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Abstract

In this paper we consider a class of processes that can be represented in the form Ys =
XT (s), where X is a Lévy process and T is a non-negative and non-decreasing stochastic
process independent of X. The aim of this work is to infer on the Blumenthal-Getoor index
of the process X from low-frequency observations of the time-changed Lévy process Y . We
propose a consistent estimator for this index, derive the minimax rates of convergence and
show that these rates can not be improved in general. The performance of the estimator is
illustrated by numerical examples.
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1 Introduction

The problem of nonparametric statistical inference for jump processes or more generally for
semimartingale models has long history and goes back to the works of Rubin an Tucker [16]
and Basawa and Brockwell [4]. In the past decade one has witnessed the revival of interest in
this topic which is mainly related to a wide availability of financial and economical time series
data and new types of statistical issues that have not been addressed before. There are two
major strands of recent literature dealing with statistical inference for semimartingale models.
The first type of literature considers the so-called high-frequency setup, where the asymptotic
properties of the corresponding estimates are studied under the assumption that the frequency
of observations tends to infinity. In the second strand of literature, the frequency of observations
is assumed to be fixed (the so-called low-frequency setup) and the asymptotic analysis is done
under the premiss that the observational horizon tends to infinity. It is clear that none of the
above asymptotic hypothesis can be perfectly realized on real data and they can only serve as
a convenient approximation, as in practice both the frequency of observations and the horizon
are always finite. The present paper studies the problem of statistical inference for a class of
semimartingale models in low-frequency setup.

Consider two one-dimensional real-valued not necessarily independent stochastic processes
- X = (Xt)t≥0 and T = (T (s))s≥0. Let X be a Lévy process and T be a non-negative, non-
decreasing stochastic process with T (0) = 0. Then the time-changed Lévy process is defined as

1This research was partially supported by the Deutsche Forschungsgemeinschaft through the SFB 823 “Statis-
tical modelling of nonlinear dynamic processes” and by Laboratory for Structural Methods of Data Analysis in
Predictive Modeling, MIPT, RF government grant, ag. 11.G34.31.0073.
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Ys = XT (s). The change of time can be motivated by the fact that some economical effects (e.g.,
nervousness of the market which is indicated by volatility) can be better expressed in terms of
“business” time, which may run faster than physical one in some periods. This resulting class
of processes is very large; e.g. Monroe [14] shows that even in the case of the Brownian motion
X, the class {Y } basically coincides with the class of all semimartingales. For identifiability
reasons, in this paper we restrict our attention to the case of independent processes X and T .
The corresponding class of processes remains rather large but its full characterization remains
an open problem (see [3]).

Suppose now that the time-changed process Y is observable on the equidistant time grid
0 < ∆ < . . . < n∆ with some n ∈ N and ∆ > 0. A natural question is which parameters of
the underlying Lévy process X can be identified from the observations Y∆, . . . , Yn∆ as n→∞.
This question has been recently addressed in the literature and the answer turns out to depend
crucially on the asymptotic behavior of ∆ and on the degree of our knowledge about T . So in
the case of high-frequency data with increasing time horizon, i.e., ∆n → 0 with n · ∆n → ∞,
one basically can, under some regularity conditions, identify X completely, provided E[T ] is
known (see Figueroa-Lopez, [11]). If the time horizon remains fixed, only the diffusion part of
X and the behavior of the Lévy measure of X at 0 can be identified. The latter behavior can
be characterized in terms of the so-called Blumenthal-Getoor index or successive Blumenthal-
Getoor indexes (see Aı̈t-Sahalia and Jacod [1]). The Blumenthal-Getoor index is a characteristic
of the activity of small jumps and for a one-dimensional Lévy process Z = (Zt)t≥0 with a Lévy
measure ν can be defined via

BG(Z) = inf

{
r > 0 :

∫
|x|≤1

|x|rν(dx) <∞

}
.

In the case of low-frequency data, i.e., if ∆ is fixed and n→∞, one can not in general identify
the corresponding Lévy measure as shown in Belomestny [6]. However, the question remains
open whether the behavior of ν at 0 can be recovered. The aim of this paper is to answer this
question and to propose a consistent estimate for the B-G index of the process X based on
low-frequency observations of the process Y. It turns out that consistent estimation is basically
possible if the process X has a nonzero diffusion part and T has stationary increments. It is
worth pointing out that we do not assume any prior knowledge about the time change T or the
Lévy process X, except the fact that X has a non-zero diffusion part.

The paper is organized as follows. In the next section, we present the main setup and give
a short overview of the considered problem. Next, we introduce the main object of our study,
the time-changed Lévy processes and formulate the main assumptions. Section 3 contains the
so-called Abelian theorem describing the asymptotic behavior of the characteristic function of
Yt+∆ − Yt for some t > 0. Estimation algorithm for the Blumenthal-Getoor index of X is given
in Section 6. Theoretical results showing the consistency of the proposed estimator and the rates
of convergence are presented in Section 7. A numerical example can be found in Section 8.

2 Main setup

2.1 Lévy process X

In this paper we assume that the process Xt is a one-dimensional Lévy process on some filtered
probability space (Ω,F , (Ft)t≥0,P). This in particularly means that the characteristic function
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of X has the form:

φ(u) := E
[
exp

{
iu>Xt

}]
= exp {tψ(u)} , t > 0,

where the function ψ(u) is called the characteristic exponent of X. The Lévy-Khintchine formula
yields

ψ(u) = iµu− 1

2
σ2u2 + V(u), V(u) :=

∫
R\{0}

(
eiux − 1− iux · 1{|x|≤1}

)
ν(dx),

where µ ∈ R, σ is a non-negative number and ν is a Lévy measure on R \ {0}, which satisfies∫
R\{0}

(|x|2 ∧ 1) ν(dx) <∞.

A triplet (µ, σ2, ν) is usually called the characteristic triplet of the Lévy process Xt. In this
paper, we assume that

(AL) σ is a strictly positive and the function V(u) has the following representation:

V(u) = −λ1 |u|γ Ψ1(u), (1)

where λ1 > 0, γ ∈ (0, 2), and moreover

|1−Ψ1(u)| ≤ ϑ1|u|−χ1 , u→ +∞ (2)

with χ1 ∈ (0, γ), ϑ1 > 0.

The assumption (AL) is, for example, fulfilled in the case when there exist β(0) > 0, β(1) ∈ IR
such that ∫

|x|>ε
ν(dx) = ε−γ(β(0) + β(1)εχ1(1 +O(ε))), ε→ +0, (3)

see Lemma 7.2 for the proof. Note that the parameter γ in (3) is equal to the Blumenthal-Getoor
index, because this index can be equivalently defined as the number p ∈ [0, 2] such that

lim
ε→0+

εp
∫
|x|>ε

ν(dx) ∈ (0,+∞). (4)

We refer to [15] for a detailed discussion of the condition (3) and the property (4).

2.2 Time change

Let T = (T (s))s≥0 be an increasing right-continuous process with left limits such that T (0) = 0
and for each fixed s, the random variable T (s) is a stopping time with respect to the filtration
F . This setup is quite typical for the processes that are referred to as time change (see, e.g., the
book by Barndorff-Nielsen and Shiryaev, [3]). In this paper, it is also assumed that

(AT1) processes X and T are independent;

(AT2) process T has stationary and ergodic increments;
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(AT3) the Laplace transform of T (∆) has the following asymptotic behavior:

L∆(u) = E[exp(−uT (∆))] � A exp {−λ2u
αΨ2(u)} , u→ +∞, (5)

with λ2 > 0, A > 0, α ∈ (0, 1), and Ψ2(u) such that

|1−Ψ2(u)| ≤ ϑ2u
−χ2

with some χ2, ϑ2 > 0.

Typical examples of the processes that satisfy the assumptions (AT2) and (AT3) are the in-
tegrated CIR process (α = 1/2) and the tempered stable process (α ∈ (0, 1)), see the next
section for the detailed description. Note that A and λ2 may depend on ∆. In the case, when
T (s) is an increasing Lévy process, i.e., a subordinator, the parameter α coincides with the
Blumenthal-Getoor index of T which is always smaller than or equal to 1.

2.3 Examples

Tempered stable process. The tempered stable distribution with parameters (a, b, α) can be
defined via its Laplace transform

LTS(u) := exp
{
ab− a(b1/α + 2u)α

}
,

where a > 0, b ≥ 0, α ∈ (0, 1). The tempered stable process is a process Zt, which has increments
Zt+s −Zt following a tempered stable law with parameters (sa, b, α). The Lévy measure of this
process is of the form

%(x) :=
c

xα+1
exp{−λx}I{x > 0},

where λ = b1/α/2. Here the decay rate of big jumps, c = −a ∗ 2α/Γ(−α) alters the intensity of
all jumps simultaneously, and α is the Blumenthal-Getoor index of the process [9]. Note also
that the parameter α from the assumption (AT3) coincides with the third parameter of the
tempered stable process. The parameter χ2 is equal to 1 if b 6= 0, and can be taken arbitrary
otherwise. Other parameters that appear in (5) are λ2 = 2αa∆, ϑ2 = b1/αα/2, A = exp{ab∆}.
The tempered stable process is a subordinator [17] and therefore it can be used for a time change.
Interestingly enough, the case α = 1/2 coincides with the Inverse Gaussian process, which can be
determined as the first time when a standard Brownian motion with drift b reaches the positive
level a. Note also that the limiting case α→ 0 gives the Gamma process.

Integrated CIR process. Another candidate for the time change process is given by the in-
tegrated Cox-Ingersoll-Ross (CIR) process. The CIR process is defined as a solution of the
following SDE:

dZt = (a− bZt)dt+ ζ
√
Zt dWt, Z0 = 1,

where a, b and ζ are positive, and Wt is a Wiener process. The time change process T (s) is then
defined as

T (s) =

∫ s

0
Zt dt.
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The Laplace transform of T (∆) is given by

LiCIR∆ (u) = exp {−aϕ∆(u)− uψ∆(u)} ,

where

ϕ∆(u) = − 2

ζ2
log

(
2γ(u)e(γ(u)+b)∆/2

γ(u)− b+ eγ(u)∆(γ(u) + b)

)
, ψ∆(u) =

2
(
eγ(u)∆ − 1

)
γ(u)− b+ eγ(u)∆(γ(u) + b)

,

and γ(u) =
√
b2 + 2ζ2u, see [10] and [17]. Function LiCIR∆ (u) has the following asymptotics:

LiCIR∆ (u) � exp

{
a(b∆ + 2 log 2)

ζ2
−
√

2u
a∆ + 1

ζ
Ψ2(u)

}
, u→∞,

where

|1−Ψ2(u)| ≤ 2b√
2σ (a∆ + 1)

u−1/2. (6)

This means that condition (AT3) is fulfilled with α = 1/2 and χ2 = 1/2.

3 Abelian theorem

The first objective of this paper is to infer on the asymptotic behavior of the characteristic
function of Y∆ which is denoted by φ∆(u). We have

φ∆(u) = ET (∆)

[
EX
[
exp

{
iuXT (∆)

}
|T (∆)

]]
.

Since the inside (conditional) expectation is equal to exp{T (∆)ψ(u)},

φ∆(u) = E exp {T (∆)ψ(u)} .

The latter formula yields∣∣φ∆(u)
∣∣ = E exp {T (∆) Re(ψ(u))} = L∆ (−Re(ψ(u))) , (7)

i.e.,
∣∣φ∆(u)

∣∣ can be considered as the Laplace transform of T∆ computed at the point −Re(ψ(u)).
The first theorem can be viewed as the Abelian theorem [12] for time - changed Lévy processes.

Theorem 3.1. Consider the process Ys := XT (s), where the processes Xt and T (s) satisfy the
conditions (AL), (AT1)-(AT3) with

γ − 2 > −2χ2. (8)

Then the absolute value of the characteristic function of increments Ys+∆−Ys has the following
representation: ∣∣φ∆(u)

∣∣ = A exp
{
−τ (1)|u|2α

(
1 + τ (2)|u|γ−2 + r(u)

)}
, (9)

where

τ (1) = λ2

(
σ2/2

)α
, τ (2) = 2αλ1/σ

2

and

|r(u)| ≤ max
{
τ (2)ϑ1 |u|(γ−2)−χ1 , ϑ2

(
σ2/2

)−χ2 |u|−2χ2

}
for |u| large enough.
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Remark 3.2. The examples given in Section 2.3 show that the condition (8) is not restrictive.
For example, if the tempered stable distribution serves as a time change then this condition
holds for any Lévy process X since χ2 = 1, see Section 2.3.

Remark 3.3. Later on, we will use the notation

χ̃1 := min {χ1, 2χ2 + γ − 2}

and

τ (3) := τ (2)ϑ1I
{
χ̃1 = χ1

}
+
(
σ2/2

)−χ2 ϑ2I
{
χ̃1 = 2χ2 + γ − 2

}
≤ max

{
τ (2)ϑ1,

(
σ2/2

)−χ2 ϑ2

}
,

In this notation, |r(u)| ≤ τ (3)|u|γ−2−χ̃1 for |u| large enough.

4 Estimation of the Blumenthal-Getoor index

4.1 Main idea

Consider the processes Xt and T (s) satisfying the assumptions (AL), (AT1)-(AT3). First, as-
sume that A = 1 and fix some θ > 2. In this case, Theorem 3.1 yields

Y1(u) := log
{
− log

[
|φ∆(u)|θ2α

/
∣∣φ∆(θu)

∣∣]}
= log(Q) + (2α+ γ − 2) log |u|+ log(R1(u)),

(10)

where Q = τ (1)τ (2)θ2α(1− θγ−2) > 0 and R1(u)→ 1 as u→ +∞. The representation (10) tells
us that Y1(u) is, up to a reminder term log(R1(u)), a linear function of log |u| with the slope
2α + γ − 2. If the parameter α is assumed to be known, one can view the estimation of γ as a
linear regression problem (at least for large u) and apply the (weighted) least-squares approach.
Otherwise, if α is unknown, one should first estimate α. This can be also done by the method
of (weighted) least-squares. Indeed, define

Y2(u) := log
(
− log |φ∆(u)|

)
= log(τ (1)) + 2α log |u|+ log(R2(u)),

where R2(u)→ 1 as u→ +∞. So, Y2(u) is (at least for large u) a linear function of log |u| with
the slope proportional to α. If A 6= 1, then one can first apply the transformation:

φ̃∆(u) := |φ∆(2u)|/|φ∆(u)| = exp
{
−τ̄ (1)|u|2α

(
1 + τ̄ (2)|u|γ−2 + r̄(u)

)}
,

where

τ̄ (1) := τ (1)
(
22α − 1

)
, τ̄ (2) := τ (2) 22α+γ−2 − 1

22α − 1
, r̄(u) =

22αr(2u)− r(u)

22α − 1
,

and then work with φ̃∆(u) instead of φ∆(u). The above discussion shows that one can consis-
tently estimate the parameters α and γ, provided a consistent estimate for the c.f. of Y∆ is
available.
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4.2 Estimation of the characteristic function

Suppose that the discrete observations Y0, Y∆, . . . , Yn∆ of the state process Y are available for
some fixed ∆ > 0. We estimate φ∆(u) by its empirical counterpart φ∆

n (u) defined as

φ∆
n (u) :=

1

n

n∑
k=1

eiu(Y∆k−Y∆(k−1)). (11)

Note that due to the assumption (AT2) and by virtue of the Birkhoff ergodic theorem (see [2]),

1

n

n∑
k=1

eiu(Y∆k−Y∆(k−1)) −→ φ∆(u), n→∞,

almost surely and in L1.

4.3 The case of known α

Introduce a weighting function wVn(u) = V −1
n w1(u/Vn), where Vn is a sequence of positive

numbers tending to infinity, and the smooth function w1 supported on [ε, 1] for some ε > 0 and
satisfying ∫ 1

ε
w1(u) du = 0,

∫ 1

ε
w1(u) log u du = 1. (12)

Some examples of such weighting functions are given in [15]. If 2−γ < 2α, we define an estimator
of γ by

γ̂n(α) := 2(1− α) +

∫ ∞
0

wVn(u) log

(
− log

|φ∆
n (u)|θ2α

|φ∆
n (θu)|

)
du. (13)

If otherwise 2− γ ≥ 2α, consider an estimate

γ̂∗n(α) := 2(1− α) +

∫ ∞
0

wVn(u) log

(
1− |φ

∆
n (u)|θ2α

|φ∆
n (θu)|

)
du. (14)

In our theoretical study we mainly focus on the first case (some remarks about the second case
can be found in Section 7.1). In fact, the estimate γ̂n(α) can be represented as the solution of
some optimization problem. More precisely, γ̂n(α) = 2(1− α) +mn,1, where

(mn,1,mn,2) := arg min
β1,β2

∫ ∞
0

w̃Vn(u)

{
log

(
− log

|φ∆
n (u)|θ2α

|φ∆
n (θu)|

)
− β2 log(u)− β1

}2

du. (15)

Introduce the deterministic quantity

γ̄n(α) := 2(1− α) +

∫ ∞
0

wVn(u) log

(
− log

|φ∆(u)|θ2α

|φ∆(θu)|

)
du. (16)

The next lemma shows that γ̄n(α) is close to γ.
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Lemma 4.1. In the setup of Theorem 3.1, it holds for n large enough,

|γ − γ̄n(α)| . V −χ̃1
n , n→∞, (17)

where the notation introduced in Remark 3.3 is used. More precisely,

|γ − γ̄n(α)| ≤ C(1) τ
(3)

τ (2)

1 + θγ−2−χ̃1

1− θγ−2
(εVn)−χ̃1 , n→∞, (18)

where C(1) > 0 does not depend on the parameters of Y .

The next theorem shows that γ̂n(α) converges to γ̄n(α) in probability.

Lemma 4.2. Let the sequence Vn be such that

εn :=
log n√
n

exp
{
τ (4) (θVn)2α

}
= o(1), n→∞, (19)

where τ (4) := τ (1)
(

1 + τ (2) + τ (3)
)

. Assume that the conditions of Theorem 3.1 are fulfilled and

moreover 2− γ < 2α. Then there exist positive constants C(2), κ and δ such that

P
{
|γ̄n(α)− γ̂n(α)| ≤ C(2)εnV

(2−γ)−2α
n

}
> 1− κ n−1−δ. (20)

The last two lemmas can be combined into the following minimax convergence theorem.

Theorem 4.3 (minimax upper bounds for γ̂n(α)). Fix some set of positive numbers

P =
(
α◦, α

◦, χ1◦, λ1◦, λ
◦
1, ϑ
◦
1, χ2◦, λ2◦, λ

◦
2, ϑ
◦
2

)
and consider a class of time-changed Lévy models A = A (P) such that

• Assumptions (AT1), (AT2) hold;

• Assumption (AT3) is fulfilled with α ∈
[
α◦, α

◦
]
⊂
(

0, 1
)

, χ2 ≥ χ2◦ > 0, λ2 ∈
[
λ2◦, λ

◦
2

]
and ϑ2 ∈ (0, ϑ◦2);

• Assumption (AL) is fulfilled with γ ∈
(
γ◦, 2

)
, where γ◦ := max {χ1◦, 2(1− α)}, χ1 ∈[

χ1◦, γ
)

, λ1 ∈
[
λ1◦, λ

◦
1

]
, and ϑ1 ∈

(
0, ϑ◦1

)
.

Take the sequence Vn = (q log n)1/(2α◦) with q <
(
2θ2α◦

minA τ (4)
)−1

, where τ (4) is defined in
Lemma 4.2. Then

sup
A

P
{
|γ̂n(α)− γ| ≤ Ξ1(log n)−χ̃1/(2α◦)

}
> 1− κ n−1−δ, (21)

where χ̃1 := min {χ1, 2χ2 + γ − 2}, the supremum is taken over the set of all models from A ,
constants κ and δ do not depend on the parameters of the underlined models, and Ξ1 depends
on P only.
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Remark 4.4. Introduce a constant

χ̃1◦ := min {χ1◦, 2χ2◦ + γ◦ + 2} . (22)

Obviously, χ̃1 can be changed to χ̃1◦ in (55).

The next result shows that the rates obtained in Theorem 4.3 are optimal.

Theorem 4.5. Lower bounds. It holds

lim inf
n→∞

{
(log n)χ̃1◦/α◦

inf
γ̂n

sup
A

Eγ |γ̂n − γ|2
}
≥ Ξ2, (23)

where Ξ2 is some positive constant, the infimum is taken over all possible estimates of the
parameter γ, the supremum - over the set of all models from A .

4.4 The case of unknown α

Estimation of α. Define an estimate for the parameter α via

α̂n :=
1

2

∫ ∞
0

wUnα (u) log
(
− log |φ∆

n (u)|
)
du, (24)

where Un is a sequence of positive numbers tending to infinity, and a weighting function wVnα
satisfies the same properties as the function wUn , see (12).

This estimate can be alternatively defined as the solution α̂n = ln,1 of the following opti-
mization problem:

(ln,1, ln,2) := arg min
β1,β2

∫ ∞
0

w̃Unα (u)

(
1

2
log
(
− log |φ∆

n (u)|
)
− β2 log(u)− β1

)2

du, (25)

where w̃Unα (u) is a smooth positive function on IR having the representation:

w̃Unα (u) =
1

Un
w̃1
α

(
u

Un

)
with some function w̃1

α supported on the interval [ε, 1]. The upper bound for the estimate α̂n is
given in the next theorem.

Theorem 4.6 (upper bound for α̂n). Take the sequence

Un = (q log n)1/(2α◦) , where q < q◦ :=
(

21−α◦λ◦2 max
{
σ2α◦ , σ2α◦

})−1
.

There exists a positive constant Ξ3 such that

sup
A

P
{
|α̂n − α| ≤ Ξ3(log n)(γ−2)/α◦

}
> 1− κ n−1−δ, (26)

where the supremum is taken over the set of all models from A , and the constants κ and δ are
defined in Theorem 4.3.
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Estimation of γ in the case of unknown α. After estimating α, one can determine the
estimate of γ as

γ̂n(α̂n) := 2(1− α̂n) +

∫ ∞
0

wVn(u) log

(
− log

|φ∆
n (u)|θ2α̂n

|φ∆
n (θu)|

)
du, (27)

where Un and wUn are already defined in Section 4.3.
The next theorem shows that the upper bound for the estimate γ̂n(α̂n) is the same as in the

case of known α as long as γ < 4/3.

Theorem 4.7 (upper bound for γ̂n(α̂n)). Take the sequences

Un = (q log n)1/(2α◦) , where q < q◦ :=
(

21−α◦λ◦2 max
{
σ2α◦ , σ2α◦

})−1
,

Vn = (p log n)1/(2α◦) , where p < p◦ := q◦/
(

1 + ε2α◦
)
.

Then

sup
A

P
{
|γ̂n(α̂n)− γ| ≤ Ξ4(log n)max{−χ̃1,2(γ−2)}/(2α◦)

}
> 1− κ n−1−δ, (28)

where the supremum is taken over the set of all models from A , constants κ and δ do not depend
on the parameters of Y , and Ξ4 depends on P only. In particular, for the class of models A1

that consists of the models from A with γ < 4/3, we get

sup
A1

P
{
|γ̂n(α̂n)− γ| ≤ Ξ4(log n)−χ̃1/(2α◦)

}
> 1− κ n−1−δ. (29)

5 Numerical example

We consider the following time-changed Lévy model. The Lévy process Xt is taken as a sum
of the Brownian motion and a γ-stable process St such that the characteristic exponent of the
combined process is of the form

ψ(u) = −u2/2− σ1|u|γ
(

1− iβ sign(u) tan (πγ/2)
)
,

with some β ∈ [−1, 1], σ1 > 0, and γ ∈ [0, 2], γ 6= 1. Note that the assumption (AL) is fulfilled
with λ1 = σ1. For our numerical study, we take γ = 1.2, σ1 = 0.25 and β = 0.3. The time
change T (s) is given by the integrated CIR process with parameters a = 1.3, b = 0.01, ζ = 1.6
(see Section 2.3). Note that (AT3) holds with α = 1/2 for this model. First, we generate a
trajectory Y0, Y∆, ..., Yn∆ with ∆ = 1. Next, we estimate the characteristic function by φ∆

n (u),
see (11), and consider the optimization problem (25):

(ln,1, ln,2) := arg min
β1,β2

∫ Uup

Ulow

(
1

2
log
(
− log |φ∆

n (uUn)|
)
− β2 log(uUn)− β1

)2

du.

where Ulow and Uup are the truncation levels. The solution ln,1 of this problem gives an estimate
of α, which we denote by α̂n. Figure 1 shows the box plots of α̂n as a function of n based on 25
simulation runs.
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Figure 2: Boxplots of the estimates γ̂n(α) and γ̂n(α̂n) for different values of n.

Taking into account the fact that 2 − γ < 2α in our case, we proceed to the next step -
estimation of γ - by considering the optimization problem (15) with α = α̂n:

(mn,1,mn,2) := arg min
β1,β2

∫ Vup

Vlow

{
log

(
− log

|φ∆
n (uVn)|θ2α̂n

|φ∆
n (θuVn)|

)
− β2 log(u)− β1

}2

du,

where Vlow and Vup are the truncation levels, and θ = 2. The estimate of γ is then defined as
γ̂n(α̂n) = 2(1 − α̂n) + mn,1. The boxplots shown in Figure 2 indicate that the quality of the
estimates γ̂n(α) and γ̂n(α̂n) is quite similar.

6 Proofs

In the sequel we use the simplified notation: φ(u) := φ∆(u) and φn(u) := φ∆
n (u).

6.1 Proof of Theorem 3.1

Substitung (5) into (7), we get

|φ(u)| � A exp {−λ2 (−Reψ(u))α Ψ2 (−Reψ(u))} .

Recall that by Assumption (AL),

−Reψ(u) =
1

2
σ2u2 + λ1|u|γ Re(Ψ1(u)).

12



Therefore

|φ(u)| � A exp

{
−λ2

(1

2
σ2
)α
|u|2α

(
1 +

2αλ1

σ2
|u|γ−2 Re(Ψ1(u)) +R(u)

)}
with

|R(u)| ≤ |1−Ψ2 (−Reψ(u))| ≤ ϑ2 (−Reψ(u))−χ2 ≤ ϑ2

(
σ2/2

)−χ2 |u|−2χ2 ,

where the last two inequalities hold for u large enough. The inequality:

|1− Re(Ψ1(u))| ≤ |1−Ψ1(u)| ≤ ϑ1|u|−χ1

yields the form of r(u) and completes the proof.

6.2 Estimation of γ when α is known

6.2.1 Upper bounds

Proof of Lemma 4.1. First note that

|γ − γ̄n(α)| =

∣∣∣∣∫ Vn

εVn

wVn(u) log

(
1 +

r(u)− r(θu)

uγ−2τ (2) (1− θγ−2)

)
du

∣∣∣∣.
Since |r(u)− r(θu)| /uγ−2 ≤ τ (3)

(
1 + θγ−2−χ̃1

)
u−χ̃1 as u→∞, and | log(1 + x)| ≤ 2|x| for any

|x| ≤ 1/2, it follows that for u large enough,

|γ − γ̄n(α)| ≤ (εVn)−χ̃1 2
τ (3)(1 + θγ−2−χ̃1)

τ (2) (1− θγ−2)

∫ 1

ε
|w1(u)|du

with C > 0. The statement of the lemma follows with C(1) := 2
∫ 1
ε |w

1(u)|du.
Proof of Lemma 4.2. The proof of this theorem follows the same lines as the proof of its

analogue for the case of affine stochastic volatility models [7], [15]. We begin the proof with the
following lemma.

Lemma 6.1. Suppose that

ε̃n :=

[
inf

u∈[εVn,Vn]
|φ(u)|

]−θ2α

log n√
n

= o(1), n→∞. (30)

Then there exist positive constants B1, κ and δ such that for any n > 1

P
{
|γ̄n(α)− γ̂n(α)| ≤ B1ε̃n

∫ Vn

εVn

∣∣wVn(u)
∣∣ ∣∣log−1 (G(u))

∣∣ du} > 1− κn−1−δ, (31)

where G(u) = |φ(u)|θ2α
/ |φ(uθ)|.

Proof. We divide the proof of the lemma into several steps.
1. Denote Gn(u) = |φn(u)|θ2α

/ |φn(θu)| . It holds

Gn(u)− G(u) =
|φn(u)|θ2α − |φ(u)|θ2α

|φn(uθ)|
+
|φ(u)|θ2α

|φ(uθ)|
|φ(uθ)| − |φn(uθ)|

|φn(uθ)|

= G(u)

[
ξ1,n(u) + ξ2,n(u)

1− ξ2,n(u)

]
=: G(u)Λn(u)

(32)
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with

ξ1,n(u) =
|φn(u)|θ2α − |φ(u)|θ2α

|φ(u)|θ2α and ξ2,n(u) =
|φ(uθ)| − |φn(uθ)|

|φ(uθ)|
.

2. Lemma 3.6.1 from [15] shows that the event

Wn =

{
sup

u∈[εVn,Vn]
|ξk,n(u)| ≤ B2 ε̃n, k = 1, 2

}
has a probability that tends to 1 as n tends to infinity. More precisely, it holds

P(Wn) ≥ P

{
sup

u∈[0,Vn]
|ξk,n(u)| ≤ B2ε̃n

}
≥ 1− κn−1−δ, k = 1, 2 (33)

for some positive constants B2, κ and δ.
3. For any u ∈ [εVn, Vn], the Taylor expansion for the function f(x) = log(− log(x)) in the

vicinity of the point x = G(u) yields

Yn(u)− Y(u) = K1(u)(Gn(u)− G(u)) +K2(u)(Gn(u)− G(u))2 (34)

with

K1(u) = G−1(u) log−1(G(u)) and |K2(u)| ≤ 2−1 max
z∈In(u)

[
1 + | log(z)|
z2 log2(z)

]
, (35)

where by In(u) we denote the interval between G(u) and Gn(u). Due to Theorem 3.1,

G(u) = exp
{
−τ (1)θ2αu2α

[
1 + τ (2)|u|γ−2 + r(u)

]
+ τ (1)(θu)2α

[
1 + τ (2)|θu|γ−2 + r(θu)

]}
= exp

{
−A1|u|2α+(γ−2) +R(u)

}
,

(36)

where A1 = τ (1)τ (2)θ2α(1 − θγ−2) > 0 and |R(u)| ≤ A2|u|2α+(γ−2)−χ̃1 for u large enough with
A2 = τ (1)τ (3)θ2α

[
1 + θ(γ−2)−χ̃1

]
> 0.

Condition 2α + (γ − 2) > 0 guarantees that G(u) → 0 as u → +∞. The length of the
interval In(u) is equal to G(u)|Λn(u)|; therefore, the length of In(u) tends to 0 on the event Wn,
uniformly in u ∈ [εVn, Vn]. Thus, In(u) ⊂ (0, 1) on Wn for n large enough and the maximum on
the right hand side of the inequality in (35) is attained at one of the endpoints on interval In(u).

4. Denote Q(u) = K2(u)(Gn(u) − G(u))2. Lemma 3.6.2 from [15] shows that there exists a
positive constant B3 such that for any u ∈ [εVn, Vn] and for n large enough

Wn ⊂
{
|Q(u)| ≤ B3(ξ2

1,n(u) + ξ2
2,n(u))

∣∣log−1 (G(u))
∣∣} . (37)

5. The Taylor expansion (34) and previous discussion yield that on the set Wn,

|γ̄n(α)− γ̂n(α)| =

∣∣∣∣∫ Vn

0
wVn(u)(Yn(u)− Y(u)) du

∣∣∣∣
≤

∫ Vn

0
|wVn(u)|

(
|Gn(u)− G(u)|
|G(u)|

∣∣log−1 (G(u))
∣∣+ |Q(u)|

)
du

≤
∫ Vn

0
|wVn(u)| log−1

(
G−1(u)

)( |Gn(u)− G(u)|
|G(u)|

+B3(ξ2
1,n(u) + ξ2

2,n(u))

)
du.
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By (32), expression in the brackets is equal to

P :=
|Gn(u)− G(u)|
|G(u)|

+B3(ξ2
1,n(u) + ξ2

2,n(u)) =
|ξ1,n(u) + ξ2,n(u)|
|1− ξ2,n(u)|

+B3(ξ2
1,n(u) + ξ2

2,n(u)).

Taking into account that ξ2,n < 1 on the set Wn by (33), we conclude that P can be upper
bounded on Wn as follows (all supremums are taken over [εVn, Vn]):

P ≤ sup |ξ1,n(u)|+ sup |ξ2,n(u)|
1− sup |ξ2,n(u)|

+B3

(
(sup |ξ1,n(u)|)2 + (sup |ξ2,n(u)|)2

)
≤ 2B2ε̃n

1−B2ε̃n
+ 2B3B

2
2 ε̃

2
n ≤ B1ε̃n

with B1 > 0. This completes the proof of the lemma.

Next, we proceed with the proof of Theorem 4.2. First, we get a lower bound for the infimum
of the function |φ(u)| over [εVn, Vn]:

inf
u∈[εVn,Vn]

|φ(u)| ≥ exp
{
−τ (1)V 2α

n

(
1 + τ (2)|Vn|γ−2 + τ (2)ϑ1V

(γ−2)−χ̃1
n

)}
≥ exp

{
−τ (1)

(
1 + τ (2) + τ (3)

)
V 2α
n

}
.

Applying Lemma 6.1 and taking into account that by (36), | log(G(u))| & u2α+(γ−2), we arrive
at the desired result.

Proof of Theorem 4.3. Next, we combine Lemma 4.1 with Lemma 4.2. We choose the se-

quence Vn in the form V 2α◦
n = q log n. The assumption

q < min
A

(
2τ (4)θ2α◦

)−1

guarantees the condition (19) for any model from A . With this Vn, εn ≤ (log n)/nκ1 where
κ1 > 0. Therefore, on the set of probability 1− κn−δ−1, for any models from A , it holds

|γ̂n(α)− γ| ≤ C1(log n)−χ̃1/(2α◦) + C2
(log n)κ2

nκ1
,

with some κ2, positive C1, C2, and n large enough. From here it follows that the estimate γ̂n(α)
is of logarithmic order, i.e.,

P
{
|γ̂n(α)− γ| ≤ C(log n)−χ̃1/(2α◦)

}
≥ 1− κn−δ−1, (38)

where

C = C(1) τ (3) 1 + θγ−2−χ̃1

1− θγ−2
ε−χ̃1q−χ̃1/(2α◦).

Note that this constant can be uniformly upper bounded on the set of models from A . This
completes the proof.
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6.2.2 Lower bounds

Proof of Theorem 4.5. The aim of this proof is to show that

lim inf
n→∞

ψ−2
n inf

γ̂n
sup
A

Eγ |γ̂n − γ|2 ≥ c, ψn := C(log n)−χ̃1◦/(2α◦), (39)

where infimum is taken over all possible estimates of the parameter γ, supremum - over all models
from A , and c is some positive constant not depending on the parameters of the distribution. The
main ingredient of the proof is the following lemma, which directly follows from [18], Theorem
2.2.

Lemma 6.2. Let P = {Pγ} be a (nonparametric) family of models in IRn. Assume that there
exist two values of parameter γ, say γ1 and γ2, such that |γ1 − γ2| > 2ψn and moreover the
corresponding measures P1 := Pγ1 and P2 := Pγ2 satisfy the following properties:

1. there exists a measure µ such that P1 << µ and P2 << µ;

2. the χ2 - distance between P⊗n1 and P⊗n2 is bounded by some constant η ∈ IR+, where the
χ2 - distance is defined for any two measures P and Q as

χ2 (P,Q) :=


∫ (

dP
dQ − 1

)2
dQ, if P << Q,

+∞, otherwise.

Then the condition (39) is fulfilled.

In our case, we tackle with the models on the samples from IRn. It is a worth mentioning
that

χ2
(
P⊗n1 ,P⊗n2

)
=
(
1 + χ2 (P1,P2)

)n − 1,

see [18]. Therefore, the boundedness of the χ2 divergence is equivalent to the condition that

χ2 (P1,P2) ≤ q1/n − 1 � log q

n
, (40)

where q := 1 + η > 1.
Further properties of the χ2

1-divergence are discussed in [13].
Lemma 6.2 motivates the following result.

Lemma 6.3. There exist two values γ1 and γ2 such that |γ1 − γ2| > 2ψn, and the measures
P1 = Pγ1 and P2 = Pγ2 belong to A and satisfy the condition (40).

Proof. 1. Presentation of the models. Let us fix some set of parameters P. Consider the class
A = A (P), which is described in the formulation of Theorem 4.3.

For the time change T (s) in both models, we take the tempered stable process with b = 0,
which is in fact a stable process, see Section 2.3. The choice of parameters α ∈ (α◦, α

◦) and
a ∈ [2−αλ2◦, 2

−αλ◦2] quarantees that the assumption (AT3) holds with A = 1, λ2 ∈ [λ2◦, λ
◦
2] and

any ϑ2, γ2. For the process Xt in the first model, we take the sum of two independent process:

the Brownian motion Wt and γ-stable process X̃t with γ ∈
(
γ◦, 2

)
and λ1 ∈ [λ1◦, λ

◦
1], such that
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the characteristic exponent is equal to ψ(u) = −u2/2 − λ1|u|γ . Note that the condition (AL)
holds for any values of ϑ1 and χ1. According to (7), the characteristic function of the increments
in the first model has the following asymptotics:

φ(u) � exp

{
−λ2

(
1

2
u2 + λ1|u|γ

)α}
, u→∞.

We define the Lévy process for the second model by the characteristic exponent

ψ̆(u) = −1

2
u2 − λ1|u|γI{|u| ≤M} − λ1b|u|γ−2ψn

(
1 + c|u|−χ̆1

)
I{|u| ≥M},

where M, c > 0, χ̆1 ∈ [χ1◦, γ), b = M2ψn/
(
1 + c|M |−χ̆1

)
. As it is explained in [5], Appendix

A.4, this function determines some Lévy process with the BG index equal to γ̆ = γ− 2ψn for M
and c large enough. Moreover, for b = 1, any fixed M and c, this process satisfies the assumption
(AL), since

Ψ1(u) = |u|2ψnI{|u| ≤M}+
(

1 + c|u|−χ̆1

)
I{|u| ≥M}

lies between 1 − c|u|−χ̆1 and 1 + c|u|−χ̆1 for |u| large enough. Assumption b = 1 yields the
following relation between M and n:

ψn =
log
(
1 +M−χ̆1

)
2 logM

� 1/
(
M χ̆1 logM

)
, M →∞. (41)

The characteristic function of the second compound process is equal to

φ̆∆(u) = exp
{
λ2

(
−ψ̆(u)

)α}
.

Note that both models have absolute continuous distributions. Denoting the corresponding
densities in the moment ∆ by p∆(x) and p̆∆(x), we can express the χ2 - divergence in the
following way:

χ2(P1,P2) =

∫
IR

(p∆(x)− p̆∆(x))2

p∆(x)
dx, (42)

since p∆(x)p̆∆(x) > 0, ∀x ∈ IR.
2. Lower bound for p∆(x). The density function p∆(x) can be expressed as follows:

p∆(x) =

∫
IR+

qt(x)π∆(t)dt,

where π∆(t) is the density function of the tempered stable process at the time moment t, and
qt(x) is the density function of the sum of processes X̃t and Wt. Since qt(x) is a convolution of

two density functions, and the (strictly) γ-stable process X̃t posses the property X̃t
d
= t1/γX̃1

(see [9]), we conclude that

qt(x) =
1

(2π)1/2t1/2+1/γ

∫
IR

exp

{
−(x− v)2

2t

}
pst

( v

t1/γ

)
dv & |x|−(γ+1), x→∞,
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where pst is the density of the distribution of X̃1; the last inequality follows from [20]. Fixing
some 0 < d1 < d2 < 1/2, we arrive at

p∆(x) ≥
∫ d2

d1

qt(x)π∆(t)dt & |x|−(γ+1).

Returning now to (42). Taking into account that p∆(x) is bounded on any set of the type
{|x| ≤ C} by some constant D, we get that with C large enough,

χ2(P1,P2) ≤ D

∫
|x|≤C

(p∆(x)− p̆∆(x))2 dx+

∫
|x|>C

|x|1+γ (p∆(x)− p̆∆(x))2 dx =: I1 + I2

3. Upper bound for I1. By Parseval-Plancherel theorem [19],

I1 ≤ D

∫
IR

(p∆(x)− p̆∆(x))2 dx =
D

2π

∫
|x|>M

∣∣∣φ(x)− φ̆(x)
∣∣∣2 dx

because φ(x) coincides with φ̆(x) for |x| ≤M . Next, note that∫
|x|>M

∣∣∣φ(x)− φ̆(x)
∣∣∣2 dx =

∫
|x|>M

e−2λ2(x2/2+λ1|x|γ−ψn)
α

(eκ1 − eκ2)2 du,

where

κ1 = −λ2

(
x2/2 + λ1|x|γ

)α
+ λ2

(
x2/2 + λ1|x|γ−ψn

)α
� −2αλ1λ2

(
x2/2

)α |x|γ−2 < 0;

κ2 = −λ2

(
x2/2 + λ1|x|γ−2ψn

(
1 + c|x|−χ̆1

))α
+ λ2

(
x2/2 + λ1|x|γ−ψn

)α
� −2αλ1λ2c

(
x2/2

)α |x|γ−ψn−2 < 0.

Therefore,

I1 .
∫
|x|>M

e−2λ2(x2/2+λ1|x|γ−ψn)
α

dx . e−2λ2(M2/2)
α
∫
|x|>M

e−4λ1λ2α|x|γ−ψn−2
du.

The asymptotical bound of the last integral can be found using the change of the variable and
integration by parts. Denote ξ1 = 4λ1λ2α and ξ2 = γ − ψn − 2. Then

1

2

∫
|x|>M

e−ξ1|x|
ξ2
dx ≤

∫
v>Mξ2

e−ξ1vd(v1/ξ2)

≤ −e−ξ1Mξ2
M + ξ1

∫
v>Mξ2

e−ξ1vv1/ξ2dv

≤ −e−ξ1Mξ2
M + ξ1e

−ξ1Mξ2

∫
v>Mξ2

v1/ξ2dv

. e−ξ1M
ξ2
M1+ξ2 .

(43)

This leads to the following upper bound for the integral I1:

I1 . e−2λ2(M2/2)
α

e−4λ1λ2αMγ−ψn−2
Mγ−ψn−1 ≤ e−2λ2(M2/2)

α

Mγ−ψn−1.
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4. Upper bound for I2. Note that

I2 ≤
∫
|x|>M

[
x2 (p∆(x)− p̆∆(x))

]2
dx ≤ 1

2π

∫
|x|>M

∣∣∣ ̂x2p∆(x)− ̂x2p̆∆(x)
∣∣∣2 dx,

where by ĝ(x) we denote the Fourier transform of a function g(x). Making use of the property

x̂2g(x) = ∂2ĝ(x)/∂x2, we conclude that

I2 .
∫
|x|>M

x4
∣∣∣φ(x)− φ̆∆(x)

∣∣∣2 dx . e−2λ2(M2/2)
α

Mγ−ψn+3,

because by the arguments similar to (43),

1

2

∫
|x|>M

|x|ne−ξ1|x|ξ2dx . e−ξ1M
ξ2
Mn+1+ξ2

for any n > 0.
5. Choice of M . Thus,

χ2(P1,P2) . e−µ1M2α
Mµ2 , M → +∞,

where µ1 = λ2 21−α > 0, µ2 = γ −ψn + 3 > 0. The aim now is to choose the parameter M such
that the conditions (40) and (41) are fulfilled simultaneously. The choice of such M can be made

in the form M = (An/µ1)1/(2α). Substituting this M into (40) gives the following condition on
An:

−An +
µ2

2α
log

(
An
µ1

)
. − log n,

which suggests to choose An = log
(
n logβ n

)
, where β > µ2/(2α). Our considerations are

summarized in the choice

M =

(
log
(
n logβ n

)
λ2 21−α

)1/(2α)

, β > (γ − ψn + 3)/(2α),

which satisfies (40) and (41). This completes the proof.

6.3 Estimation of α

The empirical counterpart of the estimate α̂n is equal to

ᾱn :=
1

2

∫ ∞
0

wUnα (u) log (− log |φn(u)|) du.

The closeness of ᾱn and α is proven in the next lemma.

Lemma 6.4.

|α− ᾱn| . Uγ−2
n , n→∞. (44)
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Proof. The proof follows the same lines as Lemma 4.1. The basic observation is that

|α− ᾱn| =
1

2

∫ Un

εUn

wUnα (u) log
(

1 + τ (2)uγ−2 + r(u)
)
du

≤
∫ Un

εUn

wUnα (u)
(
τ (2)uγ−2 + r(u)

)
du

≤ Uγ−2
n

(
τ (2) + τ (3)U−χ̃1

n

) ∫ 1

ε
w1
α(u)du.

This completes the proof.

The next lemma is an analogue of Lemma 4.2 for the estimate α̂n.

Lemma 6.5. There exist positive constants D, κ and δ such that

P

{
|ᾱn − α̂n| ≤ D

log n√
n

exp{τ (1)U2α
n }

U2α
n

}
≥ 1− κn−1−δ.

Proof. The main ingredient of the proof is that the difference between α̂n and ᾱn allows the
following representation:

|α̂n − ᾱn| =
1

2

∣∣∣∣∫ Un

εUn

wUnα (u)
(

log (− log |φ(u)|)− log (− log |φn(u)|)
)
du

∣∣∣∣
≤ 1

2

∫ Un

εUn

∣∣wUnα (u)
∣∣ · ∣∣∣∣ max

ξ∈In(u)

1

ξ log ξ

∣∣∣∣ · ||φ(u)| − |φn(u)|| du,
(45)

where In(u) is the interval between φ(u) and φn(u). Since φn(u) tends uniformly to φ(u) (see
Section 4.2), we conclude that∣∣∣∣ max

ξ∈In(u)

1

ξ log ξ

∣∣∣∣ ≤ max
a∈(1/2,3/2)

1

a|φ(u)| · | log (a |φ(u)|) |
=

2

|φ(u)| · (log 2 + |log |φ(u)||)
. (46)

Next, note that Theorem 3.1 yields

min
u∈[εUn,Un]

|φ(u)| =
(

max
u∈[εUn,Un]

exp
{
τ (1)|u|2α

(
1 + τ (2)|u|γ−2 + r(u)

)})−1

= exp
{
−τ (1)U2α

n

(
1 + τ (2)Uγ−2

n + r(Un)
)}

� exp
{
−τ (1)U2α

n

}
.

(47)

Similar to (33), there exist positive constants B, κ and δ such that

P

{
sup

u∈[εUn,Un]

∣∣∣|φ(u)| − |φn(u)|
∣∣∣ ≤ B log n√

n

}
≥ 1− κn−1−δ. (48)

Combining (46), (47), (48) with (45), we arrive at the desired result.
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Proof of Theorem 4.6. The choice U2α◦
n = q log n yields that on a set Wn of the probability

measure larger than 1− κn−1−δ, it holds for any model from A

|ᾱn − α̂n| ≤ D
log n√
n

exp{τ (1)U2α◦
n }

U2α◦
n

= D
log n√
n

nqτ
(1)

(q log n)α◦/α◦ .
(log n)κ2

nκ1
,

with κ1 = 1/2 − qτ (1) and some κ2. Therefore, choosing q < q◦ = minA

{
1/(2τ (1)

}
we get on

Wn

|α̂n − α| ≤ |ᾱn − α̂n|+ |α̂n − α| .
(

log n
)(γ−2)/α◦

.

This completes the proof.

6.4 Estimation of γ when α is unknown

Proof of Theorem 4.7.
1. Preliminary remarks. Note that

|γn(α̂n)− γ| ≤ |γn(α̂n)− γ̄n(α)|+ |γ̄n(α)− γ|

≤ 2 |α̂n − α|+ |γ̄n(α)− γ|+
∣∣∣∣∫ ∞

0
wVn(u) log

(−θ2α̂n log |φn(u)|+ log |φn(θu)|
−θ2α log |φ(u)|+ log |φ(θu)|

)∣∣∣∣ du.
The upper bound for the first two summands are given in Theorem 4.6 and Lemma 4.1 resp.
So, the aim is to find the upper bound for the last summand, which we denote by I.

I ≤
∣∣∣∣∫ ∞

0
wVn(u) log

(−θ2α̂n log |φn(u)|+ log |φn(θu)|
−θ2α log |φ(u)|+ log |φ(θu)|

)∣∣∣∣ du
≤ 2

∣∣∣∫ ∞
0

wVn(u)
−θ2αΥ1 + Υ2

−θ2α log |φ(u)|+ log |φ(θu)|

∣∣∣,
where

Υ1 := θ2(α̂n−α) log |φn(u)| − log |φ(u)|,
Υ2 := log |φn(θu)| − log |φ(θu)|.

2. Upper bounds for Υ1 and Υ2. Note that for any u > 1 and any β ∈ IR,∣∣∣uβ − 1
∣∣∣ ≤ u|β| − 1.

Moreover, for β tending to zero,

u|β| − 1 ≤ C|β| log(u),

where C > 0. This in particularly yields that for any small υ > 0 and n large enough,∣∣∣θ2(α̂n−α) − 1
∣∣∣ ≤ 2C log(θ)|α̂n − α| .

(
log n

)(γ−2)/α◦

:= υn,
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where the last asymptotic inequality follows from Theorem 4.6; here we choose the sequence Un
as it is described in Theorem 4.6. Therefore, for n large enough,

|Υ1| ≤
∣∣∣∣log

( |φn(u)|
|φ(u)|

)∣∣∣∣+ υn |log |φn(u)|| ≤ 2
||φn(u)| − |φ(u)||

|φ(u)|
+ υn |log |φn(u)|| . (49)

On the other hand, (48) together with Theorem 3.1 yield that for n large enough,

|log |φn(u)|| =

∣∣∣∣log |φ(u)|+ log
( |φn(u)| − |φ(u)|

|φ(u)|
+ 1
)∣∣∣∣

. |log |φ(u)||+ 2
||φn(u)| − |φ(u)||

|φ(u)|
.

Substituting this bound into (49), we conclude that

|Υ1| ≤ 2 (1 + υn)
||φn(u)| − |φ(u)||

|φ(u)|
+ υn |log |φ(u)|| . (50)

Next, the arguments similar to given in the proof of Theorem 6.1, we get that for u ∈ [εVn, Vn],

||φn(u)| − |φ(u)||
|φ(u)|

≤ log n√
n

(
inf

u∈[εVn,Vn]
|φ(u)|

)−1

.
log n√
n

exp
{
τ (1)V 2α

n

}
,

|log |φ(u)|| . exp
{
−τ (1) (εVn)2α

}
.

Combining the last inequalities and the definition of υn, we conlcude that

|Υ1| . 3
log n√
n

exp
{
τ (1)V 2α

n

}
+
(

log n
)(γ−2)/α◦

exp
{
−τ (1) (εVn)2α

}
.

As for Υ2, it is bounded for large n up to a constant by the absolute value of ξ2,n from Lemma
6.1:

|Υ2| =
∣∣∣∣log

( |φn(θu)|
|φ(θu)|

)∣∣∣∣ ≤ 2
||φn(θu)| − |φ(θu)||

|φ(θu)|
:= 2 |ξ2,n(u)| . log n√

n
exp

{
τ (1)V 2α

n

}
.

3. Upper bound for I. Taking into account that

−θ2α log |φ(u)|+ log |φ(θu)| � −τ (1)τ (2)θ2α
(
1− θγ−2

)
|u|2α+(γ−2)

(see (36) for details), we conclude that

I . V −(2α+(γ−2))
n

((
3 θ2α + 1

) log n√
n

exp
{
τ (1)V 2α

n

}
+
(

log n
)(γ−2)/α◦

exp
{
−τ (1) (εVn)2α

})
.(51)

Denote

G1(α) :=
(
3 θ2α + 1

) log n√
n

exp
{
τ (1)V 2α

n

}
, G2(α) :=

(
log n

)(γ−2)/α◦

exp
{
−τ (1) (εVn)2α

}
.

It is a worth mentioning that for any model from A and n large enough,

G1(α) ≤ G1(α◦) . G2(α◦) ≤ G2(α)
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provided that V 2α◦
n = p log n with p ≤ p◦. This remark means that the asymptotical bound for

I is given by the second summand in (51), i.e.,

I . V −(2α+(γ−2))
n

(
log n

)(γ−2)/α◦

exp
{
−τ (1) (εVn)2α

}
.
(

log n
)(−2α+(γ−2))/(2α◦)

. (52)

4. Upper bound for |γ̂n(α̂n)− γ|. To conclude the proof, we summarize the obtained upper
bounds, see (52), Theorem 4.6 and Lemma 4.1:

I .
(

log n
)(−2α+(γ−2))/(2α◦)

,

|α̂n − α| .
(

log n
)(γ−2)/α◦

,

|γ̄n(α)− γ| .
(

log n
)−χ̃1/(2α◦)

.

Since 2− γ < 2α for class A ,

(γ − 2)/α◦ > (−2α+ (γ − 2))/(2α◦),

and we arrive at (28). The remark that for γ < 4/3

−χ̃1/(2α
◦) > −χ1/(2α

◦) > −γ/(2α◦) > (γ − 2)/α◦

gives (29) and completes the proof.

7 Appendix

7.1 The case 2− γ > 2α

Assume A = 1 and introduce an estimate

γ̂∗n(α) := 2(1− α) +

∫ ∞
0

wVn(u) log

(
1− |φn(u)|θ2α

|φn(θu)|

)
du. (53)

The main idea behind this estimator is that

|φ(u)|θ2α

|φ(θu)|
= exp

{
−A1|u|2α+(γ−2)R(u)

}
, |R(u)| . 1 +A2|u|−χ̃1

with A1 = τ (1)τ (2)θ2α(1− θγ−2) > 0 and A1A2 = τ (1)τ (3)θ2α(1 + θ(γ−2)−χ1), and therefore

Y3(u) = 1− |φ(u)|θ2α

|φ(θu)|
� A1|u|2α+(γ−2)R(u)

Taking logarithms of both parts, we conclude that Y3(u) is linear in log |u| (at least for large
|u|) with slope 2α+ γ − 2. Therefore, the weighted least squares approach leads to the estimate
of α also in this case.

The study of γ̂∗n(α) does not differ principally from the study of γ̂n(α). In this article, we
give only the formulation of the theorem that shows the upper bound for γ̂n(α).
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Theorem 7.1. Introduce a deterministic counterpart for γ̂∗n(α):

γ̄∗n(α) := 2(1− α) +

∫ ∞
0

wVn(u) log

(
1− |φ(u)|θ2α

|φ(θu)|

)
du.

(i) In the setup of Theorem 3.1, it holds for n large enough,

|γ − γ̄∗n(α)| . V −χ̃1
n , n→∞.

(ii) Let the sequence Vn be such that

εn :=
log n√
n

exp
{
τ (4) (θVn)2α

}
= o(1), n→∞.

Then there exist positive constants C(3), κ and δ such that

P
{
|γ̄∗n(α)− γ̂∗n(α)| ≤ C(3)εnV

(2−γ)−2α
n

}
> 1− κ n−1−δ. (54)

(iii) Take the sequence Vn = (q log n)1/(2α◦) with q <
(
2θ2α◦

minA τ (4)
)−1

. Then

sup
A

P
{
|γ̂n(α)− γ| ≤ Ξ5(log n)−χ̃1/(2α◦)

}
> 1− κ n−1−δ, (55)

where χ̃1 := min {χ1, 2χ2 + γ − 2}, the supremum is taken over the set of all models from A ,
constants κ and δ do not depend on the parameters of the underlined models, and Ξ5 depends
on P only.

7.2 Asymptotic behavior of the characteristic exponent

Lemma 7.2. Consider a Lévy measure ν on R \ {0} that fulfilles

G(ε) :=

∫
|x|>ε

ν(dx) = ε−γ(β(0) + β(1)εχ1(1 +O(ε))), ε→ +0 (56)

with 0 < χ1 < γ < 2, and β(0) > 0. Denote

V(u) = Re(ψ(u)) +
1

2
σ2u2 =

∫
R

(
cos(ux)− 1

)
dν(x).

Then as u→ +∞,

V(u) = −uγ
(
β(0)dγ + β(1)dγ−χ1u

−χ1

)
+O(1).

where dγ = Γ (1− γ) sin ((1− γ)π/2).

Proof. We divide the proof into 3 steps.
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1. First, apply integration by parts to get

V(u) = −
∫ +∞

0

(
cos(ux)− 1

)
dG(x)

= −
(
cos(ux)− 1

)
G(x)

∣∣+∞
0
− u

∫ +∞

0
sin(ux)G(x)dx

= −
∫ +∞

0
sin(x)G(x/u)dx.

2. Take H = up with 0 < p < 1 such that p γ > χ1, and represent the last integral as a sum of
tho integrals:∫ +∞

0
sin(x)G(x/u)dx =

∫ H

0
sin(x)G(x/u)dx+

∫ +∞

H
sin(x)G(x/u)dx

= I1 + I2.

The integral I2 is bounded, because G(x/u) is monotone, converges to 0 as x → ∞ and the
antiderivative of sin(x) is bounded.

3. Next, we apply (56) to I1:

I1 =

∫ H

0
sin(x) (x/u)−γ

(
β(0) + β(1) (x/u)χ1 (1 +O (x/u))

)
dx

= β(0)uγ
∫ H

0

sin(x)

xγ
dx+ β(1)uγ−χ1

∫ H

0

sin(x)

xγ−χ1
dx+ β(1)uγ−χ1−1

∫ H

0

sin(x)

xγ−χ1−1
dx.

Note that the integral
∫ H

0 sin(x)x−γdx can be represented in the following way:∫ H

0

sin(x)

xγ
dx =

∫ ∞
0

sin(x)

xγ
dx−

∫ ∞
H

sin(x)

xγ
dx = dγ +O(H−γ).

Analogously, ∫ H

0

sin(x)

xγ−χ1
dx = dγ−χ1 +O(H−(γ−χ1)).

Finally, we arrive at

I1 = β(0)dγu
γ + β(1)dγ−χ1u

γ−χ1 + T1,

where

T1 = O(u(1−p)γ) +O(u(1−p)(γ−χ1)) +O(u(1−p)(γ−χ1−1)) = O(u(1−p)γ).
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