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Abstract

Complex traits can be attributed to the effect of two or more genes and their interaction
with each other as well as the environment. Unraveling the genetic cause of these traits,
especially with regard to disease etiology, is a major goal of current research in statistical
genetics. Much effort has been invested in the development of methods detecting genetic
loci that are linked to variation of disease traits or intermediate molecular phenotypes such
as gene expression levels.
A very important aspect to be considered in the modeling of genotype-phenotype associ-

ations is that genes often interact with each other in a non-additive fashion, a phenomenon
called epistasis. A special case of an epistatic interaction is an allele incompatibility, which
is characterized by the inviability of all individuals carrying a certain combination of alleles
at two distinct loci in the genome. The relevance and distribution of allele incompatibilities
has not been investigated on a genome-wide scale in mammals.
In this thesis, I propose a method for inferring allele incompatibilities that is exclusively

based on DNA sequence information. We make use of genome-wide SNP data of parent-child
trios and inspect 3×3 contingency tables for detecting pairs of alleles from different genomic
positions that are under-represented in the population. Our method detected substantially
more imbalanced allele pairs than what we got in simulations assuming no interactions. We
could validate a significant number of the interactions with external data and we found that
interacting loci are enriched for genes involved in developmental processes.
Genes do not only interact with one another, their regulatory activity also depends on

the environment or cellular context. The impact of genetic variation on gene expression will
therefore also depend on cell types or on the cellular state. This aspect has long been ne-
glected in the inference of genetic loci that are linked to gene expression variation (expression
quantitative trait loci, eQTL). There is thus a need to develop methods for analyzing the
variation of eQTL between different cell types and to assess the impact of genetic variation
on expression dynamics rather than just static expression levels.
In the second part of this thesis, I show that defining and detecting eQTL regulating

expression dynamics is non-trivial. I propose to distinguish “static”, “conditional” and “dy-
namic” eQTL and suggest new strategies for mapping these eQTL classes. By using murine
mRNA expression data from four stages of hematopoiesis, we demonstrate that eQTL from
the above three classes yield associations with different modes of expression regulation. In-
triguingly, dynamic and conditional eQTL complement one another although they are based
on integration of the same expression data. We reveal substantial effects of individual genetic
variation on cell state specific expression regulation.
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Chapter 1

Introduction

An organism’s traits are determined in large part by the interplay between its genetic makeup
and the physical and social environment that it inhabits. Very often, the genetic component
of a trait is itself the result of an interplay of many small effect changes of the genetic material.
In that case it is called a complex trait. This comprises the organism’s physical appearance
and fitness as well as its interaction with the community and the diseases it is affected by.
Heritability, i.e. the genetic contribution to the phenotypic variance, has been estimated
to be extremely large for some complex traits, e.g. more than 80% for schizophrenia and
more than 90% for autism (Maher, 2008). Hence, there is a need to identify the genetic
determinants of complex traits in order to fully understand their etiology and, for the case
of diseases, for developing suitable means to cure them.
Gene association studies have revealed that very often the collective effect of these genetic

factors is more than just the sum of their single effects. Broken down to the level of two
genes, this phenomenon is called epistasis: the simultaneous perturbation of two genes leads
to a phenotype that is not expected based on the phenotypes of the individual genes.
Classical genetics used to investigate gene-gene interactions by artificially introducing

perturbations at two defined loci in the genome and then observed their effect on a phenotype
of interest. This procedure is very laborious and thus restricts the analysis to a small number
of candidate loci. The genomic era with its high-throughput measurements of molecular
entities has paved the way to systematically study genetic crosstalk and its influence on a
variety of phenotypes on a large scale. Microarrays and, more recently, genome-wide sequen-
cing technologies allow to capture the natural genetic variation within a defined population
on a genome-wide scale and thus enable us to directly infer the influence of multiple genetic
alterations on complex traits without the need for any experimental intervention. Model
organisms such as yeast or mouse have proven to be particularly useful here, as they can
relatively easily be kept in a controlled environment at low costs, allowing to attribute
any phenotypic differences to variation in the genetic blueprint. The laboratory mouse
has attracted special attention in human hereditary disease research, because of its close
similarities to human physiology and disease etiology.
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Together with the emergence of new experimental methodologies, a range of statistical
methods for analyzing the relationship between the genetic makeup and a phenotype has
been developed. Presumably the most prominent among them are linkage and association
tests. They are based on the concept that the genomic position of the mutation causing the
disease, called the disease locus, is physically close to a genetic locus whose variation in the
population we were able to measure (the marker locus). If this is the case, then both loci
will be inherited together, they are said to be linked. A sample of affected individuals will
carry the same genetic information on the disease locus and therefore also on the marker
locus. Hence, a position in the genome that is identical among individuals suffering from the
disease is likely to be close to the disease causing mutation.
Under the assumption of a given genetic model, linkage analysis tests for the cosegregation

of a certain manifestation of the genetic information at the marker locus together with the
disease phenotype. Statistical inference is drawn from a likelihood ratio model comparing the
likelihood of the data under the assumption of linkage with the likelihood under independence
(Thomas, 2004, LOD score). Model-free linkage approaches are mostly based on inferring
the over-representation of genetic material at a given locus among affected sib pairs (Elston,
1998).
Association studies directly infer the statistical association of the disease phenotype with

a candidate gene region either in a population of unrelated individuals or a set of families.
Hence, these studies test whether certain combinations of a trait characteristic and the
genetic information at a given locus in the genome occur together more often than expected
by chance. This directly leads to the application of χ2 tests or, for family based designs, the
transmission disequilibrium test (TDT), a version of the classical McNemar’s test (Elston,
1998; Spielman et al., 1993). Genome-wide association studies (GWAS) mainly fit a battery
of linear or logistic regression models, where each candidate causal locus is separately used
as a predictor for disease state or phenotype.
Despite their popularity, these methods have long been limited in the sense that they

infer the effect of each gene on a phenotype separately, without taking into account epistatic
effects, although it is known from mutational studies that these are ubiquitous (Phillips,
2008). One of the main reasons for that was the explosion in the number of tests that have
to be conducted in order to infer all pairwise interactions on a genome-wide scale and the
lack of large-sized studies for reaching sufficient power.
In recent years, several approaches try to fill this gap. Linear and logistic regression models

can be easily extended to contain interaction effects (Cordell, 2002). In order to model the
effect of many predictors simultaneously, penalized likelihood approaches as well as Bayesian
hierarchical models have come into play (Yi, 2011). In addition, several machine learning ap-
proaches such as multifactor dimensionality reduction (Ritchie et al., 2001), Random Forests
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(Kim et al., 2009; Schwarz et al., 2010) or logic regression (Schwender and Ickstadt, 2008;
Schwender, 2011; Ickstadt et al., 2008) have been applied to detect or at least take into
account epistasis in genome-wide association studies. Since under certain conditions the
interaction term in a logistic regression model corresponds to the correlation of the two ge-
netic loci, epistasis can also be inferred by directly calculating an association between the loci
within a set of individuals exhibiting the same phenotype (e.g. all cases). This results in a
χ2 test for independence (Cordell, 2009). Similar approaches have been proposed for family-
based studies, which require the incorporation of kinship relations into the analysis as these
will otherwise confound the results (Devlin et al., 2001; Rabinowitz and Laird, 2000). Be-
yond that, family structure can be regarded as an additional piece of information, which can
be exploited to increase the power of a method to infer epistatic interactions (Schaid, 1999).
A very extreme form of epistasis is the incompatibility between two particular genetic

variants at two distinct loci. Such incompatibility leads to the inviability of the organism.
Therefore, only individuals not exhibiting the variant combination can be observed. Hence,
classical case-control designs will not be able to detect them. These so-called Dobzhansky-
Müller incompatibilities (Orr, 1996) have been investigated on a small scale predominantly
by the plants genetics community, but a systematic search on the genome-level in mam-
malian species is lacking. However, such an analysis would provide insights into the extent
and structure of epistatis throughout the genome as well as its relevance for the general
health of the individual. The availability of more and more fully genotyped mouse or even
human families might enable us to fill this gap. With the lessons learned from inferring
epistatic interactions in family-based studies using statistical genetics approaches, we aimed
at developing a method that detects such incompatibility of two genes, based solely on ge-
netic data of populations with known kinship relations. Chapter 3 will present an extension
and modification of a χ2-like test to discover pairs of loci across the genome that together
cause severe phenotypes while not being harmful on their own.

Alterations of the genetic makeup do not directly act on complex phenotypes like disease
symptoms, their effect is rather mediated by changes of molecular processes taking place
on the cell level. Therefore, these molecular traits, e.g. gene expression levels, protein or
metabolite abundances, are often studied as intermediate phenotypes to gain insights into
the genetic regulation of higher level traits. Moreover, understanding the development of
traits on the molecular level is prerequisite for deriving strategies for disease cure, since this
is where drugs can most directly intervene.
A genetic locus that acts upon one particular molecular trait, namely the expression

level of a gene, is called an expression quantitative trait locus (eQTL). This regulatory
relationship can be regarded as a special kind of genetic interaction, where the information
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at one genetic locus influences the amount of usable information (i.e. information that can
be translated into a functional protein) of another gene. From a methodological point of
view, the expression levels of this gene can thus be modeled as a function of the genetic
information at the eQTL locus. Thereby, eQTL studies exploit genome-wide measurements
of natural genetic variation together with high-throughput gene expression measurements
for virtually every gene in the genome.
Methods for eQTL mapping can be divided into univariate and multivariate (or single-locus

versus multi-locus) mapping methods. Traditional genetics approaches, such as Haley-Knott
regression (Haley and Knott, 1992) or composite interval mapping (Zeng, 1994), test each
genetic locus one by one for its association with the expression level of a given gene ignoring
the effect of other loci. These strategies have therefore only limited potential to detect
factors with joint effects on gene expression, not to mention epistatic interactions. However,
genes or their products do not act independently from the rest of the genome. Instead,
they are embedded in regulatory pathways and complexes implying that the expression level
of a gene is influenced by a set of genetic factors (its network neighborhood). Therefore,
multi-locus methods regard eQTL mapping as a feature selection problem: the expression
of a gene is predicted (explained) using a set of genetic marker loci (Broman and Speed,
2002). Each genetic locus is scored with respect to how informative it is for the prediction
task while taking into account the effect of multiple genetic loci. These methods often rely
on penalized regression algorithms such as LARS (Efron et al., 2004), partial least squares
regression (Chun and Keleş, 2009) or machine learning techniques, e.g. Random Forests
(Breiman, 2001), which is based on an ensemble of regression trees.

Our group has previously shown through investigation of both simulated and experimen-
tal data that multi-marker mapping methods clearly outperform single-marker methods
(Michaelson et al., 2010). Moreover, we participated in the “DREAM5 SYSGEN A - In-
silico network challenge” (http://wiki.c2b2.columbia.edu/dream/index.php/D5c3, Prill
et al., 2010), which was set up to provide synthetic gene expression and genotype data that
mimic the structure of real gene-regulatory networks, facilitating the assessment of the accu-
racy and sensitivity of eQTL mapping approaches that are currently used by the community.
In the course of our participation, we showed that the combination of several multivariate
eQTL mapping methods into committees outperforms the individual methods (Ackermann
et al., 2012). We tested different committees of the following methods: Random Forests, the
Lasso (Tibshirani, 1996) and the Elastic Net (Zou and Hastie, 2005). We also showed that
our proposed approaches lead to a much higher average precision than the other DREAM
challenge contributions, at the cost of slightly lower average sensitivity.
While the impact of genetic interactions on gene expression levels is already being acknow-

ledged by the community, less attention is paid to the interaction between genetic causes of
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gene expression variation and a cell’s state or environment. It has been shown that eQTL
are to a large extent tissue-specific (Dimas et al., 2009; Fu et al., 2012), i.e. different sets of
genetic loci influence the expression of a given gene in different contexts. Two consequences
arise from this: (i) not every gene-regulatory relationship can be deduced from a data sample
that was collected in a defined tissue or cell state; (ii) eQTL studies conducted in one cell
type cannot directly be transferred to another cell type, e.g. to explain the etiology of a
disease related to this cell type (Powell et al., 2011). These issues often are not taken into
consideration when conducting eQTL studies. Most of these studies still infer eQTL in only
a single cell type or cell line.
Furthermore, under certain circumstances cells can undergo severe morphological or func-

tional changes, which will be induced by extensive changes in their gene expression landscape.
This will, for example, be the case during the differentiation of a stem cell, the response of a
cell to a changed environment or after treatment with a drug. It can be assumed that the ac-
companying changes of gene expression levels are under tight genetic control. However, there
are only very few studies that directly infer eQTL associated with gene expression changes
(Smith and Kruglyak, 2008), and maybe no such study has been conducted in mammals.
Beyond that, a comprehensive consideration of methodological issues arising when inferring
eQTL across tissues or during dynamic changes of the cell is lacking.
In Chapter 4 of this thesis, I propose to consider gene-regulatory relationships as dynamic

processes and classify eQTL into three categories: those that are related to a gene’s expres-
sion levels regardless of the cell state, those that are specific for particular cellular states
or environmental conditions and finally eQTL that impact on the dynamics of expression
changes. New statistical methods will be presented and compared that allow to detect these
different kinds of eQTL.

This thesis is structured in the following way: In the next chapter I introduce the bio-
logical concepts being essential for this work. The main Chapters 3 and 4 then adopt two
very different perspectives on deciphering molecular mechanisms underlying complex traits.
Chapter 3 describes a statistical test allowing to detect allele incompatibilities on a genome-
wide scale. The test is based on genetic data of a set of individuals with known family
relations. In Chapter 4 I present a systematic classification of genetic variation impacting
gene expression during dynamic processes. Different classes of eQTL are contrasted and
strategies for detecting them are proposed and compared with each other. The applicability
and biological relevance of both methodological developments presented in Chapters 3 and 4
is demonstrated on publicly available mouse data sets. Finally, all results are summarized
and discussed in Chapter 5 and an outlook of how to extend and combine the different ap-
proaches of inferring the influence of natural genetic variation on complex traits is presented.





Chapter 2

Biological Background

This chapter briefly introduces basic genetic concepts and terms that are used throughout
this thesis. If not stated otherwise, all explanations apply to mammalian species, in par-
ticular mouse and human, which are very similar in terms of molecular genetics. A more
comprehensive introduction to the concepts of molecular cell biology that are explained in
this chapter can be found in Alberts (2004) and Alberts (2002). Additional references are
given whenever necessary.

2.1 From DNA to protein and beyond

The genome of an eukaryotic organism is the ensemble of the heritable information, which
is necessary to control its structure, development and virtually all its activities. It is stored
in the nucleus of almost every cell it is comprised of and is made up of deoxyribonucleic acid
(DNA). If the organism possesses mitochondria, they contain their own genome. DNA con-
sists of two long chains (strands) of nucleotides, which are connected by hydrogen bounds to
form a twisted double-helical structure (Figure 2.1A). Each nucleotide consists of a deoxyri-
bose sugar, a phosphate group and one of four different nitrogen-containing bases - adenine
(A), cytosine (C), guanine (G) or thymine (T). The alternating sugar-phosphate complexes
build the backbone of the two strands of DNA, while the bases point to the inside of the
double-helix. Thereby, each two bases form a pair, in which A always pairs with T and
G with C. This defined pairing results in a complementarity of the two strands, which is
important for the transcription and replication of the DNA.
DNA is organized into chromosomes, which correspond to DNA molecules. In each cell

there might be one or several copies of each chromosome. Most cells of nearly all mammals
are diploid, i.e. they carry two sets of chromosomes in their nuclei, one inherited from
the mother, the other one from the father. Some parts of the DNA form functional units
called genes, which encode the information needed to build proteins. Proteins are the major
components of each cell and responsible for almost all of its activities.
The transformation of the genetic information into a protein is a two-step procedure often

called the Central Dogma of Molecular Biology (Figure 2.1B). In the first step, the DNA
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Figure 2.1: From DNA to protein. A DNA is a double-helix of polymers made up
of nucleotides. Sugars and phosphate groups build the backbone, while pairs of nitrogen-
containing bases connected by hydrogen bonds face each other in the center of the helix. B
One strand of the DNA is transcribed to mRNA, which is transported to the cytoplasm. In
the ribosome, mRNA is translated into polypeptides, the building blocks of proteins.

sequence is copied by polymerases into messenger ribonucleic acid (mRNA) in a process
called transcription. The chemical structure of mRNA is very similar to that of DNA,
except that its nucleotides consist of ribose sugars instead of deoxyribose and thymine (T) is
replaced by uracil (U). Transcription takes place in the nucleus and is followed by some post-
processing steps, which stabilize and rearrange the mRNA before proteins can be constructed
from it. Subsequently, the mRNA is transported to the cytoplasm of the cell where it is
translated into a protein in the ribosome. This process is called translation. Each triplet of
mRNA bases codes for one of twenty amino acids (some triplets code for the same amino
acid), the building blocks of peptides, which in turn are assembled to proteins. These often
fold into 3-dimensional structures and undergo post-translational modifications transforming
them into functional proteins.

Proteins are the major players in the establishment of cellular structure and traits. Any
observable trait resulting from the expression of one or many genes is called a phenotype.
Mutations, i.e. modifications of the genetic information encoded in the DNA, can eventually
lead to pathological phenotypes of the cell (such as cell death or abnormal growth) and
consequently induce diseases.



2.2 Natural genetic variation 9

2.2 Natural genetic variation

Although by far the largest part of the genome is identical between individuals of the same
species, there exist genetic variations, such as deletions, insertions or substitutions of single
bases or larger parts of DNA, underlying the phenotypical diversity among individuals. At
each genetic locus, i.e. a specific position in the genome, each of the variants of the DNA
sequence occurring in the population represents an allele. The allele that is observed less
frequently in the population is called the minor allele as opposed to the major allele. The
frequency of the minor allele is denoted by minor allele frequency (MAF). A combination
of alleles at neighboring loci that is transmitted together to the next generation is called
a haplotype. If a variation in only one of the two copies of a locus is sufficient to affect a
given phenotype, its effect is called dominant. If on the contrary, both copies need to carry
a variation in order to change the phenotype, it is referred to as a recessive allele. The
combination of the two alleles at one locus is called the genotype.
The length of a natural genetic variation may vary from one base up to the length of

one or several genes. If a variation of one base is present in at least 1% of the population,
it is called a single nucleotide polymorphism (SNP). In most cases, there are two possible
allele variants at a SNP locus. This implies three possible genotypes: homozygous major
(both copies of a chromosome carry the more frequent SNP variant), heterozygous (the copies
carry different SNP variants), homozygous minor (both copies of a chromosome carry the
less frequent SNP variant). If a SNP, a point variation in the genomic sequence, results in a
change of the protein code, it is called a non-synonymous SNP. However, SNPs might also
affect a phenotype if they are, for example, located in a non-coding regulatory region of gene
expression.

2.3 Genetic inheritance

Most of the traits that describe an individual, including physical appearance, social skills
or diseases, are influenced by the organism’s genetic background. This genetic makeup is
inherited from the parents as a unique mixture of their own genetic information, causing the
variation among traits that makes each individual unique.

Each mammalian cell normally contains two copies of each chromosome. Since the two
copies contain very similar information but are not 100% identical due to naturally occurring
genetic variation (Section 2.2), they are called maternal and paternal homologs. To avoid
that successive generations accumulate more and more copies of each chromosome, only
one copy is passed on by each parent to its offspring. Thus, special cells, called gametes
and containing only a single (haploid) set of chromosomes, have to be created from diploid



10 Biological Background

somatic cells in a process calledmeiosis before the actual reproduction can take place. During
meiosis, homologous chromosomes are replicated, paired with their corresponding maternal
or paternal homolog and eventually separated in two sequential cell divisions (Figure 2.2).
This results in four haploid cells, each containing a random assortment of one maternal or
paternal homolog of each chromosome. If two individuals, a female and a male, reproduce,
their gametes will fuse and create a diploid cell from which a new organism will develop.
The most important step during meiosis is the pairing of homologous chromosomes. While

the pairs of homologs are physically close to each other, fragments of homologous chromo-
somes can be exchanged, an event referred to as recombination or crossover (Figure 2.2).
Recombination is a major source of genetic variation among individuals, since it rearranges
maternally and paternally derived genetic information. Together with the random assign-
ment of maternal and paternal homologs to gametes, recombination allows the reshuffling of
alleles, which in turn provides the basis for genetic diversity and evolution.
The frequency of crossover, called the recombination rate, varies across the genome. More-

over, some allele combinations, maybe even across chromosomes, might occur less frequently
than others due to selection pressure, non-random mating and other causes. Hence, there are
alleles which are inherited together more (or less) often than expected from their marginal
allele frequencies. Two alleles for which such a non-random association is observed, are said
to be in linkage disequilibrium (LD) (Balding et al., 2007, p. 909ff.). If there are no such
events as selection or genetic drift, i.e. under the assumption of an ideal, infinitely large
population, allele and genotype frequencies should remain constant over generations, a state
which is called Hardy-Weinberg equilibrium (HWE) (Balding et al., 2007, p. 1243).

Since there is only a limited number of recombinations per generation (on average two
or three per meiosis for a human chromosome), a large part of the genetic information
on a chromosome is inherited together. These chromosomal regions can be represented by
genetic markers, single SNPs at a defined position in the genome that are representative for
the ancestry of the locus.

2.4 Genetic interactions

Nowadays, the generic term genetic interaction is used in different contexts and with a wide
range of interpretations. In its most stringent definition, it refers to the term epistasis, which
was first established by William Bateson (Bateson, 1909). He described the phenomenon
that the effect of an allele A at locus A is masked by the effect of an allele B at locus B.
A prominent example of such a case (described here in a simplified way) is the hair color
of mice which is determined by an “albino” locus A and a “color” locus C as shown in
Table 2.1. Locus C determines whether the hair of the mouse is grey or black, the C allele
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Figure 2.2: Meisosis. For the sake of simplicity only one pair of homologous chromosomes
is shown. The DNA of each chromosome in the nucleus is replicated, whereby pairs of
homologous chromosome copies are in physical proximity. This allows crossover between the
maternal and paternal copy of the same chromosome and subsequently leads to an exchange
of genetic material between the chromosomes (recombination). Afterwards, the paternal and
maternal homolog are separated in a first cell division, and finally both copies are partitioned
off in a second cell division. Hence, meiosis generates four haploid cells each containing only
one copy of each chromosome (where maternally and paternally derived chromosomes are
mixed randomly).

being dominant for grey. However, the color effect is masked by the recessive a allele at
the “albino” locus, i.e. the hair is colorless if the mouse has the aa genotype at locus A,
regardless of the allele at locus C.

Epistasis is always defined with respect to a certain trait, i.e. two loci with an epistatic
effect on one phenotype might be independent with respect to another phenotype. Many
genetic interaction studies have considered the fitness or the growth rate of an organism
as the phenotype being effected by epistasis (Beltrao et al., 2010; Costanzo et al., 2010;
Schuldiner et al., 2005; Tong et al., 2001). In the most extreme case of such a setting, a
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Table 2.1: Epistatic control of hair color in mice. Hair color of the mouse depends on
two loci A and C. Mice carrying at least one dominant C allele have grey hair while mice
carrying two c alleles at locus C have black hair. The effect of the color locus is masked by
the effect of the recessive a allele at locus A causing an albino phenotype with white hair
color.

Genotype at locus C
Genotype at locus A CC Cc cc

AA grey grey black
Aa grey grey black
aa white white white

specific combination of alleles at the epistatic loci could be lethal for the organism. We call
this scenario an allele incompatibility. Since individuals inheriting an incompatible allele
combination are not viable, these combinations will not be observed in the population.
The above biologically motivated definition of epistasis deviates from the statistical defini-

tion of epistasis. It was brought up first by Fisher (1918). It describes a non-additive effect
of two predictors (in this case the genotype at two genetic loci) on a quantitative phenotype
in a linear model (Cordell, 2002). In this sense, epistasis is now used interchangeably with
the term genetic interaction in statistical genetics. It is important to note that additivity is
always defined with respect to a determined scale of the predictors, i.e. predictors that are
interacting on one scale might become additive when being transformed to another scale.
The term genetic interaction is sometimes also used to describe biochemical interactions

between gene products. However, we refer to these as protein interactions.
In this thesis, gene-regulatory relationships are also included into the broader understand-

ing of genetic interactions. Gene-regulatory relationships describe the impact of the alleles
at a genetic locus on the transcription level of a gene at either the same or a distant locus
and are explained in detail in the following section.

2.5 Genetic control of gene expression

As protein synthesis from DNA is a multi-stage process, the amount of protein that is
produced can be controlled in each of the steps described in Section 2.1. For example, there
is regulation on the amount of transcribed mRNA, its post-processing and degradation, its
transport to the cytoplasm, the amount of translated mRNA and on the activity of the
protein itself. The first step of protein synthesis, the transcription, is under complex control
of several factors, proteins interacting with the DNA or the histones (special proteins that
are needed to package DNA into a stable structure). The initiation of transcription is mainly
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Figure 2.3: Cis and trans acting eQTL. A The transcription of a target gene (red)
is regulated through the binding of a TF (blue circle) in its promoter region (small white
rectangle). The TF gene is encoded at a distant locus (blue rectangle). The eQTL influencing
the expression level of the transcribed gene can be located in the coding region of the gene or
its promoter (upper panel), in which case it is called a cis eQTL. trans eQTL (lower panel)
are located in the locus of the TF gene, which might be very distant from the target gene
locus. B The regulatory relationships between eQTL and their targets can be visualized
in an eQTL map. Each point represents an eQTL - target gene pair, where markers are
displayed on the x-axis and genes on the y-axis. Points on the diagonal show cis regulation,
while off-diagonal points belong to trans eQTL. Vertical bands show eQTL loci that control
a large number of target genes. They are called hotspots.

controlled by transcription factors (TFs), proteins that bind individually or in complexes to
the regulatory region of a gene, which is called the target gene. There, they either promote
or repress the recruitment of RNA polymerase to the DNA.

Since transcriptional regulation is key to the control of protein levels in cells and thus
the manifestation of phenotypes, it is crucial to understand its molecular mechanisms. The
combined analysis of natural genetic variation and gene expression data, known as genetical
genomics (Jansen, 2001), has proven its value for the elucidation of how genotype affects
gene expression levels. Natural genetic variations can impact the regulation of transcription,
for example by changing the sequence of the promoter region of the gene whose expression
is regulated, or by modifying the 3-dimensional structure of the TF, thereby modifying its
binding affinity and in turn its regulatory activity. Of course, genetic variation might also
affect the coding region of the regulated gene itself and thus hamper the translation into the
protein or change the protein sequence. Because it causes a quantitative variation of a trait
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(the gene expression), a genetic locus that contains such a variation is called an expression
quantitative trait locus (eQTL). (Any variation that causes changes in a quantitative trait
different from gene expression is called a quantitative trait locus (QTL).) An eQTL can either
act in cis or trans (Figure 2.3A), depending on whether the variation occurs in one locus with
the gene whose expression is regulated or further away at a distant locus. The expression
levels of a gene can be controlled by more than one eQTL just as an eQTL can influence
the expression of a number of target genes. A locus that regulates a large number of targets
is called an eQTL hotspot. The relationship between genetic loci and target genes can be
visualized in an eQTL map, an example of which is shown in Figure 2.3B.

2.6 Hematopoiesis

In mammals, the blood is composed of a large variety of cells with very different functions in
immune system and oxygen supply. Blood cells are roughly classified into white and red cells
as well as platelets. Red blood cells, also called erythrocytes, are the most abundant cell type
in the blood and transport oxygen to and carbonic dioxide from every cell of the organism.
White blood cells (leukocytes) can be divided into three main groups: granulocytes, mono-
cytes and lymphocytes. Granulocytes are further distinguished into neutrophils, basophils
and eosinophils (Figure 2.4). All these different kinds of white blood cells play different roles
in the immune response of the organism to different kinds of stimuli and pathogens.
Since blood cells have to fulfill a wide range of tasks and are thus needed in different

quantities under specific conditions, there is a need for tight control of blood cell frequencies.
Moreover, mature blood cells cannot divide and have a limited life time. Therefore, the
stock of blood cells has to be continuously replenished throughout the life of the organism.
This is achieved by the complex process of hematopoiesis, the development of blood cells
from one common cell type, the hematopoietic stem cell (HSC). HSCs reside in the bone
marrow and have two unique properties: the ability of self-renewal and the potential to
differentiate into any kind of blood cell. This differentiation takes place in several stages of
progressive lineage restriction, which are depicted in Figure 2.4. First, the HSC is committed
to either the myeloid or lymphoid cell line. Myeloid progenitor cells can still differentiate into
erythrocytes as well as all white blood cells except lymphocytes. Lymphoid precursors give
rise to the different kinds of lymphocytes, e.g. B and T cells. These differentiation processes
are tightly genetically controlled by the expression of specific (sets of) TFs that activate
and/or repress specific lineage commitments. In adult mammals, differentiation takes place
in the bone marrow and also depends on signals transmitted through direct contact of the
HSC with the bone marrow. Mature blood cells are released into the blood stream, which
transports them to the tissue where they are required.
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Figure 2.4: Schematic overview of hematopoiesis. A multipotent HSC differentiates
into either a lymphoid or a myeloid progenitor cell. Progenitors then undergo several phases
of lineage restriction until they are terminally differentiated into mature blood cells. The
colors indicate hematopoietic cell types that are considered in Chapter 4 of this thesis.

2.7 Mouse resources for genetic studies

The laboratory mouse provides a powerful resource to study the impact of genetic variation
on qualitative as well as quantitative traits. Each mouse strain carries a different mosaic of
alleles, each of which represents a perturbation of the genetic system with a putative influence
on a given trait. Through the events of recombination and segregation (Section 2.3), the allele
distributions are randomized among the offspring of each mouse cross. Consequently, a pool
of mouse lines can be used to track genetic loci containing variants that affect a phenotype
(Rockman, 2008). For this reason, many different types of mouse genetic resources have
been established since the 1950s. Most of them apply different breeding schemes on two or a
panel of inbred strains, resulting in mouse stocks with different genetic architectures, spatial
distribution of variation and allele frequencies (Roberts et al., 2007).
Recombinant inbred lines (RILs) are derived from inbreeding two parental strains over

many generations such that the final progeny, all individuals belonging to the same line,
carry an identical mix of the parental genomes on both of their chromosomes, i.e. they
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Figure 2.5: Mouse breeding schemes. A The BXD inbred lines are derived from crossing
two parental strains (F0 generation), C57BL/6J (B) and DBA/2J (D). The F1 offspring carry
one chromosome from each parental strain. Due to recombination events during meiosis, each
of the chromosomes of the progeny of each pair of F1 animals, the F2 generation, is a different
mix of the B and D chromosomes. After many generations of inbreeding pairs of F2 mice, a
panel of mice is obtained, each carrying two identical (homozygous) chromosomes, which are
a mosaic of the original parental B and D chromosomes. B The HS outbred mice descend
from eight inbred strains which are crossed amongst each other and subsequently mated
randomly for many generations. The chromosomes of members of the final mouse stock are
heterozygous assortments of the founder chromosomes.

have a homozygous set of chromosomes (Figure 2.5A). A popular and widely used panel of
inbred lines are the BXD mouse lines, for which there exists dense genotype information on
88 extant and extinct lines (www.genenetwork.org). This panel was derived from the two
parental strains C57BL/6J (B) and DBA/2J (D), which are known to differ a lot in their
genetic variation and many clinically relevant phenotypes, among them many hematopoietic
traits.
However, RILs often exhibit two major problems: (i) The cross of only two parents restricts

the genetic variety among the lines. This results in a limited resolution of the loci that are
found to be linked to a phenotype. Therefore, such loci often contain more than one - possibly
a large number of - gene(s), so that no conclusion about the causal polymorphism of a given
trait can be drawn. (ii) Many inbred lines quickly suffer from infertility or severe fitness
defects that might eventually lead to the extinction of the line. This further restricts the
palette of genetic variation that will eventually be used to detect QTL.
An alternative mouse resource that was created in order to circumvent the above mentioned
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problems is the heterogeneous stock (HS). Since it is derived from multiple initial parental
strains, it contains a higher level of genetic diversity and thus provides a better resolution for
(e)QTL mapping. Yet, these and other more diverse mouse resources like the collaborative
cross still suffer from the problem of loosing inviable lines during the first generations of
inbreeding (Chesler et al., 2008). In Chapter 3 of this thesis, we use data obtained from an HS
derived from eight founder strains: A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, CBA/J,
DBA/2J and LP/J (Hitzemann et al., 1994; Shifman et al., 2006). The breeding protocol
differs from RILs in the way that progeny are mated randomly after an initial eight-way
cross phase. Hence, the final population of outbred mice carry heterozygous chromosomes,
each of which is a fine-grained composition of the founder chromosomes (Figure 2.5B). While
the HS allows a more precise mapping of QTL, the higher variation and heterozygosity also
pose challenges in the statistical analysis of the data. In particular, when genetic loci are
used as predictors for modeling a quantitative trait, they need to be coded as either one
three-level factor or two two-level dummy variables (as opposed to one binary predictor for
RILs). Moreover, the higher resolution of the stock increases the sheer number of predictors,
and thus exacerbates the “small n, large p” problems faced in many QTL studies. Finally,
while the genotype of each RIL can be reproduced (and thus tested) as often as needed, the
genotype of each mouse in the HS is unique and cannot be replicated.





Chapter 3
Systematic detection of epistatic interactions based

on allele pair frequencies

The work presented in this chapter led to the following publication:
Ackermann, Marit and A. Beyer (2012). Systematic detection of epistatic interactions

based on allele pair frequencies. PLoS Genetics 8 (2), e1002463.

3.1 Introduction to allele incompatibilities

The simultaneous perturbation of two epistatically interacting genes leads to a phenotype
that is not expected based on the phenotypes of the individual genes. Understanding these
phenomena is indispensable for explaining multi-factorial traits and diseases (Cordell, 2002).
In addition, epistatic interactions provide important insights into the functional organization
of molecular pathways (Kelley and Ideker, 2005; Beyer et al., 2007). Much effort has therefore
been put into the development of methods to discover epistatic interactions, mostly in linkage
and association studies (Cordell, 2002; Hoh and Ott, 2003; Marchini et al., 2005; Phillips,
2008; Cordell, 2009; An et al., 2009; Liu et al., 2011; Wang et al., 2010).
Epistasis is always defined with respect to a specific phenotype and describes a non-

additive interaction effect of two genes on that phenotype (Section 2.4). Most gene interac-
tion studies explicitly measure a phenotype such as growth rate or viability (Beltrao et al.,
2010; Costanzo et al., 2010; Schuldiner et al., 2005; Tong et al., 2001). However, one can also
study implicit phenotypes by searching for the over- or under-representation of certain allele
pairs in a given population. Such allele pairs are examples of Dobzhansky-Müller incompat-
ibilities: they establish a fitness bias in favor of individuals inheriting the over-represented
allele combination (Orr, 1996). In their most extreme form such incompatibilities are embry-
onic lethal. Genes harboring these alleles are clearly in epistasis, as none of the alleles alone
has a fitness effect. Only the presence of specific allele pairs in one individual exposes the
phenotype. In this context, an implicit phenotype is a trait that is not explicitly measured
in the sample but whose regulators can still be inferred from the genotype data.
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Whereas several such incompatibilities are known in plants (see Bomblies and Weigel
(2007) and references therein), only very few allele incompatibilities have been reported in
mammals (Montagutelli et al., 1996; Payseur and Place, 2007). A small number of recent
studies have explored this idea for the genome-level identification of epistatic interactions:
if a large number of individuals is genotyped at a large number of genomic positions, it
becomes possible to test all allele pairs for over- and under-representation in that popula-
tion (Williams et al., 2001; Payseur and Place, 2007; Lawrence et al., 2009). For example,
(Williams et al., 2001) provide a map of distant LD in mouse RILs giving some indication
about the distribution of imbalanced allele pair frequencies in the genome. However, even
though some methodological progress has been made (Payseur and Place, 2007), previous
studies could hardly identify a significant number of interactions. The main obstacle is the
humongous number of statistical hypotheses tested when comparing all markers in a genome
against all markers. When correcting for multiple hypothesis testing one is usually left with
very few or even no significant allele pairs.

Here, we propose to address this problem by exploiting the additional information gained
from studying family trios. We show that by analyzing a sufficiently large number of individu-
als with known family structure it becomes possible to detect substantially more interactions
than what is expected if all markers were independent. Our method, called “Imbalanced Al-
lele Pair frequencies” (ImAP), relies on sequence data only, making it applicable to the
many already available SNP studies without the need for additional phenotype measure-
ments. ImAP is based on inspecting 3 × 3 contingency tables that track the frequencies of
all possible two-locus allele combinations in heterozygous individuals (assuming a diploid
genome). The test that we propose is similar to a χ2 test in that it compares the observed
frequencies in this table to expected frequencies assuming independence. However, our ver-
sion corrects the expected frequencies for confounding factors such as family structure or
allelic drift (Griffiths, 2000). ImAP is described in detail in Section 3.2.

In Section 3.3 we apply ImAP to genotype data from a population of 2, 002 heterozygous
mice with known family structure and identify 168 LD block pairs with imbalanced alleles.
Using simulations we can show that this number is significantly larger than expected under
the null hypothesis even after correcting for multiple hypothesis testing. The significance of
the top scoring interactions between the LD blocks could be independently confirmed using
a large collection of RILs. The number of significant allele pair imbalances that we detected
is surprisingly large and was not expected based on the published evidence. Section 3.4
discusses important outcomes and consequences of our analysis. The R implementation of
ImAP can be found in Appendix D.
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3.2 The ImAP procedure

An overview of ImAP is given in Figure 3.1. Panel A shows the core step of ImAP, a χ2-type
test comparing the observed frequency of the joint occurrence of a certain diallelic genotype
in one locus (with alleles A and a) together with a certain genotype in a second locus (with
alleles B and b) with the frequency expected based on the genotypes of the parents under the
null hypothesis (i.e. assuming no epistasis). The two loci are required to be distant enough
from each other in order not to get false positive results due to local linkage. This results in
a score χ2

obs quantifying the deviation of allele pair frequencies from their expected values
that is already corrected for inherent population structure. Subsequently, the significance
of the score is assessed with a permutation approach using pseudo-controls that are derived
from the genotypes that parents could have transmitted to their offspring (Figure 3.1B).
We apply this framework in two steps: First, we only analyze genomic blocks with high

local LD using representative markers. In a second step we drill down to individual marker
pairs. To further verify our results, we established a simulation procedure that mimics the
mating structure of the pedigree under the assumption of independence.

3.2.1 The ImAP test statistic

The calculation of the test statistic can be divided into five steps which are depicted in Panel
A of Figure 3.1. Steps one to three apply on single markers, while the last two steps consider
the interaction between two marker loci.

1. Let Oj be the set of all parent child trios for which we have complete genotype infor-
mation. This set might differ between markers due to missing values. Hence, for each
marker only those trios are taken into account for which there are no missing values
in the genotypes of both the parents and the offspring.

2. For each child in Oj , calculate the probability to inherit each genotype based on the
genotypes of the parents. This calculation is based on Mendelian laws.

Let Xij(gl) ∈ {0, 1} be the genotype indicator of a diploid child i ∈ Oj . gl, l = 1, 2, 3,
can take one of the three values (AA), (Aa), (aa), where A is the major allele and a the
minor allele on marker j. X̂ij(gl) is the corresponding expected genotype probability.

The expected genotype of individual i on marker j is derived from the genotypes of the
parents under the assumption of equal chances of inheriting each of the two possible
alleles from each of the parents. The resulting probabilities for all possible parental
genotype combinations are shown in Table 3.1.
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Figure 3.1: Schematic overview of the ImAP procedure. Panel A shows the calcu-
lation of the test statistic (numbers indicate the steps described in Section 3.2.1), panel B
depicts the calculation of the p-values. Family information is used for both parts.

3. Correct the expected genotypes for possible confounding factors such as segregation
distortion. There might be a preference in the inheritance of a certain genotype on
one marker in the population which is independent of interaction effects, e.g. if this
genotype leads to increased fitness. In order to correct the expected frequencies for
allele selection that is independent of other loci we multiply each individual’s expected
genotype by the ratio of the sample-wide observed and expected frequencies for the
corresponding marker (based on all samples):
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Table 3.1: Expected genotypes. Probabilities of each of the possible genotypes in the
offspring for each combination of parental alleles on a given marker.

Offspring
Parent 1 Parent 2 AA Aa aa

AA AA 1 0 0
AA Aa 0.5 0.5 0
AA aa 0 1 0
Aa Aa 0.25 0.5 0.25
Aa aa 0 0.5 0.5
aa aa 0 0 1

X̂ ′ij(gl) = X̂ij(gl) ·

∑
o∈Oj

Xoj(gm)∑
o∈Oj

X̂oj(gl)
. (3.1)

Normalize the corrected expectation so that the probabilities for each marker sum up
to one:

X̂
adj
ij (gl) =

X̂ ′ij(gl)∑
k∈{1,2,3}

X̂ ′ij(gk)
. (3.2)

This guarantees an adjustment of expected allele frequencies in cases where the ob-
served frequency of a marker in the population deviates from the theoretically expected
values.

4. Next, the observed and expected number of times each combination of genotypes ap-
pears on two distant markers can be inferred.

Let Gjk(glj , glk) be the observed frequency of the genotype combination (glj , glk) on
markers j and k, Ĝjk(glj , glk) the corresponding expected frequency. They are obtained
by summing over all individuals i ∈ Ojk = (Oj

⋂
Ok):

Gjk(glj , glk) =
∑
i∈Ojk

(
Xij(glj ) = 1 ∧Xik(glk) = 1

)
, (3.3)
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Ĝjk(glj , glk) =
∑
i∈Ojk

X̂ij(glj ) · X̂ik(glk). (3.4)

This step results in the 3×3 tables in the boxes “observed genotype combination” and
“expected genotype combination” in Figure 3.1. Using the product of the marginal prob-
abilities of the single marker genotypes for calculating the probability of the genotype
combination in Equation (3.4) mimics the assumption of no epistatic effects under the
null hypothesis. Thus, Gjk and Ĝjk can be used to derive a χ2 like statistic comparing
observed and expected genotype combinations on two markers.

5. The test statistic is obtained by first calculating the squared difference of observed and
expected frequencies for each genotype combination (glj , glk) of two markers j and k
divided by the corresponding expected frequency. The final score for a marker pair is
the sum of these values over all nine possible genotype combinations:

χ2
jk =

∑
lj ,lk∈{1,2,3}

(Gjk(glj , glk)− Ĝjk(glj , glk))2

Ĝjk(glj , glk)
. (3.5)

3.2.2 Permutation p-values

The significance of the imbalances observed for each marker pair is assessed with a permuta-
tion approach based on pseudo-controls. This approach has already been adopted in related
problems (Li, Qing et al., 2009) and is outlined in Figure 3.1B.
For each parent-child trio we infer the four genotypes that the child could have inherited

from its parents at each marker j. They consist of (a subset of) the three possible genotypes
(AA), (Aa) and (aa), with relative frequencies as given in Table 3.1. These genotypes are
then randomly combined over markers to form pseudo-offspring genomes in which each of
the possible 16 genotype pair combinations could in principle appear for each marker pair
jk. The R package trio (Schwender et al., 2012) was used to infer pseudo-controls for our
application example in Section 3.3.
The pseudo-genotypes allow us to assess the significance of the ImAP test statistic of

each marker pair by calculating an empirical marker pair specific null distribution based on
N = 10, 000 permutations (random combinations of pseudo-genotypes). The permutation
p-value is calculated as the fraction of pseudo-control test statistics χ2perm exceeding the
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observed score:

p = P (χ2perm > χ2
obs) = 1

N

N∑
i=1

1
(
χ2perm(i) > χ2

obs
)
. (3.6)

We correct p-values for the multiple hypothesis testing problem by applying the Benjamini-
Hochberg approach for the false discovery rate (FDR, Benjamini and Hochberg, 1995).
A natural approach for obtaining p-values would be the use of the χ2 distribution of the

ImAP test statistic. The degrees of freedom of this distribution depend on the marker pair
and are given as dfjk = (|j|−1)·(|k|−1), where |j| and |k| are the actual number of genotypes
present in the population for a marker pair jk. Analytical p-values for each marker pair could
simply be derived from these distributions. However, we found that the distribution of these
parametric p-values differed conditionally on the MAF of the markers (Figure 3.2A). The
χ2 distribution based p-values tend to be too conservative when the MAF is small. The
underlying cause is a shift in the distribution of the test statistics depending on the MAF
(Figure 3.2B). This phenomenon was greatly reduced when we changed to the permutation
based p-value calculation (Figure 3.2A).

3.2.3 Fine mapping of interesting loci

In order to speed up the calculations but still retain an acceptable resolution of loci with
potentially interacting genes, we pursued the following strategy.
In a first run of ImAP we split the data into blocks of high LD. This is done again with

the package trio, which provides an algorithm by Gabriel et al. (2002) (as described in
Wall and Pritchard, 2003) that uses confidence intervals on Lewontin’s D′ to estimate LD
block borders in parent-offspring data (see Section A.1 for a definition of D′). Afterwards,
one representative marker is chosen randomly among all markers with a minimum number
of missing values in each LD block and ImAP is applied to all possible combinations of
these representatives on different chromosomes. The restriction to markers on different
chromosomes is applied to rule out false positive results due to local linkage disequilibrium.
Subsequently, we identify all block pairs which were assigned an FDR below 0.5 and repeat

the analysis using all markers from those blocks. In this way we restrict testing of individual
marker pairs to genomic regions that are suggestive for interactions. Finally, we select the
highest scoring marker pairs from each locus pair as the ’interacting pairs’. This two-step
approach allows an accurate mapping of epistatic interactions over the whole genome while
simultaneously restricting the number of tests and the computing time to a more reasonable
level.
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Figure 3.2: Dependence of analytical p-values on MAF. A Permutation p-values vs
analytical p-values based on the χ2 distribution. The color code shows different MAF of
the markers. The smaller the MAF, the more the analytical p-values are conservative. B
Exemplary distributions of the test statistics depending on the MAF of the markers. The
scores follow a χ2 distribution with increasing degrees of freedom for larger MAF.

3.2.4 Pedigree simulation

The pseudo-control data was used to compute p-values. In order to also correct for multiple
hypothesis testing and for testing of any other possible biases in our data we simulated the
mating process in the mouse population assuming independence of the markers but adhering
to the original pedigree structure.
The simulation starts with the first generation of mice for which we have genotype in-

formation (F0 generation). Using fastPHASE (Scheet and Stephens, 2006) we infer the
haplotypes of these individuals. fastPHASE is based on the notion that haplotypes cluster
into locally restricted groups which can be described using a Hidden Markov model. As
opposed to other methods, fastPHASE assumes that due to recombination events the group
membership changes continuously across the chromosome and not only at the block borders.
Obtaining the haplotypes of the F0 generation allows us to initialize the mating process.

For each mother and father of an F1 individual we start with randomly choosing whether
they pass on the maternal or the paternal allele of the first marker on a chromosome to
the offspring. Then, using either general or sex-specific recombination rates (Supplementary
Material in Shifman et al., 2006), we sample whether the second marker is inherited from the
same chromosome or whether a recombination took place during meiosis. This procedure is
continued until a complete chromosome is assembled that is passed on to the offspring. The
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whole process is repeated until all generations are simulated. Subsequently, we randomly
add 0.01% genotyping errors (making sure we do not introduce any Mendelian errors) as
well as the same missing values as in the original data.

Since the simulation only accounts for local linkage but not for any other influences on allele
frequencies, these data should not contain any true gene-gene interactions. The proportion
of false positive findings should be comparable to the original data due to the same error
rates and missing values.

3.3 Application to mouse genotype data

3.3.1 The heterozygous mouse stock genotype data

We applied ImAP to search for potential epistatic interactions using outbred HS mice as
described in Section 2.7. We are using the genotype data of 2, 002 individuals that were
genotyped at 10, 168 markers. Importantly, the pedigree of these 2, 002 individuals is almost
completely known. The HS consists of 84 families, some of which are large, while others are
only nuclear families. These families were derived from 40 mating pairs of mice from the
original stock after more than 50 generations of random mating. Genotypes were obtained
with the Illumina BeadArray platform achieving call rates of 99.86%, the genotyping accuracy
was greater than 99.9% (Shifman et al., 2006).

After removing individuals with more than 5% missing data, we were left with 2, 000
individuals. In addition, we excluded markers with more than 5% missing values and/or
a MAF less than 0.1. Since we observed a rather poor quality of the genotypes on the X
chromosome with relatively few markers passing the quality criteria, we discarded data from
this chromosome altogether. The filtering resulted in 8, 091 markers used for the subsequent
analysis.
We did not have to discard any SNPs due to lack of HWE as is generally done in genome-

wide association studies. Instead, ImAP corrects for the disequilibrium (Section 3.2.1). In
the first run of our analysis, 230 out of 1, 159 markers had correction factors greater than
1.1 or smaller than 0.9. There are several explanations for the deviation from HWE, for
example natural selection, genetic drift or segregation distortion (Griffiths, 2000; McLean
et al., 1994). Even though it might not be possible to distinguish the source of disequilibrium,
our correction can be applied anyway.

3.3.2 Interactions between LD block representatives

When applying ImAP to the HS mouse data, we limited our analysis to markers residing
on different chromosomes in order to exclude local LD (Payseur and Place, 2007). An
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Figure 3.3: Genome-wide map of allele incompatibilities. The heatmap shows the
negative log10 p-values of each LD block combination on different chromosomes. Light red
spots show putatively interacting loci. Inset shows an enlargement of chromosome 7 versus
chromosome 12.

alternative approach would have been to determine local LD first and subsequently apply
ImAP to regions outside local LD. As described in Section 3.2.3, we first applied ImAP to a
reduced set of 1, 159 markers, one per LD block.
Figure 3.3 shows the spatial distribution of the interactions at the level of LD blocks in

a genome-wide map. As expected, most block pairs do not interact. At a p-value cutoff of
0.0001 we identify 168 interactions between 272 distinct loci (i.e. LD blocks). This p-value
corresponds to an FDR of 0.5. Although we did not achieve very low FDR values, they were
still markedly lower than in five simulated data sets. In two of the simulations the minimum
FDR was above 0.5.
Most of the loci interact with only one other locus, only 10 loci participate in more

than 2 interactions (Figure 3.5). Not surprisingly, there are more significant interactions
between large chromosomes with many measured markers than between small chromosomes
(Figure 3.4). However, we also found remarkable differences in the relative number of interac-
tions per chromosome. Especially chromosomes 2, 12 and 19 incorporate more loci carrying
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Figure 3.4: Number of interactions per autosome pair. Results are based on the 168
significant LD block pairs involving 272 loci. The barplot on the right shows the average
number of interactions per LD block for each chromosome. Chromosomes 2, 12, and 19 show
the highest participation in interactions while the fewest interactions per LD block are on
chromosome 17.

allelic incompatibilities than other chromosomes. To see whether the number of interactors
per chromosome is different from what would be expected by chance, we simulated the 168
interacting marker pairs 100, 000 times and compared the distribution of the number of in-
teractors per chromosome to the observed values. At a nominal 5% significance level, three
chromosomes (2, 7, and 12) differ from their expected values. At this significance level, we
expect less than one chromosome to differ significantly by chance. Hence, there is significant
variation of the number of interacting LD blocks between chromosomes.

In order to rule out the possibility of false positive findings due to increased numbers of
missing values or small MAF on some markers, we compared the distributions of missing
values and MAF between block representatives from significant block pairs to those of non-
significant pairs (Figure 3.6). There are no significant differences between the proportion of
missing values (Wilcoxon rank sum test, p-value 0.67). The MAF tends to be even higher
in the significant blocks compared to the other blocks. Thus, our results are not biased by
missing genotypes or differences in MAF.
The histograms in Figure 3.7 compare the distribution of the p-values that we obtained

by applying ImAP to the original block representative data with those resulting from five
simulations. While the histograms of the simulated data sets resemble those of uniformly
distributed p-values under the null hypothesis of no interacting loci, the original data
show a clear peak in the low p-value range. The simulated pedigrees contain significantly
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Figure 3.5: Number of interactions per LD block. Number of interactions for each of
the 272 loci involved in the 168 LD block interactions with p ≤ 0.0001. 6, 3 and 1 loci have
3, 4 and 5 interactors, respectively.

less interactions with low p-values than the real data (one-sided Kolmogorov-Smirnov test
p-values < 10−23). The p-value distribution of the observed genotypes is also significantly dif-
ferent from a uniform distribution (one-sided Kolmogorov-Smirnov test, p < 10−69). This is
not the case for all but one of the simulations (p-values 0.991, 0.587, 0.994, < 10−12, 0.995).
Both results confirm that there are more imbalances in allele pair frequencies than expected
by chance.
This difference between the real and simulated data can now be quantified to make sug-

gestions about the number of true allelic incompatibilities in the HS mouse population. For
example, at p ≤ 0.0001 (corresponding to an FDR < 0.5) we find between 26 and 58 more
significant block pairs in the original data compared to the simulations.
As can be seen in the inset of Figure 3.3, each chromosome pair exhibits only few such

interacting pairs that are often surrounded by less significant markers due to local linkage.
To further increase the resolution in these interesting regions, we performed fine mapping of
all marker pairs in the significant block pairs.

3.3.3 Fine mapping of interactions

For the second step of the analysis we chose all LD blocks that were involved in at least
one significant interaction. There might be one or more interacting markers within each LD
block and the above analysis does not reveal which markers within a region are involved
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in the interactions. We repeated the calculation of the test statistics, null distribution and
p-values with all markers in those blocks to find the SNP pairs with the highest signal in each
significant block pair. This resulted in 1, 464 marker pairs with a p-value < 0.0005 (Tables
S3 and S4 in Ackermann and Beyer, 2012), since each block pair could contain more than
one significant marker pair. Note that the interpretation of the newly calculated p-values
has to be done with care since a large number of the tested marker pairs is already assumed
to be interacting (they were chosen from interacting LD blocks) and because markers inside
LD blocks are highly correlated (i.e. not independent). Therefore, it is difficult to correct for
multiple hypothesis testing. However, we can still use the p-values to rank the interactions,
i.e. to identify the most likely interacting marker inside each LD block.

3.3.4 Overlap with published mouse RIL data

Only few allele incompatibilities in mouse have been reported so far (Montagutelli et al., 1996;
Payseur and Place, 2007). We are not aware of any analysis that quantitatively examines
the number of such interactions that can be expected in the whole genome. An overview of
the distribution of allele imbalances in RIL is given in Williams et al., 2001. The authors
inferred the correlation between locus pairs as a measure for distant LD. The strains used in
this study are partly identical to the progenitors of the HS. Thus, it is reasonable to assume
at least partial overlap of incompatible locus pairs between our study and the RIL data.

We therefore investigated the distant LD of markers that were genotyped in the RIL as
well as in the HS mice. We downloaded the genotype data for 322 inbred mouse strains
(www.genenetwork.org) and recalculated Pearson’s correlation coefficient (R2) as well as
the MAF of the common markers. This allowed us to apply the same quality constraints
(MAF > 0.1) to the RIL data as to the HS genotypes. Moreover, only marker pairs on
different chromosomes were considered. After the filtering, 584 markers constituting 777
informative pairs were used for the analysis.

Figure 3.8 compares the overall distribution of distant LD in the RIL data with the
distribution of markers showing high ImAP scores. There is a significant difference between
the background distribution of R2 of common marker pairs on different chromosomes and the
R2 of the top ImAP pairs (one-sided Kolmogorov-Smirnov test, p-value 0.0004). Marker pairs
with a significant ImAP score tend to be more in distant LD than other marker pairs. More
specifically, 292 out of the 777 marker pairs have an absolute correlation above 0.2. Thus, a
significant number of interactions obtained from the HS can be independently confirmed in
a different set of mouse populations.
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Figure 3.6: Relationship between ImAP scores and missing values or MAF. The
Figures show the cumulative distribution functions of the proportion of missing values (A)
and MAF (B) of representative markers of significant and non-significant LD block pairs.

3.3.5 Functional enrichment of ImAP interactions

As a second check of the relevance of the ImAP outcome, we investigated if the genes mapping
to loci that participate in high ranking interactions are enriched for relevant functional
categories. The Gene Ontology (GO) (Ashburner et al., 2000) provides a systematic ordering
of genes into functional classes in a tree-like structure. We use the GO “Biological Process”
ontology to annotate genes related to marker loci with their biological function.
ImAP detects interactions between markers, not genes. Thus, in order to perform an

enrichment analysis we have to assign gene functions to markers. A conservative solution
to this problem is to assign to a marker j the functions of all genes encoded between the
flanking markers j − 1 and j + 1. If there actually exists a functional enrichment among
genes causing allele incompatibilities this enrichment will be ‘diluted’ due to this procedure.
However, since we do not know the causal genes a priory there is no other rigorous way of
performing such GO enrichment. This strategy also prevents a bias in GO enrichment due
to local gene clusters with similar annotation.
We further restricted the enrichment analysis to interacting marker pairs whose 3 × 3

genotype table contained exactly one cell with a zero entry. This corresponds to locus pairs
where one allele pair combination was not observed at all in the sample and can thus be
assumed to be lethal. We reasoned that genes involved in such an interaction have functions
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Figure 3.7: ImAP p-value distribution. Distribution of the p-values of the original data
(black) and five simulations under the null hypothesis of no allelic incompatibilities (grey).
The y-axis is concentrated on the interesting area of high density. The inset shows a zoom
on the small p-values in log10 scale.

related to organism development. The mapping of genes and their associated GO terms
to these markers resulted in 1, 314 markers having at least one GO term assigned to them.
Seventy-three of these markers are involved in one of the significant interactions.

The enrichment test was conducted using the topGO algorithm (Alexa et al., 2006). An
advantage of topGO is that it corrects for multiple hypothesis testing, particularly taking
into account the nested structure of the GO tree. Since the multiple hypothesis testing
correction is inherent in the algorithm, the authors suggest to use the unadjusted p-values
as a ranking criterion. We call all terms significant with a p-value < 0.01 based on the
“weighting” algorithm of topGO.

The top ranking GO biological process terms for the original data as well as for an ex-
emplary simulation are shown in Tables B.1 and B.2 in the appendix. We found more
significant and more relevant GO terms in the original data compared to the simulation.
As expected, many of the significant GO terms are related to developmental processes such
as germ cell layer development and development of brain, lung and epithelium. A lot of
interesting terms had p-values just above the threshold of 0.01 (e.g. stem cell maintenance
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Figure 3.8: Distant LD in RIL with respect to ImAP. Cumulative distribution func-
tion of the overall distant linkage disequilibrium in the RIL (grey) and RIL marker pairs
with ImAP p-value ≤ 0.0005 (black).

(p = 0.013), anterior/posterior axis specification (p = 0.021) or determination of left/right
symmetry (p = 0.032)). This analysis shows that markers participating in interactions are
enriched for relevant GO categories. One might also expect that pairs of interacting markers
share similar functions. However, we did not observe that interacting markers share GO
categories more often than expected by chance (data not shown).

3.3.6 Comparison of interaction profiles

Epistatic interactions affecting the viability of an organism often bridge parallel biological
pathways (Kelley and Ideker, 2005; Beyer et al., 2007). A pathway can be regarded as a set
of genes or their protein products, which act together in a concerted way in order to effect
a determined biological function. The assumption underlying the between-pathway model
is the existence of functional redundancy among pathways. A decrease in functionality of
only one of two genes operating in two redundant pathways still allows for regulation of
the downstream process through the second alternative pathway. However, if both genes
are dysfunctional, both pathways will be disrupted, which may lead to a severe phenotype
(i.e. an epistatic interaction between the two genes). Therefore, two genes in the same
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pathway should share some of their interaction partners, namely those in a functionally
similar pathway (Roguev et al., 2008). Thus, the interaction profiles of genes in the same
pathway should be correlated (Figure 3.9A).
Here, we are interested in markers having a significant number of common interactors.

In order to find such groups of markers with similar interaction profiles, we compared the
marker interaction profiles from the ImAP analysis using the congruence score (Ye et al.,
2005). It is calculated as the negative log10 transformed p-value of a hypergeometric test for
the number of shared interaction partners (see Section A.5 for details). Thus, the score relates
the number of interactions shared between two markers to the total number of interactions
each single marker participates in (Ye et al., 2005).
Since here we are analyzing interaction profiles (i.e. all interactions of a given marker

rather than single interactions) we chose a less stringent cutoff value for interacting block
pairs (p < 0.001). Even though using the more stringent cutoff of 0.0001 also yielded more
correlated interaction pairs in the real data than in the simulations, choosing a higher cutoff
increases the difference between real and simulated data. The fraction of block pairs with
congruence scores > 1 and > 2 is higher in the original data than in the five simulations
(Figure 3.10). This difference between the proportions is significant in four out of five cases
for a significant congruence score (> 2, one-sided χ2 test p-values < 10−5, 0.239, < 10−15,
< 0.0001 and < 10−15). Thus, interaction profiles are more consistent in the real data
compared to our simulations.

3.3.7 Combining ImAP scores with expression data

An important and nontrivial step in any genetic mapping study is to identify the causal
genes encoded in the significant loci. Additional, independent genomic information has been
widely used to prioritize genes in a genetic region of interest (Suthram et al., 2008; Lage
et al., 2007; Lee et al., 2009).
Here, we are using expression data for prioritizing candidate genes at interesting loci. It

is likely that several of the allele incompatibilities are caused through functionally relevant
changes of gene expression between the minor and major alleles at the two loci (Mehrabian
et al., 2005). We used expression data from three tissues (lung, liver, hippocampus) measured
in a subset of the HS mice (257, 273 and 468 individuals, respectively). For each marker
we considered all genes encoded in the region defined by the flanking markers. We then
filtered for genes showing significant expression differences between individuals carrying the
major versus minor alleles. This analysis was performed independently for each marker using
one-way analysis of variance (ANOVA) with the three possible genotypes as levels. Each
genotype had to be observed in at least 5 individuals.
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Figure 3.9: Correlated interaction profiles. A Schematic showing relationship between
epistatic interactions and molecular pathways. The genes x and y share three allele incom-
patibilities with genes from a parallel pathway. In the schematic interaction matrix on the
right these shared interactions (red color shading) lead to correlated interaction profiles (be-
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19 sharing a common interacting locus on chromosome 12. The position of the loci on the
chromosomes is indicated by red bars. The putatively causal genes are written below the
loci. Arrows indicate interactions with ImAP p-values < 0.0005, the dashed line indicates a
high congruence score (> 2).

Among the 1, 464 top scoring ImAP pairs, we found 204, 113 and 122 pairs where each
locus contained at least one differentially expressed gene (p-value < 0.05) in the hippocam-
pus, liver and lung data sets, respectively. 23 locus pairs were associated with the same
differentially expressed genes in all three tissues.

Among the 525 marker pairs with a congruence score greater than 2 there are 68, 25 and 43
locus pairs containing at least one differentially expressed gene in the hippocampus, lung and
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Figure 3.10: Congruence scores of original data versus simulations. Fraction of
congruence scores > 1 and > 2 for interaction profiles in original data and five simulations.

liver data, respectively. Figure 3.9B shows an example of such a marker pair. The putatively
causal genes Fgf10 and Btrc showed differential expression (ANOVA p-value < 10−6) in the
hippocampus. The two genes are critically involved in the development of several tissues
such as lung, mammary gland, tooth or telencephalon (Maeda et al., 2007; Kudo et al.,
2004; Pedchenko and Imagawa, 2000; Miletich et al., 2005; Pispa et al., 1999). This is
consistent with the GO terms we found to be enriched among the top scoring ImAP pairs
(Table S1). Btrc is an inhibitor of Sonic Hedgehog (Shh) signaling, which is involved in
the development of the lung and the telencephalon (Gulacsi, 2006). Both, Fgf10 and Shh
signaling are involved in development of anatomical structures and are known to influence
each other (Hébert, 2005).

According to our gene expression analysis, the minor allele of Fgf10 leads to a reduced
expression of this gene while individuals carrying the minor allele of Btrc show a higher
expression than individuals with the major allele. Since Btrc is an inhibitor of Shh signaling,
this implies that both minor alleles reduce Hedgehog signaling.

The Btrc and Fgf10 loci share 13 ImAP interactions. One of them involves a locus
on chromosome 12 containing, among others, the homeobox transcription factor Nkx2.1,
which is indispensable for lung and telencephalon development. Depending on the cell type
and developmental stage Nkx2.1 either interacts with the Fgf10 and Shh pathway (Gulacsi,
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2006; Sakiyama, 2003) or it independently acts in parallel (Minoo, 1999). Thus, the reduced
activity of Hedgehog signaling in carriers of the minor Btrc or Fgf10 alleles may be rescued
by a fully functional Nkx2.1. The ImAP analysis suggests that the combination of the minor
allele at the Nkx2.1 locus together with minor alleles at either the Btrc or Fgf10 locus leads
to an embryonic lethal phenotype, presumably due the loss of the buffering effect of Nkx2.1.

3.4 Discussion of ImAP and related issues

We present a new approach to infer epistatic interactions on a genome-wide scale in family
data using sequence information only. The method scans all marker pairs in the genome
for deviation from the expected allele pair frequencies resulting in a list of putative pairs
featuring an allele incompatibility. Relying on sequence data only is an advantage compared
to existing methods for the inference of gene-gene interactions, since the approach can readily
be applied to existing SNP data. There is no need for resource- and cost-intensive phenotype
measurements.
Regression and χ2 methods have been proposed in the past for the identification of epistatic

interactions (Spielman et al., 1993; Cordell, 2002; Cordell et al., 2004; Cordell, 2009; Liu et al.,
2011; Wang et al., 2010) and the two approaches have been shown to be interconvertible
(Agresti, 2002). We chose a χ2-based approach, which makes the fewest assumptions about
the underlying genetic model (Zheng et al., 2009). Which ever way the detection of allele
incompatibilities is performed, the key notion is to implement means for accounting for the
confounding factors and to remove single-marker effects (e.g. leading to a deviation from
Hardy-Weinberg equilibrium). Only after considering these confounding factors we got an
appreciable number of significant allele incompatibilities.
We identified substantially more interacting loci than expected by chance, which is first

evidence that we detect true ’signal’. Further, we could show that interacting marker pairs
are enriched for genes involved in developmental processes and a significant number of inter-
actions could be validated using independent external data. Due to the very large number of
pairs tested, finding a large number of interactions with low p-values even in the simulations
is expected. However, at low p-values we observed significantly more interactions in the orig-
inal data than in any of the simulations; e.g. at p ≤ 0.0001 we found at least 26 interactions
more than in any of the simulations. Considering that so far virtually no allele incompati-
bilities between mouse strains were reported, this is a surprisingly large number. Suitable
statistical tools for the detection of allele incompatibilities at a genomic scale did not exist
so far. Hence, this study presents first evidence about the extent of allele incompatibilities in
model populations such as the HS. Although the number of interactions we identified might
not seem immense, it partly explains the difficulties faced when breeding recombinant inbred
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lines (Williams et al., 2001). For example, during the generation of the Collaborative Cross,
a multiparental recombinant inbred strain panel, 198 of the 650 initial lines were lost during
the first three to five generations of inbreeding (Chesler et al., 2008). ImAP helps to better
understand these issues and it can reveal potential biases in the breeding process that might
be introduced due to allele incompatibilities.
Future work should also include haplotype information. Local haplotypes have been in-

ferred for the HS population in terms of probability of inheritance from any of the eight
founder strains (Mott et al., 2000). That means haplotypes are expressed as 8-dimensional
vectors of probabilities. Consideration of these haplotypes would remarkably increase the
complexity of the analysis (thereby also increasing the number of tested hypotheses), but it
might further improve the accuracy.
An epistatic interaction is always defined with respect to a specific phenotype. In this study

the phenotype is implicit, hidden. Indeed, looking for allele pairs that are under-represented
in the HS population reveals the genotype of the non-existing individuals. Therefore, the
hidden phenotypes should relate to any biological processes affecting the fertilization, the
development or the viability of an individual and thus prevent its appearance in the popula-
tion. Interestingly, top scoring marker pairs are enriched for genes involved in these expected
phenotypes.
It is not immediately obvious how our findings translate to human populations (Stearns

et al., 2010; Kosova et al., 2010). Although we are working with outbred mice, they were
derived from eight genetically distinct inbred strains. These founder strains differ at at least
311, 647 genomic positions (SNPs and structural variations, Keane et al., 2011). It is likely
that many of the incompatibilities that we see in the HS developed in the inbred founder
strains used for establishing the HS. Even though allele incompatibilities cannot evolve in
mixing populations, also human races have been in isolation for more than 100 generations
(de la Chapelle, 1993; Li and Durbin, 2011; Gutenkunst et al., 2009). Hence, it is possible
that an appreciable number of incompatibilities exist in the human species. Anderson et al.
(2010) have shown that incompatibilities in yeast can manifest already after relatively few
(approximately 500) generations. Again, also that finding is not easily transfered to mam-
mals, as the speed of such process will depend on several factors, including recombination-
and mutation rates. As the number of family trios that is being fully sequenced increases
(Durbin et al., 2010; Roach et al., 2010), we expect that our framework will be applicable
to human populations within the next years to address these questions.





Chapter 4

Dynamic eQTL

The work presented in this chapter is related to the following publication:
Ackermann, Marit, M. Clément-Ziza, J. J. Michaelson, and A. Beyer (2012). Teamwork:

improved eQTL mapping using combinations of machine learning methods. PLoS ONE 7 (7),
e40916.

Moreover, the following manuscripts are in preparation:
Ackermann, Marit, W. Sikora-Wohlfeld, and A. Beyer (2012). Impact of natural genetic

variation on gene expression dynamics. submitted.
Sikora-Wohlfeld, W., M. Ackermann, E. Christodoulou, and A. Beyer (2012). Transcrip-
tion factor target gene identification based on ChIP-seq data. submitted.

4.1 Introduction to dynamic eQTL mapping

Natural genetic variation affects gene expression levels and thereby impacts on molecular
and physiological phenotypes such as protein levels, cell morphology or disease phenotypes.
In this respect, gene expression has proven instrumental as an intermediate phenotype from
which conclusions about the emergence of high level traits can be drawn. A genetic locus
containing a sequence variant that affects transcript levels of a gene is called an expression
quantitative trait locus (eQTL). Studying eQTL has demonstrated its value for revealing the
molecular mechanisms underlying disease associated SNPs, that were previously identified
e.g. through genome wide association studies (GWAS) (Dermitzakis, 2008; Altshuler et al.,
2008). Moreover, it has been shown that eQTL SNPs are more likely to be disease causing
than random genetic loci (Zhong et al., 2010) and can thus be used to prioritize genetic
markers in GWAS.
Differences in mRNA expression levels caused by natural genetic variation can manifest

themselves between individuals, populations, environments and, very importantly, between
cell types and tissues (see Dimas et al. (2009) and Nica et al. (2011) and references therein).
Since cells forming different tissues must have very different morphology, organization and
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function, distinct patterns of gene expression are required for each cell type. This variation
of gene expression between cell types is under the influence of natural genetic variation. A
number of studies (summarized in Table 4.1) compared eQTL across different cell types
and tissues in mouse and human samples and report that 5% to 94% of the eQTL are cell
type-specific. Potential reasons for the seemingly divergent outcomes of these studies are
the different levels of relatedness of tissues under study and the different sample sizes of
the studies. The last point is especially important in that cell type specificity is probably
over-estimated due to low power of eQTL studies (Dimas et al., 2009; Lohmueller et al.,
2003). Nevertheless, there is clear evidence for cross-tissue differences in genetic variation
influencing transcript levels. This raises the question whether conclusions drawn from an
eQTL study in one cell type or even a cell line translate to other cell types, a problem which
is highly relevant when explaining disease mechanisms with eQTL studies that are conducted
in tissues which are different from the disease tissue or when several cell types are involved
in the disease etiology.
Another layer of complexity is added when considering dynamic processes such as cellular

differentiation or response to internal or external stimuli. These situations go along with
drastic changes of the cell’s morphology or molecular state being induced through the adap-
tation of gene expression patterns. Here we propose to not only compare eQTL observed in
individual cell types (at steady state), but to additionally map the expression changes mea-
sured during the cell state transitions as traits. More specifically, we do not only distinguish
static and non-static eQTL, as has been done before (Table 4.1). Instead, we further divide
the group of non-static eQTL into eQTL observed for specific cell states/types and eQTL
resulting from mapping expression changes/differences as traits. We show that these classes
of eQTL represent different sets of eQTL corresponding to different modes of expression
variation.

The main goal of the present study is to provide a functional classification of eQTL re-
flecting the spectrum of genetic contributions to gene expression variation over a range of
dynamically changing cell states. A well-studied model for a dynamic process, being ac-
companied by substantial gene expression changes, is the differentiation of hematopoietic
stem cells (HSCs) into the different lineages of mature blood cells (Gerrits et al., 2008).
We decided to use this system to investigate eQTL based on three different categories of
expression-based traits: (i) eQTL that are observed across all cellular states (static eQTL),
(ii) eQTL being specific to one or a subset of cell states (conditional eQTL) and (iii) eQTL
affecting changes of transcript levels during differentiation (dynamic eQTL). Although our
scheme can serve to classify eQTL across very generic cell states, we will use the term cell
type in the remainder of this thesis, referring to the application to hematopoietic cell types.
In Section 4.2 we introduce these three classes of eQTL and propose strategies to map
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eQTL in the different classes. By applying our proposed approaches to gene expression data
from mouse inbred lines taken from four different hematopoietic cell types (Gerrits et al.,
2009) in Section 4.3, we demonstrate that eQTL from the above three classes, although
based on the analysis of the same set of expression and genotype data, comprise different
sets of regulatory loci having to be inferred from separate mappings. In particular, we show
that basic cellular processes and state and differentiation specific functions are regulated
by different eQTL categories. The choice of the eQTL mapping procedure has considerable
influence on the outcome of the study. Section 4.4 summarizes and discusses the most
important aspects of the analysis. The R code to reproduce the analysis can be found in
Appendix E.
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4.2 Methods

4.2.1 eQTL classification

We distinguish static, conditional and dynamic eQTL. A static eQTL affects a gene’s expres-
sion in all conditions under consideration (Figure 4.1A). It is independent of the cell type
and will thus be detected in all cell types. In contrast, a conditional eQTL is only active in
one or a subset of the conditions under consideration (Figure 4.1B). Dynamic eQTL drive
changes in mRNA levels during the transition from one cell type to another (Figure 4.1C).
In this respect our definition of dynamic eQTL differs from definitions used in the literature.

For example, Gerrits et al. (2009) define a dynamic eQTL as an eQTL that is present in one
condition but not in another. We refer to those eQTL as conditional. A concept very similar
to dynamic eQTL has been introduced in the context of studying transcriptional regulation
in different growth conditions in yeast (Smith and Kruglyak, 2008). The authors define
eQTL affecting expression changes between conditions as gene-environment interaction eQTL
(gxeQTL). A similar study has been conducted on differential expression in two different
temperatures in worms (Li et al., 2006).
Different computational means can be used to detect the three eQTL types defined above.

Dynamic eQTL require mapping of the expression changes (fold changes, slopes) observed
at the transition from one type to another (Smith and Kruglyak, 2008; Li et al., 2006).
Conditional eQTL may be detected through independently mapping eQTL in the various cell
types and then identifying such eQTL that were found in some, but not all conditions. Such
an approach requires defining two thresholds: first a significance threshold (e.g. maximum
p-value) for calling eQTL that are active in one cell type and second, an insignificance
threshold (e.g. minimum p-value) for deciding that the same eQTL is not active in other cell
types. Note that both thresholds are required and that they have to be sufficiently different.
Using just one threshold would lead to a situation where all eQTL that are just above the
threshold in one cell type and just below the threshold in other cell types would be called
’conditional’ although the eQTL scores are very similar across all conditions.
Here we propose a different approach that we termed ’simultaneous mapping’, because it

simultaneously identifies static and conditional eQTL and because it simultaneously uses the
expression data from all conditions (Table 4.2, Section 4.2.2). We inferred dynamic eQTL
by mapping expression differences between pairs of cell types (Table 4.2, Section 4.2.4).

4.2.2 Simultaneous eQTL mapping

The goal of simultaneous eQTL mapping is to infer eQTL that are specific for each of the
cell types k = 1, . . . , c (conditional eQTL) as well as static eQTL in one single analysis. To
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Figure 4.1: eQTL classification. Schematic representation of static, conditional and
dynamic eQTL. For the sake of simplicity only two conditions are considered, but the concept
is extensible to any number of cell types. The top part of each panel shows in which condition
the eQTL influences a gene’s expression or if it affects expression changes between cell types.
The lower parts of the panels show exemplary mRNA expression profiles of the gene in six
samples. The genotype of the eQTL in each sample is indicated by the color, assuming
homozygous diallelic markers. A A static eQTL impacts expression in all cell types. The
ranking of gene expressions per genotype is the same in all conditions, the slope of expression
change between cell types can be similar or different between genotypes. B A conditional
eQTL influences gene expression in only one of the two conditions. Thus, gene expression is
a function of genotype in one cell type but not in the other. The slopes of expression changes
may or may not be dependent on the genotype at the eQTL locus. C A dynamic eQTL
drives expression changes between cell types. This implies that the slopes of expression
changes between conditions are dependent on the genotype at the eQTL.

this end, the expression vectors yjk of each gene j (j = 1, . . . , N) from all conditions k are
concatenated to form a new trait vector yj =

[
yTj1, . . . ,yTjc

]T
(Figure 4.2). Note that this

vector might contain several entries for the same strain, each from a different cell type. In
order to get a matching genotype matrix, we replicate the genotype matrix as many times
as there are cell types. Because not all individuals (mouse lines) were measured under all
conditions, we subset the genotype matrices to the samples for which gene expression data is
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Table 4.2: Overview of eQTL mapping methods. Overview of the traits and predictors
of the eQTL mapping methods applied in this paper.

Mapping method Trait Predictors
simultaneous mapping concatenated gene expres-

sion over all cell types
genotypes
+ cell type
indicators

single cell type mapping gene expression in one spe-
cific cell type

genotypes

dynamic eQTL mapping gene expression differences
between a pair of cell types

genotypes

available. The resulting matrices X1 to Xc are concatenated in order to obtain a predictor
matrix matching y. Since we would like to distinguish static and conditional eQTL, we need
to add additional predictors indicating whether a sample was measured in a certain cell type
or not. Therefore, X is extended by as many dummy variables as there are cell types, where
the entry for a given sample in a given cell type indicator is 1 if the sample was obtained
from this cell type and 0 otherwise (Figure 4.2).
This new predictor matrix X allows to detect genetic loci affecting a gene’s expression

either in the same way in all cell types or differently or exclusively in a subset of cell types.
We apply Random Forests (ImAP, Breiman, 2001) for mapping eQTL. RF is a machine
learning approach based on an ensemble of decision trees (for details, see Section A.2). We
have previously shown that multivariate eQTL mapping methods and in particular ensemble
approaches such as RF outperform traditional approaches for eQTL mapping (Ackermann
et al., 2012; Michaelson et al., 2010). Apart from the predictions of the response, RF returns
measures for the average importance of each marker on the prediction. We use the selection
frequency (SF) of each genotype marker as a measure of its importance for predicting mRNA
levels. A marker that is used more often than expected by chance is an eQTL of the
corresponding gene. Significance is assessed using a permutation approach (Section 4.2.6).

4.2.3 Discrimination of static and conditional eQTL

For each significant eQTL - target gene pair emerging from the simultaneous mapping (we
used FDR < 0.1 as a significance threshold for the hematopoiesis data), we fit two linear
models to the target’s expression levels: a full model containing the eQTL genotype xm, a
cell type factor variable z with as many levels as there are cell types, and an interaction
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Figure 4.2: Simultaneous eQTL mapping. Schematic of simultaneous eQTL mapping
for two cell types. This approach combines the available information from the two cell
types (red and green) in one eQTL analysis. To this end, the gene expressions measured
in the different conditions are combined into one vector y. Similarly, for each condition the
genotype matrix is subset to all samples for which there are expression measurements in this
cell type. The resulting two submatrices X1 and X2 are concatenated into one genotype
matrix. In order to discriminate static and conditional eQTL, two additional predictors
indicating the cell type from which a sample was derived, are added to the predictor matrix.
The combined genotype and cell type indicator matrix is used to find the model which best
predicts gene expression simultaneously in all conditions.

term (xmz) between the two variables:

yj = µ+ βxm + αz + γ(xmz) + e; (4.1)

and a reduced model containing only the two main effects without their interaction:

yj = µ+ βxm + αz + e. (4.2)

In both models, µ is the mean expression over all cell types, β denotes the parameter
estimate of the marker effect, α the parameter estimate of the cell type effect, γ the estimate
of the interaction effect and e is a vector of normally distributed errors. By applying an
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analysis of variance (ANOVA) on both models, we test whether the full model explains the
gene expression significantly better than the reduced one (see Section A.3 for details). If this
is the case, i.e. if the ANOVA FDR < 0.1, we call the eQTL ‘conditional’. The cell types
in which the eQTL is active are found with post-hoc Wald tests (Section A.4). The resulting
p-values for each eQTL - target gene pair are corrected for multiple hypothesis testing using
the stringent Bonferroni correction (Shaffer, 1995).

4.2.4 Dynamic eQTL mapping

For mapping genetic loci driving expression dynamics between two cell types, we create a new
trait vector ydiff

k1k2
containing the sample-wise expression differences of a given gene between

two conditions k1 and k2:

ydiff
k1k2 = yk1 − yk2 . (4.3)

We then apply RF and a permutation scheme to obtain p-values as described in Sections
4.2.2 and 4.2.6 to conduct the eQTL mapping using ydiff

k1k2
as the quantitative trait. As

opposed to the simultaneous mapping, the predictor matrix now only contains the marker
genotype vectors of each sample and no cell type variables.

4.2.5 Mean eQTL mapping

Similar to using expression differences as a quantitative trait for dynamic eQTL mapping,
we employed mean expression levels across cell types as a means to map static eQTL. Before
calculating the average expression, we centered the data across strains, because otherwise
mean expressions might be too much influenced by cell types in which the mRNA levels are
higher compared to the remaining types. Hence, the mean expression ȳij of gene j in strain
i is given as

ȳij = 1
c

c∑
k=1

(
yijk −

1
n

n∑
i=1

yijk

)
, (4.4)

where c is the number of conditions in which expression levels are measured and n is the
sample size (assumed to be the same for each condition).
If available, one could incorporate additional information on the quality of or certainty

about each of the measurements into the calculation of mean expressions. The data of Gerrits
et al. (2009) were measured on Illumina Sentrix Mouse-6 BeadChips. Apart from the raw sig-
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nal intensities, the Illumina image analysis software returns quality scores for the raw signal
intensities for each of the probes on the expression microarray. They are given as p-values
reflecting the probability of achieving the given intensity by chance. We use the negative
log10 transformed p-values as weights for the calculation of average expressions across cell
types, thereby assigning higher weights to probes that were measured with high confidence.
To this end, weighted mean probe intensities across cell types ȳprobe

ij are calculated as

ȳprobe
ij = 1

c∑
k=1

wprobe
ijk

c∑
k=1

[
wprobe
ijk

(
yprobe
ijk − 1

n

n∑
i=1

yprobe
ijk

)]
, (4.5)

where wprobe
ijk is the weight derived from the quality score for probe intensity yprobe

ijk . Sub-
sequently, we use the median to summarize mean probe levels for each gene.

4.2.6 p-value calculation

We use the RF SF as a measure of the impact of each genetic locus on gene expression.
It has previously been shown that this importance measure outperforms classic measures
like the permutation importance in eQTL mapping (Michaelson et al., 2010). However,
the raw SF itself is not an absolute indicator of the importance of each predictor since
its distribution depends on the nature of the predictors in at least two respects. Firstly,
quantitative predictors will be selected more often than binary variables (Strobl et al., 2007).
Obviously, this is not a problem for eQTL mapping where all predictors can be assumed
to have the same number of levels (two in the case of the panel of inbred strains derived
from C57BL/6J (B) and DBA/2J (D) (BXD) mice, the B and the D allele). Secondly,
groups of correlated predictors will generally achieve smaller SFs than a predictor which
is not correlated with any other one (Strobl et al., 2008). This causes problems for eQTL
mapping since a block of markers in LD, which contains a causal regulatory locus, might
not be detected because all markers in the block are almost equally correlated with gene
expression and thus have to share the locus’s importance among each other.
A simple solution to this problem is the calculation of p-values based on a permutation

approach, where the expression vector is permuted many times. For each permutation,
the eQTL mapping with the calculation of SFs is repeated. We assume that under the
null hypothesis of no correlation between a given marker m and a gene’s expression, the
distribution of SFs of that marker is the same for all genes. Hence, we pool SFs of each
marker over all genes and all permutations in order to obtain an empirical null distribution
of SFs for this marker. Finally, the p-values of an eQTL - target gene pair (marker m and
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gene j) can be calculated from the SF null distribution of the corresponding marker m:

pmj = 1
NP

NP∑
r=1

1{sfrm ≥ sfobsmj }, (4.6)

where 1{·} denotes the indicator function, N is the number of genes and P the number
of permutations. sfmr is the SF of marker m in one permutation r out of all permutations
across all genes, and sfmjobs is the observed SF for marker m for the unpermuted expression
vector of gene j.

The bottleneck of this approach is the run time of the RF, strongly restricting the number
of permutations, which in turn results in a rather low resolution of the eQTL p-values, even
after pooling SFs over genes. In order to overcome this problem, we decided to combine
the permutation procedure with an analytical p-value calculation. After pooling SFs over a
small number of permutations (10 in all our eQTL mappings), we fit an exponential function
to the top one percent of the SF density. This is done by minimizing the squared difference
between the observed SF density and the fitted density function with respect to its parameter
λ:

λfit = argmin
λ

(f(sf)− λ exp(−λ sf))2
1{sf > s̃f0.99},

where λfit is the fitted parameter value of the exponential distribution, f(sf) is the observed
density of the SF and s̃f0.99 is the 99% quantile of this density. The parameter optimization
was conducted by applying the Nelder-Mead algorithm (Nelder and Mead, 1965) using the
R function optim (R Development Core Team, 2011). We chose to fit an exponential distri-
bution because all SFs are always greater than or equal to zero, where we expect most SFs
to be very close to zero. This behavior is nicely mirrored by an exponential function. We
also tested other distribution functions, for example the log-normal and the inverse gamma
distribution, but found all of them to result in less accurate fits than the exponential distri-
bution.
Although the density is computed based on all observed SFs, we only penalize fitting errors

on the tail of the distribution. This is the part of the distribution we would like to fit most
accurately since it contains the putative eQTL - target gene pairs. Consequently, this fitted
exponential distribution is used to calculate more precise p-values for the top one percent of
observed SFs. The remaining 99% of the p-values are still obtained from the empirical SF dis-
tribution as described before. The false discovery rate (FDR, Benjamini and Hochberg, 1995)
is calculated with the procedure of Benjamini and Hochberg (Benjamini and Hochberg, 1995).
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4.2.7 GO enrichment analysis

We tested for enrichment of certain biological functions among eQTL regions and target
genes. We used Gene Ontology (GO, Ashburner et al. (2000)) Biological Process gene an-
notation, which we retrieved from the Ensembl database release 66 (www.ensembl.org) via
the biomaRt (Durinck et al., 2009) interface of R (R Development Core Team, 2011). eQTL
loci were annotated with the functions of all genes encoded in the locus or being closer to
this locus than to any other (if not more than 1 cM away from it). This approach ensures
a conservative evaluation of functional enrichment and prevents a bias in the results due
to clusters of functionally related genes within a locus. The GO enrichment testing was
conducted within the topGO framework (Alexa et al., 2006) implemented in the R package
topGO (Alexa and Rahnenführer, 2010). We applied a Fisher test for over-representation of
GO biological processes among significant eQTL loci or targets within each specific eQTL
analysis or class. topGO offers several procedures to correct for the nested structure of the
GO tree, which might inflate the significance of enrichment test results. We used the ‘weight’
algorithm of the topGO package. Although this correction also implicitly accounts for mul-
tiple hypothesis testing, we further calculated an empirical FDR for each term based on a
shuffled gene/eQTL region to GO term assignment, preserving the number of terms assigned
to each gene/region. We call all terms with a FDR < 0.01 significant.

4.3 Application to mouse hematopoiesis study

4.3.1 Mouse hematopoiesis data

HSC differentiation is a prominent example of a dynamic process that is heavily genetically
regulated (Shivdasani and Orkin, 1996; Gerrits et al., 2008; Orkin and Zon, 2008; Iwasaki
and Akashi, 2007; Swiers et al., 2006). This has been shown, among others, by analyzing
natural genetic variation between mouse recombinant inbred lines exhibiting very different
hematopoietic phenotypes (Müller-Sieburg et al., 2000; Van Zant et al., 1983). One of
the best studied examples is the panel of BXD recombinant inbred lines that were derived
from crossing the C57BL/6 and DBA/2 lines. We are using published genome-wide mRNA
expression levels measured in 25 BXD strains in four cell types of HSC differentiation with
varying degrees of lineage commitment: multipotent HSC with the potential for self-renewal,
lineage restricted erythroid-myeloid progenitor cells, and lineage committed erythroid as well
as myeloid cells (Figure 4.3, Gerrits et al. (2009)).
Gene expression data of Gerrits et al. (2009) were downloaded from GeneNetwork (Wang

et al. (2003), http://www.genenetwork.org, accession numbers GN144-151). The data
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Figure 4.3: Hematopoietic stem cell differentiation. Schematic representation of
hematopoietic stem cell (HSC) differentiation focusing on cell types that were analyzed in
this work. Multipotent HSC with the capacity to self-renew differentiate into pluripotent
progenitor cells. Progenitors are committed to the lymphoid or myeloid cell line. Our
analysis focusses on the myeloid cell line, in which the progenitors can differentiate into
either myeloid or erythroid cells.

were already preprocessed by the original authors. Their preprocessing consisted of log2

transformation and subsequent joint quantile normalization of expression data from all four
cell types (stem cells, myeloid progenitors, erythroid and myeloid cells) as well as a batch
correction. We mapped Illumina probe IDs to Ensembl gene IDs using mapping information
from GeneNetwork and the R biomaRt package (Durinck et al., 2009) and summarized
expression measurements for each gene by calculating the median expression profile over
all its probes. Finally, we discarded all genes with a standard deviation of less than 0.1 in
all four cell types, resulting in expression measurements of 14, 724 genes on 22 to 24 BXD
strains, depending on the cell type.

Genotype information of the BXD strains was also downloaded from GeneNetwork (Wang
et al., 2003). Since we had expression information on only 25 strains, some neighboring
genetic markers in the genotype matrix contained identical information (i.e. they were per-
fectly correlated). Because it is impossible to distinguish these markers with respect to their
association to gene expression traits in the eQTL mapping, we merged neighboring markers
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with identical genotype profiles across strains, which resulted in genotype information on
849 distinct markers or marker intervals across the mouse genome with a median interval
size of 1.5 Mb (min: 4.6 kb, max: 32.1 Mb).
We applied the above eQTL classification scheme to systematically search for genetic

regions causing gene expression dynamics during hematopoiesis as well as the static and
conditional variation of expression in the different cell types. Using the data from Gerrits
et al. (2009), we focused on three cell type transitions during HSC differentiation: from stem
to progenitor cells (S-P), from progenitor to erythroid cells (P-E) as well as from progenitor
to myeloid cells (P-M) (Figure 4.3).

4.3.2 Frequencies of eQTL types

Our simultaneous eQTL mapping detected 3, 916 significant eQTL target gene pairs at an
FDR of 0.1. Among those, 2, 729 eQTL did not show a significant interaction with the cell
type indicator and thus constitute the class of static eQTL. We also found 1, 187 conditional
eQTL. These eQTL have to fulfill three conditions: (i) simultaneous mapping FDR < 0.1,
(ii) FDR for interaction between marker and cell type indicator < 0.1 and (iii) the contrast
test(s) for specific cell types have to be significant (Bonferroni corrected p-value < 0.005).
The number of eQTL being active under several conditions decreases with increasing

number of conditions. While 643 eQTL are active in one cell type, 357, 124 and 63 have
a significant contrast test result in two, three or four conditions, respectively (Figure 4.4).
eQTL with four significant cell type interactions arise if an eQTL is active in all cell types,
but with changing effect sizes. In this case, the ANOVA detects the dependence of the effect
size of the eQTL marker on the cell type as an interaction between the marker and the cell
type variable. The subsequent contrast tests then only test whether the eQTL is absent or
present regardless of effect size, which is true for all cell types. In this respect, these eQTL
represent a special class of conditional eQTL.
Around 9% of the static eQTL (244) are local eQTL, i.e. the target gene is encoded at

or nearby the eQTL locus (left-hand side of Figure 4.5). It is assumed that local eQTL are
mostly caused by mutations in cis and thus they are commonly referred to as cis-eQTL. As
opposed to that, an eQTL affecting a distant gene is called a trans-eQTL. It is noteworthy
that the number of static and conditional cis-eQTL is relatively similar, whereas we find
substantially more static than conditional trans-eQTL (Figure 4.5). (Thirty-one percent
(363) of all conditional eQTL are cis effects.) The statistical power for detecting static eQTL
is much higher than the power for detecting conditional eQTL, because of the additional tests
needed for detecting significant differences between the cell types, which are based on only
a subset of all samples. Thus, the total number of cis-eQTL might be relatively limited
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Figure 4.4: Number of cell types in which eQTL are active. The bars show the
number of eQTL conditional in one, two, three or four cell types. Results are obtained from
post-hoc Wald tests in the linear model comprising the eQTL marker, the cell type and their
interaction. Only models with a significant marker - cell type interaction are considered.
eQTL that are conditionally active in exactly one cell type are further classified by cell type
(stem, progenitor, erythroid and myeloid cells).

and lower power is needed for detecting them (Petretto et al., 2006). Increasing the power
by considering more samples may therefore not further increase the number of detectable
cis-eQTL. We confirmed this interpretation by varying the number of samples considered in
the analysis, which showed that increasing the number of samples increased the number of
detectable trans-eQTL more than the number of detectable cis-eQTL.

Most of the eQTL that are conditional in exactly one cell type (“cell type-specific”) occur
in the more committed lineages (218 in erythroid cells, 206 in myeloid cells, Figure 4.4). We
find less eQTL in the multipotent stem cells (176). Only 43 eQTL are significant in the
progenitor cells. This might be caused by the fact that the sorting of progenitor cells is
rather difficult so that this group of cells might in fact be a mixture of different cell types,
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Figure 4.5: Number of cis- and trans-eQTL in different eQTL classes. Numbers
of significant eQTL with FDR < 0.1 shown separately for cis-eQTL (left) and trans-eQTL
(right). Static, non-static, and dynamic eQTL are distinguished (see labels at the bottom).
Static eQTL are detectable in all four cell types, whereas non-static eQTL are insignificant
(absent) in at least one of the four cell types tested. Further, the figure distinguishes simul-
taneous and separate eQTL mappings, which represent alternative ways for distinguishing
static and non-static eQTL. Simultaneous mapping increases the statistical power leading to
substantially more eQTL significant at the same level (FDR < 0.1). Even though both, cis-
and trans-eQTL are increased when performing simultaneous mapping, trans-eQTL benefit
more from the increase in power. See main text for exact definitions of the various eQTL
types.
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leading to a somewhat noisy expression signal. Depending on the cell type, 14−23% of these
cell type-specific eQTL act in cis.
In contrast to the large number of static and conditional eQTL, we detected very few

dynamic eQTL. At an FDR of 0.1 there were six eQTL driving gene expression changes
during the transition from progenitor to erythroid cells and 66 eQTL for the transition from
progenitor to myeloid cells. Two of the eQTL in these two groups are identical, i.e the same
loci (both in cis) affect the same target genes during both, the P-E and the P-M transition.
These targets are Gadd45gip1 (see Section 4.3.5 and Figure 4.12D) and Lrrc51. We were
not able to find any dynamic eQTL in the transition from stem to progenitor cells. Dynamic
eQTL comprise a much larger fraction of cis-eQTL compared to simultaneous eQTL (44%,
Figure 4.5). This is not surprising considering the fact that dynamic eQTL depend on gene
expression measurements in two cell types at a time. They are thus more vulnerable to noise,
but at the same time they have to be inferred from only one fourth of the samples available
for the simultaneous mapping. Hence, we might only catch the strongest effects here, which
are often found in cis (Petretto et al., 2006).
From the above considerations, it also becomes clear that dynamic eQTL might overlap

with conditional and static eQTL. These overlaps are shown in Figure 4.6 after summarizing
results from different subsets of cell types or transitions within each eQTL class. To facilitate
comparison of conditional eQTL obtained with different mapping approaches (Section 4.3.3),
eQTL that are detected in exactly one cell type are shown as a subgroup of conditional
eQTL. By definition, there is no overlap between conditional and static eQTL. Intriguingly,
none of the 70 dynamic eQTL are static, while 45 were found to be conditional. Finally,
25 loci that influence the dynamics of gene expression during the transition from one cell
type to another could not have been detected by the simultaneous mapping. This fraction of
36% eQTL that are exclusively found in the dynamic mapping is in line with the findings of
dynamic (gene-environment interaction) eQTL in two growth conditions in yeast (Smith and
Kruglyak, 2008), where 38% of the dynamic eQTL did not meet the genome-wide significance
level in any of the tested conditions.

4.3.3 Comparison between separate and simultaneous eQTL mapping

Comparative eQTL studies have so far mostly mapped eQTL separately in each cell type,
subsequently classifying eQTL as ‘static’ if they are significant in all mappings, otherwise
as ‘cell type-specific’ (Table 4.1). This approach leads to a situation very different from our
simultaneous mapping: in separate mappings an eQTL has to be significant independently
in each cell type in order to be classified as static. In other words, large power is needed to
detect static eQTL. As opposed to that, in our approach the eQTL has to be significantly
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Figure 4.6: Venn diagram for the overlap between static, conditional and dynamic
eQTL. Static and conditional eQTL were obtained from the simultaneous eQTL mapping
(red circles). eQTL that are detected in exactly one cell type are shown as a subgroup
of conditional eQTL (dark red circle). The dynamic eQTL were derived from mapping
expression differences between pairs of cell types (black circles). The results are summarized
over the three cell type transitions that were analyzed (S-P, P-E, P-M).

dependent on the cell type in order to be classified as conditional. Therefore, simultaneous
mapping is more conservative with respect to calling conditional eQTL.
Consequently, eQTL obtained with these two mapping strategies overlap only partially

(Figure 4.7), which is mostly owed to the fact that simultaneous eQTL mapping detects
many more significant eQTL, the largest fraction of which are static. The increased statisti-
cal power of simultaneous mapping is expected due to the increased sample size for mapping
static eQTL compared to the separate mappings. This superiority is especially pronounced
for trans-eQTL (right hand side of Figure 4.5). Figure 4.8 confirms this notion: with increas-
ing sample size, simultaneous mapping calls more eQTL in total, and a substantially larger
fraction of static compared to conditional eQTL. Interestingly, the proportion of cis-eQTL
decreases with increasing sample size, suggesting smaller effect sizes for trans-eQTL.

4.3.4 Static eQTL mapping based on mean expression

In the same way as dynamic eQTL are mapped using expression differences as the quan-
titative trait, the mean of mRNA expression levels can be considered as a trait for static
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Figure 4.7: Comparison of different strategies for finding eQTL. We compared
the outcomes of three eQTL mapping approaches that are eligible to all or a subset of the
eQTL classes. The Venn diagram shows the overlap between all the eQTL that were called
significant in any of the mappings we used the method for. In particular, simultaneous eQTL
are all eQTL with an FDR < 0.1 in the simultaneous mapping regardless of the ANOVA
result. Dynamic eQTL had to be significant in at least one of the three cell type transitions
(S-P, P-E, P-M) while cell type-specific eQTL were required to have an FDR of 0.1 in at
least one of the four cell types.

eQTL mapping. In order to avoid mean expression traits to be dominated by one cell type in
which the transcript abundance is on a higher level than in the remaining types, we centered
mRNA expressions of every gene with respect to the mean across strains in each cell type
before calculating the average expression per gene and strain across types (Section 4.2.5).

mRNA expression is measured with varying accuracy on different arrays, i.e. in each
strain and cell type. Since the quality of each measurement is usually returned as a quality
score from the microarray image analysis software, it can easily be taken into account when
calculating the average mRNA levels across conditions. We used the negative log10 trans-
formed p-values of the quality scores from the data of Gerrits et al. (2009) as weights for the
calculation of mean gene expressions (Section 4.2.5). Alternative measures of uncertainty,
which can be transformed into weights, can be thought of, e.g. the variance of expression lev-
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Figure 4.8: Number of eQTL and proportion of cis-eQTL as a function of sample
size. We subsampled different numbers of strains in the simultaneous mapping (keeping
ratios between cell types constant) and repeated the eQTL mapping. Panel A shows the
number of eQTL in different classes as a function of sample size, while panel B shows
the fraction of cis-eQTL among these. In order to detect any cell type-specific eQTL a
minimum sample size larger than 20 is required. The proportion of cis-eQTL decreases
with increasing sample size and is smallest for static eQTL, suggesting larger effect sizes for
cis-eQTL compared to trans-eQTL.

els across technical replicates. We found that the unweighted and weighted approaches did
not give identical results, but were well correlated (Figure 4.9A). Using the weighted means
resulted in slightly lower FDR values for the most significant static eQTL (Figure 4.9B).
Therefore, only results obtained from weighted mean expression mapping will be shown in
the remainder of this section.
Because they are based on different expression traits, static eQTL obtained from simulta-

neous, separate and mean expression mapping did not coincide completely. As described in
Section 4.3.3, we find many more static eQTL with the simultaneous mapping than when
intersecting results from separate mappings in each cell type (Figure 4.10). The number
of eQTL obtained from mapping mean expressions lies in between. We find 2, 729 static
eQTL in the simultaneous, 18 in the separate and 241 in the mean expression mapping. The
fractions of cis-eQTL are 9%, 89% and 40%, respectively. Eight of the static eQTL that are
found in all four separate mappings are also detected as static in the simultaneous mapping
(the remaining ten belong to the group of conditional eQTL with four cell type interactions).
However, only 35% of the mean expression eQTL overlap with static simultaneous eQTL,
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Figure 4.9: Comparison of static eQTL derived from mapping unweighted and
weighted mean expressions. A Although the negative log10 transformed FDRs of static
eQTL linked to unweighted (on the x-axis) and weighted (on the y-axis) mean expressions
are not identical, their correlation is quite high (R2 = 0.65). eQTL that are significant when
mapping unweighted mean expressions also achieve a low FDR in the weighted mapping.
The weighted mapping also finds some additional eQTL, which are not detected with the
ordinary mean. B Zoom into the cumulative distribution function of the FDR of static eQTL
obtained from mapping unweighted (black) and weighted (red) mean expressions. Using the
weighted mean results in lower FDRs for the most significant eQTL.

while six of the 18 eQTL from the separate mappings overlap with mean expression eQTL
(Figure 4.10).

The differences in the numbers of eQTL might be explained by the power differences
between the studies. As explored in Section 4.3.3, because of the larger number of informative
samples, the power of the simultaneous mapping is much higher than that of both, the
separate and the mean expression eQTL mappings. In contrast, the advantage of the mean
expression approach compared to the other two methods is the reduction in measurement
noise that results from the averaging of mRNA measurements across cell types. This might
be one reason why we are able to find more static eQTL with this method than with separate
mappings. Another reason is of course the larger number of tests that have to be significant
in the separate mappings in order to define an eQTL as static (four compared to one in the
other approaches).

Apart from the differences in power, the limited accordance among the three approaches
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Figure 4.10: Overlap between static eQTL mapping methods. Eight eQTL that
are jointly significant in all four separate mappings (black circle) are also detected as static
eQTL in the simultaneous mapping (red circle). More than 60% of the eQTL obtained from
using mean expression across cell types as a trait (grey circle) are not found with the other
two approaches.

might be due to the fact that they represent slightly different definitions of static eQTL.
While in the separate mappings a static eQTL is very stringently defined as an eQTL reaching
a given significance threshold in all four cell types, it has to fulfill less severe requirements
in the other approaches. Especially the idea of an impact of genetic variation on mean
expression levels does not necessarily entail a significant eQTL in all cell types separately.
Rather, a closer look at some examples of mean expression eQTL reveals that they might
result from very small effects in the single cell types (effects that cannot be caught in each
type separately) or from a very strong cell type-specific eQTL, even after centering the
expressions per cell type (Figure 4.11). The latter case does not correspond to our definition
of a static eQTL and can thus be regarded as a false positive finding. The interpretation
of static eQTL in the simultaneous mapping, although less stringent in terms of significance
thresholds, is similar to the one in the separate mappings. Here, we detect eQTL that control
the expression of a gene in the same way in all four cell types.

In conclusion, both the simultaneous as well as the separate mappings in each cell type
provide a means to detect static eQTL. Simultaneous mapping clearly outperforms separate
mappings due to the increased power. In contrast, mapping mean expression levels of a gene
across cell types seems to be less appropriate to detect static eQTL in the way we defined
them in Section 4.2.1.
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Figure 4.11: Examples of mean expression eQTL. Schematic mRNA expression pro-
files of two genes with a significant mean expression eQTL (FDR < 0.1) over the four
hematopoietic cell types (S - stem cells, P - myeloid progenitor cells, E - erythroid cells,
M - myeloid cells). The rightmost points in each panel show the mean expression across
cell types. The colors represent the genotype at the eQTL marker (blue - B allele, red - D
allele). Significant conditional eQTL are indicated by the black color of the respective cell
type letter.
A Cpa3 has a weak effect eQTL, which neither reached the significance level in any of the
separate mappings nor in the simultaneous mapping. However, the reduction of noise due
to the averaging of mRNA levels across cell types enabled us to detect the eQTL using
weighted average gene expression as a quantitative trait. B Although Tesc is controlled by a
conditional eQTL in the myeloid cells only, the strong effect of the eQTL genotype on gene
expression levels in this cell type propagates itself to the mean expression. Therefore, we
find the same eQTL in the mean expression mapping, but would not call this a static eQTL.

4.3.5 Examples for the different eQTL classes

Static eQTL affect a gene’s expression in all cell types. An example of such a static eQTL
is an eQTL impacting on the expression of Peroxiredoxin-2 (Prdx2 ) (Figure 4.12A), a gene
involved in the response to and protection of erythrocytes against oxidative stress (Lee
et al., 2003). It is one of the most abundant proteins in erythrocytes (Johnson et al.,
2010). Moreover, Prdx2 plays a role in T cell differentiation and might inhibit immune cell
responsiveness (Moon et al., 2004, 2006). The importance of Prdx2 in erythroid cells is well
reflected by the fact that it is more highly expressed in erythroid cells than in any of the
other cell types. Nevertheless, regulation of Prdx2 is important in every hematopoietic cell
to prevent damage from oxidative stress, which would severely impact hematopoietic cell
homeostasis (Ghaffari, 2008). Since Prdx2 is encoded at the same locus as the eQTL itself,
the expression differences between the eQTL alleles are probably due to a mutation in the
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Figure 4.12: Examples of static, conditional and dynamic eQTL. mRNA expression
profiles of four exemplary genes over the four hematopoietic cell types (S - stem cells, P -
myeloid progenitor cells, E - erythroid cells, M - myeloid cells). The colors represent the
genotype at the eQTL marker (blue - B allele, red - D allele). Significant static eQTL are
shown by a rectangle around the differentiation scheme, significant conditional and dynamic
eQTL by the black color of the respective cell type letter or transition arrow.
A, Prdx2 is affected by a static eQTL in all four cell types. B, Elane is influenced by a
conditional eQTL in the stem cells. C, the transition of Il12rb2 expression from progenitor
to myeloid cells is driven by a dynamic eQTL. The expression of Il12rb2 increases in samples
carrying the B allele at the eQTL locus, while it remains constant in samples carrying the
D allele. D, the expression of Gadd45gip1 is conditionally affected in three of the four cell
types (S, P and M) by an eQTL which at the same time also influences the gene’s expression
changes during the differentiation from progenitors to the erythroid and myeloid lineages.
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gene itself or in a cis-regulatory region.
Figure 4.12B shows Elane as an example of a gene being target of a conditional eQTL.

Elane’s expression is strongly correlated with the alleles at the eQTL in hematopoietic stem
cells, but not the other cell types. This neutrophil elastase is released upon activation
of neutrophils and important for the immune response to degenerative and inflammatory
diseases (Weinrauch et al., 2002). In line with that, its expression profile shows that it is
highly expressed in myeloid cells, which are neutrophil precursors, while it is markedly down-
regulated in erythroid cells. Apart from its direct immune function, Elane plays a crucial
role in the mobilization of stem cells in the bone marrow (Lévesque et al., 2001).
Il12rb2 is an example of a gene being affected by a dynamic eQTL. The gene encodes for

a transmembrane protein constituting one subunit of the Interleukin 12 receptor complex.
It is known that the gene is upregulated in T helper cells and that Interleukin 12 signaling
plays a role in T helper cell activation upon immune response to pathogens (Trinchieri, 2003).
Apart from that, several studies have revealed that together with other colony-stimulating
factors Interleukin 12 is also involved in myelo- as well as erythropoiesis (Jacobsen et al.,
1993; Dybedal et al., 1995). We find a dynamic eQTL for Il12rb2 in the differentiation from
progenitor to myeloid cells, which is characterized by almost constant expression levels for
strains carrying the D allele at the eQTL locus while mRNA levels increase for individuals
carrying the B allele. The expression profiles of Il12rb2 in progenitor and myeloid cells
indicate that the eQTL might actually be conditional in both cell types with very small and
opposite effects. The example therefore demonstrates that dynamic eQTL mapping might in
special cases (such as switching allelic effects) have increased power compared to conditional
mappings.
Intuitively, one expects that a significant allele-dependent expression change from one to

another cell type (i.e. a dynamic eQTL) will coincide with significant, allele-dependent
expression in at least one of the two cell types involved in the transition (i.e. a con-
ditional eQTL). We often observed such co-incidence (Figure 4.6) and the cell cycle in-
hibitor Gadd45gip1 (Chung et al., 2003) is a particularly interesting example (Figure 4.12D).
Gadd45gip1 is one of only two genes for which we found a dynamic eQTL affecting the tran-
sition to both, erythroid and myeloid cells. The protein encoded by this gene physically
interacts with Gadd45b, which is involved in cell growth arrest during myeloid cell differenti-
ation (Chung et al., 2003; Abdollahi et al., 1991). Gadd45gip1 might support this function
and arrest cell cycle in a particular phase in myeloid precursor cells, a prerequisite for differ-
entiation (Yen and Albright, 1984). It is up-regulated in stem and progenitor cells in samples
carrying the D allele at the eQTL locus (Figure 4.12D). The eQTL is in cis, suggesting that
a mutation in the Gadd45gip1 gene itself or in its promoter region leads to decreased ex-
pression of the gene in individuals carrying the B allele. Accordingly, down-regulation of
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Gadd45gip1 in the transition to myeloid cells only occurs in samples carrying the D allele.
This leads to a dynamic eQTL from progenitor to myeloid cells. Interestingly, individuals
having high Gadd45gip1 levels in progenitor cells show a down-regulation of its expression
during the transition to erythroid cells, while the gene is up-regulated in individuals with low
Gadd45gip1 levels in progenitor cells. This leads to an expression equilibration in erythroid
cells. Thus, (i) compensatory feedback mechanisms can ’revert’ the effect of an eQTL and
(ii) there seems to be a need to tightly control Gadd45gip1 expression in erythroid cells.

4.3.6 Cell type-specific eQTL transbands

The visualization of all cell type-specific and static eQTL in an eQTL map (Figure 4.13)
reveals some cell type-specific eQTL transbands, i.e. eQTL being associated with a large
number of target genes in a given condition. An example of such a hotspot is a transband
on chromosome 19 (52.3− 55.2 Mb) affecting 31 stem cell-specific and 59 static target genes.
Even though only one third of the eQTL in this locus meet the significance threshold of
a stem cell-specific eQTL, there is a clear tendency towards stem cell specificity for most
of them (Figure 4.14A). The eQTL locus contains the gene Shoc2 for which we also find
a cis-eQTL. We have previously shown that trans effects are often caused by genes being
themselves effected through a cis effect (Loguercio et al., 2010), which makes Shoc2 a puta-
tive causal gene in the region. The protein encoded by this gene is a scaffold for a Ras/Raf
interaction (Sieburth et al., 1998). The Ras pathway is important for hematopoietic differ-
entiation processes and frequently activated in hematopoietic malignancies (Reuter et al.,
2000). However, we did not find any direct links between Shoc2 and its putative target
genes.
We found a second cell type-specific transband on chromosome 2 (168.3−169.7 Mb), whose

eQTL - target gene pairs show a tendency to be myeloid, and to a lesser extent also stem
cell-specific (Figure 4.14B). One possible regulator gene in this locus is Nfatc2 (nuclear factor
of activated T cells), which is gradually down-regulated during some intermediate stages of
the differentiation of myeloid progenitors into megakaryocytes and neutrophils (Kiani et al.,
2007). We find evidence of functional interaction between Nfatc2 and some of its target genes
in the protein interaction network STRING (Szklarczyk et al., 2011). Many of these genes
(e.g. Ccdc99, Cdk2, Cdca8, Birc5 ) are involved in cell cycle control. Indeed, it is known that
Nfatc2 negatively regulates the expression of Cdk4, which controls the entry and progression
of a cell in the cell cycle (Baksh et al., 2002). In line with that, Cdk4 links Nfatc2 and
its target genes in the STRING network. Although it has been shown that Nfatc2 is not
required to block cell cycle entry, it is likely that it prevents HSC from differentiation into
neutrophils and megakaryocytes via an effect on their proliferation (Kiani et al., 2007; Kiani,
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Figure 4.13: Simultaneous eQTL map. Each dot represents an eQTL - target gene
pair, where physical marker positions are shown on the x-axis, gene positions on the y-axis.
Significant static eQTL (FDR < 0.1) are shown in grey, cell type-specific eQTL (Bonferroni
corrected p-value < 0.005 in exactly one cell type) are shown in the color scheme of Figure
4.3. Red triangles indicate two cell type-specific transbands.

2004). The importance of Nfatc2 for both the HSC and the myeloid cells is reflected by the
lower cell type specificity p-values of its targets in both types (Figure 4.14B) and corresponds
well to Nfatc2 expression levels that have been found to be high at the beginning of myeloid
differentiation, go down during differentiation and finally increase again (Kiani et al., 2007).
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Figure 4.14: Distribution of contrast test p-values for cell type-specific eQTL
hotspots. eQTL hotspots might affect cell type-specific processes. This is shown for two
transbands on chromosomes 19 (A) and 2 (B), respectively. Colors indicate hematopoietic
cell types as in Figure 4.3. Overall, the stem (in A) and myeloid cell (in B) contrast test p-
values are much smaller than those for the other three cell types, indicating that the marker
locus is associated with the expression of genes involved in processes specific for the given
cell type (p-values are shown in − log10 scale on the y-axis).

4.3.7 Dynamic eQTL affect cell type-specific functions

Cell type-independent (i.e. static) eQTL might affect genes that are less specific for the
processes being studied than conditional and dynamic eQTL. In order to test this notion
we assessed the enrichment of functional categories among genes causing eQTL and among
genes being affected by eQTL using gene annotations obtained from GO Biological Process
(Ashburner et al., 2000). Such GO enrichment analysis is non-trivial for genetic regions
causing eQTL, because they typically contain multiple genes and it is usually unknown which
of them is the true causal gene (Rockman and Kruglyak, 2006). Therefore, we decided to
annotate each region with the GO terms of all associated genes (Section 4.2.7). This rigorous
solution has the following advantages. If there is a true enrichment of GO terms among causal
genes, this will be ‘diluted’ by our approach. Thus, the procedure will lead to a conservative
estimation of functional enrichment. At the same time, this strategy also avoids a bias in
GO enrichment due to local clusters of functionally related genes. The enrichment testing
was conducted with the R package topGO (Alexa and Rahnenführer, 2010), which corrects
for the nested structure of GO. The top 10 significantly enriched GO terms for each eQTL
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mapping can be found in Supplementary Tables C.1 to C.12.
Figure 4.15 shows exemplary results of the enrichment distinguishing cell type-specific,

dynamic and static eQTL. Static eQTL are enriched for very generic functional categories
such as translation, transcription and cell cycle regulation. As opposed to that, conditional
eQTL are enriched for hematopoiesis-related functions: For example, stem cell eQTL targets
are enriched for the term “cell migration involved in sprouting angiogenesis”, in which HSC
play an important role (Takakura et al., 2000). Myeloid progenitor cell eQTL are enriched for
the generic immune term “myeloid leukocyte mediated immunity”, while conditional eQTL
in myeloid cells are enriched for very specific immune response terms like “defense response
to Gram-negative bacterium”. We found several GO terms related to MAP kinases enriched
among eQTL in erythroid and myeloid cells. This family of serine/threonine kinases plays
a crucial role in maintenance and differentiation of HSC, especially during erythropoiesis
(Geest and Coffer, 2009).

Dynamic progenitor-myeloid eQTL are specifically enriched for categories related to T cell
selection. This could be an indirect effect related to the role of macrophages and dendritic
cells, which belong to the myeloid lineage, in adaptive immunity. These cells are involved in
presenting antigens bound to the major histocompatibility complex (MHC) to naive T cells
in order to activate or suppress these cells (Alberts, 2002). Accordingly, we find MHC coding
genes among the dynamic eQTL targets. Since we found only six significant dynamic eQTL
for the differentiation towards erythroid cells, the corresponding enriched GO categories
contained very few genes or loci that are involved in significant eQTL. Therefore, we did not
consider the results of the GO enrichment for this mapping.

4.4 Discussion of dynamic eQTL mapping results

The difference between static and non-static eQTL was very striking in our analyis. Due
to the increased statistical power resulting from the simultaneous mapping we could iden-
tify substantially more static than non-static eQTL. Further, static and non-static eQTL
differed substantially with respect to the functions of the involved genes, regarding both reg-
ulators (i.e. loci) and target genes. Whereas static eQTL involve mostly genes with generic,
unspecific functions, non-static eQTL affect more cell type-specific pathways.
We found relatively few dynamic eQTL, ranging from zero (stem to progenitor cells) to

60 (progenitor to myeloid cells) per cell type transition. This is not very surprising given
the fact that expression differences are prone to increased variance since they “inherit” the
independent errors of expression experiments in two different conditions (Ideker and Krogan,
2012). We would also expect a large overlap between conditional and dynamic eQTL. If
there is a dependency between gene expression levels and genotype in one but not another
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Figure 4.15: GO enrichment for eQTL classes. We tested for the enrichment of GO
categories among eQTL loci and target genes in the different eQTL classes, separately for
different cell types and transitions. Examples of enriched functional categories for cell type-
specific and dynamic eQTL are shown next to the corresponding cell types or cell type
transitions. Important GO categories that were enriched in static eQTL and their targets
are shown outside the box. Terms that are significantly enriched (p < 0.01) among eQTL
loci are shown in italic, GO categories enriched among eQTL targets in regular font. See
Supplementary Tables C.1 to C.12 for a list of the top significant GO terms of each mapping.

cell type, then the magnitude of expression change between these cell types (i.e. the slope)
should be genotype-dependent as well. However, we only find 45 eQTL as belonging to both,
the conditional and the dynamic class, while 1, 142 and 25 eQTL are exclusively conditional
and dynamic, respectively.
One reason for this observation is the reduced power of the dynamic mapping leading to

a failure to replicate conditional eQTL. Intriguingly, we also detect dynamic eQTL that we
do not find among the conditional eQTL. Thus, there are modes of expression variation that
are detectable with higher power when mapping expression differences instead of absolute
expression levels. For example, we find eQTL with swapping effects on transcript levels
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(such as Il12rb2, Figure 4.12C) among 10 out of the 25 eQTL-target gene pairs that are
unique in the dynamic class. This emphasizes the need to include different expression traits
(like expression differences) into a comprehensive eQTL analysis in order to detect a wide
spectrum of eQTL.
Another notable feature of dynamic eQTL mapping is its ability to mitigate systematic

measurement errors affecting all cell types in a similar way. In this respect, a score for
relative expression change can still be meaningful even though the absolute expression levels
were not (Ideker and Krogan, 2012).

The approach we proposed for mapping different classes of eQTL is only one of a palette
of possible strategies. Since the focus of the present work was on the introduction of a func-
tional eQTL classification, in particular the discussion of each classes’ characteristics and
its implications on biological interpretation of eQTL results, we did not comprehensively
compare different approaches for eQTL class mapping. However, we still tested several vari-
ants, in particular the aggregation of static and conditional eQTL from separate mappings
in every condition, which is the most widely used approach for comparative eQTL studies
in the literature (see references in Table 4.1). Importantly, single cell type mappings lack
power compared to the simultaneous approach, where samples from all conditions can be
exploited in one comprehensive mapping. This has considerable consequences especially for
the detection of static eQTL, which have to be significant in all separate mappings. Hence,
the number of static eQTL that we detected with this strategy is far smaller than the number
we find with the simultaneous eQTL mapping (18 compared to 2, 782).

The strategy we followed for mapping dynamic eQTL has an obvious counterpart for static
eQTL, namely the mapping of mean expression levels over all conditions. However, when
applying this approach to the four hematopoietic cell types, we noticed that a large fraction
of the resulting static eQTL were in fact conditional eQTL in one or several types. The
erroneous classification resulted from the fact that a strong cell type-specific effect can bias
mean expression levels towards a significant genotype-dependent expression pattern. Thus,
this approach is prone to detect false positive static eQTL and in our opinion is not well
suited to classify static eQTL.
In principle, the second step of the simultaneous eQTL mapping, the distinction between

conditional and static eQTL, could be directly resolved in the primary eQTL mapping step.
The Random Forests framework allows to extract epistatic interactions between predictors
directly from the trees (Yoshida and Koike, 2011; Bureau et al., 2005; Dutkowski and Ideker,
2011; Sakoparnig et al., 2012). However, this requires a large enough sample size in order
to grow deep trees where different combinations of variables will be used for splitting in
the same branch. When trying this line of action on the hematopoiesis data, it became
clear that the small sample size (22 to 24 samples per cell type) is prohibitive for this step,
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leading to rather unstable results. Hence, we used the remedy of applying an ANOVA to
filter the conditional eQTL out of the set of simultaneous eQTL. We believe that with the
improvements made on costs and quality of large sequencing studies and the further increase
in computing power this approach will become feasible very soon.
The fact that we find 30% of all simultaneous eQTL to be conditional for one or several

cell types emphasizes the condition specificity of many regulatory relationships, even if the
conditions under study are very related. This has also been pointed out by other groups (see
references in Table 4.1), who reported proportions of 5% to 94% condition or tissue-specific
eQTL. Moreover, Powell et al. (2011) showed that the genetic correlation across the genome
between whole blood samples and lymphoblastoid cell lines is close to zero for most genes,
implying that only very few genes are regulated by the same causal locus in different tissues.
Apart from that, we find that the number of conditional eQTL differs between cell types,
partly due to differences in sample size and tissue impurity, but maybe also due to functional
differences. These findings call for due caution when drawing conclusions about regulatory
mechanisms in one condition based on results from another condition. A typical example for
such a propagation of results would be the use of molecular mechanisms derived from eQTL
studies in blood samples to explain disease mechanisms in other tissues like the brain or the
nervous system. The use of eQTL results for the elucidation of disease etiology is further
complicated by the fact that the onset of complex diseases typically involves pathways in
several tissues.
On the other hand, we also have to emphasize that the ratio of conditional to static eQTL

depends on the power of the given study. Simultaneous eQTL mapping has high power to
detect static eQTL while the power for calling conditional eQTL is decreased. Hence, it
provides a conservative estimate for the fraction of conditional eQTL. At the same time,
the tissue specificities reported so far are probably an over-estimation of the true tissue
specificity, owing to the failure to reproduce static eQTL in different conditions, especially
if they only have a small effect on gene expression. This phenomenon is also known as the
‘winner’s curse’ (Dimas et al., 2009; Lohmueller et al., 2003). Hence, we suspect that the
number of eQTL that can be replicated in several tissues will increase with the growing
amount of expression and deep-sequencing data that is becoming available in a wide range
of mammalian tissues.



Chapter 5

Summary and discussion

Virtually every molecular and physiological trait emerges from the cooperation of a set of
genetic and environmental factors. Deciphering the interactions between these factors is key
to the understanding of organism development and function and, very importantly, disease
etiology. The projects presented in this thesis both contribute methodologies for unraveling
genetic interactions underlying complex traits.
First, I proposed a test for the detection of epistatic interactions with a severe impact on

fitness phenotypes in parent-offspring genotype data (“Imbalanced Allele Pair frequencies”,
ImAP). I applied the test to an outbred population of mice with known family structure
and found more such allele incompatibilities than expected by chance. We validated a large
number of these interactions on external data and showed that epistatic loci are enriched for
genes functioning in development, and hence being essential during the very early stages of
life. The method might therefore present a major step forward in solving a problem that has
not yet been tackled: detecting allele incompatibilities on the genome-scale in mammalian
species. The approach is readily applicable to any genotype data set, given information about
the parents of the samples, and does not require additional phenotyping. Hence, we expect
the test to prove its value on the growing amount of sequencing data on human families by
discovering interactions causing severe developmental phenotypes.
Second, I presented a systematic classification of genetic variation affecting gene expression

during dynamic cellular processes. I defined and compared static, conditional and dynamic
genetic impact on transcript levels and proposed a new strategy for mapping expression quan-
titative trait loci (eQTL) across conditions, simultaneously exploiting all available mRNA
expression information. We applied our framework on a data set of genome-wide gene expres-
sion profiles of an inbred mouse population across a range of hematopoietic differentiation
stages, thereby detecting loci inducing the immense modifications of the gene expression
landscape underlying blood cell development. We were able to show that different classes of
eQTL as well as different mapping approaches result in different sets of eQTL, albeit being
based on the same set of expression data. The proposed framework can be applied to any
eQTL study, in which expression is measured across several time points or conditions, e.g.
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during development or before and after treatment.
Our intention was to provide a guideline to support data analysts in making the right

decision about the appropriate mapping strategy depending on the kind of regulatory
relationships she/he is interested in. Moreover, we wanted to increase the awareness about
the meaning and limitations of the analysis of different variants of the expression trait.
Our work also has implications for the interpretation of QTL and genome-wide association
studies using information from eQTL studies: Filling the gap between genotype and disease
phenotype with gene-regulatory network information should be done carefully and, if possi-
ble, only with results derived from eQTL studies in similar cell types or cellular conditions.

The two presented projects, although being seemingly quite different in their implemen-
tation, share a common biological question as well as the data they are based on. Both
studies help in understanding the molecular mechanisms underlying complex traits and dis-
ease pathogenesis on the genome-level, and both rely on high-throughput data of natural
genetic variation. Consequently, both studies also share some virtues and limitations, in
particular on the level of data.
The use of natural genetic variation data has a number of advantages compared to the

traditional approaches of genetic perturbation experiments, in which the influence of an
induced mutation in only one or very few genetic loci on the expression levels of all other
genes or some higher level traits is observed. The impact of natural genetic variations can be
observed without the need to actively perturb the system, i.e. without any extra experiments
that might be expensive or difficult to conduct, especially in more complex organisms, and
which might induce side effects in the behavior of the system. Moreover, a naturally occurring
genetic perturbation provides a much more realistic picture of the consequences of genetic
mutations than a gene knock-out/-down study causing non-physiological over- or under-
expression of genes. These data also reflect multifactorial perturbations underlying complex
traits much better than an experimental perturbation of a few genes (Rockman, 2008). Not
less important, large-scale genotype data contain a lot of ‘hidden’ replications of each allele,
which allows to explore a large space of variations and their interactions (Rockman, 2008)
and they are nowadays widely available for many organisms, tissues and conditions. Their
amount and quality will even grow in the coming years. For example, next-generation
sequencing data of mRNA samples at the same time provide a more dense measurement
of genetic information as well as more precise transcript level measurements. Intriguingly,
our group has found many more eQTL using mRNA sequencing data than what is normally
obtained from SNP array data in similar conditions (Picotti et al., 2012).
Notwithstanding, this type of data also has its limitations. For example, the resolution

and structure of naturally occurring perturbations depends on the population. While crosses
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of inbred lines allow to detect large-effect mutations since they are often derived from crosses
of genetically very divergent parental lines, they contain a limited number of recombinations.
Moreover, the variation observed in these crosses might differ from polymorphisms segregat-
ing in an outbred population. On the other hand, variation in natural populations will only
be observed if it is not linked to a locus that is subject to evolutionary selection. Hence,
genetic variation is correlated with recombination rates and is less likely to contribute to
the variation of a quantitative trait if it occurs in regions of low recombination (Rockman,
2008).
Since the resolution of genotype data obtained from mouse crosses is limited, the genetic

loci found to be implicated in epistasis or linked to quantitative traits usually contain many
genes. This makes the detection of the actual causal genes a difficult problem, which can often
only be solved by integrating external information or complementary data sets, if available.
Moreover, also the small sample size, especially of the hematopoietic data set, limited the
power of our study to detect genetic loci driving the dynamics of gene expression. This
problem might be alleviated by restricting the number of tested genes or genetic markers,
e.g. by pre-filtering potentially interesting loci. On the longer run, this issue will hopefully
be solved by the improvement of experimental methods and the reduction of their costs.
Apart from the genotype data, high-throughput gene expression data also have some

drawbacks that need to be kept in mind. The power to detect eQTL depends on the accuracy
of the mRNA expression measurements, which in turn depends on transcript abundance. In
other words, there is more power to detect eQTL of highly transcribed genes compared to
genes that are expressed only slightly above the threshold of detection (Rockman, 2008).
Technical replicates could alleviate this issue by allowing to derive an error model for each
transcript. In this thesis, quality scores of the microarray image analysis software were
used to weight mRNA level measurements from different cell types in their contribution to
the mean expression trait. A related problem is the impurity of the samples. Single cells
or even tissues might not provide enough material to measure genome-wide mRNA levels.
Therefore, experimenters are often forced to pool material across samples or tissues. For
example, each single mRNA sample in the hematopoietic data of Gerrits et al. (2009) is in
fact a pooled cell extract from three mice. Consequently, the transcript abundance represents
the characteristics of the cell mixture and might hide inter-individual differences or slight
nuances in expression patterns between tissues (Rockman, 2008).
Both projects also share the problems arising from the use of a permutation approach

for p-value calculation. Although this approach is very powerful in providing a significance
level for a test statistic in cases where its distribution is unknown or difficult to obtain
analytically, it becomes prohibitive in large data sets due to its computational costs. Hence,
the approaches presented in this work are either limited in the resolution of the resulting
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p-values or they still require some assumptions on the test-score distributions. Two possible
routes circumventing these issues are (i) the development of a more closed analytical p-value
calculation (possibly together with modifications of the test statistics, for example the
Random Forests (ImAP, Breiman, 2001) importance measure) or (ii) by incrementing the
parallelization and computational resources for the calculation of the permutations.

In this work, we have validated some of our results using external data of the same type
or additional, complementary information (e.g. functional gene annotation). The merits
of data integration have been shown and discussed in the literature over the past decade
(Carlborg and Haley, 2004; Suthram et al., 2008). The potential of this data integration
approach can be further exploited in the continuation of both projects presented here. For
example, it suggests itself to overlap the ImAP interactions with different kinds of genetic or
protein-protein interactions networks. There exists a plethora of publicly available databases
containing either manually curated or computationally inferred interaction networks, created
from experimental or text mining evidence, orthology mapping etc. (Szklarczyk et al., 2011;
Stark et al., 2011; Rhodes et al., 2005; McDermott et al., 2005). Since these databases
provide complementary and only partly redundant interaction networks, we have proposed
approaches to combine multiple interactions networks and provide a large-scale map of pre-
dicted physical and functional protein interactions (http://www.print-db.org, Elefsinioti
et al., 2009, 2011).
We already tested high-scoring ImAP loci for enrichment of interactions from some of these

databases (Szklarczyk et al., 2011; Stark et al., 2011), however with limited success. Possible
reasons for the lack of accordance could be the different nature of the inferred interactions (e.g.
genetic versus physical protein binding), the low coverage of known genetic interactions in
mice together with possible differences between interaction networks among species and the
problem of mapping high-scoring ImAP pairs to the true causal genes. Since the quality and
coverage of these databases will increase rapidly in the coming years due to the advances of
experimental as well as statistical methods, integration of the emerging data with the results
from ImAP should be repeated and refined. This might allow to pinpoint causal genes, to
explain the molecular mechanisms underlying the interactions as well as to relate them to
phenotypes they might act upon. The latter point can also be achieved by combining our
results with disease SNPs discovered in genome-wide association studies.
In the continuation of the data analysis described in Chapter 4, we have already begun an

extensive data integration. The identification of genetic loci influencing transcript abundance
is only one piece in the puzzle that needs to be solved in order to completely understand
the genetic regulation of hematopoiesis. Other factors that need to be investigated are the
activity of relevant transcription factors (TFs) and how this is regulated on the genetic level,
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Figure 5.1: Overview of the different levels of genetic regulation of hematopoiesis.
The activity and interaction of TFs (orange squares) and other regulatory proteins (yellow
circles) is influenced by the genotype of the genetic loci (grey pentagons) where they are en-
coded. In turn, these proteins regulate the expression levels of genes (green rectangles) whose
products finally change the physiological phenotype of the cell (blue pentagon) and conse-
quently the cell state. The different approaches to detect the direct and indirect influence
of genetic regulatory loci on TF activity (aQTL), gene expression (eQTL) and physiologi-
cal phenotypes (QTL) is indicated with arrows connecting the involved data types. Figure
courtesy of Weronika Sikora-Wohlfeld (adapted).

the interactions between these TFs and other regulatory proteins and the consequences of
gene expression changes on hematopoiesis related phenotypes (Figure 5.1). Since it is known
that hematopoiesis is mainly controlled by the interplay of a number of TFs, we are working
on statistically inferring their activity from TF binding and gene expression data (Sikora-
Wohlfeld et al., 2012). Subsequently, TF activity can be used as a quantitative trait in
a new flavor of QTL mapping, “activity QTL” (aQTL, Lee and Bussemaker, 2010; Stegle
et al., 2010). Moreover, we also dispose of QTL data on a number of hematopoiesis related
phenotypes for the same mouse strains. The combination of data characterizing the impact of
genetic variation on the three hierarchically organized layers of TF activity, gene expression
and physiological phenotype (Figure 5.1) will deepen our knowledge on the systems biology
of blood cell differentiation.
In principle, it could also be insightful to combine the ImAP results with the dynamic
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eQTL data. More specifically, it can be expected that genetic loci do not affect transcript
levels independently. Rather, they interact in pairs or even networks. Although the RF in-
herently takes these interactions into account when building the trees and will assign higher
scores to predictors with interaction effects than to predictors that are uncorrelated with the
response, it does not automatically return information about the interactions themselves.
We already developed some extensions of the RF methodology in order to extract this addi-
tional information. For example, we applied it to find conditional eQTL, i.e. markers that
are interacting with cell type indicators (see discussion in Chapter 4). However, the applica-
tion of this approach is still hampered by the very small sample size of the BXD expression
data and the computing power needed to grow enough trees to obtain stable results.
While the development of a fully functional and computationally feasible method for the de-
tection of epistatic interactions with RF is still a long-term goal, existing genetic interaction
data like the top-scoring ImAP pairs as well as external gene-gene interaction data might
provide a simple filter for epistatic loci among the eQTL detected in the dynamic eQTL
mapping. The only problem to be solved before ImAP pairs can be used to filter for eQTL
interactions, is the mapping of the different sets of markers in the two mouse populations on
each other. Otherwise, the pre-filtering of putative epistatic loci would allow to test the loci
pairs one by one for a deviation from an additive effect on the quantitative trait, e.g. using
a linear model or an ANOVA framework.
There is growing awareness of the fact that most complex traits are influenced by a large

number of very small effect genetic variants as well as epigenetic and environmental effects
(Maher, 2008; Sumazin et al., 2011). Of course, these factors do not act independently, but
interact on different levels that are not yet completely understood. Since more and more
of these factors can now be reliably measured on a large scale basis, there is an increasing
need for appropriate statistical methods handling a large number of possibly diverse predic-
tors and their interactions. Moreover, these approaches have to be steadily adapted to the
nature of the emerging data. For example, we expect that whole genome sequencing and
comprehensive measurements of molecular and physiological phenotypes will be carried out
on a growing number of human families. The work described in this thesis is thus just a
tiny contribution to the large challenges scientists in the field are facing, and there is a lot
of room to extend and complement them in the future.
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Appendix A

Statistical methods

A.1 Lewontin’s D′

Suppose a two locus, two allele model where loci A and B each have two possible alleles 1
and 2. Let xA1B1 be the observed frequency of the haplotype A1B1 in the population, p1 and
q1 the expected frequencies of A1 and B1, respectively. (The frequencies of the alternative
alleles are defined accordingly.) Then, the measure D of allelic association is defined as

D = x11 − p1q1.

The two alleles A1 and B1 are said to be “in LD” if D 6= 0.
Lewontin (Lewontin, 1964) proposed to normalise D, because in its original form it depends
on the allele frequencies. The normalised measure D′ is given as

D′ = D

Dmax
, where

Dmax =
{

min(p1q1, p2q2), if D < 0
min(p1q2, p2q1), if D > 0

A.2 Random Forests

Random Forests (RF) is a machine learning approach based on an ensemble of decision trees,
which is widely used for non-parametric regression and classification problems. The following
description of the Random Forests methodology is adapted from Hastie (2009).
Let X be a (n×p) dimensional matrix of p predictors and n samples and y the corresponding
response vector of length n. RF creates an ensemble of decision trees, in which each tree is
based on a different bootstrap sample of the the data, i.e. n pairs (xi, yi), i = 1, . . . , n, are
drawn with replacement from the data and used to grow the tree. At each node of the tree,
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the predictor that best separates the response y into two subsets being as homogenous as
possible is chosen among a random subset of m predictors. More specifically, the algorithm
seeks the predictor xj and the split point s that solve

min
j,s

min
c1

∑
i|xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
i|xi∈R2(j,s)

(yi − c2)2

 .
R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} is the pair of half-planes in which the

data are separated.
Regardless of j and s this minimization is solved for c1 = 1

|R1(j,s)|
∑

i|xi∈R1(j,s)
yi and

c2 = 1
|R2(j,s)|

∑
i|xi∈R2(j,s)

yi, which are the average response values in each of the two subsets

R1 and R2. An overview of the complete RF algorithm is given below.

Algorithm Random Forests

1. For b = 1 to B:
(a) Draw a bootstrap sample (X∗,y∗) of size n from the training data.
(b) Grow a RF tree Tb to the bootstrapped data, by recursively repeating the following

steps for each terminal node of the tree, until the minimum node size nsmin is
reached.
(i) Select m variables at random from the p variables.
(ii) Pick the best variable/split-point among the m predictors.
(iii) Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1 .

To make a prediction at a new point x: f̂Brf (x) = 1
B

B∑
b=1

Tb(x).

The “randomness” of RF is two-fold: First, the same regression tree is fit to a number
of random instances of the data (bootstrap samples). Second, at each split in each tree a
randomly selected subset of predictors is combed through in order to find the best predictor at
this node. Both strategies have the same aim, the reduction of the variance of the regression
model. While the bootstrap sampling ensures that we can build identically distributed, but
still varying trees (similar to the idea of cross-validation), the random sampling of predictors
diminishes the correlation between the regression trees, which in turn increases the potential
of variance reduction for the ensemble predictor (Hastie, 2009).
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RF provides several measures for the average importance of each of the variables on the
prediction. These are the permutation importance (the loss of prediction accuracy on the test
data of each tree after permuting the values of the predictor among strains), the residual sum
of squares importance (the total decrease in node impurities from splitting on the predictor)
and the selection frequency (the number of times a variable has been selected for prediction
over all trees). Throughout this thesis, we use the selection frequency as a measure of variable
importance.

A.3 F statistic for model comparison

Consider two linear models M1 and M2 with independent and identically normally dis-
tributed errors. Further assume that the parameters in M2 can be represented as a linear
restriction of the parameters in M1, e.g. if they are a subset of the parameters in M1. The
number of parameters in the larger model M1 is p, the corresponding number in the smaller
model is q. The null hypothesis that the restricted model M2 is correct (and not the full
model M1) can be tested using the F statistic:

F = (RSS2 −RSS1)/(p− q)
RSS1/(n− p)

,

where RSS is the residual sum of squares of the given model and n is the size of the data
set used for estimating the models. The F statistic follows an F distribution with (p − q)
and (n− p) degrees of freedom (Faraway, 2006).

A.4 Wald test

In a linear model of the form y = Xβ+ε let y be a continuous response vector of length n, X
the (n×(p+1))-dimensional matrix of p categorical or continuous predictors and an intercept,
β the (p + 1)-dimensional parameter vector describing the influence of each predictor on
the outcome and ε an error term, where individual errors are assumed to identically and
independently follow a standard normal distribution. Denote β̂ the ordinary least squares
estimate of β and Σ̂ the estimated covariance matrix of β.
The Wald test can be used to test whether the parameter vector β or a linear combination
thereof, cTβ with variance cTΣc, is different from 0 (Harrell, 2001). In the latter case, the
Wald test statistic is given as:
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W = cT β̂

cT Σ̂c
.

In a linear model with normally distributed error terms, W follows a Student’s t-
distribution with n− p− 1 degrees of freedom.

A.5 Congruence score

Let m1 and m2 be two nodes within a network of p nodes. Further assume that m1 and
m2 each have r and s interactions respectively with other nodes in the network and that
overall T pairwise interactions between nodes could be observed. The congruence score is a
measure of the probability of observing at least t shared interactors between m1 and m2. It
can be derived from the hypergeometric distribution as:

P (x ≥ t) =
min(r,s)∑
x=t

C(T − r, s− x)/C(T, s),

where

C(a, b) = a!
b!(a− b)!

is the combinatorial factor. The congruence score is defined as the negative log10 transfor-
mation of P (x ≥ t).



Appendix B
GO enrichment of significant ImAP loci

Table B.1: GO enrichment of top ranking marker pairs in the original data. All
genes between the flanking markers are considered.

GO ID Term weighting p-value
GO:0060592 mammary gland formation < 0.00001
GO:0060487 lung epithelial cell differentiation < 0.00001
GO:0060441 branching involved in lung morphogenesis < 0.00001
GO:0021879 forebrain neuron differentiation 0.000046
GO:0032438 melanosome organization 0.000046
GO:0030878 thyroid gland development 0.000079
GO:0008593 regulation of Notch signaling pathway 0.000081
GO:0090130 tissue migration 0.000081
GO:0007034 vacuolar transport 0.00021
GO:0051345 positive regulation of hydrolase activity 0.00022
GO:0060740 prostate gland epithelium morphogenesis 0.00031
GO:0032496 response to lipopolysaccharide 0.00035
GO:0060788 ectodermal placode formation 0.00082
GO:0009880 embryonic pattern specification 0.00115
GO:0046638 positive regulation of alpha-beta T cell differen-

tiation
0.00124

GO:0022600 digestive system process 0.00151
GO:0045931 positive regulation of mitotic cell cycle 0.00151
GO:0048839 inner ear development 0.0017
GO:0050821 protein stabilization 0.0018
GO:0021983 pituitary gland development 0.00193
GO:0046579 positive regulation of Ras protein signaling 0.00251
GO:0042593 glucose homeostasis 0.00306
GO:0060606 tube closure 0.00306
GO:0042246 tissue regeneration 0.00338
GO:0021761 limbic system development 0.00376
GO:0048762 mesenchymal cell differentiation 0.00632
GO:0006829 zinc ion transport 0.00722
GO:0031128 developmental induction 0.00722
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GO:0008033 tRNA processing 0.00778
GO:0042326 negative regulation of phosphorylation 0.00778
GO:0034613 cellular protein localization 0.00809
GO:0019882 antigen processing and presentation 0.00895
GO:0048730 epidermis morphogenesis 0.00895
GO:0006338 chromatin remodeling 0.00913
GO:0007050 cell cycle arrest 0.00913
GO:0048546 digestive tract morphogenesis 0.00913
GO:0007205 activation of protein kinase C activity by G-

protein coupled receptor protein signaling path-
way

0.01

GO:0009268 response to pH 0.01
GO:0010948 negative regulation of cell cycle process 0.01
GO:0045737 positive regulation of cyclin-dependent protein

kinase activity
0.01

GO:0048565 gut development 0.01063
GO:0001667 ameboidal cell migration 0.01229
GO:0019827 stem cell maintenance 0.01329
GO:0043616 keratinocyte proliferation 0.01329
GO:0046148 pigment biosynthetic process 0.01329
GO:0048146 positive regulation of fibroblast proliferation 0.01329
GO:0050654 chondroitin sulfate proteoglycan metabolism 0.01329
GO:0051145 smooth muscle cell differentiation 0.01329
GO:0090263 positive regulation of Wnt receptor signaling 0.01329
GO:0042476 odontogenesis 0.01412
GO:0051091 positive regulation of sequence-specific DNA

binding transcription factor activity
0.01459

GO:0050921 positive regulation of chemotaxis 0.0157
GO:0008589 regulation of smoothened signaling pathway 0.01712
GO:0018149 peptide cross-linking 0.01712
GO:0045666 positive regulation of neuron differentiation 0.01831
GO:0009948 anterior/posterior axis specification 0.0215
GO:0030512 negative regulation of transforming growth fac-

tor beta receptor signaling pathway
0.0215

GO:0032312 regulation of ARF GTPase activity 0.0215
GO:0042990 regulation of transcription factor import into nu-

cleus
0.0215

GO:0048010 vascular endothelial growth factor receptor sig-
naling pathway

0.0215

GO:0070374 positive regulation of ERK1 and ERK2 cascade 0.0215
GO:0030539 male genitalia development 0.02645
GO:0045740 positive regulation of DNA replication 0.02874
GO:0031016 pancreas development 0.02902
GO:0007368 determination of left/right symmetry 0.03194
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GO:0031076 embryonic camera-type eye development 0.03194
GO:0034976 response to endoplasmic reticulum stress 0.03194
GO:0048286 lung alveolus development 0.03194
GO:0060560 developmental growth involved in morphogene-

sis
0.03194

GO:0060571 morphogenesis of an epithelial fold 0.03194
GO:0060603 mammary gland duct morphogenesis 0.03194
GO:0050878 regulation of body fluid levels 0.03245
GO:0043627 response to estrogen stimulus 0.0348
GO:0001823 mesonephros development 0.038
GO:0030318 melanocyte differentiation 0.038
GO:0048009 insulin-like growth factor receptor signaling 0.038
GO:0048538 thymus development 0.038
GO:0050918 positive chemotaxis 0.038
GO:0060324 face development 0.04459
GO:0060445 branching involved in salivary gland morphogen-

esis
0.04459

GO:0060993 kidney morphogenesis 0.04459
GO:0007492 endoderm development 0.04677
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Table B.2: GO enrichment of top ranking marker pairs in the simulated data.
All genes between the flanking markers are considered.

GO ID Term weighting p-value
GO:0009581 detection of external stimulus < 0.00001
GO:0010761 fibroblast migration 0.000041
GO:0002474 antigen processing and presentation of peptide

antigen via MHC class I
0.000084

GO:0009582 detection of abiotic stimulus 0.00029
GO:0046058 cAMP metabolic process 0.00055
GO:0051320 S phase 0.00102
GO:0048585 negative regulation of response to stimulus 0.00104
GO:0006813 potassium ion transport 0.00193
GO:0007286 spermatid development 0.00298
GO:0006195 purine nucleotide catabolic process 0.00355
GO:0055085 transmembrane transport 0.00388
GO:0009266 response to temperature stimulus 0.00443
GO:0001541 ovarian follicle development 0.00504
GO:0001910 regulation of leukocyte mediated cytotoxicity 0.00512
GO:0006997 nucleus organization 0.00512
GO:0007613 memory 0.00604
GO:0030521 androgen receptor signaling pathway 0.00604
GO:0009207 purine ribonucleoside triphosphate catabolic

process
0.00659

GO:0016525 negative regulation of angiogenesis 0.0089
GO:0007018 microtubule-based movement 0.01085
GO:0002707 negative regulation of lymphocyte mediated im-

munity
0.01253

GO:0030048 actin filament-based movement 0.01253
GO:0045582 positive regulation of T cell differentiation 0.01253
GO:0009416 response to light stimulus 0.01424
GO:0071706 tumor necrosis factor superfamily cytokine pro-

duction
0.01446

GO:0030198 extracellular matrix organization 0.01471
GO:0006096 glycolysis 0.01526
GO:0030335 positive regulation of cell migration 0.01609
GO:0045333 cellular respiration 0.01789
GO:0002366 leukocyte activation during immune response 0.02345
GO:0010948 negative regulation of cell cycle process 0.02345
GO:0034613 cellular protein localization 0.02435
GO:0006939 smooth muscle contraction 0.02843
GO:0019048 virus-host interaction 0.02858
GO:0055114 oxidation reduction 0.0324
GO:0015833 peptide transport 0.03488
GO:0002064 epithelial cell development 0.03578
GO:0006986 response to unfolded protein 0.03578
GO:0034754 cellular hormone metabolic process 0.04031
GO:0031343 positive regulation of cell killing 0.04196
GO:0042439 ethanolamine and derivative metabolic process 0.04196
GO:0042446 hormone biosynthetic process 0.04394
GO:0048741 skeletal muscle fiber development 0.04394
GO:0034504 protein localization in nucleus 0.04722
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GO enrichment of static, conditional and dynamic

eQTL

C.1 Functional enrichment of eQTL targets

Table C.1: Stem cell specific eQTL targets.

GO.ID Term p-value FDR
GO:0001763 morphogenesis of a branching structure 0.00043 0.00028
GO:0002042 cell migration involved in sprouting angiogenesis 0.00043 0.00028
GO:0042036 negative regulation of cytokine biosynthetic process 0.00078 0.00055
GO:0032355 response to estradiol stimulus 0.00214 0.00111
GO:0000122 negative regulation of transcription from RNA poly-

merase II promoter
0.00214 0.00111

GO:0061039 ovum-producing ovary development 0.00495 0.00166
GO:0043406 positive regulation of MAP kinase activity 0.00541 0.00194
GO:0043112 receptor metabolic process 0.00616 0.00250
GO:0002688 regulation of leukocyte chemotaxis 0.00816 0.00333

Table C.2: Progenitor cell specific eQTL targets.

GO.ID Term p-value FDR
GO:0006508 proteolysis 0.0152 0.00056
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Table C.3: Erythroid cell specific eQTL targets.

GO.ID Term p-value FDR
GO:0045744 negative regulation of G-protein coupled receptor

protein signaling pathway
0.0017 0.00028

GO:0034341 response to interferon-gamma 0.0022 0.00056
GO:0006024 glycosaminoglycan biosynthetic process 0.0031 0.00056
GO:0045926 negative regulation of growth 0.0032 0.00083
GO:0006081 cellular aldehyde metabolic process 0.0041 0.00111
GO:0015807 L-amino acid transport 0.0041 0.00111
GO:0030166 proteoglycan biosynthetic process 0.0046 0.00111
GO:0008361 regulation of cell size 0.0070 0.00139
GO:0006979 response to oxidative stress 0.0088 0.00278
GO:0043066 negative regulation of apoptosis 0.0101 0.00305

Table C.4: Myeloid cell specific eQTL targets.

GO.ID Term p-value FDR
GO:0070838 divalent metal ion transport 0.00034 0.00083
GO:0050829 defense response to Gram-negative bacterium 0.00083 0.00139
GO:0050830 defense response to Gram-positive bacterium 0.00136 0.00194
GO:0030318 melanocyte differentiation 0.00171 0.00222
GO:0009132 nucleoside diphosphate metabolic process 0.00197 0.00222
GO:0050730 regulation of peptidyl-tyrosine phosphorylation 0.00266 0.00222
GO:0006611 protein export from nucleus 0.00384 0.00250
GO:0006886 intracellular protein transport 0.00419 0.00250
GO:0050766 positive regulation of phagocytosis 0.00480 0.00250
GO:0009166 nucleotide catabolic process 0.00497 0.00250

Table C.5: Dynamic progenitor to myeloid differentation eQTL targets.

GO.ID Term p-value FDR
GO:0003229 ventricular cardiac muscle tissue development 0.00036 0.00000
GO:0003208 cardiac ventricle morphogenesis 0.00108 0.00000
GO:0050868 negative regulation of T cell activation 0.00164 0.00000
GO:0018108 peptidyl-tyrosine phosphorylation 0.02375 0.00083
GO:0006954 inflammatory response 0.02852 0.00083
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Table C.6: Static eQTL targets.

GO.ID Term p-value FDR
GO:0034645 cellular macromolecule biosynthetic process < 0.00001 0.00000
GO:0034728 nucleosome organization < 0.00001 0.00000
GO:0032774 RNA biosynthetic process < 0.00001 0.00000
GO:0031497 chromatin assembly < 0.00001 0.00000
GO:0010467 gene expression 0.00016 0.00000
GO:0006338 chromatin remodeling 0.00038 0.00000
GO:0016071 mRNA metabolic process 0.00049 0.00000
GO:0007034 vacuolar transport 0.00101 0.00027
GO:0000184 nuclear-transcribed mRNA catabolic process 0.00133 0.00082
GO:0002224 toll-like receptor signaling pathway 0.00133 0.00082
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C.2 Functional enrichment of eQTL markers

Table C.7: Stem cell specific eQTL markers.

GO.ID Term p-value FDR
GO:0007219 Notch signaling pathway < 0.00001 0.00000
GO:0046394 carboxylic acid biosynthetic process 0.00003 0.00026
GO:0030641 regulation of cellular pH 0.00026 0.00184
GO:0006024 glycosaminoglycan biosynthetic process 0.00031 0.00184
GO:0042060 wound healing 0.00034 0.00184
GO:0070232 regulation of T cell apoptosis 0.00059 0.00236
GO:0060603 mammary gland duct morphogenesis 0.00066 0.00263
GO:0035108 limb morphogenesis 0.00073 0.00289
GO:0050817 coagulation 0.00076 0.00289
GO:0000266 mitochondrial fission 0.00076 0.00289

Table C.8: Progenitor cell specific eQTL markers.

GO.ID Term p-value FDR
GO:0046632 alpha-beta T cell differentiation 0.00029 0.00079
GO:0002444 myeloid leukocyte mediated immunity 0.00030 0.00079
GO:0032102 negative regulation of response to external stimulus 0.00077 0.00131
GO:0045604 regulation of epidermal cell differentiation 0.00078 0.00158
GO:0002456 T cell mediated immunity 0.00085 0.00158
GO:0048041 focal adhesion assembly 0.00091 0.00158
GO:0030334 regulation of cell migration 0.00096 0.00158
GO:0045807 positive regulation of endocytosis 0.00110 0.00158
GO:0051797 regulation of hair follicle development 0.00167 0.00210
GO:0006909 phagocytosis 0.00203 0.00263
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Table C.9: Erythroid cell specific eQTL markers.

GO.ID Term p-value FDR
GO:0051091 positive regulation of sequence-specific DNA-

binding transcription factor activity
0.00001 0.00053

GO:0043410 positive regulation of MAPKKK cascade 0.00002 0.00053
GO:0010883 regulation of lipid storage 0.00002 0.00053
GO:0071901 negative regulation of protein serine/threonine ki-

nase activity
0.00007 0.00158

GO:0090207 regulation of triglyceride metabolic process 0.00007 0.00158
GO:0030168 platelet activation 0.00008 0.00184
GO:0031331 positive regulation of cellular catabolic process 0.00009 0.00236
GO:0043409 negative regulation of MAPKKK cascade 0.00010 0.00236
GO:0048610 cellular process involved in reproduction 0.00012 0.00263
GO:0051346 negative regulation of hydrolase activity 0.00012 0.00263

Table C.10: Myeloid cell specific eQTL markers.

GO.ID Term p-value FDR
GO:0006897 endocytosis < 0.00001 0.00000
GO:0090207 regulation of triglyceride metabolic process < 0.00001 0.00053
GO:0051222 positive regulation of protein transport < 0.00001 0.00184
GO:0051052 regulation of DNA metabolic process < 0.00001 0.00184
GO:0043407 negative regulation of MAP kinase activity < 0.00001 0.00263
GO:0046889 positive regulation of lipid biosynthetic process < 0.00001 0.00263
GO:0032102 negative regulation of response to external stimulus < 0.00001 0.00263
GO:0031348 negative regulation of defense response 0.00002 0.00315
GO:0043409 negative regulation of MAPKKK cascade 0.00002 0.00420
GO:0043623 cellular protein complex assembly 0.00002 0.00420



106 GO enrichment of static, conditional and dynamic eQTL

Table C.11: Dynamic progenitor to myeloid differentiation specific eQTL mark-
ers.

GO.ID Term p-value FDR
GO:0007033 vacuole organization < 0.00001 0.00000
GO:0006644 phospholipid metabolic process < 0.00001 0.00026
GO:0046677 response to antibiotic 0.00001 0.00079
GO:0045061 thymic T cell selection 0.00002 0.00079
GO:0016049 cell growth 0.00003 0.00105
GO:0017156 calcium ion-dependent exocytosis 0.00006 0.00184
GO:0009611 response to wounding 0.00006 0.00184
GO:0048813 dendrite morphogenesis 0.00006 0.00184
GO:0071229 cellular response to acid 0.00006 0.00184
GO:0071418 cellular response to amine stimulus 0.00006 0.00184

Table C.12: Static eQTL markers.

GO.ID Term p-value FDR
GO:0032269 negative regulation of cellular protein metabolic

process
< 0.00001 0.00026

GO:0006413 translational initiation < 0.00001 0.00026
GO:0016311 dephosphorylation < 0.00001 0.00026
GO:0009101 glycoprotein biosynthetic process 0.00001 0.00026
GO:0006417 regulation of translation 0.00002 0.00026
GO:0014070 response to organic cyclic compound 0.00002 0.00026
GO:0006366 transcription from RNA polymerase II promoter 0.00005 0.00131
GO:0009890 negative regulation of biosynthetic process 0.00007 0.00158
GO:0060070 canonical Wnt receptor signaling pathway 0.00010 0.00236
GO:0001892 embryonic placenta development 0.00011 0.00289
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D.1 Observed and expected allele frequencies

##################################################################
## ca l c u l a t i o n o f observed and expec ted genotype f r e qu enc i e s o f

s i n g l e markers
##################################################################

## the wrapper func t i on ’ array_ca lc ’ needs as input :
# chrom : a chromosome i d e n t i f i e r
# data : genotype data o f the t r i o s on t h i s chromosome in HAPPY

f i l e format ( h t t p ://www.we l l . o x . ac .uk/happy/ f o rmat s . sh tm l )
# snp : a t a b l e o f the observed genotypes f o r each marker ( one row

cou ld l ook l i k e t h i s : "AA" "AG" "GG")

array_c a l c <− function ( chrom , data , snp ) {

## for which i n d i v i d u a l s do we have genotype datas f o r them and
t h e i r parents :

a l l . n a s <− apply ( data [ , −(1:6) ] , 1 , function ( x ) sum( i s .na ( x ) ) )
f a t h e r s <− as.character ( data [ , 3 ] )
mothers <− as.character ( data [ , 4 ] )
f a . n a s <− apply ( data [ f a the r s , −(1:6) ] , 1 , function ( x ) sum( i s .na ( x )

) )
names( f a . n a s ) <− rownames( data )
mo.nas <− apply ( data [ mothers , −(1:6) ] , 1 , function ( x ) sum( i s .na ( x )

) )
names(mo.nas ) <− rownames( data )

anc e s t o r s <− which ( ( ( f a . n a s == length ( data [ 1 , −(1:6) ] ) ) | ( mo.nas
== length ( data [ 1 , −(1:6) ] ) ) ) & ( a l l . n a s < length ( data [ 1 , −(1:6)
] ) ) )

unknowns <− which( a l l . n a s == length ( data [ 1 , −(1:6) ] ) )
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good . inds <− 1 :nrow( data )
good . inds <− good . inds [−c ( unknowns , anc e s t o r s ) ]

## crea t e a t a b l e t h a t conta ins the index o f f a t h e r and mother f o r
a l l i n d i v i d u a l s :

pa r en t s . i nd <− matrix (nrow=dim( data ) [ 1 ] , ncol=2)
for ( i in 1 : (dim( data ) [ 1 ] ) ) {

pa r en t s . i nd [ i , 1 ] <− i f e l s e ( data [ i , 3 ] != " 0 " , which( data [ , 2 ] ==
data [ i , 3 ] ) , NA)

pa r en t s . i nd [ i , 2 ] <− i f e l s e ( data [ i , 4 ] != " 0 " , which( data [ , 2 ] ==
data [ i , 4 ] ) , NA)

}

## ca l c u l a t i o n o f observed and expec ted f r e qu en c i e s o f genotypes
on s i n g l e markers :

ob s . f r e q <− array (0 , dim=c (dim( data ) [ 1 ] , (dim( data ) [2 ]−6)/2 , 3) )
e xp . f r e q <− array (0 , dim=c (dim( data ) [ 1 ] , (dim( data ) [2 ]−6)/2 , 3) )

for ( ind in good . inds ) {
obs_exp.markers <− t ( sapply ( 1 : ( (dim( data ) [2 ]−6)/2) , all.geno ,

data , ind , snp , pa r en t s . i nd ) )

obs .markers <− obs_exp.markers [ , 1 : 3 ]
colnames ( obs .markers ) <− c ( "AA" , "Aa" , " aa " )
o b s . f r e q [ ind , , ] <− obs .markers

exp.markers <− obs_exp.markers [ , 4 : 6 ]
colnames ( exp.markers ) <− c ( "AA" , "Aa" , " aa " )
e xp . f r e q [ ind , , ] <− exp.markers

}

## save data :

obs . ch r1 <− ob s . f r e q
exp .chr1 <− e xp . f r e q

## s to r e them s epa r a t e l y s ince the expec ted arrays are needed f o r
the permutat ions as w e l l :

save ( obs .chr1 , f i l e=paste ( " a r rays " , chrom , " .RData " , sep=" " ) )
save ( exp.chr1 , f i l e=paste ( " exp_ar rays " , chrom , " .RData " , sep=" " ) )
}
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######################
## in t e r n a l f unc t i on s :
######################

## func t i on to f i nd observed and expec ted genotype o f an
i n d i v i d u a l on one marker :

all .geno <− function (marker , data , ind , snp , pa r en t s . i nd ) {
geno .vec <− numeric (3 )
names( geno .vec ) <− snp [ marker , ]
e x p . a l l e l e s <− numeric (3 )

i f ( !any( i s .na ( data [ ind , c (marker∗2−1, marker∗2) + 6 ] ) ) ) {
mother <− pa r en t s . i nd [ ind , 2 ]
f a t h e r <− pa r en t s . i nd [ ind , 1 ]
m a t . a l l e l e s <− as.character ( data [ mother , c (marker∗2−1,

marker∗2) +6])
p a t . a l l e l e s <− as.character ( data [ f a ther , c (marker∗2−1,

marker∗2) +6])
i f ( !any( i s .na ( ma t . a l l e l e s ) ) & !any( i s .na ( p a t . a l l e l e s ) ) ) {

e x p . a l l e l e s <− prob.al le le ( ma t . a l l e l e s , p a t . a l l e l e s ,
snp [ marker , ] )

ind .geno <− paste ( sort ( as.character ( data [ ind , c (marker
∗2−1, marker∗2) +6]) ) , c o l l a p s e=" " )

geno .vec [ ind .geno ] <− 1
}

}
return (c ( geno.vec , e x p . a l l e l e s ) )

}

## func t i on f o r c a l c u l a t i o n o f genotype f r e qu en c i e s on one marker :
prob.al le le <− function ( ma t . a l l e l e s , p a t . a l l e l e s , genotypes ) {

a l l e l e . c omb i s <− mapply ( internal , rep ( sort ( ma t . a l l e l e s ) , each
=2) , rep ( sort ( p a t . a l l e l e s ) , 2) )

comb i . f r eq s <− numeric (3 )
names( comb i . f r eq s ) <− genotypes
comb i . f r eq s [names( table ( a l l e l e . c omb i s ) ) ] <− table (

a l l e l e . c omb i s )/4
return ( comb i . f r eq s )

}
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## func t i on used f o r a l l e l e combi c r ea t i on :
internal <− function (x , y ) {

r e s <− paste ( sort (c (x , y ) ) , c o l l a p s e=" " )
return ( r e s )

}

##################################################################
## app l i c a t i o n o f the func t i on to ob ta in observed and expec ted

genotype matr ices o f o r i g i n a l data :
## ( shou ld p o s s i b l y be p a r a l l e l i z e d on a c l u s t e r o f CPUs with the

R package snow)
##################################################################

# for ( chrom in 1 :19) {
# out = array_ca l c ( chrom , data , snp )
# }

D.2 χ2 statistic

##################################################################
## ca l c u l a t i o n o f ImAP t e s t s t a t i s t i c
## func t i on to c a l c u l a t e the chi−squared l i k e t e s t s t a t i s t i c based

on the arrays o f observed and expec ted genotype f r e qu enc i e s
per marker :

## needs a input :
# chroms : a chromosome pa i r i n d i c a t o r
##################################################################

perm.part <− function ( chroms ) {
load (paste ( " a r rays " , chroms [ 1 ] , " .RData " , sep=" " ) )
load (paste ( " exp_ar rays " , chroms [ 1 ] , " .RData " , sep=" " ) )
obs1 <− obs . ch r1
exp1 <− exp .chr1

load (paste ( " a r rays " , chroms [ 2 ] , " .RData " , sep=" " ) )
load (paste ( " exp_ar rays " , chroms [ 2 ] , " .RData " , sep=" " ) )
obs2 <− obs . ch r1
exp2 <− exp .chr1

##### adjustment aga in s t s e l e c t i o n pres sure #####

## ca l c u l a t e observed and expec ted va l u e s f o r each marker over
a l l i n d i v i d u a l s ;

## fo r each genotype c a l c u l a t e r a t i o o f observed and expec ted
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genotypes

o b s . a l l i n d s 1 <− apply ( obs1 , c ( 2 , 3 ) , sum)
e x p . a l l i n d s 1 <− apply ( exp1 , c ( 2 , 3 ) , sum)

r a t i o 1 <− o b s . a l l i n d s 1 / e x p . a l l i n d s 1
r a t i o 1 [ i s .na ( r a t i o 1 ) ] <− 0

o b s . a l l i n d s 2 <− apply ( obs2 , c ( 2 , 3 ) , sum)
e x p . a l l i n d s 2 <− apply ( exp2 , c ( 2 , 3 ) , sum)

r a t i o 2 <− o b s . a l l i n d s 2 / e x p . a l l i n d s 2
r a t i o 2 [ i s .na ( r a t i o 2 ) ] <− 0

## ad ju s t expec ted f r e qu en c i e s wi th r a t i o s :

exp1 .ad j <− exp1
exp2 .ad j <− exp2
for ( i in 1 : (dim( exp1 .ad j ) [ 1 ] ) ) {
exp1 .ad j [ i , , ] <− exp1 .ad j [ i , , ] ∗ r a t i o 1
exp2 .ad j [ i , , ] <− exp2 .ad j [ i , , ] ∗ r a t i o 2
}

## normal ise so t ha t each i nd i v i dua l ’ s expec ted va lue over a l l
genotypes on each marker i s one :

c o r r . f a c 1 <− apply ( exp1.adj , c ( 1 , 2 ) , sum)
c o r r . f a c 2 <− apply ( exp2.adj , c ( 1 , 2 ) , sum)

exp .ad j .p r ime1 <− exp1 .ad j
exp .ad j .p r ime2 <− exp2 .ad j
for ( i in 1 : 3 ) {
exp .ad j .p r ime1 [ , , i ] <− exp .ad j .p r ime1 [ , , i ] / c o r r . f a c 1
exp .ad j .p r ime2 [ , , i ] <− exp .ad j .p r ime2 [ , , i ] / c o r r . f a c 2
}

exp .ad j .p r ime1 [which( exp .ad j .p r ime1 == "NaN" ) ] <− 0
exp .ad j .p r ime2 [which( exp .ad j .p r ime2 == "NaN" ) ] <− 0

##### ca l c u l a t i o n o f observed and expec ted number o f genotype
combinat ions f o r each marker pa i r #####

##### inc l ud i n g co r r e c t i on aga in s t a l l e l i c d r i f t #####

obs .marker .geno <− array (0 , dim=c (dim( obs1 ) [ 2 ] , dim( obs2 ) [ 2 ] ,
9) )
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exp .marker . geno .ad j <− array (0 , dim=c (dim( exp1 ) [ 2 ] , dim( exp2 )
[ 2 ] , 9) )

s l i c e <− 1
for ( i in 1 : 3 ) {
for ( j in 1 : 3 ) {

obs .marker .geno [ , , s l i c e ] <− t ( obs1 [ , , i ] ) %∗% obs2 [ , , j ]
exp .marker . geno .ad j [ , , s l i c e ] <− t ( exp .ad j .p r ime1 [ , , i ] ) %∗%

exp .ad j .p r ime2 [ , , j ]
s l i c e <− s l i c e+1

}
}

# dim of matr ices : ( nr . marker chrom 1) x ( nr . marker chrom 2)
x 9

##### ca l c u l a t i o n o f chi−squared s t a t i s t i c f o r each marker
combi #####

## a l l e l e s wi th zero e xpe c t a t i on ge t zero con t r i b u t i on to the
score :

imp.combis .ad j <− which( exp .marker . geno .ad j == 0 , a r r . i n d =
TRUE)

exp.marker .denom.adj <− exp .marker . geno .ad j
exp.marker .denom.adj [ imp.combis .ad j ] <− 1/10000

## ca l c u l a t i o n o f chi−squared s t a t i s t i c :
c h i 2 . s i n g l e . a d j <− ( obs .marker .geno − exp .marke r . geno .ad j ) ^2/

exp.marker .denom.adj
c h i 2 . s c o r e s . a d j <− apply ( c h i 2 . s i n g l e . a d j , c ( 1 : 2 ) , sum, na.rm=

FALSE)

save ( c h i 2 . s c o r e s . a d j , f i l e=paste ( " c h i 2 s c o r e s " , chroms [ 1 ] , " vs "
, chroms [ 2 ] , " .RData " , sep=" " ) )

}

##################################################################
## app l i c a t i o n o f the func t i on to c a l c u l a t e ImAP t e s t s t a t i s t i c o f

o r i g i n a l data :
## ( shou ld p o s s i b l y be p a r a l l e l i z e d on a c l u s t e r o f CPUs with the

R package snow)
##################################################################
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# pa i r s <− cb ind ( rep (1 :19 , t imes =19:1) , c (1 :19 , 2 :19 , 3 :19 , 4 :19 ,
5 :19 , 6 :19 , 7 :19 , 8 :19 , 9 :19 , 10:19 , 11:19 , 12:19 , 13:19 ,
14:19 , 15:19 , 16:19 , 17:19 , 18:19 , 19) )

#
# for ( i in 1 : nrow( pa i r s ) ) {
# out = perm.part ( pa i r s [ i , ] )
# }

D.3 Data preparation with trio package

##################################################################
## s c r i p t to i n f e r a l l p o s s i b l e genotypes t ha t cou ld have been

i n h e r i t e d to each c h i l d from t r i o package
##################################################################

##################################################################
## wrapper to use t r i o f unc t i on s on HAPPY format genotype data
## t h i s f unc t i on r e qu i r e s the f o l l ow i n g input :
# chrom : chromosome ind i c a t o r
# data : genotype matrix in HAPPY format
# maf : a matrix con ta in ing a l l e l e s and minor a l l e l e f r e qu en c i e s

f o r a l l markers . Each row corresponds to a marker and would
have e n t r i e s l i k e :min="G" , maj="A" , maf="0 .2 " .

##################################################################

require ( t r i o )

trioData <− function ( chrom , data , maf ) {

## conver t markers in t o major a l l e l e (1) and minor a l l e l e (2) :
for ( x in 1 : (nrow(maf ) ) ) {

data [ , 6+((2∗x−1) : ( 2∗x ) ) ] [ data [ , 6+((2∗x−1) : ( 2∗x ) ) ] == maf [ x , "
maj " ] ] <− 1

data [ , 6+((2∗x−1) : ( 2∗x ) ) ] [ data [ , 6+((2∗x−1) : ( 2∗x ) ) ] == maf [ x , "
min " ] ] <− 2

}

## phenotype f o r a l l i n d i v i d u a l s i s a f f e c t e d=2
data [ , 6 ] <− 2

for ( i in 7 : ( ncol ( data ) ) ) data [ , i ] <− a s . i n t e g e r ( data [ , i ] )

## what i s the coding f o r miss ing va l u e s in t r i o ? −−> 0 !
data [ i s .na ( data ) ] <− 0
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## crea t e t r i o data :
# Need to s e t r ep l a c e=TRUE, s ince the r e might be genotyp ing e r ro r s

or NAs.
f oo <− trio.check ( data , replace=TRUE)

## prepare data f o r l o g i c r eg re s s i on , i . e . make pseudo con t r o l s
t r i o . b i n = trio.prepare ( t r i o . d a t=foo )

save ( data , foo , t r i o . b i n , f i l e=paste ( " t r i o_data " , chrom , " .RData " ,
sep=" " ) )

}

###########################
## app l i c a t i o n o f f unc t i on :
###########################

# for ( chrom in 1 :19) {
# out = tr ioData (chrom , data , maf )
# }

D.4 Generation of pseudo-controls

##################################################################
## s c r i p t to s imu la t e pseudo−con t r o l data f o r the permutat ion p−

va lue c a l c u l a t i o n o f ImAP
##################################################################

##################################################################
## func t i on to r e s t r u c t u r e hap lo type data to spare one s t ep in the

observed matrix prepara t ion
## (Has to be done only once , then the data are j u s t l o aded . )
## t h i s f unc t i on r e qu i r e s the f o l l ow i n g input :
# chrom : a chromosome ind i c a t o r
# snp : a t a b l e o f the observed genotypes f o r each marker ( one row

cou ld l ook l i k e t h i s : "AA" "AG" "GG")
# maf : a matrix con ta in ing a l l e l e s and minor a l l e l e f r e qu en c i e s

f o r a l l markers . Each row corresponds to a marker and would
have e n t r i e s l i k e :min="G" , maj="A" , maf="0 .2 " .

##################################################################

pseudoControls <− function ( chrom , maf , snp ) {
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## transform outcome o f t r i o f unc t i on :
load (paste ( " t r i o_data " , chrom , " .RData " , sep=" " ) )

quads <− t r i o . b i n $bin [ , −1]

for ( x in 1 :nrow(maf ) ) {
quads [ , ( (2∗x−1) : ( 2∗x ) ) ] [ quads [ , ( ( 2∗x−1) : ( 2∗x ) ) ] == 0 ] <−

maf [ x , "maj " ]
quads [ , ( (2∗x−1) : ( 2∗x ) ) ] [ quads [ , ( ( 2∗x−1) : ( 2∗x ) ) ] == 1 ] <−

maf [ x , "min " ]
}

o f f s p r i n g <− rownames( foo$ t r i o ) [ seq (3 , nrow( foo$ t r i o ) , 3) ]
theo .geno <− vector (mode=" l i s t " , length=length ( o f f s p r i n g ) )
# some of the o f f s p r i n g names have a number appended t ha t we

dont want ( s ince they are a l s o p a r e n t s . . . )
o f f s p r i n g <− sapply ( o f f s p r i n g , substr , start=1, stop=12)
names( theo .geno ) <− o f f s p r i n g

for ( i in 1 : length ( o f f s p r i n g ) ) theo .geno [ [ i ] ] <− quads [ ( 4∗ i −3)
: ( 4∗ i ) , ]

## func t i on s to adapt output o f the t r i o package to the HAPPY
format :

## the f unc t i on s need as input :
# marker : v e c t o r o f marker names f o r which the ana l y s i s shou ld

be done ( p o s s i b l y f i l t e r e d f o r some q u a l i t y c r i t e r i a e t c . )
# data : genotype matrix in HAPPY format
# hap los : a matrix con ta in ing the four p o s s i b l e genotypes o f the

an i n d i v i d u a l cou ld have i n h e r i t e d from i t s parents in the
coding from the R package t r i o . i . e . each column of hap lo i s
a vec t o r o f l e n g t h 4 g i v i n g the four p o s s i b l e cod ings o f the
dominant or r e c e s s i v e a l l e l e coding o f a snp , the number o f
columns i s tw ice the number o f markers .

# theo .geno : a l i s t o f " hap los " matrices , one f o r each c h i l d .
# snp : a t a b l e o f the observed genotypes f o r each marker ( one

row cou ld l ook l i k e t h i s : "AA" "AG" "GG")

t r a f o . g e no <− function (marker , haplos , snp ) {
geno .vec <− numeric (3 )
names( geno .vec ) <− snp [ marker , ]
ind .geno <− paste ( sort ( as.character ( haplos [ c (marker∗2−1,

marker∗2) ] ) ) , c o l l a p s e=" " )
geno .vec [ ind .geno ] <− 1
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return ( geno .vec )
}

h ap l o s . t r a f o <− lapply ( theo.geno , function ( i i ) {
tmp <− apply ( i i , 1 , function (pp) {

sapply ( 1 : ( (dim( data ) [2 ]−6)/2) , t r a f o . g eno , pp ,
snp )

})
out <− array (0 , dim=c ( 4 , (dim( data ) [2 ]−6)/2 , 3) )
for ( i in 1 : 4 ) {

out [ i , , ] <− matrix (tmp [ , i ] , ncol=3, byrow=TRUE)
}

return ( out )
})

save ( h ap l o s . t r a f o , f i l e=paste ( " haplo_data " , chrom , " .RData " , sep
=" " ) )

}

##############################
## app l i c a t i o n o f the func t i on
##############################

# for ( chrom in 1 :19) {
# out = pseudoContro l s ( chrom , maf , snp )
# }

##############################################
## simu la t i on o f o f f s p r i n g data from t r i o data
## t h i s f unc t i on r e qu i r e s the f o l l ow i n g input :
# perm : number o f the permutat ion/pseudo−con t r o l
# chrom : chromosome ind i c a t o r
# data : genotype matrix in HAPPY format
# snp : a t a b l e o f the observed genotypes f o r each marker ( one row

cou ld l ook l i k e t h i s : "AA" "AG" "GG")
##############################################

array_c a l c_pseudo <− function (perm , chrom , data , snp ) {
# load pseudo−con t r o l genotypes and expec ted genotype matrix
load (paste ( " haplo_data " , chrom , " .RData " , sep=" " ) )
load (paste ( " exp_ar rays " , chrom , " .RData " , sep=" " ) )

## draw random number f i x i n g the hap lo type vec t o r f o r each
i n d i v i d u a l :
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rand <− sample ( 1 : 4 , s i z e=length ( h a p l o s . t r a f o ) , replace=TRUE)
names( rand ) <− names( h a p l o s . t r a f o )

## aggrega t e observed genotype array :

# ind i c a t o r about which parent marker i n f o i s a v a i l a b l e f o r each
i n d i v i d u a l :

pInfo <− apply ( exp.chr1 , c ( 1 , 2 ) , sum)
rownames( pIn fo ) <− rownames( data )

o b s . f r e q <− array (0 , dim=c (dim( data ) [ 1 ] , (dim( data ) [2 ]−6)/2 , 3) )

for ( ind in names( h a p l o s . t r a f o ) ) {
obs .markers <− hap l o s . t r a f o [ [ ind ] ] [ rand [ ind ] , , ]
colnames ( obs .markers ) <− c ( "AA" , "Aa" , " aa " )
# de l e t e markers where we have no in f o about parents , i . e .

expec ted f r e qu enc i e s :
obs .markers [ pIn fo [ ind , ]==0 , ] <− c ( 0 , 0 , 0 )
o b s . f r e q [which(rownames( data ) == ind ) , , ] <− obs .markers

}

## save data :

obs . ch r1 <− ob s . f r e q
save ( obs .chr1 , f i l e=paste ( " sim " , perm , "_ar rays " , chrom , " .RData

" , sep=" " ) )

}

##################################################################
## app l i c a t i o n o f the func t i on to ob ta in observed and expec ted

genotype matr ices f o r nperms pseudo−c on t r o l s :
## ( shou ld p o s s i b l y be p a r a l l e l i z e d on a c l u s t e r o f CPUs with the

R package snow)
##################################################################

# nperms <− 10000
#
# for ( chrom in 1 :19) {
# out = sapp l y ( 1 : nperms , array_ca l c_pseudo , chrom , data , snp )
# }
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D.5 p-values

##########################################
## ca l c u l a t i o n o f ImAP permutat ion p−va lue
##########################################

perm.part <− function (pperm , chrom1 , chrom2 , c h i 2 . o r i g ) {
load (paste ( " sim " , pperm , "_ar rays " , chrom1 , " .RData " , sep=" " ) )
load (paste ( " exp_ar rays " , chrom1 , " .RData " , sep=" " ) )
obs1 <− obs . ch r1
exp1 <− exp .chr1

load (paste ( " sim " , pperm , "_ar rays " , chrom2 , " .RData " , sep=" " ) )
load (paste ( " exp_ar rays " , chrom2 , " .RData " , sep=" " ) )
obs2 <− obs . ch r1
exp2 <− exp .chr1

##### adjustment aga in s t s e l e c t i o n pres sure #####

## ca l c u l a t e observed and expec ted va l u e s f o r each marker over
a l l inds ;

## fo r each genotype c a l c u l a t e r a t i o o f observed and expec ted

o b s . a l l i n d s 1 <− apply ( obs1 , c ( 2 , 3 ) , sum)
e x p . a l l i n d s 1 <− apply ( exp1 , c ( 2 , 3 ) , sum)

r a t i o 1 <− o b s . a l l i n d s 1 / e x p . a l l i n d s 1
r a t i o 1 [ i s .na ( r a t i o 1 ) ] <− 0

o b s . a l l i n d s 2 <− apply ( obs2 , c ( 2 , 3 ) , sum)
e x p . a l l i n d s 2 <− apply ( exp2 , c ( 2 , 3 ) , sum)

r a t i o 2 <− o b s . a l l i n d s 2 / e x p . a l l i n d s 2
r a t i o 2 [ i s .na ( r a t i o 2 ) ] <− 0

## ad ju s t expec ted f r e qu en c i e s wi th r a t i o s :

exp1 .ad j <− exp1
exp2 .ad j <− exp2
for ( i in 1 : (dim( exp1 .ad j ) [ 1 ] ) ) {
exp1 .ad j [ i , , ] <− exp1 .ad j [ i , , ] ∗ r a t i o 1
exp2 .ad j [ i , , ] <− exp2 .ad j [ i , , ] ∗ r a t i o 2
}
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## normal ise so t ha t each i nd i v i dua l ’ s expec ted va lue over a l l
genotypes on each marker i s one :

c o r r . f a c 1 <− apply ( exp1.adj , c ( 1 , 2 ) , sum)
c o r r . f a c 2 <− apply ( exp2.adj , c ( 1 , 2 ) , sum)

exp .ad j .p r ime1 <− exp1 .ad j
exp .ad j .p r ime2 <− exp2 .ad j
for ( i in 1 : 3 ) {
exp .ad j .p r ime1 [ , , i ] <− exp .ad j .p r ime1 [ , , i ] / c o r r . f a c 1
exp .ad j .p r ime2 [ , , i ] <− exp .ad j .p r ime2 [ , , i ] / c o r r . f a c 2
}

exp .ad j .p r ime1 [which( exp .ad j .p r ime1 == "NaN" ) ] <− 0
exp .ad j .p r ime2 [which( exp .ad j .p r ime2 == "NaN" ) ] <− 0

##### ca l c u l a t i o n o f observed and expec ted number o f genotypes
combinat ions f o r each marker pa i r #####

##### inc l ud i n g co r r e c t i on aga in s t a l l e l i c d r i f t #####

obs .marker .geno <− array (0 , dim=c (dim( obs1 ) [ 2 ] , dim( obs2 ) [ 2 ] ,
9) )

exp .marker . geno .ad j <− array (0 , dim=c (dim( exp1 ) [ 2 ] , dim( exp2 )
[ 2 ] , 9) )

s l i c e <− 1
for ( i in 1 : 3 ) {
for ( j in 1 : 3 ) {

obs .marker .geno [ , , s l i c e ] <− t ( obs1 [ , , i ] ) %∗% obs2 [ , , j ]
exp .marker . geno .ad j [ , , s l i c e ] <− t ( exp .ad j .p r ime1 [ , , i ] ) %∗%

exp .ad j .p r ime2 [ , , j ]
s l i c e <− s l i c e+1

}
}

# dim of matr ices : ( nr . marker chrom 1) x ( nr . marker chrom 2)
x 9

##### ca l c u l a t i o n o f ch i2 s t a t i s t i c f o r each marker combi
#####

## a l l e l e s wi th zero e xpe c t a t i on ge t zero con t r i b u t i on to the
score :

imp.combis .ad j <− which( exp .marker . geno .ad j == 0 , a r r . i n d =
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TRUE)
exp.marker .denom.adj <− exp .marker . geno .ad j
exp.marker .denom.adj [ imp.combis .ad j ] <− 1/10000

## ca l c u l a t i o n o f ch i2 s t a t i s t i c s :
c h i 2 . s i n g l e . a d j <− ( obs .marker .geno − exp .marker . geno .ad j ) ^2/

exp.marker .denom.adj
c h i 2 . s c o r e s . a d j <− apply ( c h i 2 . s i n g l e . a d j , c ( 1 : 2 ) , sum, na.rm=

FALSE)

##### 5 . count s core s exceed ing the o r i g i n a l score #####
counter <− ( c h i 2 . s c o r e s . a d j >= ch i 2 . o r i g )
return ( counter )

}

##################################################################
## app l i c a t i o n o f the func t i on
## ( shou ld p o s s i b l y be p a r a l l e l i z e d on a c l u s t e r o f CPUs with the

R package snow)
##################################################################

# nperms = 2000
#
# fo r ( chrom1 in c (1 :19 ) ) {
# fo r ( chrom2 in chrom1 :19) {
#
# ## load o r i g i n a l ch i2 score s :
# load ( pas t e ( " ch i 2 s co r e s " , chrom1 , " vs " , chrom2 , " .RData " ,

sep ="") )
# c h i 2 . o r i g <− c h i 2 . s c o r e s . a d j
#
# ## ca l c u l a t i o n o f p−va l u e s
# a l l . c o u n t s <− sapp l y ( 1 : nperms , perm.part , chrom1 , chrom2 ,

c h i 2 . o r i g )
# pva l s <− matrix ( app ly ( a l l . c o un t s , 1 , sum)/nperms , nrow=

nrow( c h i 2 . o r i g ) , nco l=nco l ( c h i 2 . o r i g ) )
#
# ## save r e s u l t s :
# save ( pva l s , f i l e=pas t e ( " perm_pva lue s " , chrom1 , " vs " ,

chrom2 , " .RData " , sep ="") )
#
# }
# }
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E.1 Data preparation

##########################################
## load and prepare data f o r eQTL mappings
##########################################

## load expre s s i on data :
# a l l matr ices are assumed to have the same number o f columns (

corresponding to s t r a i n s ) in the same order

stem <− read.table ( " exp r e s s i on_data/stem_norm_gene_GN_
not imputed. txt " , header = TRUE, sep = " \t " , s t r i ng sAsFac to r s=
FALSE)

progen <− read.table ( " exp r e s s i on_data/progen_norm_gene_GN_
not imputed. txt " , header = TRUE, sep = " \t " , s t r i ng sAsFac to r s=
FALSE)

mye <− read.table ( " exp r e s s i on_data/mye_norm_gene_GN_not imputed. txt
" , header = TRUE, sep = " \t " , s t r i ng sAsFac to r s=FALSE)

ery <− read.table ( " exp r e s s i on_data/ery_norm_gene_GN_not imputed. txt
" , header = TRUE, sep = " \t " , s t r i ng sAsFac to r s=FALSE)

stem <− data.matrix ( stem )
progen <− data.matrix ( progen )
ery <− data.matrix ( ery )
mye <− data.matrix (mye)

## expre s s i on d i f f e r e n c e s :
d i f fSP <− stem − progen
d i f fSP <− d i f fSP [ , which(apply ( d i f fSP , 2 , function ( x ) sum( i s .na ( x )

) ) == 0) ]
d i f f SE <− stem − ery
d i f fSE <− d i f fSE [ , which(apply ( d i f fSE , 2 , function ( x ) sum( i s .na ( x )

) ) == 0) ]
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diffSM <− stem − mye
diffSM <− diffSM [ , which(apply ( diffSM , 2 , function ( x ) sum( i s .na ( x )

) ) == 0) ]
d i f fPE <− progen − ery
di f fPE <− di f fPE [ , which(apply ( dif fPE , 2 , function ( x ) sum( i s .na ( x )

) ) == 0) ]
diffPM <− progen − mye
diffPM <− diffPM [ , which(apply ( diffPM , 2 , function ( x ) sum( i s .na ( x )

) ) == 0) ]
diffEM <− ery − mye
diffEM <− diffEM [ , which(apply ( diffEM , 2 , function ( x ) sum( i s .na ( x )

) ) == 0) ]

## concatenated gene exp r e s s i on s over cond i t i on s f o r s imul taneous
eQTL mapping :

a l lTypes <− cbind (apply ( stem , 2 , function ( y ) y−rowMeans( stem ,
na.rm = TRUE) ) , apply ( progen , 2 , function ( y ) y−rowMeans( progen ,
na.rm = TRUE) ) , apply ( ery , 2 , function ( y ) y−rowMeans( ery ,

na.rm = TRUE) ) , apply (mye , 2 , function ( y ) y−rowMeans(mye , na.rm
= TRUE) ) )

a l lTypes <− a l lTypes [ , which(apply ( a l lTypes , 2 , function ( x ) sum(
i s .na ( x ) ) ) == 0) ]

## unweighted mean expre s s i on :
stem <− apply ( stem , 2 , function ( y ) y−rowMeans( stem , na.rm = TRUE) )
progen <− apply ( progen , 2 , function ( y ) y−rowMeans( progen , na.rm =

TRUE) )
ery <− apply ( ery , 2 , function ( y ) y−rowMeans( ery , na.rm = TRUE) )
mye <− apply (mye , 2 , function ( y ) y−rowMeans(mye , na.rm = TRUE) )

meanAll <− 0 .25∗ ( stem + progen + ery + mye)
meanAll <− meanAll [ , which(apply (meanAll , 2 , function ( x ) sum( i s .na

( x ) ) ) == 0) ]

## weighted mean mean expre s s i on :
meanExprGene <− read.table ( f i l e=" expr e s s i on_data/ l ogwe ighted_

cente red_mean_expr_a l l s t r a i n s . t x t " , header= TRUE, sep = " \t " ,
s t r i ng sAsFac to r s=FALSE)

### load genotype matrix x :
load ( "R_f i l e s /BXD_genotypes_f i l t e r ed .RData " )
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## prepara t ion o f p r e d i c t o r matrix f o r s imul taneous eQTL mapping (
Figure 4 .2 in t h e s i s )

## i . e . mu l t i p l i c a t i o n o f genotypes accord ing to number o f
cond i t i on s/ c e l l s t a t e s and add i t i on o f c e l l s t a t e i n d i c a t o r s

xCTInd <− x [ , colnames ( a l lTypes ) ]

aa <− sum(apply ( stem , 2 , function ( x ) sum( i s .na ( x ) ) ) == 0)
bb <− sum(apply ( progen , 2 , function ( x ) sum( i s .na ( x ) ) ) == 0)
cc <− sum(apply ( ery , 2 , function ( x ) sum( i s .na ( x ) ) ) == 0)
dd <− sum(apply (mye , 2 , function ( x ) sum( i s .na ( x ) ) ) == 0)

xCTInd <− rbind (xCTInd , c ( rep (1 , aa ) , rep (0 , bb+cc+dd) ) , c ( rep (0 ,
aa ) , rep (1 , bb ) , rep (0 , cc+dd) ) , c ( rep (0 , aa+bb) , rep (1 , cc ) ,
rep (0 , dd ) ) , c ( rep (0 , aa+bb+cc ) , rep (1 , dd ) ) )

E.2 eQTL mapping

###################################################
## Random Forest f o r eQTL mapping
## y=gene expre s s i on vec t o r
## x=genotype matrix
## ntree , mtry , nodes i z e as in randomForest package

r f . f f <− function (y , x , ntree , mtry=f loor (ncol ( x )/3) , nodes i z e=5)
{
require (randomForest )
r f = randomForest ( y = y , x = x , nt ree = ntree , mtry=mtry ,

nodes i z e=nodes i z e )
s f = r f s f ( r f )

}

###########################################################
## func t i on f o r e x t r a c t i n g s e l e c t i o n f r e qu enc i e s from an RF
## r f=the RF from which s e l e c t i o n f r e qu enc i e s are de s i r e d

r f s f = function ( r f ) {
vu = varUsed( r f )
s f = vu/sum( vu )
names( s f ) = rownames( r f$ importance )
return ( s f )

}
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####################################
## eQTL mapping
## ( exemplary f o r s imul taneous eQTL)
####################################

## c l u s t e r se tup
require ( snow )

ncpus=as.integer (Sys.getenv (c ( "RMPI_NCPUS" ) ) )
n s l ave s=ncpus−1
c l <− makeCluster ( ns laves , type = "MPI" )

clusterExport ( c l , " r f . f f " )
clusterExport ( c l , " r f s f " )
clusterEvalQ ( c l , l ibrary (randomForest ) )

## RF mapping :
outSim <− parApply( c l , a l lTypes , 1 , function (y , xs ) { r f . f f ( y=

as.numeric ( y ) , x=xs , n t r ee =20000 , mtry=70, nodes i z e=3)} , xs=t (
xCTInd) )

## randomisat ions f o r p−va lue c a l c u l a t i o n :

randSim <− vector (mode=’ l i s t ’ , length=10)

for ( i in 1 : length ( randConc_CTInd) ) {
randSim <− parApply( c l , a l lTypes [ , sample ( 1 : ncol ( a l lTypes ) ,

replace=FALSE) ] , 1 , function (y , xs ) { r f . f f ( y=y , x=xs , n t r ee
=20000 , mtry=70, nodes i z e=3, k e e p . f o r e s t=TRUE, geneName=NULL)
} , xs=t (xCTInd) )

}

stopCluster ( c l )
mpi.quit ( )

## p−va lue and FDR ca l c u l a t i o n :
## ( based on func t i on s in Sec t ion " Functions f o r p−va lue

c a l c u l a t i o n " )

pSim <− pvalWrapper( o r i g=outSim , rand=randSim , r c l = FALSE, c c l =
FALSE, r f i t = TRUE, c f i t = FALSE, use.method="mix " , perc1=0.99 ,
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perc2=0.99 , combine=FALSE, nnodes=2, c lustmeth=" kmeans " ,
n c l u s t=NULL, c o r r e c t=TRUE)

pSim [ pSim == 0 ] <− min(pSim [ pSim != 0 ] )
fdrSim <− matrix (p.adjust (pSim , method="BH" ) , nrow=nrow(pSim) )

E.3 Detection of conditional eQTL

#################################################################
## take the s i g n i f i c a n t r e s u l t s from simul taneous eQTL mapping to
## d i s t i n g u i s h s t a t i c and cond i t i ona l eQTL
#################################################################

e q t l_f d r <− which( fdrSim [ 1 : 8 4 9 , ] < 0 .1 , a r r . i n d=TRUE)

## f i l t e r out markers t ha t are in LD and r e g u l a t e the same gene

############################################################
## func t i on to f i l t e r s i g n i f i c a n t eQTL − t a r g e t pa i r s
## fo r markers in LD
## e q t l t a b=2−column matrix con ta in ing p o s i t i o n s o f
## s i g n i f i c a n t eQTL − t a r g e t gene pa i r s
## eqt lMat=eQTL matrix
## posIn fo=matrix wi th 4 columns conta in ing po s i t i o n
## in f o s o f each genotype marker
## (chromosome , s t a r t , end , cen ter o f marker reg ion )
############################################################

LDfilterEQTL <− function ( eqt l tab , eqtlMat , pos In fo ) {
geneL i s t <− sp l i t ( eq t l t ab [ , 1 ] , e q t l t ab [ , 2 ] )
tmp <− lapply ( 1 : length ( geneL i s t ) , function ( i , gl ) {

# for each gene :
i f ( length ( geneL i s t [ [ i ] ] ) > 1) {

msort <− sort ( geneL i s t [ [ i ] ] )
d i s t s <− outer (msort , msort , ’− ’ )
d i s t s <− d i s t s [ cbind ( 2 : length ( msort ) , 1 : ( length ( msort )−1) ) ]
breaks <− which( d i s t s > 2)
i n t <− cbind (c (1 , breaks+1) , c ( breaks , length ( msort ) ) )
# check i f the i n t e r v a l s span chromosome boundar ies :
i n t <− lapply ( as.data.frame ( t ( i n t ) ) , function ( x ) {

i f ( pos In fo [ msort [ x [ 1 ] ] , 1 ] != pos In fo [ msort [ x [ 2 ] ] , 1 ] ) {
i f ( x [ 2 ] == (x [ 1 ] + 1) ) {

out <− rbind (c ( x [ 1 ] , x [ 1 ] ) , c ( x [ 2 ] , x [ 2 ] ) )
} else {
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tmp <− ( ( x [1 ]+1) : ( x [2 ]−1) ) [which( pos In fo [ msort [ ( x
[1 ]+1) : ( x [2 ]−1) ] , 1 ] != pos In fo [ msort [ x [ 1 ] ] , 1 ] ) [ 1 ] ]

out <− rbind (c ( x [ 1 ] , tmp−1) , c (tmp , x [ 2 ] ) )
}
return ( out )

} else {return ( x ) }
})
i n t <− do.cal l ( rbind , i n t )
mReduced <− apply ( int , 1 , function ( x ) msort [ x [ 1 ] : x [ 2 ] ] [

which.min ( eqtlMat [ msort [ x [ 1 ] : x [ 2 ] ] , as.numeric (names( gl ) [
i ] ) ] ) ] )

return (mReduced)
} else {

return ( geneL i s t [ [ i ] ] )
}

} , gl=geneL i s t )
eq t l t ab_red <− cbind ( as.integer ( do.cal l ( ’ c ’ , tmp) ) , as.integer (

rep (names( geneL i s t ) , t imes=sapply (tmp , length ) ) ) )
return ( eq t l t ab_red )

}

## app l i c a t i o n o f the func t i on to eQTL r e s u l t s :
e q t l_f d r_f i l t e r e d <− LDfilterEQTL( e q t l_fdr , fdrSim , mSubInfo )
rm( e q t l_f d r )

## de f i n e genes f o r which anova i s done
eQTLgenes <− unique ( e q t l_f d r_f i l t e r e d [ , 2 ] )

########################################################
## conduct Anova on s i g n i f i c a n t eQTL − t a r g e t gene pa i r s
########################################################

#########################################################
## func t i on to f i t one model i n c l u d i n g the marker and
## a l l c e l l t ype s f o r one p a r t i c u l a r eQTL t a r g e t pa i r
## pai r=vec to r o f marker and gene po s i t i o n in eQTL matrix
## exprs=gene expre s s i on matrix
## pr ed i c t o r=pr ed i c t o r matrix
## ( genotypes + c e l l s t a t e i n d i c a t o r s )
## parents=rows in p r e d i c t o r matrix
## conta in ing the c e l l s t a t e i n d i c a t o r s
#########################################################
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epiLMcomb <− function ( pair , exprs , p r ed i c to r , parents ) {
ctvar = rep (1 , length ( p r ed i c t o r [ parents [ 1 ] , ] ) )
c tvar [ p r ed i c t o r [ parents [ 2 ] , ] == 1 ] <− 2
ctvar [ p r ed i c t o r [ parents [ 3 ] , ] == 1 ] <− 3
ctvar [ p r ed i c t o r [ parents [ 4 ] , ] == 1 ] <− 4
data=data.frame ( e = exprs [ pa i r [ 2 ] , ] , m = as. factor ( p r ed i c t o r [

pa i r [ 1 ] , ] ) , c t= as. factor ( c tvar ) )
f u l l <− lm( e ~ m + ct + m: ct , data=data )
red <− lm( e ~ m + ct , data=data )
out <− anova( red , f u l l ) [ 2 , 6 ]
return ( out )

}

## app l i c a t o i n o f f unc t i on to a l l s i g n i f i c a n t eQTL − t a r g e t gene
pairs , FDR ca l c u l a t i o n :

anovaComb <− apply ( e q t l_f d r_f i l t e r e d , 1 , epiLMcomb, a l lTypes ,
xCTInd , parents =850:853)

anovaFDR <− p.adjust (anovaComb , method=’BH’ )

#######################
## Post−hoc Wald t e s t s :
#######################

############################################################
## func t i on f o r Wald t e s t on one p a r t i c u l a r eQTL t a r g e t pa i r
############################################################

findIAwald <− function ( pair , exprs , p r ed i c to r , parents ) {
require ( con t r a s t )
c tvar = rep (1 , length ( p r ed i c t o r [ parents [ 1 ] , ] ) )
c tvar [ p r ed i c t o r [ parents [ 2 ] , ] == 1 ] <− 2
ctvar [ p r ed i c t o r [ parents [ 3 ] , ] == 1 ] <− 3
ctvar [ p r ed i c t o r [ parents [ 4 ] , ] == 1 ] <− 4
out <− which( p r ed i c t o r [ pa i r [ 1 ] , ] == 2)
i f ( length ( out ) > 0) {
data=data.frame ( e = exprs [ pa i r [2 ] ,− out ] , m = as. factor (

p r ed i c t o r [ pa i r [ 1 ] , −out ] ) , c t= as. factor ( c tvar [−out ] ) )
} else {
data=data.frame ( e = exprs [ pa i r [ 2 ] , ] , m = as. factor ( p r ed i c t o r [

pa i r [ 1 ] , ] ) , c t= as. factor ( c tvar ) )
}
f u l l <− lm( e ~ m + ct + m: ct , data=data )
eachMarkerEf fect <− con t ra s t ( f u l l ,
l i s t ( c t = levels ( data$ ct ) , m = " 3 " ) ,
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l i s t ( c t = levels ( data$ ct ) , m = " 1 " ) )$Pvalue
return (p.adjust ( eachMarkerEffect , ’ bon f e r r on i ’ ) )

}

## run the t e s t on the ’ s i g n i f i c a n t ’ pa i r s :
signA <− which(anovaFDR < 0 .5 )
contrTestWald <− t (apply ( e q t l_f d r_f i l t e r e d [ signA , ] , 1 , findIAwald ,

exprs=al lTypes , p r ed i c t o r=xCTInd , parents =850:853) )

## aggrega t i on o f r e s u l t s :
tmp_wald <− rowSums( contrTestWald < 0 .005 )
signSim <− cbind ( e q t l_f d r_f i l t e r e d , fdrSim [ e q t l_f d r_f i l t e r e d ] ,

anovaFDR , matrix (NA, nrow=nrow( e q t l_f d r_f i l t e r e d ) , ncol=5) )
colnames ( s ignSim ) <− c ( ’ marker ’ , ’ gene ’ , ’ sim_f d r ’ , ’ anova_f d r ’ , ’

#ctIA ’ , ’ stem ’ , ’ progen ’ , ’ ery ’ , ’mye ’ )
s ignSim [ signA , ’#ctIA ’ ] <− tmp_wald
signSim [ i s .na ( s ignSim [ , ’#ctIA ’ ] ) , ’#ctIA ’ ] <− 0
signSim [ signA , 6 : 9 ] <− contrTestWald

E.4 Functions for p-value calculation

###################################################
## Functions needed to c a l c u l a t e d i f f e r e n t v e r s i on s
## of p−va l u e s from RF s e l e c t i o n f r e qu enc i e s
## opt ions :
## − c l u s t e r i n g o f genes or markers
## based on q u an t i l e s o f SF
## − f i t t i n g a func t i on to t a i l o f SF d i s t r i b u t i o n
## − emp i r i ca l/ f i t t e d /mixed p−va lue c a l c u l a t i o n
###################################################

############################################
## func t i on to c l u s t e r s e l e c t i o n f r e qu enc i e s
## based on t h e i r d i s t r i b u t i o n s :
############################################

## Input :
## rand : a l i s t o f randomized SF matr ices ( probab l y from

randomising the samples/ s t r a i n s and then repea t ing the RF)
## nnodes : the number o f nodes t ha t can be used in p a r a l l e l f o r

the c l u s t e r i n g
## c l c u t : h e i g h t a t which to cut h i e r a r c h i c a l c l u s t e r i n g t r e e in

order to ge t row c l u s t e r s
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## Output :
## rowc lu s t : the c l u s t e r i n g o f rows

s e l f r e q_c l <− function ( rand , nnodes=2, c lustmeth=" kmeans " , n c l u s t=
NULL) {

## combine the random data in columns :
randMat <− do.cal l ( ’ cbind ’ , rand )
i f ( i s . nu l l ( n c l u s t ) ) n c l u s t <− nrow( randMat )/4

####################################
## c l u s t e r rows by t h e i r
## quan t i l e d i s t r i b u t i o n :
## ( use amap fo r p a r a l l e l c l u s t e r i n g )

require (amap)
rowQ <− t (apply ( randMat , 1 , quantile , seq (0 ,1 , 0 . 01 ) ) )
i f ( c lustmeth == " kmeans " ) {

rowQcl <− kmeans(rowQ , c en t e r s=nc lu s t )
rowCl <− rowQcl$ c l u s t e r

} else {
rowQcl <− hcluster (rowQ , method=" euc l i d ean " , l ink=

" complete " , nbproc=nnodes )
rowCl <− cutree ( rowQcl , k=nc lu s t )

}
return ( rowCl )

}

###########################################
## func t i on to f i t d i s t r i b u t i o n to the t a i l
## of the random s e l e c t i o n f r e qu enc i e s :
###########################################

## Input :
## rand : a l i s t o f randomized SF matr ices ( probab l y from

randomising the samples/ s t r a i n s and then repea t ing the RF)
## clMemb : a vec t o r g i v i n g the c l u s t e r membership f o r each row/

column of the SF matrix
## perc : a numeric va lue between 0 and 1 which d e f i n e s the top

percent o f the data to which the func t i on i s f i t t e d

## Output :
## row f i t : the parameters o f the in v e r s e gamma d i s t r i b u t i o n f i t t e d

to each row ( c l u s t e r )
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s e l f r e q_f i t <− function ( rand , clMemb , perc1=0.99 ) {
## combine the random data in rows and columns :
randMat <− do.cal l ( ’ cbind ’ , rand )

## func t i on to be opt imised during f i t t i n g , depends on the
percentage o f data we f i t on :

objfExp <− function (p , x , y ) {
e = (y−dexp( x+p [ 1 ] , r a t e=p [ 2 ] ) )
sum( e ^2)

}

f2exp_row_c l <− t ( sapply ( sort (unique (clMemb) ) , function ( c l ) {
tmp <− as.numeric ( randMat [ c l , ] )
h i s tPo i n t s <− hist (tmp , breaks=" fd " , plot=FALSE)
xh i s t <− h i s tPo i n t s$mids [ h i s tPo i n t s$mids > quantile (tmp ,

perc1 ) ]
yh i s t <− h i s tPo i n t s$density [ h i s tPo i n t s$mids > quantile (tmp

, perc1 ) ]
p1 <− 0 . 5
p2 <− 15
out <− optim(p = c ( p1 , p2 ) , objfExp , gr = NULL, x=xhis t , y

=yhis t , method = " Nelder−Mead" , c on t r o l=l i s t ( r e l t o l=1e
−15, trace=0) )$par

i f ( out [ 2 ] < 500) {
p2 <− 20
out <− optim(p = c ( p1 , p2 ) , objfExp , gr = NULL, x=xhis t ,

y=yhis t , method = " Nelder−Mead" , c on t r o l=l i s t ( r e l t o l
=1e−15, trace=0) )$par

}
return ( out )
}

) )
return ( r ow f i t=f2exp_row_c l )

}

######################################################
## func t i on to c a l c u l a t e row and column p−va l u e s
## from both the f i t t e d and emp i r i ca l d i s t r i b u t i o n
## based on f i t t i n g on ly the t a i l o f the d i s t r i b u t i o n
## and sw i t ch ing from empi r i ca l to a n a l y t i c a l
## p−va lue at a de f ined q u an t i l e o f the data :
######################################################
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## Input :
## s e l f r e q : a matrix o f SF
## rand : a l i s t o f random SF matr ices to be pas ted toge ther , the p
−va lue c a l c u l a t i o n w i l l a lways be done on the rows !

## clMemb : a vec t o r g i v i n g the c l u s t e r membership f o r each row/
column of the SF matrix

## paraFi t : the matrix o f f i t t e d parameters f o r each row/column (
c l u s t e r )

## perc : a numeric va lue between 0 and 1 which d e f i n e s the top
percent o f the data f o r which the p−va lue i s c a l c u l a t e d from
the f i t t e d d i s t r i b u t i o n

## Output :
## rowPcl : matrix wi th p−va l u e s

mixP <− function ( s e l f r e q , rand , clMemb , paraFit , perc2 ) {
randMat <− do.cal l ( ’ cbind ’ , rand )
rowPcl <− matrix (NA, ncol=ncol ( s e l f r e q ) , nrow=nrow( s e l f r e q ) )

for ( c l in sort (unique (clMemb) ) ) {

low <− which( s e l f r e q [which(clMemb == c l ) , ] <= quantile (
as.numeric ( s e l f r e q [which(clMemb == c l ) , ] ) , perc2 ) )

high <− which( s e l f r e q [which(clMemb == c l ) , ] > quantile (
as.numeric ( s e l f r e q [which(clMemb == c l ) , ] ) , perc2 ) )

rowPcl [which(clMemb == c l ) , ] [ low ] <− 1 − ecdf ( randMat [
which(clMemb == c l ) , ] ) ( s e l f r e q [which(clMemb == c l ) , ] [
low ] )

rowPcl [which(clMemb == c l ) , ] [ high ] <− 1 − pexp( s e l f r e q [
which(clMemb == c l ) , ] [ high ]+paraFit [ c l , 1 ] , r a t e=
paraFit [ c l , 2 ] )

}
return ( rowPcl )

}

################################################
## func t i on to c a l c u l a t e row and column p−va l u e s
## from the f i t t e d d i s t r i b u t i o n only :
################################################

## Input :
## s e l f r e q : a matrix o f SF
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## clMemb : a vec t o r g i v i n g the c l u s t e r membership f o r each row/
column of the SF matrix

## paraFi t : the matrix o f f i t t e d parameters f o r each row/column (
c l u s t e r )

## Output :
## rowPcl : matrix wi th p−va l u e s

## func t i on f o r row p−va l u e s :
fitP <− function ( s e l f r e q , clMemb , paraFit ) {

require ( p s c l )
rowPcl <− matrix (NA, ncol=ncol ( s e l f r e q ) , nrow=nrow( s e l f r e q

) )

for ( c l in sort (unique (clMemb) ) ) {
rowPcl [which(clMemb == c l ) , ] <− 1 − pigamma(

s e l f r e q [ c l , ] , a lpha=paraFit [ c l , 1 ] , beta=
paraFit [ c l , 2 ] )

}
return ( rowPcl )

}

################################################
## func t i on to c a l c u l a t e row and column p−va l u e s
## from the emp i r i ca l d i s t r i b u t i o n only :
################################################

## Input :
## s e l f r e q : a matrix o f SF
## rand : a l i s t o f random SF matr ices to be pas ted

toge ther , the p−va lue c a l c u l a t i o n w i l l a lways be done
on the rows !

## clMemb : a vec t o r g i v i n g the c l u s t e r membership f o r each
row/column of the SF matrix

## Output :
## rowPcl : matrix wi th p−va l u e s

## func t i on f o r row p−va l u e s :
empP <− function ( s e l f r e q , rand , clMemb) {

randMat <− do.cal l ( ’ cbind ’ , rand )
rowPcl <− matrix (NA, ncol=ncol ( s e l f r e q ) , nrow=nrow( s e l f r e q

) )

for ( c l in sort (unique (clMemb) ) ) {
rowPcl [which(clMemb == c l ) , ] <− 1 − ecdf ( randMat [
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which(clMemb == c l ) , ] ) ( s e l f r e q [which(clMemb ==
c l ) , ] )

# se t 0 p−va l u e s to the minimum :
rowPcl [which(clMemb == c l ) , ] [ rowPcl [which(clMemb

== c l ) , ] == 0 ] <− 1/length ( randMat [which(clMemb
== c l ) , ] )

}
return ( rowPcl )

}

##########################################
## func t i on to c a l c u l a t e combined p−va l u e s
## from row and column p−va l u e s :
##########################################

## Input :
## rowP , colP : matr ices o f row/column p−va l u e s

## Output :
## pComb : matrix wi th combined p−va l u e s

combiP <− function ( rowP , colP ) {

## combine p−va l u e s wi th Fisher :
pComb <− 1 − pchisq(−2∗ ( log ( rowP) + log ( colP ) ) , df=4)
colnames (pComb) <− colnames ( rowP)
rownames(pComb) <− rownames( rowP)
return (pComb)

}

#########################################
## func t i on to co r r e c t the p−va l u e s f o r
## the background (random) d i s t r i b u t i o n :
## t h i s i s done in order to transform the
## background d i s t r i b u t i o n in t o a uniform
#########################################

## Input :
## origP : Matrix wi th p−va l u e s t ha t are to be co r r ec t ed
## randP : l i s t o f matr ics wi th p−va l u e s from random SF. These are

used to c a l c u l a t e the background d i s t r i b u t i o n

## Output :
## pCor : matrix o f co r r e c t ed p−va l u e s
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trafoP <− function ( origP , randP ) {
randCDF <− ecdf ( unlist ( randP ) )
pCor <− matrix (randCDF( or igP ) , nrow=nrow( or igP ) )
colnames ( pCor ) <− colnames ( or igP )
rownames( pCor ) <− rownames( or igP )
return ( pCor )

}

################################################
## wrapper func t i on t ha t i n t e g r a t e s the
## d i f f e r e n t approaches f o r p−va lue c a l c u l a t i o n :
################################################

## Input :
## or i g : a matrix o f SF fo r which p−va l u e s are to be c a l c u l a t e d
## rand : a l i s t o f randomized SF matr ices ( probab l y from

randomising the samples/ s t r a i n s and then repea t ing the RF)
## rc l , c c l : l o g i c a l , i f TRUE the rows/columns o f the combined SF

matrix w i l l be c l u s t e r e d based on t h e i r q u an t i l e s in order to
poo l va l u e s f o r the f i t t e d / emp i r i ca l cd f

## r f i t , c f i t : l o g i c a l , i f TRUE ca l c u l a t i o n are done row/column−
wise ( a l s o f o r c l u s t e r s )

## use.method : one o f " f i t " , "emp" , "mix "
## combine : l o g i c a l , i f TRUE the p−va l u e s from row− and column−

wise c a l c u l a t i o n s w i l l be combined wi th the " Fisher method " (
wi thout app l y ing the chi−squared d i s t r i b u t i o n )

## nnodes : the number o f nodes t ha t can be used in p a r a l l e l f o r
the c l u s t e r i n g

## clcutRow/ c l c u tCo l : h e i g h t a t which to cut h i e r a r c h i c a l
c l u s t e r i n g t r e e in order to ge t row/column c l u s t e r s . De fau l t
parameters were chosen so t ha t the rows and columns in the
example used f o r e x p l o r a t i on had comparable c l u s t e r s i z e s .
However , the c u t o f f s might d i f f e r c on s i d e ra b l y f o r d i f f e r e n t
data s e t s .

## Output :
## pMatCor : f i n a l p−va lue matrix

pvalWrapper <− function ( or ig , rand , r c l = TRUE, c c l = FALSE, r f i t
= TRUE, c f i t = FALSE, use.method=" f i t " , perc1=0.99 , perc2=0.95 ,
combine=FALSE, nnodes=2, c lustmeth=" kmeans " , n c l u s t=NULL,

c o r r e c t=TRUE){
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## c l u s t e r i n g :
i f ( r c l ) {

rowCl <− s e l f r e q_c l ( rand , nnodes=nnodes , c lustmeth
=clustmeth , n c l u s t=nc lu s t )

} else {rowCl <− 1 :nrow( o r i g ) }

i f ( c c l ) {
co lC l <− s e l f r e q_c l ( lapply ( rand , t ) , nnodes=nnodes

, c lustmeth=clustmeth , n c l u s t=nc lu s t )
} else { co lC l <− 1 : ncol ( o r i g ) }

## f i t t i n g an emp i r i ca l d i s t r i b u t i o n to the c l u s t e r s :
i f ( r f i t & use.method !="emp" ) rowFit <− s e l f r e q_f i t ( rand ,

rowCl , perc=perc1 )
i f ( c f i t & use.method !="emp" ) c o lF i t <− s e l f r e q_f i t ( lapply

( rand , t ) , co lCl , perc=perc1 )

## ca l c u l a t i o n o f o r i g i n a l and random p−va l u e s :
i f ( use.method==" f i t " & r f i t==TRUE){

pRow <− fitP ( or ig , clMemb=rowCl , paraFit=rowFit )
pRowRand <− lapply ( rand , fitP , clMemb=rowCl ,

paraFit=rowFit )
}
i f ( use.method==" f i t " & c f i t==TRUE){

pCol <− t ( fitP ( t ( o r i g ) , clMemb=colCl , paraFit=
co lF i t ) )

pColRand <− lapply ( lapply ( rand , t ) , fitP , clMemb=
colCl , paraFit=co lF i t )

pColRand <− lapply ( pColRand , t )
}

i f ( use.method=="emp" & r f i t==TRUE){
pRow <− empP( or ig , rand , clMemb=rowCl )
pRowRand <− lapply ( rand , empP, rand=rand , clMemb=

rowCl )
}
i f ( use.method=="emp" & c f i t==TRUE){

pCol <− t (empP( t ( o r i g ) , lapply ( rand , t ) , clMemb=
co lC l ) )

pColRand <− lapply ( lapply ( rand , t ) , empP, rand=
lapply ( rand , t ) , clMemb=co lC l )

pColRand <− lapply ( pColRand , t )
}
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i f ( use.method=="mix " & r f i t==TRUE){
pRow <− mixP( or ig , rand , clMemb=rowCl , paraFit=

rowFit , perc=perc2 )
pRowRand <− lapply ( rand , mixP, rand=rand , clMemb=

rowCl , paraFit=rowFit , perc=perc2 )
}
i f ( use.method=="mix " & c f i t==TRUE){

pCol <− t (mixP( t ( o r i g ) , lapply ( rand , t ) , clMemb=
colCl , paraFit=co lF i t , perc=perc2 ) )

pColRand <− lapply ( lapply ( rand , t ) , mixP, rand=
lapply ( rand , t ) , clMemb=colCl , paraFit=co lF i t ,
perc=perc2 )

pColRand <− lapply ( pColRand , t )
}

i f ( combine==TRUE){
pMat <− combiP( rowP=pRow, colP=pCol )
pMatRand <− combiP( rowP=pRowRand , colP=pColRand )

}
i f ( combine==FALSE & r f i t==TRUE & c f i t==FALSE) {

pMat <− pRow
pMatRand <− pRowRand

}
i f ( combine==FALSE & r f i t==FALSE & c f i t==TRUE){

pMat <− pCol
pMatRand <− pColRand

}

## cor r e c t i on f o r background p−va lue d i s t r i b u t i o n :
i f ( c o r r e c t ) {

pMatCor <− trafoP ( or igP=pMat , randP=pMatRand)
} else {

pMatCor <− pMat
}
return (pMatCor )

}

####################################################
## func t i on to c a l c u l a t e " exac t p−va l u e s "
## based on a l a r g e r number o f randomisat ions
## wi thout any poo l ing over p r e d i c t o r s or t r a i t s and
## without any f i t t i n g o f a n a l y t i c a l d i s t r i b u t i o n s :
####################################################
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## Input :
## or i g : a matrix o f SF fo r which p−va l u e s are to be c a l c u l a t e d
## rand : a l i s t o f randomized SF matr ices ( probab l y from

randomising the samples/ s t r a i n s and then repea t ing the RF)

## Output :
## pMat : f i n a l p−va lue matrix

exactP <− function ( or ig , rand ) {
randMat <− array (NA, dim=c (nrow( o r i g ) , ncol ( o r i g ) , length (

rand ) ) )
for ( i in 1 : length ( rand ) ) randMat [ , , i ] <− rand [ [ i ] ]
pMat <− apply ( randMat , c ( 1 , 2 ) , function ( x ) x >= or i g )/

length ( rand )
return (pMat)

}
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