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Abstract

This paper is devoted to the discrimination between a stationary long-range dependent model and a non

stationary process. We develop a nonparametric test for stationarity in the framework of locally stationary

long memory processes which is based on a Kolmogorov-Smirnov type distance between the time varying

spectral density and its best approximation through a stationary spectral density. We show that the test

statistic converges to the same limit as in the short memory case if the (possibly time varying) long memory

parameter is smaller than 1/4 and justify why the limiting distribution is different if the long memory

parameter exceeds this boundary. Concerning the latter case the novel FARI(∞) bootstrap is introduced

which provides a bootstrap-based test for stationarity that only requires the long memory parameter to be

smaller than 1/2 which is the usual restriction in the framework of long-range dependent time series. We

investigate the finite sample properties of our approach in a comprehensive simulation study and apply the

new test to a data set containing log returns of the S&P 500.

AMS subject classification: 62M10, 62M15, 62G10

Keywords and phrases: bootstrap, empirical spectral measure, goodness-of-fit test, integrated periodogram,

locally stationary process, long memory, non stationary process, spectral density.

1 Introduction

For many decades one of the leading paradigms in time series analysis is the assumption of stationarity which

means that the second-order charateristics of the considered time series are constant over time. One of the

prime examples which fits into the framework of stationary processes is the well-known ARMA(p, q) model.

Such processes are widely used in applications due to their simplicity and flexibility, and they belong to the

class of so called short memory models containing a summable autocovariance function γ.

However, many time series in reality exhibit an effect which is known as long-range dependence (or long

memory) and which means that γ decays to zero slowly. Usually one has γ(k) ∼ Ck2d−1 as k → ∞ for some

d ∈ (0, 1/2), so in particular the autocovariance function is not absolutely summable. The coefficent d is
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called long memory parameter, and the most common way to model these kinds of strong dependencies is to

employ FARIMA(p, d, q) processes which were introduced in Granger and Joyeux (1980) and Hosking (1981).

These long memory extensions of ARMA(p, q) processes are stationary under certain regularity conditions as

well. There exists a large literature on long-range dependence in applications, as it occurs e.g. in the modeling

of asset volatility, computer network traffic or various other phenomena; see for example Park and Willinger

(2000), Henry and Zaffaroni (2002) and Doukhan et al. (2002) for an overview. The assumption of stationarity,

however, is always imposed.

More recently, several authors have pointed out that a slow decrease of γ(k) might also occur if the true

underlying process does actually not possess long memory but is non stationary instead; see Mikosch and

Starica (2004), among others. In addition, Starica and Granger (2005) compared the performance of a non

stationary model with that of a FARIMA(1, d, 1) and a GARCH(1, 1) process in the framework of volatility

forecasting and found out that their non stationary model is leading to superior results. Fryzlewicz et al. (2006)

proved that most of the stylized facts which are observed for financial return data can be explained by fitting

the simple (but usually non stationary) model

Xt,T = σ(t/T )Zt, t = 1, . . . , T, (1.1)

to the data, where T here and throughout the paper denotes the sample size, σ(·) : [0, 1] → IR+ is a non

parametric function and (Zt)t is some i.i.d. white noise process. Thus many phenomena in reality can be

explained by either fitting a stationary long memory process or a non stationary (short memory) model to the

data. A natural question then is how to discriminate between these two approaches.

Although the importance of statistical tests concerning this matter was pointed out by many authors (see e.g.

Perron and Qu (2010) or Chen et al. (2010)), there does not exist much research on this topic. Berkes et al.

(2006) and Dehling et al. (2011) developed CUSUM and Wilcoxon type tests which discriminate between long-

range dependence and changes in mean. While the authors of the first article are testing the null hypothesis

that there is no long-range dependence but one change in mean at some unknown point in time (i.e. the

alternative corresponds to the case where the process possesses long memory), the latter paper considers the

null hypothesis that there is no change in mean but possibly long-range dependence (i.e. the alternative

corresponds to the case where there is a change in mean). A similar approach can be found in Sibbertsen and

Kruse (2009). However, there exist many other deviations from stationarity besides changes in mean and it is

of particular importance to detect variations in the dependency structure of a given time series as well.

This paper is devoted to the construction of a test for stationarity in the framework of locally stationary

long memory processes. The concept of local stationarity became quite famous in recent years, because in

contrast to other proposals to model non-stationarity it allows for a meaningful asymptotic theory. Locally

stationary processes were introduced by Dahlhaus (1997) and there exist numerous articles which are concerned

with estimation techniques or segmentation methods in this framework; see Neumann and von Sachs (1997),

Adak (1998), Chang and Morettin (1999), Sakiyama and Taniguchi (2004), Dahlhaus and Polonik (2006),

Van Bellegem and von Sachs (2008) or Kreiß and Paparoditis (2011), among others. Articles allowing for long

memory effects are rare, however, as only Beran (2009), Palma and Olea (2010) and Roueff and von Sachs

(2011) considered parametric and semiparametric estimation.

Similarly, there exist several tests for stationarity in the context of locally stationary models [see for example

von Sachs and Neumann (2000), Paparoditis (2009), Paparoditis (2010), Dwivedi and Subba Rao (2010), Dette

et al. (2011) and Preuß et al. (2012)], but in all articles long-range dependence is excluded, i.e. these methods

cannot be employed for discriminating between long memory and non-stationarity. Our aim is to fill this gap,
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and for this reason we consider a Kolmogorov-Smirnov type distance which was already discussed in Dahlhaus

(2009) and Preuß et al. (2012) to measure deviations from stationarity in the short memory case. Precisely, set

E := sup
(v,ω)∈[0,1]2

|E(v, ω)|, (1.2)

where

E(v, ω) :=
1

2π

(∫ v

0

∫ πω

0
f(u, λ)dλdu− v

∫ πω

0

∫ 1

0
f(u, λ)dudλ

)
, (v, ω) ∈ [0, 1]2,

and f(u, λ) denotes the time-varying spectral density. Under the null hypothesis of stationary f(u, λ) does not

depend on u and therefore E equals zero. For this reason it is natural to consider an empirical version of the

measure in (1.2) in order to construct a test for stationarity.

The literature on empirical spectral processes in the long memory framework is surprisingly small, even when

restricted to the simpler stationary case. To the best of our knowledge, only Kokoszka and Mikosch (1997)

have discussed weak convergence of the integrated periodogram to a Gaussian process in the stationary case.

Our first goal is therefore to derive the asymptotics of an empirical version ÊT (v, ω) of the measure proposed

above. In particular, we are able to prove weak convergence of the process ÊT (v, ω)−E(v, ω) at the parametric

rate T−1/2, but only one if the long memory parameter satisfies d < 1/4. This is a natural restriction in this

framework (see e.g. Fox and Taqqu (1987) for a similar result on quadratic forms) since the covariances of the

finite-dimensional limits contain integrals over the square of the spectral density. These do not exist if the

boundary at 1/4 is exceeded.

As a consequence, we obtain a central limit theorem for supv,ω |ÊT (v, ω)| under the null hypothesis and if

d < 1/4, but with a rather complicated dependence structure due to the unknown spectral density. Our

second main contribution is therefore the invention of the novel FARI(∞) bootstrap for which we are able to

prove consistency in the situation above. Interestingly, as it automatically adopts to a switch in the rate of

convergence this procedure works indeed for the entire case of d < 1/2 which is the usual assumption in the

framework of long-range dependent time series; see for example Berkes et al. (2006).

The paper is organized as follows. In Section 2 we introduce the necessary notation, whereas we describe the

testing procedure in Section 3. The FARI(∞) bootstrap required to obtain asymptotic quantiles of the test

statistic is discussed in Section 4, and we investigate the finite sample behaviour of our approach in Section 5.

Finally, we defer all proofs to an appendix in Section 6.

2 Locally stationary long memory processes

Locally stationary processes are usually defined via a sequence of stochastic processes {Xt,T }t=1,...,T which

possess a time-varying MA(∞) representation

Xt,T =
∞∑
l=0

ψt,T,lZt−l, t = 1, . . . , T, (2.1)

with independent and identically distributed Zt where E(|Zt|k) <∞ for all k ∈ IN ; see Dahlhaus and Polonik

(2009). For the coefficents ψt,T,l we assume that

sup
t,T

∞∑
l=0

ψ2
t,T,l <∞ (2.2)

3



is fulfilled which ensures that the process in (2.1) is well defined; see Brockwell and Davis (1991). If the ψt,T,l
are independent of t and T the process Xt,T is stationary. However, the coefficents ψt,T,l depend on t and T

in general. To ensure that in this case the process Xt,T behaves approximately like a stationary process on a

small time interval, it is typically assumed that

sup
t=1,...,T

∞∑
l=0

∣∣ψt,T,l − ψl(t/T )
∣∣ = O(1/T ) (2.3)

holds for twice continuously differentiable functions ψl : [0, 1] → IR, l ∈ ZZ. Different smoothness conditions

on the functions ψl(·) are imposed in the literature, and in essentially all articles in the framework of local

stationarity it is assumed that in addition to (2.2) the condition

sup
t,T

∞∑
l=0

|ψt,T,l||l|δ <∞ (2.4)

is satisfied for some δ > 0. This implies supt,T
∑∞

h=0 |Cov(Xt,T , Xt+h,T )| < ∞, and therefore long memory

models are excluded. For this reason we replace (2.4) by a growth condition which is flexible enough to include

long-range dependent time series as well.

Assumption 2.1 Suppose we have a sequence of stochastic processes {Xt,T }t=1,...,T which have an MA(∞)

representation as in (2.1) with independent and standard normal distributed Zt such that (2.2) is fulfilled.

Furthermore, we assume that (2.3) holds with twice continuously differentiable functions ψl : [0, 1]→ IR which

satisfy the following conditions:

1) There exist twice differentiable functions a, d : [0, 1]→ IR+ such that D := supu∈[0,1] |d(u)| < 1/2 and

ψl(u) = a(u)I(l)d(u)−1 +O(I(l)D−2) (2.5)

holds uniformly in u as l→∞, where I(x) := |x| · 1{x 6=0} + 1{x=0}.

2) The time varying spectral density

f(u, λ) :=
1

2π

∣∣∣ ∞∑
l=0

ψl(u) exp(−iλl)
∣∣∣2 (2.6)

is twice continuously differentiable on (0, 1) × (0, π). Furthermore, f(u, λ) and all its partial derivatives

up to order two are continuous on [0, 1]× (0, π].

3) There exists a constant C ∈ IR which is independent of u and λ such that the first and second derivative

of the approximating functions ψl(·) satisfy

sup
u∈(0,1)

|ψ′l(u)| ≤ C log |l|/|l|1−D, (2.7)

sup
u∈(0,1)

|ψ′′l (u)| ≤ C log2 |l|/|l|1−D

for l 6= 0 and are bounded otherwise. Furthermore, we assume

sup
u∈(0,1)

|∂/∂u f(u, λ)| ≤ C log(λ)/λ2D,

sup
u∈(0,1)

|∂2/∂u2 f(u, λ)| ≤ C log2(λ)/λ2D.
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4) We have

sup
t,T
|ψt,T,l| ≤ C|l|D−1. (2.8)

To simplify the notation we use C ∈ IR as a universal constant throughout this paper. Note that it is common

sense to consider only zero mean processes in this framework since observed data can be easily transformed

into data with mean zero. Furthermore, innovations Zt with a time varying variance σ2(t/T ) can be included

by choosing other coefficents ψt,T,l. The assumption of Gaussianity is standard (see Palma and Olea (2010)

or Dette et al. (2011)) and only imposed to simplify technical arguments since the proofs are already quite

involved in this situation. It is straightfoward but cumbersome to extend the results to a more general class of

linear processes.

To obtain an impression for local stationarity, note that the process

Xt(u) =
∞∑
l=0

ψl(u)Zt−l (2.9)

is stationary for every u ∈ [0, 1], and that Xt(t/T ) serves as an approximation of Xt,T in the sense of (2.3). It

is easy to see that (2.5) implies

|Cov(Xt(u), Xt+k(u))| ∼ y1(u)/k1−2d(u) as k →∞

and

f(u, λ) ∼ y2(u)/λ2d(u) as λ→ 0 (2.10)

for some functions yi(·); see the proof of Theorem 3.1 in Palma (2007) for details. This shows that the

autocovariance function γ(u, k) = Cov(X0(u), Xk(u)) is not absolutely summable and that the time varying

spectral density f(u, λ) has a pole in λ = 0 for every u ∈ [0, 1]. If the considered process is stationary then

u 7→ d(u) is independent of u which yields that D equals the long memory parameter d of a stationary time

series. Let us present two examples which fit into the above framework of locally stationary long memory

processes. To this end we define the backshift operator B through BkXt := Xt−k, k ∈ IN, and we set

(1−B)d(u) =
∞∑
j=0

(
d(u)

j

)
(−1)jBj ,

just as for the binomial series. We justify first that stationary FARIMA(p, d, q) processes are included in our

theoretical framework and then motivate a time-varying extension of them.

Example 2.1 (FARIMA(p, d, q)). We consider the FARIMA(p, d, q) equation

a(B)(1−B)dXt = b(B)Zt (2.11)

with a(z) := 1 −
∑p

j=1 ajz
j and b(z) := 1 +

∑q
j=1 bjz

j . Theorem 3.4 in Palma (2007) states that if the

polynomials a(·) and b(·) have no common zeros and the zeros of a(·) furthermore lie outside the unit disc

{z ∈ C : |z| ≤ 1}, then for d ∈ (−1, 1/2) the equation (2.11) possesses a stationary solution. Moreover, the

coefficents ψt,T,l = ψl(t/T ) = ψl in the MA(∞) representation of the process are given by

∞∑
l=0

ψlz
l = (1− z)−db(z)/a(z),
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thus the time-homogeneous spectral density f(u, λ) = f(λ) becomes

f(λ) =
σ2

2π
|1− exp(−iλ)|−2d

|1 +
∑q

j=1 bj exp(−iλj)|2

|1−
∑p

j=1 aj exp(−iλj)|2
. (2.12)

In addition, using Lemma 3.2 in Kokoszka and Taqqu (1995) and equation (1.18) in chapter 3 of Zygmund

(1959), it can be shown that

ψl =
b(1)

a(1)Γ(d)

1

l1−d
+O

(
1

l2−d

)
as l→∞, (2.13)

which in combination with (2.12) yields that part 1) and 2) in Assumption 2.1 are fulfilled. Part 3) of As-

sumption 2.1 is automatically fulfilled since the process is stationary and hence there is no time dependence.

Finally, part 4) follows with ψt,T,l = ψl and (2.13).

Example 2.2 (tvFARIMA(p, d, q)). The time varying extension of (2.11) is given by

a(t/T,B)(1−B)d(t/T )Xt,T = b(t/T,B)Zt, t = 1, . . . , T, (2.14)

where a(u, z) := 1 −
∑p

j=1 aj(u)zj , b(u, z) := 1 +
∑q

j=1 bj(u)zj for some functions aj(·), bj(·) on [0, 1], and

d : [0, 1] → (0, D] is twice continuously differentiable with D < 1/2. (2.14) is called a time varying FARIMA

(tvFARIMA) equation. It can be shown that under certain regularity conditions on the functions aj(·), bj(·),
the equation (2.14) possesses a solution which is a locally stationary long memory process in the sense of

Assumption 2.1; see Jensen and Whitcher (2000) for more details. For example, if we are in the framework of

a time varying fractional noise (i.e. p = q = 0), then a Taylor expansion in x yields

(1− x)−d(u) =

∞∑
j=0

ηj(u)xj with ηj(u) :=
Γ(j + d(u))

Γ(d(u))Γ(j + 1)
for j ≥ 0; (2.15)

see Section 1.3.1 in Pipiras and Taqqu (2011). This implies part 2) of Assumption 2.1, and

Γ(l + d(u))

Γ(d(u))Γ(l + 1)
=

1

Γ(d(u))l1−d(u)
+O

(
1

l2−D

)
as l→∞ (2.16)

as above proves that parts 1) and 3) are satisfied as well. Part 4) holds since it is ψt,T,l = ψl(t/T ).

3 The testing procedure

Let us now come to the development of a test for stationarity in the case of long memory models. We are thus

interested in testing the null hypothesis

H0 : f(u, λ) is independent of u (3.1)

against the alternative that there exists an ω ∈ [0, π] such that u 7→ f(u, ω) is not independent of u. Our

test will be based on empirical versions of the quantities E and E(v, ω) specified in (1.2), and we see that E

vanishes under the null hypothesis while it is positive under the alternative due to the continuity of the spectral

density.
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In order to obtain an estimator for E we have to define an empirical version of E(v, ω) at first, and for this

reason we require an estimator for f(u, λ). We assume without loss of generality that the sample size T can

be decomposed as T = NM where N and M are integers with N even. We then define the local periodogram

at the rescaled time point u ∈ [0, 1] by

IN (u, λ) :=
1

2πN

∣∣∣N−1∑
s=0

XbuT c−N/2+1+s,T exp(−iλs)
∣∣∣2

[see Dahlhaus (1997)], where we have set Xj,T = 0, if j 6∈ {1, . . . , T}. This is the usual periodogram computed

from the observations XbuT c−N/2+1,T , . . . , XbuT c+N/2,T . It can be shown that the quantity IN (u, λ) is an

asymptotically unbiased estimator for the spectral density if N →∞ and N = o(T ). However, IN (u, λ) is not

consistent just as the usual periodogram.

An empirical version of E(v, ω) is now constructed by replacing the integral by its Riemann sum and substituting

the time varying spectral density f(u, λ) by its (asymptotically) unbiased estimator IN (u, λ). In other words,

we define an estimator for E(v, ω) by

ÊT (v, ω) :=
1

T

bvMc∑
j=1

bωN
2
c∑

k=1

IN (uj , λk)−
bvMc
M

1

T

M∑
j=1

bωN
2
c∑

k=1

IN (uj , λk), (3.2)

where uj := tj/T := (N(j − 1) +N/2)/T and λk := 2πk/N with j = 1, . . . ,M and k = 1, . . . , N/2. Note that

in this procedure the T observations are divided into M intervals with length N and that the uj correspond

to the midpoints of these intervals in rescaled time. The λk are the usual Fourier frequencies. We then set

ET (v, ω) :=
1

T

bvMc∑
j=1

bωN
2
c∑

k=1

f(uj , λk)−
bvMc
M

1

T

M∑
j=1

bωN
2
c∑

k=1

f(uj , λk),

which is the Riemann sum approximation of E(v, ω), and consider the empirical spectral process

ĜT (v, ω) :=
√
T
(
ÊT (v, ω)− ET (v, ω)

)
, v, ω ∈ [0, 1].

The following theorem specifies the asymptotic properties of the process (ĜT (v, ω))v,ω in the case D < 1/4.

Note that the results hold both under the null hypothesis and the alternative, and throughout this paper the

symbol ⇒ denotes weak convergence in [0, 1]2.

Theorem 3.1 Suppose that Assumption 2.1 with D < 1/4 is satisfied and let

N →∞, N/T → 0, T 1/2 log(N)/N1−2D → 0. (3.3)

Then as T →∞ we have(
ĜT (v, ω) +

√
TCT (v, ω, (ψl(·))l∈ZZ)

)
(v,ω)∈[0,1]2

⇒ (G(v, ω))(v,ω)∈[0,1]2 ,

where (G(v, ω))(v,ω)∈[0,1]2 is a Gaussian process with mean zero and covariance structure

Cov(G(v1, ω1), G(v2, ω2)) =
1

2π

∫ 1

0

∫ πmin(ω1,ω2)

0
(1[0,v1](u)− v1)(1[0,v2](u)− v2)f2(u, λ)dλdu.

CT (v, ω, (ψl(·))l∈ZZ) denotes a bias term which equals zero if the functions ψl(u) are independent of u for all

l ∈ ZZ and which is some O(N2/T 2 + log(N)/N1−2D), uniformly in v, ω, otherwise.
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Even under the alternative the bias term above is negligible for D < 1/6, at least for a suitable choice of

N . This is why it does not appear in the related result in Preuß et al. (2012). More interesting for us is the

behaviour under (3.1), however. In this case we have CT (v, ω, (ψl(·))l∈ZZ) = ET (v, ω) = 0 for all v, ω, T . Thus

Theorem 3.1 implies

(
√
TÊT (v, ω))(v,ω)∈[0,1]2 ⇒ (G(v, ω))(v,ω)∈[0,1]2 ,

under the null hypothesis which yields
√
T sup

(v,ω)∈[0,1]2
|ÊT (v, ω)| D−−→ sup

(v,ω)∈[0,1]2
|G(v, ω)|.

An asymptotic level α test is then given by rejecting (3.1) whenever
√
T sup(v,ω)∈[0,1]2 |ÊT (v, ω)| exceeds the

(1 − α) quantile of the distribution of the random variable sup(v,ω)∈[0,1]2 |G(v, ω)|. To obtain consistency of

the test, note that ET (v, ω) ≥ C for some v, ω ∈ [0, 1] and T large enough, if we are under the alternative.

Since Theorem 3.1 implies |ÊT (v, ω) − ET (v, ω)| → 0 in probability for this specific (v, ω), it follows that√
T sup(v,ω)∈[0,1]2 |ÊT (v, ω)| blows up to infinity (in probability).

The restriction D < 1/4 in Theorem 3.1 is necessary since f2(u, λ) in the asymptotic variance is not integrable

anymore if D ≥ 1/4 due to (2.10). In fact, in the latter case the rate of convergence is different to T−1/2 and

the calculation of the corresponding variance becomes extremely messy. To circumvent this step, we introduce

the FARI(∞) bootstrap in the next section and show that it can be employed to approximate the distribution

of ĜT (v, ω) if D < 1/2. This implies a test for stationarity which does not require D to be smaller than 1/4

but only to be less than 1/2. This is the usual restriction in this framework since for example FARIMA(p, d, q)

models are not stationary anymore if D ≥ 1/2.

But even in the situation of Theorem 3.1 it is important to use a bootstrap approximation to obtain empirical

quantiles, since already under the null hypothesis the limiting distribution depends in a complicated way on

the unknown spectral density.

4 Bootstrapping the test statistic

In this section we introduce a bootstrap procedure which approximates the distribution of ĜT (v, ω) in the case

D < 1/2. We call our procedure the FARI(∞) bootstrap as it extends the AR(∞) bootstrap of Kreiß (1988) to

the long memory situation. While the AR(∞) bootstrap works by choosing a p = p(T ) ∈ IN and then fitting

an AR(p) model to the data, the FARI(∞) bootstrap fits an FARIMA(p, d, 0) model to the data where in both

cases p = p(T ) grows to infinity as T gets larger. We will describe this method in more detail later and state

now the main technical assumptions which will be required.

Assumption 4.1 For the stationary process Xt with strictly positive spectral density λ 7→
∫ 1

0 f(u, λ)du, there

exists a 0 < d < 1/2 such that the process Yt = (1−B)dXt possesses an AR(∞)-representation, i.e.

Yt =

∞∑
j=1

ajYt−j + ZARt (4.1)

where (ZARt )t∈Z denotes a Gaussian white noise process with variance σ2 > 0, 1 −
∑∞

j=1 ajz
j 6= 0 for |z| ≤ 1

and
∞∑
j=1

|aj |j7 <∞. (4.2)
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The aim of the bootstrap procedure is to reproduce the behaviour of the previous test statistic in case the

process Xt is observed. Note that under the null hypothesis Xt basically equals Xt,T and d is the corresponding

long memory parameter.

We start by choosing some p = p(T ) ∈ IN , estimating d through some d̂ and then fitting an AR(p) model to

the process Yt from (4.1), i.e. estimating

(a1,p, . . . , ap,p) = argmin
b1,p,...,bp,p

E

(
Yt −

p∑
j=1

bj,pYt−j

)2
.

We then consider the approximating process Y AR
t (p) which is defined through

Y AR
t (p) =

p∑
j=1

aj,pY
AR
t−j (p) + ZARt (p), (4.3)

where ZARt (p) is a Gaussian white noise process with mean zero and variance σ2
p = E(Yt −

∑p
j=1 aj,pYt−j)

2.

The idea is that for p = p(T )→∞ the process Y AR
t (p) is close to the process Yt and therefore (1−B)−dY AR

t (p)

is close to the stationary process Xt whose spectral density is given through λ 7→
∫ 1

0 f(u, λ)du as well.

So if we observe the data X1,T , . . . , XT,T , the FARI(∞) bootstrap precisely works as follows:

1) Choose p = p(T ) ∈ IN and calculate θ̂T,p = (d̂, σ̂2
p, â1,p, . . . , âp,p) as the minimizer of

1

T

T/2∑
k=1

(
log fθp(λk,T ) +

IT (λk,T )

fθp(λk,T )

)
where λk,T = 2πk/T for k = 1, . . . , T/2, IT (λ) = 1

2πT |
∑T

t=1Xt,T exp(−iλt)|2 is the usual periodogram

for stationary processes and

fθp(λ) =
|1− exp(−iλ)|−2d

2π
×

σ2
p

|1−
∑p

j=1 aj,p exp(−iλj)|2

is the spectral density of a stationary FARIMA(p, d, 0) model which we want to fit. Note that the

estimator θ̂T,p is the classical Whittle estimator of a stationary process; see Whittle (1951).

2) Calculate Yt,T = (1−B)d̂Xt,T for t = 1, . . . , T and simulate a pseudo-series Y ∗1,T , . . . , Y
∗
T,T according to

Y ∗t,T = Yt,T ; t = 1, . . . , p, Y ∗t,T =

p∑
j=1

âj,pY
∗
t−j,T + σ̂pZ

∗
t ; p < t ≤ T,

where the Z∗t are independent standard normal distributed random variables with variance σ̂2
p.

3) Create the pseudo-series X∗1,T , . . . , X
∗
T,T by calculating X∗i,T = (1 − B)−d̂Y ∗i,T and compute Ĝ∗T (v, ω) in

the same way as ĜT (v, ω) but with the original observations X1,T , . . . , XT,T replaced by the bootstrap

replicates X∗1,T , . . . , X
∗
T,T and with ET (v, ω) replaced by zero.

9



Let us mention some implications: Assumption 4.1 together with Lemma 2.3 of Kreiß et al. (2011) yields that

there exists a p0 ∈ IN such that for all p ≥ p0 the approximating process Y AR
t (p) defined in (4.3) possesses an

MA(∞) representation

Y AR
t (p) =

∞∑
l=0

cl,pZ
AR
t−l (p)

where the additional condition

∞∑
l=0

|cl,p|l7 ≤ C <∞ (4.4)

follows from (4.2) and Lemma 2.4 of Kreiß et al. (2011). Furthermore, since we use the Whittle estimator, the

fitted AR(p) process Y ∗t,T has an MA(∞) representation

Y ∗t,T =

∞∑
l=0

ĉl,pZ
∗
t−l (4.5)

for every p, if at least two observations are different which is typically the case; see for example the discussion

following Lemma 2.4 in Kreiß et al. (2011).

Our goal now is to prove consistency of the FARI(∞) bootstrap which is concerned with the series X∗t,T . Some

technical assumptions on rates regarding p and θ̂T,p are necessary which are standard in the framework of an

AR(∞) bootstrap; see for example Berg et al. (2010) or Kreiß et al. (2011).

Assumption 4.2 i) We have p = p(T ) ∈ [pmin(T ), pmax(T )] with pmin(T )→∞, where also

p9
max(T )log(T )3/T ≤ C and

√
Tpmin(T )−9/

√
log(T )→ 0.

ii) The condition

||θ̂T,p − θp||∞ = OP (
√

log(T )/T ) (4.6)

holds uniformly in p, where θp = (d, σ2
p, a1,p, . . . , ap,p) denotes the vector of the true parameters.

We want to investigate the properties of an MA(∞) representation of the bootstrap replicates X∗t,T now. If

d̂ > 0, a Taylor expansion yields

(1− z)−d̂ =

∞∑
l=0

η̂lz
l with η̂l :=

Γ(l + d̂)

Γ(d̂)Γ(l + 1)

for l ∈ IN ; see (2.15) with d(u) replaced by d̂. Otherwise, for d̂ = 0 we have η̂l = 1{l=0}. Using this expansion

and (4.5) we obtain

X∗t,T = (1−B)−d̂Y ∗t,T =

∞∑
l=0

ψ̂l,pZ
∗
t−l, (4.7)
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where the parameters ψ̂l,p are given through the relation

ψ̂l,p =

l∑
k=0

ĉk,pη̂l−k; (4.8)

see for example the proof of Lemma 3.2 in Kokoszka and Taqqu (1995). Under the null hypothesis (3.1) the

approximating functions ψl(u) of the true process Xt,T are constant, i.e. ψl(u) = ψl. If we show consistency of

the FARI(∞) bootstrap later, we will naturally use similar arguments as in the proof of Theorem 3.1. For this

reason we require the coefficents ψ̂l,p − ψl to satisfy conditions which are similar to the conditions on the true

coefficents as stated in Assumption 2.1. Note that the coefficents ψ̂l,p − ψl do not depend on the rescaled time

u. Therefore all conditions but (2.5) in Assumption 2.1 are automatically fulfilled and the following lemma

ensures that we obtain a condition similar to (2.5) as well.

Lemma 4.3 Suppose the null hypothesis (3.1) holds and let the Assumptions 2.1, 4.1 and 4.2 be satisfied.

Then we have

|ψ̂l,p − ψl|l1−max(d̂,d) = OP (p4
√

log(T )/
√
T ), uniformly in p, l, d̂, d.

Empirical quantiles of sup(v,ω)∈[0,1]2 |ĜT (v, ω)| are now obtained by calculating

F̂ ∗T,i := sup
(v,ω)∈[0,1]2

|Ĝ∗T,i(v, ω)| for i = 1, . . . , B,

where Ĝ∗T,1(v, ω), . . . , Ĝ∗T,B(v, ω) are the B bootstrap replicates of ĜT (v, ω). We then reject the null hypothesis,

whenever
√
T sup

(v,ω)∈[0,1]2
|ÊT (v, ω)| > (F̂ ∗T )T,b(1−α)Bc, (4.9)

where (F̂ ∗T )T,1, . . . , (F̂
∗
T )T,B denotes the order statistic of F̂ ∗T,1, . . . , F̂

∗
T,B. In order to explain why this bootstrap

procedure works, we have to introduce approximations of ĜT (v, ω) and Ĝ∗T (v, ω). First, if we replace Xt,T in

the definition of ĜT (v, ω) by Xt(t/T ) from (2.9), we denote the resulting process with ĜT,a(v, ω). Similarly,

we set

X∗t,T,a =
∞∑
l=0

ψlZ
∗
t−l, (4.10)

where the Z∗t are the innovations from part 2) above. We then define Ĝ∗T,a(v, ω) in the same way as Ĝ∗T (v, ω),

but with the bootstrap series X∗t,T replaced by X∗t,T,a.

Theorem 4.4 Suppose the null hypothesis (3.1) holds and let the Assumptions 2.1, 4.1 and 4.2 be fulfilled.

Choose N →∞ such that N/T → 0. Then

a) sup
(v,ω)∈[0,1]2

|ĜT,a(v, ω)| D= sup
(v,ω)∈[0,1]2

|Ĝ∗T,a(v, ω)|,

b) E

(
sup

(v,ω)∈[0,1]2
|Ĝ∗T,a(v, ω)|2

)−1/2(
sup

(v,ω)∈[0,1]2
|ĜT (v, ω)| − sup

(v,ω)∈[0,1]2
|ĜT,a(v, ω)|

)
= oP (1),

c) E

(
sup

(v,ω)∈[0,1]2
|Ĝ∗T,a(v, ω)|2

)−1/2(
sup

(v,ω)∈[0,1]2
|Ĝ∗T (v, ω)| − sup

(v,ω)∈[0,1]2
|Ĝ∗T,a(v, ω)|

)
= oP (1),

d) E sup
(v,ω)∈[0,1]2

|Ĝ∗T,a(v, ω)|2 ≤ C(Nmax(4d−1,0) + log(N)1{d=1/4}).
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Part d) holds also under the alternative.

We need the standardisation in parts b) and c) above in order to incorporate all cases corresponding to D < 1/2.

Assertion d) proves that the factors can be skipped, if we are in the framework of Theorem 3.1.

Theorem 4.4 and the arguments from Paparoditis (2010) indicate that the test constructed in (4.9) has asymp-

totic level α. It is consistent, since each bootstrap statistic sup(v,ω)∈[0,1]2 |Ĝ∗T (v, ω)|/
√
T converges to zero in

probability from part d) above, while sup(v,ω)∈[0,1]2 |ÊT (v, ω)| becomes under the alternative larger than some

positive constant due to Theorem 6.1 a), b) and (2.10).

5 Finite sample properties

Our aim now is to demonstrate how the test for stationarity performs in finite sample situations. Since the

proposed decision rule (4.9) depends on the choice of N in the estimation of the Kolmogorov-Smirnov type

distance and furthermore on the selection of the AR parameter p in the bootstrap procedure, we start by

discussing how we choose both parameters. We then investigate the size and power of our test where all

reported results are based on 200 bootstrap replications and 1000 simulation runs. Finally we apply our test

to a data set containing S&P 500 returns.

5.1 Choice of the parameters N and p

Although the proposed method does not show much sensitivity with respect to different choices of the AR

parameter, we select p throughout this section as the minimizer of the AIC criterion dating back to Akaike

(1973), which is defined by

p̂ = argminp
2π

T

T/2∑
k=1

(
log fθ̂(p)(λk,T ) +

IT (λk,T )

fθ̂(p)(λk,T )

)
+ p/T

in the context of stationary processes due to Whittle (1951). Here, fθ̂(p) is the spectral density of the fitted

stationary FARIMA(p, d, 0) process and IT is the usual stationary periodogram; see step 1) in the description

of the FARI(∞) bootstrap. Therefore we focus in the following discussion on a sensitivity analysis of the test

(4.9) with respect to different choices of N . We will see that the particular choice of that tuning parameter

has typically very little influence on the outcome of the test under the null hypothesis while it can change the

power substantially under certain alternatives.

5.2 Size of the test

In order to study the approximation of the nominal level, we consider the FARIMA(1, d, 1) model

(1− φB)(1−B)dXt = (1 + θB)Zt (5.1)

for independent and standard Gaussian Zt and present the results for different values of φ, θ and d. To be more

precise, we simulate

(1− φB)(1−B)dXt = Zt (5.2)
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and

(1−B)dXt = (1 + θB)Zt (5.3)

for d ∈ {0.2, 0.4} and φ, θ ∈ {−0.9,−0.5, 0, 0.5, 0.9}. The corresponding results for d = 0.2 are depicted in Tables

1 and 2 for the models (5.2) and (5.3), respectively. In the latter case we observe a precise approximation of

the nominal level even for T = 128 and it can be seen that the results are basically not affected by the choice

of N in these cases. For the model (5.2) we obtain very good results for φ ∈ {−0.5, 0, 0.5} while the nominal

level is overestimated for |φ| = 0.9 and smaller T . However, the approximation becomes much more precise if

T grows and is also robust with respect to different choices of the window length N .

Please insert Tables 1–4 about here

The results for the case d = 0.4 are presented in Table 3 and Table 4 and we can draw exactly the same picture

from it as for d = 0.2. In fact, apart from the process (5.2) with φ = 0.9, the performance under the null

hypothesis does not change at all with different d.

5.3 Power of the test

To study the power of our test we consider the following three time varying FARIMA((1, d, 1)) models

(1−B)dXt,T =
√

sin(πt/T )Zt (5.4)

(1−B)dXt,T = Zt + 1.1 cos (1.5− cos(4πt/T ))Zt−1 (5.5)(
1 + 0.9

√
t/TB

)
(1−B)dXt,T = Zt (5.6)

for independent and standard Gaussian Zt and different values of d. In addition we simulate the time varying

fractional noise processes

(1−B)d(t/T )Xt,T = Zt (5.7)

with either d1(u) = 0.4u2 or d2(u) = 0.1 × 1(u ≤ 0.5) + 0.4 × 1(u > 0.5). Here, in contrast to the models

(5.4)–(5.6), the long memory parameter d(u) varies over time.

The results for the alternatives (5.4)–(5.6) are depicted in Table 5, and it is remarkable that the choice of N

seems to affect the results more than under the null hypothesis. This is less important for model (5.4), for

which the observed rejection frequencies are large even for small sample sizes, whereas the effect can have an

extreme impact on the power for the other ones; see first and foremost model (5.5) for d = 0.2. We display the

results for the alternatives from (5.7) in Table 6 and it can be seen that for these kinds of models the power

seems to grow slower in T than for the alternatives (5.4)–(5.6).

Please insert Tables 5–6 about here

Again, the sensitivity of the results with respect to the choice of N is rather large, where the best overall

performance is obtained if we choose N large.
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5.4 Data example

In this section we apply the test (4.9) to 4097 observations of the S&P 500 which were recorded between April

10th 1996 and July 13th 2012. We consider the log returns Xt = log (Yt+1/Yt) (t = 1, . . . , 4096) which are

plotted in the right panel of Figure 1. We observe that days with either small or large movements are likely to

be followed by days with similar fluctuation. This effect is called ’volatility clustering’ and serves as the usual

motivation to employ GARCH(p, q) processes in the modelling of stock returns.

Please insert Figures 1–2 about here

In Figure 2 the ACF (autocorrelation function) is plotted for the log returns Xt (left panel), the absolute values

|Xt| (middle panel) and squared returns X2
t (right panel). It can be seen that the autocorrelation function

γ(k) of the log returns is rather small if k 6= 0. However, if we take the absolute values |Xt| or the squared

returns X2
t then γ(k) decays to zero very slow as k → ∞. The latter observation is the main reason to use a

long memory model if the volatility of a financial asset is analyzed.

It was shown in Mikosch and Starica (2004) and Fryzlewicz et al. (2006) that all these effects can also occur if

model (1.1) is used. Starica and Granger (2005), among others, demonstrated that a simple and natural model

like (1.1) is leading to a superior volatility forecast compared to a GARCH or a long range dependent FARIMA

model. So it might be beneficial to consider not only complicated (e.g. long-range dependent) stationary

processes in the analysis of a financial time series but to take into account models which are not stationary

anymore.

Please insert Figures 3–4 about here

We applied our test (4.9) with T = 64 and N = 8 to a rolling window of the 4096 log returns, i.e. we employed

our approach using the data Xi, . . . Xi+63 for i = 1, . . . , 4033. Thus we obtain 4033 p-values whose histogram

is displayed in in the left panel of Figure 3. It can be seen that the assumption of stationarity is usually not

justified since for example 789 of the 4033 p-values are equal to zero and 1789 are smaller than 0.2. This effect

becomes even more evident if we use a rolling window of T = 256 data. In this case we obtain 3841 p-values

whose histograms are presented in Figure 4 for different window lengths N . If we take N = 32 then 2413 of

the 3841 p-values are equal to zero and 3300 are smaller than 0.2. So the more data we look at the bigger is

the urgency to employ also non stationary processes in the statistical analysis. Moreover, we observe that the

histograms in Figure 4 look similar and therefore the results are basically not affected by the choice of N .

One interesting observation is that during the period we took into account the data seem to become more non

stationary in time which can be oberserved from the two histograms in the middle and the right panel of Figure

3. In the middle panel we display the histogram of the p-values if our test (with T = 64 and N = 8) is applied

to Xi, . . . Xi+63 with i = 1, . . . , 1000 while the same is shown in the right panel if our approach is applied to

Xi, . . . Xi+63 with i = 3034, . . . , 4033. If we look at both histograms it can be seen that there is a significant

shift towards lower p-values.

Acknowledgements This work has been supported in part by the Collaborative Research Center “Statistical

modeling of nonlinear dynamic processes” (SFB 823, Teilprojekt A1, C1) of the German Research Foundation

(DFG).
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6 Appendix: Proofs

In this section we present the proofs of all results above. We define

φv,ω,T (u, λ) :=
(
I

[0,
bvMc
M

]
(u)− bvMc/M

)
I

[0,
2πbωN2 c

N
]
(λ) for u, λ ≥ 0, v, ω ∈ [0, 1],

ρ2,T,D(y1, y2) :=
( 1

T

M∑
j=1

N/2∑
k=1

(φv1,ω1,T (uj , λk)− φv2,ω2,T (uj , λk))
2 1

λ4D
k

)1/2
for yi = (vi, ωi) ∈ [0, 1]2 (6.1)

and set

φv,ω(u, λ) := lim
T→∞

φv,ω,T (u, λ) =
(
I[0,v](u)− v

)
I[0,πω](λ), v, ω ∈ [0, 1]. (6.2)

Note that M and N depend on T and observe the relations

ÊT (v, ω) =
1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)IN (uj , λk) and ET (v, ω) =
1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)f(uj , λk)

which will be employed in the proofs of the following two main theorems. All results below are assumed to

hold uniformly in v, ω unless otherwise stated.

Theorem 6.1 Suppose Assumption 2.1 holds and assume that v, ω, vi, ωi ∈ [0, 1] for i ∈ IN . Then we have

a) E(ÊT (v, ω)) = ET (v, ω) + CT (v, ω, (ψl(·))l∈ZZ) +O
(
log(N)/N1−2D

)
+O (1/T ) ,

where CT (v, ω, (ψl(·))l∈ZZ) is the bias term specified in Theorem 3.1.

b) Cov(ÊT (v1, ω1), ÊT (v1, ω1)) =
1

T 2

M∑
j=1

bmin(ω1,ω2)N/2c∑
k=1

(
1[0,v1](uj)− v1

) (
1[0,v2](uj)− v2

)
f2(uj , λk)

+O(log(N)2/(TN1−4D)) +O(N/T 2).

c) cum(ÊT (v1, ω1), . . . , ÊT (vl, ωl)) = o(T−l/2) for D < 1/4 and l ≥ 3.

d) E|ĜT (v1, ω1)− ĜT (v2, ω2)|k ≤ (2k)!Ckρ2,T,D ((v1, ω1), (v2, ω2))k for all even k ∈ IN.

Thorem 6.1 is the main tool for proving the results from Section 3. Regarding the bootstrap, suppose that

the null hypothesis (3.1) holds. The next theorem ensures that the random variable Ĝ∗T (v, ω)/
√
T can be

approximated by the random variable Ĝ∗T,a(v, ω)/
√
T .

Theorem 6.2 Suppose the null hypothesis (3.1) holds, Assumptions 2.1, 4.1 and 4.2 are satisfied, and let

v, ω, vi, ωi ∈ [0, 1] for i = 1, 2. Let α > 0 be fixed and denote with AT (α) the set where |d̂− d| ≤ α/4 and

|ψ̂l,p − ψl|l1−max(d̂,d) ≤ Cp
4 log(T )3/2

√
T

∀l ∈ IN (6.3)
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is fulfilled. Then we have

a) E
(

(Ĝ∗T (v, ω)− Ĝ∗T,a(v, ω))1AT (α)

)
/
√
T = 0.

b) Var
(

(Ĝ∗T (v, ω)− Ĝ∗T,a(v, ω))1AT (α)

)
/T = O

(
p8 log(T )3log(N)2Nmax(4d−1,0)+αT−2

)
.

c) E
(
|(Ĝ∗T (v1, ω1)− Ĝ∗T,a(v1, ω1))− (Ĝ∗T (v2, ω2)− Ĝ∗T,a(v2, ω2))|k1AT (α)

)
≤ (2k)!Ckρ̃k((v1, ω1), (v2, ω2))(p8 log(T )3Nmax(4d−1,0)+αT−1)k/2

for all k ∈ IN even, where ρ̃((v1, ω1), (v2, ω2)) := 1{v1 6=v2 or ω1 6=ω2}.

We begin with the proof of Theorem 6.1 and 6.2 for which we require some technical lemmata.

Lemma 6.3 Suppose Assumption 2.1 is satisfied. Then for all λ ∈ (0, π) and N ∈ IN∣∣∣ ∞∑
l,m=0
|l−m|>N

ψl(u)ψm(u) exp(−iλ(l −m))
∣∣∣ ≤ C

λN1−2D
.

Proof: Without loss of generality we only consider the case m > l. We have

∞∑
l,m=0
m−l>N

ψl(u)ψm(u) exp(−iλ(l −m)) =
∞∑
l=0

ψl(u)
∞∑

m=l+N+1

ψm(u) exp(−iλ(l −m)),

and the absolute value of the right term can be bounded through

∞∑
l=0

∣∣∣ψl(u) exp(−iλl)
∣∣∣(∣∣∣ ∞∑

m=l+N+1

a(u)

m1−d(u)
exp(iλm)

∣∣∣+

∞∑
m=l+N+1

∣∣∣ψm(u)− a(u)

m1−d(u)

∣∣∣) (6.4)

where a(u) is the function from (2.5). Equation (2.9) in chapter 5 of Zygmund (1959) says that∣∣∣ ∞∑
m=l+N+1

1

m1−d(u)
exp(−iλm)

∣∣∣ ≤ C

λ

1

(l +N)1−D

holds for a constant C ∈ IR which is independent of l, N , u and λ. In addition, (2.5) implies

sup
u
|ψl(u)| ≤ C|l|D−1 ∀l ≥ 1. (6.5)

If we combine the last two statements with (2.5) we can bound (6.4) up to a constant through

∞∑
l=1

1

l1−D

(
1

λ

1

(l +N)1−D +
1

(l +N)1−D

)
≤ C

λ

1

N1−2D
.

2

Lemma 6.4 a) For all n ≥ 1 and k1, k2 ∈ IN there exists a constant C(k1, k2) > 0 such that:

∞∑
l,m=1
|l−m|≥n

logk1 |l| logk2 |m|
|lm|1−D

1

|l −m|
≤ C(k1, k2)

(
logk1+k2+1(n)

n1−2D
+ 1{n=1}

)
.
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b) For n ≥ 1 we have

∞∑
l,m=1

0<|l−m|<n

1

|lm|1−D
≤ Cn2D.

c) We write (+)≥6= if |m1 − l2| ≥ n and m1 − l2 +m2 − l1 6= 0 are fulfilled. Then we have for n ≥ 2

∞∑
m1,m2,l1,l2=1

(+)≥6=

1

|m1m2l1l2|1−D
1

|m1 − l2 +m2 − l1|
≤ C log(n)

n1−4D
.

d) We write (+)6= if |m1 − l2| ≤ n, |m2 − l1| ≤ n and m1 − l2 +m1 − l1 6= 0 hold. Then for n ≥ 2

1

n

∞∑
m1,m2,l1,l2=1

(+) 6=

1

|m1m2l1l2|1−D
|m2 − l1|

|m1 − l2 +m2 − l1|
≤ C log(n)

n1−4D
.

e) For l ≥ 3 we write (+)6=,l if |n1 −ml| ≤ n and |ni+1 −mi| ≤ n are satisfied for i ∈ {1, . . . , l − 1} and

furthermore m1−n1 +m2−n2 + . . .+ml−nl 6= 0 holds. Then there exists Cl > 0 such that for all n ≥ 2

∞∑
mi,ni=1
(+) 6=,l

1

|m1n1m2n2 · · ·mlnl|1−D
1

|m1 − n1 +m2 − n2 + . . .+ml − nl|
≤ Cl log(n)n2Dl−4D.

Proof: Before we begin with the proof, note that a simple change of variables yields∫ b

a

1

x1−D
logk x

(c± x)e
dx =

1

ce−D

∫ b/c

a/c

logk(cz)

z1−D
1

(1± z)e
dz (6.6)

for a, b, c, e ∈ IR with a ≤ b, c > 0, k ∈ IN if any of the integrals exist. The proof now basically works by

considering approximating integrals instead of the sums, using (6.6) and afterwards employing that∫ b

a

| logk(z)|
z1−D

1

1− z
dz ≤ C(k) + C| log(1− b)| (6.7)

holds for k ∈ IN0, 0 < a < b < 1 and constants C(k) ∈ IR which are independent of a and b. Note that the

absolute value of the right hand side of (6.6) is bounded by

1

ce−D

∫ ∞
0

| logk(cz)|
z1−D

1

(1± z)e
dz

which is in any case finite if 0 < D < 1, 0 < e < 1 and 1−D + e > 1. If e = 1 and b/c is close to the possible

pole 1, (6.7) implies that the integral on the right hand side of (6.6) is only bounded by a constant times some

additional log term which incorporates in some way how close the boundary is to 1. This rule of thumb will be

helpful in understanding the treatment of the approximating integrals in the following. Since all proofs work

in that particular way of replacing the sum through integrals and applying (6.6) and (6.7) afterwards we will
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present the details for part a) only.

Proof of a): For n = 1 the claim holds obviously, thus let n ≥ 2. Then

∞∑
l,m=1
|l−m|≥n

logk1 |l| logk2 |m|
|lm|1−D

1

|m− l|

can be bounded by the sum of four terms corresponding to the cases {l ≥ n/2}, {l ≤ −n/2}, {m ≥ n/2} and

{m ≤ −n/2}. For symmetry reasons we present the details for the first term only, and it will be divided into

two summands corresponding to m > 0 and m < 0, respectively. Also, we assume w.l.o.g. that l > m, i.e.

l −m ≥ n. We treat the case m > 0 first which equals

∞∑
l≥n/2,0≤m≤l−n

logk1 |l| logk2 |m|
|lm|1−D

1

|m− l|
=

∞∑
l=n+1

logk1 l

l1−D

l−n∑
m=2

logk2 m

m1−D
1

l −m
.

If we treat the expression in the second summand as a function in m, it can be seen that this function only

has a finite number of points where the first derivate equals zero. Thus it is piecewise monotonic, which allows

us to bound the sum over m by its approximating integral, i.e. by∫ l−n+1

1

logk2 x

x1−D
1

l − x
dx =

1

l1−D

∫ 1−n−1
l

1/l

logk2(lz)

z1−D
1

1− z
dz ≤ logk2(l)

l1−D

∫ 1−n−1
l

1/l

1

z1−D
1

1− z
dz.

With (6.7) it follows that the entire expression can be (up to a further constant) bounded by

∞∑
l=n+1

logk1+k2 l

l2−2D

(
1 +

∣∣∣log

(
n− 1

l

)∣∣∣) ≤ 3
∞∑

l=n+1

logk1+k2+1 l

l2−2D
= O

(
logk1+k2+1 n

n1−2D

)
.

This yields the claim for m > 0 and we now consider the case m < 0. A straightforward calculation yields that

∞∑
l≥n/2,m≤min(0,l−n)

logk1 |l| logk2 |m|
|lm|1−D

1

|m− l|
≤

n−1∑
l=n/2

logk1 l

l1−D

(
logk2 n

n
+

∞∑
m=n−l+1

logk2 m

m1−D
1

l +m

)

+

∞∑
l=n

logk1 l

l1−D

∞∑
m=2

logk2 m

m1−D
1

l +m
,

and by replacing the sum over m through its approximating integral we can bound this expression by

logk2 n

n

n−1∑
l=n/2

logk1 l

l1−D
+

n−1∑
l=n/2

logk1 l

l1−D

∫ ∞
n−l

logk2 x

x1−D
1

l + x
dx+

∞∑
l=n

logk1 l

l1−D

∫ ∞
1

logk2 x

x1−D
1

l + x
dx.

By using (6.6) we can bound both integrals through a constant times logk2(l)/l1−D which then yields the claim

by calculating the resulting sums. 2

Analogously to the above proof we can show the next lemma, which, although it looks similar to Lemma 6.4

(and is proven in the same way), is different since the index of summation m is fixed.

18



Lemma 6.5 For all m ∈ ZZ and n ≥ 1 we have

a)

∞∑
l=1

0<|l−m|<n

1

|l|1−D
1

|l −m|
≤ C

(
log |m|
|m|1−D

1{m6=0} + 1{m=0}

)
≤ C

b)

∞∑
l=−∞

n/2≤|l−m|<n
l 6=0

1

|l|1−d
1

n− |l −m|
≤ C

(
max

(
log |n−m|
|n−m|1−d

,
log |n+m|
|n+m|1−d

)
1{m 6=n} + 1{m=n}

)
≤ C.

6.1 Proof of Theorem 6.1

Proof of a): We have

E
( 1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)IN (uj , λk)
)

=
1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2πN

N−1∑
p,q=0

∞∑
l,m=0

ψtj−N/2+1+p,T,lψtj−N/2+1+q,T,mE(Ztj−N/2+1+p−mZtj−N/2+1+q−l) exp(−iλk(p− q)).

Set ej,N := tj−N/2+1. By using the independence of the innovations Zi we obtain that the above term equals

1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2πN

∞∑
l,m=0
|l−m|<N

N−1∑
q=0

0≤q+m−l≤N−1

ψej,N+q+m−l,T,lψej,N+q,T,m exp(−iλk(m− l)). (6.8)

Write the product of the ψ-terms above as

ψl
(ej,N + q +m− l

T

)
ψm
(ej,N + q

T

)
+ ψej,N+q+m−l,T,l

(
ψej,N+q,T,m − ψm

(ej,N + q

T

))
+ ψm

(
ej,N + q

T

)(
ψej,N+q+m−l,T,l − ψl

(
ej,N + q +m− l

T

))}
, (6.9)

so (6.8) splits into a sum of three terms. We will now demonstrate that the second summand is of order O(1/T )

and analogously for the third one. The absolute value of the second summand can be bounded by

1

M

M∑
j=1

∞∑
l,m=0
|l−m|<N

1

2πN

N−1∑
q=0

0≤q+m−l≤N−1

|ψej,N+q+m−l,T,l|
∣∣∣∣ψej,N+q,T,m − ψm

(
ej,N + q

T

)∣∣∣∣
×
∣∣∣∣ 1

N

N/2∑
k=1

φv,ω,T (uj , λk) exp(−iλk(m− l))
∣∣∣∣. (6.10)

With (2.3) it follows that in (6.10) the cases l = 0 and l = m are of order O(1/T ), thus we only consider the

case where 0 < |l − m| < N and l 6= 0. We employ (A.2) of Eichler (2008) which says that there exists a

constant C ∈ IR such that for all {r ∈ ZZ : r mod N/2 6= 0} we have

∣∣∣ 1

N

N/2∑
k=1

φv,ω,T (u, λk) exp(−iλkr)
∣∣∣ ≤ C

|r mod N/2|
(6.11)
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uniformly in v, ω. Using (2.8), (6.11) and a symmetry argument we can bound (6.10) up to a constant by

2
∞∑

l,m=1
0<|l−m|<N/2

1

|l|1−D
sup
q,tj

∣∣∣ψtj−N/2+1+q,T,m − ψm
( tj −N/2 + 1 + q

T

)∣∣∣ 1

|l −m|

+
∞∑

l,m=1
|l−m|=N/2 ∨ l=m

1

|l|1−D
sup
q,tj

∣∣∣ψtj−N/2+1+q,T,m − ψm
( tj −N/2 + 1 + q

T

)∣∣∣
which is of order O(1/T ) due to Lemma 6.5 and (2.3). In the following we will bound expressions like the

above one w.l.o.g. by a constant times the first summand, i.e. from now on we will only consider the case

0 < |l−m| < N/2 if we derive the order of error terms. We do this since the remaining terms will be either of

the same or of smaller order and are treated analogously.

Following the above argumentation we obtain that (6.9) equals

1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2πN

N−1∑
p,q=0

∞∑
l,m=0

ψl

(ej,N + p

T

)
ψm

(ej,N + q

T

)
×E(Zej,N+p−mZej,N+q−l) exp(−iλk(p− q)) +O(1/T )

=
1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2πN

N−1∑
p,q=0

∞∑
l,m=0

E(Zej,N+p−mZej,N+q−l)ψl(uj)ψm(uj) exp(−iλk(p− q))

+ CT (v, ω, (ψl(·))l∈ZZ) +O(1/T ) (6.12)

with

CT (v, ω, (ψl(·))l∈ZZ) :=
1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2πN

N−1∑
p,q=0

∞∑
l,m=0

E(Zej,N+p−mZej,N+q−l) exp(−iλk(p− q))

×
{(

ψl

(
ej,N + p

T

)
− ψl(uj)

)
ψm(uj) +

(
ψm

(
ej,N + q

T

)
− ψm(uj)

)
ψl(uj)

+

(
ψl

(
ej,N + p

T

)
− ψl(uj)

)(
ψm

(
ej,N + q

T

)
− ψm(uj)

)}
. (6.13)

Let us begin with the first summand of (6.12). This term can be rewritten as

1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2πN

∞∑
l,m=0
|l−m|<N

N−1∑
q=0

0≤q+m−l≤N−1

ψl(uj)ψm(uj) exp(−iλk(m− l))

=
1

2πT

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)

∞∑
l,m=0

|l−m|≤N−1

ψl(uj)ψm(uj) exp(−iλk(m− l))

− 1

2πTN

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
∞∑

l,m=0
|l−m|≤N−1

|l −m|ψl(uj)ψm(uj) exp(−iλk(m− l)) = AT −BT (6.14)
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where AT and BT are defined implicitly. (6.5) and (6.11) prove that BT is up to a constant bounded by

1

N

∞∑
l,m=1

0<|l−m|<N/2

1

l1−D
1

m1−D

which is of order O(log(N)/N1−2D) due to Lemma 6.4 b). Note that the cases with either l = 0, m = 0 or

N/2 ≤ |l −m| < N are of the same or of smaller order. Consider AT next. Our aim is to skip the condition

|l −m| ≤ N − 1. By employing Lemma 6.3 we obtain

∣∣∣∣ 1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2π

∞∑
l,m=0
|l−m|≥N

ψl(uj)ψm(uj) exp(−iλk(m− l))
∣∣∣∣ = O

(
log(N)

N1−2d

)
,

and therefore AT is the same as

1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)f(uj , λk) +O

(
log(N)

N1−2d

)
= ET (v, ω) +O

(
log(N)

N1−2d

)
.

Finally we show that CT (v, ω, (ψl(·))l∈ZZ) = O(N2/T 2) + O(log(N)/N1−2D) holds uniformly in v, ω ∈ [0, 1].

Without loss of generality we only consider the first summand in (6.13) which equals

1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2πN

N−1∑
p=0

0≤p+l−m≤N−1

∞∑
l,m=0
|l−m|<N

ψ′l(uj)ψm(uj)
p−N/2 + 1

T
exp(−iλk(m− l)) +O(N2/T 2)

due to a second order Taylor expansion. We proceed here as for AT and BT in (6.14) above, and a similar

argument as for BT proves that we can skip the condition 0 ≤ p + l −m ≤ N − 1 at the cost of an error of

order O(log(N)/N1−2D). Therefore the above expression equals

1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2πN

N−1∑
p=0

∞∑
l,m=0
|l−m|<N

ψ′l(uj)ψm(uj)
p−N/2 + 1

T
exp(−iλk(m− l)) +O

(
log(N)

N1−2d

)
.

Using
∑N−1

p=0 (p−N/2 + 1)/T = N/(2T ) we see that this term is the same as

1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

4πT

∞∑
l,m=0
|l−m|<N

ψ′l(uj)ψm(uj) exp(−iλk(m− l)) +O

(
log(N)

N1−2d

)
,

and its first part is some O(1/T ) because of (2.7), (6.5), (6.11) and Lemma 6.4 a) with k1 = 1 and k2 = 0. 2
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Proof of b): We set

V true
T = Cov

( 1

T

M∑
j1=1

N/2∑
k1=1

φv1,ω1,T (uj1 , λk1)IN (uj1 , λk1),
1

T

M∑
j2=1

N/2∑
k2=1

φv2,ω2,T (uj2 , λk2)IN (uj2 , λk2)
)

=
1

T 2

M∑
j1,j2=1

N/2∑
k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj2 , λk2)

× 1

(2πN)2

N−1∑
p1,p2,q1,q2=0

∞∑
m1,m2,l1,l2=0

ψej1,N+p1,T,m1ψej1,N+q1,T,l1ψej2,N+p2,T,m2ψej2,N+q2,T,l2

× cum(Zej1,N+p1−m1Zej1,N+q1−l1 , Zej2,N+p2−m2Zej2,N+q2−l2) exp(−iλk1(p1 − q1)) exp(−iλk2(p2 − q2)).

with eji,N = tji − N/2 + 1. We start by considering the approximating version V appr
T which is the same as

above, but where all ψ-terms have been replaced, so e.g. ψej1,N+p1,T,m1 by ψm1(uj1) and similarly for the others.

Using the well-known formula

cum(Zej1,N+p1−m1Zej1,N+q1−l1 , Zej2,N+p2−m2Zej2,N+q2−l2)

= cum(Zej1,N+p1−m1Zej2,N+q2−l2)cum(Zej2,N+p2−m2Zej1,N+q1−l1)

+ cum(Zej1,N+p1−m1Zej2,N+p2−m2)cum(Zej2,N+q1−l1Zej1,N+q2−l2). (6.15)

the computation of V appr
T splits into two similar terms which we denote with VT,1 and VT,2. We start by

considering the first one. Because of the independence of the innovations Zi we obtain

VT,1 =
1

T 2

M∑
j1,j2=1

N/2∑
k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj2 , λk2)

× 1

(2πN)2

∞∑
m1,m2,l1,l2=0

N−1∑
q1,q2=0

0≤q2+m1−l2+tj2−tj1≤N−1
0≤q1+m2−l1+tj1−tj2≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp(−iλk1(q2 − q1 + tj2 − tj1 +m1 − l2)) exp(iλk2(q2 − q1 + tj2 − tj1 + l1 −m2)).

We divide the sum over the mi and li into two sums, namely one sum where furthermore |m1 − l2| < N and

|m2 − l1| < N are satisfied [denoted by (+)] and one sum where either |m1 − l2| ≥ N or |m2 − l1| ≥ N . Then

VT,1 =
1

T 2

M∑
j1,j2=1

N/2∑
k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj2 , λk2)

× 1

(2πN)2

∞∑
m1,m2,l1,l2=0

(+)

N−1∑
q1,q2=0

0≤q2+m1−l2+tj2−tj1≤N−1
0≤q1+m2−l1+tj1−tj2≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp(−iλk1(q2 − q1 + tj2 − tj1 +m1 − l2)) exp(iλk2(q2 − q1 + tj2 − tj1 + l1 −m2)) + V +
T,1, (6.16)

where V +
T,1 corresponds to the case of either |m1 − l2| ≥ N or |m2 − l1| ≥ N . The first claim will be

V +
T,1 = O

(
log(N)2/(TN1−4D)

)
, (6.17)
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i.e. the second summand in (6.16) vanishes asymptotically. Furthermore, if we consider the first summand in

(6.16) and assume that j1 has been chosen, j2 must be equal to j1, j1 − 1 or j1 + 1, as all other combination of

j1 and j2 vanish, because of the condition 0 ≤ q2 +m1− l2 + tj2 − tj1 ≤ N − 1 and the fact that the summation

is only performed with respect to indices satisfying |m1− l2| < N . If j2 equals j1 + 1 we call the corresponding

term V j2=j1+
T,1 and denote with V j2=j1−

T,1 the case j2 = j1 − 1. Jointly with (6.17) we will (only) show that

V j2=j1+
T,1 = O

(
log(N)2/(TN1−4D)

)
, (6.18)

which means that we can finally restrict ourselves to the case j1 = j2 in the first summand of (6.16).

Proof of (6.17) and (6.18): Note that we can bound the absolute value of V +
T,1 by the sum of four terms V +

N,T,i

[i = 1, . . . , 4] which are the absolute values of the terms corresponding to the following four cases:

1) q2 − q1 + tj2 − tj1 +m1 − l2 6= 0 and q2 − q1 + tj2 − tj1 + l1 −m2 = 0

2) q2 − q1 + tj2 − tj1 +m1 − l2 = 0 and q2 − q1 + tj2 − tj1 + l1 −m2 6= 0

3) q2 − q1 + tj2 − tj1 +m1 − l2 6= 0 and q2 − q1 + tj2 − tj1 + l1 −m2 6= 0 (6.19)

4) q2 − q1 + tj2 − tj1 +m1 − l2 = 0 and q2 − q1 + tj2 − tj1 + l1 −m2 = 0

Analogously, the absolute value of V j2=j1+
T,1 can be bounded by four terms V j2=j1+

N,T,i [i = 1, . . . , 4] where tj2 − tj1
in the above cases is replaced by N . We will present the details for the terms V +

N,T,3 and V j2=j1+
N,T,3 only since

they are the dominating ones due to the least restrictive conditions. We start with the treatment of V +
N,T,3.

Setting ∆t = tj2 − tj1 we obtain from symmetry arguments

|V +
N,T,3| =

∣∣∣ 1

T 2

M∑
j1,j2=1

N/2∑
k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj2 , λk2)

× 1

(2πN)2

∞∑
m1,m2,l1,l2=0

max(|m1−l2|,|m2−l1|)≥N

N−1∑
q1,q2=0

0≤q2+m1−l2+∆t≤N−1
0≤q1+m2−l1−∆t≤N−1

(6.19)

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp(−iλk1(q2 − q1 + ∆t+m1 − l2)) exp(−iλk2(q1 − q2 −∆t+m2 − l1))
∣∣∣

≤ 2

(2πT )2

M∑
j1=1

∞∑
m1,m2,l1,l2=0
|m1−l2|≥N

N−1∑
q2=0

M∑
j2=1

0≤q2+m1−l2+∆t≤N−1

|ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)|

×
N−1∑
q1=0

0≤q1+m2−l1−∆t≤N−1
(6.19)

∣∣∣ 1

N

N/2∑
k1=1

φv1,ω1,T (uj1 , λk1) exp(−iλk1(q2 − q1 + ∆t+m1 − l2))
∣∣∣

×
∣∣∣ 1

N

N/2∑
k2=1

φv2,ω2,T (uj2 , λk2) exp(−iλk2(q1 − q2 −∆t+m2 − l1))
∣∣∣. (6.20)

The conditions 0 ≤ q2 + m1 − l2 + ∆t ≤ N − 1 and 0 ≤ q1 + m2 − l1 − ∆t ≤ N − 1 can only be satisfied if

|m1 − l2 + ∆t| < N and |m2 − l1 −∆t| < N hold. By combining this with (6.5) and (6.11) it can be seen that
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the above term is up to a constant bounded by

1

T 2

M∑
j1=1

∞∑
m1,m2,l1,l2=0

(+)≥6=

N−1∑
q2=0

M∑
j2=1

0≤q2+m1−l2+∆t≤N−1
|m1−l2+∆t|<N
|m2−l1−∆t|<N

1

|m1m2l1l2|1−D

×
∑

q1∈AN
|q2−q1+∆t+m1−l2|<N/2
|q1−q2−∆t+m2−l1|<N/2

1

|q2 − q1 + ∆t+m1 − l2|
1

|q1 − q2 −∆t+m2 − l1|
(6.21)

where (+)≥6= was defined in Lemma 6.4 c) and AN = {0, 1, 2, . . . , N − 1}\{z1, z2} with z1 = q2 + ∆t+m1 − l2,

z2 = q2 + ∆t + l1 − m2. We used once more that the cases with mi = 0, li = 0, m1 − l2 + m2 − l1 = 0,

|q2−q1 +∆t+m1− l2| ≥ N/2 or |q1−q2−∆t+m2− l1| ≥ N/2 are of the same or smaller order and that z1 and

z2 correspond to the values of q1 for which the argument in one of the exp-function is zero which cannot occur

because of (6.19). By considering the approximating integral we can bound the latter sum up to a constant by∫
A

1

|q2 − q1 + ∆t+m1 − l2|
1

|q1 − q2 −∆t+m2 − l1|
dq1

with A = [0, N − 1]\{[z1 − 1, z1 + 1] ∪ [z2 − 1, z2 + 1]}. A simple integration via a decomposition into partial

fractions yields that (6.21) is thus (up to a constant) bounded by

1

T 2

M∑
j1=1

∞∑
m1,m2,l1,l2=0

(+)≥6=

N−1∑
q2=0

M∑
j2=1

0≤q2+m1−l2+∆t≤N−1
|m1−l2+∆t|<N
|m2−l1−∆t|<N

1

|m1m2l1l2|1−D

× log |q2 − q1 + ∆t+m1 − l2|+ log |q1 − q2 −∆t+m2 − l1|
|m1 − l2 +m2 − l1|

∣∣∣∣
∂A

where
∣∣
∂A

means that the antiderivative with respect to q1 is computed at all values of the boundary of A and

always combined via a sum. We observe that the construction of A together with the conditions on qi,mi, li
and j2 imply that the arguments in the log-function are between 1 and 2N . Furthermore, for chosen q2, m1,

l2 and j1, there is at most one possible choice for j2 for which the corresponding summand does not vanish.

Thus the above term can be up to a constant bounded by

1

TN

∞∑
m1,m2,l1,l2=0

(+)≥6=

1

|m1m2l1l2|1−D
1

|m1 − l2 +m2 − l1|

N−1∑
q2=0

log(N)

which is of order O
(
log(N)2/(TN1−4D)

)
due to Lemma 6.4 c). In the same way we can bound the term

V j2=j1+
N,T,3 (up to a constant) by

1

TN

∞∑
m1,m2,l1,l2=0

(+) 6=

1

|m1m2l1l2|1−D
1

|m1 − l2 +m2 − l1|

N−1∑
q2=0

0≤q2+m1−l2+N≤N−1

log(N)
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where the differences between the quantities above are the different summation conditions on the mi and li
and the constraint 0 ≤ q2 +m1 − l2 +N ≤ N − 1 on q2. Note that there are only |m1 − l2| possible choices for

q2 if m1 and l2 are chosen. Therefore V j2=j1+
N,T,3 is bounded by

log(N)

TN

∞∑
m1,m2,l1,l2=0

(+) 6=

1

|m1m2l1l2|1−D
|m1 − l2|

|m1 − l2 +m2 − l1|
= O

(
log(N)2

TN1−4D

)

where the last equality follows with Lemma 6.4 d). We have thus shown (6.17) and (6.18) and can restrict

ourselves to the case j1 = j2 in the first term of (6.16), i.e. VT,1 equals

1

T 2

M∑
j=1

N/2∑
k1,k2=1

φv1,ω1,T (uj , λk1)φv2,ω2,T (uj , λk2)
∞∑

m1,m2,l1,l2=0
(+)

N−1∑
q1,q2=0

0≤q2+m1−l2≤N−1
0≤q1+m2−l1≤N−1

ψm1(uj)ψl1(uj)ψm2(uj)ψl2(uj)

× 1

(2πN)2
exp(−iλk1(q2 − q1 +m1 − l2)) exp(iλk2(q2 − q1 + l1 −m2)) +O

(
log(N)2

TN1−4D

)
.

Note first that we make an error of order O(log(N)2/(TN1−4D)) if we skip the conditions on the choice of q1

and q2. This follows in a similar way as above, using (6.5), (6.11) and Lemma 6.4 d) once more. Therefore

VT,1 =
1

T 2

M∑
j=1

N/2∑
k1,k2=1

φv1,ω1,T (uj , λk1)φv2,ω2,T (uj , λk2)
1

(2πN)2

∞∑
m1,m2,l1,l2=0

(+)

N−1∑
q1,q2=0

ψm1(uj)ψl1(uj)ψm2(uj)ψl2(uj)

× exp(−iλk1(q2 − q1 +m1 − l2)) exp(iλk2(q2 − q1 + l1 −m2)) +O
(
log(N)2/(TN1−4D)

)
.

By employing the well known identity

1

N

N−1∑
q=0

exp(−i(λk1 − λk2)q) =

{
1, k1 − k2 = lN with l ∈ ZZ
0, else

, (6.22)

it can be seen that all terms with k1 6= k2 are equal to zero and we therefore get

VT,1 =
1

T 2

M∑
j=1

N/2∑
k=1

φv1,ω1,T (uj , λk)φv2,ω2,T (uj , λk)
1

(2π)2

∞∑
m1,m2,l1,l2=0

(+)

ψm1(uj)ψl1(uj)ψm2(uj)ψl2(uj)

× exp(−iλk(m1 − l2 +m2 − l1)) +O
(
log(N)2/(TN1−4D)

)
.

The same error arises due to (6.5), (6.11) and Lemma 6.4 c), if we finally skip the condition (+). Note that we

can proceed completely analogously for the term VT,2 with the difference that instead of the right hand side

in (6.22) we obtain the corresponding term with λk1 − λk2 replaced by λk1 + λk2 . Because of (6.22) we then

only have to consider the case k1 = k2 = N/2 and therefore the whole term is of order O
(
log(N)2/(TN1−4D)

)
.

Using the definition of the spectral density the claim follows for V appr
T .

What remains is to show V true
T = V appr

T + O(N/T 2). However, the only property of the coefficents ψl(·) used

in the treatment of VT,1 is (6.5). Since (2.8) provides the same property as (6.5) for the original coefficents,
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we obtain that V true
T equals the final quantity above but with the approximating functions ψl(uj) recplaced by

some ψtj+cN,T,l, c ∈ (−1, 1). Condition (2.3) then yields that we make an error of order O(1/T 2) if we replace

ψtj+cN,T,l by ψl(tj + cN/T ) and a Taylor expansion combined with (2.7) gives the result. 2

Proof of c): Assume w.l.o.g. that (v, ω) := (v1, ω1) = (v2, ω2) = . . . = (vl, ωl). Using the same replacement of

coefficients as in the previous proof we obtain from (2.3), a Taylor expansion and (2.7) the relation

cuml(ÊT (v, ω)) =
1

T l

M∑
j1,...,jl=1

N/2∑
k1,...,kl=1

φv,ω,T (uj1 , λk1) · · ·φv,ω,T (ujl , λkl)
1

(2πN)l

N−1∑
p1,...,ql=0

∞∑
m1,...,nl=0

× cum(Ztj1−N/2+1+p1−m1
Ztj1−N/2+1+q1−n1

, . . . , Ztjl−N/2+1+pl−mlZtjl−N/2+1+ql−nl)

× ψm1(uj1) · · ·ψnl(ujl) exp(−iλk1(p1 − q1)) · · · exp(−iλkl(pl − ql))(1 + o(1))

for l ≥ 3. We define Yi,1 := Ztji−N/2+1+pi−mi and Yi,2 := Ztji−N/2+1+qi−ni for i ∈ {1, . . . , l}. Following

chapter 2.3 of Brillinger (1981) we obtain cuml(ÊT (v, ω)) =
∑

ν VT (ν)(1 + o(1)), where the sum runs over all

indecomposable partitions ν = ν1 ∪ . . . ∪ νl with |νi| = 2 (1 ≤ i ≤ l) of the matrix

Y1,1 Y1,2

...
...

Yl,1 Yl,2

and

VT (ν) :=
1

T l

M∑
j1,...,jl=1

N/2∑
k1,...,kl=1

φv,ω,T (uj1 , λk1) · · ·φv,ω,T (ujl , λkl)
1

(2πN)l

N−1∑
p1,...,ql=0

∞∑
m1,...,nl=0

ψm1(uj1) · · ·ψnl(ujl)

× cum(Yi,k; (i, k) ∈ ν1) · · · cum(Yi,k; (i, k) ∈ νl) exp(−iλk1(p1 − q1)) · · · exp(−iλkl(pl − ql)).

We now fix one indecomposable partition ν̃ and assume without loss of generality that

ν̃ =

l−1⋃
i=1

(Yi,1, Yi+1,2) ∪ (Yl,1, Y1,2). (6.23)

Because of cum(Zi, Zj) 6= 0 for i 6= j we obtain the equations q1 = pl + n1 − ml + tjl − tj1 and qi+1 =

pi + ni+1 −mi + tji − tji+1 for i ∈ {1, . . . , l − 1}. Therefore only l variables of the 2l variables p1, q1, p2, . . . , ql
are free to choose and must satisfy the conditions

0 ≤ pl + n1 −ml + tjl − tj1 ≤ N − 1 and 0 ≤ pi + ni+1 −mi + tji − tji+1 ≤ N − 1 for i ∈ {1, . . . , l − 1}.
(6.24)

Thus we obtain

VT (ν̃) =
1

T l

M∑
j1,...,jl=1

N/2∑
k1,...,kl=1

φv,ω,T (uj1 , λk1) · · ·φv,ω,T (ujl , λkl)
1

(2πN)l

N−1∑
p1,...,pl=0

∞∑
m1,...,nl=0

(6.24)

ψm1(uj1) · · ·ψnl(ujl)

× exp(−iλk1(p1 − pl +ml − n1 + tj1 − tjl))
l∏

i=2

exp(−iλki(pi − pi−1 +mi−1 − ni + tji − tji−1)).
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Note that (6.24) can only be satisfied if |n1 −ml + tjl − tj1 | < N and |ni+1 −mi + tji − tji+1 | < N hold for

i ∈ {1, 2, . . . , l − 1}. Using this fact in combination with (6.5) and (6.11) the term above is (up to a constant)

bounded by

1

T l

M∑
j1=1

∞∑
m1,n1,...,ml,nl=0

mi,ni 6=0

M∑
j2,...,jM=1

|ni+1−mi+tji−tji+1
|<N

|n1−ml+tjl−tj1 |<N

1

|m1|1−d
· · · 1

|nl|1−d
N−1∑

p1,p2,...,pl=0
|pi−pi−1+mi−1−ni+tji−tji−1

|<N/2

× 1

|p1 − pl +ml − n1 + tj1 − tjl |

l∏
i=2

1

|pi − pi−1 +mi−1 − ni + tji − tji−1 |

l∏
i=1

1(pi /∈ {zi1, zi2})

where zi1, zi2 are the pi for which the denominator vanishes, i.e. zi1 = pi−1 + ni − mi−1 + tji−1 − tji and

zi2 = pi+1 +mi − ni+1 + tji+1 − tji for i = {1, . . . , l}, where we identified 0 with l and l + 1 with 1. Note that

the cases with pi = zij for a j ∈ {1, 2} or |pi − pi−1 + mi−1 − ni + tji − tji−1 | ≥ N/2 are again of smaller or

equal order. Recall the treatment of (6.21). If we set Ai = [0, N − 1]\([zi1 − 1, zi1 + 1] ∪ [zi2 − 1, zi2 + 1]) for

i = {1, . . . , l}, the final line of the previous display can be bounded by

N−1∑
pl=0

∫
A1×...×Al−1

1

|p1 − pl +ml − n1 + tj1 − tjl |

l∏
i=2

1

|pi − pi−1 +mi−1 − ni + tji − tji−1 |
d(p1, . . . , pl−1)

≤
N−1∑
pl=0

∫
A2×...×Al−1

log |p1 − pl +ml − n1 + tj1 − tjl |+ log |p2 − p1 +m1 − n2 + tj2 − tj1 |
|p2 − pl + tj2 − tjl +ml − n1 +m1 − n2|

∣∣∣∣
∂A1

×
l∏

i=3

1

|pi − pi−1 +mi−1 − ni + tji − tji−1 |
d(p2, . . . , pl−1).

where we considered partial fractions again and with the same notation as before. The conditions on pi,mi, ni
and ji imply that the arguments of the log-functions are between 1 and 2N , so also smaller than 2lN . Thus

the above term bounded by

N−1∑
pl=0

∫
A2×...×Al−1

log(2lN)

|p2 − pl + tj2 − tjl +ml − n1 +m1 − n2|

l∏
i=3

1

|pi − pi−1 +mi−1 − ni + tji − tji−1 |
d(p2, . . . , pl−1).

Using this argumentation also in the integration over p2, . . . , pl−1, we can bound VT (ν̃) (up to a constant) by

1

T l

M∑
j1=1

∞∑
m1,n1,...,ml,nl=0

m1−n1+...+ml−nl 6=0
mi,ni 6=0

M∑
j2,...,jM=1

|ni+1−mi+tji−tji+1
|<N

|n1−ml+tjl−tj1 |<N

1

|m1|1−d
· · · 1

|nl|1−d
1

|m1 − n1 + . . .+ml − nl|

N−1∑
p1=0

log(2lN)l−1

where all the differences of pi- and tji-terms vanish in a telescoping sum. Note that for T large enough, the

conditions

|ni+1 −mi + tji − tji+1 | < N and |n1 −ml + tjl − tj1 | < N (6.25)
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can only be satisfied if |ni+1−mi| ≤ 2T for i ∈ {1, . . . , l} where we identified l+ 1 with 1. Therefore the above

term is smaller or equal to

1

T l

M∑
j1=1

∞∑
m1,n1,...,ml,nl=0

(+) 6=,l

M∑
j2,...,jM=1

(6.25)

1

|m1|1−d
· · · 1

|nl|1−d
1

|m1 − n1 + . . .+ml − nl|

N−1∑
p1=0

log(2lN)l−1

where (+)6=,l was defined in Lemma 6.4 e) and we now have n = 2T . As in the proof of part b), it can be seen

that if j1,mi, ni are chosen, there are only finitely many possible choices for j2, . . . , jl because of the conditions

(6.25). By using this and Lemma 3.13 e), we finally obtain

VT (ν̃) = O(T 1−l log(N)l−1 log(T )T 2Dl−4D) = O
(
T (1−4D)−l(1/2−2D)−l/2 log(T )l

)
which is of order o(1/T l/2) for l ≥ 3 and D < 1/4. 2

Proof of d): Analogously to the proof of Theorem 5.1 in Preuß et al. (2012) we show the claim by proving

|cuml(ĜT (v1, ω1)− ĜT (v2, ω2))| ≤ (2l)!C lρ2,T,D ((v1, ω1), (v2, ω2))l ∀l ∈ IN.

We assume without loss of generality that l is even since the case for odd l follows in the same way. In order to

simplify technical arguments we furthermore define φv,ω,T (u, λ) := φv,ω,T (u,−λ) for u ∈ [0, 1] and λ ∈ [−π, 0].

Due to the symmetry of IN (u, λ) in λ we then obtain that the l-th cumulant of ĜT (v1, ω1) − ĜT (v2, ω2)) is

given by

1

2lT l/2

M∑
j1,...,jl=1

N/2∑
k1,...,kl=−b(N−1)/2c

(φv1,ω1,T (uj1 , λk1)− φv2,ω2,T (uj1 , λk1)) · · · (φv1,ω1,T (ujl , λkl)− φv2,ω2,T (ujl , λkl))

× 1

(2πN)l

N−1∑
p1,...,ql=0

∞∑
m1,...,nl=0

ψm1(uj1) · · ·ψnl(ujl) exp(−iλk1(p1 − q1)) · · · exp(−iλkl(pl − ql))

× cum(Ztj1−N/2+1+p1−m1
Ztj1−N/2+1+q1−n1

, . . . , Ztjl−N/2+1+pl−mlZtjl−N/2+1+ql−nl)(1 + o(1))

Set φ1,2,T (u, λ) := φv1,ω1,T (u, λ)− φv2,ω2,T (u, λ). We restrict ourselves again to the indecomposable partition ν̃

defined in (6.23) and call the corresponding summand V2,T (ν̃). Then as in the proof of Theorem 5.1 in Preuß

et al. (2012) we see that

0 ≤ pi +mi − ni + tji − tji+1 ≤ N − 1 for i ∈ {1, 3, 5, . . . , l − 3, l − 1} (6.26)
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must be satisfied and that V2,T (ν̃) is bounded by
√
J1,TJ2,T with

J1,T =
1

2lT l/2

M∑
j1,...,jl=1

N/2∑
k1,k3,...,kl−1=−b(N−1)/2c

φ2
1,2,T (uj1 , λk1)φ2

1,2,T (uj3 , λk3)2 · · ·φ2
1,2,T (ujl−1

, λkl−1
)2

1

(2πN)l

N−1∑
p1,p3,...,pl−1=0

N−1∑
p̃1,p̃3,...,p̃l−1=0

∞∑
m1,n1,m3,n3,...,ml−1,nl−1=0

(6.26)

∞∑
m̃1,ñ1,m̃3,ñ3,...,m̃l−1,ñl−1=0

(̃6.26)

exp(−iλk1(p1 − p̃1)) exp(−iλk3(p3 − p̃3)) · · · exp(−iλkl−1
(pl−1 − p̃l−1))

ψm1(uj2)ψn1(uj1) · · ·ψml−1
(ujl)ψnl−1

(ujl−1
)ψm̃1(uj2)ψñ1(uj1) · · ·ψm̃l−1

(ujl)ψñl−1
(ujl−1

)

N/2∑
k2,k4,...,kl=−b(N−1)/2c

exp(−iλk2(p̃1 − p1 + n1 −m1 + m̃1 − ñ1)) exp(−iλk4(p̃3 − p3 + n3 −m3 + m̃3 − ñ3))

· · · exp(−iλkl(p̃l−1 − pl−1 + nl−1 −ml−1 + m̃l−1 − ñl−1)) (6.27)

and J2,T being defined for even pi,mi, ni. Here, the condition (̃6.26) says that (6.26) holds but with the pi,mi, ni
replaced by p̃i, m̃i, ñi. The identity (6.22) implies that in (6.27) the restrictions

p̃i = pi +mi − ni + ñi − m̃i and 0 ≤ pi +mi − ni + ñi − m̃i ≤ N − 1 for odd i (6.28)

must be fulfilled and that J1,T therefore equals

1

(4π)l(TN)l/2

M∑
j1,...,jl=1

N/2∑
k1,k3,...,kl−1=−b(N−1)/2c

φ1,2,T (uj1 , λ1)2φ1,2,T (uj3 , λ3)2 · · ·φ1,2,T (ujl−1
, λl−1)2

N−1∑
p1,...,pl−1=0

∞∑
m1,...,nl−1=0

(6.26)

∞∑
m̃1,...,ñl−1=0

(6.28)

ψm1(uj2) · · ·ψnl−1
(ujl−1

)ψm̃1(uj2) · · ·ψñl−1
(ujl−1

)

exp(−iλk1(n1 −m1 + m̃1 − ñ1)) · · · exp(−iλkl−1
(nl−1 −ml−1 + m̃l−1 − ñl−1)).

A factorisation yields J1,T = L1,T × L3,T × · · · × Ll−1,T with

Li,T :=
1

8π2T

M∑
ji=1

N/2∑
ki=−b(N−1)/2c

φ1,2,T (uji , λi)
2

∞∑
mi,ni,m̃i,ñi=0

|mi−ni+ñi−m̃i|<N

1

N

N−1∑
pi=0

0≤pi+mi−ni+ñi−m̃i≤N−1

M∑
ji+1=1

0≤pi+mi−ni+tji−tji+1
≤N−1

ψmi(uji+1)ψni(uji)ψm̃i(uji+1)ψñi(uji) exp(−iλki(ni −mi + m̃i − ñi)).

Employing the same arguments as in the proof of a) – c) we see that ji+1 = ji must hold and that we can skip

all conditions on mi, ni, m̃i, ñi, pi. With (2.10) we then obtain the following bound for Li,T , namely

1

T

M∑
j=1

N/2∑
k=1

φ1,2,T (uj , λk)
2 1

λ4D
k

,
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and this yields J1,T ≤ C l/2ρ2,T,D((v1, ω1), (v2, ω2)). Since the same upper bound is obtained for J2,T the claim

follows analogously to the proof of Theorem 5.1 in Preuß et al. (2012) by employing that (2l)!2l is an upper

bound for the number of indecomposable partitions. 2

6.2 Proof of Theorem 6.2

The proof works in the same way as the proof of Theorem 6.1 but by employing Lemma 4.3 instead of (2.5) in

order to keep error terms uniformly small in probability.

Proof of a): At first note that the coefficents in the MA(∞) representations (4.7) and (4.10) do not depend

on the time. Thus, if we write I∗N (u, λ) for the bootstrap analogon of IN (u, λ), we obtain

E

(
Ĝ∗T (v, ω)/

√
T
∣∣∣X1,T , . . . , XT,T

)
= E

( 1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)I
∗
N (uj , λk)|X1,T , . . . , XT,T

)
=

1

T

M∑
j=1

N/2∑
k=1

φv,ω,T (uj , λk)
1

2πN

N−1∑
p,q=0

∞∑
l,m=0

ψ̂l,pψ̂m,qE(Z∗tj−N/2+1+p−mZ
∗
tj−N/2+1+q−l) exp(−iλk(p− q)).

The ψ̂l,p possess no time dependence, thus the above expression equals zero by definition of φv,ω,T . The same

result holds for Ĝ∗T,2(v, ω).

Proof of b): Because of part a) we obtain

Var
(

(Ĝ∗T (v, ω)− Ĝ∗T,2(v, ω))1AT (α)

)
/T = E

(
Var(Ĝ∗T (v, ω)− Ĝ∗T,2(v, ω)|X1,T , . . . , XT,T )1AT (α)

)
/T

=
1

T 2

M∑
j1,j2=1

N/2∑
k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj2 , λk2)
1

(2πN)2

N−1∑
p1,p2,q1,q2=0

∞∑
m1,m2,l1,l2=0

E(ψ̂m1,l1,m2,l2,p1AT (α))

× cum(Z∗ej1,N+p1−m1
Z∗ej1,N+q1−l1 , Z

∗
ej2,N+p2−m2

Z∗ej2,N+q2−l2) exp(−iλk1(p1 − q1)) exp(−iλk2(p2 − q2))

with ψ̂m1,l1,m2,l2,p = (ψ̂m1,pψ̂l1,p − ψm1,pψl1,p)(ψ̂m2,pψ̂l2,p − ψm2,pψl2,p). By using

ψ̂m1,pψ̂l1,p − ψm1,pψl1,p = (ψ̂m1,p − ψm1,p)ψl1,p + (ψ̂l1,p − ψl1,p)ψ̂m1,p

and the analogue for ψ̂m2,pψ̂l2,p − ψm2,pψl2,p, we can divide the above expression into the sum of four terms.

For the sake of brevity details are presented only for the first one. By using (6.15) the corresponding summand

splits into two terms and we restrict ourselves to the first one which we denote with V ∗T,1. As in the proof

of Theorem 6.1 b) we then obtain error terms V +,∗
T,1 , V j2=j1+,∗

T,1 which are defined as V +
T,1, V j2=j1+

T,1 but with

the ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2) replaced by E
(

(ψ̂m1,p − ψm1,p)(ψ̂m2,p − ψm2,p)ψl1,pψl2,p1AT (α)

)
. In the

following we will demonstrate that

max(V +,∗
T,1 , V

j2=j1+,∗
T,1 ) = O

(
p8 log(T )3log(N)2Nmax(4d−1,0)+αT−2

)
.
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The proof is similar to the one of (6.17) and (6.18) up to employing (6.3). Let us demonstrate this concept in

the treatment of V +,∗
N,T,3 which is bounded by

2

(2πT )2

M∑
j1=1

∞∑
m1,m2,l1,l2=0
|m1−l2|≥N

N−1∑
q2=0

M∑
j2=1

0≤q2+m1−l2+∆t≤N−1

E|(ψ̂m1,p − ψm1,p)(ψ̂m2,p − ψm2,p)ψl1,pψl2,p1AT (α)|

×
N−1∑
q1=0

0≤q1+m2−l1−∆t≤N−1
(6.19)

∣∣∣ 1

N

N/2∑
k1=1

φv1,ω1,T (uj1 , λk1) exp(−iλk1(q2 − q1 + ∆t+m1 − l2))
∣∣∣

×
∣∣∣ 1

N

N/2∑
k2=1

φv2,ω2,T (uj2 , λk2) exp(−iλk2(q1 − q2 −∆t+m2 − l1))
∣∣∣;

compare with (6.20). In the proof of Theorem 6.1 b) we have shown that V +
N,T,3 is of orderO(log(N)2/(TN1−4D))

by employing (6.5). Here we use (6.3) instead and combine it with the fact that |d̂ − d| < α/4 on AT (α) to

obtain

|ψ̂l,p − ψl| ≤ Cp4 log(T )3/2T−1/2|l|α/4+d−1 ∀l ∈ IN. (6.29)

This together with (6.5) and Assumption 4.2 implies

|ψ̂l,p| ≤ C|l|α/4+d−1 ∀l, p ∈ IN. (6.30)

Thus the role of D is played by d+ α/4 now, and using (6.29) and (6.30) instead of (6.5) we obtain

V +,∗
N,T,3 ≤ Cp

8 log(T )3T−1 × log(N)2T−1N4d+α−1 ≤ Cp8 log(T )3log(N)2Nmax(4d−1,0)+αT−2.

Similarly, the subsequent steps in the proof of Theorem 6.1 b) reveal that V ∗T,1 becomes

V ∗T,1 =
1

T 2

M∑
j=1

N/2∑
k=1

φv1,ω1,T (uj , λk)φv2,ω2,T (uj , λk)
1

(2π)2

∞∑
m1,m2,l1,l2=0

(+)

exp(−iλk(m1 − l2 +m2 − l1))

×E
(

(ψ̂m1,p − ψm1,p)(ψ̂m2,p − ψm2,p)ψl1,pψl2,p1AT (α)

)
+O

(
p8 log(T )3log(N)2Nmax(4d−1,0)+αT−2

)
.

In the proof of Theorem 6.1 b), the analogue of the first quantity on the right hand side above is the main

term contributing to the variance. Here, however, it is of the same order as the error terms. This can be seen

using (6.29) and (6.30) again plus Lemma 6.4 d).

Proof of c): If we employ (6.29) and (6.30) as in the proof of part b) and follow the arguments in the proof

of Theorem 6.1 d), we obtain

E

(
|(Ĝ∗T (v1, ω1)− Ĝ∗T,2(v1, ω1))− (Ĝ∗T (v2, ω2)− Ĝ∗T,2(v2, ω2))|k1AT (α)

)
≤ (2k)!Ckρ2,T,d+α/4 ((v1, ω1), (v2, ω2))k

(
p8 log(T )3T−1

)k/2
,
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where ρ2,T,d+α/4(·, ·) corresponds to the metric defined in (6.1) but with D replaced by d+α/4 due to |d̂−d| ≤
α/4. The claim then follows from

ρ2,T,d+α/4 ((v1, ω1), (v2, ω2)) ≤ Cρ̃ ((v1, ω1), (v2, ω2))
√
Nmax(4d−1,0)+α.

2

6.3 Proofs from Section 3 and 4

Proof of Theorem 3.1: To show weak convergence we have to prove the following two claims [see van der

Vaart and Wellner (1996), Theorem 1.5.4 and 1.5.7]:

(1) Convergence of the finite dimensional distributions

(ĜT (yj))j=1,...,K
D−−→ (G(yj))j=1,...,K (6.31)

where yj = (vj , ωj) ∈ [0, 1]2 (j = 1, . . . ,K) and K ∈ IN .

(2) Stochastic equicontinuity, i.e.

∀η, ε > 0 ∃δ > 0 : lim
T→∞

P
(

sup
y1,y2∈[0,1]2:ρ2,D(y1,y2)<δ

|ĜT (y1)− ĜT (y2)| > η
)
< ε,

where

ρ2,D (y1, y2) :=

(
1

2π

∫ 1

0

∫ π

0
(φv1,ω1(u, λ)− φv2,ω2(u, λ))2 1

λ4D
dλdu

)1/2

[with the functions φv,ω defined in (6.2) and yi = (vi, ωi) for i = 1, 2].

The claim (6.31) can be deduced from Theorem 6.1 a)–c), while stochastic equicontinuity can be concluded

along the lines of the corresponding result in Preuß et al. (2012). 2

Proof of Lemma 4.3: If we denote with ψl,p the coefficents in the MA(∞) representation of the process

(1−B)−dY AR
t (p) and with ηl the coefficent which appears if we replace d̂ with d in η̂l, we obtain with (4.8)

ψ̂l,p − ψl,p =

l∑
k=0

(ĉk,pη̂l−k − ck,pηl−k) =
l∑

k=0

(ĉk,p − ck,p) η̂l−k +
l∑

k=0

ck,p (η̂l−k − ηl−k) . (6.32)

We start with the treatment of the first term and let l ≥ 1. By employing (4.6) we can apply Cauchy’s

inequality for holomorphic functions analogously to the proof of Lemma 2.5 in Kreiß et al. (2011) to obtain

|ĉl,p − cl,p| =
p

(1 + 1/p)l

√
log(T )/TOP (1), uniformly in p, l ∈ IN.

With this bound we get
∑∞

k=0 k
2|ĉk,p − ck,p| = OP (p4

√
log(T )/T ) which directly yields

|ĉk,p − ck,p| = OP (p4
√

log(T )/T/k2). (6.33)
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Using (2.16) and properties of the Gamma function we obtain η̂l ≤ C/l1−d̂, uniformly in d̂. Therefore we

see with (6.33) that the first term in (6.32) is some OP (p4
√

log(T )/T/l1−d̂). This works again by replacing

the sum through its approximating integral (for k 6= 0, l) and applying (6.6) as in the proof of Lemma 6.4.

Concerning the second summand in (6.32) note that (4.4) implies ck,p = OP
(
1/k7

)
, uniformly in p. If we

combine this with (4.6) and the mean value theorem we obtain that the second summand in (6.32) is of order

OP (
√

log(T )/T/l1−max(d̂,d)).

Thus to complete the proof it remains to consider |ψl,p − ψl| which is bounded through

l∑
k=0

|ck,p − ck||ηl−k|,

where ck are the coefficents in the MA(∞) representation of the process Yt = (1−B)dXt, see Assumption 4.1.

It follows from (4.2) and Lemma 2.4 in Kreiß et al. (2011) that |ck,p − ck| = O(1/(k2p5)) which implies that

|ψl,p − ψl| is of order O(1/(l1−dp5)). This yields the claim since
√
T/ log(T ) = o(p9). 2

Proof of Theorem 4.4: First, sup(v,ω)∈[0,1]2 |ĜT,a(v, ω)| and sup(v,ω)∈[0,1]2 |Ĝ∗T,a(v, ω)| have the same distri-

bution, because ψl = ψl(u) for all u ∈ [0, 1] under the null hypothesis and since the Zt and Z∗t are both

independent and standard normal distributed. Furthermore, the proof of Theorem 6.1 reveals that we have

E

(
sup

(v,ω)∈[0,1]2
|Ĝ∗T,a(v, ω)|2

)−1/2
sup
v,ω
|ĜT,a(v, ω)| = E

(
sup

(v,ω)∈[0,1]2
|Ĝ∗T,a(v, ω)|2

)−1/2
sup
v,ω
|ĜT (v, ω)|+ oP (1)

due to (2.3), so let us focus on part c). We show√
T/E

(
sup

(v,ω)∈[0,1]2
Ĝ∗T,a(v, ω)2

)
sup

(v,ω)∈[0,1]2

∣∣∣Ĝ∗T (v, ω)− Ĝ∗T,a(v, ω)
∣∣∣/√T = oP (1)

Note that (2.10), Assumption 4.1 and Theorem 6.1 a), b) prove

C1N
max(4d−1,0)/T ≤ E(Ĝ∗T,a(v, ω)2)/T ≤ C2(Nmax(4d−1,0) + log(N)1{d=1/4})/T, (6.34)

Thus d) follows, and according to Newey (1991) we have to show the following two claims:

(1) For every v, ω ∈ [0, 1] we have

(Ĝ∗T (v, ω)− Ĝ∗T,a(v, ω))/
√
Nmax(4d−1,0) = oP (1).

(2) For every η, ε > 0 there exists a δ > 0 such that

lim
T→∞

P
(

sup
y1,y2∈[0,1]2:ρ̃(y1,y2)<δ

|(Ĝ∗T (y1)− Ĝ∗T,a(y1))− (Ĝ∗T (y2)− Ĝ∗T,a(y2))|/
√
Nmax(4d−1,0) > η

)
< ε,

where yi = (vi, ωi) for i = 1, 2.

Note that Lemma 4.3 implies P (AT (α)) → 1 as T → ∞ for every α > 0. Therefore part (1) follows from

Theorem 6.2 a) and b) and the conditions on the grow rate of p = p(T ) which are specified in Assumption 4.2

by choosing α small. The second claim can be shown analogously to the proof of Theorem 3.1 by employing

Theorem 6.2 c) instead of Theorem 6.1 d). 2
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φ = −0.9 φ = −0.5 φ = 0 φ = 0.5 φ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

128 16 8 0.131 0.179 0.064 0.098 0.054 0.087 0.078 0.122 0.104 0.17

128 8 16 0.129 0.167 0.069 0.11 0.056 0.102 0.086 0.127 0.095 0.151

256 32 8 0.093 0.129 0.056 0.099 0.039 0.072 0.051 0.083 0.087 0.152

256 16 16 0.069 0.107 0.057 0.088 0.041 0.086 0.068 0.124 0.08 0.118

256 8 32 0.067 0.112 0.046 0.093 0.046 0.09 0.077 0.118 0.051 0.096

512 64 8 0.051 0.099 0.047 0.086 0.039 0.087 0.031 0.07 0.062 0.108

512 32 16 0.058 0.109 0.048 0.097 0.043 0.087 0.051 0.1 0.077 0.14

512 16 32 0.056 0.109 0.046 0.085 0.062 0.115 0.066 0.112 0.054 0.122

512 8 64 0.052 0.092 0.05 0.1 0.033 0.086 0.065 0.118 0.041 0.091

Table 1: Rejection probabilities of the test (4.9) under the null hypothesis. The data was generated according

to model (5.1) with d = 0.2, θ = 0 and different values for φ.

θ = −0.9 θ = −0.5 θ = 0.5 θ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10%

128 16 8 0.075 0.124 0.066 0.124 0.061 0.106 0.059 0.092

128 8 16 0.064 0.112 0.058 0.101 0.066 0.109 0.069 0.112

256 32 8 0.046 0.107 0.056 0.105 0.044 0.097 0.056 0.094

256 16 16 0.047 0.094 0.058 0.115 0.037 0.085 0.064 0.108

256 8 16 0.059 0.098 0.061 0.109 0.047 0.085 0.046 0.085

512 64 8 0.057 0.096 0.041 0.084 0.041 0.088 0.049 0.094

512 32 16 0.041 0.089 0.056 0.107 0.052 0.101 0.058 0.091

512 16 32 0.046 0.084 0.046 0.098 0.057 0.095 0.048 0.087

512 8 64 0.036 0.089 0.05 0.091 0.043 0.083 0.055 0.1

Table 2: Rejection probabilities of the test (4.9) under the null hypothesis. The data was generated according

to model (5.1) with d = 0.2, φ = 0 and different values for θ.
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φ = −0.9 φ = −0.5 φ = 0 φ = 0.5 φ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

128 16 8 0.138 0.174 0.056 0.104 0.06 0.091 0.096 0.138 0.18 0.256

128 8 16 0.126 0.168 0.083 0.124 0.059 0.107 0.088 0.139 0.153 0.219

256 32 8 0.08 0.116 0.044 0.078 0.05 0.087 0.047 0.099 0.12 0.196

256 16 16 0.082 0.125 0.043 0.075 0.052 0.09 0.055 0.101 0.111 0.173

256 8 32 0.071 0.107 0.055 0.096 0.045 0.097 0.064 0.112 0.084 0.13

512 64 8 0.051 0.1 0.041 0.089 0.044 0.083 0.029 0.067 0.061 0.124

512 32 16 0.053 0.104 0.049 0.094 0.038 0.09 0.057 0.097 0.082 0.145

512 16 32 0.063 0.111 0.053 0.105 0.056 0.112 0.049 0.086 0.074 0.129

512 8 64 0.051 0.096 0.051 0.094 0.042 0.089 0.056 0.11 0.067 0.117

Table 3: Rejection probabilities of the test (4.9) under the null hypothesis. The data was generated according

to model (5.1) with d = 0.4, θ = 0 and different values for φ.

θ = −0.9 θ = −0.5 θ = 0.5 θ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10%

128 16 8 0.086 0.136 0.081 0.13 0.053 0.084 0.069 0.099

128 8 16 0.085 0.128 0.065 0.11 0.069 0.11 0.073 0.11

256 32 8 0.07 0.116 0.059 0.096 0.039 0.07 0.05 0.096

256 16 16 0.069 0.119 0.076 0.133 0.053 0.09 0.04 0.089

256 8 16 0.043 0.087 0.068 0.111 0.051 0.099 0.051 0.112

512 64 8 0.052 0.109 0.037 0.079 0.051 0.085 0.046 0.105

512 32 16 0.068 0.119 0.05 0.103 0.053 0.099 0.042 0.095

512 16 32 0.056 0.101 0.054 0.106 0.045 0.084 0.056 0.11

512 8 64 0.056 0.102 0.065 0.101 0.054 0.098 0.043 0.082

Table 4: Rejection probabilities of the test (4.9) under the null hypothesis. The data was generated according

to model (5.1) with d = 0.4, φ = 0 and different values for θ.
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(5.4) (5.5) (5.6)

T N M d 5% 10% 5% 10% 5% 10%

128 16 8 0.2 0.694 0.811 0.198 0.303 0.028 0.084

128 8 16 0.2 0.702 0.824 0.169 0.266 0.023 0.071

256 32 8 0.2 0.909 0.968 0.211 0.332 0.132 0.262

256 16 16 0.2 0.946 0.978 0.197 0.312 0.121 0.3

256 8 16 0.2 0.942 0.98 0.158 0.264 0.164 0.32

512 64 8 0.2 0.997 1.0 0.519 0.791 0.557 0.742

512 32 16 0.2 0.999 1.0 0.477 0.702 0.575 0.764

512 16 32 0.2 1.0 1.0 0.362 0.564 0.648 0.808

512 8 64 0.2 1.0 1.0 0.258 0.39 0.664 0.823

128 16 8 0.4 0.517 0.659 0.217 0.326 0.027 0.056

128 8 16 0.4 0.649 0.769 0.188 0.262 0.022 0.067

256 32 8 0.4 0.639 0.771 0.198 0.308 0.115 0.246

256 16 16 0.4 0.795 0.903 0.162 0.292 0.11 0.271

256 8 16 0.4 0.907 0.963 0.137 0.236 0.138 0.312

512 64 8 0.4 0.731 0.861 0.275 0.525 0.471 0.652

512 32 16 0.4 0.925 0.974 0.355 0.602 0.531 0.718

512 16 32 0.4 0.989 0.995 0.355 0.564 0.662 0.784

512 8 64 0.4 0.997 1.0 0.221 0.386 0.677 0.819

Table 5: Rejection probabilities of the test (4.9) for the models (5.4)–(5.6).

d1(u) d2(u)

T N M 5% 10% 5% 10%

128 16 8 0.058 0.108 0.037 0.075

128 8 16 0.078 0.129 0.07 0.114

256 32 8 0.054 0.108 0.049 0.125

256 16 16 0.074 0.147 0.047 0.109

256 8 16 0.094 0.143 0.085 0.128

512 64 8 0.175 0.288 0.283 0.439

512 32 16 0.131 0.218 0.218 0.356

512 16 32 0.074 0.145 0.096 0.179

512 8 64 0.104 0.172 0.099 0.181

Table 6: Rejection probabilities of the test (4.9) for the models from (5.7).
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Figure 1: The left panel displays the price of the S&P 500 between April 10th 1996 and July 13th 2012 whereas

the log returns of the S&P 500 in the same period are shown in the right panel.

Figure 2: Left panel: ACF (autocorrelation function) of the log returns Xt, middle panel: ACF of the absolute

log returns |Xt|, right panel: ACF of the squared log returns X2
t .
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Figure 3: The left panel displays the histogram of the p-values if the test (4.9) (with T = 64 and N = 8) is

applied on a rolling window of the 4096 datapoints. In the middle panel we present the histogram of the p-values

if the test (4.9) (with T = 64 and N = 8) is applied on a rolling window of the first 1000 datapoints. The right

panel shows the corresponding histogram if the last 1000 datapoints are used.

Figure 4: Histograms of the p-values if the test (4.9) with T = 256 and different choice for N is applied on a

rolling window of the 4096 datapoints. Left panel: N = 32, middle panel: N = 16, right panel: N = 8.
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