technische universitat
dortmund

Colliding Interfaces in Old and New
Diffuse-interface Approximations of
Willmore-flow

Selim Esedoglu, Andreas Ratz,
Matthias Roger

Preprint 2012-16 September 2012

Fakultat fiir Mathematik

Technische Universitat Dortmund

Vogelpothsweg 87

44227 Dortmund tu-dortmund.de/MathPreprints







COLLIDING INTERFACES IN OLD AND NEW DIFFUSE-INTERFACE
APPROXIMATIONS OF WILLMORE-FLOW

SELIM ESEDOGLU, ANDREAS RATZ, MATTHIAS ROGER

ABSTRACT. This paper is concerned with diffuse-interface approximations of the Willmore flow.
We first present numerical results of standard diffuse-interface models for colliding one dimen-
sional interfaces. In such a scenario evolutions towards interfaces with corners can occur that do
not necessarily describe the adequate sharp-interface dynamics.

We therefore propose and investigate alternative diffuse-interface approximations that lead
to a different and more regular behavior if interfaces collide. These dynamics are derived from
approximate energies that converge to the L!-lower-semicontinuous envelope of the Willmore
energy, which is in general not true for the more standard Willmore approximation.

1. INTRODUCTION

Diffuse-interface approximation of geometric evolution equations has a long history and is
widely used in numerical simulations. One advantage of the diffuse-interface approach is that
usually an automatic treatment of topological changes in a reasonable manner is guaranteed. It
is however not always clear which (generalized) sharp-interface evolution is in fact approximated.
We discuss here this issue in the case of the diffuse Willmore flow, in particular in situations
where collisions between different interfaces occur and where these interfaces interact with each
other. In applications such as image processing and computer vision, it is of great interest to
compute Willmore flow through such topological events.

In the following we fix a nonempty open set Q2 C R™. Let M denote the class of open sets
E c Q with T' = 0E N Q given by a finite union of embedded closed (n — 1)-dimensional C?2-
manifolds without boundary in 2. We associate to such I" the inner unit normal field v : I' — R",
the second fundamental form A with respect to v, and the principal curvatures k1, ..., kKp—1 with
respect to v. Finally we define the scalar mean curvature H = k1 + ... 4+ K,—1 and the mean
curvature vector H = Hu.

The Willmore energy [38] is then defined as

W(T) = % /F H2(2) dH"\(x). (1.1)

The corresponding L2-gradient flow is called Willmore flow. For an evolving family of sets
(E(t))tc(o,) in M with boundaries I'(t) = 0FE(t) N the velocity in direction of the inner normal
field v(t) is given by

v(t) = AppH(t) - %H(t)3 +H(t)|A®)P, (1.2)

on I'(t), where |A(t)|?> = k2 + .-+ + k2_; denotes the squared Frobenius norm of the second
fundamental form A(t) and Ary denotes the Laplace-Beltrami operator on I'(t).

In the case of two space dimensions the Willmore functional for curves and the Willmore flow
are better known as Eulers elastica functional and evolution of elastic curves. In this case (1.2)
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reduces to

o(t) = An(t) + %H(t)g, (1.3)

where £(t) denotes the curvature of I'(¢). The Willmore flow of a single curve in the plane exists
for all times [24] and converges for fixed curve length to an elastica.

A well-known and widely used diffuse-interface approximation of the Willmore energy is moti-
vated by a conjecture of De Giorgi [18] and is in a modified form given by

W (u) 1= /Rn;e(—sAu%—iW/(u)fd[,”, (1.4)

where W’ is the derivative of a suitable double-well potential W and u is a smooth function on R"™.
The corresponding formal approximation of the Willmore flow is then given by the L?(Q)-gradient
flow of W;,

edu = —A(—eAu+ éW’(u)) + éW”(u)( —eAu+ éW’(u)), (1.5)

complemented by suitable boundary conditions for v on 9€) and an initial condition for u in 2.

If contact and collision of (sharp) interfaces are possible it is a priori not clear how to continue
the Willmore flow. This situation already occurs for the evolution of several curves in the plane. In
many applications interactions of different curves should be considered and treating the evolution
of each curve separately might not be appropriate. To account for touching and colliding curves
in such situations a suitable generalization of the evolution beyond the smooth embedded case
is required. One possible extension is a gradient dynamic with respect to a suitably relaxed
Willmore functional for general sets. A natural candidate for such relaxation is the L*(£)-lower-
semicontinuous envelope

W(E) := int { liminf W(OE) : By =% E in L(Q), B € M for all k € N}. (1.6)
—00

It is however difficult to characterize and numerically approximate the corresponding gradient
flow. Instead we consider here diffuse-interface approximations that naturally allow for collision
of (diffuse) interfaces and exist globally in time.

Our first observation is that the usual diffuse approximation (1.4) does not approximate any
gradient flow with respect to the generalized elastic energy (1.6). In fact, careful numerical
simulations show that the diffuse evolution in the plane can lead to transversal intersections of
interfaces, which is known to have infinite energy with respect to the L' (R?)-lower-semicontinuous
envelope of the elastica functional [8]. The occurrence of intersections is related to the existence
of saddle solutions of the Allen-Cahn equation, as we will explain below. This example also
demonstrates that already on the level of energies a discrepancy between the diffuse elastica
energy and the relaxation (1.6) of the sharp-interface energy occurs. In particular, W, does not
Gamma-converge to W [32].

We will next discuss two diffuse-interface approximations of the Willmore flow that Gamma-
converge to W. The first one was proposed by Bellettini [5]. As an alternative we introduce
a modification of the usual diffuse Willmore functional that adds a penalty term to W.. This
penalty term is very small as long as no collisions of interfaces occur, allows for the touching of
diffuse interfaces, but prevents transversal intersections. For both approaches we consider the
L?-gradient flows and present numerical simulations.
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2. DIFFUSE APPROXIMATION OF THE WILLMORE FUNCTIONAL AND DIFFUSE WILLMORE
FLOWS

Diffuse-interface approximations of the Willmore energy (1.1) are usually based on a Ginzburg—
Landau free energy for a phase-field variable u

He(u) ::/ <%|Vu\2—|—5*1W(u)> dz, (2.1)
Q
where W denotes a suitable double-well potential that we choose in the following as W(u) =
18u2(1 — u)?. For a smooth phase field u : 2 — R let us further define the L?-gradient of H.,

_ O0H.
 Su

w = —cAu+ e "W (u),

the diffuse normal vector

Vu :
V(x) — {Vu| lfVu#O,

0 else,

and the level set mean curvature
v(z) == V-v(z). (2.2)

For phase fields u with ‘moderate’ energy H.(u) the function u will look like a smoothened
indicator function that is close to the values 0,1 in a large part of the domain and possibly
with thin transition layers. The width of these diffuse interfaces is proportional to ¢ > 0.
The energy H; is a diffuse-interface counterpart of the surface area functional. This statement
was made precise by Modica and Mortola, who proved the Gamma-convergence with respect
to L' of H. to the perimeter functional [31, 30]. The L2-gradient w of H., describes a kind
of diffuse mean curvature and motivates the definition of the diffuse Willmore functional (1.4).
The approximation W. has been studied intensively and is widely used in numerical simulations
[27, 9, 22, 28]. For space dimension n = 2,3 it is known [33] that (for uniformly bounded #.)
the functionals W, Gamma-converge towards the Willmore functional in limit points £ C ) with
C?-boundary in . The Gamma-convergence is not true in general limit points £ C R™. In fact
[16] showed the existence of a smooth function u : R? — (—1,1) (where £1 are the zeros of the
double well potential) with the following properties: u is a saddle solution of the Allen-Cahn
equation

—Au+W'(u) =0 inR?

u = 0 holds on the coordinate axes {(z1,z2) : z1z2 = 0}, and w is positive inside the first
and third quadrant of R? and negative inside the second and fourth quadrant. Moreover, there
exists k > 0 such that for |z|,|y| > k the saddle solution w is exponentially close to +1 and
|Vu| is exponentially small. In particular, the rescaled functions u. : R? — R, uc(z) = u(iz)
have on compact subsets of R? uniformly bounded energy H., converge in L%OC(RQ) to the +1-
characteristic function of the set E := {(x1,z2) : x122 > 0}, and finally satisfy W (u:) = 0 for all
e > 0. On the other hand, we have by [8] that W(E) = oo for the L _(R?)-lower-semicontinuous

envelope of the Willmore functional. Therefore

0o = W(E) > liminf W(u.) = 0
e—0

which shows that W. cannot Gamma-converge to W.

For a tighter convergence of approximations some control on the Willmore energy of level sets
of the phase fields is necessary. Bellettini [5] proposed such type of approximations for general
geometric functionals. The corresponding approximation of the Willmore functional is given by
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the square integral of the mean curvature of the level sets of the phase field u integrated with
respect to the diffuse area density,

We(u) := ;/Q\{Wu_o} <V : |§Z)2<;]Vu\2 + 6_1W(u)> dz. (2.3)

In the particular case of (2.3) Bellettinis results imply that (for uniformly bounded diffuse surface
area H.) the functionals W, in fact Gamma-converge with respect to L'(Q) to W.

For n = 2 an alternative approximation of the elastica functional has been investigated by
Mugnai [32]. He uses an approximation of the square integral of the second fundamental form,

_ 1 Vu Vu |?
1 VU o VU g 2.4
Welu) = o2 /Q Vo © )| ¥ (24)

and obtains for n = 2 the L!(2)-Gamma-convergence of W. to W, again under a uniform bound
on the diffuse surface area.

eD*u — e 'W (u)

3. A NEW DIFFUSE-INTERFACE APPROXIMATION OF THE WILLMORE FUNCTIONAL

We propose here a modification of the ‘standard’ approximation W. of the Willmore functional
by an additional penalty term. This has some advantages in numerical simulations as we discuss
below. The example of saddle solutions for the Allen-Cahn equation and a comparison with
W, W reveals that the standard approximation works well as long as phase fields u behave like
the optimal profile ¢ for the one-dimensional transition from 0 to 1 given by

—¢"+W(q) =0, ¢(0) =0, Er_n q(r) = 0, Egl q(r) = 1. (3.1)

Formal asymptotic expandions often use that u.(z) ~ q(g), where d denotes the signed distance
functions to a limit hypersurface. This property can be formalized as vanishing of the discrepancy

(= %|Vu\2 — e "W (u)

that measures deviation from equi-distribution in the diffuse surface energy. In the limit € — 0
this quantity vanishes in L' (2) for sequences of phase fields that have uniformly bounded diffuse
surface energy and diffuse Willmore energy W, [33]. This weak control does however not exclude
formation of transversal intersections in the limit. Rewriting the diffuse mean curvature in terms

of the level set mean curvature v :=V - % as
At W) = —e| Vo — Ve - Y (Vu £ 0}
w = —eAu+ — u) = —¢|Vulv — —_— on {Vu
5 ° |Vul?

we see that the diffuse mean curvature controls the level set mean curvature if and only if the
normal projection of the gradient of the discrepancy is small.
This motivates to introduce a penalty term of the form

A (u) == 2511“1/9 <w + (€|Vu|\/m)% v>2 dz, (3.2)

where 0 < a < 1. f u = q(g) we find that A:(u) = O(g) remains small. The energy however
becomes large if u deviates from the optimal profile structure. We then define the modified diffuse
Willmore energy

Folu) = W) + Ac(u). (3.3)
Using Bellettinis result [5] we can prove the Gamma-convergence of the modified Willmore energy
F. to W. In the following we extend the functionals H. and F. to L' () by setting them to +o0
on LY(Q)\ C%(Q).

Theorem 3.1. Let o > 0. Then the functional F. Gamma-converges with respect to LY(Q) to
W in the following sense:
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(1) Let (ue)eso be a sequence of smooth phase fields ue : Q@ — R with

sup He(us) < 00 (3.4)
e>0
and ue — u in LY (). Then u € BV (£;{0,1}), and
W(E) < liminf F.(u.), (3.5)
e—0

where E = {u = 1}.

(2) Let E C Q be given with W(E) < co. Then there exists a sequence (u:)z>o of smooth
phase fields in Q such that u. — Xg in L'(Q) and

W(E) > limsup Fx(ue). (3.6)
e—0
In the situation of (1) for a =0 we still obtain
1.~
“W(E) < liminf F(u,) (3.7)
2 e—0

and in particular W(E) < oo if the right-hand side is finite.
Proof. (1) By Young’s inequality we deduce for any K > 0 the following estimate.

w? + K (w + <€]Vu5\\/m> : 1))2
—(1+ K)w2 +2Kw (5|Vug|\/2W(ug)) T Ke|Vue|\/2W (ug)v?

1 + K
This implies

fe(ue) Z 2+2€ a/\VUE\\/ ’LLE v d.ﬁlf

-« 1
>_£° / AW () / V2 (z) dH" Y (z) ds, (3.9)
2427 Jp {ue=s}N{Vu#0}

where we have used the co-area formula in the last line.
For (ug)e>o with ue — u in L'(Q2) we first have by the Modica-Mortola Theorem that
w € BV(Q;{0,1}) with

/ |Vu| < liminf He(ue).
Q e—0
After passing to a subsequence (£;)ren We may assume
hm Fe, (ug,) = liminf F (ug).
e—0

By (3.9) we now can follow the proof of [5, Thm. 4.2]. First one obtains a subsequence
k — oo (not relabeled) and a set I C (0,1) with full measure such that for any s € I

{uEk =s} = a{UEk > s},
{ug, = s}N{Vu,, =0} =0,
X{u5k>s} — X{u>s} = Xg as k — o0,

where E = {u = 1}. Moreover by the definition of W we have

W(E) < hmme(X{ua >s}) = hmmf/ v dH" !
{uEk_S}

k—o0
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for any s € I. By (3.9) and Fatou’s Lemma for oo > 0 we eventually obtain

1
lim inf 7 (ue) > W(u) / V2W (s)ds = W(u).
0
In the case a = 0 the same argument shows (3.7).

(2) Let first E C Q have smooth boundary. We follow the standard construction of a recovery
sequence and consider the one-dimensional optimal profile ¢ from (3.1) and the signed
distance function d from 9E. We then set u. := (2) in {|d| < 6} where § > 0 is suitably
small such that the projection on OF is smooth on {|d| < 2d}. In {|d| > 2§} we set u. to
lin Fand 0in Q\ E. In {6 < |d| < 2§} we choose u. to smoothly interpolate in such
a way that W(u.) and |Vu.| are exponentially small in {|d| > d}, see for example [20,
Section 4]. Then the Willmore energy W:(u.) is known to converge to W(E). For the
additional part in the energy we compute in the set {|d| < 0}

3 d d d. 1
w+ (= VulV2W (W) * v = —¢'(D)Ad+ (\/2W(a(2))d' (D)7 = 0,
since in {|d| < §} we have \/2W (q) = ¢’ and v = Ad as level sets of u. correspond in that

region to level sets of d.

In the region {|d| > 26} we have w, e|Vu|\/2W (u) = 0. Finally, for a carefully chosen
interpolate in the construction of u., in {0 < |d| < 2§} we have that w and ¢|Vu|/2W (u)
are exponentially small. Furthermore, Ad = v is controlled in terms of the principal
curvatures of F. This shows the approximation property for QQ—boundaries OF.

To deal with the general case we only need to show that YW = W on sets with C?-
boundaries. This condition is in fact satisfied by [35] and [29].

U

4. NUMERICAL SIMULATIONS FOR THE STANDARD DIFFUSE WILLMORE FLOW

Numerical investigations of the Willmore flow and related dynamics mainly build on parametric
(sharp-interface) approaches and implicit treatments by level set and phase-field methods. Para-
metric approaches for the Willmore flow have been proposed in [2, 4] for curves and in [34, 19, 3]
for curves and surfaces. Generalized Helfrich-type flows for single- and multicomponent vesicles
have been studied with sharp-interface methods in [13] and [25], respectively. Level set methods
have been applied first in [21] to the Willmore flow. For a comparison of level set and sharp-
interface approaches we refer to [10]. Phase field approximations for the Willmore flow have
been numerically investigated in [22]. For diffuse-interface approximations of Helfrich-type flows,
we refer to [12, 23, 14]. Coupled Helfrich- and Cahn-Hilliard-type flows have been numerically
treated with phase-field models in [37, 28].

In this section, we consider the standard diffuse Willmore flow (1.4) and focus on situations
where (diffuse) interfaces collide. We present numerical results for both a finite element dis-
cretization and a finite difference scheme of the diffuse-interface flow (1.5).

4.1. Finite element approximation. The discretization is implemented in the FEM toolbox
AMDIS [36]. First, we use linear elements in space and a semi-implicit time discretization with
a linearization of nonlinearities. Furthermore, we use a uniform grid and discretize (1.5) as a
coupled system of two second order PDE’s for the discrete solutions u, and wp and solve the
resulting linear system with a direct solver (UMFPACK, [17]). Thereby, we consider a domain
Q = (—1,1)? C R? and assume periodic solutions at the boundary 9. Moreover, we use a simple
adaptive strategy in time, where time steps At,, € [1077,5-107°] are inversely proportional to
the maximum of the discrete time derivative of the phase-field variable. For the results presented
in this section we have used € = 0.1.
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4.1.1. Symmetric initial condition. As initial condition, we have chosen a phase-field function
up(+,0) : © — R having nine symmetrically distributed circular levelsets {uy(+,0) = 1/2} (Fig. 1,
left) with equal radii 0.1. In Fig. 1, one can see the contour plots of uj, at different times. Thereby
discs start to grow until the interfaces begin to “feel” each other. Then the interface forms sharp
corners. Our interpretation of such behavior is that the diffuse approximations converge to the
saddle solution of the Allen—Cahn equation, discussed in Section 2. As the diffuse mean curvature
for saddle solutions vanishes, such corners carry very little diffuse Willmore energy.

o o o|lO)O0) V’V‘V"
o o olOO0O :’”"
o o o|lO)O0O) 9.9,

FIGURE 1. Evolution of “standard” diffuse-interface Willmore flow (1.5): Discrete phase-field
up, for different times ¢ = 0, ¢t ~ 0.0019, ¢ ~ 0.0024, ¢ ~ 0.0037.

4.1.2. Non-symmetric initial condition. In Fig. 2, similar phenomena can be observed for non
symmetric initial conditions. The discrete Willmore energy is plotted in Fig. 3. For large times
t this energy

e(t) == We(un(-; 1))

is close to 0.

FIGURE 2. Evolution of “standard” diffuse-interface Willmore flow (1.5): Discrete phase-field
up, for different times ¢ = 0, ¢ ~ 0.0039, ¢ ~ 0.1038, ¢ ~ 0.3338.

4.1.3. Two circles initial condition. As a further example, we consider an initial condition with
two circles with radii 0.2 and 0.3. Contour plots of uy at different times are shown in Fig. 4,
where after collision of interfaces a transversal intersection appears.

4.2. Finite differences implementation. In this subsection, we implement the standard dif-
fuse Willmore flow using finite differences, and observe the same unexpected behavior in 2D as
in the previous subsections: the colliding interfaces form a “cross”, even though this should be
precluded by the sharp-interface energy. Therefore, it seems unlikely that this surprising behavior
is due to a numerical artifact: it appears to be an intrinsic feature of the standard approximation
(1.4). However, we also provide simulations in three dimensions that suggest that this phenome-
non might be two dimensional only: The standard diffuse-interface model inspired by De Giorgi’s
conjecture appears to lead to a topological change (mergers) when two typical surfaces collide
in 3D. This is in keeping with some of the numerical experiments carried out by Du et. al. in
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diffuse Willmore energy
350 T

300
250 |
200 |
150

100

0 T r
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
t

FIGURE 3. Evolution of “standard” diffuse-interface Willmore flow (1.5): Diffuse Willmore
energy e t) = V\)S uh versus time t¢.

FIGURE 4. Evolution of “standard” diffuse-interface Willmore flow (1.5): Discrete phase-field
uyp, for different times t = 0, ¢t =~ 0.003, t =~ 0.0045, ¢ ~ 0.0200.

[22, 23]. Whether Gamma-convergent numerical approximations, such as the one due to Bellettini
[6] or the new one presented in this paper in Section 3, also lead to a topological change in 3D
under these circumstances will be investigated subsequently in Section 5. See also Section 7 for
a discussion of why topological changes are in fact more likely in 3D than in 2D for gradient
descent of the L' relaxation of Willmore energy.

In 2D, the results presented in Figure 5 are for the diffuse-interface energy

We(u) + yHe (u),
where the second term is included to ensure a uniform bound of the diffuse surface area (note
however that for evolutions with well-behaved initial conditions this is often automatically satis-
fied, as for example in the simulations above).
Our scheme for its L? gradient flow is:
"t — 1
— = A" =W’ (u™ w" 4.1
ot RS {52 (") + (4.1)
where 1
w” = eApu” — —W'(u") (4.2)
€
and Ay, is the standard centered differences discretization of the Laplacian on a uniform grid.
This is an explicit time stepping scheme, the stability (CFL) condition (upper bound on the time
step size dt) for which scales as (6x)* as 6z — 0.
Alternatively, we have the following semi-implicit version:

1 1
= eAZyntl gAh<w'(un>) + {EZW"(UN) + 7} w" (4.3)

un+1 —um
ot
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where w" is again as in (4.2). At each time step, u"*! is solved for via the discrete Fourier

transform. This scheme appears to be stable for much larger time step sizes than (4.1). In the
interest of minimizing the possibility of numerical artifacts, we refrain from further attempts to
improve the computational efficiency of the schemes used here, even though there is no shortage
of classical techniques for doing so.

Numerical simulations using scheme (4.3) are shown in Figure 5. The computational domain

was |0, %]2, and the diffuse-interface parameter was chosen to be € = 0.005. The spatial res-
olution was 200 x 200. The parameter v was taken to be %. The results testify to the same

surprising qualitative behavior as in simulations of Sections 4.1.1 and 4.1.3. Thus, this appear-
ance of crossings when interfaces collide appears to be a robust, inherent feature of the standard
diffuse-interface approximation.

FIGURE 5. Gradient flow for the standard diffuse-interface approximation of Willmore energy,
using the finite differences scheme 4.3.

We now turn to some 3D simulations, again with the standard diffuse-interface approximation
(1.5). The natural analogue of the two disks initial condition in three dimensions is two disjoint
spheres. However, unlike disks in 2D, spheres in 3D are stationary under Willmore flow, and would
in fact shrink to naught in the presence of even the slightest additional penalty on perimeter (i.e.
when v > 0). We therefore add an expansionary bulk energy term:

W (1) + Ho (1) — a / wda. (4.4)

with o > 0. Schemes (4.1) and (4.3), which correspond to the o = 0 case, adapt trivially to the
a # 0 case.

Figure 6 shows that the inclusion of the expansion term in 2D does not alter the formation of
a cross (and failure to merge and become regular) for the two disk initial data. This simulation
was carried out with the same parameters as before and o = 10.

FIGURE 6. Willmore flow with perimeter penalty and volumetric expansion term, simulated
using a finite differences discretization of the standard diffuse-interface approximation.

Figure 7 shows simulations in 3D with two disjoint spheres of equal size as initial data. The
parameters were ¢ = 0.01, v = %, and a = 10. The spatial resolution was 100 x 100 x 100.
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The volumetric term leads to expansion of the spheres, which eventually touch. Unlike the 2D
situation, the two surfaces merge and become instantaneously regular.

FIGURE 7. 3D simulations with the standard diffuse-interface approximation of Willmore flow,
together with a volumetric expansion term.

5. NUMERICAL SIMULATIONS WITH BELLETTINI’S APPROXIMATION

In this section, we provide numerical experiments in the plane with Bellettini’s Gamma-
convergent approximation (2.3), and investigate what happens at topological changes. In the
interest of isolating potential numerical artifacts from inherent behavior of Willmore flow that
results from this approximation, we keep the numerical scheme as simple as possible: It is a
straight-forward finite differences discretization, with explicit time stepping. Unsurprisingly, com-
putations with this scheme are very slow, owing to the extremely stringent stability restriction on
the time step size. However, they appear to be also very robust. In particular, a discrete form of
the energy is observed to decrease at every time step. Due to the delicate nature of the question
(topological changes in a fourth order gradient flow for a curvature dependent functional!), we
give full details of the implementation.

We will work with the following regularized version of (2.3):

2
=1 Vv vl 4 Lwin)) de
m@my_2/ <VVMVWWﬁ)+W (JV|+€W(0d. (5.1)

Here 7 > 0 is added to ensure a uniform bound for H.(u.), necessary for Gamma-convergence
to the L'-relaxation of the Willmore functional. For simplicity, our exposition is restricted to R?
below; extension to arbitrary dimensions is straight forward. To begin with, the L? gradient flow
for (5.1) leads to the following evolution:

O = — 9 <(u§ +6)0x(kshe) — uxuyay(“6h6)>
R (IVul2 + 6)3
9 ((uz + )3, (rshe) - umuyazwze)) (5.2)
dy (|Vul? + 68)2
+ SV (4 9)90) = (8 + )W (w)

where

\Y%
K=V | e (5.3)
VIVul2 + 0
and h. denotes the diffuse surface area density, h-(u) = 5|Vu|* + e 1W (u).

Working on a uniform spatial grid with periodic boundary conditions, let D and D~ denote
the standard forward and backward difference quotients in the direction of their subscript. Let
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u" denote the solution at the n-th time step. Let’s start with the discretization of the diffuse
surface area density he(u):

M(w) = = ((DF) + (D7) + (Dfw)’ + (Dyu)?) + 2 (w). (5.

The denominator in the curvature term kg5 can be discretized in any one of the following four
ways (we’ll use all):

Dut* = \/(DFu)? + (Difu)? + 5 (5.5)

where the first and second + in the superscript of Du refer to the signs of difference quotients in
the z and the y directions, respectively. The superscript will be dropped for convenience below,
whenever it is just £, +. The choice of sign for the difference quotient in each coordinate direction
in (5.5) determines the signs of all subsequent difference quotients, as indicated with + or F signs
below. Approximation to the curvature term ks can be obtained as:

DTu D*u
+.+ — DF T F Y
K>*(u) = D} (Du ) + D, (Du ) (5.6)
where the superscripts of K indicate the signs for the difference quotients in the x and y directions,
respectively.
Next, define
Ay o pr (PEE@MO) (D +3]\ o ( IDEKM)] (D 0)(DFw)
v (Du)? v (Du)? |
AEE(y) = DT [Dy (K (u)M(u)] [(Dzu)® +6]\ DF [Dy (K (u)M(u))] (D u)(Dyu)
2 ) y (Du)? v (Du)? '

(5.7)

where superscripts of A1 and As indicate once again the chosen signs for the difference quotients
in the z and y directions, in that order. Let

Af(u) = AT (u) + AT (u) + A7 (u) + A7 (u),

3 : - (5.8)
Aj(u) = A (u) + Ay (w) + Ay () + Ay (u).
Define also the discrete squared curvature:
1 _ _ o
K (u) = 5 (KT () + (K07 () + (K () + (K7 (w)?). (5.9)
Let
Ag(u) i= = S{ D7 (K +7)Dfu") + Dy (K2 +7)Dju")+
Df ((K? +7)Dy u") + D (K2 +7) Dy u") | (5.10)
1
+ g(Kf + )W (u™).
Finally, our update scheme is:
un—l—l —u" n n 1 n
= —(Al(u )+ As(u") + S As(u )). (5.11)

With time step size dt > 0 chosen small enough compared to the spatial grid size, this scheme is
guaranteed to decrease the following discrete form of the energy

> (K2 (i) + ) M (uf) (5.12)
i,
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as can be easily verified by differentiating (5.12) with respect to time, and summing by parts a few
times. Of course, it must be mentioned that the convergence of energy (5.12) to, say, (5.1) as the
grid size and the regularization parameter § are appropriately sent to 0 has not been established
rigorously; we merely give some numerical evidence.

In 2D, the computational domain was [0, %]2 with a spatial resolution of 100 x 100. Periodic

boundary conditions were used. The parameters were chosen to be € = %, v = %, and 6 = 0.01.
As an initial guess, u” was taken to be the characteristic function of the union of two disjoint
disks. During the evolution, the disks are observed to initially expand as disks, as expected.
However, once they are within a small distance (related to the diffuse-interface thickness €) of
each other, they are unable to get any closer. Topological changes appear to be precluded; in
particular, neither a merger subsequently leading to a smooth evolution occurs (as was previously
seen in various numerical implementations of Willmore flow via implicit representations), nor a
corner forms as with the De Giorgi approximation. Instead, the curves continue to expand, but
are no longer circles.

FIGURE 8. Evolution of disks under L? gradient flow (in the bulk) for Bellettini’s approximation
to the Willmore energy. Topological changes appear to be precluded: the disks do not merge.
After getting within a small distance of each other (related to diffuse-interface thickness), they
continue their expansion, but are no longer circles.

Next, we explore what happens in 3D. Once again, as in Section 4.2, we include a volumetric
expansion term so that spheres would grow. Figure 9 shows computations with two parallel
cylinders as initial condition, which in fact corresponds to a 2D computation; the difference from
the experiment of Figure 8 is the inclusion of the volumetric expansion term. We see that even
in the presence of the additional driving force bringing the interfaces into collision, topological
change is precluded, just as in the 2D experiment of Figure 8.

On the other hand, Figure 10 shows simulations with two disjoint spheres as the initial con-
dition. The computational domain is [0, f] and the spatial resolution is 50 x 50 x 50. The

parameters were chosen to be ¢ = 0.02, v = 4, and 6 = 0.01. In this case, the spheres merge
once they come into contact (i.e. "feel” each other due to the diffuse-interface thickness). See
the remark in Section 7 for an explanation of why this topological change is not precluded.

6. MODIFIED DIFFUSE-INTERFACE WILLMORE FLOW

In the following, we consider the modified diffuse approximation of the Willmore energy (3.3)
and the corresponding L?-gradient flow.

This modification by an additional ‘penalty’ term offers some extra flexibility compared to
alternative energies such as (2.3). As long as solutions are close to the optimal-profile construction
the correction is negligible. One could therefore ‘switch off’ the additional term as long as
A, is small, or only use the extra forcing in regions where A, is large. This helps to reduce
computational costs, as the remaining standard term is much easier to deal with. If solutions
start to deviate from the optimal profile, we only use the property that the extra term blows up.
We therefore need much less accuracy in computing this term and can choose different numerical
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FIGURE 9. Evolution of cylinders under L? gradient flow for Bellettini’s approximation of Will-
more energy, with a bulk energy term encouraging expansion added. The evolution is essentially
2D; the only real difference from the simulation of Figure 8 is the inclusion of the bulk energy
term. Just like in the no bulk energy term case of Figure 8, the cylinders cannot merge even
though they come into contact, despite the additional driving force that slams interfaces into

each other.

5 20 N 20 - 20 > 20

10 10 1010 10 10 10 10

FIGURE 10. Evolution of spheres under L? gradient flow for Bellettini’s approximation of
Willmore energy, with a bulk energy term encouraging expansion added. The spheres expand
and touch, and unlike in the 2D experiment with disks shown in Figure 8 or the 3D experiment
with cylinders shown in Figure 9, the topological change takes place: the spheres merge, and the
surface becomes instantaneously regular.

relaxation or discretization parameters than for the term W, in the total energy F.. Here however
we only aim at a proof of concept and do not exploit such possibilities.

6.1. Modified Willmore energy. In order obtain a simpler variational derivative than we
would obtain from (3.2), we assume |eVu| ~ y/2W (u) and introduce an additional energy

2
A (u) ::2511+a/9(—5Au+61W’(u)+\/2W(u)V-’§Z|> dz, (6.1)

=w

=v
where o < 1. Whereas the analysis in Section 3 does not cover this case, our numerical simulations

show that this choice works equally well. In the following we therefore will use the diffuse Willmore
energy

ﬁs(u) = We(u) + Aa(u)
and will analyze numerically this functional and the corresponding L2-gradient flow. We expect

that a Gamma-convergence result as in Theorem 3.1 also holds for F, but the analysis in this
case is much more difficult and will be subject to future investigations.

6.2. Computation of the additional energy. We compute the additional energy
a(t) := Ac(up(-,1))
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with a = 0 during a simulation similar to the one in Fig. 1. The only difference is that we have
used 4th order finite elements. Furthermore, we have regularized

1 1
A
Vul  \/[VuZ+4

with 6 = 0.1 in order not to divide by zero. Again we use a uniform grid with 652 = 4225 vertices
leading to 66049 degrees of freedom for each unknown. In Fig. 11 (left), one can see the energy
decrease of e(t) = Wx(un(-,t)) during time with values very close to zero for large times. Fig.
11 (right) displays the expected blow up of the additional energy a(t) = Ae(un(-,t)) when the
interfaces begin to “feel” each other. This behavior serves as a motivation to study the modified

flow of the energy W. + A. in the following.

diffuse Willmore energy additional energy
300 T T T T T T T 2500 T T T T
e(t) a(t)
250 2000 - \ 1
200
1500
o 150 ©
1000
100
50 | 500 - J
O C L L L L L 0 L L L
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

t t

FIGURE 11. Evolution of “standard” diffuse-interface Willmore flow (1.5): Willmore energy
e(t) = We(un(-,t)) (left), additional energy a(t) = A< (un(-,t)) (right) versus time ¢.

6.3. Modified flow. Here, we consider the L?-gradient flow

e — —‘W (6.2)
of the energy Wi (u) + A:(u). We introduce
v = AT (W)Y - ’gZ' _v. ( 2W(u)‘gz|> (VW) |Vl
and obtain the variational derivative
|
Su _ elta

( —eA(v +w) + e W (u) (v +w) + v(v+ w) (6.3)

—
N DN
=
=l
~—

+ V- (B(u, Vu)(Vu + vw))),
where

B(u,Vu) :=

2W (u) Vu Vu
I— ® .

|Vul |Vu| — |Vul

Thereby, I = (0;;)i; denotes the unit matrix.

In order to numerically treat the modified flow (6.2), we split the time interval [0, T] by discrete
time instants 0 = tg < t; < --- < tpy = T, from which one gets the time steps At,, = tima1 — tm,
m=0,1,...,M — 1. Moreover, we apply the following operator splitting type Ansatz for time-
discrete functions 6™, v(™) (™) at time instant t,,:
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(1) compute v(™ via

(m) '
o) =y [ Y2V G ) (L owwtm)) (wut) (6.4)
|Vau(m)]|

(2) solve for u(™*+1) and w(™+Y in

(m+1) _ ,,(m)
6% _ —A’w(m+1) + E_QW//(u(m))w(m—&-l) (6.5)

/
eV u) 2W (m + w(m-i—l))

+V- (B(u<m>, V™) (Vo™ 4 vw<m+1>)))
w™) = —e Au ) 4 e (W) MY T W () — e (W) u ™) (6.6)

Thereby, for 4, oy > 0, we regularize

1 1
A
|Vaulm)| [Vulm 2 4§
1 1
\/QW(u(m)) V2W (um)) + Gy

for all terms of these forms appearing in (6.4)—(6.6). In addition to the previous parameters, we
have used dyy = 0.01.

As a first test, we observe that the modified flow yields a reasonable approximation of Willmore
flow in the case of a growing circle. In Fig. 12, we compare numerical results with the analytic
expression for a circle growing according to Willmore flow. Thereby, we use an initial radius
R(0) = 0.1 and plot the radius R(t) versus time.

radius R(t)

numerics

analysis o
04
0.3

o
0.2 -
0.1 L
0 0.01 0.02

t

FIGURE 12. Evolution of modified flow (6.2): Radius of growing circle versus time: Analytic
expression and results of modified diffuse-interface flow. (6.2)

In Fig. 13, we see numerical results for this flow showing the phase-field variable u for a
symmetric initial condition with nine circles with equal radii 0.1 as in Fig. 1. The final picture
shows the nearly stationary solution. Fig. 14 shows the energy decrease for this example.

In Fig. 15 the nonsymmetric initial condition from Fig. 2 has been used. Again, the nearly
stationary discrete solution at time ¢ az 0.016 shows that self intersections are prohibited for this
modified flow.
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FIGURE 13. Evolution of modified flow (6.2): Discrete phase-field uy, for different times ¢ = 0,
t 2 0.0012, ¢ ~ 0.0024, t ~ 0.0045.
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FIGURE 14. Evolution of modified flow (6.2): Total energy f(t) = W (un (-, t)) + Ae(un(-, 1))
versus time £.

o o 90 O OO
o 0 0|0 00000

FIGURE 15. Evolution of modified flow (6.2): Discrete phase-field uy, for different times ¢ = 0,
t ~ 0.0010, t =~ 0.0030, t ~ 0.0160.

In Fig. 16 the initial condition with two circles is not symmetric as in Fig. 4. The circles grow
until the interfaces “feel” each other. The modified energy prevents the level sets from forming
self intersections. The contour plots in Fig. 16 are taken at similar times as in Fig. 4.

In the gradient flow simulations for Bellettinis energy and the modified energy F. we have often
observed that circles upon collision keep touching and evolve to an ellipse type shape. We expect
that such shapes represent suitable elastica. In a final example, we therefore compare (nearly)
stationary states in our numerical simulations with graphs of minimal elastic energy [26] that
present possible optimal configurations. In [26], Linnér and Jerome could prove the existence of
a unique graph of minimal elastic energy among graphs that can be parameterized by (z(t), y(t))
such that

(2(0),5(0)) = (0,0) and (2'(t),y'(t)) = L(cos 6(t), sin 0(t)),
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FIGURE 16. Evolution of modified flow (6.2): Discrete phase-field uy, for different times ¢ = 0,
t =~ 0.003, t =~ 0.0049, t ~ 0.0199.

> >
X
analytic minimizer [26] o shifted analytic minimizer [26] o
t=0 --------- t=0 -----mmm-
t=2.2462 —— t=2.2462 ——

FIGURE 17. Evolution of modified flow (6.2): Level curve {u, = 1/2} at times ¢t = 0 and
~ 2.2462 and analytic minimizer from [26] (left), level curve {up = 1/2} at times t = 0 and
t & 2.2462 and analytic minimizer from [26] shifted by y(1) in —y-direction (right).

where 6(0) = 0, 6(1) = Z and (6, L) € W2((0,1)) x Ry. Moreover, Linnér and Jerome were able
to provide an explicit formula for this minimizer. For the following comparison, we have chosen
the rectangular domain Q = (—1.1,1.1) x (—2.2,2.2) with periodic boundary conditions such that
we expect the level set {u), = %} to stop growing in the z-direction at x ~ +1. Furthermore,
we chose an ellipse as initial condition. In Fig. 17 (left) we see level sets {u;, = 1} at different
times, where the nearly stationary discrete phase field u; at time ¢ ~ 2.2462 shows a reasonable
approximation of the analytic minimizer from [26], which has been shifted by y(1) in —y-direction
in Fig. 17 (right), indicating an even better approximation by the numerical result.

7. DISCUSSION

We have analyzed the behavior of different diffuse approximations of the Willmore flow in
situations where diffuse interfaces collide. Different scenarios emerge. In level set approximations
the respective phases typically merge (not investigated here, but see the results presented in
[21]) at the moment of collision. For the standard diffuse approximation on the other hand we
have demonstrated that (at least in two dimensions) transversal intersections of diffuse interfaces
are preferred. As an alternative we have introduced two new diffuse approximations with again
different behavior: after collision the phases keep touching, away from the touching points the
interfaces evolve to elastica.
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FIGURE 18. Left: Curve v and modification 7. Right: Limit of the modified curves.

Whereas all approximations converge to the same evolution as long as phases remain well
separated, the kind of approximation determines the evolution past collision of interfaces. Here
is a summary of these behaviors:

Method Disks in R? Spheres in R3
Standard | “Cross” formation Merger
Level set Merger Merger
Bellettini No merger Merger
New approx. No merger Not investigated (we expect mergers)

Although there appears to be agreement in the case of spheres, it is reasonable to assume that the
discrepancies in the two dimensional handling of topological changes would manifest themselves
also in 3D with more general surfaces.

The expected behavior through these topological changes, and therefore the choice of the
approximation, may depend on the specific application. For example, in image processing appli-
cations such as inpainting (see e.g. [11]), it is often desired that colliding interfaces merge in 2D.
Indeed, in the important work [15], the Willmore energy is utilized to drive interfaces towards
collisions and mergers. In other applications, for instance in the segmentation of medical images
(see e.g. [1]), it may be desired to prevent merging of colliding interfaces.

Our new approximation and that of Bellettini [5] agree in the handling of topological changes
considered here for Willmore flow. Indeed, for these Gamma-convergent approximations, we argue
that the observed limit flow describes the only reasonable evolution that is continuous with respect
to the L'-topology and keeps decreasing the Willmore energy. In contrast, typical ‘mergers’ do
not share this property. In fact, let us assume that we have a sequence of Jordan curves (V;)ren
that approximates the union of two touching balls S = {(z,y) € R? : (z+1)+y? < 1}U{(z,y) €
R? : (z —1)+y? < 1} in L'-distance. Assume for simplicity that the 4 are symmetric with
respect to the x-axis, that the upper half is given as a nonnegative graph, and that the convergence
is in an CY-sense outside a region {(z,y) € R? : |z| < 1 — §}. We then can modify the curves
by replacing the part below the z-axis by a circular arc that touches 7 in its intersection points
with the z-axis (see Fig. 18). By construction the modified curves 7 are C''-Jordan curves that
are piecewise C2. As the radius of the attached half-circles approaches 2 with k — oo there exists
a constant C' > 0 independent of k£ such that

W) < W(w) + C. (7.1)

On the other hand the sets enclosed by 7; converge in L!-distance to (S ﬂ@) U (B(O, 2)N R%),
where R% denote the upper and lower half-plane, respectively. This however is a set with exactly
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one simple cusp point. By [7, Theorem 6.4] this implies that
lim W(J) = oo.
k—o00
From (7.1) we deduce therefore that the elastica energy of 4% blows up, too.

In 3D the behavior of diffuse Willmore flows in situations where diffuse interfaces collide is
different from the two dimensional case: two spheres that are initially disjoint but forced to come
in contact via a volumetric expansion term are likely to merge under gradient descent for the L'
relaxation of Willmore energy. Indeed, using e.g. catenoid “necks”, of the form

—-b
y = acosh (x) ,
a

with a and b are appropriately chosen, we can “connect” two spheres at the moment of contact
with an arbitrarily small neck that is tangent to the spheres after slightly shifting them if necessary,
while decreasing the energy. Note that the catenoid neck, regardless of its scale, has no elastica
energy at all, since it happens to be a minimal surface and thus has vanishing mean curvature.
To be more precise, the foregoing discussion shows that it is easy to construct a continuous in L'
map from the interval [0, 1] into sets in R3 that deforms the union of two spheres in contact to
a C? surface topologically equivalent to the sphere, while decreasing the Willmore energy during
the deformation.
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