − Ztib

(
δi − 2

∫
[τ0,τj)

I{Xi ≥ Ztiβ̂(u)}dH(u)− 2τ0

))
(2.3)

Here H(u) := − log(1 − u) and β̂(τ) is defined as constant and equal to β̂(τj) whenever

τ ∈ [τj, τj+1). The convexity of H greatly facilitates the computation of the estimators. In

particular the computation of the directional derivative of the function H̃j at the point b in

direction of ξ yields

Ψj(b, ξ) =
−2

n

n∑
i=1

ξtZi

(
Ni(Z

t
ib)−

∫
[τ0,τj)

I{Xi ≥ Ztiβ̂(u)}dH(u)− τ0
)

(2.4)

+
1

n

n∑
i=1

I{Xi = Ztib}(δiξtZi + |ξtZi|)

where Ni(t) := δiI{Xi ≤ t} and sgn(a) := a
|a| if a 6= 0 with sgn(0) := 0. We thus obtain

that any minimizer b̂ of the function H defined in (2.6) satisfies the condition

inf
ξ

Ψj(b̂, ξ) ≥ 0. (2.5)
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The first major contribution of the present paper consists in replacing the i.i.d. assumption

that underlies all asymptotic investigations considered so far by general conditions on certain

empirical processes. In particular, we demonstrate that these conditions are satisfied for

a wide range of dependency structures. Moreover, instead of providing results on weak

convergence, we derive a uniform (weak) Bahadur representation that can be used as starting

point for the investigation of general L-type statistics [see e.g. Portnoy and Koenker (1989)]

and rank-based testing procedures [see Gutenbrunner et al. (1993)].

Remark 2.1 Peng and Huang (2008) studied a closely related estimate. More precisely

these authors proposed to set β̂(0) := 0 defined their estimator for β(τj) as the iterative

(generalized) solution of the equations

n∑
i=1

Zi

(
Ni(Z

t
ib)−

∫ τj

0

I{Xi ≥ Ztiβ̂(u)}dH(u)
)
≈ 0

Note that this corresponds to the first line in the definition of Ψj in equation (2.4). In the

case when the Xi have a continuous distribution, the second line in the definition of Ψj is of

order OP (1/n) uniformly with respect to b. Therefore (under this additional assumption)

this part is negligible compared to the rest of the equation and the proposed estimator can

thus be viewed as the solution of the estimating equation

n∑
i=1

Zi

(
Ni(Z

t
ib)−

∫
[τ0,τj)

I{Xi ≥ Ztiβ̂(u)}dH(u)− τ0
)
≈ 0

which corresponds to the one considered by Peng and Huang (2008) if we set τ0 = 0.

Remark 2.2 It is possible to show that in the case with no censoring up to a quantile τL,

the estimator starting at τL and the version starting at τ0 = 0 considered by Peng and

Huang (2008) share the same limiting behavior. However, we would like to point out that,

in order for the estimator starting at τ0 = 0 to be well-behaved, conditions controlling all

the lower part of the conditional distribution of the survival time given the covariates need

to be imposed. Obviously, no such assumptions are necessary for the version starting at τL,

and for this reason this version seems to be preferable in cases where there is no censoring

below a certain quantile.

It is well known that in models with insignificant coefficients penalization of the estimators

can yield significant improvements in the estimation accuracy. At the same time, this method

allows for the identification of the components of the predictor which correspond to the non-

vanishing components of the parameter vector. The second part of our paper is therefore

devoted to considering penalized versions of the estimator described above. Penalization
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can be implemented by adding an additional term to the estimating equation in (2.3). More

precisely, we propose to define

β̂(τ0) := arg min
b

1

n

∑
i

ρτ0(Xi − btZi) + λn

d∑
k=1

|bk|/pk(n, τ0)

and replace the function H̃j in (2.3) by

Hj(b) :=
1

n

∑
i

(
δi|Xi − Ztib| − Ztib

(
δi − 2

∫
[τ0,τj)

I{Xi ≥ Ztiβ̂(u)}dH(u)− 2τ0

))
(2.6)

+2λn

d∑
k=1

|bk|/pk(n, τj).

Here, the quantity p(n, τj) = (p1(n, τj), . . . , pd(n, τj)) denotes a d-dimensional vector that,

together with λn, controls the amount of penalization and is allowed to depend on the data.

A very natural choice is given by a version of the adaptive lasso [see Zou (2006)], that is

pk(n, τj) = |β̃k(τj)| (2.7)

(k = 1, . . . , d) where β̃(τ) is some preliminary estimator for the parameter β(τ). A detailed

discussion of estimators based on this penalization will be given in Section 4.1. In particular,

we will demonstrate that in certain situations the adaptive lasso can lead to non-optimal

convergence rates. Alternative ways of penalization that avoid this problem will be discussed

in Section 4.2.

Remark 2.3 Note that we also allow the choice pk(n, τj) = ∞ throughout this paper if it

is not stated otherwise. By this choice we do not use a penalization for the k’th component,

which would be reasonable if a variable is known to be important. For example, it is reason-

able not to penalize the component of β corresponding to the intercept since it will typically

vary across quantiles and thus be different from zero.

3 A Bahadur representation for dependent data

For the asymptotic results, we will need the following notation and technical assumptions

which are collected here for later reference. Consider the conditional distribution functions

F̃ (t|z) : = P (X ≤ t|z), F (t|z) := P (X ≤ t, δ = 1|z)

and denote by f̃(t|z), f(t|z) the corresponding conditional densities. Define the quantities

µ(b) := E[ZI{X ≤ Ztb, δ = 1}], µ̃(b) := E[ZI{X ≥ Ztb}] (3.1)

νn(b) :=
1

n

∑
i

ZiNi(Z
t
ib)− µ(b), ν̃n(b) :=

1

n

∑
i

ZiI{Xi ≥ Ztib} − µ̃(b). (3.2)

We need the following conditions on the data-generating process.
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(C1) The model contains an intercept, that is Zi,1 = 1 a.s. for i = 1, ..., n and there exists

a finite constant CZ > 0 such that ‖Z‖ ≤ CZ a.s. [here and throughout the paper,

denote by ‖ · ‖ the maximum norm].

(C2) There exist a finite constant C4 such that

‖β(τ1)− β(τ2)‖ ≤ C4|τ1 − τ2|

for all τ1, τ2 ∈ [τL, τU ].

(C3) Define the set B(T , ε) := {b ∈ Rd : infτ∈T ‖b− β(τ)‖ < ε}. Then

sup
b∈B(T ,ε)

sup
z
f(ztb|z) =: Kf <∞, sup

b∈B(T ,ε)
sup
z
f̃(ztb|z) =: K̃f <∞

Moreover f, f̃ are uniformly continuous on {btz : b ∈ B(T , ε), z ∈ Z}×Z with respect

to both arguments and uniformly Hölder continuous with respect to the first argument,

i.e. for some γ > 0 and Hf , H̃f <∞

sup
b1,b2∈B(T ,ε)

sup
z
|f(ztb1|z)− f(ztb2|z)| ≤ Hf‖b1 − b2‖γ,

sup
b1,b2∈B(T ,ε)

sup
z
|f̃(ztb1|z)− f̃(ztb2|z)| ≤ H̃f‖b1 − b2‖γ

(C4) We have

inf
b∈B(T ,ε)

λmin(E[(ZZtf(Ztb|Z)]) =: λ0 > 0

where λmin(A) denotes the smallest eigenvalue of the matrix A.

Remark 3.1 Condition (C1) has been imposed by all authors who considered model (2.1).

While it possibly could be relaxed, this would introduce additional technicalities and we

therefore leave this question to future research. Conditions (C2),(C3) place mild restrictions

on the regularity of the underlying data structure. Condition (C4) is similar to condition

(C4) in Peng and Huang (2008). It yields an implicit characterization of the largest quantile

that is identifiable in the given censoring model. For a more detailed discussion of this point,

we refer the interested reader to Section 3 of Peng and Huang (2008).

In contrast to most of the literature in this context which requires independent observations,

our approach is based on a general condition on certain empirical processes which holds for

many types of dependent data. More precisely, we assume the following conditions.

(D1) With the notation (3.2) we have

sup
b∈Rd
‖νn(b)‖+ sup

b∈Rd
‖ν̃n(b)‖ = oP (1)
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(D2) For some ε > 0 define B := {b : infτ∈[τL,τU ] ‖b− β(τ)‖ ≤ ε} and for a function g on B
define

ωa(g) := sup
‖b1−b2‖≤a,b1,b2∈B

‖g(b1)− g(b2)‖

Then the empirical processes (
√
nνn(b))b∈B and (

√
nν̃n(b))b∈B satisfy for any an = o(1)

ωan(
√
nνn) = oP (1), ωan(

√
nν̃n) = oP (1).

(D3) The process

wn(s) :=
τ0
n

n∑
i=1

(Zi − EZi)− νn(β(s)) +

∫
[τ0,s)

ν̃n(β(u))dH(u)

indexed by s ∈ [τL, τU ] converges weakly towards a centered Gaussian process W.

First of all, we would like to point out that for independent data, conditions (D1)-(D3) follow

under (C1) and (C3) and in this case

ωan(
√
nνn) + ωan(

√
nν̃n) = OP ((an log n)1/2 ∨ (n−1 log n)1/2).

We now provide a detailed discussion of results available in settings where the independence

assumption is violated. To this end, note that νn,k(b) =
∫
gbdPn − E[gb(Z, X, δ)] where

gb(z, x, δ) := zkI{x ≤ ztb}δ and Pn denotes the empirical measure of the observations

(Xi,Zi, δi)i=1,...,n. Thus for any set B ⊂ Rd the process (
√
nνn,k(b))b∈B can be interpreted

as empirical process indexed by the class of functions {gb|b ∈ B}.

Remark 3.2 Combining Lemma 2.6.15 and Lemma 2.6.18 from van der Vaart and Wellner

(1996) shows that {gb|b ∈ Rd} is VC-subgraph [see Chapter 2.6 in the latter reference for

details], and under assumption (C1) all functions in this class are uniformly bounded. Similar

arguments apply to ν̃n,k(b). The problem of uniform laws of large numbers for VC-subgraph

classes of functions for dependent observations has been considered by many authors. A

good overview of recent results can be found in Adams and Nobel (2010) and the references

cited therein. In particular, the results in the latter reference imply that (D1) holds as soon

as (Xi,Zi, δi)i∈Z is ergodic, (C1) is satisfied and the conditional distribution function of X

given Z, i.e. F̃ , is uniformly continuous with respect to the first argument.

Remark 3.3 Condition (D2) essentially imposes uniform asymptotic equicontinuity of the

processes n1/2νn, n1/2ν̃n. It is intrinsically connected to weak convergence of those processes.

More precisely, Theorem 1.5.7, Addendum 1.5.8 and Example 1.5.10 in van der Vaart and

Wellner (1996) imply that (D2) will hold as soon as the processes n1/2νn, n1/2ν̃n converge

weakly towards centered Gaussian processes, say V, Ṽ, with the additional property that

E[(V(b1) − V(b2))
2] = o(1) implies ‖b1 − b2‖ = o(1). Condition (D2) can thus be checked
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by establishing weak convergence of n1/2νn, n1/2ν̃n and considering the properties of their

covariance. The literature on weak convergence of processes indexed by certain classes of

functions in dependent cases is rather rich.

Specifically, with the notation from Remark 3.2, it is possible to show that under assumption

(C3) the bracketing numbers [see Definition 2.1.6 in van der Vaart and Wellner (1996)] of

the class G := {gb|b ∈ B(T , ε)} satisfy N[ ](ε,G, PX,Z,δ) ≤ cε−d for some finite constant c.

Thus, among many others, the results from Arcones and Yu (1994) for β-mixing, the results

from Andrews and Pollard (1994) for α-mixing and the results from Hagemann (2012) for

data from general non-linear time series models can be applied to check condition (D2).

For example, the results in Arcones and Yu (1994) imply that (D2) will hold as soon as

(Zi, Ti, Ri)i∈Z is a strictly stationary, β−mixing sequence with coefficients βk = O(k−r) for

some r > 1.

We now are ready to state the main result of this section.

Theorem 3.4 Assume that τ0 = τL > 0, that for some a > 0 we have P (C > Ztβ(τ0+a)) =

1 and let assumptions (C1)-(C4), (D1)-(D3) hold. Then the representation

β̂(s)− β(s) = (µ′(β(s)))−1
(
wn(s)−

∫
[τ0,s)

(
π
(u,s]

(
Id +M t

vdH(v)
))t

Muwn(u)dH(u)
)

+Rn(s)

(3.3)

holds uniformly in s ∈ [τL, τU ] where Mu = (µ′(β(s)))−1µ̃′(β(u)), π denotes the product-

integral [see Gill and Johansen (1990)], and for any cn →∞ the remainder Rn(s) satisfies

sup
τ∈[τL,τU ]

√
n‖Rn(τ)‖ = OP (n1/2bn + n−γ/2 + ωcnn−1/2(

√
nνn) + ωcnn−1/2(

√
nν̃n))

In particular, this implies

√
n(β̂(·)− β(·)) D→ (µ′(β(·)))−1Vτ0(·) (3.4)

in the space D([τL, τU ])d equipped with the supremum norm and ball sigma algebra [see Pollard

(1984)]. Here Vτ0 denotes centered Gaussian processes given by

Vτ0(τ) = W(τ)−
∫
[τ0,τ)

(
π
(u,τ ]

(
Id +M t

vdH(v)
))t

MuW(u)dH(u).

The uniform Bahadur representation derived above has many potential applications. For

example, it could be used to extend the L-statistic approach of Koenker and Portnoy (1987),

the rank tests of Gutenbrunner et al. (1993), or the confidence interval construction of Zhou

and Portnoy (1996) to the setting of censored and/or dependent data. We conclude this

section by discussing some interesting special cases and also possible extensions of the above

result.
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Remark 3.5 In the case of independent data, standard arguments from empirical process

theory imply

ωcnn−1/2(
√
nνn) + ωcnn−1/2(

√
nν̃n) = OP (n−1/4(cn log n)1/2).

Since cn can converge to infinity arbitrarily slowly, this shows that the remainder in (3.4) is

of order OP (bn + n−γ/2 + n−3/4(log n)1/2). In particular, for γ ≥ 1/2 and bn = O(n−3/4) we

obtain the same order as in the Bahadur representation of classical regression quantiles, see

e.g. Koenker and Portnoy (1987).

Remark 3.6 If only conditions (D1) and (C1)-(C4) hold, the proofs of the result yield

uniform consistency of the proposed quantile estimators. If the op(1) in condition (D1) can

be replaced by a rate OP (rn) with rn tending to zero not faster then n−1/2, it is again possible

to show that the censored regression quantiles converge uniformly with rate OP (bn + rn).

Remark 3.7 If there is no censoring we have Yi = Xi, δi = 1, i = 1, ..., n. In this case

Mv = −Id and thus for 0 < u ≤ s < 1

π
(u,s]

(
Id + (MvM̃v)

tdH(v)
)

= π
(u,s]

(1− dH(v))Id = exp(H(s)−H(u))Id =
1− s
1− u

Id.

In particular, in this case

vτ0(s) = wn(s)− (1− s)
∫
[τ0,s)

wn(u)

(1− u)2
du = wn(τ0)

1− s
1− τ0

+

∫
[τ0,s)

1− s
1− u

dwn(u).

After noting that Ztβ(τ) = F−1Y |Z(τ), and thus I{Xi ≤ Ztβ(u)} = I{FY |Z(Xi|Zi) ≤ u},
straightforward but tedious calculations show that for δi ≡ 1∫

[0,s)

dwn(u)

1− u
= − 1

n

n∑
i=1

Zi(I{Yi ≤ Ztiβ(s)} − s),

which gives

vτ0(s) = − 1

n

n∑
i=1

Zi(I{Yi ≤ Ztiβ(s)} − s).

Thus the representation in (4.4) corresponds to the Bahadur representation of regression

quantiles in the completely uncensored case [see e.g. Koenker and Portnoy (1987)], and the

proposed procedure is asymptotically equivalent to classical quantile regression.
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4 Penalizing quantile processes

In this section we will discuss several aspects of penalization for quantile processes. For this

purpose we need some additional notation and assumptions. Let ‖ · ‖ denote the maximum

norm in an Euclidean space. For a set J = {j1, ..., jJ} ⊂ {1, ..., d} with j1 < j2 < ... < jJ
define

β(J ) = (βjI{j ∈ J })j=1,...,d

as the vector obtained from β, where components corresponding to indices j 6= J are set

to zero. The vector β̄(J ) = (βj1 , ..., βjJ )t is defined as the vector of non-vanishing compo-

nents of β(J ). Finally, introduce the matrix PJ that corresponds to mapping coordinate jl
to coordinate l (l = 1, ..., J) and the remaining coordinates to J+1, ..., d (in increasing order).

Assume that the penalization in (2.6) satisfies the following assumption (here P(A) denotes

the power set of A)

(P) There exists a (set-valued) mapping χ : [τL, τU ] → P({1, ..., d}) such that βk(τ) = 0

for all k ∈ χ(τ)C , τ ∈ [τL, τU ] and additionally

√
nΛn,0 :=

√
n inf

j
inf

k∈χ(τj)C

λn
pk(n, τj)

P→∞, (4.1)

Λn,1 := sup
j

sup
k∈χ(τj)

λn
pk(n, τj)

= oP (1/
√
n). (4.2)

Moreover, there exist real numbers τL = θ1 < ... < θK = τU such that χ is constant on

intervals of the form [θj, θj+1), j = 1, ..., K − 1.

A more detailed discussion of various penalizations satisfying condition (P) will be given in

Sections 4.1 and 4.2. In particular, in Section 4.1 we will provide conditions which guaran-

tee that the adaptive lasso penalty in (2.7) fulfills (P) and discuss what happens if those

conditions fail. Alternative ways of choosing the penalty that do not suffer from the same

problem and additionally allow to investigate the impact of covariates on multiple quantiles

will be considered in Section 4.2.

For the results that follow, we need to strengthen assumption (D1) to

(D1’) With the notation (3.2) we have

sup
b∈Rd
‖νn(b)‖+ sup

b∈Rd
‖ν̃n(b)‖ = OP (n−1/2)

Strengthening (D1) allows us to replace assumption (C4) by the weaker, and more real-

istic, version [note that for any J ⊂ {1, ..., d} we have λmin(E[(Z̄(J))(Z̄(J))tf(Ztb|Z)]) ≥
λmin(E[ZZtf(Ztb|Z)]) due to the special structure of the matrices].

11



(C4’) We have for the map χ from condition (P)

inf
b∈B(T ,ε)

λmin(E[(Z̄(χ(τ)))(Z̄(χ(τ)))tf(Ztb|Z)]) =: λ0 > 0

where λmin(A) denotes the smallest eigenvalue of the matrix A.

Remark 4.1 As discussed in Remark 3.2, the statement of (D1) can be viewed as a Glivenko-

Cantelli type result for an empirical process indexed by a VC-subgraph class of functions.

Similarly, (D1’) follows if the same class of functions satisfies a Donsker type property. Re-

sults of this kind have for example been established for β-mixing data. More precisely,

Corollary 2.1 in Arcones and Yu (1994) shows that (D1’) holds as soon as the β-mixing

coefficient βr satisfies βr = o(r−k) for some k > 1.

Remark 4.2 The results that follow continue to hold if we strengthen assumption (C4’) to

(C4) and replace (D1’) by (D1). The details are omitted for the sake of brevity.

We now are ready to state our first main result, which shows that under assumption (P) on

the penalization, the estimate defined in (2.6) enjoys the a kind of ’oracle’ property in the

sense of Fan and Li (2001). More precisely, with probability tending to one the coefficients

outside the set χ(τ) are set to zero uniformly in τ and the estimators of the remaining

coefficients have the same asymptotic distribution as the estimators in the sub-model defined

by χ(τ).

Theorem 4.3 Assume that τ0 = τL > 0, that for some a > 0 we have P (C > Ztβ(τ0+a)) =

1 and let assumptions (C1)-(C3),(C4’), (D1’), (D2)-(D3) and (P) hold. Then we have as

n→∞

P ( sup
τ∈[τL,τU ]

sup
k∈χ(τ)

|β̂k(τ)| = 0)→ 1. (4.3)

Moreover,

µ(β̂(τ))− µ(β(τ)) =Mτ,χvτL(τ) + oP (1/
√
n) (4.4)

uniformly in τ ∈ [τL, τU ] where

vτ (s) := wn(s)−
∫
[τ0,s)

(
π
(u,s]

(
Id + (Mv,χM̃v,χ)tdH(v)

))t
M̃u,χMu,χwn(u)dH(u),

π denotes the product-integral [see Gill and Johansen (1990)], the matricesMτ,χ,M̃τ,χ are

defined by

Mτ,χ := µ′(β(τ))P−1χ(τ)
(M−1

τ,χ(τ) 0

0 0

)
Pχ(τ), M̃τ,χ := µ̃′(β(τ))P−1χ(τ)

(M−1
τ,χ(τ) 0

0 0

)
Pχ(τ),

12



and Mτ,χ(τ) := E[(Z̄(χ(τ)))(Z̄(χ(τ)))tf(Ztβ(τ)|Z)]. In particular, this implies

√
n(β̂(·)− β(·)) D→ P−1χ(·)

(M−1
·,χ(·) 0

0 0

)
Pχ(·)M·,χVτ0,χ(·) (4.5)

in the space (D[τL, τU ])d equipped with the supremum norm and ball sigma algebra [see Pollard

(1984)]. Here Vτ0 denotes a centered Gaussian process given by

Vτ0,χ(τ) = W(τ)−
∫
[τ0,τ)

(
π
(u,τ ]

(
Id + (Mv,χM̃v,χ)tdH(v)

))t
M̃u,χMu,χW(u)dH(u).

The asymptotic representation of the limiting process above is quite complicated. We now

give a brief discussion of some special cases where it can be further simplified.

Remark 4.4 If there is no penalization, then χ(τ) ≡ {1, ..., d} and Pχ(τ) andMτ,χ both are

equal to the d×d identity matrix and M̃τ,χ = µ̃′(β(τ))(µ′(β(τ)))−1. In this case, an analogue

of Theorem 4.3 is obtained from Theorem 3.4, but without the rate on the remainder term. If

only the first k < d components are important, i.e. if χ(τ) ≡ {1, ..., k} for τ ∈ [τL, τU ], Pχ(τ)
has a k × k identity matrix as the left upper block and the remaining entries are zero. The

same holds forMτ . Thus in this case the asymptotic distribution of the first k components

would be equal to the distribution in a smaller model where only those components are

considered. This means that the proposed procedure has a kind of ’oracle property’.

Remark 4.5 Under additional regularity assumptions, similar results can be derived for the

version of the estimator starting with τ0 = τL = 0 [see Remark 2.1]. The technical details

are omitted for the sake of brevity.

4.1 Adaptive lasso penalization

Recall the definition of the penalization in (2.7) and assume that for some J ⊂ {1, ..., d}

inf
k∈J

inf
τ∈[τ0,τU ]

|βk(τ)| > 0, sup
k∈JC

sup
τ∈[τ0,τU ]

|βk(τ)| = 0, (4.6)

then the following statement is correct.

Corollary 4.6 Assume that the conditions of Theorem 4.3 are satisfied and that (4.6) and

√
nλn → 0, nλn →∞ (4.7)

hold. If the the preliminary estimator β̃ in (2.7) is uniformly consistent with rate OP (1/
√
n)

on the interval [τ0, τU ], then the penalization (2.7) satisfies (P) with χ(τ) ≡ J .

13



The result shows that the adaptive lasso is
√
n consistent under the assumption (4.6). It is

of interest to investigate if a condition of this type is in fact necessary for the optimal rate

of convergence. The following result gives a partial answer to this question and shows that

the optimal rate cannot be achieved by the adaptive lasso defined in (2.7) if some of the

coefficients of the quantile regression change their sign or run into zero as τ varies. More

precisely we provide a lower bound on the uniform rate of convergence of the estimator which

turns out to be larger then n−1/2 in quantile regions where coefficients are ’close’ but not

exactly equal to zero. For a precise statement we define the sets [the dependence on n is

suppressed in the notation for the sake of brevity]

Pj :=
{
τ ∈ [τL, τU ]

∣∣∣ 1

n1/4κ
1/2
n cn

≤ |βj(τ)| ≤ cn
κn

}
,

Bj :=
{
τ ∈ [τL, τU ]

∣∣∣|βj(τ)| > cn
κn

}
,

Sj :=
{
τ ∈ [τL, τU ]

∣∣∣ 1

n1/4κ
1/2
n cn

> |βj(τ)| > 0
}
,

Vj :=
{
τ ∈ [τL, τU ]

∣∣∣βj(τ) = 0
}
.

Remark 4.7 Basically, the sets defined above reflect the different kinds of asymptotic be-

havior of penalized estimators. The sets Bj correspond to values of τ with j’th coefficients

being ’large enough’, such that they are not affected by the penalization asymptotically. In

contrast to that, coefficients βj(τ) with τ ∈ Sj are ’too small’ and will be set to zero with

probability tending to one. In particular, this implies that the order of the largest elements

in the set {|βj(τ)| : τ ∈ Sj} will give a lower bound for the uniform convergence rate of the

penalized estimator. Finally, the set Pj corresponds to ’intermediate’ values that might be

set to zero with positive probability.

In order to state the next result, we need to make the following additional assumptions

(C4*) Define the map ξ : [τ0, τU ]→ P({1, ..., d}) with ξ(τ) := {j : |βj(τ)| 6= 0}. Then

inf
b∈B(T ,ε)

λmin(E[(Z̄(ξ(τ)))(Z̄(ξ(τ)))tf(Ztb|Z)]) =: λ0 > 0

where λmin(A) denotes the smallest eigenvalue of the matrix A.

(B1)
√
nλn = o(1), nλn →∞,

√
nκnλn → 1

(B2) The set P ∪S with P := ∪jPj, S := ∪jSj is a finite union of intervals and its Lebesgue

measure is bounded by Cγ

(
cn
κn

)γ
for some positive constants γ < ∞ and a finite

constant Cγ.

(B3) cn →∞, λnn
3/4κ

1/2
n c−1n →∞, n1/4cγ+1

n /κ
γ+1/2
n = o(1).
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(B4) The preliminary estimator β̃ is uniformly consistent with rate OP (1/
√
n).

Remark 4.8 Assume that λn ∼ n−b for some b ∈ (1/2, 1) and cn ∼ log(n) (it will later

become apparent why choosing cn to converge to infinity slowly makes sense). Then κn ∼
nb−1/2, λnn

3/4κ
1/2
n ∼ n(1−b)/2 and n1/4/κ

γ+1/2
n ∼ n(1+γ−b(γ+2))/2. Thus condition (B3) will

hold as soon as 1
2
∨ 1+γ

1+2γ
< b < 1.

Remark 4.9 Condition (B2) places a restriction on the behavior of the coefficients βj(τ)

in a neighborhood of {τ |βj(τ) = 0}. Essentially, it will hold if no coefficient approaches

zero in a ’too smooth’ way. If for example the function τ 7→ βj(τ) is k times continuously

differentiable, (B2) will hold with γ = 1/a where a is the smallest number, such that the a’th

derivative of βj(τ) does not vanish at all points θ with βj(θ) = 0 for some j. In particular,

in the case γ = 1 this property means that β(τ) crosses zero with a positive slope. The

results in Remark 4.8 show that λn ∼ n−b for any b ∈ (1/2, 1) is allowed when cn = log n.

If β(τ) runs into zero more smoothly, which corresponds to γ < 1, the conditions on the

regularizing parameter λn become stricter since now only 1
2
∨ 1+γ

1+2γ
< b < 1 is allowed.

Theorem 4.10 Assume that conditions (C1)-(C3), (C4*), (D1’), (D2)-(D3), (B1)-(B4)

hold. Then adaptive lasso estimator obtained form the penalization (2.7) satisfies

sup
τ∈[τL,τU ]

‖β̂(u)− β(u)‖ = OP

( cn

κ
1/2
n n1/4

)
. (4.8)

Moreover, for any fixed I ⊂ [τL, τU ]\(S ∪ P )

√
n(β̂(·)− β(·))→ P−1ξ(τ)

(M−1
τ,ξ(τ) 0

0 0

)
Pξ(τ)Vτ0,ξ(·) (4.9)

in the space D(I)d where the process Vτ0,ξ is defined in Theorem 4.3 and

P( sup
j=1,...,d

sup
τ∈Sj∪Vj∩[τL,τU ]

|β̂j(τ)| = 0)→ 1. (4.10)

Note that the assertion (4.10) implies that the uniform rate of β̂ is bounded from below

by n−1/4κ
−1/2
n c−1n as soon as the set S ∪ P is not empty. Since cn is allowed to converge to

infinity arbitrarily slow, we obtain the lower bound O(n−1/4κ
−1/2
n ) = O(λ

1/2
n ), which depends

on λn and is always slower then 1/
√
n. We will demonstrate in Section 5 by means of a

simulation study that this inferior property of the adaptive lasso can also be observed for

realistic sample sizes.

Remark 4.11 Theorem 4.10 also contains a positive, and at the first glance probably sur-

prising, result. Since the procedure used to compute the estimators is iterative, one might

expect that a non-optimal convergence rate of the estimator at one value of τ should yield the
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same lower bound for all subsequent quantile estimators. However, the above results imply

that this is not always the case. The intuitive reason for this phenomenon is the following:

the estimators β̂(τ) only enter the subsequent estimating equation inside an integral, see

equation (2.6). Thus, when the rate is not optimal on a sufficiently small set of values τ ,

the overall impact of a non-optimal rate might still be small. In particular, this is the case

under conditions (B2)-(B4).

Remark 4.12 The results in the above Theorem are related to the findings of Pötscher and

Leeb (2009) which demonstrate that penalized estimators do not have optimal convergence

rates uniformly over the parameter space. This also suggests that using other point-wise

penalties such as for example SCAD will not solve the problems encountered by the adaptive

lasso. Instead, using information from other quantiles is necessary.

4.2 Average penalization

As we have seen in the last section, the traditional way of implementing the adaptive lasso

will yield sub-optimal rates of convergence if some coefficients cross zero. Moreover, this

method will perform a ’point-wise’ model selection with respect to quantiles- a property,

which might not always be desirable. Rather, keeping the same model for certain ranges

of quantiles such as for example τ ∈ [.4, .6], or even for the whole range, might often be

preferable. In order to implement such an approach, and to obtain a quantile process which

converges at the optimal rate, we introduce a new kind of adaptive penalization which has -

to the best of our knowledge - not been considered in the literature so far . More precisely,

denote by T1, ..., TK a fixed, disjoint partition of [τ0, τU ] and define

pintk (n, τ) :=
K∑
j=1

I{τ ∈ Tj}
∫
Tj
|β̃k(t)|h(t)dt, k = 1, ..., d (4.11)

pmaxk (n, τ) :=
K∑
j=1

I{τ ∈ Tj} sup
t∈Tj
|β̃k(t)|, k = 1, ..., d. (4.12)

Here, β̃ is a preliminary estimator which converges uniformly with rate OP (1/
√
n) on the

interval [τ0, τU ], and h is a strictly positive, uniformly bounded weight function integrating

to one. In the following discussion we call this method average adaptive lasso.

Remark 4.13 The above idea can be generalized to the setting where the researcher wants

to include a whole set of predictors, say (Zk)k∈S, in the analysis if at least one of those

predictors is important. This can be done by setting

pk(n, τj) := max
m∈S

K∑
j=1

I{τ ∈ Tj} sup
t∈Tj
|β̃m(t)|, k ∈ S.
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Remark 4.14 In the context of uncensored quantile regression, Zou and Yuan (2008) re-

cently proposed to simultaneously penalize a collection of estimators for different quantiles

in order to select the same group of predictors for different values of the quantile. While

such an approach is extremely interesting, it seems hard to implement in the present situ-

ation. The reason is that the minimization problem (2.6) is solved in an iterative fashion,

and dealing with a penalty that affects all quantiles at the same time thus is problematic.

The following result follows

Lemma 4.15 Assume that there exist sets J1, ...,JK ⊂ {1, ..., d} such that

inf
j=1,...,K

inf
k∈Jj

sup
τ∈Tj
|βk(τ)| > 0, sup

j=1,...,K
sup
k∈JCj

sup
τ∈Tj
|βk(τ)| = 0, (4.13)

and (4.7) hold. If the the preliminary estimator β̃ is uniformly consistent with rate OP (1/
√
n)

on the interval [τL, τU ] then the average penalties defined in (4.11) and (4.12) satisfy (P) with

χ(τ) = Jj for τ ∈ Tj.

The above results imply that the problems encountered by the traditional application of

adaptive lasso when coefficients cross zero can be avoided if average penalization is used.

Another consequence of such an approach is that predictors which are important for some

quantile τ ∈ Tk will be included in the analysis for all quantiles in Tk. At the same time,

covariates that have no impact for any τ ∈ Tk can still be excluded from the analysis. Finally,

by taking T1 = [τ0, τU ] it is possible to achieve that all covariates that are important at some

quantile in the range of interest will be used for all τ ∈ [τ0, τU ]. As a consequence, average

penalization is a highly flexible method that can easily be adapted to the situation at hand.

5 Simulation study

In order to study the finite-sample properties of the proposed procedures we conducted a

small simulation study. An important practical question is the selection of the regularizing

parameter λn. In our simulations, we used an adapted version of K-fold cross validation

which accounts for the presence of censoring by using a weighted objective function. More

precisely we proceeded is two steps. In the first step, weights were estimated as follows

1. Compute an unpenalized estimator based on all data, denote this estimator by b̂.

2. For each grid point τ , following Portnoy (2003) define weights ŵj(τ) through

ŵj(τ) := δj + (1− δj)
(
I{Xj > Ztib̂(τ)}+ I{Xj ≤ Ztib̂(τ)}τ − rj

1− rj

)
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Here, rj denotes the value of τ at that the observation Xj is ’crossed’, that is

rj :=


1 if Xj > Ztib̂(τU)

inf{τk|Ztib̂(τk−1) < Xj ≤ Ztib̂(τk)} if δj = 0, Xj ≤ Ztib̂(τU)

0 if δj = 1, Xj ≤ Ztib̂(τU)

Note that Portnoy (2003) used the weights ŵj(τ) to define a weighted minimization problem

to account for censoring. The basic idea corresponds to the well-known interpretation of

the classical Kaplan-Meier estimator as an iterative redistribution of mass corresponding to

censored observations to the right. After obtaining preliminary estimators of the weights,

the second step was to select λ as the minimizer of the function CV (λ) which was computed

as follows.

1. Randomly divide the data into K blocks of equal size. Denote the corresponding sets

of indexes by J1, ..., JK .

2. For k = 1, ..., K, compute estimators b̂(Jk,λ) based on the data (Zi, Xi, δi)i∈{1,...,n}\Jk
and penalization level λ.

3. Compute

CV (λ) :=
K∑
k=1

∑
j∈Jk

Nτ (n)∑
i=1

(
ŵj(τi)ρτi(Xj − Ztjb̂

(Jk,λ)) + (1− ŵj(τi))ρτi(X∞ − Ztjb̂
(Jk,λ))

)
where X∞ denotes some sufficiently large number (we chose 103 in the simulations).

Select the penalty parameter λ as the minimizer of CV (λ) among a set of candidate

parameters.

The basic idea behind the above procedure is that the weights ŵi are consistent ’estimators’

of the random quantities

wi(τj) = δi + (1− δi)
(
I{Xi > F−1T (τj|Zi)}+ I{Xi ≤ F−1T (τj|Zi)}

τ − FT (Xi|Zi)
1− FT (Xi|Zi)

)
,

and that the minimizer of the weighted sum

n∑
j=1

(
wj(τ)ρτi(Xj − Ztjb) + (1− wj(τ))ρτi(X

∞ − Ztjb)
)

is a consistent estimator of β(τ). See Portnoy (2003) for a more detailed discussion.
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Remark 5.1 At the first glance, it might seem that by redistributing mass to X∞ we would

give higher quantiles more importance since the corresponding quantile curves have crossed

more observations. However, while it is true that the total value of the sum

∑
j∈Jk

Nτ∑
i=1

(
ŵj(τi)ρτi(Xj − Ztjb̂

(Jk,λ)) + (1− ŵj(τi))ρτi(X∞ − Ztjb̂
(Jk,λ))

)
will be larger for higher quantiles, the magnitude of changes induced by perturbations of λ

will in fact be of the same order across quantiles. In a certain sense, this corresponds to the

invariance of regression quantiles to moving around extreme observations.

We considered two models. In the first model, we generated data from

(model 1)

{
Ti = (Zi,2, ..., Zi,10)b̃ + .75Ui

Ci = (Zi,2, ..., Zi,10)b̃ + .75Vi

where b̃ = (.5, 1, 1.5, 2, 0, 0, 0, 0, 0)t, Zi,2, ..., Zi,10 are independent U [0, 1] distributed random

variables and Ui, Vi are independent N (0, 1). The amount of censoring is roughly 25%.

In this model, all coefficients are bounded away from zero and so the local adaptive lasso

as well as the average penalization methods share the same n−1/2 convergence rates. We

estimated the quantile process based on the grid τL = .15, τU = .7 with steps of size .01.

Our findings are summarized in Table 1, which shows the integrated [over the quantile grid]

mean squared error (IMSE) and the probabilities of setting coefficients to 0 for the two

estimates obtained by the different penalization techniques. All reported results are based

on 500 simulation runs and K = 5 in the cross validation. Overall, both estimators behave

reasonably well. The average penalization method is always at least as good as the local

penalization method. It has a systematically higher probability of setting zero components

to zero and a systematically lower IMSE for estimating the intercept and the coefficient β2.

The second model was of the form

(model 2)

{
Ti = (Zi,2, ..., Zi,6)b̃ + Zi,7(Ui − q)
Ci = (Zi,2, ..., Zi,6)b̃ + 1.5 + Vi

where q denotes the 30%-quantile of a standard normal random variable, Zi,2, ..., Zi,7 are

independent, .2 + U [0, 1]-distributed random variables, Ui, Vi are independent N (0, 1) dis-

tributed, and b̃ = (2, 2, 0, 0, 0). The amount of censoring is roughly 20%. We have calculated

the quantile regression estimate for the model

Qτ (Ti|Zi) = β1(τ) +
7∑
j=2

βj(τ)Zi,j.

In this model, the coefficient corresponding to Zi,7 crosses zero for τ = 0.3. From an

asymptotic point of view the estimator based on point-wise penalization should thus have a
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n method β1 β2 β3 β4 β5 p2 p3 p4 p5 p0

100 local 33.0 16.8 19.6 17.3 15.8 40.6 5.3 0.1 0.0 71.7

average 31.1 16.2 18.4 16.6 15.4 40.9 3.4 0.0 0.0 75.8

250 local 29.1 20.8 17.7 14.9 13.2 15.2 0.1 0.0 0.0 72.2

average 27.3 19.9 17.1 14.8 13.2 13.4 0.0 0.0 0.0 77.1

500 local 21.8 19.9 13.2 13.3 13.5 3.6 0.0 0.0 0.0 76.7

average 20.0 18.4 13.1 13.2 13.4 2.2 0.0 0.0 0.0 80.8

1000 local 20.8 17.2 13.3 12.5 12.3 0.1 0.0 0.0 0.0 80.6

average 19.3 16.0 13.0 12.5 12.3 0.0 0.0 0.0 0.0 84.7

Table 1: Results for model 1. Columns 1-5 show n ∗ IMSE(βj), j = 1, . . . , 5, where β1
corresponds to the intercept. Columns 6-9 show the probabilities pj of setting the coefficient

βj to zero (j = 2, . . . , 5) averaged over all quantiles on the grid. Column 10 shows the average

probability p0 of setting coefficients β6 − β10 to zero. Rows with label ’local’ correspond to

(local) adaptive lasso, rows with label ’average’ correspond to average adaptive lasso.

slower rate of convergence in a neighborhood of τ = 0.3. First, consider the results in Table 2

for the IMSE and the probabilities of setting coefficients to 0. We observe the same slight but

systematic advantages for the average penalization method with respect to model selection

properties and integrated MSE. Note that this is consistent with the theory since the range

of quantiles where the local penalization has a slower rate of convergence is shrinking with

n. Plotting the MSE of the estimator β̂7 as a function of τ reveals a rather different picture

[see Figure 1]. Here, the suboptimal rate of convergence of the local penalization and the

clear asymptotic superiority of the average penalization becomes apparent.
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Figure 1: n*MSE of the estimate for the coefficient β7 as a function of the quantile for

sample sizes n = 50 (upper left), n = 100 (upper right), n = 250 (lower left) and n = 1000

(lower right). Solid line: local penalization. Dashed line: average penalization.
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n method β1 β2 β3 β7 p2 p3 p7 p0

100 local 17.4 9.3 9.5 12.5 0.0 0.0 44.8 76.3

average 17.0 9.1 9.6 13.4 0.0 0.0 39.4 79.7

250 local 14.6 7.7 8.1 12.7 0.0 0.0 31.8 79.4

average 14.0 7.7 8.1 12.3 0.0 0.0 19.8 82.1

500 local 14.0 7.9 7.9 12.8 0.0 0.0 23.9 82.3

average 12.8 7.9 7.9 11.2 0.0 0.0 11.9 87.0

1000 local 13.8 7.4 7.2 13.5 0.0 0.0 17.4 83.5

average 12.6 7.4 7.2 12.3 0.0 0.0 8.1 90.7

Table 2: Results for model 2. Columns 1-4 show n ∗ IMSE(βj), j = 1, 2, 3, 7, where β1
corresponds to the intercept. Columns 5-7 show the probabilities pj of setting the coefficient

βj to zero (j = 2, 3, 7) averaged over all quantiles on the grid. Column 8 shows the average

probability p0 of setting coefficients β4 − β6 to zero. Rows with label ’local’ correspond to

(local) adaptive lasso, rows with label ’average’ correspond to average adaptive lasso.

6 Appendix: proofs

At the beginning of the proofs, we give a brief overview of the main results. Several auxiliary

results are proved in Section 6.1. A first key result here is Lemma 6.2 which provides

some general bounds for µk(β̂(τj)) − µk(β(τj)). Moreover, conditions that describe when

coefficients β̂k are set to zero are derived. Lemma 6.2 will play a major role in the proof

of the subsequent results. Lemma 6.4 shows that
√
n(µ(β̂(·)) − µ(β(·))) is uniformly close

to
√
n(µ(β̂(·)) − φn(τj)), which in turn is obtained as the solution of an iterative equation.

Thus the asymptotic distribution of the two aforementioned quantities coincide. We will

then proceed in Lemma 6.5 to derive an explicit, i.e. non-iterative, representation for the

quantity
√
n(µ(β̂(·)) − φn(τj)). This will yield a Bahadur representation of the process√

n(µ(β̂(·))−µ(β(·)), which in turn is the main ingredient for establishing the representation

for
√
n(β̂(·)− β(·)). Since the proofs of the results in Sections 3 and 4 are similar, we only

give detailed arguments for the results in Section 4 [which are more complicated] and briefly

mention the differences where necessary.

6.1 Preliminaries

We begin by stating some useful technical facts and introducing some notation that will be

used throughout the following proofs.

Remark 6.1

(1) Under condition (C3) it follows that, for any b1,b2 ∈ B(T , ε), ‖µ(b1) − µ(b2)‖ ≤
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C2‖b1 − b2‖ with C2 := dC2
ZKf and ‖µ̃(b1)− µ̃(b2)‖ ≤ C3‖b1 − b2‖ with C3 := dC2

ZK̃f .

(2) Condition (C4’) implies the inequality

‖µ(χ(τ))(b
(χ(τ))
1 )− µ(χ(τ))(b

(χ(τ))
2 )‖ ≥ λ0

|χ(τ)|
`τ (b

(χ(τ))
1 ,b

(χ(τ))
2 )‖b(χ(τ))

1 − b
(χ(τ))
2 ‖.

where `τ (b
(χ(τ))
1 ,b

(χ(τ))
2 ) := λ({γ ∈ [0, 1] : ‖γb(χ(τ))

1 + (1 − γ)b
(χ(τ))
2 − β(τ)‖ ≤ ε}) and λ

denotes the Lebesgue measure (a sketch of the proof is below). In particular, the above

equation implies that for all b with ‖b(χ(τ)) − β(τ)‖ ≤ ε
C1∨1 with C1 := d/λ0 it holds that

‖b(χ(τ)) − β(τ)‖ ≤ 1

C1

‖µ(χ(τ))(b
(χ(τ))
1 )− µ(χ(τ))(β(τ))‖.

For a proof of the inequality above, note that

|J |‖b̄(J)
1 − b̄

(J)
2 ‖‖µ̄(J)(b

(J)
1 )− µ̄(J)(b

(J)
2 )‖ ≥ (b̄

(J)
1 − b̄

(J)
2 )t(µ̄(J)(b

(J)
1 )− µ̄(J)(b

(J)
2 ))

= E[(Z̄(J))t(b̄
(J)
1 − b̄

(J)
2 )(F (Ztb

(J)
1 |Z)− F (Ztb

(J)
2 |Z))]

= E
[
(Z̄(J))t(b̄

(J)
1 − b̄

(J)
2 )(Z̄(J))t(b̄

(J)
1 − b̄

(J)
2 )

∫ 1

0

f(Zt(γb
(J)
1 + (1− γ)b

(J)
2 )|Z)dγ

]
=

∫ 1

0

(b̄
(J)
1 − b̄

(J)
2 )tE

[
(Z̄(J))(Z̄(J))tf(Zt(γb

(J)
1 + (1− γ)b

(J)
2 )|Z)

]
(b̄

(J)
1 − b̄

(J)
2 )dγ

(3) For ‖b(χ(τ)) − β(τ)‖ ≤ ε we have

µ(b(χ(τ)))− µ(β(τ)) = Mτ

(
µ̄(χ(τ))(b(χ(τ)))− µ̄(χ(τ))(β(τ))

)
+Dτ (b),

µ̃(b(χ(τ)))− µ̃(β(τ)) = M̃τ

(
µ̄(χ(τ))(b(χ(τ)))− µ̄(χ(τ))(β(τ))

)
+ D̃τ (b)

where supτ ‖Dτ (b)‖ = O(‖b − β(τ)‖γ), supτ ‖D̃τ (b)‖ = O(‖b − β(τ)‖γ). Introduce the

notation

D(a) := sup
τ∈[τL,τU ]

sup
‖b−β(τ)‖≤a

‖Dτ (b)‖, D̃(a) := sup
τ∈[τL,τU ]

sup
‖b−β(τ)‖≤a

‖D̃τ (b)‖. (6.1)

(4) Assumptions (C2)-(C4) imply the existence of finite constants C5, C̃5 such that for any

‖b(χ(τ)) − β(τ)‖ ≤ ε we have

‖µ(bχ(τ))− µ(β(τ))‖ ≤ C5‖µ̄(χ(τ))(b(χ(τ)))− µ̄(χ(τ))(β(τ))‖, (6.2)

‖µ̃(bχ(τ))− µ̃(β(τ))‖ ≤ C̃5‖µ̄(χ(τ))(b(χ(τ)))− µ̄(χ(τ))(β(τ))‖. (6.3)
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Lemma 6.2 Let J ⊂ {1, ..., d}, ~0 ∈ Rd−|J | and consider the problem of minimizing Hj(P−1J (ht,~0t)t)

with respect to h ∈ R|J |. Denote the generalized solution of this minimization problem by

ĥ(τj) and set β̌ = P−1J (ĥ(τj)
t,~0t)t. Then∣∣∣µk(β̌)− µk(β(J)(τj)) + νn,k(β̌)−

∫
[τ0,τj)

ν̃n,k(β̂(u))dH(u)−
∫
[τ0,τj)

µ̃k(β̂(u))− µ̃k(β(u))dH(u)

−τ0
n

n∑
i=1

(Zi,k − EZi,k)
∣∣∣

≤ λn
pk(n, τj)

+
CZ
n

+ ‖µ(J)(β(τj))− µ(J)(β(J)(τj))‖

for k ∈ J .

Now, let conditions (P), (C1)-(C3) and (C4’) hold and additionally assume that for some

J ⊂ χ(τj)

α1 + α2 + sup
k∈J

λn
pk(n, τj)

+
CZ
n

+ C2 sup
k∈JC
|βk(τj))| ≤

ε− supk∈JC |βk(τj))|
C1 ∨ 1

(6.4)

sup
k∈J

C5λn
pk(n, τj)

+ (C5 + 1)
(2CZ

n
+ α1 + α2 + C2 sup

k∈JC
|βk(τj))|

)
≤ inf

k∈JC

λn
pk(n, τj)

(6.5)

where

sup
b∈Rd

∥∥∥νn(b)
∥∥∥+

∥∥∥∫
[τ0,τj)

ν̃n(β̂(u))dH(u)
∥∥∥+

∥∥∥τ0
n

n∑
i=1

(Zi − EZi)
∥∥∥ ≤ α1∥∥∥∫

[τ0,τj)

µ̃k(β̂(u))− µ̃k(β(u))dH(u)
∥∥∥ ≤ α2.

Then any minimizer of Hj defined in (2.6) is of the form P−1J (ĥ(τj)
t,~0t)t where ĥ(τj) is a

minimizer of Hj(P−1J (ht,~0t)t) over h ∈ R|J |.

Proof In order to simplify the presentation, assume w.o.l.g. that J = {1, ..., L}, that

infk∈J pk(n, τj) = pL(n, τj) and that supk∈J pk(n, τj) = pL+1(n, τj). Define

Ψj(b, ξ) := −2ξt
(
µ(b)− µ(β(τj)) + νn(b)−

∫
[τ0,τj)

ν̃n(β̂(u))dH(u)
)

(6.6)

+2ξt
∫
[τ0,τj)

µ̃(β̂(u))− µ̃(β(u))dH(u) +
1

n

n∑
i=1

I{Xi = Ztib}(δiξtZi + |ξtZi|)

+2λn

d∑
k=1

(
ξk
sgn(bk)

pk(n, τj)
+ I{bk = 0} |ξk|

pk(n, τj)

)
.

and note that finding all minimizers of the function Hj((h
t,~0t)t) in (2.6) over h ∈ RL is

equivalent to finding all points b̂ = (ĥt,~0t)t that satisfy

inf
ξ=(ζt,~0t)t,ζ∈RL

Ψj(b̂, ξ) ≥ 0.
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For a proof of the first part of the lemma, observe that by simple algebraic manipulations

and the condition on Ψ we have

0 ≤ Ψj(b̂,−ek) = −Ψj(b̂, ek) +
2

n

n∑
i=1

I{Xi = Ztib}|etkZi|+
4λn

pk(n, τj)
I{bk = 0}.

This directly yields,

Ψj(b̂, ek) ≤
2

n

n∑
i=1

I{Xi = Ztib}|etkZi|+
4λn

pk(n, τj)
I{bk = 0},

and by assumption we have 0 ≤ Ψj(b̂, ek). From that we obtain for k = 1, ..., L∣∣∣µk(β̌)− µk(β(τj)) + νn,k(β̌)−
∫
[τ0,τj)

ν̃n,k(β̂(u))dH(u)−
∫
[τ0,τj)

µ̃k(β̂(u))− µ̃k(β(u))dH(u)

−τ0
n

n∑
i=1

(Zi,k − EZi,k)
∣∣∣

=
1

2

∣∣∣Ψj(b̂, ek)−
1

n

n∑
i=1

I{Xi = Ztib}(δiZi,k + |Zi,k|)−
2λn

pk(n, τj)

(
sgn(bk) + I{bk = 0}

)∣∣∣
≤ 1

2

(∣∣∣Ψj(b̂, ek)−
1

n

n∑
i=1

I{Xi = Ztib}|Zi,k| −
2λnI{bk = 0}
pk(n, τj)

∣∣∣+
2λnI{bk 6= 0}
pk(n, τj)

+
CZ
n

)
≤ λn

pk(n, τj)
+
CZ
n

almost surely. A simple application of the triangle inequality completes the proof of the first

part of the lemma.

For a proof of the second part, assume w.o.l.g. that J = {1, ..., L} and that the assumptions

made at the beginning of the proof of the first part hold. In particular, under this simplifying

assumptions Pτj is the identity matrix. Start by noting that

Ψj(b, ξ1 + ξ2) = Ψj(b, ξ1) + Ψj(b, ξ2)−
1

n

n∑
i=1

I{Xi = Ztib}(|ξt1Zi|+ |ξt2Zi| − |(ξ1 + ξ2)
tZi|)

−2λn

d∑
k=1

I{bk = 0}
pk(n, τj)

(|ξ1,k|+ |ξ2,k| − |ξ1,k + ξ2,k|).

In particular, for the special case ξ01 = (ζt,~0td−L)t, ξ02 = (~0tL, θ
t)t with ζ ∈ RL, θ ∈ Rd−L, the

last line in the above equation equals zero. Moreover, |a| + |b| − |a + b| ≤ 2|b|, and thus

|ξt1Zi|+ |ξt2Zi| − |(ξ1 + ξ2)
tZi| ≤ 2|ξt2Zi|. Hence, if we can show that

Ψj(β̌, ξ
0
1) + Ψj(β̌, ξ

0
2) ≥ 2CZ

n

d∑
l=L+1

|ξ02,l|
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for any ξ01 , ξ
0
2 of the form given above, it will follow that Ψj(β̌, ξ) ≥ 0 for all ξ ∈ Rd. By

the definition of β̌ we have Ψj(β̌, ξ
0
1) ≥ 0, and thus it remains to verify that Ψj(β̌, ξ

0
2) ≥

2CZ
n

∑
|ξ02,l|. To this end, observe that the arguments in the first part of the Lemma yield

the bound [the last inequality follows under (6.4)]

‖µ̄(J)(β̌)− µ̄(J)(β(J)(τj))‖ ≤ α1 + α2 +
λn

pk(n, τj)
+
CZ
n

+ C2 sup
k>L
|βk(τj))|

≤ ε− supk>L |βk(τj))|
C1 ∨ 1

since by assumption (C3), condition (6.4) and Remark 6.1 we have

‖µ̄(J)(β(τj))− µ̄(J)(β(J)(τj))‖ ≤ C2 sup
k>L
|βk(τj))|.

Thus ‖β̌(χ(τj)) − β(τj)‖ ≤ ε and (6.2) together with the triangle inequality implies that

‖µ(β̌)− µ(β(τj))‖ ≤ C5

(
α1 + α2 +

λn
pL(n, τj)

+
CZ
n

+ C2 sup
k>L
|βk(τj))|

)
+ C2 sup

k>L
|βk(τj))|.

By the definition of β̌ and the assumption on pk(n, τj) made at the beginning of the proof

we have

2λn

d∑
k=1

(
ξ02,k

sgn(β̌k)

pk(n, τj)
+ I{β̌k = 0}

|ξ02,k|
pk(n, τj)

)
= 2λn

d∑
k=L+1

|ξ02,k|
pk(n, τj)

≥ 2λn
pL+1(n, τj)

d∑
k=L+1

|ξ02,k|.

Combining all the inequalities derived above, we see from the definition of Ψ that

Ψj(b, ξ
0
2) ≥

d∑
k=L+1

|ξ02,k|
( 2λn
pL+1(n, τj)

− 2α1 − 2α2 − 2‖µ(β̌)− µ(β(τj))‖ −
2CZ
n

)
.

Thus under (6.5) it holds that Ψj(β̌, ξ
0
2) ≥ 2(C5+1)CZ

n

∑
|ξ02,l| ≥ 2CZ

n

∑
|ξ02,l| and we have

proved that β̌ is a minimizer of the function H(b) in the set Rd. It remains to verify that

every minimizer is of this form. We will prove this assertion by contradiction. Assume that

there exists a minimizer b̌ with b̌k 6= 0 for some k > L. Since the set of minimizers is convex,

any convex combination of b̌ and a minimizer β̌ with β̌k = 0 would also be a minimizer.

Thus there must exist a minimizer b̃ with k’th component different from zero and all other

components arbitrarily close to the components of β̌. In particular, we can choose b̃ in such

a way that ‖µ(b̃)− µ(β̌)‖ ≤ C5CZ
n

. Setting b = b̃, ξ = ±ek in representation (6.6) we obtain

a contradiction, since in this case the sum in the last line will take the values ±2λn
sgn(b̃k)
pk(n,τj)

,

and the absolute value of this quantity dominates the rest of Ψj(b̃, ξ) by construction and

condition (6.5). Thus a minimizer with b̌k 6= 0 for some k > L can not exist and proof is

complete. 2
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Lemma 6.3 Under assumptions (C1)-(C4) and (D1) the unpenalized estimators obtained

from minimizing (2.3) are uniformly consistent in probability, i.e.

sup
τ∈[τL,τU ]

‖β̂(τ)− β(τ)‖ = oP (1).

Proof Define the quantities

Rn,1 := CM

(
sup
b∈Rd
‖νn(b)‖+H(τU) sup

b∈Rd
‖ν̃n(b)‖+

∥∥∥τ0
n

n∑
i=1

(Zi − EZi)
∥∥∥) = oP (1),

rn,1 := C5

(
Rn,1 + C6b

2
n + 2CZ

n

)
and

Rn :=
(
rn,1 +

C6bn

C̃5

)
sup
n

(1 + C̃5bn)Nτ (n) = oP (1).

Use similar arguments as in step 1 of the proof of Lemma 6.4 [set Λn,1 = 0,Λn,1 = +∞] to

inductively show that on the set Ωn :=
{
Rn ≤ ε

C1∧1

}
whose probability tends to one we

have

(i) the conditions (6.4) and (6.5) of Lemma 6.2 hold with J = {1, ..., d}.

(ii) we have the following upper bound

‖µ(β̂(τj))− µ(β(τj))‖ ≤ rn,1(1 + C̃5bn)j +
C6bn

C̃5

((1 + C̃5bn)j − 1) =: rn,j+1

≤
(
rn,1 +

C6bn

C̃5

)
sup
n

(1 + C̃5bn)Nτ (n) = Rn = oP (1).

In particular, the results above and an application of Remark 6.1 imply that

sup
j=1,...,N(τ)

‖β̂(τj)− β(τj)‖ = oP (1).

Since β̂(τ) is constant between grid points and additionally β(τ) is Lipschitz-continuous,

this completes the proof.

2
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Lemma 6.4 Define the triangular array of random Rd-valued vectors φn(τj) as

φn(τ0)− µ(β(τ0)) = −Mτ0

( 1

n

n∑
i=1

Zi(I{Xi ≤ Ztiβ(τ0)} − τ0)
)

(6.7)

and for j = 1, ..., Nτ

φn(τj)− µ(β(τj)) = Mτj

(
− νn(β(τj)) +

∫
[τ0,τj)

ν̃n(β(u))dH(u) +
τ0
n

n∑
i=1

(Zi − EZi) (6.8)

+

j−1∑
i=0

∫
[τi,τi+1)

M̃udH(u)
(
φn(τi)− µ(β(τi))

))
.

(a) Let assumptions (C1)-(C4) and (D1)-(D3) hold and denote by β̂ the unpenalized esti-

mator obtained from minimizing (2.3). Then

√
n sup

j
‖µ(β̂(τj))− φn(τj)‖ = OP (n1/2bn + n−γ/2 + ωcnn−1/2(

√
nνn) + ωcnn−1/2(

√
nν̃n))

(b) Let assumptions (C1)-(C3), (C4’), (D1’), (D2)-(D3), (P) hold and denote by β̂ the pe-

nalized estimator obtained from minimizing (2.6) . Then
√
n supj ‖µ(β̂(τj))−φn(τj)‖ =

oP (1) and P (supτj supk∈χ(τj)C |β̂k(τj)| = 0)→ 1.

Proof. The proof of part (a) is similar to, but simpler then the proof of part (b). For this

reason, we will only state the proof of (b) and point out the important differences where

necessary. The proof will consist of two major steps. In the first step we define the set

Ωn :=
{
Rn ≤

ε

C1 ∧ 1

}
∩
{

(1 + C5)Rn + C5Λn,1 ≤ Λn,0

}
∩ Ω0,n

with Ω0,n denoting some set such that P (Ω0,n) → 1 and note that P (Ωn) → 1, here [the

bound will be proved below]

Rn :=
(
rn,1 +

C6bn

C̃5

)
sup
n

(1 + C̃5bn)Nτ (n) = OP (n−1/2)

and rn,1 := C5

(
Rn,1 + C6b

2
n + 2CZ

n
+ Λn,1

)
with

Rn,1 := CM

(
sup
b∈Rd
‖νn(b)‖+H(τU) sup

b∈Rd
‖ν̃n(b)‖+

∥∥∥τ0
n

n∑
i=1

(Zi−EZi)
∥∥∥) = OP (1/

√
n). (6.9)

For a proof of (a), proceed in a similar fashion but with χ(τ) = {1, ..., d} for all τ , setting

Λn,1 = 0,Λn,0 =∞ and replacing Rn,1 in the definition above by

R̃n,1 := CM

(
sup

b∈B([τL,τU ],ε)
‖νn(b)‖+H(τU) sup

b∈B([τL,τU ],ε)
‖ν̃n(b)‖+

∥∥∥τ0
n

n∑
i=1

(Zi − EZi)
∥∥∥).
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Here, uniform consistency of the unpenalized estimator [see Lemma 6.3] implies that only

the supremum over b ∈ B([τL, τU ], ε) needs to be considered.

In what follows, we will inductively show that on the set Ωn we have for every 0 ≤ j ≤ Nτ (n)

[recall that Nτ (n) is the number of grid points]

(i) the conditions (6.4) and (6.5) of Lemma 6.2 hold [the quantities α1, α2 will depend on

j and be specified in the proof below].

(ii) β̂k(τj) = 0 for k ∈ χ(τj)
C .

(iii) we have the following upper bound

‖µ(χ(τj))(β̂(τj))− µ(χ(τj))(β(τj))‖ ≤ rn,1(1 + C̃5bn)j +
C6bn

C̃5

((1 + C̃5bn)j − 1) =: rn,j+1

≤
(
rn,1 +

C6bn

C̃5

)
sup
n

(1 + C̃5bn)Nτ (n) = Rn = OP (n−1/2)

In the second step, we will prove the bounds

sup
j
‖µ(β̂(τj))− φn(τj)‖ ≤ sn,1 sup

n
(1 + dCMbn)Nτ (n) (6.10)

where sn,1 = oP (n−1/2) in case (b) and

sn,1 = OP (bn + n−(1+γ/2) + ωcnn−1/2(νn) + ωcnn−1/2(ν̃n))

in case (a).

Step 1: Proof of (i), (ii) and (iii).

First, consider the grid point τ0. Classical arguments yield the existence of a set Ω0,n such

that P (Ω0,n) → 1 and (ii)-(iii) hold on this set. The details are omitted for the sake of

brevity.

Next, observe that for the grid point τ1 we have for k ∈ {1, ..., d} [apply Remark 6.1]∣∣∣ ∫
[τ0,τ1)

µ̃k(β̂(u))− µ̃k(β(u))dH(u)
∣∣∣ ≤ rn,1 + C6b

2
n =: Rn,2 = OP (n−1/2).

Defining αj := Rn,j (j = 1, 2) we obtain that conditions (6.4) and (6.5) of Lemma 6.2 hold

with j = 1 on the set

Ω1,n :=
{CZ
n

+Rn,1+Rn,2+Λn,1 ≤
ε

C1 ∧ 1

}
∩
{

(1+C5)(
2CZ
n

+Rn,1+Rn,2)+C5Λn,1 ≤ Λn,0

}
.

Finally, note that by the first part of Lemma 6.2 we have for k ∈ χ(τ1)

|µk(β̂(τ1))− µk(β(τ1))| ≤ Rn,1 +Rn,2 +
2CZ
n

+ Λn,1
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[the constant 2 in front of CZ will play a role later] which implies (iii) on the set Ω1,n.

Now, proceed inductively. Assume that (i)-(iii) have been established for 1, ..., j. For the

grid point τj+1, observe that for k ∈ {1, ..., d}

∣∣∣ ∫
[τ0,τj+1)

µ̃k(β̂(u))− µ̃k(β(u))dH(u)
∣∣∣ ≤ Rn,2 + bn

j∑
i=1

(C̃5rn,i + C6bn).

Thus, setting α1 = Rn,1, α2 := Rn,2 + bn
∑j

i=1(C̃5rn,i +C6bn) we obtain that conditions (6.4)

and (6.5) of Lemma 6.2 hold on the set

Ωj+1,n :=
{CZ
n

+Rn,1 +Rn,2 + bn

j∑
i=1

(C6bn + C̃5rn,i) + Λn,1 ≤
ε

C1 ∧ 1

}
∩

∩
{

(1 + C5)
(2CZ

n
+Rn,1 +Rn,2 + bn

j∑
i=1

(C6bn + C̃5rn,i)
)

+ C5Λn,1 ≤ Λn,0

}
.

This yields (i) and (ii) for τj+1 on the set Ωj+1,n. Finally, note that by the first part of

Lemma 6.2 we have for k ∈ χ(τj)

|µk(β̂(τj+1))− µk(β(τj+1))| ≤ rn,1 + bn

j∑
i=1

(C̃5rn,i + C6bn).

Inserting the definition of rn,k for k = 2, ..., j, some algebra yields

rn,1 + bn

j∑
i=1

(C̃5rn,i + C6bn) = rn,1(1 + C̃5bn)j + C6bn
(1 + C̃5bn)j − 1

C̃5

= rn,j+1,

which completes the proof of (iii) for τj+1. This shows Ωn ⊂ ∩jΩj,n and completes the first

step.

Step 2:

First of all, note that (iii) from the first step in combination with Remark 6.1 shows that

sup
j
‖β̂(τj)− β(τj)‖ = OP (n−1/2). (6.11)

In order to establish (6.10), note that on the set Ωn Lemma 6.2 in combination with Remark

6.1 yields

‖µ(β̂(τj))− φn(τj)‖ = ‖φn(τj)− µ(β(τj))− (µ(β̂(τj))− µ(β(τj)))‖

≤
∥∥∥Mτj

(
− νn(β(τj)) +

∫
[τ0,τj)

ν̃n(β(u))dH(u) +
τ0
n

n∑
i=1

(Zi − EZi)
)

+

j−1∑
i=0

∫
[τi,τi+1)

MτjM̃udH(u)
(
φn(τi)− µ(β(τi))

)
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+Mτj

(
νn(β̂(τj))−

∫
[τ0,τj)

ν̃n(β̂(u))dH(u)− τ0
n

n∑
i=1

(Zi − EZi)

−
∫
[τ0,τj)

µ̃(β̂(u))− µ̃(β(u))dH(u)
)∥∥∥

+
∥∥∥µ(β̂(τj))− µ(β(τj))−Mτj(µ̄

(χ(τj))(β̂(τj))− µ̄(χ(τj))(β(τj)))
∥∥∥

+Λn,1 +
CZ
n
.

Now for n large enough and cn →∞ we have by (6.11)∥∥∥− νn(β(τj)) +

∫
[τ0,τj)

ν̃n(β(u))dH(u) +
(
νn(β̂(τj))−

∫
[τ0,τj)

ν̃n(β̂(u))dH(u)
)∥∥∥ ≤ Vn

where Vn := ωcnn−1/2(νn) +H(τU)ωcnn−1/2(ν̃n) and moreover [here, D̃(τ) is defined in (6.1)]∥∥∥∫
[τj ,τj+1)

µ̃(β̂(u))− µ̃(β(u))dH(u)−
∫
[τj ,τj+1)

M̃udH(u)(µ(β̂(τj))− µ(β(τj)))
∥∥∥

≤ (D̃(Rn) + dbnCMC7)(H(τj+1)−H(τj)).

In particular, this implies∥∥∥∫
[τ0,τj)

µ̃(β̂(u))− µ̃(β(u))dH(u)−
j−1∑
i=0

∫
[τi,τi+1)

M̃udH(u)
(
φn(β(τi))− µ(β(τi))

)∥∥∥
≤ H(τU)(D̃(Rn) + dbnCMC7) + dbnCM

j−1∑
i=0

‖µ(β̂(τi))− φn(τi)‖.

Summarizing, we have obtained that for j ≥ 0 on the set Ωn

‖µ(β̂(τj))− φn(τj)‖

≤ Λn,1 +
CZ
n

+ Vn +D(Rn) +H(τU)(D̃(Rn) + dbnCMC7) + dbnCM

j−1∑
i=0

‖µ(β̂(τi))− φn(τi)‖.

Defining

sn,1 := Λn,1 +
CZ
n

+ Vn +D(Rn) +H(τU)(D̃(Rn) + dbnCMC7)

sn,j+1 := sn,1 + dbnCM

j∑
i=0

sn,i

we obtain ‖µ(β̂(τj+1))− φn(τj+1)‖ ≤ sn,j+1. Moreover, induction yields

sn,j+1 = (1 + dCMbn)j+1sn,1 ≤ sn,1 sup
n

(1 + dCMbn)Nτ (n).

This completes the proof. 2
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Lemma 6.5 Under the assumptions of Lemma 6.4 we have for j = 0, ..., Nτ (n)

φn(τj)− µ(β(τj))

= Mτj

(
wn(τj) +

∫
[τ0,τj)

(
π
(u,τj ]

(
Id + (MvM̃v)

tdH(v)
))t
M̃uMuwn(u)dH(u)

)
+Rn(τj)

uniformly in j where for some finite constant C we have supj ‖Rn(τj)‖ = OP (rn) with

rn := C
((
bn + sup

|u−v|≤an,θk /∈[u,v]∀k
‖Mu −Mv‖+ ‖M̃u − M̃v‖

)
sup
u
‖wn(u)‖

+ sup
|u−v|≤an

‖wn(u)− wn(v)‖
)
,

Id denotes the d× d identity matrix,π denotes the product-integral [see Gill and Johansen

(1990)] and we defined

wn(τ) :=
τ0
n

n∑
i=1

(Zi − EZi)− νn(τ) +

∫
[τ0,τ)

ν̃n(u)dH(u).

Proof. Throughout this proof, denote by C some generic constant whose value might differ

from line to line. Start by noting that the solution of the iterative equation (6.8) is given by

φn(τj+1)− µ(β(τj+1)) = Mτj+1

j∑
l=0

( j∏
i=l+1

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

))t
(wn(τl+1)− wn(τl))

+Mτj+1

( j∏
i=0

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

))t
wn(τ0),

this assertion can be proved by induction [here, a product
∏b

i=aCi with a > b is defined as

the unit matrix of suitable dimension]. Next, observe that summation-by-parts, that is
n∑

k=m

fk(gk+1 − gk) = fn+1gn+1 − fmgm −
n∑

k=m

(fk+1 − fk)gk+1

yields

j∑
l=0

( j∏
i=l+1

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

))t
(wn(τl+1)− wn(τl))

+
( j∏
i=0

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

))t
wn(τ0)

= Idwn(τj+1)−
j∑
l=0

[ j∏
i=l+2

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

)
−

j∏
i=l+1

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

)]t
wn(τl+1)

= wn(τj+1) +

j−1∑
l=0

( j∏
i=l+2

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

))t ∫
[τl+1,τl+2)

M̃uMτl+1
dH(u)wn(τl+1).
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At the end of the proof, we will show that

sup
k,j,j<k

∥∥∥ k−1∏
i=j

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

)
− π

(τj ,τk]

(
Id + (MuM̃u)

tdH(u)
)∥∥∥ ≤ Cdn

(6.12)

where dn := bn + sup|u−v|≤an,θk /∈[u,v]∀k

(
‖Mu−Mv‖+ ‖M̃u−M̃v‖

)
. Moreover, we note that

sup
k,j,j<k

sup
v∈(τj ,τj+1]

∥∥∥ π
(τj ,τk]

(
Id + (MuM̃u)

tdH(u)
)
− π

(v,τk]

(
Id + (MuM̃u)

tdH(u)
)∥∥∥ ≤ Cbn

since
∥∥∥π(a,b]

(
Id + (MuM̃u)

tdH(u)
)∥∥∥ ≤ exp(dCM(H(b) −H(a))) by inequality (37) from

Gill and Johansen (1990) and
∥∥∥π(v,τj+1]

(
Id + (MuM̃u)

tdH(u)
)
− Id

∥∥∥ ≤ dCM(H(τj+1) −
H(v)) exp(dCM(H(τj+1)−H(v))) by inequality (38) from the same reference. This yields

sup
j

∥∥∥ j−1∑
l=0

( j∏
i=l+2

(
Id +

∫
[τi,τi+1)

(MuM̃u)
tdH(u)

))t ∫
[τl+1,τl+2)

(MuM̃u)
tdH(u)wn(τl+1)

−
∫
[τ0,τj+1)

(
π

(v,τj+1]

(
Id + (MuM̃u)

tdH(u)
))t
M̃vMvwn(v)dH(v)

∥∥∥ ≤ Crn,

since
∫
[τ0,τ1)

(
π(v,τ1]

(
Id+(MuM̃u)

tdH(u)
))t
M̃vMvwn(v)dH(v) ≤ Cbn supu ‖wn(u)‖. Thus

it remains to establish (6.12). To this end, we note that

k−1∏
i=j

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

)
−

k−1∏
i=j

(
Id +

∫
[τi,τi+1)

(MuM̃u)
tdH(u)

)
=

k−1∑
l=j

( l−1∏
i=j

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

))
×
(∫

[τl,τl+1)

(MτlM̃u)
tdH(u)−

∫
[τl,τl+1)

(MuM̃u)
tdH(u)

))
×

k−1∏
i=l+1

(
Id +

∫
[τi,τi+1)

(MuM̃u)
tdH(u)

)
.

Next, observe that

sup
l:θk /∈[τl,τl+1)∀k

∥∥∥∫
[τl,τl+1)

(MτlM̃u)
tdH(u)−

∫
[τl,τl+1)

(MuM̃u)
tdH(u)

∥∥∥ ≤ Cbn sup
|u−v|≤an,θk /∈[u,v]∀k

‖Mu−Mv‖

and

sup
l:∃k:θk∈[τl,τl+1)

∥∥∥∫
[τl,τl+1)

(MτlM̃u)
tdH(u)−

∫
[τl,τl+1)

(MuM̃u)
tdH(u)

∥∥∥ ≤ Cbn.
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Finally, note that k − 1− j ≤ Nτ (n), bnNτ (n) = O(1) and that
∥∥∥ ∫[τl,τl+1)

MτlM̃udH(u)
∥∥∥ ≤

Cbn,
∥∥∥ ∫[τl,τl+1)

MτuM̃udH(u)
∥∥∥ ≤ Cbn uniformly in l, which yields

sup
k,j

∥∥∥ k−1∏
i=j

(
Id +

∫
[τi,τi+1)

(MτiM̃u)
tdH(u)

)
−

k−1∏
i=j

(
Id +

∫
[τi,τi+1)

(MuM̃u)
tdH(u)

)∥∥∥ ≤ Cdn

since there are only finitely many different θk. Finally, the bound

sup
k,j,j<k

∥∥∥ k−1∏
i=j

(
Id +

∫
[τi,τi+1)

(MuM̃u)
tdH(u)

)
− π

(τj ,τk]

(
Id + (MuM̃u)

tdH(u)
)∥∥∥ ≤ Cdn

can be established by using equations (37), (39) in Gill and Johansen (1990) and the repre-

sentation

k−1∏
i=j

(
Id +

∫
[τi,τi+1)

(MuM̃u)
tdH(u)

)
−

k−1∏
i=j

π
(τi,τi+1]

(
Id + (MuM̃u)

tdH(u)
)

=
k−1∑
l=j

( l−1∏
i=j

(
Id +

∫
[τi,τi+1)

(MuM̃u)
tdH(u)

))
×

×
(
Id +

∫
[τl,τl+1)

(MuM̃u)
tdH(u)− π

(τl,τl+1]

(
Id + (MuM̃u)

tdH(u)
))
×

× π
(τl+1,τk]

(
Id + (MuM̃u)

tdH(u)
)
.

This completes the proof. 2
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6.2 Proof of Theorem 3.4 and Theorem 4.3

The convergence P (supτ∈[τ0,τU ] supk∈χ(τ)C ‖β̂k(τ)| = 0) → 1 is a direct consequence of the

results in Lemma 6.4.

Next, observe that supj supu∈(τj ,τj+1]
‖µ(β(u))− µ(β(τj+1))‖ = O(bn) and similarly

sup
j

sup
u∈(τj ,τj+1]

‖ψn(u)− ψn(τj+1)‖ = O(bn sup
τ
‖wn(τ)‖+ ωan(wn)) a.s.

where we defined

ψn(τ) := wn(τ)−
∫
[τ0,τ)

(
π
(u,τk]

(
Id + (MvM̃v)

tdH(v)
))t
M̃uMuwn(u)dH(u).

Together with the results in Lemma 6.4 and 6.5, this yields the representation

µ(β̂(s))− µ(β(s))

= Ms

(
wn(s) +

∫
[τ0,s)

(
π
(u,s]

(
Id + (MvM̃v)

tdH(v)
))t
M̃uMuwn(u)dH(u)

)
+Rn(s)

uniformly in s ∈ [τ0, τU ] where

sup
τ∈[τL,τU ]

√
n‖Rn(τ)‖ = OP (n1/2bn + n−γ/2 + ωcnn−1/2(

√
nνn) + ωcnn−1/2(

√
nν̃n))

under the assumptions of Theorem 3.4 and supτ∈[τL,τU ]
√
n‖Rn(τ)‖ = oP (1) under the as-

sumptions of Theorem 4.3. Thus we have obtained representation (4.4), and a Taylor ex-

pansion combined with some simple algebra yields (3.3).

The weak convergence statements in both Theorems follow by the continuous mapping the-

orem [note that by assumption (A3) and equation (37) from Gill and Johansen (1990), the

components of the matrix
(
π(u,τ ]

(
Id+(MvM̃v)

tdH(v)
))t
M̃uMu are uniformly bounded],

and thus the proof is complete. 2
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6.3 Proof of Theorem 4.10

The following result can be proved by similar arguments as Lemma 6.2.

Lemma 6.6 Let conditions (C1)-(C3) and (C4*) hold. Assume that K ⊆ ξ(τj) satisfies the

following conditions

sup
b∈Rd

∥∥∥νn(b)
∥∥∥+

∥∥∥∫
[τ0,τj)

ν̃n(β̂(u))dH(u)
∥∥∥+

∥∥∥τ0
n

n∑
i=1

(Zi − EZi)
∥∥∥ ≤ α1∥∥∥∫

[τ0,τj)

µ̃(β̂(u))− µ̃(β(u))dH(u)
∥∥∥ ≤ α2

and

α1 + α2 + sup
k∈K

λn
pk(n, τj)

+
CZ
n

+ C2 sup
k∈KC

|βk(τj))| ≤
ε− supk∈KC |βk(τj)|

C1

(6.13)

(C5 + 1)
(
α1 + α2 +

2CZ
n

+ sup
k∈KC

|βk(τj))|
)

+ C5 sup
k∈K

λn
pk(n, τj)

≤ inf
k∈KC

λn
pk(n, τj)

. (6.14)

Then any minimizer of Hj defined in (2.6) is of the form P−1K (ĥ(τj)
t,~0t)t where ĥ(τj) is a

minimizer of Hj(P−1K (ht,~0t)t) over h ∈ R|K|. Moreover, it holds that

‖µ(K)(β̂(τj))− µ(K)β(τj)‖ ≤
CZ
n

+ sup
k∈K

λn
pk(n, τj)

+ C2 sup
k∈KC

|βk(τj)|+ α1 + α2.

For the proof of Theorem 4.10, we will consider points τj such that τj ∈
⋂
k(Bk ∪ Vk) and

τj ∈ P ∪ S separately. Note that for sufficiently large n, the set P ∪ S is a union of finitely

many disjoint intervals. Without loss of generality, assume that [τ0, τN1 ] ⊂
⋂
k(Bk ∪ Vk) and

[τN1+1, τN2 ] ⊂ P ∪ S, [τN2+1, τN3 ] ⊂
⋂
k(Bk ∪ Vk) and so on [of course, N1, N2, ... depend on

n, but we do not reflect this fact in the notation].

Introduce the ’oracle’ penalty pOk (n, τj) :=∞I{βk(τj) = 0} and define β̂O(τj) as the solution

of the minimization in (2.6) based on this penalty. The basic idea for proving process

convergence is to show, that the ’estimator’ β̂O(τj) and β̂(τj) have the same first-order

asymptotic expansion uniformly on τj ∈ P ∪ S. More precisely, we will show that

sup
τj∈P∪S

‖µ(β̂(τ))− µ(β̂O(τ)‖ = oP (n−1/2). (6.15)

Note that by the arguments in the proof of Theorem 4.3 this directly implies the weak

convergence in (4.9).

In order to study the uniform rate of convergence of β̂(τj) on
⋂
k(Bk ∪ Vk), we need to

introduce some additional notation Consider the non-overlapping sets

Aj,n := {t : n−1/4κ−1/2n c−j/5dn ≥ t > n−1/4κ−1/2n c−(j+1)/5d
n }, j = 1, ..., 5d− 1.
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Observe that for any τ , the components of β(τ) are contained in at most d of those sets and

thus for any τ there exist three consecutive sets containing no component of β(τ). Moreover,

the diameter of each Aj,n is by construction of larger order then n−1/2. Thus there exists a

function j(τ) such that the probability of the set

ΩA := {|β̃k(τ)| /∈ Aj(τ),n, k = 1, ..., d, τ ∈ [τL, τU ]}

tends to one. We will use Lemma 6.6 to show that in each step, coefficients with absolute

value below n−1/4κ
−1/2
n c

−(j(τk)+1)/5d
n will be set to zero with probability tending to one.

Define the quantities

Mn,j := sup
τ∈Bj

λn

|β̃j(τ)|
= oP (1/

√
n) (6.16)

Ln,j :=
√
n inf
τ∈Sj∪Vj

λn

|β̃j(τ)|
P−→∞. (6.17)

Wn,j := sup
τ∈Pj∪Bj

λn

|β̃j(τ)|
= OP

( cn

n1/4κ
1/2
n

)
(6.18)

and Mn := supjMn,j, Ln := infj Ln,j,Wn := supjWn,j.

Now begin by considering τj ∈ [τ0, τN1 ]. A careful inspection of the proofs of Lemma 6.4,

Lemma 6.5 and Theorem 4.3 show that the arguments and expansions derived there continue

to hold and in particular that

sup
τj∈[τ0,τN1

]

‖µ(β̂(τ))− µ(β̂O(τ)‖ = oP (n−1/2)

and

Rn,2 :=
∥∥∥∫

[τ0,τN1
)

µ̃(β̂(u))− µ̃(β(u))dH(u)
∥∥∥ = OP (1/

√
n).

Next, consider τj ∈ [τN1+1, τN2 ]. Define the quantities

Un := inf
τ∈[τL,τU ]

inf
j∈P̃ (τ),k∈S̃(τ)

{ λn

|β̃k(τ)|
− C5λn

|β̃j(τ)|
− C2(1 + C5)

n1/4κ
1/2
n c

(j(τ)+1)/5d
n

}
,

sn,0 := C1

(2CZ
n

+
C2

n1/4κ
1/2
n c

1/5d
n

+Wn +Rn,1 +Rn,2

)
+

1

n1/4κ
1/2
n c

1/5d
n

,

where

P̃ (τ) :=
{
j ∈ {1, . . . , d} : |βj(τ)| ≥ c

−j(τ)/5d
n

n1/4κ
1/2
n

}
,

S̃(τ) :=
{
j ∈ {1, . . . , d} : |βj(τ)| ≤ c

−(j(τ)+1)/5d
n

n1/4κ
1/2
n

}
.

Note that by the assumptions on κn, cn we have that Un is at least of the order λnn
1/4κ

1/2
n c

1/5d
n

which is of larger order then n−1/2. In particular, this implies that the probability of the set

Ω̄2,n :=
{

(1 + C5)
(2CZ

n
+Rn,1 +Rn,2 + (N2 −N1)bnC3CL,1(sn,0 + bnC4)

)
≤ Un

}
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where CL,1 := supn(1 + C1C3bn)Nτ (n) < ∞, tends to one by assumption (B3) since (N2 −
N1)bn = O(cn/κn)γ. In the following, we will show that on the set

Ω3,n := Ω̄2,n ∩ ΩA ∩
{sn,0
C1

+ (N2 −N1)bnC3CL,1(sn,0 + C4bn) ≤ ε− supk∈KC |βk(τj)|
C1

}
it holds that for l = 0, ..., N2 −N1∥∥∥∫

[τN1
,τN1+l

)

µ̃(β̂(u))− µ̃(β(u))dH(u)
∥∥∥ ≤ l−1∑

j=0

C3bn(sn,j + C4bn) ≤ lbnC3CL,1(sn,0 + bnC4)

‖β̂(τN1+l)− β(τN1+l)‖ ≤ sn,l,

where sn,l satisfies the relation

sn,l+1 = sn,0 + C1C3bn

l∑
i=0

(sn,i + C4bn) = (1 + C1C3bn)l+1sn,0 + b2nC1C3C4

l∑
j=0

(1 + bnC1C3)
j

≤ CL,1sn,0 + CL,1bnC4 − C4bn.

Note that the assertion for µ̃ inductively follows from the assertions for β and sn,l. To estab-

lish those assertions, start by considering the case l = 0. Let |βj(τN1)| ≥ n−1/4κ
−1/2
n c

−(j(τN1
))/5d

n

if and only if j ∈ K0. By construction, conditions (6.13) and (6.14) hold on the set Ω3,n

with K = K0, α1 = Rn,1 [with Rn, 1 defined in equation (6.9)], α2 = Rn,2. Thus on Ω3,n

we have β̂k(τN1) = 0 for k ∈ KC
0 and by Lemma 6.6 it holds that ‖β̂(τN1)− β(τN1)‖ ≤ sn,0.

The rest of the assertion follows by iterating the above argument with α1 = Rn,1, α2 =

Rn,2 +
∑l−1

j=0C3bn(sn,j + C4bn) in the l’th step.

This yields the assertions (4.10) and (4.8) on the set [τL, τN2 ]. Note by the computations

above ∥∥∥∫
[τN1

,τN2
)

µ̃(β̂(u))− µ̃(β(u))dH(u)
∥∥∥ ≤ (N2 −N1)bnC3CL,1(sn,0 + C4bn)

= O
( cn
κn

)γ
OP

( cn

κ
1/2
n n1/4

)
= oP (1/

√
n).

In particular, this implies that∥∥∥∫
[τN1

,τN2
)

µ̃(β̂(u))− µ̃(β(u))dH(u)−
∫
[τN1

,τN2
)

µ̃(β̂O(u))− µ̃(β(u))dH(u)
∥∥∥ = oP (n−1/2).

Thus we obtain

sup
τ∈[τN2+1,τN3

]

‖µ(β̂O(τ))− µ(β̂(τ))‖ = oP (n−1/2)

by an iterative application of Lemma 6.6, the arguments are similar to the ones used in

the proofs of Lemma 6.4, Lemma 6.5 and Theorem 4.3. Finally, since the set P ∪ S is by

assumption a finite union of intervals, we can repeat the arguments above to extend the

proof to the whole interval [τL, τU ]. 2
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