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1

Introduction

1.1. Introduction and Motivation

Many of the real world phenomenons are modeled with time dependent partial differential equa-
tions. In seeking the numerical solution of these time dependent problems, the spatial and tem-
poral domains are typically treated separately. A discretization in either of the variables is known
as semi-discretization. Discretizing the space variable is known as spatial discretization while the
discretization in time is usually referred to as temporal discretization. Although such problems
contain the time dependent terms which are just the derivatives with respect to independent vari-
able (time), one needs to do a special treatment of these terms if we look from the physical point
of view.

In order to find the numerical solution of such problems by using the finite element method
(FEM), the first step is usually to discretize the spatial variable which leads to a large system of
ordinary differential equation (ODEs) for the time dependent nodal vector of the FEM solution.
This approach is referred to as method of lines (MOL). In this approach, the space variable is
discretized in a first step, while the time variable is still a continuous independent variable. The
second step is to solve this system of ODEs by employing a suitable implicit or explicit time
discretization. For a very small mesh size in space, the behavior of this ODE-system becomes more
and more stiff and creates some numerical complexities. Therefore, explicit time discretizations
are not a good choice for such types of problems and implicit methods are required. Usually,
the options are restricted to 2nd order backward difference formula (BDF) methods. If we want
to have higher order A-stable time discretizations, typical choices are the implicit Runge-Kutta
method or the discontinuous Galerkin (dG) method with higher order polynomials.

As time dependent simulations are much more time consuming than stationary simulations, the
question is to find a time stepping scheme which allows very large time step sizes to gain highly
accurate results at the minimum numerical cost. Moreover, higher order methods are often essen-
tial in order to achieve accurate results on computationally feasible grids. However, constructing
higher order numerical methods maintaining stability and physical constraints becomes increas-
ingly difficult or challenging. To this end, many state of the art numerical integration schemes
are available in the literature. A well-known approach to solve time dependent problems is the
Galerkin method, see for instance the monograph [55]. In order to obtain a time marching process
for this discretization, at least the test space needs to be discontinuous in time. In the discontinu-
ous Galerkin method where solution and test space are the same, also the discrete solution space
consists of discontinuous piecewise polynomials in time. Therefore, some jump terms appear in
this discretization which however can be avoided if a continuous discrete solution space is com-
bined with a discontinuous test space. Then, the method is called a Galerkin-Petrov method. In
the present thesis, we investigate a new class of time discretizations of ’variational type methods’,
called continuous Galerkin-Petrov (cGP) scheme which is advantageous over the standard time
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discretization methods and gains highly accurate results at reasonable numerical cost. Discontin-
uous Galerkin (dG) time discretizations are also studied and compared with respect to accuracy
and numerical efficiency.

The term ’variational type method’ refers to a derivation technique based on the finite ele-
ment method. It has a couple of advantages [40] in comparison to ’traditional methods’ like, for
example:

⊕ A uniform variational approach in space and time is often advantages for the analysis of the
fully discrete problem and for the construction of space-time adaptive methods.

⊕ It is very natural to construct higher order methods which provide reasonable numerical
costs in practice.

⊕ Finite element stability concepts of the Galerkin-Petrov or discontinuous Galerkin methods
can be used to obtain at least A-stable methods.

⊕ Fully adaptive finite element techniques can be utilized to change the polynomial degree as
well as the length of the time intervals in order to increase accuracy and decrease numerical
costs.

The numerical methods which we investigate here are based on Rothe’s method. We utilize
both continuous Galerkin-Petrov (cGP) and discontinuous Galerkin (dG) methods to discretize
the heat equation in time. Discontinuous Galerkin methods are a class of finite element meth-
ods which combine the interesting features of the finite element and the finite volume method
to achieve high order accuracy and have recently become popular among computational scien-
tists and engineers. Here, we compare this approach, which we call continuous Galerkin-Petrov
discretization (cGP(k)-method), with the well-known discontinuous Galerkin time discretization
(dG(k)-method) [55]. For the cGP(k)-method, the discrete solution space consists of continuous
piecewise polynomial functions in time of degree k ≥ 1 and the discrete test space of discontinu-
ous polynomial functions of degree k− 1. In the dG(k)-method, both the solution and test space
are constructed by means of discontinuous polynomial functions of degree k. With respect to the
computational costs, which mainly depend on the size of the resulting block system that has to be
solved for each time interval, the cGP(k)-method is comparable to the dG(k-1)-method. However,
concerning the discretization error in time, the accuracy of the cGP(k)-method is one order higher
than that of the dG(k-1)-method. Furthermore, all cGP(k)-methods are A-stable, while all dG(k)-
methods are even ”strongly A-stable” (or L-stable), i.e., the dG-methods have better damping
properties with respect to high frequency error components.

As a first step, a space-time finite element method is proposed for the solution of the two
dimensional heat equation. In particular, we present a numerical study of the higher order time
discretizations cGP(1), cGP(2) and dG(1), taking into account aspects of numerical accuracy and
efficiency of the corresponding solution methods for the resulting (coupled) linear systems. First
of all, the cGP(1)-method is very close to the well-known Crank-Nicolson scheme: Both methods
differ only in the choice of the unknown that is solved for on each time interval and in the way the
numerical integration of the right hand side is done. The cGP(1)-method is accurate of order 2 in
the whole time interval similar to the Crank-Nicolson scheme. However, for the cGP(2)-method
as well as in the dG(1)-method, we have two unknowns on each time interval which have to be
computed by solving a 2×2 block system. The cGP(2)-method is accurate of order 3 in the whole
time interval and superconvergent of order 4 in the discrete time points [2]. The dG(1)-method is
of order 2 in the whole time interval and superconvergent of order 3 in the discrete time points.
For all presented time stepping schemes, we apply the standard Galerkin finite element method
(FEM) with biquadratic quadrilateral elements for the spatial discretization.
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As a next step, we extend our work for the nonstationary Stokes equations in two dimensions.
In order to achieve higher order accuracy for the pressure also in the discrete points in time too,
which is required to compute the hydrodynamic forces in CFD problems such as drag, lift. etc,
we make use of the Lagrangian interpolation polynomials in the cGP-method. In contrast to the
dG(1)-method, we cannot obtain the pressure in cGP-methods at the discrete time points by using
the same extrapolation as for velocity since this would involve the initial pressure which we do
not have. The same technique is then also applied for the dG(1)-method which gives better results
than the associated extrapolation. By means of numerical experiments we compare the different
time discretizations w.r.t. accuracy and computational costs and we show that the convergence
behavior of the corresponding multigrid method is almost independent of the mesh size and time
step, leading to an efficient solution process.

Finally, we extend our numerical study for the nonstationary Navier-Stokes equation which
was our actual aim. We perform nonstationary simulations to analyze the temporal accuracy and
efficiency of the presented time discretization schemes for the incompressible Navier-Stokes equa-
tions. All the computational aspects are discussed regarding the Navier-Stokes equations. As a
first test problem, we consider the flow around cylinder which exactly corresponds to the classi-
cal flow around cylinder benchmark [61]. Here, we will concentrate only on the nonstationary
behavior of the flow pattern with periodic oscillations and examine the ability of different time
discretization schemes to capture the dynamics of the flow. As a second test case, we consider
the nonstationary flow for a higher Reynolds number through a venturi pipe which has many real
life and industrial applications, for instance, this venturi pipe can be used as a small device in
sailing boats. The test configuration for the flow through a venturi pipe which is considered here
is slightly changed from the framework which was already used in [57, 58]. The objective of this
simulation is to analyze the instantaneous and mean flux through this device.

The spatial discretization in the case of the Stokes or Navier-Stokes equations is carried out
by using biquadratic finite elements for velocity and discontinuous linear elements for pressure.
We discuss implementational aspects as well as methods for solving the resulting block systems
with monolithic multigrid solvers based on a local pressure Schur complement smoothers. The
associated system of nonlinear equations which employs saddle point character, is treated by using
the nonlinear fixed point and Newton method.

1.2. Thesis Contributions

Looking in the literature, it is found that the approach of continuous Galerkin has been used by
Aziz and Monk in 1989 for the linear heat equation [2]. They have proved optimal error estimates
as well as superconvergence results in the end points of the time intervals. However, their approach
is different to our approach and uses Gauß-Legendre integration. In [49], the cGP(k)-method was
analyzed by F. Schieweck for the linear parabolic equation (but not under this name) in the abstract
Hilbert-space settings as well as for a nonlinear ODE-system. There, the continuous Galerkin-
Petrov method (cGP(k)-method) has been called discontinuous Galerkin-Petrov (dGP(k)-method).
The construction and analysis of the discontinuous Galerkin (dG(k)-method) time discretization is
well-known, see for instance, in [55] and [20].

The main contribution of this thesis is to investigate and analyze a new class of variational
type time discretization scheme for the nonstationary simulation of CFD problems. This scheme
is known as continuous Galerkin-Petrov method (cGP(k)-method). This class of cGP(k)-methods
was originally developed in [49] and analyzed for the ODE-system under the name ’discontinuous
Galerkin-Petrov method (dGP(k)-method)’. We start with a numerical analysis of the cGP(k)-
method for the heat equation in two dimensions. Another well known class of discontinuous
Galerkin (dG(k)-method) time discretization is also studied for the heat equation. We perform nu-
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merical tests to confirm the theoretical order of convergence. All the presented time discretizations
are compared w.r.t. numerical efficiency. These time discretization schemes are extended for the
nonstationary Stokes and Navier-Stokes equations in two dimensions. A special postprocessing
technique is introduced in order to get higher order pressure in the discrete time points. Analytical
test cases are considered to confirm the theoretical orders of convergence for all presrented time
discretizations for the nonstationary Stokes equations. Finally, several nonstationary simulations
of benchmarking character are performed to demonstrate the temporal accuracy and efficiency of
all the presented time discretizations.

All the computations during the preparation of this thesis are performed by using the finite
element solver package FEATFLOW (Finite element analysis tool for flow problems). FEAT-
FLOW is a general purpose open source FEM software package particularly for the simulations
of computational fluid dynamics (CFD) problems. A comprehensive introduction can be found at
http://www.featflow.de. The computational CPU-times are measured on an AMD Opteron
250 at 2.4GHz.

1.3. Publications

During the preparation of this thesis, the author has published a number of technical reports at
Institut für Angewandte Mathematik, Fakultät für Mathematik, TU Dortmund [27, 29, 31, 33] 1.

Journal Articles

At the time of writing, two journal articles have been published in the Journal of Numerical Math-
ematics [28] and in The Open Numerical Methods Journal [30]. One article has been accepted for
publication in ENUMATH 2011 Proceedings Volume [32]. Several more articles were submitted
for publications by the author of this thesis.

1http://www.mathematik.tu-dortmund.de/lsiii/cms/de/schriften/ergebnisberichte.html

http://www.featflow.de
http://www.mathematik.tu-dortmund.de/lsiii/cms/de/schriften/ergebnisberichte.html
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1.4. Thesis Outline

This thesis is organized such that each chapter has its own introduction which summarises its
contents. Nevertheless, we provide the brief overview of each chapter and sections in a more
detailed outline.

Chapter 2 provides an overview about various well known time discretization schemes and dis-
cusses two important approaches for the numerical solution of partial differential equations.
Different aspects for explicit and implicit methods are also discussed. Section 2.2 explains
the stability of the time discretizations schemes which are discussed in this chapter.

Chapter 3 explains the fundamentals of the finite element method which are used for the spatial
discretization used throughout this thesis. Section 3.2 describes the details of the method
of weighted residuals (MWR) and in Section 3.3 the construction of the underlying finite
element spaces is discussed. Section 3.4 contains the descriptions of the biquadratic quadri-
lateral (Q2) element and the discontinuous linear (P1) element. In Section 3.5, we discuss
the properties of well-known LBB-stable finite element pair Q2/Pdisc

1 . At the end of this
chapter, we give a brief introduction for edge oriented jump stabilization in Section 3.6.

Chapter 4 is devoted to the nonlinear and linear solvers. Section 4.1 introduces iterative solvers
for sparse linear systems arising from the discretizations of PDEs. We discuss the Bi-
Conjugate Gradient Stabilized method (BiCGStab) and the Generalized Minimal Residual
Method (GMRES) in Section 4.1.2 as representation of Krylov space methods. Section 4.3
discusses the geometrical multigrid method together with its ingredients.

Chapter 5 introduces new time discretizations schemes of variational type, namely the continu-
ous Galerkin-Petrov methods cGP(k) and the discontinuous Galerkin methods dG(k) method
for heat equation in two dimensions. Sections 5.1 and 5.2 explain the theoretical aspects in
detail for the cGP(k) and dG(k) methods, respectively. Section 5.3 describes the spacial
discretization by using the finite element method and the corresponding block-systems are
derived for all schemes. Section 5.4 gives the details how the associated linear systems are
solved. Finally, we perform several numerical tests to demonstrate the temporal accuracy
and efficiency of all the presented schemes in Section 5.5.

Chapter 6 presents a variant of the continuous Galerkin-Petrov methods cGP(k) which is based
on the Gauß-Lobatto points. Apart from the theoretical details in this chapter we also per-
form some numerical tests to demonstrate and compare the temporal accuracy of Gauß-
Lobatto based cGP(k)-methods in Section 6.3.

Chapter 7 discusses some theoretical properties regarding the cGP(k)-methods. We prove the
A-stability and optimal error estimates for the cGP(k)-methods in Section 7.1 and 7.2, re-
spectively. The stability of the dG(k) is also discussed in Section 7.3.

Chapter 8 extends the continuous Galerkin-Petrov methods cGP(k) and the discontinuous Galerkin
methods dG(k) method for nonstationary Stokes equations. Section 8.1 describes the theo-
retical aspects in detail for the cGP(k) and dG(k) methods, respectively, applied to the non-
stationary Stokes equations. In Section 8.2, we explain the spacial discretization which is
carried out by using the finite element method and present the corresponding block-systems
for all schemes. Section 8.4 gives the details how the associated linear systems are solved.
By means of numerical tests, we analyze the temporal accuracy and efficiency of all the
presented schemes in Section 8.5.
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Chapter 9 is devoted to the extension of presented time discretizations for the nonstationary
Navier-Stokes equations in two dimensions. In Section 9.1, we provide theoretical details
for the applications of the cGP(k) and dG(k) methods, resp., to the Navier-Stokes equations.
Section 9.2 deals with the spacial discretization by using the finite element method, and the
corresponding block-systems are presented for all schemes. Section 9.3 describes the solu-
tions techniques for the solution of discretized nonlinear systems which are solved by using
the fixed-point and Newton method.

Chapter 10 presents nonstationary simulations for two benchmarking configurations to analyze
the temporal accuracy and efficiency of the presented time discretization schemes. As a first
test problem, we consider a classical flow around cylinder benchmark [61] in Section 10.1.
As a second test case, we consider the nonstationary flow for a higher Reynolds number
through a venturi pipe in Section 10.2. In Section 10.3, all presented solvers are analyzed
with respect to their numerical costs for two prototypical flow configurations.

Chapter 11 gives a conclusion and further outlooks. The work closes with some appendix chap-
ters. In Appendix A, we prove that the cGP(1)-method and the well-known Crank-Nicolson are
identical. By means of numerical tests, we confirm the theoretical results. In Appendix B.1, we
present and shortly analyze the dG-C0(k)-method proposed in [40] for the heat equation. We also
perform preliminary numerical tests to demonstrate the accuracy of the dG-C0(2)-method.



2

Basics of the time stepping schemes

2.1. Introduction

In many practical situations, the processes under consideration are nonstationary and consequently
the phenomenons are modeled as time dependent partial differential equations (PDEs). The solu-
tion of such problems requires the simulation of time dependent PDEs. In this chapter, we discuss
the basic aspects regarding the numerical solution of such PDEs. These PDEs are commonly
solved by treating the space and time variable separately. Discretizing only one of the variables
is referred to as the semi-discretization. Spatial discretization is usually carried out by using the
finite difference, finite element and finite volume method. After discretizing the space variable,
a system of ordinary differential equations (w.r.t. time) is obtained which can be solved by using
a state of the art numerical integration scheme. Our focus will be on the temporal discretization
throughout this thesis.

Semi discretization in time corresponds to the solution at discrete points in time. Depending
on the ordering of the semi-discretization, we distinguish the following two approaches:

• Method of lines

• Rothe’s method

2.1.1. Method of lines

Finding the solution of the time dependent PDEs where the spatial variable is discretized first and
then the time variable is known as the method of lines. After applying the semi-discretization
in space, a system of ordinary differential equations (ODEs) is obtained. For first order PDEs,
solving this system of ODEs gives the discrete solution along the trajectories or lines in time.

2.1.2. Rothe’s method

The solution approach which first conducts the semi-discretization in time is referred to as Rothe’s
method, also known as the method of discretization in time. The basic idea in Rothe’s method
is to consider a PDE as ODE in the function space. Semi-discretization in time is applied at first
which leads to a set of time independent or stationary PDEs. The solution of these PDEs yields
the solution at the discrete points in time.

In order to discuss the various time stepping schemes, we consider the following time depen-
dent problem

∂u
∂t

= L(t,u), u(0) = u0, in [0,T ]×Ω, (2.1)

7
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with Ω ⊂ Rd a domain, L is the linear differential operator and u0 is an initial condition. All
data is assumed to be smooth enough. To start with the time discretization, a time interval [0,T ]
is divided into N subintervals [tn−1, tn], n = 1, . . . ,N such that 0 = t0, tn−1 < tn and tN = T . The
length of each subinterval is denoted by

τn := tn− tn−1, n = 1, . . . ,N.

The solution at time discrete point tn can only depend on the previous points tn−1, tn−2, . . . Thus
the time discretization always corresponds to the extrapolation. The solution at the initial time t0
is always known which is the initial condition. If only one previous time level is involved to find
the solution at time tn, the associated method is known as one-step method. On the other hand, if
the solution at point tn depends on more than one previous level, the method is called multi-step
method. The most commonly used time stepping schemes are the one-step methods which are
discussed here. The time marching methods are generally classified [12] according to the choice
of points at which right hand side is computed. Typically the following two types are formulated:

Definition 2.1 (Explicit methods) If the numerical method computes the solution at the new time
level from the known solutions at previous time levels, then the method is said to be explicit
method [12]. Explicit methods are easy to implement and require low computational cost per
time step. Their major disadvantage is the limitation on the time step size, specially for the dif-
ferential equations with fast decaying solution (stiff problems) due to Courant-Friedrichs-Levy
condition (CFL) condition [25].

Definition 2.2 (Implicit methods) If the numerical method includes the information from the pre-
vious time levels as well as the information from the current time level to find the solution at the
new time level, then the method is said to be implicit method [12]. Usually, much bigger time
steps are allowed, and some methods are even unconditionally stable, although, this is achieved
at the increased computational cost per time step.

Next, we discuss the most commonly used time stepping schemes to find the numerical solution
of PDEs.

2.1.3. Explicit Euler (EE) method

The simplest example of a one-step method to integrate an ODE is the Explicit Euler method
which is based on the approximation of the time derivative by using forward differences,

∂u
∂t

(tn)≈
un+1−un

τn
= L(tn,un).

This method is first order accurate in time. In the past, explicit methods have commonly been
used for the simulation of nonstationary incompressible flows but due to the limitation on the time
step size for the stability reasons, implicit methods nowadays become much more popular than the
explicit methods. One common example is Explicit Euler method which is only stable for small
time step sizes due to the CFL-condition [25].

2.1.4. Implicit Euler (IE) method

In this method, the time derivative at time tn+1 is approximated by using the backward difference
formula

∂u
∂t

(tn+1)≈
un+1−un

τn
= L(tn+1,un+1).
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Here, the method differs from the Explicit Euler method only in the computation of the right hand
side which is now computed on the new time level and consequently, one has to solve the system
of equations to obtain the solution at time tn. Similar to the Explicit Euler method, the Implicit
Euler is also 1st order accurate in time but every step is more expensive. The method fulfills the
so called strong A-stability condition (which will be discussed later) and therefore, there is no
limitation on the time step size.

2.1.5. Crank-Nicolson (CN) method

An important implicit one-step scheme which corresponds to the central difference scheme in time
is the Crank-Nicolson method where the time derivative at time tn+1/2 =

tn+1+tn
2 is approximated

by
∂u
∂t

(tn+1/2)≈
un+1−un

τn
=

1
2
[L(tn+1,un+1)+L(tn,un)].

The Crank-Nicolson method is based on the average of the explicit and implicit Euler method.
This method is 2nd order accurate in time and satisfies the so called A-stability condition, so
there is no limitation in time step size. The computational cost of the CN is slightly higher than
the Implicit Euler method but on the other hand, it is more accurate in time as compared to the
Implicit Euler method. Although the Crank-Nicolson method is an implicit method, sometimes it
may suffer from (non physical) oscillations because of its weaker damping properties (no strong
A-stability).

Note that the Explicit/Implicit Euler and Crank-Nicolson methods can be summarized as a
single equation by introducing a control parameter θ (0≤ θ≤ 1) as follows:

un+1−un

τn
= [θL(tn+1,un+1)+(1−θ)L(tn,un], (2.2)

where τn = tn+1−tn is the length of the time step and θ is the implicitness parameter which controls
the scheme as follows:

θ = 0, explicit scheme, order O(τ), Forward Euler scheme,

θ =
1
2
, implicit scheme, order O(τ2), Crank-Nicolson scheme,

θ = 1, implicit scheme, order O(τ), Backward Euler scheme.

2.1.6. Fractional-step-θ (FS-θ) method

Another method which combines the advantage of implicit Euler (strong A-stability) and Crank-
Nicolson (2nd order accurate) is the fractional-step-θ scheme, originally proposed by Glowinski
[22], features the same computational cost as the Crank-Nicolson scheme. It uses three different
values of the time step τ and for the parameter θ. For a realistic comparison, we choose a macro
time step K = 3τ consisting of three time steps of size τ. Then for the implicit Euler or Crank-
Nicolson method we perform three time steps with the same values for θ and τ, while in case of
the FS-θ-method different values are used in each micro time step.

For the FS-θ-method, we proceed as follows: Given the parameters θ ∈ (0,1),θ′ = 1− 2θ,
and α ∈ [0,1], subdivide the time interval (tn, tn+1) into three subsets and update the solution as
follows:

1. un+θ = un +[αL(tn+θ,un+θ)+(1−α)L(tn,un)]θτ

2. un+1−θ = un+θ +[(1−α)L(tn+1−θ,un+1−θ)+αL(tn+θ,un+θ)]θ
′τ
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3. un+1 = un+1−θ +[αL(tn+1,un+1)+(1−α)L(tn+1−θ,un+1−θ)]θτ

This method is second-order accurate in the special case θ = 1−
√

2
2 , and the coefficient matrices

are the same for all substeps if α = 1−2θ

1−θ
. This method is strongly A-stable which is advantageous

in the case of rough initial or boundary data due to a strong damping of (non physical) oscillations.
Moreover, this method is little dissipative which is important in the computation of non-physical
temporal oscillations which may occur in the simulation of incompressible flows. A rigorous
theoretical analysis of the FS-θ-method can be found in [9, 36, 46].

2.2. Stability concepts for time discretization schemes

In general, the stability of numerical methods is studied by applying these methods to the following
scalar test problem

du
dt

= λu, λ ∈ C, t ∈ [0,∞) (2.3)

subject to u(0) = 1. This simple problem has the exact solution

u(t) = eλt .

This implies that the exact solution approaches zero for t → ∞ if Re(λ) < 0. If the numerical
method also posses the same property, then the numerical method is said to be A-stable. Before
giving the precise definition of the A-stability, we first define the stability region. The numerical
method applied to the test problem (2.3) can be written as

un+1 = φ(hλ)un,

for a so called stability function φ : C→ C. The absolute stability region (or simply the stability
region) is defined to be the set

{z ∈ C||φ(z)|< 1} .

Definition 2.3 (A-stability) A numerical method is said to be A-stable [14, 16] if the region of
absolute stability includes the set

{z ∈ C|Re(z)< 0} ,
that is, the left half plane.

Next, we discuss the stability of various time stepping schemes presented in this chapter.

2.2.1. Stability of explicit/implicit Euler and Crank-Nicolson method

The explicit Euler method for the test problem (2.3) can be written as

un+1 = φ(z)un

for φ(z) = 1+ z. The stability region for this method is

{z ∈ C||1+ z|< 1} ,

which is the unit circle centered at -1 on the real axis (see [10]). The stability region for the explicit
Euler and Crank-Nicolson are shown in Figure 2.1. The stability region for the implicit Euler is
the whole complex plane except the unit circle centered at 1 on the real axis (see [10]).

Next, we define the concept of L-stability (or strongly A-stable). A-stability only insures the
boundedness of the solution but it does not give the perfect stability. Sometime, it may happen
that the rapidly decaying components are damped very slowly and consequently, non-physical
oscillations are produced which are damped only for very small time steps. This leads to the
concept of L-stability.
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Figure 2.1: Stability region for the Explicit Euler method (left) and Crank-Nicolson method
(right).

Definition 2.4 (L-stability) A method is said to be L-stable [18] (or strongly A-stable) if it is
A-stable and |φ(z)| → 0 as |z| → ∞, z ∈ C.

Remark 2.1 Among the one-step methods discussed before, the following is true [26]:

⊕ The Explicit Euler is not A-stable, nor L-stable.

⊕ The Crank-Nicolson is only A-stable.

⊕ The Implicit Euler is A-stable as well as L-stable.
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3

Fundamentals of the finite element method

3.1. Introduction

In this chapter, we explain the fundamentals of the finite element method (FEM) which is used for
the spatial discretization throughout this numerical study. The finite element method was basically
developed to solve the equation of elasticity and structural mechanics but nowadays it has become
a powerful tool for the numerical treatment of partial differential equations (PDEs) in engineering,
solid mechanics and fluid mechanics due to its flexibility, robustness and accuracy. Moreover, this
method is also perfectly suitable as an adaptive method because it allows to make local refinement
of the solution.

The idea of FEM is to reformulate the original PDE into a more suitable form known as the
variational or weak form. This variational form can be achieved by multiplying the strong form
of the equation by an arbitrary function called the test function and integrate over the domain.
Once the variational form is obtained, there are two approaches, the Ritz method and the Galerkin
method, which is based on the weighted residual method. Both these approaches finally lead to
the same numerical results.

3.2. Weighted residual formulation

As an example, we consider the linear model problem

Lu = f in Ω

u = 0 on ∂Ω,
(3.1)

where L is the 2nd order elliptic partial differential operator with homogeneous Dirichlet condi-
tions at the boundary ∂Ω of a polygonal domain Ω ⊂ Rd , d = 1,2,3. A function u : Ω→ R is a
solution of the problem (3.1) if it is smooth enough and fulfills (3.1). Moreover, if the function
u is the exact solution, then the residual R(u) = L[u]− f = 0, but for an approximate solution
ū≈ u, the residual R(ū) = L[ū]− f 6= 0 since the approximate solution does not satisfy the given
differential equation rigorously.

The goal is to find the function uh which makes the residual zero weighted by appropriate
functions (see [7, 13, 34, 42, 51]). To apply the finite element method, we first need to transform
the equation (3.1) to the integral form, known as the weak (or variational) form. To this end,
we multiply the strong form (3.1) by a suitable test (or weight) function v and integrate over the
domain Ω, we have ∫

Ω

(L[u]− f )vdΩ = 0. (3.2)

So the minimum requirement for the test function v is thus the integral must exists. With this

13
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notion, we have ∫
Ω

(L[u]− f )vdΩ = 0, ∀ v ∈V, (3.3)

where V is the test space. At this stage, it is common practice to reduce the regularity of the
solution by applying the integration by parts to get rid of the highest order derivatives. By making
use of Green’s formula for partial integration and substitution of boundary condition leads to the
following form

a(u,v) =
∫

Ω

f vdΩ, ∀ v ∈V, (3.4)

where

a(u,v) =
∫

Ω

2

∑
i, j=0

∂u
∂xi

∂v
∂x j

dx

is the bilinear form. We suppose that the function u is approximated by the trial function uh ∈Uh
of the form

uh(x)≈
N

∑
j=1

c jφ j (3.5)

from the finite dimensional trial space Uh, where φ j are the basis basis functions (or interpola-
tion functions) and ci are the unknown coefficients to be determined. In order to compute the
approximate solution of equation (3.1), we need to replace the infinite dimensional space V by a
finite dimensional space Vh ⊂V . The computational domain is subdivided into a finite number of
non-overlapping pieces (subdomains) Ωk called elements. That is,

∪N
k=1Ωk = Ω.

In 1D these elements are called intervals, in 2D usually triangles or quadrilaterals and in 3D,
tetrahedral and hexahedral elements are very popular choices [11, 13]. Since the test space Vh is
finite dimensional, the test function vh ∈Vh can be written as

vh(x) =
N

∑
i=1

diψi, (3.6)

where ψi are the basis functions from the test space and di are the unknown coefficients. Substi-
tuting the equation (3.5) and (3.6) into equation (3.4), we have

a(uh,vh) =
∫

Ω

f vh dx, ∀ vh ∈Vh. (3.7)

The basis functions φi and ψi are predefined and the goal is to compute the unknown ci. After-
wards, the equation (3.4) implies that the expression (3.7) holds for all possible choices of the
coefficients di, i = 1,2, . . . ,N. Thus, the unknown coefficients ci for the approximate solution uh
can be determined by solving the following system of equations

N

∑
j=1

c j a(φi,ψ j) =
∫

Ω

f ψ j dx, ∀ i = 1,2, . . . ,N. (3.8)

There are various methods of weighted residuals depending on the choice of ψi, for instance, the
collocation method, the sub-domain method and the least squares method. One of the obvious
choice to select the trial space and test space to be the same, i.e., φi = ψi which leads to the
well known standard Galerkin’s (or Bubnov-Galerkin) method that is used in this thesis. Use of
functions φi 6= ψi yields the so-called Petrov-Galerkin approximation. We refer to the literature [7,
11, 13, 17, 34, 35, 42–44, 51] for the comprehensive introduction of FEM.
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3.3. Construction of FEM basis functions

Now we have done a great deal of work but we are not much close to find the solution of the
given differential equation as we know nothing about the FEM basis functions. The finite element
method offers a general and systematic techniques for the construction of the basis functions in
case of the so-called Galerkin method. Here the basis functions can be chosen as the piecewise
polynomial of any order over the subdomains Ωk.

Let us now construct a finite dimensional subspace Vh of V . To this end, we assume for sim-
plicity that the boundary ∂Ω is a polygonal curve, thus the computational domain Ω is a polygonal
domain. Afterwards, the computational domain Ω is decomposed into a finite number of non-
overlapping triangles or quadrilaterals, called elements, i.e.,

Ω = ∪N
k=1Ωk, Ωk∩Ωl = /0 k 6= l,

also known as the triangulation of Ω. Such partitions of domain are usually designed by hand or
by using the automatic mesh generation tool. For the time dependent nodal coefficients u j(t) =
uh(x j, t) at any time t, the approximated solution in each element Ωk can be interpolated by using
the local basis functions (or shape functions) φ

(k)
j such that [45, 52]

uh(x, t) =
m

∑
j=1

u j(t)φ
(k)
j (x) ∀ x ∈Ωk,

where m is the number of local degrees of freedom for a single element Ωk. Summing up these
local basis functions over all elements, we obtain an approximation for uh over the whole domain

uh(x, t) =
M

∑
j=1

u j(t)φ j(x) ∀ x ∈Ω,

where M denotes the total number of degrees of freedom. Usually, the resulting system matrix is
dense and ill-conditioned except for if strongly orthogonal polynomials are used. To circumvents
these difficulties, the basis functions for Lagrange finite elements are defined locally which has
the following properties [45, 52]:

• Interpolation property: The basis function φ j is one at the node j and vanishes at all other
nodes

φ j(xi) = δi j =

{
1 if j = i
0 if j 6= i

(3.9)

=⇒ uh(x j, t) =
M

∑
j=1

u j(t)φ j(x) = u j(t),

where δi j is the Kronecker delta.

• Constant sum property: The sum of the local basis functions φ
(k)
j in each element k should

be identically to one, i.e.,
M

∑
j=1

φ j(x) = 1 ∀ x ∈Ωk. (3.10)

• Conservation property: The derivative sum of all the basis functions at any given location in
each element vanishes which is the consequence of the constant sum property

M

∑
j=1

∇φ j(x) = 0 ∀ x ∈Ωk. (3.11)
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Note that vanishing the basis function φ
(k)
j outside the element k leads to the sparsity of the

resulting system matrix which is desirable for the computational efficiency. An easy and system-
atic way for generating the shape functions of any order can be achieved by using the Lagrange
polynomials.

3.4. Quadrilateral elements

The choice of an element always depends on the problem being solved and the accuracy required.
In general, the quadrilateral elements are usually favorable above triangular elements except where
the region cannot be approximated easily by quadrilaterals [11], for instance, when the irregular or
complex geometries having curved boundaries have to be approximated. In comparison to triangu-
lar elements, only one half of the number of quadrilateral elements are required and consequently,
the overall computational time for the construction of matrices and vectors reduces. Here, we
explain the biquadratic quadrilateral (Q2) elements which has been used in this thesis.

Biquadratic elements (Q2):

The domain Ω ⊂ R2 is discretized into a number of quadrilateral cells Ωk, k ∈ N. Moreover, we
also assume that each Ωk is convex and no angle of Ωk is too close to 0◦ [11]. On each quadri-
lateral, the biquadratic element Q2 is defined by introducing the four additional mid-side node
points, together with a ninth node at the centre as shown in Figure 3.1 (see [19]). To construct
the local shape functions on an arbitrary physical element Ωk, we make use of a reference coor-
dinate system. A local coordinate system (ξ,η) introduced. Let Ω̂k = [−1,1]2 be the reference
element located at the center of this coordinate system (ξ,η). A one-to-one bilinear mapping be-
tween the physical and the reference element is referred to Fk : Ω̂k→Ωk. Once the basis functions
have been defined on the reference element in terms of reference coordinates, the inverse mapping
F−1

k : Ωk → Ω̂k can be employed to get back to the physical space. Figure 3.1 illustrates the bi-
quadratic element in both the physical and reference coordinate system. In this case, there are nine
shape functions, four associated with the vertices, four with the edge mid-points and one internal
(or bubble) function. The nodal shape functions in the reference coordinate system are defined
locally such that the basis function φ̂ j is one at the node j and vanishes at all other nodes

φ̂ j(x̂i) = δi j =

{
1 if j = i
0 if j 6= i

(3.12)

where x̂i ∈ Ω̂k represent the ith node in Ω̂k, i.e., vertices, edge mid-points and the centroid. In gen-
eral, these nine shape functions are biquadratic polynomials, a linear combination of the following
monomials {

1,ξ,η,ξη,ξ2,η2,ξ2
η,ξη

2,ξ2
η

2} ,
where −1≤ ξ,η≤ 1. Then, the space Q2(Ωk) on the physical element is defined as follows

Q2(Ωk) =
{

q◦F−1
k : q ∈ span{1,x,y,xy,x2,y2,x2y,xy2,x2y2}

}
(3.13)

We refer the interested reader [11, 43] for more details.

Discontinuous P1 element (Pdisc
1 ):

On each quadrilateral Ωk of Ω, the discontinuous P1 finite element space consists of piecewise
linear polynomials which are discontinuous across inter-element boundaries (zero outside of the
element) [19]. Three shape function are defined locally at the center of each element as shown
in Figure 3.2. These shape functions correspond to the function value and both of its partial
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Figure 3.1: Mapping between the biquadratic physical and reference element.

derivatives. There are two possible choices for the Pdisc
1 finite element: the unmapped approach

(where the finite element space is spanned by the constant 1 and the global coordinates x and y) or
the mapped approach (where the finite element space is defined locally by means of the constant 1
and the local coordinates ξ and η). In case of the mapped approach, the basis functions are defined
by using the bilinear mapping between the physical Ωk and the reference element Ω̂k = [−1,1]2.
The nodal shape functions on the reference element are defined as follows

φ̂1(ξ,η) = 1

φ̂2(ξ,η) = ξ

φ̂3(ξ,η) = η.

The space P1(Ωk) on the physical element is defined as

P1(Ωk) :=
{

q◦F−1
k : q ∈ span{1,x,y}

}
. (3.14)

On the other hand, in case of the unmapped approach, a local coordinate system can be considered
(see [1, 58, 60]) which is obtained by joining the midpoints of the opposite sides of Ωk. This leads
to the concept of nonparametric finite element. Then, we set on each element

P1(Ωk) := span{1,ξ,η}.

We remark that this choice is known to provide optimal error estimates on general meshes (see [5]).
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Figure 3.2: Mapping between the discontinuous P1 physical and reference element.
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3.5. The conforming Stokes element Q2/Pdisc
1

After discretizing the continuous (Navier-) Stokes problem by a standard Galerkin method in
Chapter 8 and 9, we approximate the domain Ω⊂ R2 by a collection of quadrilaterals Ωk, k ∈ N.
On each quadrilateral Ωk, we define the finite element space Vh for the velocity and the finite
element space Qh for the pressure as follows

Vh :=
{

vh ∈ [H1
0 (Ω)]2, vh|Ωk ∈ [Q2(Ωk)]

2 ∀Ωk ⊂Ω, vh = 0 on ∂Ω
}
, (3.15)

Qh :=
{

qh ∈ L2(Ω), qh|Ωk ∈ P1(Ωk) ∀Ωk ⊂Ω
}
, (3.16)

where Q2(Ωk) and P1(Ωk) are the biquadratic and linear spaces, resp., on the quadrilateral element
Ωk. Let Ω̂k = [−1,1]2 be the reference square and we define a bilinear mapping Fk : Ω̂k→Ωk from
the reference square Ω̂k to an arbitrary quadrilateral Ωk. The space Q2(Ωk) is defined by (3.13)
with 9 local degrees of freedom located at the vertices, mid-points of the edges and in the center
of the quadrilateral as show in Figure 4.2. Similarly, the space P1(Ωk) on the physical element
is defined by (3.14) with 3 local degrees of freedom, the function value and both of its partial
derivatives located in the center of the quadrilateral (see Figure 4.2).

In two dimensions this choice yields 18 velocity degrees of freedom and three pressure degrees
of freedom in case of the cGP(1) or the Crank-Nicolson method. The chosen finite element pair
Q2/Pdisc

1 is one of the most popular Stokes element which satisfies the discrete Ladyzenskaya-
Babuška-Brezzi (LBB) stability condition (see [5, 8, 21, 41, 53]), i.e., inf-sup condition.

Q2/Pdisc
1

{
uh,vh → velocity at x̂i

� ph,
∂ph
∂x ,

∂ph
∂y → pressure at x̂i

d
x

y

Figure 3.3: Location of the degrees of freedom for the Q2/Pdisc
1 on the reference element.

Approximation order

The bilinear transformation Fk applied to a linear function on the reference element does not
contain the full bilinear basis and consequently, the method can be only first order on general
meshes (see [1, 5])

‖p− ph‖= O(h),

where h=max(hk) is the diameter of the mesh cell Ωk. To remedy this situation, a local coordinate
system can be considered (see [1, 58, 60]) which is obtained by joining the midpoints of the
opposite sides of Ωk. Then, we set on each element

P1(Ωk) := span{1,ξ,η}.

The inf-sup condition is also satisfied in this case and the second order approximation is recovered
for the pressure (see [5, 21])

‖p− ph‖= O(h2).

For smooth solutions, the approximation errors for the velocity and pressure are O(h3) and O(h2),
respectively,(see [5]).
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3.6. Edge oriented jump stabilization

Several methods are known to stabilize the standard Galerkin discretization and to reduce the
oscillatory behavior of the solution. For instance, Streamline-Upwind Petrov-Galerkin (SUPG)
and Streamline Diffusion (SD) method. Here we utilize a method originally proposed by Douglas
and Dupont, known as edge-oriented stabilization. The main idea in this technique is to augment
the standard Galerkin discretization by an interior penalty term involving a jump in the gradient
over the element boundaries. To be specific, we use the following term which is also used by A.
Ouazzi and S. Turek [59],

〈Juh,vh〉= ∑
edge E

max(γ∗νhE ,γh2
E)

∫
E
[∇uh][∇vh]dσ, (3.17)

where ν,hE denote the viscosity and length of element edge, resp. The parameters γ and γ∗ have
no significant influence on the accuracy of the results and the solution is stable and accurate for
large range of parameters. In our case, these parameters are set to 0.1 and 0.0, respectively. To
integrate the proposed jump term (3.17) into the resulting system matrix, a loop over all the edges is
performed. In order to deal this term with standard Galerkin method appropriately, an extension of
the matrix stencil of the system matrix is required to put the extra nonzero entries. This extension
of matrix stencils leads to some additional memory requirement. For more details, see [59].
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Solution of nonlinear and linear systems

This chapter deals with the solution methods for the discrete systems obtained from the finite ele-
ment discretization of the partial differential equations. From the discretization of incompressible
Navier-Stokes equation in Chapter 9, an algebraic system of nonlinear equations is obtained. This
system has to be solved in every time step. An efficient way to solve the nonlinear system is the
Newton method which is well known for its quadratic convergence if the initial solution is chosen
close enough to the exact solution and the problem is smooth enough. Therefore, once the Newton
method converges, it requires only a very few iterations. However, the construction of the Newton
matrix in every nonlinear iteration is sometimes very expensive due to the approximation of the
Fréchet-derivative of the nonlinear operator with respect to the last iteration. Another choice for
solving the system of nonlinear algebraic equations is to use the fixed point iteration method where
the approximation of the Fréchet-derivative may be as chosen the associated nonlinear operator it-
self or even the linear part of the nonlinear operator. The resulting method is less efficient than
the Newton method (i.e., with linear or superlinear convergence only). In our numerical study, we
apply the fixed-point and Newton method.

The resulting linear systems, for instance, from the discretization of heat equation, Stokes
equations or the linearized Navier-Stokes equations are solved by using Krylov space or multigrid
methods. The coefficient matrices of these linear systems arising from finite element discretization
are very large and sparse. A sparse matrix is a matrix which has only a small proportion of nonzero
entries. Mainly, the methods for solving the linear systems can be divided into two classes, direct
methods (i.e., those which execute in a predetermined number of operations) and iterative methods
(i.e., those which attempt to converge to the desired solution in an unknown number of iterations).

The most commonly used direct methods are the Gaussian Elimination and LU decomposition.
The complexity of these methods is O(n3) [54, 56], where n is the number of degrees of freedom
associated with matrix A. Another direct method is the Cholesky factorization for symmetric
positive definite matrices (SPD) which also has the same complexity as Gaussian Elimination.
Direct methods are often used for small dense problems and become prohibitively expensive for
large problems due to their asymptotically cubic runtime. Although the associated coefficient
matrices are sparse but unfortunately their structure is such that after a few steps of Gaussian
elimination (approximately

√
n), the computational effort grows significantly because most of

the zero elements are replaced by nonzero ones (see [6] for more details). Moreover, one major
disadvantage of these methods is a need to form an explicit matrix which in practice requires a lot
of storage.

On the other hand, the solution of large sparse problems which are typically encountered in
the discretization of PDEs, can be solved in a more efficient way by using the iterative methods.
For the formal description of iterative methods, we refer the reader to [4].

In the following, we explain in more detail the linear solver.

21



22 Solution of nonlinear and linear systems

4.1. Basic iterative solvers for sparse linear systems

The iterative methods for the solution of linear systems refer to a wide class of methods which
attempt to find the solution of a problem by using successive approximations to obtain more ac-
curate solution starting from an initial guess. There are two main classes of iterative methods:
stationary and nonstationary iterative methods [4].

4.1.1. Stationary iterative solvers

The basic iterative methods used for solving large linear systems Ax = b, where A is a given matrix
and b is a given vector, are the stationary iterative solvers. Stationary iterative methods are those
which can be expressed in the simple form.

x(l) = Bx(l−1)+ c

(where neither the matrix B nor the vector c depend upon the iteration count l) [4]. These iterative
methods are based on relaxation of the coordinates. Starting with an initial guess, these methods
modify the components of the approximation, one or a few at a time and in a certain order, until the
convergence is reached. Nowadays these methods are rarely used as stand-alone iterative solvers
due to the poor convergence. Nevertheless, they have not lost their importance. Indeed they are
often used in conjunction with modern efficient iterative methods, for example in the Krylov space
method for preconditioning, and in the multigrid method for smoothing. The four main stationary
methods are the following:

• Jacobi method (JAC),

• Gauss-Seidel method (GS),

• Successive overrelaxation method (SOR),

• Symmetric successive overrelaxation method (SSOR).

All these methods can be formulated as a defect-correction as follows

x(l) = x(l−1)+ωP−1(b−Ax(l−1)),

where P is matrix for which we classify for A = L+D+R:

JAC: P = D

GS: P = D+L

SOR: P = D+ωL, 0 < ω < 2

SSOR : P = (D+ωL)D−1(D+ωU).

Here, L,D,R denote the lower triangular, diagonal and upper triangular part of the matrix A.

4.1.2. Nonstationary iterative solvers

Nonstationary iterative methods are those in which the computations involve information that
changes at each iteration k, for instance, the Krylov space methods, i.e., methods that seek to
generate better approximations from the Krylov subspace. These methods find an approximation
xk to the linear system Ax = b over the m-th Krylov subspace Km(A,r0)+x0, where x0 is the initial
solution and r0 represents the initial residual vector, given by r0 = b−Ax0. A Krylov subspace of
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dimension m ∈ N generated by a matrix A ∈ Rn×n and a vector r ∈ Rn is the subspace spanned by
the vectors of the Krylov sequence:

Km(A,r) = span
{

r,Ar,A2r, · · · ,Am−1r
}
.

The dimension of this subspace increases by one for every step of the approximation process.
These methods are extensively used nowadays for the solution of linear systems arising from the
discretization of partial differential equations (PDEs). Commonly known Krylov space methods
are

• Conjugate Gradient (CG),

• Generalized Minimal Residual (GMRES),

• Biconjugate Gradient (BiCG),

• Quasi-Minimal Residual (QMR),

• Conjugate Gradient Squared (CGS),

• Biconjugate Gradient Stabilized (BiCGStab),

• Chebyshev Iteration.

A comprehensive study regarding the Krylov space methods can be found in [4]. Among the
Krylov space method, we apply the Bi-Conjugate Gradient Stabilized method (BiCGStab) and the
Generalized Minimal Residual Method (GMRES) in our numerical study.

Bi-Conjugate Gradient Stabilised Method (BiCGStab)

The Bi-Conjugate Gradient Stabilised method was originally developed by van der Vorst [62] in
1992 from the CGS, BiCG and GMRES methods, for the solution of non-symmetric linear system
of equations while avoiding the often highly irregular convergence behavior of CGS and BiCG,
and the large storage requirements of GMRES. This algorithm requires six auxiliary vectors, and
performs two preconditioning steps in each iteration. Furthermore, the two matrix-vector product
are also perform in each BiCGStab step. Its convergence behavior is much smoother and in most
of the cases, it converges considerably faster than CGS. Like other iterative methods, BiCGStab
method is usually combined with a preconditioning to speed up its convergence. We apply the
standard algorithm for the preconditioned BiCGStab method in our numerical study (see [62]).

Generalized Minimal Residual Method (GMRES)

The Generalized Minimal Residual Method (GMRES) was proposed by Saad and Schultz [48] in
1986 to find the solution of non-symmetric linear systems. This method is an extension of the
minimal residual method (MINRES) which is only applicable for the solution of symmetric sys-
tems. In the GMRES method, a sequence of orthogonal vectors is generated and all the previously
computed vectors in the orthogonal sequence are required to calculate the next iteration. Conse-
quently, the required storage for these vectors often exceeds the available memory limit before
reaching the stopping criterion which is the drawback of this method. To remedy this difficulty,
a restarted version of this method, usually refereed by GMRES(m) is commonly used where the
algorithm is restarted in every m steps for fixed integer m. The GMRES method has an advan-
tage over BiCGStab method due to its convergence behavior since it is more stable in practice
for ill-conditioned systems. Moreover, only one matrix-vector multiplication is performed in the
GMRES while the BiCGStab requires two matrix-vector products. Our implementation for the
preconditioned GMRES(m) method corresponds to the algorithm in [48].
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Krylov-space smoothers

Beside using the preconditioned Krylov space methods as stand-alone solver, these methods can
also be applied as smoother in the multigrid method to accelerate the convergence and robustness
(see [19]). Since the most important part of the multigrid method is the smoothing, the efficiency
and robustness depend in many cases on the smoothing algorithms. In contrast to the classical
smoothers such as Jacobi, Gauß-Seidel or SSOR whose damping properties for different error
modes is fixed [19], the damping properties of GMRES depend on the initial residual and the
GMRES itself is constructed to minimize the residual. Therefore, it damps those error modes
which leads to largest residual norm reduction. For instance, the discretization of incompressible
Navier-Stokes equations yields an indefinite system of equations and standard smoothers become
unstable for indefinite problems [19]. To remedy this, one of the choice is to use Krylov space
methods as an inner or outer iteration for the multigrid methods. In the present numerical study,
we employ the preconditioned GMRES method as smoother in the multigrid solver.

4.2. Preconditioning

Preconditioning is a technique by which the condition number of the system matrix is improved
to speed up the convergence rate of the iterative methods. It is an important ingredient behind the
success of iterative methods [47]. In the subject of numerical analysis, a preconditioner P for a
matrix A can be chosen in a way such that P−1A has a smaller condition number than A. Rather
than solving the original system, we solve the system Ax = b indirectly by solving

P−1Ax = P−1b.

One may apply the preconditioner P either from the left or right. For a symmetric positive definite
matrix A, it is also suggested that the preconditioner P should be symmetric positive definite. If
we choose

P = A,

in this case, the conditioner number becomes one and the solution of the system is reached only
in one iteration. However, in practice it is not much useful as calculating the inverse of the matrix
A is not so easy. Thus in practice, parts of the matrix A are taken. The most common used
preconditioners [4, 47] are

JAC: P = D

GS: P = D+L

SOR: P = D+ωL, 0 < ω < 2

SSOR : P = (D+ωL)D−1(D+ωU).

4.3. Multigrid solvers for linear equations

Another efficient alternative for the solution of large and sparse linear systems is to use the multi-
grid or multilevel methods (see for instance [3, 23, 38, 47, 64]). These methods were mainly
developed for linear systems arising from the discretization of elliptic PDEs and later on also
extended to handle other types of PDEs, including nonlinear ones. In the subject of numerical
analysis, these methods form a group of algorithms for the solution of differential equations using
a hierarchy of discretizations. Multigrid solvers are regarded as the most efficient solvers for solv-
ing the large sparse linear systems, in particular for those arising from the discretization of PDEs
where the conditions number of the system matrix deteriorates with increasing the problem size.
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In contrast to the other iterative solvers (like for instance BiCGStab or GMRES), these solvers
converge independent of the mesh size and require only a linear amount of operations w.r.t. the
number of unknowns. The efficiency and the robustness of these solvers crucially depend on the
smoothing operator. Multigrid methods can be classified into two categories:

• Algebraic Multigrid Methods (AMG)

• Geometric Multigrid Methods (GMG)

The primary difference between the algebraic and geometric multigrid algorithms is that the AMG
methods require only a single mesh information and the system matrices of the ’coarse grids’
are constructed by using algebraic operations [47]. On the other hand, the GMG generates the
coarser levels by using the hierarchy of mesh refinements. In recent years, the multigrid methods
have become quite popular for the solution of discretized linear systems due to their convergence
behavior. Throughout this thesis, we will consider only the geometric multigrid methods (see [23,
38, 39, 58] for more details).

The resulting linear systems on each time interval [tn−1, tn] in Chapter 8 or 9, which are 6×6
block systems in the case of the cGP(2) and dG(1) approach and 3× 3 block systems for the
cGP(1)-method, are treated by using a geometrical multigrid solver with a smoother based on an
element loop where, for each element, simultaneously all unknowns are updated that belong to
this element. This type of smoother is also called ”local pressure Schur complement smoother”
in [58] or ”Vanka-type smoother” in [65] (which can be additionally applied as preconditioner in
a GMRES method to make this method more robust).

Idea of multigrid method

The fundamental concept in multigrid techniques is to exploit different mesh discretization of
the underlying problem for capturing errors and to obtain the optimal convergence rates from
the relaxation techniques on different levels. The basic iterative methods such as Jacobi, Gauß-
Seidel, successive over-relaxation (SOR), symmetric successive over-relaxation (SSOR) are re-
ferred to as relaxation methods. These method have the the ability to reduce oscillatory modes
or high-frequency errors rapidly but the smooth modes or low-frequency errors are damped very
slowly. However, the low frequency modes when mapped to the coarser meshes becomes the
high-frequency mode and therefore they are annihilated on these meshes efficiently. This process
can be successively repeated on a hierarchy of meshes in order to eliminate all the components
of the error. Thus the mutigrid is characterized by a defect correction method acting on a hierar-
chy of mesh levels. We formulate the standard multigrid algorithm by considering the following
(discrete) linear system of equations

Au = f (4.1)

with A ∈ RN×N a system matrix and u, f ∈ RN the solution and the right hand side vectors, where
N = N(k) denotes the number of degrees of freedom, independently form the previous notation
we denote in the sequel on the mesh level k, k = 1, . . . ,L ∈ N. Let Ik

k−1 : RN(k−1) 7→ RN(k) denotes
the prolongation operator and Ik−1

k : RN(k) 7→ RN(k−1) the corresponding restriction.

4.3.1. Geometric Multigrid Methods (GMG)

We assume the existence of a hierarchy of levels k, k = 1, . . . ,L created by using standard refine-
ment scheme [58] of a coarse mesh and the associated finite element spaces V1 ⊂V2 ⊂ . . .VL =Vh
based upon meshes T1,T2, . . . ,TL. On each of these levels k, we have to assemble the discrete prob-
lem matrix Ak and corresponding right hand side fk. The RHS fN = f is specified on the finest
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level N only, while all other fk are generated during the multigrid run. Then, a standard L-level
geometric multigrid algorithm MG(L, . . .) for the solution of (4.1) is described in Algorithm 4.1.

Algorithm 4.1 Geometric multigrid algorithm.
The k-level iteration MG(k,Ak,u0

k , fk,ν1,ν2,µ):
The k-level iteration with initial u0

k yield an approximation to uk, the solution of the problem

Akuk = fk.

One step can be described in the following way:
For k = 1, MG(1,A1,u0

1, f1,ν1,ν2,µ) is the exact solution

MG(1,A1,u0
1, f1,ν1,ν2,µ) = A−1

1 f1

For k > 1, there are four steps:

1. Pre-smoothing steps: Compute the approximation uν1
k by applying ν1 smoothing steps (iter-

ations of a relaxation scheme) to u0
k with a basic iteration.

2. Correction step: Calculate the restricted residual (with the restriction operator Ik−1
k )

fk−1 = Ik−1
k ( fk−Akuν1

k )

and let ui
k−1(1≤ i≤ µ, µ≥ 1) be defined recursively by

ui
k−1 = MG(k−1,Ak−1,ui−1

k−1, fk−1,ν1,ν2,µ), 1≤ i≤ µ, u0
k−1 = 0.

Interpolate the error correction onto the fine grid and obtain uν1+1
k (with prolongation oper-

ator Ik
k−1) via

uν1+1
k = uν1

k + Ik
k−1uµ

k−1.

3. Post-smoothing steps: Analogously to step 1), apply ν2-smoothing steps to uν1+1
k and obtain

uν1+ν2+1
k .

Each iteration in MG(L, . . .) is called one cycle. Sufficiently many cycles on level L are re-
quired to obtain a good approximate solution of problem (4.1). The whole process continues
until the prescribed convergence criterion is reached. The manners of visiting the mesh levels are
characterized by the cycle index µ, which indicates the number of multigrid steps performed on a
coarser level. The case µ = 1, is called V-cycle which is the simplest multigrid cycle, and µ = 2
leads to the so-called W-cycle. Another interesting case lies inbetween, so called F-cycle which
we use in our application. The number of pre-smoothing steps ν1 ∈ N and post-smoothing steps
ν2 ∈ N, resp., is typically small, for instance between 1 and 4. Moreover, the coarsest grid should
be coarse enough in order to be efficient.

The key ingredients in the multigrid methods are the smoothing, restriction and prolongation
operators, which are sketched in the following.

4.3.2. Local pressure Schur complement (LPSC) type Smoothers

The efficiency and robustness of the multigrid method is essentially influenced by the smoothing
operators. In our numerical study, we employ a geometrical multigrid solver with a local pressure
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Schur complement type smoother which was originally proposed by Vanka [63] for the solution
of Navier-Stokes equations discretized with the finite difference method. These smoothers were
originally developed to solve saddle point problems having a zero block appearing on the main di-
agonal of the system matrix, where standard smoothers such as Jacobi or Gauß-Seidel fails a usual
situation in the field of computational fluid dynamics (CFD). The local pressure Schur comple-
ment type smoothers can be considered as block Gauß-Seidel methods, where in each smoothing
step a local system of equations has to be solved exactly on fixed patches. The associated degrees
of freedom are updated successively in a Gauß-Seidel manner. That is, the information which has
been updated in previous element influences immediately all (velocity and pressure) degrees of
freedom which are connected to current mesh cell. In every smoothing step, a loop over all mesh
elements is performed (see [15, 65] for more details). Because the local pressure Schur comple-
ment type smoothers solve the problem element-wise, they are also called local smoothers ("local
Multilevel Pressure Schur Complement (MPSC)" in [58]).

The idea of local MPSC smoother is to apply a defect correction of the type

x j+1 = x j +ωC−1(b−Ax j), ω > 0

over all elements, where C is an appropriate preconditioner. To explain the MPSC smoother in a
more formal way, we consider the mesh ΩH of the finite element space at given level H with mesh
size h and K ∈ ΩH be the element of ΩH . An outer loop over all elements K ∈ ΩH is performed.
A global defect is set up, with all components of the defect vector which do not belong the current
element K forced to zero. Consequently, the global defect can be reduced to local defect and
global preconditioner to a local preconditioner for the all elements K.

Figure 4.1: Local smoothing process for PSCS type smoother on element K5.

To demonstrate the local smoothing process, we consider the problem discretized with Q2
finite elements (see [37] for Q1 discretization) with 9 mesh cells as shown in Figure 4.1. Then, the
corresponding discrete system reads

Ax = b, (4.2)

where A ∈ R49×49 is a system matrix and x,b ∈ R49 the solution and right hand side vectors,
respectively. Let I(K) denotes a list of all degrees of freedom located on an element K and AI(K) be
the matrix which corresponds to the rows and columns associated by the index set I(K). Similarly,
xI(K),bI(K) and rI(K) = (b−Ax)I(K) represents the subvectors of x,b and r restricted to element K.
The corresponding preconditioner C−1

K can be obtained by applying LU-decomposition (e.g., with
LAPACK package) to the matrix AI(K).
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Let us assume there are 9 (local) degrees of freedom per element for simple presentation and
the elements K1,K2,K3,K4 are already processed. Then, the degrees of freedom on the current
element K5 are updated as follows

x17
x18
x19
x24
x25
x26
x31
x32
x33


←



x17
x18
x19
x24
x25
x26
x31
x32
x33


+ωC−1

5





b17
b18
b19
b24
b25
b26
b31
b32
b33


−



a17,1 ... a17,49
a18,1 ... a18,49
a19,1 ... a19,49
a24,1 ... a24,49
a25,1 ... a25,49
a26,1 ... a26,49
a31,1 ... a31,49
a32,1 ... a32,49
a33,1 ... a33,49





x1

.

.

.

x49




where

C5 =



a17,17 a17,18 a17,19 a17,24 a17,25 a17,26 a17,31 a17,32 a17,33
a18,17 a18,18 a18,19 a18,24 a18,25 a18,26 a18,31 a18,32 a18,33
a19,17 a19,18 a19,19 a19,24 a19,25 a19,26 a19,31 a19,32 a19,33
a24,17 a24,18 a24,19 a24,24 a24,25 a24,26 a24,31 a24,32 a24,33
a25,17 a25,18 a25,19 a25,24 a25,25 a25,26 a25,31 a25,32 a25,33
a26,17 a26,18 a26,19 a26,24 a26,25 a26,26 a26,31 a26,32 a26,33
a31,17 a31,18 a31,19 a31,24 a31,25 a31,26 a31,31 a31,32 a31,33
a32,17 a32,18 a32,19 a32,24 a32,25 a32,26 a32,31 a32,32 a32,33
a33,17 a33,18 a33,19 a33,24 a33,25 a33,26 a33,31 a33,32 a33,33


and ω > 0 is a relaxation parameter. The entry ai, j represents the i-th row and j-th column of
the matrix A. Continuing this process on the next element K6, the unknowns connected to node
19,20,21,26,33 will be updated again while the unknown on the node 27,28,34,35 will computed
the first time and so on. Here, the size of the preconditioner C depends on the problem. For the
conforming LBB-stable finite element pair Q2/Pdisc

1 , there are 18 velocity degrees of freedom and
three pressure degrees of freedom if the cGP(1) or Crank-Nicolson method is applied for the time
discretization. In the case of cGP(2) or dG(1)-method, the size of the block system doubles and
the total velocity and pressure degree of freedom become 36 and six, respectively. Thus in a loop
over all elements, linear system of size 21× 21 and 42× 42 have to be solved in the cGP(1) and
cGP(2) case, respectively. Figure 4.2 describes the location of the local degrees of freedom for
Q2/Pdisc

1 for the presented time discretization schemes.

Q2/P1
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{
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Figure 4.2: Location of the degrees of freedom for the Q2/P1 element.
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4.3.3. Restriction and prolongation

Multigrid methods require the transfer of information between the different mesh levels. To this
end, we need to define some inter-grid transfer operators (restriction and prolongation). It is
sufficient to consider these grid transfer operators only for two mesh levels Ωk (fine) and Ωk−1
(coarse). The transfer of the residual from a finer grid to a coarser grid is referred to as restriction.
The most common notation for the restriction operator is

Ik−1
k : RN(k) 7→ RN(k−1).

Prolongation is defined as the transfer of computed correction on the coarser grids to the finer
grids. That is a function

Ik
k−1 : RN(k−1) 7→ RN(k).

We use the canonical grid transfer routines based on FEM space which treat all solution com-
ponents separately. In the case of conforming Q2 finite elements, the prolongation operator is
constructed by using a biquadratic interpolation. Let {vi} be the nodes of the coarse grid k− 1
and {wi} the nodes of the fine grid k as shown in Figure 4.3(left) (see [23, 38, 39] for the details).
Then, the weights of the nodes w1,w2, . . . ,w9 are computed as follows (see also Figure 4.3(left))

w1 := v1, w2 :=
1
8
(3v1 +6v2− v3),

w9 :=
1
64

(9v1 +18v2−3v3−6v4+ v5−6v6−3v7 +18v8 +36v9).

The weights for remaining nodes wi can be computed similarly. The restriction is then set up as
the adjoint of the prolongation operator, i.e., the matrices associated to Ik

k−1 and Ik−1
k are exactly

transposed to each other. Next, we describe the construction of the prolongation operator for the

Figure 4.3: Prolongation in Q2 with biquadratic interpolation (left) and P1 with linear interpolation
(right).

discontinuous P1 finite element which can be done with an associated linear interpolation. To this
end, we suppose that v0,v1,v2 denote the nodal value and its derivatives w.r.t. x and y, respectively,
on the coarse grid k−1 and w0,w1,w2 be the corresponding values on the fine grid k as shown in
Figure 4.3 (right). Then, the weights of the nodes wi are computed as follows

w0 := v0−
1
2

v1−
1
2

v2, w1 := v1 w2 := v2.

Here, the values of w1,w2 will remain the same v1,v2, respectively, since the derivative of linear
function is always constant. Again, the restriction is set up as adjoint of the prolongation operator.
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5

Galerkin time discretizations for the heat equation using
Gauß-points

In this chapter, we start by introducing the continuous Galerkin-Petrov and discontinuous Galerkin
time discretizations applied to the heat equation as a prototypical example for scalar parabolic
partial differential equations. For the space discretization, we use biquadratic quadrilateral finite
elements on general two-dimensional meshes. We discuss implementational aspects of the time
discretization as well as efficient methods for solving the resulting block systems. By means of
numerical experiments we compare the different time discretizations with respect to accuracy and
computational costs.

To solve the associated linear block systems, we apply a preconditioned BiCGStab solver as
standard Krylov space method and a geometrical (block) multigrid solver. Furthermore, we also
compare a preconditioned BiCGStab solver with an adapted geometrical multigrid solver. Only
the convergence of the multigrid method is almost independent of the mesh size and the time step
leading to an efficient solution process.

5.1. The cGP-method for the heat equation

As a model problem we consider the heat equation: Find u : Ω× [0,T ]→ R such that

∂u
∂t −4u = f in Ω× (0,T ),

u = 0 on ∂Ω× [0,T ],
u(x,0) = u0(x) for x ∈Ω,

(5.1)

where u(x, t) denotes the temperature in the point x ∈ Ω at time t ∈ [0,T ], f : Ω× (0,T )→ R a
given source term and u0 : Ω→ R the initial temperature field at time t = 0. For simplicity, we
assume homogeneous Dirichlet conditions at the boundary ∂Ω of a polygonal domain Ω⊂ R2.

We start with the time discretization of problem (5.1) which is of variational type. In the
following, let I = [0,T ] be the time interval with some positive final time T . For a function
u : Ω× I→ R and a fixed t ∈ I we will denote by u(t) := u(·, t) the associated space function at
time t which is an element of a suitable function space V . In case of the heat equation, this space
is the Sobolev space V = H1

0 (Ω). In order to characterize functions t 7→ u(t) we define the space
C(I,V ) as the space of continuous functions u : I→V equipped with the norm

‖u‖C(I,V ) := sup
t∈I
‖u(t)‖V

and the space L2(I,V ) containing discontinuous functions as

L2(I,V ) := {u : I→V : ‖u‖L2(I,V ) < ∞} , ‖u‖L2(I,V ) :=
(∫

I
‖u(t)‖2

V dt
)1/2

.
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In the time discretization, we decompose the time interval I into N subintervals In := [tn−1, tn],
where n = 1, . . . ,N and 0 = t0 < t1 < · · · < tN−1 < tN = T. The symbol τ will denote the time
discretization parameter and will also be used as the maximum time step size τ := max1≤n≤N τn,
where τn := tn − tn−1. Then, we approximate the solution u : I → V by means of a function
uτ : I→V which is piecewise polynomial of some order k with respect to time, i.e., we are looking
for uτ in the discrete time space

Xk
τ := {u ∈C(I,V ) : u

∣∣
In
∈ Pk(In,V ) ∀ n = 1, . . . ,N}, (5.2)

where

Pk(In,V ) :=
{

u : In→V : u(t) =
k

∑
j=0

U jt j , ∀ t ∈ In, U j ∈V, ∀ j
}
.

We introduce the discrete time test space

Y k
τ := {v ∈ L2(I,V ) : v

∣∣
In
∈ Pk−1(In,V ) ∀ n = 1, . . . ,N} (5.3)

consisting of piecewise polynomials of order k− 1 which are globally discontinuous at the end
points of the time intervals. Now, we multiply the first equation in (5.1) with a test function
vτ ∈ Y k

τ , integrate over Ω× I, use Fubini’s Theorem and partial space integration of the Laplacian
term and obtain the following time discrete problem: Find uτ ∈ Xk

τ such that uτ(0) = u0 and∫ T

0

{
(dtuτ(t),vτ(t))Ω

+a(uτ(t),vτ(t))
}

dt =
∫ T

0
( f (t),vτ(t))Ω

dt ∀ vτ ∈ Y k
τ , (5.4)

where (·, ·)
Ω

denotes the usual inner product in L2(Ω) and a(·, ·) the bilinear form on V×V defined
as

a(u,v) :=
∫

Ω

∇u ·∇vdx ∀ u,v ∈V.

We will call this discretization the exact continuous Galerkin-Petrov method of order k or briefly
the ”exact cGP(k)-method”. The name Galerkin-Petrov is due to the fact that the test space Y k

τ is
different from the ansatz space Xk

τ . With ”exact” we indicate that the time integral at the right hand
side in (5.4) is evaluated exactly.

Since the discrete test space Y k
τ is discontinuous, problem (5.4) can be solved in a time march-

ing process where successively local problems on the time intervals are solved. Therefore, we
choose test functions vτ(t) = vψn,i(t) with an arbitrary time independent v ∈V and a scalar func-
tion ψn,i : I→ R which is zero on I \ In and a polynomial of order less or equal k−1 on In. Then,
we obtain from (5.4) the ”In-problem”: Find uτ|In ∈ Pk(In,V ) such that∫

In

{
(dtuτ(t),v)Ω

+a(uτ(t),v)
}

ψn,i(t)dt =
∫

In

( f (t),v)
Ω

ψn,i(t)dt ∀ v ∈V (5.5)

for i = 1, . . . ,k, with the ”initial condition” uτ|In(tn−1) = uτ|In−1(tn−1) for n≥ 2 or uτ|In(tn−1) = u0
for n = 1.

To determine uτ|In we represent it by a polynomial ansatz

uτ(t) :=
k

∑
j=0

U j
n φn, j(t) ∀ t ∈ In, (5.6)

where the ”coefficients” U j
n are elements of the Hilbert space V and the real functions φn, j ∈ Pk(In)

are the Lagrange basis functions with respect to k+1 suitable nodal points tn, j ∈ In satisfying the
conditions

φn, j(tn,i) = δi, j, i, j = 0, . . . ,k (5.7)
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with the Kronecker symbol δi, j. In [49], the tn, j have been chosen as the quadrature points of the
(k+ 1)-point Gauß-Lobatto formula on In. Here, we take another choice: For an easy treatment
of the initial condition for (5.5), we set tn,0 = tn−1. Then, the initial condition is equivalent to the
condition

U0
n = uτ|In−1(tn−1) if n≥ 2 or U0

n = u0 if n = 1. (5.8)

The other points tn,1, . . . , tn,k are chosen as the quadrature points of the k-point Gauß formula on
In. This formula is exact if the function to be integrated is a polynomial of degree less or equal
2k−1. From the representation (5.6) we get∫

In

(dtuτ(t),v)Ω
ψn,i(t)dt =

k

∑
j=0

(
U j

n ,v
)

Ω

∫
In

φ
′
n, j(t)ψn,i(t)dt ∀ v ∈V. (5.9)

We define the basis functions φn, j ∈Pk(In) of (5.6) via the affine reference transformation Tn : Î→ In

where Î := [−1,1] and

t = Tn(t̂) :=
tn−1 + tn

2
+

τn

2
t̂ ∈ In ∀ t̂ ∈ Î, n = 1, . . . ,N. (5.10)

Let φ̂ j ∈ Pk(Î), j = 0, . . . ,k, denote the basis functions satisfying the conditions

φ̂ j(t̂i) = δi, j, i, j = 0, . . . ,k, (5.11)

where t̂0 =−1 and t̂i, i= 1, . . . ,k, are the standard Gauß quadrature points for the reference interval
Î. Then, we define the basis functions on the original time interval In by

φn, j(t) := φ̂ j(t̂) with t̂ := T−1
n (t) =

2
τn

(
t− tn− tn−1

2

)
∈ Î. (5.12)

Similarly, we define the test basis functions ψn,i by suitable reference basis functions ψ̂i ∈ Pk−1(Î),
i.e.,

ψn,i(t) := ψ̂i(T−1
n (t)) ∀ t ∈ In, i = 1, . . . ,k. (5.13)

For practical computations, we have to approximate the right hand side in the exact cGP(k)-
method (5.5) by some numerical integration. To this end, we replace the function f (t) by the
time-polynomial πk f ∈ Pk(In,L2(Ω)) defined as the Lagrange interpolate

πk f (t) :=
k

∑
j=0

f (tn, j)φn, j(t) ∀ t ∈ In.

Now, we transform all integrals in (5.5) to the reference interval Î and obtain the following system
of equations for the ”coefficients” U j

n ∈V in the ansatz (5.6)

k

∑
j=0

{
αi, j
(
U j

n ,v
)

Ω
+

τn

2
βi, ja(U j

n ,v)
}
=

τn

2

k

∑
j=0

βi, j ( f (tn, j),v)Ω
∀ v ∈V (5.14)

where i = 1, . . . ,k,

αi, j :=
∫

Î
φ̂
′
j(t̂)ψ̂i(t̂)dt̂, βi, j :=

∫
Î
φ̂ j(t̂)ψ̂i(t̂)dt̂ (5.15)

and the ”coefficient” U0
n ∈V is known. Due to the polynomial degree of φ̂ j and ψ̂i we can compute

the integrals for αi, j and βi, j exactly by means of the k-point Gauß formula with weights ŵµ and
points t̂µ, µ = 1, . . . ,k. If we choose the test functions ψ̂i ∈ Pk−1(Î) in (5.15) such that

ψ̂i(t̂µ) = (ŵi)
−1

δi,µ ∀ i,µ ∈ {1, . . . ,k},
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we get from (5.15) that

αi, j = φ̂
′
j(t̂i), βi, j = δi, j, 1≤ i≤ k, 0≤ j ≤ k.

Then, the system (5.14) is equivalent to the following coupled system of equations for the k
unknown ”coefficients” U j

n ∈V , j = 1, . . . ,k,

k

∑
j=0

αi, j
(
U j

n ,v
)

Ω
+

τn

2
a(U i

n,v) =
τn

2
( f (tn,i),v)Ω

∀ v ∈V, i = 1, . . . ,k, (5.16)

where U0
n = uτ(tn−1) for n > 1 and U0

1 = u0. In the following, we specify the cGP(k)-method for
the cases k = 1 and k = 2.

5.1.1. cGP(1)-method

We use the one-point Gauß quadrature formula with the point t̂1 = 0 and tn,1 = tn−1 +
τn
2 . Then,

we get α1,0 =−1 and α1,1 = 1. Thus, equation (5.16) leads to the following equation for the one
”unknown” U1

n = uτ(tn−1 +
τn
2 ) ∈V(

U1
n ,v
)

Ω
+

τn

2
a(U1

n ,v) =
τn

2
( f (tn,1),v)Ω

+
(
U0

n ,v
)

Ω
∀ v ∈V. (5.17)

Once we have determined the solution U1
n , we get the solution at discrete time tn by means of

linear extrapolation
uτ(tn) = 2U1

n −U0
n , (5.18)

where U0
n is the initial value at the time interval [tn−1, tn] coming from the previous time interval

or the initial value u0. If we would replace f (tn,1) by the mean value ( f (tn−1)+ f (tn))/2, which
means that we replace the one-point Gauß quadrature of the right hand side by the Trapezoidal rule,
the resulting cGP(1)-method would be equivalent to the well-known Crank-Nicolson scheme.

5.1.2. cGP(2)-method

We use the 2-point Gauß quadrature formula with the points t̂1 = − 1√
3

and t̂2 = 1√
3
. Then, we

obtain the coefficients

(αi, j) =

(
−
√

3 3
2

2
√

3−3
2√

3 −2
√

3−3
2

3
2

)
i = 1,2, j = 0,1,2.

On the time interval In = [tn−1, tn] we have to solve for the two ”unknowns” U j
n = uτ(tn, j) with

tn, j := Tn(t̂ j) for j = 1,2. The coupled system for U1
n ,U

2
n ∈V reads{

α1,1
(
U1

n ,v
)

Ω
+ τn

2 a(U1
n ,v)

}
+α1,2

(
U2

n ,v
)

Ω
= τn

2 ( f (tn,1),v)Ω
−α1,0

(
U0

n ,v
)

Ω
,

α2,1
(
U1

n ,v
)

Ω
+
{

α2,2
(
U2

n ,v
)

Ω
+ τn

2 a(U2
n ,v)

}
= τn

2 ( f (tn,2),v)Ω
−α2,0

(
U0

n ,v
)

Ω
,

(5.19)

which has to be satisfied for all v ∈V . Once we have determined the solution (U1
n ,U

2
n ), we get the

solution at discrete time tn by means of quadratic extrapolation

uτ(tn) =U0
n +
√

3(U2
n −U1

n ), (5.20)

where U0
n is the initial value at the time interval In coming from the previous time interval or the

initial value u0.
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5.2. Discontinuous Galerkin methods

In this section we describe the details of the discontinuous Galerkin method dG(k-1) which is with
respect to the size of the coupled system comparable to the cGP(k)-method. Here the discrete
solution space is the same as the test space Y k

τ of the cGP(k)-method defined in (B.2). Therefore,
the discrete solution uτ is on each time interval In a polynomial in time of degree k− 1 with a
representation

uτ(t) :=
k

∑
j=1

U j
n φn, j(t) ∀ t ∈ In, (5.21)

where the ”coefficients” U j
n are elements of the Hilbert space V and the real functions φn, j ∈

Pk−1(In) are the Lagrange basis functions with respect to k suitable nodal points tn, j ∈ In satisfying
the conditions φn, j(tn,i) = δi, j for all i, j = 1, . . . ,k. Since uτ is discontinuous at tn, we define the
following left and right sided values u−n and u+n and the jump [uτ]n as:

u−n := lim
t→tn−0

uτ(t), u+n := lim
t→tn+0

uτ(t), [uτ]n := u+n −u−n .

Then, the discontinuous Galerkin method dG(k-1) reads: Find uτ ∈ Y k
τ such that uτ(0) = u0 and

for all vτ ∈ Y k
τ it holds

∑
n

∫
In

{
(dtuτ(t),vτ(t))Ω

+a(uτ(t),vτ(t))
}

dt +∑
n

(
[uτ]n−1,v+n−1

)
Ω
=

∫ T

0
( f (t),vτ(t))Ω

dt.

To decouple this formulation we choose test functions vτ(t)= vψn,i(t) with an arbitrary t-independent
v ∈V and a scalar piecewise polynomial function ψn,i which is zero on I \ In and a basis function
of the polynomial space Pk−1 on In. Then, using the fact that U0

n := u−n−1 is known from the pre-
vious time interval or the initial value u0, the solution of the dG(k-1)-method can be determined
by successively solving a local problem on each time interval In. This ”In-problem” reads: Find
uτ ∈ Pk−1(In,V ) such that for all v ∈V and all i = 1, . . . ,k holds∫

In

{
(dtuτ(t),v)Ω

+a(uτ(t),v)
}

ψn,i(t)dt +
(
u+n−1,v

)
Ω

ψn,i(tn−1)

=
(
U0

n ,v
)

Ω
ψn,i(tn−1)+

∫
In

( f (t),v)
Ω

ψn,i(t)dt.
(5.22)

As in the cGP-method we define the basis functions φn, j ∈Pk−1(In) in (5.21) by means of reference
basis functions φ̂ j ∈ Pk−1(Î) via the transformation Tn : Î→ In given in (5.10). The φ̂ j, j = 1, . . . ,k,
are chosen as the Lagrange basis functions associated with the integration points t̂µ of the k-point
Gauß quadrature rule on Î = [−1,1], i.e., they satisfy the conditions φ̂ j(t̂µ) = δ j,µ for all j,µ =
1, . . . ,k. Similarly, we define the test basis functions ψn,i by means of reference basis functions
ψ̂i ∈ Pk−1(Î). We use the choice ψ̂i := (ŵi)

−1φ̂i where the ŵi denote the weights of the the k-point
Gauß formula on Î.

Now, if we insert the representation (5.21) of uτ into the In-problem (5.22) and transform the
integrals to the reference interval Î, we obtain the following system of equations for the ”coeffi-
cients” U j

n ∈V , j = 1, . . . ,k

k

∑
j=1

{
αi, j
(
U j

n ,v
)

Ω
+

τn

2
βi, ja(U j

n ,v)+ c jdi
(
U j

n ,v
)

Ω

}
= di

(
U0

n ,v
)

Ω
+

τn

2

∫
Î

(
f̂ ,v
)

Ω
ψ̂idt̂,

where i = 1, . . . ,k and

αi, j :=
∫

Î
φ̂
′
j(t̂)ψ̂i(t̂)dt̂, βi, j :=

∫
Î
φ̂ j(t̂)ψ̂i(t̂)dt̂, c j := φ̂ j(−1), di := ψ̂i(−1).
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We approximate the integral on the right hand side by the k-point Gauß formula and get due to the
special choice of ψ̂i∫

Î

(
f̂ (t̂),v

)
Ω

ψ̂i(t̂)dt̂ ≈
k

∑
µ=1

ŵµ ( f (tn,µ),v)Ω
ψ̂i(t̂µ) = ( f (tn,i),v)Ω

, (5.23)

where the tn,µ := Tn(t̂µ) ∈ In denote the mapped Gauß points. Since the k-point Gauß quadrature
formula is exact for the integrals defining αi, j and βi, j, we conclude from the Kronecker delta
properties of φ̂ j and ψ̂i that

αi, j = φ̂
′
j(t̂i), βi, j = δi, j, c j = φ̂ j(−1), di =

1
ŵi

ci (5.24)

for i, j = 1, . . . ,k.
Summarizing all pieces, we get the following version of the dG(k-1)-method with numerically

integrated right hand side on the time interval In = [tn−1, tn]. For a given value U0
n := u−n−1 known

from the previous time interval or the initial value u0, find k unknowns U1
n , . . . ,U

k
n ∈ V such that

for all v ∈V and all i = 1, . . . ,k, holds

k

∑
j=1

(
αi, j + c jdi

)(
U j

n ,v
)

Ω
+

τn

2
a(U i

n,v) = di
(
U0

n ,v
)

Ω
+

τn

2
( f (tn,i),v)Ω

. (5.25)

Once we have solved this system, we can compute by means of the ansatz (5.21) the left side value
u−n of uτ at time tn. Then, we enter the next time interval In+1 = [tn, tn+1] and set the initial value
to U0

n+1 := u−n .
Finally, we will specify the case k = 2 leading to the dG(1)-method which we will use in our

numerical experiments. Here, the discrete solution uτ is piecewise linear, i.e., we have to compute
two ”coefficients” on each time interval to define the linear approximation. The associated 2-point
Gauß quadrature formula has the weights ŵ1 = ŵ2 = 1 and integration points t̂1 =− 1√

3
, t̂2 = 1√

3
.

With the abbreviation γi, j := αi, j + c jdi we obtain for the coefficients in (5.25) the values

(αi, j) =

(
−
√

3
2

√
3

2
−
√

3
2

√
3

2

)
, (ci) = (di) =

( √
3+1
2

−
√

3+1
2

)
, (γi, j) =

(
1

√
3−1
2

−
√

3−1
2 1

)
.

Thus, in the dG(1)-method, one has to determine on the time interval In the two ”unknowns”
U1

n ,U
2
n ∈V as the solution of the following coupled system{

γ1,1
(
U1

n ,v
)

Ω
+ τn

2 a(U1
n ,v)

}
+ γ1,2

(
U2

n ,v
)

Ω
= d1

(
U0

n ,v
)

Ω
+ τn

2 ( f (tn,1),v)Ω
,

γ2,1
(
U1

n ,v
)

Ω
+
{

γ2,2
(
U2

n ,v
)

Ω
+ τn

2 a(U2
n ,v)

}
= d2

(
U0

n ,v
)

Ω
+ τn

2 ( f (tn,2),v)Ω
,

(5.26)

which has to be satisfied for all v∈V . Once we have solved the above system, we get the solution at
the time tn by means of the following linear extrapolation with the ”values” U j

n = uτ(tn, j), j = 1,2

uτ(tn) =

√
3+1
2

U2
n −
√

3−1
2

U1
n . (5.27)

5.3. Space Discretization by FEM

After discretizing equation (5.1) in time, we now apply the finite element method to discretize each
of the ”In-problem” in space. To this end, let Vh⊂V denote a finite element space. In the numerical
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experiments, Vh will be defined by biquadratic finite elements on a quadrilateral mesh Th for the
computational domain Ω. Each ”In-problem” for the cGP(k)-method or the dG(k-1)-method has
the structure: For given U0

n ∈V , find U1
n , . . . ,U

k
n ∈V such that

k

∑
j=1

γi, j
(
U j

n ,v
)

Ω
+

τn

2
a(U i

n,v) = di
(
U0

n ,v
)

Ω
+

τn

2
( f (tn,i),v)Ω

∀ v ∈V, (5.28)

for all i = 1, . . . ,k, where γi, j and di are given constants. In the space discretization, each U j
n ∈ V

is approximated by a finite element function U j
n,h ∈ Vh and the fully discrete ”In-problem” reads:

For given U0
n,h ∈Vh, find U1

n,h, . . . ,U
k
n,h ∈Vh such that

k

∑
j=1

γi, j

(
U j

n,h,vh

)
Ω

+
τn

2
a(U i

n,h,vh) = di
(
U0

n,h,vh
)

Ω
+

τn

2
( f (tn,i),vh)Ω

∀ vh ∈Vh, (5.29)

for all i = 1, . . . ,k. Once we have solved this system, we can compute for each time t ∈ In a finite
element approximation uτ,h(t) ∈Vh of the time discrete solution uτ(t) ∈V . To this end, we replace
the ”constants” U j

n ∈V in the ansatz of uτ(t) by the space discrete ”constants” U j
n,h ∈Vh.

In the following, we will write the problem (5.29) as a linear algebraic block system. Let
bµ ∈Vh, µ = 1, . . . ,mh, denote the finite element basis functions and U j

n ∈ Rmh the nodal vector of
U j

n,h ∈Vh such that

U j
n,h(x) =

mh

∑
µ=1

(U j
n)µbµ(x) ∀ x ∈Ω.

Furthermore, let us introduce the mass matrix M ∈ Rmh×mh , the discrete Laplacian matrix L ∈
Rmh×mh and the vector F i

n ∈ Rmh as

Mν,µ := (bµ,bν)Ω
, Lν,µ := a(bµ,bν), (F i

n)ν := ( f (tn,i),bν)Ω
. (5.30)

Then the fully discrete ”In-problem” is equivalent to the following linear k× k block system: For
given U0

n ∈ Rmh , find U1
n, . . . ,U

k
n ∈ Rmh such that

k

∑
j=1

γi, jMU j
n +

τn

2
LU i

n = diMU0
n +

τn

2
F i

n, ∀ i = 1, . . . ,k. (5.31)

The vector U0
n is defined as the finite element nodal vector of the fully discrete solution uτ,h(tn−1)

computed from the previous time interval [tn−2, tn−1] if n≥ 2 or from a finite element interpolation
of the initial data u0 if n = 1.

In the following, we will present the resulting block systems for the cGP(1), cGP(2) and dG(1)
method which are used in our numerical experiments.

5.3.1. cGP(1)-method

The problem on time interval In reads: For given U0
n ∈ Rmh , find U1

n ∈ Rmh such that(
M+

τn

2
L
)

U1
n =

τn

2
F1

n +MU0
n. (5.32)

Once we have determined the solution U1
n, we compute the nodal vector U0

n+1 of the fully discrete
solution uτ,h at the time tn by using the following linear extrapolation

uτ,h(tn)∼U0
n+1 = 2U1

n−U0
n.
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5.3.2. cGP(2)-method

The 2× 2 block system on time interval In reads: For given U0
n ∈ Rmh , find U1

n,U
2
n ∈ Rmh such

that (
3M+ τnL

(
2
√

3−3
)

M(
−2
√

3−3
)

M 3M+ τnL

)(
U1

n
U2

n

)
=

(
R1

n
R2

n

)
(5.33)

where
R1

n = τnF1
n +2

√
3MU0

n
R2

n = τnF2
n −2

√
3MU0

n.

Once we have determined the solution (U1
n,U

2
n), we compute the nodal vector U0

n+1 of the fully
discrete solution uτ,h at the time tn by using the following quadratic extrapolation

uτ,h(tn)∼U0
n+1 =U0

n +
√

3(U2
n−U1

n).

5.3.3. dG(1)-method

The 2× 2 block system on time interval In reads: For given U0
n ∈ Rmh , find U1

n,U
2
n ∈ Rmh such

that (
2M+ τnL

(√
3−1

)
M(

−
√

3−1
)

M 2M+ τnL

)(
U1

n
U2

n

)
=

(
R1

n
R2

n

)
(5.34)

where
R1

n = τnF1
n +

(√
3+1

)
MU0

n
R2

n = τnF2
n +

(
−
√

3+1
)

MU0
n.

Once we have determined the solution (U1
n,U

2
n), we compute the nodal vector U0

n+1 of the left side
limit of the fully discrete solution uτ,h at the time tn by using the following linear extrapolation

u−
τ,h(tn)∼U0

n+1 =

√
3+1
2

U2
n −
√

3−1
2

U1
n .

5.4. Solution of the linear systems

The resulting linear systems in each time interval [tn−1, tn], which are 2x2 block matrices in the
case of the cGP(2) and dG(1) approach, are treated either by preconditioned Krylov-space or
geometrical multigrid solvers (explained in Chapter 4). Among the Krylov-space methods we
employ the classical BiCGStab solver (which is chosen in view of future nonsymmetric matrices
due to convection-diffusion or even the Navier-Stokes equations) with the SSOR method (see
Chapter 4) as preconditioner. However, such ‘single grid’ methods cannot treat the associated
systems in an optimally efficient manner since the corresponding condition numbers depend also
on the mesh size so that it is expected to become very expensive for higher mesh levels.

To overcome this difficulty, we utilize a geometrical multigrid solver with corresponding
(block) smoothers and grid transfer operators. Multigrid methods are regarded as the most ef-
ficient iterative methods for the solution of large linear systems arising from the discretization
of partial differential equations, particularly of elliptic type. In this chapter, the multigrid solver
uses the same SSOR method as smoother. However, the standard block variants of Jacobi, SOR
and ILU methods can be easily applied with the multigrid and BiCGStab solver. Moreover, we
use the canonical grid transfer routines regarding the chosen FEM space which treat both solution
components separately in the case of the cGP(2) and dG(1) approaches (see [39] for the details).
Finally, the coarse grid problem is solved by a direct solver.
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5.5. Numerical results

In this section, we perform several numerical tests in order to compare the accuracy of our time
discretization schemes. As the first test example we consider problem (5.1) with the domain
Ω := (0,1)2 and the right hand side

f (x,y, t) = x(1− x)y(1− y)et +2[y(1− y)+ x(1− x)]et ,

which has been derived from the prescribed exact solution

u(x,y, t) = x(1− x)y(1− y)et .

The initial data is u0(x,y) = u(x,y,0).
This and all other examples have the property that there is no spatial error which can be seen

as follows. For each fixed time t, the exact solution u(t) is an element of the finite element space
Vh. Therefore, the standard semi-discrete solution with respect to space uh(t) ∈Vh is equal to u(t).
If we now apply the time discretization to uh(t) = u(t) we get uh,τ(t) = uτ(t). Since space and
time discretizations are of Galerkin type we obtain uτ,h(t) = uh,τ(t) = uτ(t). Therefore, in all of
our examples, the full discretization error u(t)− uτ,h(t) is equal to the time discretization error
u(t)−uτ(t), i.e. we will concentrate only on the time discretization error and exclude interactions
with the spatial error.

We apply the time discretization schemes cGP(1), cGP(2) and dG(1) with an equidistant time
step size τ = T/N. To measure the error, the following discrete time L∞-norm of a function
v : I→ L2(Ω) is used

‖v‖∞ := max
1≤n≤N

‖v−(tn)‖L2(Ω), v−(tn) := lim
t→tn−0

v(t), tn := nτ.

The behavior of the standard L2-norm ‖ · ‖2 := ‖ · ‖L2(I,L2(Ω)) and the discrete L∞-norm of the
time discretization error u(t)−uτ(t) over the time interval I = [0,1] can be seen in Table 5.1 and
5.2, respectively. The estimated value of the experimental order of convergence (EOC) is also
calculated and compared with the theoretical order of convergence.

cGP(1) cGP(2) dG(1)
1/τ ‖u−uτ‖2 EOC ‖u−uτ‖2 EOC ‖u−uτ‖2 EOC
10 5.65E-05 3.04E-07 3.08E-05
20 1.41E-05 2.00 3.64E-08 3.06 8.28E-06 1.90
40 3.53E-06 2.00 4.50E-09 3.02 2.16E-06 1.94
80 8.83E-07 2.00 5.60E-10 3.00 5.53E-07 1.97
160 2.21E-07 2.00 7.00E-11 3.00 1.40E-07 1.98
320 5.52E-08 2.00 8.75E-12 3.00 3.52E-08 1.99
640 1.38E-08 2.00 1.09E-12 3.00 8.82E-09 2.00
1280 3.45E-09 2.00 2.21E-09 2.00
2560 8.63E-10 2.00 5.53E-10 2.00
5120 2.16E-10 2.00 1.38E-10 2.00

10240 5.39E-11 2.00 3.46E-11 2.00
20480 1.35E-11 2.00 8.64E-12 2.00
40960 3.37E-12 2.00 2.16E-12 2.00
81920 8.37E-13 2.01 5.42E-13 2.00

Table 5.1: Error norms ‖u−uτ‖2 for the first test case.
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cGP(1) cGP(2) dG(1)
1/τ ‖u−uτ‖∞ EOC ‖u−uτ‖∞ EOC ‖u−uτ‖∞ EOC
10 3.63E-06 4.14E-07 1.80E-05
20 9.09E-07 2.00 2.65E-08 3.97 2.59E-06 2.80
40 2.27E-07 2.00 1.67E-09 3.99 3.51E-07 2.88
80 5.68E-08 2.00 1.05E-10 3.99 4.59E-08 2.93
160 1.42E-08 2.00 6.57E-12 4.00 5.90E-09 2.96
320 3.55E-09 2.00 4.01E-13 4.03 7.49E-10 2.98
640 8.88E-10 2.00 9.45E-11 2.99

1280 2.22E-10 2.00 1.19E-11 2.99
2560 5.55E-11 2.00 1.33E-12 3.16
5120 1.39E-11 2.00
10240 3.46E-12 2.00
20480 8.62E-13 2.00

Table 5.2: Error norms ‖u−uτ‖∞ for the first test case with known analytical solution.

We see that the cGP(2)-method is of order 3 in the L2-norm and superconvergent of order 4 at
the discrete points tn, while the dG(1)-method is of order 2 in the L2-norm and superconvergent
of order 3 at the end points of the time intervals as expected from the theory. The cGP(1)-method
is of order 2 everywhere which is the same behavior as that of the well-known Crank-Nicolson
scheme.

Next, we perform numerical tests to analyze the corresponding behavior of the multigrid solver
for the different time discretization schemes. As explained before, the solver uses the Symmet-
ric Successive Overrelaxation (SSOR) method in the smoothing process and applies one pre- and
post-smoothing step. We present the average number of multigrid and preconditioned BiCGStab
iterations per time step for solving the corresponding systems in Table 5.3 and 5.4. For a better
comparison, the BiCGStab solver also utilizes SSOR as a preconditioner. ’Lev’ denotes the refine-
ment level of the space mesh. From Table 5.3, we see that the multigrid solver requires almost the

Lev τ = 1/20 τ = 1/80 τ = 1/320 τ = 1/1280
6 13-13-13 13-13-13 12-12-12 10-10-10
7 13-13-13 13-13-13 13-13-13 12-12-12
8 14-13-14 13-13-13 13-13-13 13-13-13

Table 5.3: Averaged multigrid iterations per time step for cGP(1) - cGP(2) - dG(1).

Lev τ = 1/20 τ = 1/80 τ = 1/320 τ = 1/1280
3 7-10-10 5-13-12 4-17-14 5-15-16
4 14-18-19 10-14-16 5-15-15 4-15-16
5 29-35-36 22-25-29 12-16-19 5-15-16
6 61-70-76 43-48-53 23-24-32 12-16-19
7 108-138-158 81-89-101 46-50-60 26-27-33
8 214-284-327 160-168-201 88-100-119 52-50-63

Table 5.4: Averaged BiCGStab iterations per time step for cGP(1) - cGP(2) - dG(1).

same number of iterations for the different presented time discretization schemes. Moreover, the
number of multigrid iterations remains fairly constant if we increase the refinement level of the
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space mesh. There is also no noticeable increase in the number of iterations if we decrease the time
step by a factor of 2. This means that the behavior of the multigrid solver is almost independent
of the space mesh size and the time step. On the other hand, Table 5.4 shows that the averaged
number of iterations per time step increases almost by a factor of 2 if we increase the space mesh
level in the BiCGStab solver.

Next, in order to measure and compare the efficiency of the two iterative solvers for the dif-
ferent time schemes, we present in Tables 5.5-5.7 the averaged CPU-time required for one solver
iteration on a given space mesh level. In Table 5.5, the CPU-times in seconds are related to space

Multigrid Solver BiCGStab Solver
1/τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

Sec Sec Sec Sec Sec Sec
20 0.014 0.024 0.030 0.003 0.008 0.007
80 0.014 0.032 0.029 0.003 0.008 0.012

320 0.012 0.032 0.030 0.005 0.011 0.013
1280 0.014 0.026 0.036 0.007 0.012 0.018

Table 5.5: CPU-time per solver iteration for space mesh level=6.

Multigrid Solver BiCGStab Solver
1/τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

Sec Sec Sec Sec Sec Sec
20 0.046 0.101 0.100 0.013 0.039 0.033
80 0.048 0.105 0.105 0.013 0.034 0.038

320 0.044 0.132 0.133 0.018 0.044 0.038
1280 0.048 0.145 0.105 0.022 0.053 0.048

Table 5.6: CPU-time per solver iteration for space mesh level=7.

Multigrid Solver BiCGStab Solver
1/τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

Sec Sec Sec Sec Sec Sec
20 0.192 0.475 0.575 0.064 0.199 0.186
80 0.191 0.568 0.487 0.065 0.177 0.189

320 0.224 0.538 0.532 0.073 0.175 0.204
1280 0.214 0.701 0.702 0.086 0.191 0.175

Table 5.7: CPU-time per solver iteration for space mesh level=8.

mesh level 6. We observe that the CPU-time in case of cGP(2) or dG(1) is almost 2-3 times the
CPU-time of cGP(1) for both, the multigrid and BiCGStab solver. We also note that the CPU-time
grows approximately by a factor of 4-5 if we increase the space mesh level to level 7 and 8 in Ta-
ble 5.6 and 5.7. These factors are nearly optimal since the number of space unknowns is increased
by a factor of 4 if the level is increased by one.

Next we compare the time discretization schemes with respect to accuracy and numerical
costs. Here, the multigrid solver uses four SSOR iterations in the pre- and post-smoothing step.
Table 5.8 shows, for different sizes of the time step τ and different time discretization schemes, the
global L2-norm error and the total CPU-time required for the computations in all time intervals.
The space discretization was done on mesh level 6. One can see that, in order to achieve the
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cGP(1) cGP(2) dG(1)
1/τ ‖u−uτ‖2 CPU ‖u−uτ‖2 CPU ‖u−uτ‖2 CPU
10 5.65E-05 2 3.04E-07 4 3.08E-05 4
20 1.41E-05 3 3.64E-08 8 8.28E-06 8
40 3.53E-06 6 4.50E-09 16 2.16E-06 17
80 8.83E-07 11 5.60E-10 28 5.53E-07 29

160 2.21E-07 23 7.00E-11 61 1.40E-07 59
320 5.52E-08 47 8.75E-12 115 3.52E-08 117
640 1.38E-08 87 1.09E-12 199 8.82E-09 203
1280 3.45E-09 171 2.21E-09 399
2560 8.63E-10 298 5.53E-10 839
5120 2.16E-10 517 1.38E-10 1483
10240 5.39E-11 825 3.46E-11 3160
20480 1.35E-11 1677 8.64E-12 6662
40960 3.37E-12 4131 2.16E-12 13519
81920 8.37E-13 10568 5.42E-13 27513

Table 5.8: Error norms ‖u−uτ‖2 and total CPU-times to achieve the accuracy of 10−12.

accuracy of 10−12, we need the very small time step τ = 1/81920 for the cGP(1) and dG(1)
scheme while this accuracy can be already achieved with τ = 1/640 in the cGP(2) scheme. To
compare the numerical costs per time step let us note that the number of multigrid iterations to
solve one linear block system is approximately the same (about 5) for the three time discretization
schemes. However, the cost of one multigrid iteration in the cGP(2) or dG(1) method is about 2-3
times higher than in cGP(1). Nevertheless, for a desired accuracy of 10−12, the cGP(2) scheme is
about 50 times faster than cGP(1) due to the much larger time step size required for cGP(2).

In Table 5.9, we show the analogous comparison between the three time discretizations with
respect to the numerical costs and the accuracy measured in the discrete L∞-norm. Due to its
superconvergence of order 3 in the discrete time points, the dG(1)-method is now faster than
cGP(1) which is only of order 2. The most efficient scheme is again cGP(2).

cGP(1) cGP(2) dG(1)
1/τ ‖u−uτ‖2 CPU ‖u−uτ‖2 CPU ‖u−uτ‖2 CPU
10 3.63E-06 2 4.14E-07 4 1.80E-05 4
20 9.09E-07 3 2.65E-08 8 2.59E-06 8
40 2.27E-07 6 1.67E-09 16 3.51E-07 17
80 5.68E-08 11 1.05E-10 28 4.59E-08 29
160 1.42E-08 23 6.57E-12 61 5.90E-09 59
320 3.55E-09 47 4.01E-13 115 7.49E-10 117
640 8.88E-10 87 9.45E-11 203
1280 2.22E-10 171 1.19E-11 399
2560 5.55E-11 298 1.33E-12 839
5120 1.39E-11 517

10240 3.46E-12 825
20480 8.62E-13 1677

Table 5.9: Error norms ‖u−uτ‖∞ and total CPU-time to achieve the accuracy of 10−12.

To show that the proposed time discretization schemes can also efficiently handle the case
when the solution approaches a steady state, we provide numerical tests with very large time
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steps. We consider problem (5.1) with Ω = (0,1)2 and the prescribed (time-independent, steady
state) solution

u(x,y, t) := x(1− x)y(1− y).

For this function u, we compute the corresponding right hand side f . As initial data we take
u0 = 0. Table 5.10 and 5.11 indicate for the multigrid and the BiCGStab method, respectively, the
number of solver iterations required for one time step. From Table 5.10, one can see that there is

Lev τ = 10−6 τ = 10−3 τ = 1 τ = 103 τ = 106

6 3-5-6 4-4-5 5-6-6 5-6-6 5-6-6
7 3-5-6 5-5-6 6-6-6 5-6-6 5-6-6
8 2-4-5 5-6-6 5-6-6 6-6-6 6-6-6

Table 5.10: Averaged multigrid iterations per time step for cGP(1) - cGP(2) - dG(1).

Lev τ = 10−6 τ = 10−3 τ = 1 τ = 103 τ = 106

6 8-17-19 14-16-18 78-78-82 69-83-82 72-86-86
7 7-17-17 31-26-35 145-173-172 131-147-164 149-170-157
8 6-15-16 60-51-67 280-362-297 280-290-290 288-322-293

Table 5.11: Averaged BiCGStab iterations per time step for cGP(1) - cGP(2) - dG(1).

no big difference in the number of solver iterations for time step size τ = 10−6 up to τ = 106. This
means that the behavior of the multigrid convergence is pretty robust with respect to very small
and very large time steps. However, from Table 5.11, we observe that, in the case of time step
sizes τ≥ 10−3, the BiCGStab solver is suitable only for lower space mesh levels since the number
of iterations nearly doubles if we increase the space mesh level by one. Furthermore, the number
of BiCGStab iterations grows on each space mesh level if we increase the size of the time step in
the range between τ = 10−6 and τ = 1.

At the end, we want to show the behavior of the presented time discretizations for another
prototypical problem which is more oscillating in time. For this, in problem (5.1) with Ω= (0,1)2,
we prescribe the exact solution

u(x,y, t) := x(1− x)y(1− y)sin(10πt)

and compute the corresponding right hand side f and the initial data u0(x,y)= u(x,y,0). Table 5.12
shows the behavior of the discrete L∞-norm of the error and the EOC over the time interval [0,1].
One can see that the presented time discretizations confirm their theoretical order of convergence
also for such an oscillatory solution. In order to compare the three discretization schemes, one can
state that the cGP(2) gains the same accuracy at an eight times larger time step size than dG(1)
while for cGP(1), we actually need to bisect the time step size ten times more. Consequently, the
cGP(2)-method is almost thousand times and dG(1) almost hundred times faster than cGP(1) for
such an oscillatory exact solution. This effect has been much more visible when we considered the
more complex solution with a higher number of oscillations in the sine function, i.e., if we have
prescribed the solution

u(x,y, t) := x(1− x)y(1− y)sin(100πt)

in our model problem. Here, the discrepancy has been even more obvious between the high order
schemes dG(1) and cGP(2) on the one side and the second order method cGP(1), which is close
to the standard Crank-Nicolson scheme and representative for many other 2nd order schemes, on
the other side. These tests demonstrate the superior quality of the high order approaches, together
with corresponding fast solvers, for complex dynamical problems.
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cGP(1) cGP(2) dG(1)
1/τ ‖u−uτ‖∞ EOC ‖u−uτ‖∞ EOC ‖u−uτ‖∞ EOC
20 5.85E-03 2.03E-04 4.19E-04
40 1.50E-03 1.96 1.31E-05 3.95 7.75E-05 2.44
80 3.72E-04 2.01 8.34E-07 3.97 1.06E-05 2.87
160 9.43E-05 1.98 5.29E-08 3.98 1.40E-06 2.92
320 2.35E-05 2.00 3.32E-09 3.99 1.80E-07 2.96
640 5.88E-06 2.00 2.08E-10 4.00 2.29E-08 2.97

1280 1.47E-06 2.00 1.30E-11 4.00 2.90E-09 2.98
2560 3.68E-07 2.00 8.13E-13 4.00 3.65E-10 2.99
5120 9.19E-08 2.00 4.57E-11 2.99
10240 2.30E-08 2.00 5.73E-12 3.00
20480 5.75E-09 2.00 7.14E-13 3.00
40960 1.44E-09 2.00
81920 3.59E-10 2.00
163840 8.97E-11 2.00
327680 2.24E-11 2.00
655360 5.61E-12 2.00

1310720 1.40E-12 2.00
2621440 3.50E-13 2.00

Table 5.12: Error norms ‖u−uτ‖∞ for the ”sin-test” case.

5.6. Summary

In this chapter, we have presented continuous Galerkin-Petrov and discontinuous Galerkin time
discretization schemes for the two dimensional heat equation. In particular, we have analyzed the
cGP(1), cGP(2) and dG(1)-method.

Accuracy

From our numerical results, we have observed that the estimated experimental orders of conver-
gence confirm the theoretical orders. Furthermore, the tests show that the cGP(2)-scheme pro-
vides significantly more accurate numerical solutions than the other presented schemes cGP(1)
and dG(1) which means that quite large time step sizes can be used without losing accuracy.

Efficiency

We have discussed implementation aspects of the presented time discretizations as well as effi-
cient methods for solving the resulting block systems. Here, we have compared a preconditioned
BiCGStab solver as a Krylov space method with an adapted geometrical multigrid solver. It has
been analyzed that the multigrid solver requires almost the same number of iterations for all the
presented time discretization schemes. Moreover, the number of multigrid iterations remains fairly
constant by increasing the refinement level of the space mesh. There is also no noticeable increase
in the number of iterations if we decrease the time step size. This means that the behavior of the
multigrid solver is almost independent of the space mesh and the time step size. On the other hand,
the averaged number of iterations per time step increases almost by a factor of 2 if we increase the
space mesh level in the BiCGStab solver. Thus, the multigrid solver is much more efficient than
the preconditioned BiCGStab solver since it shows a robust convergence behavior which is nearly
independent of the space mesh and the time step size.
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Galerkin time discretizations for the heat equation using
Gauß-Lobatto points

In this chapter, we shortly analyze a variant of the continuous Galerkin-Petrov (cGP) method
based on the Gauß-Lobatto quadrature formula [49] for the heat equation. This implementation of
cGP(k)-method only differs from the previous version of cGP(k)-method in Chapter 5 in the choice
of Gauß quadrature formula. The Gauß-Lobatto based cGP(k)-method gives the same accuracy
as the standard cGP(k)-method but avoiding any extrapolation for getting the solution at the time
discrete points. By means of numerical experiments we analyze and compare the accuracy of the
Gauß-Lobatto based cGP(k)-method.

6.1. The cGP-method for the heat equation

For the time discretization of the heat equation (5.1), we decompose the time interval I = [0,T ] into
subintervals In := [tn−1, tn], n = 1, . . . ,N. Applying the exact cGP(k)-method to heat equation (5.1)
in Chapter 5 we obtain a time marching process with the following ”In-problem”:

Find uτ|In ∈ Pk(In,V ) such that∫
In

{
(dtuτ(t),v)Ω

+a(uτ(t),v)
}

ψn,i(t)dt =
∫

In

( f (t),v)
Ω

ψn,i(t)dt ∀ v ∈V (6.1)

for i = 1, . . . ,k, with the ”initial condition” uτ|In(tn−1) = uτ|In−1(tn−1) for n ≥ 2 or uτ|I1(t0) = u0
which ensures the continuity of the time discrete solution uτ : I → V . The functions ψn,i denote
real-valued basis functions of the polynomial space Pk−1(In) and the notation uτ|In ∈ Pk(In,V )

means that there exist V -valued coefficients U j
n ∈V such that uτ|In has the representation

uτ|In(t) :=
k

∑
j=0

U j
n φn, j(t) ∀ t ∈ In, (6.2)

where the real functions φn, j ∈Pk(In) are the Lagrange basis functions with respect to k+1 suitable
nodal points tn, j ∈ In satisfying the usual conditions (with δi, j denoting the Kronecker symbol)

φn, j(tn,i) = δi, j, i, j = 0, . . . ,k, such that U j
n = uτ|In(tn, j) ∀ j. (6.3)

The new implementation of cGP(k)-method here only differs from the standard version of
cGP(k)-method in Chapter 5 in the choice of Gauß quadrature formula. Here, we choose the nodal
points tn, j as the quadrature points of the (k+ 1)-point Gauß-Lobatto formula on In which is the
same choice used in [49] while in Chapter 5 these nodal points tn, j have been chosen as tn,0 = tn−1
and the other points tn,1, . . . , tn,k are chosen as the quadrature points of the k-point Gauß formula
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on In. For the Gauß-Lobatto points, it holds tn,0 = tn−1 which implies that the initial condition is
equivalent to the condition

U0
n = uτ|In−1(tn−1) if n≥ 2 or U0

n = u0 if n = 1. (6.4)

This formula is exact if the function to be integrated is a polynomial of degree less or equal 2k−1.
From the representation (6.2) we get∫

In

(dtuτ(t),v)Ω
ψn,i(t)dt =

k

∑
j=0

(
U j

n ,v
)

Ω

∫
In

φ
′
n, j(t)ψn,i(t)dt ∀ v ∈V. (6.5)

In order to derive a numerical scheme from the exact cGP(k)-method (6.1) we transform all In-
integrals into integrals over the reference interval Î := [−1,1] by means of the affine transformation
as in Chapter 5. That is, we define the basis functions φn, j ∈ Pk(In) of (6.2) via the affine reference
transformation Tn : Î→ In where Î := [−1,1] and

t = Tn(t̂) :=
tn−1 + tn

2
+

τn

2
t̂ ∈ In ∀ t̂ ∈ Î, n = 1, . . . ,N. (6.6)

Let φ̂ j ∈ Pk(Î), j = 0, . . . ,k, denote the basis functions satisfying the conditions

φ̂ j(t̂i) = δi, j, i, j = 0, . . . ,k, (6.7)

where t̂i, i = 0, . . . ,k, are the Gauß-Lobatto quadrature points for the reference interval Î. Then,
we define the basis functions on the original time interval In by

φn, j(t) := φ̂ j(t̂) with t̂ := T−1
n (t) =

2
τn

(
t− tn− tn−1

2

)
∈ Î. (6.8)

Similarly, we define the test basis functions ψn,i by suitable reference basis functions ψ̂i ∈ Pk−1(Î),
i.e.,

ψn,i(t) := ψ̂i(T−1
n (t)) ∀ t ∈ In, i = 1, . . . ,k. (6.9)

Again, we have to approximate the right hand side in the exact cGP(k)-method (6.1) by some
numerical integration. This leads us to the numerically integrated cGP(k)-method. To this end,
we replace the function f (t) by the time-polynomial πk f ∈ Pk(In,L2(Ω)) defined as the Lagrange
interpolate

πk f (t) :=
k

∑
j=0

f (tn, j)φn, j(t) ∀ t ∈ In.

Now, we transform all integrals in (6.1) to the reference interval Î and obtain the following system
of equations for the ”coefficients” U j

n ∈V in the ansatz (6.2)

k

∑
j=0

{
αi, j
(
U j

n ,v
)

Ω
+

τn

2
βi, ja(U j

n ,v)
}
=

τn

2

k

∑
j=0

βi, j ( f (tn, j),v)Ω
∀ v ∈V (6.10)

where i = 1, . . . ,k,

αi, j :=
∫

Î
φ̂
′
j(t̂)ψ̂i(t̂)dt̂, βi, j :=

∫
Î
φ̂ j(t̂)ψ̂i(t̂)dt̂ (6.11)

and the ”coefficient” U0
n ∈V is known. Due to the polynomial degree of φ̂ j and ψ̂i we can compute

the integrals for αi, j and βi, j exactly by means of the (k+ 1)-point Gauß-Lobatto formula with
weights ŵµ and points t̂µ, µ = 0, . . . ,k. We choose the test functions ψ̂i ∈ Pk−1(Î) in (6.11) such
that

ψ̂i(t̂µ) = (ŵi)
−1

δi,µ ∀ i,µ ∈ {1, . . . ,k}.
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Then, the system (6.10) is equivalent to the following coupled system of equations for the k
unknown ”coefficients” U j

n ∈V , j = 1, . . . ,k,

k

∑
j=0

{
αi, j
(
U j

n ,v
)

Ω
+

τn

2
βi, ja(U i

n,v)
}
=

τn

2

k

∑
j=0

βi, j ( f (tn,i),v)Ω
∀ v ∈V, i = 1, . . . ,k, (6.12)

where U0
n = uτ(tn−1) for n > 1 and U0

1 = u0. If we apply for the quadrature formula as the (k+1)-
point Gauß-Lobatto formula in the cGP(k)-method we will call the corresponding method shortly
the cGP(k)-GL(k+1)-method.

In the following, we specify the cGP(k)-GL(k+1)-method, for the cases k = 1 and k = 2.

6.1.1. cGP(1)-GL(2)-method

We use the 2-point Gauß-Lobatto formula (trapezoidal rule) with ŵ0 = ŵ1 = 1 and t̂0 =−1, t̂1 = 1.
Then, we obtain

α1,0 =−1, α1,1 = 1, β1,0 = β1,1 = 1.

Using the notation U0
n := uτ(tn−1) we obtain the following equation for the ”unknown” Un ∈V :(

U1
n ,v
)

Ω
− τn

2
a(U1

n ,v) =
τn

2

{
( f (tn,1),v)Ω

+( f (tn,0),v)Ω

}
+
(
U0

n ,v
)

Ω
− τn

2
a(U0

n ,v) (6.13)

for all v ∈V which is the well-known Crank-Nicolson method. Here, U0
n is the initial value at the

time interval [tn−1, tn] coming from the previous time interval or the initial value u0. This scheme
is the well-known Crank-Nicolson method.

6.1.2. cGP(2)-GL(3)-method

We use the 3-point Gauß-Lobatto formula with ŵ0 = ŵ2 = 1/3, ŵ1 = 4/3 and t̂0 = −1, t̂1 = 0,
t̂2 = 1, which is the Simpsons’s rule. Then, we get

(αi, j) =

(
−5/4 1 1/4

2 −4 2

)
, (βi, j) =

(
1/2 1 0
−1 0 1

)
.

On the time interval In = [tn−1, tn] we have to solve for the two ”unknowns” U j
n = uτ(tn, j) with

tn, j := Tn(t̂ j) for j = 1,2. The coupled system for U1
n ,U

2
n ∈V reads{

α1,1
(
U1

n ,v
)

Ω
+ τn

2 β1,1a(U1
n ,v)

}
+α1,2

(
U2

n ,v
)

Ω
= `1(v),

α2,1
(
U1

n ,v
)

Ω
+
{

α2,2
(
U2

n ,v
)

Ω
+ τn

2 β2,2a(U2
n ,v)

}
= `2(v),

(6.14)

which has to be satisfied for all v ∈V with

`i(v) =
τn

2

{
βi,2 ( f (tn,i),v)Ω

+βi,1 ( f (tn,i),v)Ω
+β1,0 ( f (tn,0),v)Ω

}
−αi,0

(
U0

n ,v
)

Ω
− τn

2
βi,0a(U0

n ,v)

for i = 1,2. Here, U0
n is the initial value at the time interval In coming from the previous time

interval or the initial value u0.

6.2. Space Discretization by FEM

After discretizing equation (5.1) in time, we now apply the finite element method to discretize each
of the ”In-problem” in space in a similar way as in Chapter 5. In the following, we will present
the fully discrete block systems for the cGP(1)-GL(2) and cGP(2)-GL(3) method which are used
in our numerical experiments.
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6.2.1. cGP(1)-GL(2)-method

The problem on time interval In reads: For given U0
n ∈ Rmh , find U1

n ∈ Rmh such that(
M+

τn

2
L
)

U1
n =

τn

2
(F1

n +F1
n )+(M− τn

2
L)U0

n. (6.15)

6.2.2. cGP(2)-GL(3)-method

The 2× 2 block system on time interval In reads: For given U0
n ∈ Rmh , find U1

n,U
2
n ∈ Rmh such

that (
(2M+ τnL) 1

2 M
−8M (4M+ τnL)

)(
U1

n
U2

n

)
=

(
R1

n
R2

n

)
(6.16)

where
R1

n = τn(F1
n + 1

2 F0
n )+(5

2 M− τn
2 L)U0

n
R2

n = τn(F2
n −F0

n )+(τnL−4M)U0
n.

6.3. Numerical results

In this section, we perform some numerical tests in order to analyze and compare the accuracy of
the cGP(1)-GL(2) and cGP(2)-GL(3)-method. As a test example we consider problem (5.1) with
the domain Ω := (0,1)2 and the right hand side

f (x,y, t) = x(1− x)y(1− y)et +2[y(1− y)+ x(1− x)]et ,

which has been derived from the prescribed exact solution

u(x,y, t) = x(1− x)y(1− y)et .

The initial data is u0(x,y) = u(x,y,0).
We apply all the time discretization schemes cGP(1), cGP(2), cGP(1)-GL(2) and cGP(2)-

GL(3) with an equidistant time step size τ = T/N. Here, the cGP(1)-GL(2) and cGP(2)-GL(3)
denote the Gauß-Lobatto based cGP(1) and cGP(2)-method. To measure the error, the following
discrete time L∞-norm of a function v : I→ L2(Ω) is used, similar to Chapter 5,

‖v‖∞ := max
1≤n≤N

‖v−(tn)‖L2(Ω), v−(tn) := lim
t→tn−0

v(t), tn := nτ.

The behavior of the standard L2-norm ‖ · ‖2 := ‖ · ‖L2(I,L2(Ω)) and the discrete L∞-norm of the
time discretization error u(t)− uτ(t) over the time interval I = [0,1] can be seen in Table 6.1–
6.4, respectively. The estimated value of the experimental order of convergence (EOC) is also
calculated and compared with the theoretical order of convergence.
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cGP(1) cGP(2)
1/τ ‖u−uτ‖2 EOC ‖u−uτ‖2

10 5.65E-05 3.04E-07
20 1.41E-05 2.00 3.64E-08 3.06
40 3.53E-06 2.00 4.50E-09 3.02
80 8.83E-07 2.00 5.60E-10 3.00

160 2.21E-07 2.00 7.00E-11 3.00
320 5.52E-08 2.00 8.75E-12 3.00
640 1.38E-08 2.00 1.09E-12 3.00
1280 3.45E-09 2.00
2560 8.63E-10 2.00
5120 2.16E-10 2.00
10240 5.39E-11 2.00
20480 1.35E-11 2.00
40960 3.37E-12 2.00
81920 8.37E-13 2.01

Table 6.1: Error norms ‖u−uτ‖2 for the test case using the cGP(1), cGP(2)-method.

cGP(1)-GL(2) cGP(2)-GL(3)
1/τ ‖u−uτ‖2 EOC ‖u−uτ‖2 EOC
10 5.65E-05 4.05E-07
20 1.41E-05 2.00 5.07E-08 3.00
40 3.53E-06 2.00 6.33E-09 3.00
80 8.83E-07 2.00 7.92E-10 3.00
160 2.21E-07 2.00 9.90E-11 3.00
320 5.52E-08 2.00 1.24E-11 3.00
640 1.38E-08 2.00 1.55E-12 3.00
1280 3.45E-09 2.00 1.93E-13 3.00
2560 8.63E-10 2.00
5120 2.16E-10 2.00

10240 5.39E-11 2.00
20480 1.35E-11 2.00
40960 3.37E-12 2.00
81920 8.37E-13 2.01

Table 6.2: Error norms ‖u−uτ‖2 for the test case using the cGP(1)-GL(2), cGP(2)-GL(3) method.
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cGP(1) cGP(2)
1/τ ‖u−uτ‖∞ EOC ‖u−uτ‖∞ EOC
10 3.63E-06 4.14E-07
20 9.09E-07 2.00 2.65E-08 3.97
40 2.27E-07 2.00 1.67E-09 3.99
80 5.68E-08 2.00 1.05E-10 3.99

160 1.42E-08 2.00 6.57E-12 4.00
320 3.55E-09 2.00 4.01E-13 4.03
640 8.88E-10 2.00
1280 2.22E-10 2.00
2560 5.55E-11 2.00
5120 1.39E-11 2.00
10240 3.46E-12 2.00
20480 8.62E-13 2.00

Table 6.3: Error norms ‖u−uτ‖∞ for the test case using the cGP(1), cGP(2)-method.

cGP(1)-GL(2) cGP(2)-GL(3)
1/τ ‖u−uτ‖∞ EOC ‖u−uτ‖∞ EOC
10 3.63E-06 1.49E-08
20 9.09E-07 2.00 9.41E-10 3.98
40 2.27E-07 2.00 5.90E-11 4.00
80 5.68E-08 2.00 3.69E-12 4.00

160 1.42E-08 2.00 2.31E-13 4.00
320 3.55E-09 2.00 9.72E-15 4.57
640 8.88E-10 2.00 8.85E-16 3.46
1280 2.22E-10 2.00
2560 5.55E-11 2.00
5120 1.39E-11 2.00
10240 3.46E-12 2.00
20480 8.62E-13 2.01

Table 6.4: Error norms ‖u−uτ‖∞ for the test case using the cGP(1)-GL(2), cGP(2)-GL(3) method.

We see from Table 6.1 to 6.4 that the cGP(2)-GL(3) and the standard cGP(2)-method have the
accuracy of order 3 in the L2-norm and the super-convergent results of order 4 at the discrete time
points tn. The cGP(1)-GL(2) method is of order 2 everywhere in the time interval which is the
same behavior as that of the standard cGP(1)-method. Thus, both the Gauß-Lobatto based version
and the standard cGP(k)-method have the same accuracy everywhere in the time interval. An
advantage of the Gauß-Lobatto based cGP(k)-method is that it does not require any extrapolation
to get the solution at the discrete time points tn.

6.4. Summary

In this chapter, we have investigated a variant of the cGP(k)-method which is based on the Gauß-
Lobatto points. From the numerical experiments, we have analyzed that the Gauß-Lobatto based
cGP(k)-method has the same order of convergence as that of the standard cGP(k)-method. More-
over, it is advantageous as compared to the cGP(k)-method for the heat equation. However, for
saddle point problems like the Stokes or Navier-Stokes equations, the Gauß-Lobatto based variant
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is not applicable; the explicit time discretization of the pressure is numerically instable. To over-
come this difficulty, we have the motivation to reconsider the cGP(k)-methods using the standard
Gauß points analyzed in this thesis.
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7

Analysis of the continuous Galerkin-Petrov methods

This chapter is concerned with the analysis of newly introduced class of time discretization schemes,
namely the cGP(k)-method. In this analysis, we discuss two important aspects regarding the time
discretization, i.e., stability and optimal error estimates. We prove by some energy arguments
the A-stability of cGP(k)-method and an optimal error estimates of order k + 1 in the standard
L2-norm.

7.1. Stability of the cGP(k)-method

In order to prove the A-stability of the cGP(k)-method, we consider the following model problem
which is sufficiently smooth in time and space:
Find a function u : [0,T ]→ C such that

dtu(t) = λu(t) ∀ t ∈ [0,T ]
u(0) = u0,

(7.1)

for a given λ ∈C and an initial value u0 ∈C. To this end, it sufficient to prove that for the simple
situation of just one time step, i.e., for t1 = T = τ, it holds

|uτ(τ)|< |u0| τ > 0, ∀ λ ∈ {z ∈ C : Re(z)< 0}, ∀ u0 ∈ C\{0}. (7.2)

Theorem 1 The exact cGP(k)-method as well as the cGP(k)-method are A-stable in the sense that
(7.2) holds if the methods are applied to model problem (7.1).

Proof. (From [49]) We prove this theorem by considering the problem (7.1) in an equivalent way
as an ODE-system in R2 such that the application of cGP(k)-method to problem (7.1) is equivalent
to the application of cGP(k)-method to new model problem. To this end, let λ ∈ C be given
complex number such that Re(λ)< 0 and define a vector valued function~u : [0,T ]→C associated
to a given complex function u : [0,T ]→ C such that

~u :=
(

Re(u(t))
Im(u(t))

)
∀ t ∈ [0,T ].

Then, the model problem (7.1) is equivalent to the following problem:
Find a function~u : [0,T ]→ C such that

dt~u(t) = A~u(t) ∀ t ∈ [0,T ]
~u(0) = ~u0,

(7.3)
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where A is 2×2 matrix given by

A :=
(

Re(λ) −Im(λ)
Im(λ) Re(λ)

)
and the initial value ~u0 := (Re(u0), Im(u0))

T . The matrix A is regular and negative definite since
Re(λ)< 0 and

ξ
T Aξ = ξ

T AT
ξ = Re(λ)‖ξ‖2 ∀ ξ ∈ R2, (7.4)

where ‖.‖ denotes the Euclidean norm in R2. Now, the problem (7.1) and (7.3) are equivalent,
so the application of the cGP(k)-method to problem (7.1) is equivalent to the application of the
cGP(k)-method to problem (7.3) with the Hilbert spaces V = H =R2 equipped with the Euclidean
norm ‖.‖. The corresponding dual spaces H ′=V ′ are identified with R2 in the sense that 〈., .〉V ′,V =
〈., .〉H ′,H = (., .) is the usual Euclidean scalar product. The Riesz operator M : H→H ′ corresponds
to the identity matrix and the associated function F : [0,T ]×R2→ R2 is defined as F(t,~u) := A~u.
Then, for t1 = T = τ, the exact cGP(k)-method reads:
Find~uτ ∈ Xk

τ such that~u(0) =~u0 and∫ T

0
(dt~uτ(t),~vτ(t))dt =

∫ T

0
(A~uτ(t),~vτ(t))dt ∀~v ∈ Y k

τ . (7.5)

We apply the k-point Gauß formula for the integration which is exact if the function to be integrated
is a polynomial of degree less or equal 2k−1. This means that the cGP(k)-method with numerical
integration is equivalent to the exact cGP(k)-method such that equation (7.5) is also satisfied. The
discrete spaces Xk

τ and Y k
τ are chosen such that for each ~uτ ∈ Xk

τ the function ~vτ : [0,T ]→ R2

defined by ~vτ(t) := (A−1)T dt~uτ(t) is contained in the test space Y k
τ . Using this test function ~vτ in

(7.5), leads to∫ T

0
(dt~uτ(t),(A−1)T dt~uτ(t))dt =

∫ T

0
(~uτ(t),dt~uτ(t))dt =

1
2

∫ T

0

d
dt
‖~uτ(t)‖2dt. (7.6)

Since the matrix A is regular and negative definite, we have

‖~uτ(t)‖2−‖~u0‖2 = 2Re(λ)
∫ T

0
‖A−1dt~uτ(t)‖2dt. (7.7)

If the integral on the right hand in (7.7) is zero, then we get, ‖dt~uτ(t)‖ = 0 for all t ∈ [0,τ] since
A is regular which means ~u(0) = ~u0 for all t ∈ [0,τ]. Also from (7.5), if we take ~vτ = ~u0 ∈ Y k

τ ,
the time-constant test function, we obtain~uT

0 A~u0 = Re(λ)‖~u0‖= 0, which is a contradiction to the
assumption that ~u0 ∈ C \ {0}, i.e. ‖~u0‖ 6= 0. Thus, the right hand side in (7.7) must be negative
and we get that ‖~uτ(τ)‖< ‖~u0‖. This completes the proof. �

7.2. Optimal error estimate of the cGP(k)-method

We consider the heat equation: Find u : Ω× [0,T ]→ R such that

∂u
∂t −4u = f in Ω× (0,T ),

u = 0 on ∂Ω× [0,T ],
u(x,0) = u0(x) for x ∈Ω,

(7.8)

where u(x, t) denotes the temperature in the point x ∈ Ω at time t ∈ [0,T ], f : Ω× (0,T )→ R a
given source term and u0 : Ω→ R the initial temperature field at time t = 0. Instead of solving
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equation (7.8) for the discrete solution uτ ∈ u0 +Xk
τ,0, we consider only the homogeneous part

u0
τ := uτ−u0 ∈ Xk

τ,0. Then, the application of exact continuous Galerkin-Petrov method of order k
or briefly the ”exact cGP(k)-method” to heat equation (7.8) in Chapter 5, for u0

τ reads as follows
Find u0

τ ∈ Xk
τ,0 such that uτ(0) = u0 and

∫ T

0

{(
dtu0

τ(t),vτ(t)
)

Ω
+a(u0

τ(t),vτ(t))
}

dt =
∫ T

0
( f (t),vτ(t))Ω

dt ∀ vτ ∈ Y k
τ , (7.9)

where (·, ·)
Ω

denotes the usual inner product in L2(Ω) and a(·, ·) the bilinear form on V ×V
defined as

a(u,v) :=
∫

Ω

∇u ·∇vdx ∀ u,v ∈V.

In order to prove an optimal error estimate for the discrete solution of the heat equation (7.8), we
assume the following approximation property: There exist an interpolation operator ∏τ : X0→Xk

τ,0
such that for all sufficiently smooth u ∈ X0 and all time intervals In, n = 1, . . . ,N, it holds

‖u−∏τu‖L2(In,V ) ≤Cτ
k+1
n ‖dk+1

t u‖L2(In,V ), (7.10)

‖dt(u−∏τu)‖L2(In,V ) ≤Cτ
k
n‖dk+1

t u‖L2(In,V ). (7.11)

Theorem 2 Let u0 : [0,T ]→ V be the solution of the heat equation (7.8) which is sufficiently
smooth with respect to time such that the approximation properties (7.10) and (7.11) are fulfilled
for u = u0. Then, the solution u0

τ ∈ Xk
τ,0 of the corresponding discrete problem of the exact cGP(k)-

method satisfies the following error estimate

‖u0−u0
τ‖X ≤Cτ

{ N

∑
n=1

τ
2k
n ‖dk+1

t u0‖2
L2(In,V )

}1/2
≤Cτ

k‖dk+1
t u0‖L2(I,V ), (7.12)

where the constants C are independent of τn, τ, T and u0.

Proof. (see [49] for proof). �

Lemma 3 Let In = (tn−1, tn) be a time interval and u ∈ H1(In,V ). Then, it holds the inequality

‖u‖2
L2(In,V ) ≤ 2τn‖u(tt−1)‖2

V + τ
2
n‖u‖2

L2(In,V ). (7.13)

Proof. (From [49]) Since u∈H1(In,V ), this implies that u∈C([tn−1, tn],V ) and the values u(t)∈V
are well-defined for all t ∈ [tn−1, tn]. Then, the following holds

u(t) = u(tn−1)+
∫ t

tn−1

dtu(s)ds V.

This implies

‖u(t)‖V ≤ ‖u(tn−1)‖V +
∫ t

tn−1
‖dtu(s)‖V ds

≤ ‖u(tn−1)‖V +
(∫ t

tn−1
1ds
)1/2(∫ t

tn−1
‖dtu(s)‖2

V ds
)1/2

∀ t ∈ [tn−1, tn].

Therefore, we have

‖u(t)‖2
V ≤ 2‖u(tn−1)‖2

V +2(t− tn−1)‖dtu‖2
V
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Integrating over the interval In, we get the inequality (7.13), i.e.,

‖u‖2
L2(In,V ) ≤ 2τn‖u(tt−1)‖2

V + τ
2
n‖u‖2

L2(In,V ).

This completes the proof. �

We will also make use of the duality argument to prove an optimal error estimate. Therefore,
we need the following definitions and regularity assumption. Let A′ : V →V ′ be the dual operator
such that

〈A′u,v〉 := a′(u,v) := a(u,v) ∀ u,v ∈V,

where the bilinear form a′ : V ×V → R satisfying the following assumptions

a′(v,v) ≥ k1‖v‖2
V ∀ v ∈V, (7.14)

|a′(u,v)| ≤ k2‖u‖V‖v‖V ∀ u,v ∈V, (7.15)

with constants k1,k2 > 0. Now, we consider the problem∫ T

0
〈dtw(t),v(t)〉dt +

∫ T

0

〈
A′w(t),v(t)

〉
dt =

∫ T

0
(r(t),v(t))Hdt ∀v ∈ Y. (7.16)

Then, the problem (7.16) has a unique solution w ∈ X0 for the right hand side r ∈ L2(I,H). The
regularity assumption for this problem is that the solution w ∈ X0 satisfies w ∈ H1(I,V ) for every
right hand side r ∈ L2(I,H) and also a priori estimate

‖dtw‖L2(I,V ) ≤ k3‖r‖L2(I,H) (7.17)

for some constant k3 independent of r and T .

Theorem 4 Let u0 : [0,T ]→V be the solution of the heat equation 7.8 which is sufficiently smooth
with respect to time such that the approximation properties (7.10) and (7.11) are fulfilled for
u = u0. Assume that the regularity assumption (7.17) for the dual problem is satisfied. Then, the
solution u0

τ ∈ Xk
τ,0 of the corresponding discrete problem of the exact cGP(k)-method satisfies the

following error estimate

‖u0−u0
τ‖L2(I,V ) ≤Cτ

{ N

∑
n=1

τ
2k
n ‖dk+1

t u0‖2
L2(In,V )

}1/2
≤Cτ

k+1‖dk+1
t u0‖L2(I,V ), (7.18)

where the constants C are independent of τn, τ, T and u0.

Proof. (From [49]) Let us define the continuous dual problem for the error e := u0−u0
τ ∈ L2(I,V ):

Find a function z : [0,T ]→V such that z(T ) = 0 and

dtz(t)+A′z(t) = e(t) ∀ t ∈ (0,T ). (7.19)

For the function w(t) := z(T − t), we get the problem:
Find a function w : [0,T ]→V such that w(0) = 0 and

dtw(t)+A′w(t) = e(t) ∀ t ∈ (0,T ). (7.20)

The weak formulation of this problem is just problem (7.16) with r = e. Using the regularity
assumption (7.17) to transform the problem back to z, we have

‖dtz‖L2(I,V ) ≤Ca‖e‖L2(I,V ) (7.21)
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and the equation

−
∫ T

0
〈dtz(t),v(t)〉dt +

∫ T

0

〈
A′z(t),v(t)

〉
dt =

∫ T

0
(e(t),v(t))Hdt ∀v ∈ Y. (7.22)

Thus, in particular, we have z ∈C(Ī,V ) since z ∈ H1(I,V ). Let ∏0 : H1(I,V )→ Y k
τ be an interpo-

lation operator which is defined on each time interval In as

∏0z(t) := z(tn−1) ∀ t ∈ In.

Using the inequality (7.13) for u = z−∏0z we have

‖z−∏0z‖2
L2(In,V ) ≤ τ

2
n.‖dtz‖2

L2(In,V )

We choose v = e in equation (7.22) such that e(0) = 0. Using Galerkin orthogonality of the
cGP(k)-method, we have

‖e‖L2(I,V ) =
∫ T

0
〈dte(t),z(t)〉dt +

∫ T

0
a(e(t),z(t)dt

=
∫ T

0
〈dte(t),z(t)−∏0z(t)〉dt +

∫ T

0
a(e(t),z(t)−∏0z(t)dt

≤ ‖dte‖L2(I,V ′)‖z(t)−∏0z(t)‖L2(I,V )+C2‖e‖L2(I,V )‖z(t)−∏0z(t)‖L2(I,V )

≤
{
‖dte‖L2(I,V ′)+C2‖e‖L2(I,V )

}
τn‖dtz‖L2(In,V )

≤C‖e‖XCaτn‖e‖L2(I,V )

By applying Theorem 2, we obtain the following error estimate

‖u0−u0
τ‖L2(I,V ) ≤Cτ

{ N

∑
n=1

τ
2k
n ‖dk+1

t u0‖2
L2(In,V )

}1/2
≤Cτ

k+1‖dk+1
t u0‖L2(I,V ),

which completes the proof. �

7.3. Stability of the dG(k)-method

Next, we analyze the stability of the discontinuous Gherkin (dG(k)-method). To this end, we gain
consider problem (7.1) Find a function u : [0,T ]→ C such that

dtu(t) = λu(t) ∀ t ∈ [0,T ]
u(0) = u0,

(7.23)

for a given λ ∈ C and an initial value u0 ∈ C. As for the cGP(k)-method, we consider the equiv-
alent form of problem 7.23 in order to show the A-stability of the dG(k)-method. This equivalent
problem is as follows:
Find a function~u : [0,T ]→ C such that

dt~u(t) = A~u(t) ∀ t ∈ [0,T ]
~u(0) = ~u0,

(7.24)

where A is 2×2 matrix given by

A :=
(

Re(λ) −Im(λ)
Im(λ) Re(λ)

)
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and the initial value~u0 := (Re(u0), Im(u0))
T . The matrix A is a negative definite matrix, i.e., there

exist a real number α > 0
〈Av,v〉 ≤ −α‖v‖2 ∀ v ∈ R2. (7.25)

In the following theorem we prove the A-stability of the dG(k)-method.

Theorem 5 Let u0 ∈ R2 be the initial value of the model problem (7.24) and u1 := uτ|I1(t1) = u−1
with t1 := τ and I1 := (0, t1] is the left sided value at time t = t1 of the discrete solution uτ of the
dG(k)-method applied to problem (7.24). Then, under the assumption (7.30) with the parameter
α > 0 for the matrix A, the following estimate holds

‖u1‖ ≤
1√

1+ ŵk+1ατ
‖u0‖< ‖u0‖ ∀τ > 0, (7.26)

where ŵk > 0 denotes the weight of the k-point Gauss formula on the unit interval [−1,1] associ-
ated to t̂k. Thus, the dG(k)-method is A-stable.

Proof. (From [40]) The application of the discontinuous Galerkin (dG(k)-method) to problem (7.24)
reads the following:
Find uτ ∈ Y k

τ such that uτ(0) = u0 and for all vτ ∈ Y k
τ it holds

N

∑
n=1

∫
In

〈dtuτ(t),vτ(t)〉dt +
N

∑
n=1

〈
[uτ]n−1,v+n−1

〉
=

∫ T

0
〈Auτ(t),vτ(t)〉dt.

Here, the exact dG(k)-method is equivalent to the numerically integrated dG(k)-method since the
k-point Gauss formula is exact for the polynomials of degree less or equal to 2k− 1. Now, we
choose vτ such that vτ = uτ in the interval I1 and vτ = 0 outside the time interval I1. By using the
assumption (7.30), we obtain∫

I1

〈dtuτ(t),uτ(t)〉dt +
〈
[uτ]0,v+0

〉
≤−α

∫
I1

‖uτ‖2dt ≤−α
τn

2
ŵk‖u1‖2. (7.27)

This implies
1
2
‖u1‖2− 1

2
‖u+0 ‖

2 +
〈
u+0 −u0,u+0

〉
≤−α

τn

2
ŵk‖u1‖2.

Rearranging the terms in the above equation yields

(1+ ŵkατ)‖u1‖2 ≤−‖u+0 ‖
2 +2

〈
u0,u+0

〉
≤ ‖u+0 ‖

2.

This completes the proof. �

Theorem 6 Let u0 ∈C be the initial value of the model problem (7.23) for some complex number
λ ∈ C. Furthermore, u1(λ,τ) := uτ|I1(t1) = u−1 with t1 := τ and I1 := (0, t1] is the left sided value
at time t = t1 of the discrete solution uτ of the dG(k)-method applied to problem (7.23). Then, it
holds

lim
Re(λ)τ→−∞

|u1(λ,τ)|
|u0|

, (7.28)

i.e., the dG(k)-method is L-stable.

Proof. (From [40]) We know that the problem 7.23 can be considered with an equivalent problem
as follows:
Find a function~u : [0,T ]→ C such that

dt~u(t) = A~u(t) ∀ t ∈ [0,T ]
~u(0) = ~u0,

(7.29)
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where A is 2×2 matrix given by

A :=
(

Re(λ) −Im(λ)
Im(λ) Re(λ)

)
and the initial value~u0 := (Re(u0), Im(u0))

T . The matrix A is a negative definite matrix, i.e., there
exist a real number α > 0

〈Av,v〉 ≤ −α‖v‖2 ∀ v ∈ R2. (7.30)

By using Theorem 5, we have

0≤ |u1(λ,τ)|
|u0|

=
‖~uτ(τ)‖
‖~u0‖

≤ 1√
1+ ŵkατ

,

which completes the proof. �



60 Analysis of the continuous Galerkin-Petrov methods



8

Galerkin time discretizations for the Stokes equations

In this chapter, we extend our work for the heat equation in Chapter 5 for the nonstationary Stokes
equations. We implement and compare numerically continuous Galerkin-Petrov (cGP) and dis-
continuous Galerkin (dG) time discretizations for the nonstationary Stokes equations in two di-
mensions. For the space discretization, we use the LBB-stable finite element pair Q2/Pdisc

1 and we
discuss implementation aspects as well as methods for solving the resulting block systems which
are treated by using monolithic multigrid solvers with LPSC type smoothers. By means of numer-
ical experiments we compare the different time discretizations w.r.t. accuracy and computational
costs and we show that the convergence behavior of the multigrid method is almost independent
of mesh size and time step leading to an efficient solution process.

8.1. The cGP- and dG-methods for the Stokes equations

We consider the nonstationary Stokes equations, i.e. we want to find a velocity u : Ω× [0,T ]→R2

and a pressure p : Ω× [0,T ]→ R such that

∂tu−ν4u+∇p = f , div u = 0 in Ω× (0,T ),
u = 0 on ∂Ω× [0,T ], u(x,0) = u0(x) in Ω for t = 0,

(8.1)

where ν denotes the viscosity, f : Ω× (0,T )→ R2 is the body force and u0 : Ω→ R2 the initial
velocity field at time t = 0. For simplicity, we assume homogeneous Dirichlet conditions at the
boundary ∂Ω of a polygonal domain Ω ⊂ R2. To make this problem well-posed, one needs to

impose an additional condition on p, i.e.,
∫

Ω

pdΩ = 0.

We start with the time discretization of problem (8.1) which is of variational type. In the
following, let I = [0,T ] denote the time interval with some positive final time T . For a function
u : Ω× I→ R2 and a fixed t ∈ I, we will denote by u(t) := u(·, t) the associated velocity function
at time t which is an element of a suitable function space V. In case of the Stokes equations, this
space is the Sobolev space V = (H1

0 (Ω))2. Similarly, we denote by p(t) := p(·, t) the associated
pressure function at time t which is an element of the function space Q = L2

0(Ω) where

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

qdx = 0
}
.

In the time discretization, we decompose the time interval I into N subintervals In := [tn−1, tn),
where n = 1, . . . ,N and 0 = t0 < t1 < · · · < tN−1 < tN = T. The symbol τ will denote the time
discretization parameter and will also be used as the maximum time step size τ := max1≤n≤N τn,
where τn := tn− tn−1.

Then, for the cGP(k)-method, we approximate the solution u : I→ V by means of a function
uτ : I→ V which is piecewise polynomial of order k with respect to time, i.e., we are looking for

61
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uτ in the discrete time space

Xk
τ := {u ∈C(I,V) : u

∣∣
In
∈ Pk(In,V) ∀ n = 1, . . . ,N}, (8.2)

where

Pk(In,V) :=
{

u : In→ V : u(t) =
k

∑
j=0

U jt j , ∀ t ∈ In, U j ∈ V, ∀ j
}
.

We introduce the time discrete test space

Yk−1
τ := {v ∈ L2(I,V) : v

∣∣
In
∈ Pk−1(In,V) ∀ n = 1, . . . ,N} (8.3)

consisting of piecewise polynomials of order k− 1 which are globally discontinuous at the end
points of the time intervals. Similarly, we will use for the time discrete pressure pτ an analogous
ansatz space Xk

τ , where the vector valued space V is replaced by the scalar valued space Q, and an
analogous discontinuous test space Y k−1

τ .
Now, in order to derive the time discretization, we multiply the momentum equation in (8.1)

with some suitable In-supported test functions vτ ∈Yk−1
τ , integrate over Ω× In, use Fubini’s Theo-

rem and partial space integration of the terms4u and ∇p and apply the k-point Gaussian quadra-
ture rule for the evaluation of the time integrals. To determine uτ|In and pτ|In we represent them by
the polynomial ansatz

uτ(t) :=
k

∑
j=0

U j
nφn, j(t), pτ(t) :=

k

∑
j=0

P j
n φn, j(t), (8.4)

where the ”coefficients” (U j
n,P

j
n) are elements of the Hilbert space V×Q and the real functions

φn, j ∈ Pk(In) are the Lagrange basis functions with respect to k+1 suitable nodal points tn, j ∈ In

satisfying the conditions
φn, j(tn,i) = δi, j, i, j = 0, . . . ,k (8.5)

with the Kronecker symbol δi, j. For an easy treatment of the initial condition, we set tn,0 = tn−1.
Then, the initial condition is equivalent to the condition

U0
n = uτ|In−1(tn−1) if n≥ 2 or U0

n = u0 if n = 1. (8.6)

The other points tn,1, . . . , tn,k are chosen as the quadrature points of the k-point Gaussian formula on
In. This formula is exact if the function to be integrated is a polynomial of degree less or equal to
2k−1. We define the basis functions φn, j ∈ Pk(In) of (8.4) via the affine reference transformation
Tn : Î→ In where Î := [−1,1] and

t = Tn(t̂) :=
tn−1 + tn

2
+

τn

2
t̂ ∈ In ∀ t̂ ∈ Î, n = 1, . . . ,N. (8.7)

Let φ̂ j ∈ Pk(Î), j = 0, . . . ,k, denote the basis functions satisfying the conditions

φ̂ j(t̂i) = δi, j, i, j = 0, . . . ,k, (8.8)

where t̂0 = −1 and t̂i, i = 1, . . . ,k, are the standard Gaussian quadrature points for the reference
interval Î. Then, we define the basis functions on the original time interval In by

φn, j(t) := φ̂ j(t̂) with t̂ := T−1
n (t) =

2
τn

(
t− tn− tn−1

2

)
∈ Î. (8.9)

At the end, we obtain the following time discrete In-problem of the cGP(k)-method [28, 49]:
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Find on interval In = [tn−1, tn) the k unknown pairs of ”coefficients” (U j
n,P

j
n)∈V×Q, j = 1, . . . ,k,

such that for all i = 1, . . . ,k, it holds

∑
k
j=0 αi, j

(
U j

n,v
)

Ω

+ τn
2 a(Ui

n,v)+
τn
2 b(v,Pi

n) = τn
2 ( f (tn,i),v)Ω

∀ v ∈ V,

b(Ui
n,q) = 0 ∀ q ∈ Q,

(8.10)

where τn denotes the length of the time interval In, U0
n := uτ(tn−1) for n > 1, U0

1 := u0 and (·, ·)
Ω

the usual inner product in L2(Ω). The bilinear forms a(·, ·) and b(·, ·) on V×V and V×Q,
respectively, are defined as

a(u,v) :=
∫

Ω

∇u ·∇vdx ∀ u,v ∈ V, b(v, p) :=−
∫

Ω

∇ ·v pdx ∀ v ∈ V, p ∈ Q.

A typical property of this cGP(k)-variant is that the initial pressure P0
n of the ansatz (8.4) does not

occur in this formulation. This will be the reason for some problems to achieve superconvergence
for the pressure approximation at the discrete time levels tn.

In the following subsections, we specify the constants αi, j of the cGP(k)-method for the cases
k = 1 and k = 2 and we describe explicitly the well-known dG(1) approach.

8.1.1. cGP(1)-method

We use the one-point Gaussian quadrature formula with the point t̂1 = 0 and tn,1 = tn−1+
τn
2 . Then,

we get α1,0 =−1 and α1,1 = 1. Thus, equation (8.10) leads to the following equation for the ”one”
unknown U1

n = uτ(tn−1 +
τn
2 ) ∈ V and P1

n = pτ(tn−1 +
τn
2 ) ∈ Q(

U1
n,v
)

Ω
+ τn

2 a(U1
n,v)+

τn
2 b(v,P1

n ) = τn
2 ( f (tn,1),v)Ω

+
(
U0

n,v
)

Ω
∀ v ∈ V

b(U1
n,q) = 0 ∀ q ∈ Q.

(8.11)

Once we have determined the solution U1
n at the midpoint tn,1 of the time interval In, we get the

solution at the next discrete time point tn simply by polynomial interpolation with the ansatz (8.4),
i.e.,

uτ(tn) = 2U1
n−U0

n, (8.12)

where U0
n is the initial value at the time interval [tn−1, tn) coming from the previous time interval

In−1 or the initial value u0.
If we would replace f (tn,1) by the mean value ( f (tn−1)+ f (tn))/2, which means that we re-

place the one-point Gaussian quadrature of the right hand side by the Trapezoidal rule, the resulting
cGP(1)-method is equivalent to the well-known Crank-Nicolson scheme.

8.1.2. cGP(2)-method

Here, we use the 2-point Gaussian quadrature formula with the points t̂1 = − 1√
3

and t̂2 = 1√
3
.

Then, we obtain the coefficients

(αi, j) =

(
−
√

3 3
2

2
√

3−3
2√

3 −2
√

3−3
2

3
2

)
i = 1,2, j = 0,1,2.

On the time interval In, we have to solve for the two ”unknowns”

(U j
n,P

j
n) =

(
uτ(tn, j), pτ(tn, j)

)
∈ V×Q with tn, j := Tn(t̂ j) for j = 1,2.
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The corresponding coupled system reads:

α1,1
(
U1

n,v
)

Ω
+ τn

2 a(U1
n,v)+α1,2

(
U2

n,v
)

Ω
+ τn

2 b(v,P1
n ) = τn

2 ( f (tn,1),v)Ω
−α1,0

(
U0

n,v
)

Ω

α2,1
(
U1

n,v
)

Ω
+α2,2

(
U2

n,v
)

Ω
+ τn

2 a(U2
n,v)+

τn
2 b(v,P2

n ) = τn
2 ( f (tn,2),v)Ω

−α2,0
(
U0

n,v
)

Ω

b(U1
n,q) = 0

b(U2
n,q) = 0,

(8.13)
which has to be satisfied for all v ∈V and q ∈Q. Once we have determined the solutions (U j

n,P
j

n)
at the Gaussian points in the interior of the interval In, we get the solution at the right boundary tn
of In again by means of polynomial interpolation from the ansatz (8.4), i.e.,

uτ(tn) = U0
n +
√

3(U2
n−U1

n), (8.14)

where U0
n is the initial value at the time interval In.

8.1.3. dG(1)-method

In the dG(1)-method, velocity and pressure are approximated by a discontinuous piecewise linear
ansatz space, i.e. (uτ, pτ) ∈ Y1

τ×Y 1
τ . On time interval In we use the polynomial representation

uτ(t) :=
2

∑
j=1

U j
nφn, j(t), pτ(t) :=

2

∑
j=1

P j
n φn, j(t), (8.15)

with the two ”coefficients” (U j
n,P

j
n) ∈ V×Q, j = 1,2, which are the values of uτ and pτ, respec-

tively, at the points tn, j ∈ In of the 2 point Gaussian formula. The real functions φn, j ∈ P1(In) are
the linear Lagrange basis functions with respect to these two Gaussian points.

In order to present the method, we use the following constants for i, j ∈ {1,2}

(γi, j) =

(
1

√
3−1
2

−
√

3−1
2 1

)
, (di) =

( √
3+1
2

−
√

3+1
2

)
.

Then, on the time interval In, one has to determine the two ”unknowns” (U j
n,P

j
n) ∈ V×Q as the

solution of the following coupled system:

γ1,1
(
U1

n,v
)

Ω
+ τn

2 a(U1
n,v)+

τn
2 b(v,P1

n )+ γ1,2
(
U2

n,v
)

Ω
= d1

(
U0

n,v
)

Ω
+ τn

2 ( f (tn,1),v)Ω
,

γ2,1
(
U1

n,v
)

Ω
+ γ2,2

(
U2

n,v
)

Ω
+ τn

2 a(U2
n,v)+

τn
2 b(v,P2

n ) = d2
(
U0

n,v
)

Ω
+ τn

2 ( f (tn,2),v)Ω
,

b(U1
n,q) = 0

b(U2
n,q) = 0

(8.16)
which has to be satisfied for all v ∈ V and q ∈ Q. Once we have solved the above system, we
obtain uτ and pτ at the time tn by means of the following linear interpolation

uτ(tn) =

√
3+1
2

U2
n−
√

3−1
2

U1
n and pτ(tn) =

√
3+1
2

P2
n −
√

3−1
2

P1
n . (8.17)

8.2. Space Discretization by FEM

Next, in each time step, we apply a standard Galerkin finite element discretization with the so-
called Q2/Pdisc

1 Stokes element, i.e., with biquadratic finite elements for the velocity and dis-
continuous piecewise linear elements for the pressure. This LBB-stable element pair leads to an
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L2-approximation order of O(h3) for the velocity and O(h2) for the pressure where h denotes the
mesh size of the space grid.

After discretizing the Stokes equations (8.1) in time, we now discretize the resulting ”In-
problems” in space by using the finite element method [11, 17, 35, 55]. In our numerical experi-
ments, the finite element spaces Vh ⊂V and Qh ⊂Q are defined by biquadratic and discontinuous
linear finite elements, respectively, on a quadrilateral mesh Th covering the computational domain
Ω. Each ”In-problem” for the cGP(k) or the dG(k−1)-approach has the structure:

For given U0
n ∈ V, find U1

n, . . . ,Uk
n ∈ V and P1

n , . . . ,P
k
n such that

k

∑
j=1

αi, j
(
U j

n,v
)

Ω
+

τn

2
a(Ui

n,v)+
τn

2
b(v,Pi

n) = `i(v),

b(Ui
n,q) = 0,

(8.18)

which has to be satisfied for all v ∈ V and q ∈ Q with

`i(v) =
τn

2
( f (tn,i),v)Ω

+di
(
U0

n,v
)

Ω
∀i = 1, . . . ,k, (8.19)

where αi, j and di are the corresponding constants. For the space discretization, each U j
n ∈ V and

P j
n ∈Q are approximated by a finite element function U j

n,h ∈Vh and P j
n,h ∈Qh, resp., and the fully

discrete ”In-problem” reads:

For given U0
n,h ∈ Vh, find U1

n,h, . . . ,U
k
n,h ∈ Vh and P1

n,h, . . . ,P
k
n,h ∈ Qh such that for all vh ∈

Vh, qh ∈ Qh

k

∑
j=1

αi, j

(
U j

n,h,vh

)
Ω

+
τn

2
a(Ui

n,h,vh)+
τn

2
b(vh,Pi

n,h) = `i(v),

b(Ui
n,h,qh) = 0,

(8.20)

for all i = 1, . . . ,k. Once we have solved this system, we have computed for each time t ∈ In a
finite element approximation uτ,h(t) ∈ Vh of the time discrete solution uτ(t) ∈ V. To this end, we
replace the continuous functions U j

n ∈V in the ansatz of uτ(t) by the discrete functions U j
n,h ∈Vh.

In the following, we will write the problem (8.20) as a linear algebraic block system. Let
φµ ∈ Vh, µ = 1, . . . ,mh, denote the finite element basis functions and U j

n ∈ R2mh the nodal vector
of U j

n,h = (U j
n,h,V

j
n,h) ∈ Vh such that

U j
n,h(x) =

mh

∑
µ=1

(U j
n)µφµ(x), V j

n,h(x) =
mh

∑
µ=1

(V j
n)µφµ(x) ∀ x ∈Ω.

Similarly for the pressure, let ψµ ∈Qh, µ = 1, . . . ,nh, denote the finite element basis functions and
P j

n ∈ Rnh the nodal vector of P j
n,h ∈ Qh such that

P j
n,h(x) =

nh

∑
µ=1

(P j
n)µψµ(x) ∀ x ∈Ω.

Furthermore, let us introduce the mass matrix M, the discrete Laplacian matrix L and the vector
F i

n with the following components

Mν,µ := (φµ,φν)Ω
, Lν,µ := a(φµ,φν), Bν,µ := b(φµ,ψν), (F i

n)ν := ( f (tn,i),φν)Ω
.

(8.21)
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Then the fully discrete ”In-problem” is equivalent to the following (nonlinear) k×k block system:
For given U0

n, find U1
n, . . . ,Uk

n and P1
n, . . . ,P

k
n such that

k

∑
j=1

αi, jMU j
n +

τn

2
LUi

n +
τn

2
BPi

n = diMU0
n +

τn
2 Fi

n, ∀ i = 1, . . . ,k

BT Ui
n = 0,

(8.22)

where

M =

[
M 0
0 M

]
, L =

[
L 0
0 L

]
, B =

[
B1
B2

]
and the right hand side vector Fi

n is given by

Fi
n =

[
F i

n
Gi

n

]
.

The vector U0
n is defined as the finite element nodal vector of the fully discrete solution uτ,h(tn−1)

computed from the previous time interval [tn−2, tn−1] if n≥ 2 or from a finite element interpolation
of the initial data u0 if n = 1.

In the following, we will present the resulting block systems for the cGP(1)-, cGP(2)- and
dG(1)-method which are used in our numerical experiments.

8.2.1. cGP(1)-method

The corresponding 3× 3 block system on each time interval In reads: For given initial velocity
coefficient vectors U0

n = (U0
n,V

0
n), find U1

n,V
1
n and a scaled pressure vector P̃1

n such that(
M+ τn

2 A
)

U1
n +B1P̃1

n = τn
2 F1

n +MU0
n(

M+ τn
2 A
)

V 1
n +B2P̃1

n = τn
2 G1

n +MV 0
n

BT
1 U1

n +BT
2 V 1

n = 0

where P̃1
n := τn

2 P1
n, and M,A and B denote the mass, Laplacian and gradient matrices, respectively.

Once we have determined the solution U1
n, V 1

n we compute the nodal vector U0
n+1, V 0

n+1 of the
discrete solution uτ,h at the time tn by using the following linear extrapolation

uτ,h(tn)∼U0
n+1 = 2U1

n−U0
n, vτ,h(tn)∼V 0

n+1 = 2V 1
n−V 0

n.

8.2.2. cGP(2)-method

The 6× 6 block system on each time interval In reads: For given initial velocity vectors U0
n =

(U0
n,V

0
n), find U1

n,U
2
n,V

1
n,V

2
n and scaled pressure vectors P̃1

n, P̃
2
n such that

3M+ τnA
(
2
√

3−3
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M 0 0 B1 0(
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√
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M 3M+ τnA 0 0 0 B1
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2
√
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2 0 0
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where P̃i

n := τnPi
n and

R1
n = τnF1

n +2
√

3MU0
n, R2

n = τnF2
n −2

√
3MU0

n,

R3
n = τnG1

n +2
√

3MV 0
n, R4

n = τnG2
n−2
√

3MV 0
n.
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Here, we compute the nodal vector U0
n+1 and V 0

n+1 of the fully discrete solution uτ,h at the time tn
by using the following quadratic extrapolation

uτ,h(tn)∼U0
n+1 =U0

n +
√

3(U2
n−U1

n), vτ,h(tn)∼V 0
n+1 =V 0

n +
√

3(V 2
n−V 1

n).

8.2.3. dG(1)-method

The analogues 6× 6 block system on the time interval In reads: For given initial velocity vector
U0

n = (U0
n,V

0
n), find U1

n,U
2
n,V

1
n,V

2
n and scaled pressure coefficient vectors P̃1

n, P̃
2
n such that
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where P̃i

n := τnPi
n and

R1
n = τnF1

n +
(√

3+1
)

MU0
n, R2

n = τnF2
n +

(
−
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MU0
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n +
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In this case, we compute the nodal vector U0
n+1,V 0

n+1 and P0
n+1 of the left side limit of the fully

discrete solution uτ,h at the time tn by using the following linear extrapolation

u−
τ,h(tn)∼U0

n+1 =

√
3+1
2

U2
n −
√

3−1
2

U1
n , v−

τ,h(tn)∼V 0
n+1 =

√
3+1
2

V 2
n −
√

3−1
2

V 1
n .

One can obtain the pressure at the discrete time points tn by using the same extrapolation

p−
τ,h(tn)∼ P0

n+1 =

√
3+1
2

P2
n −
√

3−1
2

P1
n .

8.3. Postprocessing for high order pressure

In many flow problems, often the hydrodynamic forces such as drag, lift etc, have to be calculated.
These forces consist of functionals for velocity and pressure at the same discrete time points.
Now, since we have superconvergence results for the velocity only at the discrete time points tn,
it is desirable to get a high order pressure at the same points. In contrast to the dG(1)-method,
we cannot obtain the pressure in cGP-methods at the discrete time points by using the same ex-
trapolation as for velocity since this would involve the initial pressure which we do not have. In
this section, we explain how to get higher order accuracy for the pressure in the cGP-methods at
the discrete time points tn from the obtained pressure at the intermediate k Gaussian points in the
subinterval [tn−1, tn]. The same technique is then also applied for the dG(1)-method which gives
better results than the associated extrapolation. To do this, we use the Lagrangian interpolation
polynomials to get the solution at time tn which we explain in the following for the cGP(1), cGP(2)
and dG(1)-method, respectively.
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8.3.1. cGP(1)-method

We consider the left and right subinterval at time tn. Let t0 and t1 be the intermediate Gaussian
points in these subintervals where the solution is already known. We can construct the correspond-
ing linear Lagrangian interpolation polynomial L(t) such that L(ti) = pτ(ti) for i = 0,1. Once this
linear polynomial L(t) is obtained we can get the solution at the discrete time point tn. In this
way, one extra time step would be required to compute the solution at the end point t = T of the
simulation. The corresponding interpolation is visualized in Figure 8.1.

tn−1 tn tn+1

Figure 8.1: Lagrange interpolation for pressure at the discrete time point tn.

8.3.2. cGP(2) and dG(1)-method

In case of cGP(2) or dG(1)-method, we have two Gaussian points in each subinterval In. Let
t0, t1, t2 and t3 be the four points in the neighboring subintervals at tn. Now we construct the
cubic Lagrangian polynomial passing through these four points. Once we have determined this
polynomial L(t) we obtain the solution at the next discrete time point tn (see Figure 8.2). As in
case of cGP(1), one more time step is needed to find the solution at the end point.

tn−1 tn tn+1

Figure 8.2: Lagrange interpolation for pressure at the discrete time point tn.

8.4. Solution of the linear systems

The resulting linear systems in each time interval [tn−1, tn], which are 6× 6 block systems in the
case of the cGP(2) and dG(1) approach and 3×3 block systems for the cGP(1)-method, are treated
by using a geometrical multigrid solver with a LPSC type smoother (described in Chapter 4). The
multigrid solver uses the standard refinement scheme (see [58] for the grid hierarchies) and the
canonical grid transfer operators described in Chapter 4 regarding the chosen FEM space which
treat both solution components separately in the case of the cGP(2) and dG(1) approaches (see [39]
for the details). Finally, the coarse grid problem is solved by the Gaussian elimination method.

8.5. Numerical results

In this section, we perform several numerical tests in order to compare the accuracy of the proposed
time discretization schemes. As a test problem we consider the Stokes problem (8.1) with the
domain Ω := (0,1)2 and ν = 1. The prescribed velocity field u = (u1,u2) is

u1(x,y, t) := x2(1− x)2
[
2y(1− y)2−2y2(1− y)

]
sin(10πt),

u2(x,y, t) := −
[
2x(1− x)2−2x2(1− x)

]
y2(1− y)2 sin(10πt),
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and the pressure distribution p(x,y, t) :=−(x3 + y3−0.5)(1.5+0.5sin(10πt)). The initial data is
u0(x,y) = u(x,y,0).

We apply the time discretization schemes cGP(1), cGP(2) and dG(1) with an equidistant time
step size τ = T/N. To measure the error (in time), the following discrete L∞-norm of a function
v : I→ L2(Ω) is used

‖v‖∞ := max
1≤n≤N

‖v−(tn)‖L2(Ω), v−(tn) := lim
t→tn−0

v(t), tn := nτ.

The behavior of the standard L2-norm ‖ · ‖2 := ‖ · ‖L2(I,L2(Ω)) and the discrete L∞-norm of the time
discretization error u(t)− uh,τ(t) for the velocity over the time interval I = [0,1] can be seen in
Table 8.1 and 8.2, respectively. The estimated value of the experimental order of convergence
(EOC) is also calculated and compared with the theoretical order of convergence for both velocity
and pressure. All our numerical tests, where we compared the accuracy of our time discretization
schemes are related to space mesh level 7 with equidistant h = 2−6.

cGP(1) cGP(2) dG(1)
1/τ ‖u−uh,τ‖2 EOC ‖u−uh,τ‖2 EOC ‖u−uh,τ‖2 EOC
10 5.56E-03 4.40E-04 2.91E-03
20 1.53E-03 1.86 1.11E-04 1.99 6.51E-04 2.16
40 3.93E-04 1.97 1.33E-05 3.06 1.82E-04 1.84
80 9.87E-05 1.99 1.62E-06 3.04 4.83E-05 1.91

160 2.47E-05 2.00 2.03E-07 3.00 1.25E-05 1.95
320 6.18E-06 2.00 3.17E-06 1.98
640 1.55E-06 2.00 8.00E-07 1.99
1280 3.88E-07 2.00 2.03E-07 1.98
2560 1.01E-07 1.94

Table 8.1: Error norms ‖u−uh,τ‖2 for velocity.

cGP(1) cGP(2) dG(1)
1/τ ‖u−uh,τ‖∞ EOC ‖u−uh,τ‖∞ EOC ‖u−uh,τ‖∞ EOC
10 2.38E-15 6.74E-04 2.18E-03
20 8.17E-04 -38.32 1.38E-04 2.29 3.73E-04 2.55
40 2.10E-04 1.96 1.03E-05 3.75 5.98E-05 2.64
80 5.13E-05 2.03 6.88E-07 3.90 8.86E-06 2.75
160 1.28E-05 2.00 4.75E-08 3.86 1.19E-06 2.90
320 3.20E-06 2.00 1.60E-07 2.90
640 8.01E-07 2.00

1280 2.01E-07 1.99
2560 5.72E-08 1.82

Table 8.2: Error norms ‖u−uh,τ‖∞ for velocity.

We see that the cGP(2)-method is of order 3 in the L2-norm and superconvergent of order 4
at the discrete time points tn, while the dG(1)-method is of order 2 in the L2-norm and super-
convergent of order 3 at the end points of the time intervals as expected from the theory. The
cGP(1)-method is of order 2 everywhere which is the same behavior as that of the well-known
Crank-Nicolson scheme.

Now we show the accuracy of our time discretization schemes for the pressure. Here, we
also illustrate the behavior of the L2-norm ‖ · ‖2 := ‖ · ‖L2(I,L2(Ω)) and the discrete L∞-norm of the
error in the pressure, respectively. From Table 8.3, we observe that the experimental orders of
convergence (EOC) coincide with the theoretical orders of convergence for corresponding time
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cGP(1) cGP(2) dG(1)
1/τ ‖p− ph,τ‖2 EOC ‖p− ph,τ‖2 EOC ‖p− ph,τ‖2 EOC
10 2.10E-01 7.89E-04 2.60E-03
20 4.25E-02 2.30 3.03E-04 1.38 8.31E-04 1.64
40 1.08E-02 1.97 4.18E-05 2.86 2.53E-04 1.72
80 2.73E-03 1.99 5.31E-06 2.98 7.13E-05 1.82
160 6.83E-04 2.00 6.87E-07 2.95 1.88E-05 1.93
320 1.71E-04 2.00 1.91E-07 1.85 4.86E-06 1.95
640 4.39E-05 1.96 1.25E-06 1.96

1280 1.10E-05 2.00 3.57E-07 1.81
2560 2.75E-06 2.00 1.37E-07 1.38
5120 6.86E-07 2.00

10240 1.74E-07 1.98

Table 8.3: Error norms ‖p− ph,τ‖2 at the Gaussian points for pressure.

discretization schemes. Next, we want to analyze the behavior of L∞-error for the pressure. As
we have already discussed, one can achieve the high order pressure at the discrete time points tn
by using the Lagrangian interpolation polynomials symmetric at tn. The behavior of the discrete
L∞-norm of the error for pressure can be seen in Table 8.4.

cGP(1) cGP(2) dG(1)
1/τ ‖p− ph,τ‖∞ EOC ‖p− ph,τ‖∞ EOC ‖p− ph,τ‖∞ EOC
10 9.97E-06 7.55E-04 2.25E-03
20 1.00E-01 -13.30 1.35E-03 -0.84 1.36E-03 0.73
40 2.94E-02 1.77 8.86E-05 3.93 1.14E-04 3.57
80 7.63E-03 1.94 5.60E-06 3.98 1.91E-05 2.58
160 1.93E-03 1.99 4.13E-07 3.76 2.43E-06 2.98
320 4.83E-04 2.00 3.84E-07 2.66
640 1.21E-04 2.00

1280 3.02E-05 2.00
2560 7.55E-06 2.00
5120 1.90E-06 1.99

10240 4.74E-07 2.00

Table 8.4: Error norms ‖p− ph,τ‖∞ for the pressure using Lagrange interpolation.

We observe that the cGP(2)-method has superconvergent results of order 4 for pressure at the
discrete time points tn, while both the cGP(1) and dG(1)-method are of order 2 and 3, respectively,
at the end points of the time intervals as expected.

Since the error norms we compared so far contain both the spatial and time error, after a certain
stage the space error becomes dominant. To see the accuracy for the time error more clearly, we
now compute the norm ‖uh−uh,τ‖∞ ∼ ‖uh,τ∗ −uh,τ‖∞ by considering the reference time step size
τ∗ = 1/2560 for velocity and pressure for the cGP(2) and dG(1)-method.

One can see form Table 8.5 that the experimental orders of convergence for the cGP(2) and
dG(1)-methods are much more visible in the absence of spatial discretization errors.

Next, we perform numerical tests to analyze the corresponding behavior of the multigrid solver
for the different time discretization schemes. As explained before, the solver uses a cell oriented
LPSC type smoother and applies four pre- and post-smoothing steps. We present the averaged
number of multigrid iterations per time step for solving the corresponding systems in Table 8.6.
’Lev’ denotes the refinement level of the space mesh.

From Table 8.6, we see that the multigrid solver requires almost the same number of itera-
tions for the different presented time discretization schemes. Moreover, the number of multigrid
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cGP(2) dG(1)
1/τ ‖uh−uh,τ‖∞ EOC ‖ph− ph,τ‖∞ EOC ‖uh−uh,τ‖∞ EOC ‖ph− ph,τ‖∞ EOC
10 6.74E-04 7.55E-04 2.18E-03 2.25E-03
20 1.38E-04 2.29 1.35E-03 -0.84 3.73E-04 2.55 1.36E-03 0.73
40 1.03E-05 3.75 8.86E-05 3.93 5.98E-05 2.64 1.14E-04 3.57
80 6.88E-07 3.90 5.60E-06 3.98 8.86E-06 2.75 1.50E-05 2.93

160 4.39E-08 3.97 3.51E-07 4.00 1.19E-06 2.90 2.42E-06 2.63
320 2.75E-09 4.00 2.19E-08 4.00 1.55E-07 2.94 3.46E-07 2.80
640 1.71E-10 4.01 1.37E-09 4.01 1.96E-08 2.98 4.57E-08 2.92

Table 8.5: Temporal errors for velocity and pressure.

Lev τ = 1/20 τ = 1/80 τ = 1/320 τ = 1/1280
3 6-7-7 8-9-8 9-10-10 10-11-10
4 9-8-9 8-8-8 8-10-9 10-11-7
5 9-9-9 8-8-8 8-9-8 9-10-9
6 10-10-9 10-10-8 8-8-8 7-8-8
7 10-10-9 10-10-10 9-9-10 8-8-8

Table 8.6: Averaged multigrid iterations per time step for cGP(1) - cGP(2) - dG(1).

iterations remains fairly constant if we increase the refinement level of the space mesh. There is
also no noticeable increase in the number of iterations if we decrease the time step (due to the
non-diagonal mass matrix of Q2). This means that the behavior of the multigrid solver is almost
independent of the spatial mesh size and the time step.

Next, in order to measure and compare the efficiency of the multigrid solver for our time
discretizations, we present in Table 8.7 the averaged CPU-time required for one solver iteration
on a given space mesh level.

Lev=5 Lev=6 Lev=7
1/τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)
10 0.10 0.33 0.35 0.43 1.40 1.39 1.86 5.98 5.86
20 0.10 0.33 0.35 0.43 1.41 1.40 1.83 5.88 5.84
40 0.11 0.33 0.33 0.47 1.40 1.43 2.03 6.02 6.14
80 0.10 0.34 0.35 0.44 1.41 1.40 2.03 6.12 6.15

160 0.10 0.33 0.36 0.43 1.44 1.41 1.95 6.19 6.11
320 0.10 0.33 0.36 0.53 1.45 1.55 1.94 6.23 5.88
640 0.11 0.34 0.34 0.53 1.40 1.40 2.11 6.22 6.09
1280 0.10 0.36 0.36 0.46 1.48 1.40 1.91 6.23 6.27

Table 8.7: CPU-time per solver iteration for space mesh level=5,6,7, respectively.

In Table 8.7, we observe that the CPU-time in case of cGP(2) or dG(1) is almost 3 times the
CPU-time of cGP(1) for the multigrid solver. We also note that the CPU-time grows approximately
by a factor of 4 as expected if we increase the space mesh level. These factors are nearly optimal
since the number of space unknowns is increased by a factor of 4 if the level is increased by one.

Finally, we compare the time discretization schemes with respect to accuracy and numerical
costs. Here, the multigrid solver uses four LPSC type iterations in the pre- and post-smoothing
step. The space discretization was done on mesh level 7. Table 8.8 shows, for different sizes of the
time step τ and different time discretization schemes, the discrete L∞-norm and the total CPU-time
for the computation in all time intervals. Due to its superconvergence of order 3 in the discrete
time points, the dG(1)-method is faster than cGP(1) which is only of order 2. One can see that, in
order to achieve the accuracy of 10−7, we need the very small time step τ = 1/2560 for the cGP(1)
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cGP(1) cGP(2) dG(1)
1/τ ‖u−uh,τ‖∞ CPU ‖u−uh,τ‖∞ CPU ‖u−uh,τ‖∞ CPU
10 2.38E-15 40 6.74E-04 183 2.18E-03 189
20 8.17E-04 80 1.38E-04 364 3.73E-04 365
40 2.10E-04 160 1.03E-05 713 5.98E-05 764
80 5.13E-05 342 6.88E-07 1401 8.86E-06 1445

160 1.28E-05 645 4.75E-08 2866 1.19E-06 2884
320 3.20E-06 1337 1.60E-07 6145
640 8.01E-07 2833

1280 2.01E-07 5564
2560 5.72E-08 13441

Table 8.8: Error norms ‖u−uh,τ‖∞ and total CPU-time to achieve the accuracy of 10−7 for velocity
field.

while this accuracy can be already achieved with τ = 1/160 and τ = 1/320 in cGP(2) and dG(1)-
schemes, respectively. To compare the numerical costs per time step let us note that the number
of multigrid iterations to solve one linear block system is approximately the same (about 8) for
the three time discretization schemes. However, the costs of one multigrid iteration in the cGP(2)
or dG(1) method is almost 3 times higher than in cGP(1). Nevertheless, for a desired accuracy of
10−7, the cGP(2) scheme is about 5 times faster than cGP(1) due to the much larger time step size
required for cGP(2).

Next, we also compare our presented time discretization schemes with respect to accuracy and
numerical costs for the pressure. To this end, we will only compare the accuracy measured in
the discrete L∞-norm. Here, the pressure is obtained at the discrete time points tn by using the
Lagrangian interpolation procedure. From Table 8.9, it can be seen that to achieve the accuracy

cGP(1) cGP(2) dG(1)
1/τ ‖p− ph,τ‖∞ CPU ‖p− ph,τ‖∞ CPU ‖p− ph,τ‖∞ CPU
10 9.97E-06 40 7.55E-04 183 2.25E-03 189
20 1.00E-01 80 1.35E-03 364 1.36E-03 365
40 2.94E-02 160 8.86E-05 713 1.14E-04 764
80 7.63E-03 342 5.60E-06 1401 1.91E-05 1445
160 1.93E-03 645 4.13E-07 2866 2.43E-06 2884
320 4.83E-04 1337 3.84E-07 6145
640 1.21E-04 2833

1280 3.02E-05 5564
2560 7.55E-06 13441
5120 1.90E-06 27427

10240 4.74E-07 53692

Table 8.9: Error norms ‖p− ph,τ‖∞ and total CPU-time to achieve the accuracy of 10−7 for the
pressure using interpolation.

of 10−7, the cGP(1) and dG(1)-methods need very small time step sizes, i.e., τ = 1/10240 and
τ = 1/320, while this accuracy has been already achieved with τ = 1/160 for the cGP(2) scheme.
Hence, the cGP(2)-method always gives the accurate results for velocity and pressure in a much
more efficient way.

At the end, to show that the proposed time discretization schemes can also efficiently handle
the case when the solution approaches a steady state, we provide numerical tests with very large
time steps. We consider problem (8.1) for Ω = (0,1)2 and the prescribed (time-independent)
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velocity
u1(x,y, t) := x2(1− x)2

[
2y(1− y)2−2y2(1− y)

]
,

u2(x,y, t) := −
[
2x(1− x)2−2x2(1− x)

]
y2(1− y)2,

and the pressure distribution p(x,y, t) := −(x3 + y3− 0.5). For these analytical solutions for u
and p, we compute the corresponding right hand sides. As initial data we take u0 = 0. Table 8.10

Lev τ = 10−6 τ = 10−3 τ = 1 τ = 103 τ = 106

3 5-5-5 5-5-5 4-4-4 4-4-4 4-4-4
4 7-7-7 5-6-6 6-6-6 6-6-6 6-6-6
5 8-8-8 6-7-7 6-7-7 7-7-7 7-7-7
6 8-8-8 6-7-7 9-9-9 9-9-9 9-9-9
7 8-8-8 7-7-7 9-9-9 9-9-9 9-9-9
8 8-8-8 8-8-8 9-9-9 9-9-9 9-9-9

Table 8.10: Averaged multigrid iterations per time step for cGP(1) - cGP(2) - dG(1).

indicates for the multigrid method the number of solver iterations required for one time step which
shows that there is no big difference in the number of solver iterations for time step size τ = 10−6

up to τ = 106. This means that the behavior of the multigrid convergence is pretty robust with
respect to very small as well as very large time steps.

8.6. Summary

We have extended our work from heat equation in Chapter 5 and described in detail the application
of the continuous Galerkin-Petrov and discontinuous Galerkin time discretization schemes to the
nonstationary Stokes equations.

Accuracy

From the numerical studies in this chapter, we observed that the estimated experimental orders
of convergence confirm the expected theoretical orders of all the presented time discretization
schemes. Furthermore, the numerical tests have shown that the cGP(2)-scheme provides signifi-
cantly more accurate numerical solutions for both velocity and pressure than the other presented
schemes cGP(1) and dG(1) which means that quite large time step sizes are allowed to gain highly
accurate results.

Since we obtain superconvergence results for the velocity only at the discrete time points tn, it
is also desirable to get a high order pressure at the same points. In order to get a higher order pres-
sure, we have performed a special post processing which gives the same order of approximation
both for, the velocity and pressure in the discrete time point tn.

Efficiency

In order to measure and compare the efficiency of the multigrid solver, we have performed some
numerical tests for the different time discretization schemes. To this end, we presented the aver-
aged number of multigrid iterations per time step for solving the corresponding linear systems.
We have analyzed that the multigrid solver requires almost the same number of iterations for the
different presented time discretization schemes. Moreover, the number of multigrid iterations re-
mains almost constant if we increase the refinement level of the space mesh. There is also no
noticeable increase in the number of iterations by decreasing the time step size. This means that
the behavior of the multigrid solver is almost independent of the spatial mesh size and the time
step. Furthermore, the CPU-time in case of the cGP(2) or dG(1) is almost 3 times the CPU-time
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of cGP(1) for the multigrid solver and the CPU-time grows approximately by a factor of 4 as ex-
pected if we increase the space mesh level. Thus, the multigrid-solver turned out to be of optimal
computational complexity.
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Galerkin time discretizations for the Navier-Stokes equations

In this chapter, we extend our work for the heat equation in Chapter 5 and for the Stokes equa-
tions in Chapter 8 to the nonstationary Navier-Stokes equations in two dimensions. We present
fully implicit continuous Galerkin-Petrov (cGP) and discontinuous Galerkin (dG) time stepping
schemes for incompressible Navier-Stokes equations which are, in contrast to standard approaches
like for instance the Crank-Nicolson scheme, of higher order in time. In particular, we implement
and analyze numerically the higher order dG(1) and cGP(2)-methods which are super-convergent
of 3rd, resp., 4th order in time, while for the space discretization, the well-known LBB-stable
finite element pair Q2/Pdisc

1 (explained in Chapter 3) is used. The resulting discretized systems of
nonlinear equations are also presented for the cGP(1), cGP(2) and dG(1) method which will be
used in our numerical experiments. The solution techniques for the discretized nonlinear systems
are also explained in this chapter.

9.1. The cGP- and dG-methods for the Navier-Stokes equation

For a domain Ω ⊂ Rd , we consider the nonstationary incompressible Navier-Stokes equations,
i.e., we want to find for each time t ∈ [0,T ] a velocity field u(t) : Ω→ Rd and a pressure field
p(t) : Ω→ R such that

∂tu−ν4u+(u ·∇)u+∇p = f in Ω× (0,T ],
div u = 0 in Ω× (0,T ],

u = g on ∂Ω× (0,T ],
u(x,0) = u0(x) in Ω for t = 0,

(9.1)

where ν denotes the viscosity, f the body force and u0 the initial velocity field at time t = 0. For
simplicity, we restrict to the case d = 2 and we assume homogeneous Dirichlet conditions at the
boundary ∂Ω of a polygonal domain Ω (for other choices see [24]). To make this problem well-
posed in the case of pure Dirichlet boundary conditions, we have to look for the field p(t) at each
time t in the subspace L2

0(Ω)⊂ L2(Ω) of functions with zero integral mean value.
For the time discretization, we decompose the time interval I = (0,T ] into N disjoint subinter-

vals In := (tn−1, tn], where n= 1, . . . ,N and 0= t0 < t1 < · · ·< tN−1 < tN = T. Thus, the value of the
time-discrete approximation uτ at time tn is always defined as the In-value (i.e., the left-sided value
in case of discontinuous approximation) uτ(tn) := u− := uτ|In(tn). The symbol τ denotes the time
discretization parameter and is also used as the maximum time step size τ := max1≤n≤N τn, where
τn := tn− tn−1. Then, for the subsequent continuous and discontinuous Galerkin time stepping
schemes, we approximate the solution u by means of a function uτ which is piecewise polyno-
mial with respect to time. In case of the cGP(k)-method, we are looking for uτ in the discrete

75
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time-continuous space (with V = (H1
0 (Ω))2)

Xk
τ := {u ∈C(I,V) : u

∣∣
In
∈ Pk(In,V) ∀ n = 1, . . . ,N}, (9.2)

where

Pk(In,V) :=
{

u : In→ V : u(t) =
k

∑
j=0

U jt j , ∀ t ∈ In, U j ∈ V, ∀ j
}
. (9.3)

Moreover, we introduce the discrete time-discontinuous test space

Yk−1
τ := {v ∈ L2(I,V) : v

∣∣
In
∈ Pk−1(In,V) ∀ n = 1, . . . ,N} (9.4)

consisting of piecewise polynomials of order k− 1 which are (globally) discontinuous at the end
points of the time intervals. Similarly, we will use for the time-discrete pressure pτ an analogous
ansatz space X̃k

τ , where the vector valued space V is replaced by the scalar valued space Q= L2
0(Ω),

and an analogous discontinuous test space Ỹ k−1
τ .

In case of the dG(k−1)-method, we are looking for uτ in the time-discontinuous discrete space
Yk−1

τ . Next, we describe separately the cGP(k) and dG(k−1)-method.
In order to derive the time discretization, we multiply the equations in (9.1) with some suitable

In-supported test functions and integrate over Ω× In. To determine uτ|In and pτ|In we represent
them by the polynomial ansatz

uτ|In(t) :=
k

∑
j=0

U j
nφn, j(t), pτ|In(t) :=

k

∑
j=0

P j
n φn, j(t), (9.5)

where the ”coefficients” (U j
n,P

j
n) are elements of the function spaces V×Q and the polynomial

functions φn, j ∈ Pk(In) are the Lagrange basis functions with respect to the k + 1 nodal points
tn, j ∈ In satisfying the conditions

φn, j(tn,i) = δi, j, i, j = 0, . . . ,k (9.6)

with the Kronecker symbol δi, j. For an easy treatment of the initial condition, we set tn,0 = tn−1.
Then, the initial condition is equivalent to the condition

U0
n = uτ|In−1(tn−1) if n≥ 2 or U0

n = u0 if n = 1. (9.7)

The other points tn,1, . . . , tn,k are chosen as the quadrature points of the k-point Gaussian formula
on In which is exact if the function to be integrated is a polynomial of degree less or equal to
2k− 1. We define the basis functions φn, j ∈ Pk(In) of (9.5) via affine reference transformations
(see Chapter 5 and 8 for more details). Now, we can describe the time discrete In-problem of the
cGP(k)-method (see Chapter 5 and 8,[49]):

Find on the interval In = (tn−1, tn] the k unknown pairs of ”coefficients” (U j
n,P

j
n) ∈ V×Q,

j = 1, . . . ,k, such that for all i = 1, . . . ,k, it holds for all (v,q) ∈ V×Q

k

∑
j=0

αi, j
(
U j

n,v
)

Ω
+

τn

2
a(Ui

n,v)+
τn

2
n(Ui

n,U
i
n,v)+

τn

2
b(v,Pi

n) = τn
2 ( f (tn,i),v)Ω

b(Ui
n,q) = 0

(9.8)

with U0
n := uτ(tn−1) for n > 1, U0

1 := u0 and (·, ·)
Ω

denotes the usual inner product in (L2(Ω))d .
The bilinear forms a(·, ·) and b(·, ·) on V×V and V×Q, respectively, are defined as

a(u,v) :=
∫

Ω

∇u ·∇vdx ∀ u,v ∈ V, b(v, p) :=−
∫

Ω

∇ ·v pdx, (9.9)
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and the trilinear form n(·, ·, ·) on V×V×V is given as n(w,u,v) := ∑
d
i=1 ni(w,ui,vi) where

ni(w,ui,vi) :=
∫

Ω

(w ·∇ui)vi dx ∀ w ∈ V, ui,vi ∈ H1
0 (Ω). (9.10)

A typical property of this cGP(k)-variant is that the initial pressure P0
n of the ansatz (9.5) does not

occur in this formulation. In order to achieve superconvergence for the pressure approximation at
the discrete time levels tn special interpolation techniques using two neighboured time intervals
can be applied (see Chapter 8).

In the following subsections, we specify the constants αi, j of the cGP(k)-method for the cases
k = 1 and k = 2, and for comparison we describe explicitly the well-known dG(1) approach (see
Chapter 8 for more details).

9.1.1. cGP(1)-method.

We use the one-point Gaussian quadrature formula with t̂1 = 0 and tn,1 = tn−1 +
τn
2 . Then, we get

α1,0 =−1 and α1,1 = 1 (see Chapter 5 and 8). Thus, problem (9.8) leads to the following problem
for the ”one” pair of unknowns U1

n = uτ(tn−1 +
τn
2 ) and P1

n = pτ(tn−1 +
τn
2 ): Find (U1

n,P
1
n ) ∈V×Q

such that for all (v,q) ∈ V×Q it holds(
U1

n,v
)

Ω
+ τn

2 a(U1
n,v)+

τn
2 n(U1

n,U1
n,v)+

τn
2 b(v,P1

n ) = τn
2 ( f (tn,1),v)Ω

+
(
U0

n,v
)

Ω

b(U1
n,q) = 0.

(9.11)

Once we have determined the solution U1
n at the midpoint tn,1 of the time interval In, we get the

solution at the next discrete time point tn simply by linear extrapolation based on the ansatz (9.5),
i.e.,

uτ(tn) = 2U1
n−U0

n, (9.12)

where U0
n is the initial value at the time interval (tn−1, tn] coming from the previous time interval

In−1 or the initial value u0.
If we would replace f (tn,1) by the mean value ( f (tn−1)+ f (tn))/2, which means that we re-

place the one-point Gaussian quadrature of the right hand side by the trapezoidal rule, the resulting
cGP(1)-method is equivalent to the well-known Crank-Nicolson scheme. The cGP(1)-method is
accurate of order 2 in the whole time interval as it is known for the Crank-Nicolson scheme. Con-
cerning the pressure approximation, one observes that the second order accuracy holds only in the
midpoints of the time intervals. By means of linear interpolation between the midpoints of two
neighbouring time intervals we get second order accuracy also at the discrete time levels tn.

9.1.2. cGP(2)-method.

Here, we use the 2-point Gaussian quadrature formula with the points t̂1 = − 1√
3

and t̂2 = 1√
3
.

Then, we obtain the coefficients

(αi, j) =

(
−
√

3 3
2

2
√

3−3
2√

3 −2
√

3−3
2

3
2

)
i = 1,2, j = 0,1,2. (9.13)

Consequently, on the time interval In, we have to solve for the two ”unknowns”

(U j
n,P

j
n) =

(
uτ(tn, j), pτ(tn, j)

)
∈ V×Q with tn, j := (tn−1 + tn + τnt̂ j)/2 for j = 1,2.

(9.14)
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The corresponding coupled system reads

α1,1
(
U1

n,v
)

Ω
+ τn

2 a(U1
n,v)+

τn
2 n(U1

n,U1
n,v)+α1,2

(
U2

n,v
)

Ω
+ τn

2 b(v,P1
n ) = `1(v)

α2,1
(
U1

n,v
)

Ω
+α2,2

(
U2

n,v
)

Ω
+ τn

2 a(U2
n,v)+

τn
2 n(U2

n,U2
n,v)+

τn
2 b(v,P2

n ) = `2(v)
b(U1

n,q) = 0
b(U2

n,q) = 0,

(9.15)

which has to be satisfied for all (v,q) ∈ V×Q with

`i(v) =
τn

2
( f (tn,i),v)Ω

−αi,0
(
U0

n,v
)

Ω
i = 1,2. (9.16)

Once we have determined the solutions U1
n,U2

n at the Gaussian points in the interior of the interval
In, we get the solution at the right boundary tn of In by means of quadratic extrapolation from the
ansatz (9.5), i.e.,

uτ(tn) = U0
n +
√

3(U2
n−U1

n), (9.17)

where U0
n is the initial value at the time interval In. The cGP(2)-method is accurate of order 3 in

the whole time interval and superconvergent of order 4 in the discrete time points (see Chapter 5
and 8).

9.1.3. dG(1)-method

Here, the time-discrete velocity and pressure solution is determined in the solution space (uτ, pτ)∈
Yk−1

τ × Ỹ k−1
τ , where k ≥ 1. The ansatz for (uτ, pτ) on interval In is then analog to (9.5) with the

difference that the sum starts with j = 1 and the scalar basis functions φn, j are polynomials of
order k− 1. In this thesis, we will concentrate only on the case k = 2, i.e. on the well-known
dG(1)-method. We can derive the following constants for i, j ∈ {1,2} (see again Chapter 5 and 8)

(αi, j) =

(
1

√
3−1
2

−
√

3−1
2 1

)
, (di) =

( √
3+1
2

−
√

3+1
2

)
. (9.18)

Then, on the time interval In, one has to determine the two ”unknowns” (U j
n,P

j
n) ∈ V×Q as the

solution of the following coupled system

α1,1
(
U1

n,v
)

Ω
+ τn

2 a(U1
n,v)+

τn
2 n(U1

n,U1
n,v)+

τn
2 b(v,P1

n )+α1,2
(
U2

n,v
)

Ω
= `1(v)

α2,1
(
U1

n,v
)

Ω
+α2,2

(
U2

n,v
)

Ω
+ τn

2 a(U2
n,v)+

τn
2 n(U2

n,U2
n,v)+

τn
2 b(v,P2

n ) = `2(v)

b(U1
n,q) = 0

b(U2
n,q) = 0

(9.19)

which has to be satisfied for all (v,q) ∈ V×Q with `i(·) defined by

`i(v) =
τn

2
( f (tn,i),v)Ω

+di
(
U0

n,v
)

Ω
i = 1,2. (9.20)

Once we have solved the above system, we obtain uτ and pτ at the time tn by means of the follow-
ing linear extrapolation

uτ(tn) =

√
3+1
2

U2
n−
√

3−1
2

U1
n and pτ(tn) =

√
3+1
2

P2
n −
√

3−1
2

P1
n . (9.21)

The dG(1)-method is of order 2 in the whole time interval and superconvergent of order 3 in the
discrete time points (see Chapter 5 and 8).
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9.2. Space Discretization by FEM

After discretizing the Navier-Stokes equations (9.1) in time, we now discretize the resulting ”In-
problems” in space by using the finite element method [11, 17, 35, 55]. In our numerical experi-
ments, the finite element spaces Vh ⊂V and Qh ⊂Q are defined by biquadratic and discontinuous
linear finite elements, respectively, on a quadrilateral mesh Th covering the computational domain
Ω. Each ”In-problem” for the cGP(k) or the dG(k−1)-approach has the structure:

For given U0
n ∈ V, find (U j

n,P
j

n) ∈ V×Q, j = 1, . . . ,k, such that

k

∑
j=1

αi, j
(
U j

n,v
)

Ω
+

τn

2
a(Ui

n,v)+
τn

2
n(Ui

n,U
i
n,v)+

τn

2
b(v,Pi

n) = `i(v)

b(Ui
n,q) = 0,

(9.22)

which has to be satisfied for all i = 1, . . . ,k and all (v,q) ∈ V×Q with

`i(v) :=
τn

2
( f (tn,i),v)Ω

+di
(
U0

n,v
)

Ω
(9.23)

where αi, j and di are the corresponding constants described above.

For the space discretization, all (U j
n,P

j
n)∈V×Q are approximated by finite element functions

(U j
n,h,P

j
n,h) ∈ Vh×Qh, respectively, and the fully discrete ”In-problem” reads:

For given U0
n,h ∈ Vh, find (U j

n,h,P
j

n,h) ∈ Vh×Qh, j = 1, . . . ,k, such that it holds

k

∑
j=1

αi, j

(
U j

n,h,vh

)
Ω

+
τn

2
a(Ui

n,h,vh)+
τn

2
n(Ui

n,h,U
i
n,h,vh)+

τn

2
b(vh,Pi

n,h) = `i(vh)

b(Ui
n,h,qh) = 0

(9.24)

for all (vh,qh) ∈ Vh×Qh and all i = 1, . . . ,k.

Once we have solved this system, we have computed for each time t ∈ In a finite element
approximation uτ,h(t)∈Vh of the time discrete solution uτ(t)∈V which is defined by an analogous
ansatz to (9.5) where the U j

n ∈ V are replaced by the discrete functions U j
n,h ∈ Vh.

In the following, we will write problem (9.24) as a nonlinear algebraic block system. Let
Sh ⊂ H1

0 (Ω) denote the scalar finite element space for the velocity components U j
n ,V

j
n ∈ Sh of

U j
n,h = (U j

n,h,V
j

n,h) ∈ Vh = S2
h and let φµ ∈ Sh, µ = 1, . . . ,mh, denote the scalar finite element basis

functions of Sh. Then, we define the nodal vector U j
n = (U j

n,V
j
n)∈R2mh of U j

n,h = (U j
n,h,V

j
n,h)∈Vh

such that

U j
n,h(x) =

mh

∑
µ=1

(U j
n)µφµ(x), V j

n,h(x) =
mh

∑
µ=1

(V j
n)µφµ(x) ∀ x ∈Ω. (9.25)

Similarly for the pressure, let ψµ ∈Qh, µ = 1, . . . ,nh, denote the finite element basis functions and
P j

n ∈ Rnh the nodal vector of P j
n,h ∈ Qh such that

P j
n,h(x) =

nh

∑
µ=1

(P j
n)µψµ(x) ∀ x ∈Ω. (9.26)

Furthermore, we introduce the mass matrix M ∈Rmh×mh , the discrete Laplacian matrix L∈Rmh×mh ,
the gradient matrices Bi ∈ Rnh×mh , i = 1,2, as

Mν,µ := (φµ,φν)Ω
, Lν,µ := a(φµ,φν), (Bi)ν,µ := b(φµei,ψν), (9.27)
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and the right hand side vectors F i
n,G

i
n ∈ Rmh , i = 1, . . . ,k, with the components

(F i
n)ν :=

(
f (tn,i),φνe1)

Ω
, (Gi

n)ν :=
(

f (tn,i),φνe2)
Ω
. (9.28)

Next, for a given discrete velocity field wh ∈ Vh with the nodal vector w ∈ R2mh , we define the
matrix N(w) ∈ Rmh×mh as

N(w)ν,µ := n(wh,φµ,φν). (9.29)

Using the block-matrices and block-vectors

M =

[
M 0
0 M

]
, L =

[
L 0
0 L

]
, N(w) =

[
N(w) 0

0 N(w)

]
, B =

[
B1
B2

]
, Fi

n =

[
F i

n
Gi

n

]
, (9.30)

the fully discrete ”In-problem” is equivalent to the following nonlinear k× k block system:

For given U0
n ∈ R2mh , find U j

n ∈ R2mh and P j
n ∈ Rnh , j = 1, . . . ,k, such that for all i = 1, . . . ,k,

it holds
k

∑
j=1

αi, jMU j
n +

τn

2
LUi

n +
τn

2
N(Ui

n)U
i
n +

τn

2
BPi

n = diMU0
n +

τn
2 Fi

n,

BT Ui
n = 0.

(9.31)

The vector U0
n is defined as the finite element nodal vector of the fully discrete solution uτ,h(tn−1)

computed from the previous time interval [tn−2, tn−1] if n≥ 2 or from a finite element interpolation
of the initial data u0 if n = 1. In the case of higher Reynolds numbers, we apply additionally
an edge oriented FEM stabilization (EOFEM) [59] for the convective term. This means that we
replace the trilinear form n(w, ·, ·) by a modified form nh(w, ·, ·) such that, in (9.31), differences
will appear only in the nonlinear matrix N(w).

In the following, we will present the resulting block systems for the cGP(1), cGP(2) and dG(1)
method which will be used in our numerical experiments.

9.2.1. cGP(1)-method

The 3×3 block system on the time interval In reads:

For given initial velocity U0
n = (U0

n,V
0
n), find U1

n = (U1
n,V

1
n) and a pressure P1

n such thatA(u,v) 0 Bu

0 A(u,v) Bv

BT
u BT

v 0

u
v
p

=

Ru

Rv

0

 (9.32)

where
A(u,v) = M+

τn

2
L+

τn

2
N(u,v), Bu = B1, Bv = B2, (9.33)

with the abbreviations
u =U1

n, v =V 1
n, p =

τn

2
P1

n (9.34)

and the convection matrix N(u,v) denoting the matrix N(w) defined in (9.29) with the nodal vector
w := (u,v) ∈ R2mh . The right hand side vectors Ru and Rv are given by

Ru =
τn
2 F1

n +MU0
n, Rv =

τn
2 G1

n +MV 0
n. (9.35)

Once we have determined the solution U1
n = (U1

n,V
1
n) we compute the nodal vector U0

n+1 = (U0
n+1,

V 0
n+1) of the fully discrete solution uτ,h at the time tn by using the following linear extrapolation

uτ,h(tn)∼U0
n+1 = 2U1

n−U0
n, vτ,h(tn)∼V 0

n+1 = 2V 1
n−V 0

n. (9.36)
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9.2.2. cGP(2)-method

The 6×6 block system on the time interval In reads:

For given initial velocity U0
n = (U0

n,V
0
n), find U1

n,U
2
n,V

1
n,V

2
n and P1

n,P
2
n such thatA(u,v) 0 Bu

0 A(u,v) Bv

BT
u BT

v 0

u
v
p

=

Ru

Rv

0

 (9.37)

where

A(u,v) =
[

3M+ τnL+ τnN(u1,v1)
(
2
√

3−3
)

M(
−2
√

3−3
)

M 3M+ τnL+ τnN(u2,v2)

]
, (9.38)

Bu =

[
B1 0
0 B1

]
, Bv =

[
B2 0
0 B2

]
(9.39)

with the abbreviations

u =

[
u1

u2

]
=

[
U1

n

U2
n

]
, v =

[
v1

v2

]
=

[
V 1

n

V 2
n

]
, p =

[
p1

p2

]
=

[
τnP1

n

τnP2
n

]
(9.40)

The right hand side vectors Ru and Rv are given by

Ru =

[
R1

u

R2
u

]
=

[
τnF1

n +2
√

3MU0
n

τnF2
n −2

√
3MU0

n

]
, Rv =

[
R1

v

R2
v

]
=

[
τnG1

n +2
√

3MV 0
n

τnG2
n−2
√

3MV 0
n

]
. (9.41)

The nodal vectors U i
n and V i

n, i = 1,2, are associated with the finite element approximations
uτ,h(tn,i) and vτ,h(tn,i), respectively, where tn,i denotes the i-th integration point of the 2-point
Gaussian quadrature rule on the time interval In. Once they have been computed, we get the
nodal vector U0

n+1 = (U0
n+1,V

0
n+1) of the fully discrete solution uτ,h at the time tn by using the

following quadratic extrapolation

uτ,h(tn)∼U0
n+1 =U0

n +
√

3(U2
n−U1

n), vτ,h(tn)∼V 0
n+1 =V 0

n +
√

3(V 2
n−V 1

n). (9.42)

9.2.3. dG(1)-method

The analogous 6×6 block system on the time interval In reads:

For given initial velocity U0
n = (U0

n,V
0
n), find U1

n,U
2
n,V

1
n,V

2
n and P1

n,P
2
n such thatA(u,v) 0 Bu

0 A(u,v) Bv

BT
u BT

v 0

u
v
p

=

Ru

Rv

0

 (9.43)

where

A(u,v) =
[

2M+ τnL+ τnN(u1,v1)
(√

3−1
)

M(
−
√

3−1
)

M 2M+ τnL+ τnN(u2,v2)

]
(9.44)

and Bu, Bv, u, v, p are defined as in (9.39) and (9.40). The right hand side vectors Ru and Rv are
given by

Ru =

[
R1

u

R2
u

]
=

[
τnF1

n +
(√

3+1
)

MU0
n

τnF2
n +

(
−
√

3+1
)

MU0
n

]
, Rv =

[
R1

v

R2
v

]
=

[
τnG1

n +
(√

3+1
)

MV 0
n

τnG2
n +
(
−
√

3+1
)

MV 0
n

]
. (9.45)
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Again the nodal vectors U i
n and V i

n, i = 1,2, are associated with the finite element approxima-
tions uτ,h(tn,i) and vτ,h(tn,i), respectively, where tn,i denotes the i-th integration point of the 2-point
Gaussian quadrature rule on the time interval In. Once they have been computed, we get the nodal
vector U0

n+1 = (U0
n+1,V

0
n+1) and P0

n+1 of the left side limit of the fully discrete solution uτ,h at the
time tn by using the following linear extrapolation

u−
τ,h(tn)∼U0

n+1 =
√

3+1
2 U2

n −
√

3−1
2 U1

n ,

v−
τ,h(tn)∼V 0

n+1 =
√

3+1
2 V 2

n −
√

3−1
2 V 1

n ,

p−
τ,h(tn)∼ P0

n+1 =
√

3+1
2 P2

n −
√

3−1
2 P1

n .

(9.46)

9.3. Nonlinear Solver

For all introduced time-space discretization schemes described before, a nonlinear system of alge-
braic equations of the following type has to be solved for each time interval:A(u,v) 0 Bu

0 A(u,v) Bv

BT
u BT

v 0

u
v
p

=

Ru

Rv

0

 (9.47)

The nonlinear system (9.47) can be characterized as a saddle point problem. This system will
be solved either by means of a standard fixed point iteration or by the Newton method. We will
denote this solution approach as the outer nonlinear iteration. In each outer iteration step, a coupled
linear system has to be solved. The linear subproblems are solved by using a coupled geometrical
multigrid solver with a smoother based on blocking of all cell unknowns and canonical FEM grid
transfer operators. In addition, the coarse grid problem is solved by using the Gaussian elimination
or preconditioned GMRES method.

9.3.1. General nonlinear outer iteration

On an actual time interval In = (tn−1, tn], we define the start iterate (u0,v0, p0) of the nonlinear
iteration by means of the known solution at time tn−1 from the previous time interval for n > 1
or from the space-discrete initial solution for n = 1. In the case of cGP(2) or dG(1), we define
also the start iterates of the second components u2, v2 and p2 in (9.40) as the solution at time tn−1.
For a given old iterate (u`,v`, p`), we perform the following three steps to compute the new iterate
(u`+1,v`+1, p`+1):

1. Compute a defect vector containing the nonlinear residual for (u`,v`, p`)du

dv

dp

=

Ru

Rv

0

−
A(u`,v`) 0 Bu

0 A(u`,v`) Bv

BT
u BT

v 0

u`
v`
p`

 . (9.48)

2. Solve an auxiliary (linear) subproblem with the defect vector as right hand sideAuu(u`,v`) Auv(u`,v`) Bu

Avu(u`,v`) Avv(u`,v`) Bv

BT
u BT

v 0

∆u`
∆v`
∆p`

=

du

dv

dp

 , (9.49)

where Auu,Auv,Avu,Avv are chosen due to the fixed-point iteration or the Newton method.
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3. Update the iterate to obtain (u`+1,v`+1, p`+1)u`+1
v`+1
p`+1

=

u`
v`
p`

+ω`

∆u`
∆v`
∆p`

 , (9.50)

where ω` is a damping parameter which is in most of the cases set to 1 (see [58] for adaptive
strategies). The last iterate (u`+1,v`+1, p`+1) for the nonlinear iteration, depending on the stopping
criterion, is accepted for the solution. In our numerical simulations, the nonlinear iteration is
stopped if the L2-norm of the nonlinear residual drops down below 10−10.

9.3.2. Fixed-point iteration

For the fixed-point iteration, the matrices Auu,Auv,Avu,Avv in (9.49) are given by

Auu(u`,v`) := Avv(u`,v`) := A(u`,v`), (9.51)

Auv(u`,v`) := Avu(u`,v`) := 0. (9.52)

9.3.3. Newton method

Applying the standard Newton method yields the following block matrices

Auu(u`,v`) := A(u`,v`)+S(k)uu (u`,v`), (9.53)

Avv(u`,v`) := A(u`,v`)+S(k)vv (u`,v`), (9.54)

Auv(u`,v`) := S(k)uv (u`,v`), (9.55)

Avu(u`,v`) := S(k)vu (u`,v`), (9.56)

where k ∈ {1,2} denotes the order of the underlying time discretization cGP(k) or dG(k− 1),
respectively, and S(k)

αβ
correspond to the additional terms from the linearization of the nonlinear

convection term (u` ·∇u`). In the following, we present explicitly for each time discretization the
blocks of the full Newton matrix N in (9.49), i.e.,

N :=

A(u`,v`)+S(k)uu (u`,v`) S(k)uv (u`,v`) Bu

S(k)vu (u`,v`) A(u`,v`)+S(k)vv (u`,v`) Bv

BT
u BT

v 0

 . (9.57)

In the case of the cGP(1)-method, we have

A(u,v) = M+
τn

2
L+

τn

2
N(u,v), Bu = B1, Bv = B2, (9.58)

and (
S(1)uu (ũ, ṽ)

)
ν,µ =

τn

2
((∂xũh)φµ,φν)Ω

,
(
S(1)uv (ũ, ṽ)

)
ν,µ =

τn

2
((∂yũh)φµ,φν)Ω

, (9.59)(
S(1)vu (ũ, ṽ)

)
ν,µ =

τn

2
((∂xṽh)φµ,φν)Ω

,
(
S(1)vv (ũ, ṽ)

)
ν,µ =

τn

2
((∂yṽh)φµ,φν)Ω

, (9.60)

where, ũh ∈ Sh and ṽh ∈ Sh denote the finite element functions associated with the nodal vectors ũ
and ṽ, respectively. For the cGP(2)-method, we have

A(u,v) =
[

3M+ τnL+ τnN(u1,v1)
(
2
√

3−3
)

M(
−2
√

3−3
)

M 3M+ τnL+ τnN(u2,v2)

]
, (9.61)
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Bu =

[
B1 0
0 B1

]
, Bv =

[
B2 0
0 B2

]
, (9.62)

S(2)
αβ
(ũ, ṽ) =

[
2S(1)

αβ
(ũ, ṽ) 0

0 2S(1)
αβ
(ũ, ṽ)

]
∀ α,β ∈ {u,v} (9.63)

with S(1)
αβ
(ũ, ṽ) defined in (9.59) and (9.60). In the case of the dG(1)-method, the matrix block

A(u,v) is

A(u,v) =
[

2M+ τnL+ τnN(u1,v1)
(√

3−1
)

M(
−
√

3−1
)

M 2M+ τnL+ τnN(u2,v2)

]
(9.64)

and the other matrix blocks of N in (9.57) are the same as for the cGP(2)-method.

Remark 9.1 If the edge oriented jump stabilization (see [59]) is used, then the corresponding
velocity matrix block A(u,v) in (9.47) is updated as follows

Ã(u`,v`) = A(u`,v`)+ J, (9.65)

where the matrix J corresponds to additional "jump terms" in the weak formulation. This matrix
J has the following form for the cGP(1) and cGP(2)-method, respectively,

cGP(1): J = (Jν,µ), Jν,µ = ∑
E

max{γ∗νhE ,γh2
E}

∫
E
[∇φµ]E [∇φν]E dσ, (9.66)

cGP(2): J =

[
Jν,µ 0
0 Jν,µ

]
, (9.67)

where the sum in (9.66) is taken over all inner edges E of the mesh. ν,hE denote the viscosity and
the length of edge E. The parameters γ and γ∗ have no significant influence on the accuracy of the
results and the solution is stable and accurate for a large range of parameters. In our case, these
parameters are set to 0.1 and 0.0, respectively. The jump [.]E is defined as [ψ]E = ψ+−ψ−, where
ψ+,ψ− indicate the values of the discontinuous function ψ coming from the elements K+,K−

sharing the interior edge E.
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Numerical Results

Analytical test cases to analyze the order of convergence have been considered in Chapter 8.
In this chapter, we perform nonstationary simulations for more complex flow configurations to
demonstrate the temporal accuracy and efficiency of the presented higher order time discretiza-
tion schemes for prototypical test cases of benchmarking character. To this end, we continue the
work which had been started by one of the authors in [57], where different time stepping schemes
for two class of problems, namely flow around cylinder and flow through a Venturi pipe, were
analyzed. First, we consider the flow around cylinder which has been described in [61]. Here,
we will concentrate only on the nonstationary behavior of the flow patterns with periodic oscil-
lations and examine the ability of the different time discretization schemes (and the chosen FEM
discretization) to capture the dynamics of the flow.

As a second test case, we consider the nonstationary behavior of a higher Reynolds number
flow through a Venturi pipe which has many real life and industrial applications, for instance, this
venturi pipe can be used as a small device in sailing boats. If the inflow speed from the inlet
is sufficiently high, then due to the Bernoulli principle, the narrow section in the middle of the
pipe produces a low pressure which creates a flux through the upper part of the small pipe. The
objective of this simulation is to control the instantaneous and mean flux through this device.

10.1. Nonstationary flow around cylinder benchmark

The flow configuration related to the ’flow around cylinder’ configuration [61], which is consid-
ered here, is as follows:

• (Laminar) nonstationary Navier-Stokes equations at Re = 100

• Parabolic inflow with Umax = 1.5

• Time domain: [t0, t0 +T ] = [0,10], where t0 corresponds to the fully developed solution for
each mesh level

• Space-discretisation: Q2/Pdisc
1

• Time-discretisation: Crank-Nicolson (CN), cGP(1), cGP(2), dG(1)

• Stabilisation: none

We consider the nonstationary Navier-Stokes equations in a bounded domain Ω ⊂ R2 with
piecewise smooth boundary Γ. Here, the domain Ω consists of a channel of height H = 0.41 and
length L = 2.2 having a circular cylinder located at (0.2,0.2) with diameter D = 0.1, placed at
right angle to the direction of the fluid (see Figure 10.1). The value of the kinematic viscosity is
set to ν = 10−3 and the density of the fluid ρ = 1.
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The upper part (y = 0.41) and the lower part (y = 0) of the boundary Γ and the boundary of
the obstacle itself are subjected to the ’no-slip’ boundary conditions (u = v = 0). The most left
part of the boundary is set to produce an inflow of parabolic profile having the maximum velocity
in x-direction Umax = 1.5. The velocity at the inlet is prescribed as

U(0,y) = 4Umaxy(H− y)/H2, V (0,y) = 0.

The most right part of the boundary Γ acts as the outlet and natural boundary conditions are
prescribed here. The Reynolds number Re determining the flow properties is defined as

Re =
UmeanD

ν
,

where Umean is calculated as

Umean =
2
3

U(0,
H
2
).

The maximum velocity Umax = 1.5 yields Re = 100 which leads to periodically oscillatory time-
dependent vortex shedding behind the cylinder. For this range of Reynolds numbers together with
the Q2/Pdisc

1 discretization, our results have shown that there is no need for stabilization.

Quantities of physical interest:

The examined accuracy of the benchmark crucially depends on the following quantities

FD =
∫

S
(ρν

∂ut

∂n
ny− pnx)dS, and particularly FL =−

∫
S
(ρν

∂ut

∂n
nx + pny)dS

representing the total forces in the horizontal and vertical directions, respectively. The resulting
drag and lift coefficients are

CD =
2FD

ρU2
meanD

, CL =
2FL

ρU2
meanD

.

Furthermore, the pressure drop between two points on the cylinder which is defined as

∆p = pA− pB,

where A(0.15,0.2) and B(0.25,0.2) are points on the boundary of the cylinder, is also of interest.
Beside these quantities, we also compare the accuracy of the different time discretization schemes
by computing the v velocity at the point P(0.4,0.2) near the obstacle.

Figure 10.1: Geometry for the flow around cylinder configuration in 2D.

Figure 10.2 shows the initial coarse mesh (level 1), which will be uniformly refined, and
Table 10.1 presents for different space mesh levels the number ’#EL’ of elements and the total
number ’#DOF’ of degrees of freedom. The finite element discretization is carried out by using
the described biquadratic Q2-element for velocity and discontinuous P1-element for the pressure.
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Figure 10.2: Coarse mesh designed for the flow around cylinder configuration in 2D.

Lev. #EL #DOF(total)
2 520 5 928
3 2 080 23 296
4 8 320 92 352

Table 10.1: Size of the different systems in space.

In order to compare the accuracy of the different time discretizations, the flow is started from
a fully developed solution, that means the simulation on the same mesh with small time step
had been performed until a fully periodical flow behavior had been reached, at time t0. Then, after
restarted with start solution u(t0), the simulation is performed again until T=10 using different time
discretization methods for various uniform time step sizes τn := τ. After T=10, all the introduced
quantities are plotted and analyzed in detail. To this end, in addition to the global picture of
all quantities from time t0 to t0 +10, these quantities are also zoomed in the last unit from T=9 to
T=10. Since the results obtained from the Crank-Nicolson and cGP(1)-method are almost identical
as expected, we show the results for the Crank-Nicolson only together with the cGP(2) and dG(1)-
method. All the time discretization schemes are started from the same initial (fully developed)
velocity field and pressure on each mesh level, and the simulations are performed with the same
time step sizes. First, we show the results for mesh level 2. Next, we demonstrate that the results
are already grid independent by showing them for different (space) levels for the cGP(2)-method,
so that higher levels are not required.

For space mesh level 3 and 4, almost the same results have been obtained. Here, we plot only
the lift coefficient and v-velocity for space level 3 and 4, respectively. Since the difference of these
quantities between the space levels is very small, we show only the zoomed picture in the last time
unit form T=9 to T=10.
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Figure 10.3: Lift coefficient for different τ, using CN (top), dG(1) (middle) and cGP(2) (bottom)
method for space level 2.
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Figure 10.4: Lift coefficient for different τ, using CN (top), dG(1) (middle) and cGP(2) (bottom)
method for space level 2.
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Figure 10.5: Drag coefficient for different τ, using CN (top), dG(1) (middle) and cGP(2) (bottom)
method for space level 2.
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Figure 10.6: Drag coefficient for different τ, using CN (top), dG(1) (middle) and cGP(2) (bottom)
method for space level 2.
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Figure 10.7: Pressure difference ∆p = pA(0.15,0.2)− pB(0.25,0.2) for different τ, using CN
(top), dG(1) (middle) and cGP(2) (bottom) method for space level 2.
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Figure 10.8: Pressure difference ∆p = pA(0.15,0.2)− pB(0.25,0.2) for different τ, using CN
(top), dG(1) (middle) and cGP(2) (bottom) method for space level 2.
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Figure 10.9: v-velocity at point P(0.4,0.2) for different τ, using CN (top), dG(1) (middle) and
cGP(2) (bottom) method for space level 2.
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Figure 10.10: v-velocity at point P(0.4,0.2) for different τ, using CN (top), dG(1) (middle) and
cGP(2) (bottom) method for space level 2.
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Figure 10.11: Lift coefficient for different τ, using CN (top), dG(1) (middle) and cGP(2) (bottom)
method for space level 3.
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Figure 10.12: v-velocity at point P(0.4,0.2) for different τ, using CN (top), dG(1) (middle) and
cGP(2) (bottom) method for space level 3.
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Figure 10.13: Lift coefficient for different τ, using CN (top), dG(1) (middle) and cGP(2) (bottom)
method for space level 4.
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Figure 10.14: v-velocity at point P(0.4,0.2) for different τ, using CN (top), dG(1) (middle) and
cGP(2) (bottom) method for space level 4.
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Next, we perform a more careful analysis on the basis of the plots already (partially) shown in
Figure 10.3 to 10.14. To this end, we will mainly concentrate on the values of the lift coefficient
(CL) because this quantity has the larger amplitude in comparison with others. Table 10.2 and 10.3
demonstrate the ’deviation in percentage of the curves per cycle’ for the corresponding time step
sizes from the reference values, i.e., ∆x

30×0.33 × 100%, where ∆x is the total deviation after T=10
(with length of period ≈ 0.33, number of cycles until T=10 ≈ 30). The reference values are taken
from the higher order cGP(2) scheme with very small time step τ = 1/200 (keep in mind that all
tests started from the same start solution and that we perform approximately 30 oscillations until
T=10). The different time discretization schemes are then compared in the sense that allows large
time steps to gain the desired accuracy.

τ CN cGP(1) cGP(2) dG(1)
1/100 0.32% 0.32% 0.00% 0.01%
1/50 1.27% 1.29% 0.01% 0.05%
1/25 0.11% 0.39%
1/20 0.25% 0.75%
1/15 0.72% 1.73%
1/10 0.93%

Table 10.2: Change of the lift coefficient in percentage for space Level=2.

τ CN cGP(1) cGP(2) dG(1)
1/100 0.33% 0.33% 0.00% 0.01%
1/50 1.29% 1.30% 0.01% 0.05%
1/25 0.10% 0.38%
1/20 0.20% 0.71%
1/15 0.72% 1.61%
1/10 0.82%

Table 10.3: Change of the v-velocity at point P(0.4, 0.2) in percentage for space Level=2.

Table 10.4 and 10.5 depict the same percentage change for mesh level 3.

τ CN cGP(1) cGP(2) dG(1)
1/100 0.34% 0.34% 0.00% 0.01%
1/50 1.35% 1.35% 0.01% 0.06%
1/25 0.13% 0.40%
1/20 0.29% 0.74%
1/15 0.84% 1.64%
1/10 0.96%

Table 10.4: Change of the lift coefficient in percentage for space Level=3.
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τ CN cGP(1) cGP(2) dG(1)
1/100 0.35% 0.34% 0.00% 0.01%
1/50 1.34% 1.34% 0.01% 0.06%
1/25 0.13% 0.39%
1/20 0.30% 0.70%
1/15 0.85% 1.56%
1/10 0.85%

Table 10.5: Change of the v-velocity at point P(0.4, 0.2) in percentage for space Level=3.

Table 10.6 and 10.7 depicts the same change for mesh level 4.

τ CN cGP(1) cGP(2) dG(1)
1/100 0.34% 0.32% 0.00% 0.01%
1/50 1.35% 1.33% 0.01% 0.05%
1/25 0.12% 0.39%
1/20 0.29% 0.71%
1/15 0.85% 1.61%
1/10 0.98%

Table 10.6: Change of the lift coefficient in percentage for space Level=4.

τ CN cGP(1) cGP(2) dG(1)
1/100 0.34% 0.32% 0.00% 0.01%
1/50 1.33% 1.32% 0.01% 0.05%
1/25 0.12% 0.37%
1/20 0.29% 0.68%
1/15 0.85% 1.51%
1/10 0.85%

Table 10.7: Change of the v-velocity at point P(0.4, 0.2) in percentage for space Level=4.

In the next Table 10.8, we conclude the maximum allowed time step sizes to gain comparable
results with an error of less than 1% per period at a given space level for the corresponding time
discretization schemes.

Lev cGP(1) cGP(2) dG(1)
2 1/100 1/10 1/20
3 1/100 1/10 1/20
4 1/100 1/10 1/20

factor 10 1 2

Table 10.8: Maximum allowed timestep sizes to obtain errors of less than 1% per period at given
space level for cGP(1) vs. cGP(2) vs. dG(1).

Summarizing the results from Table 10.8, we have seen that the corresponding time step sizes
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to gain the accuracy with an error of less than 1% per period for the cGP(2) are two times larger
than the dG(1)-method and ten times larger than the cGP(1)-method.

Next, we want to show all the presented time discretization schemes with corresponding time
step sizes for which the lift coefficient (CL) values are almost identical (≤ 0.5%) after T=10, resp.,
approx 30 periods. Figure 10.15 depicts the corresponding lift coefficients, for 10 time units. We
also zoom these quantities in the last time unit to see the (very small) differences more clearly in
Figure 10.16.

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

Lif
t c

oe
ffic

ien
t

 

 
CN(τ=1/100)
dG1(τ=1/25)
cGP2(τ=1/20)

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

v−
ve

loc
ity

 at
 P(

0.4
,0.

2)

 

 
CN(τ=1/100)
dG1(τ=1/25)
cGP2(τ=1/20)

Figure 10.15: Lift coefficient/v-velocity at point P(0.4,0.2) for CN vs. dG(1) vs. cGP(2) at space
level 2.

Finally, we show how the solution components look like for these time step sizes correspond-
ing to Figure 10.15 and 10.16.
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Figure 10.16: Lift coefficient/v-velocity at point P(0.4,0.2) for CN vs. dG(1) vs. cGP(2) at space
level 2.
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Figure 10.17: Visualization of the velocity u,v and magnitude for CN (left), dG(1) (center) and
cGP(2) (right) method with timesteps τ = 1/100,1/25,1/20, respectively.
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Figure 10.18: Visualization of pressure in flow around cylinder for CN (top), dG(1) (center) and
cGP(2)-method (bottom) with timesteps τ = 1/100,1/25,1/20, respectively.
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10.2. Nonstationary flow through a Venturi pipe

The test configuration for the flow through a Venturi pipe which is considered here is slightly
changed from the framework which has been already used in [57, 58]. Figure 10.19 shows the
geometry and the coarse mesh (level 1) used for this simulation. The coarse mesh is recursively
refined by joining opposite midpoints. The total length of the Venturi pipe is L = 42, the height
of the Venturi pipe at the in/outlet is H = 5, the height in the most narrowing part is Hi = 1 and
the width of the small upper channel is Wi = 0.8. The upper, lower walls of the pipe and the sides
of the small upper channel are subjected to the no slip boundary conditions. At the inlet (left
part of the boundary), an inflow of constant velocity U = 1 is prescribed while natural boundary
conditions are prescribed at the outlet (right part of the boundary) and at the small upper in/outlet.
The value of the kinematic viscosity is set to ν = 10−2 and the density of the fluid ρ = 1.

The Reynolds Re number determining the flow properties may be defined as

Re =
UHi

ν
,

where U is the maximum velocity through the narrow section in the pipe and L is the height of this
section. The resulting maximum velocity U ≈ 7.0 yields Re≈ 700. The resulting Reynolds number
produces complex flow patterns which are oscillating in space and time. As we explained before,
the aim of the simulation is to control the flux through the upper channel. Beside this interesting
flow quantity we also compute the v-velocity at the point P(16.0,5.4) (top of the small channel)
and P(27.05,2.5) (right of the pipe) and the pressure at the point P(16.0,2.5) in the middle of
the pipe to compare the accuracy of all the presented time discretization schemes. Figure 10.20
gives an overview of the size of the problem on different space mesh levels where the finite element
discretization is carried out by using the biquadratic Q2-element for the velocity and discontinuous
P1-element for the pressure. Here, we employ the edge oriented jump FEM stabilization approach
(see [59]) with stabilization parameter γ = 0.1. In order to compare the accuracy of different time

Figure 10.19: Coarse mesh for the venturi pipe
flow

Lev. #EL #DOF
3 384 4 466
4 1 536 17 378
5 6 144 68 546
6 24 576 272 258

Figure 10.20: Size of the different systems
in space.

discretizations, the flow is started on each mesh level from the corresponding Stokes solution at
time t = 0, and the simulation is performed until T=30 using different time discretization methods
for different time step sizes τ. At T=30, all the quantities of interest are plotted and analyzed in
detail. Since the results obtained from Crank-Nicolson and cGP(1)-method are almost identical
as expected, therefore we show again the results for cGP(1) only together with the cGP(2) and
dG(1)-method.
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Figure 10.21: Flux through the upper inlet/outlet, using the cGP(1) (top), dG(1) (middle) and
cGP(2) (bottom) method for space level 3.
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Figure 10.22: Pressure at point P(16.0,2.5), using the cGP(1) (top), dG(1) (middle) and cGP(2)
(bottom) method for space level 3.
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Figure 10.23: v-velocity at point P(27.05,2.5), using the cGP(1) (top), dG(1) (middle) and cGP(2)
(bottom) method for space level 3.
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Figure 10.24: Flux (top)/pressure (middle)/v-velocity (bottom) at point P(27.05,2.5), using the
CN, cGP(1), dG(1) and cGP(2)-method with max. allowed time steps for space level 3.
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Figure 10.25: Flux through the upper inlet/outlet, using the cGP(1) (top), dG(1) (middle) and
cGP(2) (bottom) method for space level 4.
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Figure 10.26: Pressure at point P(16.0,2.5), using the cGP(1) (top), dG(1) (middle) and cGP(2)
(bottom) method for space level 4.
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Figure 10.27: v-velocity at point P(27.05,2.5), using the cGP(1) (top), dG(1) (middle) and cGP(2)
(bottom) method for space level 4.
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Figure 10.28: Flux (top)/pressure (middle)/v-velocity (bottom) at point P(27.05,2.5), using the
CN, cGP(1), dG(1) and cGP(2)-method with max. allowed time steps for space level 4.
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Figure 10.29: Flux through the upper inlet/outlet, using the cGP(1) (top), dG(1) (middle) and
cGP(2) (bottom) method for space level 5.
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Figure 10.30: Pressure at point P(16.0,2.5), using the cGP(1) (top), dG(1) (middle) and cGP(2)
(bottom) method for space level 5.
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Figure 10.31: v-velocity at point P(27.05,2.5), using the cGP(1) (top), dG(1) (middle) and cGP(2)
(bottom) method for space level 5.
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We observe from Table 10.21 to 10.31 that the cGP(2)-method captures the dynamics of the
flow at quite large time step sizes as expected. The results here on different mesh levels look
somewhat more different due to the higher Reynolds number. As in the case of the cylinder
before, we demonstrate in the same way the maximum allowed time step sizes which lead to very
similar results in the ’picture norm’. Table 10.9 shows these time step sizes for different space
mesh levels.

Lev cGP(1) cGP(2) dG(1)
3 1/50 1/5 1/10
4 1/50 1/5 1/10
5 1/100 1/10 1/20

factor 10 1 2

Table 10.9: Maximum allowed timestep sizes which lead (almost) to same results.

Accordingly, we show the results associated to the time steps in Table 10.32. Finally, we
demonstrate how the solution patterns develop in the last 13 time units from T=18 to T=30. Fig-
ure 10.33,10.34,10.35 and 10.36 illustrate the velocity u,v, magnitude and the pressure, respec-
tively.
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Figure 10.32: Flux (top)/pressure (middle)/v-velocity (bottom) at point P(27.05,2.5) , using the
cGP(1) vs. dG(1) vs. cGP(2)-method with max. allowed time steps for space level 5.
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Figure 10.33: Visualization of the u velocity in the Venturi pipe at space level 5 for 13 subsequent
time units.
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Figure 10.34: Visualization of the v velocity in the Venturi pipe at space level 5 for 13 subsequent
time units.
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Figure 10.35: Visualization of the velocity magnitude in the Venturi pipe at space level 5 for 13
subsequent time units.
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Figure 10.36: Visualization of the pressure in the Venturi pipe at space level 5 for 13 subsequent
time units.
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10.3. Solver analysis

In Section 10.1 and 10.2, we performed nonstationary simulations for two special flow configu-
rations, namely, flow around cylinder and flow through a Venturi pipe, to demonstrate the tem-
poral accuracy and efficiency of the presented higher order time discretization schemes for the
incompressible Navier-Stokes equations. Thus, we have continued the work started in [57], where
different time stepping schemes were analyzed for these classes of problems. The test problem
flow around cylinder corresponds to the classical benchmark in [61]. Here, the main difficulty
is to compute the right nonstationary behavior of the flow pattern with periodic oscillations and
examine the ability of different time discretization schemes to capture the dynamics of the flow.
As a second test case, we consider the nonstationary flow for a high Reynolds number through
a Venturi pipe which has many real life and industrial applications. In this section, we mainly
analyze the behavior of the nonlinear and linear solvers for all the presented time discretizations
for the presented problems.

10.3.1. Nonstationary flow around cylinder benchmark

In order to measure and compare the efficiency of the nonlinear solvers for the presented time
discretization schemes, we show the averaged number ’#NL’ of nonlinear iterations per time step
for the fixed-point and Newton method for different (space) mesh levels. We stop the nonlinear
iteration if the L2-norm of the nonlinear residual drops down below 10−10.

Table 10.10 shows that, for the fixed-point iteration as well as for the Newton method, almost
the same number of nonlinear iterations are required for the different time discretization schemes.
Moreover, as expected, the number of iterations decreases if we reduce the time step size. Further-
more, the Newton method converges 2-3 time faster as compared to the fixed-point method due
to its quadratic convergence. Table 10.11 and 10.12 demonstrate the same behavior for the space
level 4 and 5, respectively.

Summarizing, the number of nonlinear steps associated with the maximum allowed time step
sizes to gain the accuracy with an error of less than 1% per time period for the cGP(2) and dG(1)-
method (see Table 10.8) require only approx. 3 and 2 times more than the cGP(1)-method, respec-
tively. Moreover, this factor is eventually improved by using the Newton method.

Next, we perform numerical tests to analyze the corresponding behavior of the multigrid solver
for the solution of linear subproblems w.r.t. the different time discretization schemes. To this
end, we present the averaged number ’#MG’ of multigrid iterations per (nonlinear) step. Here,
the multigrid solver uses a preconditioned GMRES method (preconditioned with a cell oriented
LPSC type scheme) as smoother and applies four pre- and post-smoothing steps. The multigrid
solver stops if the L2-norm of the relative residual is smaller than 10−6 or the absolute residual
drops down below 10−15.

From the Table 10.13 to 10.15, we see that the multigrid solver requires almost the same
number of iterations for the different presented time discretization schemes. Moreover, the number
of multigrid iterations remains fairly constant if we increase the refinement level of the space mesh.
There is also no noticeable increase in the number of iterations if we decrease the time step which
is due to the incompressibility constraint. This means that the behavior of the multigrid solver
is very robust and almost independent of the mesh size, the time step size and the used time
discretization method.



10.3. Solver analysis 125

Fixed-point Newton
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#NL #NL #NL #NL #NL #NL
1/10 11.82 11.18 13.18 4.18 5.00 4.73
1/13 9.86 9.43 11.00 4.00 4.50 4.07
1/15 9.00 8.62 9.88 3.94 4.06 4.06
1/20 8.00 7.14 8.24 3.81 4.00 4.00
1/25 7.00 7.00 7.04 3.04 4.00 3.69
1/50 5.02 5.02 5.02 3.00 3.02 3.02
1/100 4.01 4.01 4.01 2.01 2.01 2.01
1/200 3.00 3.00 3.00 2.00 2.00 2.00

Table 10.10: Averaged number of nonlinear iterations per time step for cGP(1) - cGP(2) - dG(1)
at space level=3.

Fixed-point Newton
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#NL #NL #NL #NL #NL #NL
1/10 10.09 10.18 11.64 4.00 4.91 4.09
1/13 8.57 8.43 9.64 3.93 4.07 4.07
1/15 8.00 7.94 8.69 3.94 4.00 4.06
1/20 7.00 7.00 7.05 3.05 4.00 4.00
1/25 6.04 6.00 6.04 3.04 3.04 3.04
1/50 4.02 4.24 5.00 3.00 3.00 3.00
1/100 3.01 3.98 4.00 2.01 2.01 2.01
1/200 3.00 3.00 3.00 2.00 2.00 2.00

Table 10.11: Averaged number of nonlinear iterations per time step for cGP(1) - cGP(2) - dG(1)
at space level=4.

Fixed-point Newton
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#NL #NL #NL #NL #NL #NL
1/10 9.00 9.00 10.27 4.00 4.55 4.09
1/13 7.57 7.50 8.43 3.86 4.00 4.07
1/15 7.00 7.00 7.69 3.56 4.00 4.00
1/20 6.00 6.00 6.05 3.05 3.90 3.38
1/25 5.04 5.04 6.00 3.04 3.04 3.04
1/50 4.02 4.02 4.02 2.02 3.00 3.00
1/100 3.01 3.01 3.01 2.01 2.01 2.01
1/200 2.00 3.00 3.00 2.00 2.00 2.00

Table 10.12: Averaged number of nonlinear iterations per time step for cGP(1) - cGP(2) - dG(1)
at space level=5.
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Fixed-point-multigrid Newton-multigrid
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#MG #MG #MG #MG #MG #MG
1/10 11.92 10.91 11.75 10.80 10.60 10.80
1/13 11.60 10.70 11.45 11.25 10.60 10.80
1/15 11.67 10.89 11.40 11.25 10.20 10.80
1/20 11.62 11.00 11.11 11.25 10.75 11.25
1/25 11.71 11.43 11.38 11.25 11.00 11.00
1/50 12.17 11.83 12.00 11.67 11.00 11.25
1/100 12.40 11.60 12.00 11.67 11.00 11.67
1/200 12.25 12.00 12.00 11.67 11.00 11.33

Table 10.13: Averaged number of multigrid iterations per nonlinear step for cGP(1) - cGP(2) -
dG(1) at space level=3.

Fixed-point-multigrid Newton-multigrid
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#MG #MG #MG #MG #MG #MG
1/10 10.80 10.20 10.64 10.50 9.60 10.00
1/13 10.78 10.22 10.50 10.50 9.60 9.80
1/15 10.75 10.50 10.67 10.25 10.00 9.80
1/20 10.71 10.71 10.75 10.00 10.25 10.25
1/25 10.57 11.00 11.00 10.00 10.25 10.25
1/50 11.00 11.60 11.20 10.33 10.67 10.67
1/100 12.00 12.00 12.00 11.33 11.33 11.33
1/200 12.50 12.50 12.50 11.67 12.00 12.00

Table 10.14: Averaged number of multigrid iterations per nonlinear step for cGP(1) - cGP(2) -
dG(1) at space level=4.

Fixed-point-multigrid Newton-multigrid
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#MG #MG #MG #MG #MG #MG
1/10 9.56 9.11 9.36 9.79 9.00 9.20
1/13 9.88 9.12 9.44 9.50 9.25 9.00
1/15 10.14 9.43 9.75 9.50 9.25 9.50
1/20 10.00 9.67 9.86 9.50 9.25 9.50
1/25 10.00 9.50 10.00 9.25 9.25 9.50
1/50 10.00 10.00 10.00 9.67 9.67 9.67
1/100 9.75 11.00 10.50 9.67 10.33 10.00
1/200 11.00 12.00 11.67 9.50 11.33 11.00

Table 10.15: Averaged number of multigrid iterations per nonlinear step for cGP(1) - cGP(2) -
dG(1) at space level=5.
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10.3.2. Nonstationary flow through a Venturi pipe

Now we analyze the solver for the Venturi pipe flow similar to the example ”flow around cylinder”.
Again, we show the averaged number of nonlinear iterations per time step for the fixed-point and
Newton method for different space mesh levels. We apply the same stopping criterion as in the
previous example for the nonlinear and linear solver, respectively.

From Table 10.16 to 10.18, we see again that, for the fixed-point iteration as well as for the
Newton method, almost the same number of iterations is required for every time discretization
scheme. Moreover, for a fixed space mesh level, the number of nonlinear iterations decreases
if the time step size is reduced, as expected. Concerning the number of nonlinear iterations, it is
noticed that the Newton method is more efficient than the fixed point iteration which shows almost
the same behavior as in case of the flow around cylinder example. These results indicate that the
nonlinear solver is also robust with respect to the underlying flow configuration.

Fixed-point Newton
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#NL #NL #NL #NL #NL #NL
1/10 10.36 9.64 10.91 3.09 3.45 3.36
1/13 9.07 8.64 9.64 3.07 3.07 3.07
1/15 8.56 8.50 9.19 3.06 3.06 3.06
1/20 7.67 7.62 8.14 3.05 3.05 3.05
1/25 7.04 7.00 7.58 2.77 3.04 3.04
1/50 5.80 5.75 5.90 2.08 2.55 2.53
1/100 4.72 4.77 4.88 2.01 2.01 2.01
1/200 4.00 4.00 4.00 2.00 2.00 2.00

Table 10.16: Averaged number of nonlinear iterations per time step for cGP(1) - cGP(2) - dG(1)
at space level=3.

Fixed-point Newton
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#NL #NL #NL #NL #NL #NL
1/10 10.27 9.91 11.09 3.27 3.73 3.73
1/13 9.07 9.00 9.79 3.07 3.36 3.29
1/15 8.56 8.75 9.25 3.06 3.06 3.06
1/20 7.76 7.95 8.52 3.05 3.05 3.05
1/25 7.12 7.31 7.73 3.04 3.04 3.04
1/50 5.63 5.57 5.80 2.12 2.49 2.47
1/100 4.33 4.38 4.50 2.01 2.01 2.01
1/200 3.60 3.76 3.81 2.00 2.00 2.00

Table 10.17: Averaged number of nonlinear iterations per time step for cGP(1) - cGP(2) - dG(1)
at space level=4.
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Fixed-point Newton
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#NL #NL #NL #NL #NL #NL
1/10 9.64 9.73 10.64 3.27 3.73 3.73
1/13 8.71 9.00 9.64 3.07 3.29 3.21
1/15 8.31 8.62 9.00 3.06 3.06 3.06
1/20 7.52 7.76 8.24 3.05 3.05 3.05
1/25 6.96 7.23 7.58 3.04 3.04 3.04
1/50 5.39 5.41 5.55 2.06 2.25 2.24
1/100 4.01 4.01 4.24 2.01 2.01 2.01
1/200 3.00 3.16 3.27 2.00 2.00 2.00

Table 10.18: Averaged number of nonlinear iterations per time step for cGP(1) - cGP(2) - dG(1)
at space level=5.

Next, we analyze the behavior of the multigrid solver for the solution of linear subproblems.
Here, the multigrid solver is using the same settings as in the example with the flow around a
cylinder. In Table 10.19 to 10.21, we present the averaged number of multigrid iterations per
nonlinear step for solving the corresponding linear block systems for the space mesh levels 3-5.

We observe again that the multigrid solver requires almost the same number of iterations for
the presented time discretization schemes. Moreover, the number of multigrid iterations remains
almost constant for increasing space mesh level. There is also no noticeable increase in the number
of iterations if we decrease the time step. Comparing with the results in the flow around cylinder
example we observe a similar solver behavior as for the Venturi pipe flow. This indicates that our
multigrid solver is also robust with respect to the underlying flow configurations.

Fixed-point-multigrid Newton-multigrid
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#MG #MG #MG #MG #MG #MG
1/10 9.45 10.80 10.45 10.00 11.50 11.25
1/13 9.80 10.78 10.80 10.50 11.25 11.25
1/15 9.89 10.33 10.70 10.25 11.00 11.00
1/20 9.89 10.38 10.56 10.25 11.00 11.00
1/25 10.38 10.00 10.38 10.75 11.00 11.00
1/50 9.83 10.33 10.50 10.67 10.50 10.25
1/100 10.20 10.20 10.60 10.67 10.33 10.67
1/200 10.40 10.00 10.40 10.67 10.33 10.67

Table 10.19: Averaged number of multigrid iterations per nonlinear step for cGP(1) - cGP(2) -
dG(1) at space level=3.
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Fixed-point-multigrid Newton-multigrid
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#MG #MG #MG #MG #MG #MG
1/10 9.50 10.00 9.91 10.50 10.40 10.00
1/13 10.11 10.00 10.20 10.25 11.25 11.00
1/15 10.11 10.33 10.30 10.00 11.00 11.25
1/20 10.25 10.38 10.56 10.50 10.75 11.50
1/25 10.12 10.43 10.50 10.75 11.00 11.25
1/50 10.83 10.17 10.50 11.00 10.25 10.50
1/100 11.00 11.20 10.80 11.00 11.00 11.33
1/200 10.80 10.40 10.20 11.00 10.67 11.00

Table 10.20: Averaged number of multigrid iterations per nonlinear step for cGP(1) - cGP(2) -
dG(1) at space level=4.

Fixed-point-multigrid Newton-multigrid
τ cGP(1) cGP(2) dG(1) cGP(1) cGP(2) dG(1)

#MG #MG #MG #MG #MG #MG
1/10 10.67 10.20 11.20 12.00 10.60 11.80
1/13 10.44 10.33 10.80 11.25 11.50 12.25
1/15 10.38 10.62 11.11 11.00 11.75 12.00
1/20 10.00 11.29 11.38 10.75 11.50 12.00
1/25 10.43 11.14 12.00 10.75 12.00 12.00
1/50 11.00 11.17 12.17 11.33 11.00 12.00
1/100 11.80 11.00 11.20 11.00 10.67 11.33
1/200 12.25 11.25 11.50 12.00 11.00 11.00

Table 10.21: Averaged number of multigrid iterations per nonlinear step for cGP(1) - cGP(2) -
dG(1) at space level=5.

10.4. Summary

In this chapter, we have analyzed the continuous Galerkin-Petrov and discontinuous Galerkin time
discretization schemes for the nonstationary Navier-Stokes equations.

Accuracy in practice

In order to validate the applicability and the comparison of various temporal discretization schemes,
we have considered a couple of practical problems. The first test problem considered in this chap-
ter exactly corresponds to the classical flow around cylinder benchmark [61]. In this simulation,
we have concentrated only on the nonstationary behavior of the flow pattern with periodic oscil-
lations and examined the ability of different time discretization schemes to capture the dynamics
of the flow. The quantities of physical interest are the lift, drag coefficient and pressure drop.
Beside these quantities, we have also demonstrated the temporal accuracy of the presented time
discretization schemes by computing the v-velocity near the obstacle in the direction of the fluid.
A quantitative analysis has been performed for the lift coefficient CL and v-velocity near the ob-
stacle. The numerical tests have shown that the cGP(2)-method gains the same accuracy at a
time step size which is 10 times larger than the associated time steps for cGP(1) or CN while the
dG(1)-method achieves this accuracy for which the associated time step is 5 time larger than that
of cGP(1) or CN. The same numerical tests have been performed for different (space) mesh levels
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and almost the same results are obtained for all levels.
As a second test problem, we have chosen the nonstationary flow for a high Reynolds number

through a venturi pipe. The objective of this simulation is to control the instantaneous and mean
flux through this device. The numerical results have demonstrated that the time step size for
cGP(2), for which almost the same results are obtained as for cGP(1) or CN, can again be chosen
10 times larger than the associated time steps for cGP(1) or CN. For the dG(1) this factor is 5 as
compared to cGP(1) or CN. This factor becomes even more clear for higher space mesh levels.
Consequently, we can say that the cGP(2)-method is 10 times faster than the cGP(1) or CN and
dG(1) is 5 times faster than cGP(1) or CN (at least for our test problems) at comparable numerical
costs.

Efficiency

Finally, we have analyzed the behavior of the nonlinear and linear solvers for all the presented time
discretization schemes. This analysis is performed for both test problems. The numerical results
have shown that almost the same number of iterations is required for every time discretization
scheme for both the fixed-point and Newton method. Moreover, the number of nonlinear itera-
tions decreases by reducing the time step size as expected. Furthermore, the well-known New-
ton method converges 2-3 time faster as compared to the fixed-point method due to its quadratic
convergence. Next, we also performed numerical tests to analyze the corresponding behavior of
the multigrid solver for the solution of linear subproblems for the different time discretization
schemes. Here, the multigrid solver is almost independent of the spatial mesh size, the time step,
the underlying flow configuration and the discretization scheme used.
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Conclusions and Outlook

11.1. Conclusions

The investigation of the higher order accurate time discretization schemes is an interesting topic
since the development of such discretizations is advantageous specially for the computation of
long time simulations in the field of computational fluid dynamics (CFD). They become particu-
larly essential in the computation of long term simulations. In this thesis, high order accurate time
discretization schemes have been investigated for the nonstationary simulation of partial differen-
tial equations. In practice, first and second order time discretization schemes have been predomi-
nantly used due to their simple form or due to stability reasons of high order time discretizations.
The most commonly used time stepping schemes are the implicit Euler, the Crank-Nicolson and
the discontinuos Galerkin (dG(k)) method as a representative of arbitrary order scheme. In the
present thesis, a new class of stable time discretization schemes, namely the continuous Galerkin-
Petrov (cGP(k))) method has been developed and analyzed. For the cGP(k)-methods, the discrete
solution space consists of the continuous piecewise polynomial functions of degree k and the dis-
crete test space of discontinuous polynomials of degree k−1 while in the case of dG(k)-methods,
both the discrete solution and test spaces consist of discontinuous polynomials of degree k.

Stability

The stability of the time discretization schemes is an important aspect in theory as well as in
practice. In the present thesis, we have discussed the concept of ’A-stability’ and ’L-stability’.
The well-known dG(k)-methods are known to be strongly A-stable (or L-stable). In comparison to
dG(k)-methods, the cGP(k)-methods are A-stable. We have proved by some energy arguments the
A-stability of cGP(k)-method and an optimal error estimates of order k+1 in standard L2-norm.

Accuracy

The presented class of time discretization schemes are accurate of arbitrary order. In general, the
cGP(k)-methods have the accuracy of order k+1 in the standard L2-norm. On the other hand, the
dG(k)-methods have the same accuracy of order k+ 1 but at the higher numerical costs than the
cGP(k)-methods.

In this thesis, we have presented a numerical study of the higher order time discretizations
cGP(1), cGP(2) and dG(1), taking into account aspects of numerical accuracy and efficiency of
the corresponding solution methods for the resulting (coupled) linear systems. In our numerical
results, we have observed that the estimated experimental orders of convergence confirm the the-
oretical orders for the heat and the nonstationary Stokes equation in two dimensions. First of all,
the cGP(1)-method is very close to the well-known Crank-Nicolson scheme: Both methods differ
only in the choice of the unknown that is solved for on each time interval and in the way how the
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numerical integration of the right hand side is done. The cGP(1)-method is accurate of order 2 in
the whole time interval as it is known for the Crank-Nicolson scheme. However, for the cGP(2)-
method as well as in dG(1)- method, we have two unknowns on each time interval which have to
be computed by solving a 2× 2 block system. The cGP(2)-method is accurate of order 3 in the
whole time interval and shows even superconvergence of order 4 in the discrete time points. In
contrast, the dG(1)-method is of order 2 in the whole time interval and superconvergent of order
3 in the discrete time points at the same numerical costs. Furthermore, the tests show that the
cGP(2)-scheme provides significantly more accurate numerical solutions than the other presented
schemes cGP(1) and dG(1) which means that quite large time step sizes are allowed to gain highly
accurate results.

Different variants of the cGP(k)-methods

In [49], the cGP(k)-methods using the Gauß-Lobatto points were analyzed for the ODE system in
R2. We have performed some numerical tests using this variant of the cGP(k)-method for k = 1,2
for the heat equation. The Gauß-Lobatto based cGP(1)-method is of order 2 in the whole time
interval which is the same behavior as the cGP(1)-method analyzed in this thesis. The Gauß-
Lobatto based cGP(2)-method is of order 4 in the whole time interval while the standard variant
of the cGP(2) is accurate of order 3 in the whole time interval and superconvergent of order 4 in
the discrete time points. Furthermore, an advantage of the Gauß-Lobatto based cGP(k)-method is
that it does not require any extrapolation to get the solution at the discrete time points tn while in
case of our presented cGP(k)-method, the solution at the discrete time points tn always obtained
by using the extrapolation from the known solution at the Gauß points.

However, all the advantages only hold for the heat equation. For saddle point problems like the
Stokes or Navier-Stokes equations, the Gauß-Lobatto based variant is not applicable; the explicit
time discretization of the pressure is numerically instable. To overcome this difficulty, we have
the motivation to reconsider the cGP(k)-methods using the standard Gauß points.

Postprocessing for high order pressure

Regarding the computation of the pressure, since we have superconvergence results for the velocity
only at the discrete time points tn, it is desirable to get a high order pressure at the same points
too. In the cGP(k)-methods, we apply extrapolation as a special reconstruction technique to obtain
the velocity at the discrete time points tn from the obtained velocity at the intermediate k Gaussian
points in the subinterval [tn−1, tn]. This leads to superconvergence results in these time points.
Unfortunately, the same extrapolation technique is not applicable for the pressure, so the order of
approximation is lower with this technique. However, using a special Lagrangian interpolation
technique which also includes the pressure at the next time step allows to recover the higher order
approximation in discrete time points tn. Thatway, order of approximation is the same for velocity
and pressure in these points. This technique has proven to be also advantageous in practice for
being used with dG(k)-method. This technique applied for the dG(1)-method gives better results
than the associated extrapolation.

Realization of efficient solver techniques

From the discretization of incompressible Navier-Stokes equation, the nonlinear coupled systems
of multiple DOF’s in time which can be characterized as saddle point problems, are obtained. This
system has to be solved in every time step. An efficient way to solve the nonlinear system is the
Newton method which is well known for its quadratic convergence if the initial solution is chosen
close enough to the exact solution and the problem is smooth enough. Another method to solve
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the system of nonlinear equations is the fixed-point method which is less efficient than the Newton
method (i.e., with linear or superlinear convergence only).

The resulting linear systems, for instance, from the discretization of heat equation, Stokes
equation or the linearized Navier-Stokes equations are solved by using preconditioned Krylov
space or multigrid methods. The corresponding linear systems in each time interval [tn−1, tn] in
our application, which are 6×6 fully coupled block systems in the case of the cGP(2) and dG(1)
approach and 3× 3 block systems for the cGP(1)-method. In case of the heat equation, standard
iterative methods such as Jacobi, Gauss-Seidel, SOR or ILU can be applied as a preconditioner
with Krylov space and smoothers with geometrical multigrid solver. On the other hand, in case of
the Stokes or Navier-Stokes equations, such standard iterative methods cannot be applied. Some of
the options in this case are to use Krylov space methods or the local pressure Schur complement
(LPSC) type scheme as an inner or outer iteration for the multigrid methods. In this numerical
study, the corresponding linear systems in case of the Navier-Stokes equations are solved by us-
ing a coupled multigrid solver with preconditioned GMRES method (preconditioned with a local
pressure Schur complement (LPSC) type scheme) as smoother. The numerical experiments con-
firm that multigrid methods can be regarded as the most efficient iterative solvers since their rate
of convergence is almost independent of the problem size which is characterized here by the mesh
size of the space grid and the size of the time step.

Numerical costs

With respect to the computational costs, which mainly depend on the size of the resulting block
system that has to be solved for each time interval, the cGP(k)-method is comparable to the dG(k−
1)-method. However, concerning the discretization error in time, the accuracy of the cGP(k)-
method is one order higher than that of the dG(k−1)-method.

In our numerical study, all the presented time discretization schemes are analyzed numerically
w.r.t. computational costs for the heat and Stokes equations. From the numerical tests, we have
seen that the multigrid solver requires almost the same number of iterations for the different pre-
sented time discretization schemes. Moreover, the number of multigrid iterations remains fairly
constant if we increase the refinement level of the space mesh. There is also no noticeable in-
crease in the number of iterations if we decrease the time step. This means that the behavior of the
multigrid solver is almost independent of the spatial mesh and the time step size. Furthermore, we
have observed that the CPU-time in case of cGP(2) or dG(1) is almost 2-3 times the CPU-time of
cGP(1) for the multigrid solver. We also note that the CPU-time grows approximately by a factor
of 4 as expected if we increase the space mesh level. These factors are nearly optimal since the
number of space unknowns is increased by a factor of 4 if the level is increased by one.

In practice

Finally, we have analyzed how the cGP(k) and dG(k)-methods behave in practice since it is always
required to simulate the time dependent CFD problems in an efficient way. In order to validate
the applicability of the presented time discretization schemes, we have considered a couple of
practical examples in Chapter 9.

The first test problem considered in this thesis exactly corresponds to the classical flow around
cylinder benchmark [61]. In this simulation, we have concentrated only on the nonstationary
behavior of the flow pattern with periodic oscillations and examine the ability of different time
discretization schemes to capture the dynamics of the flow. The quantities of physical interest
are the lift and drag coefficient, the pressure drop between the two points on the obstacle and the
v-velocity near the obstacle in the direction of the fluid. The temporal discretizations were then
compared by means of plotting these physical quantities for various time step sizes and measuring
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the deviation over time in comparison to reference curves. The numerical tests have shown that
the cGP(2)-method gains the same accuracy at a time step size which is 10 times larger then the
associated time steps for cGP(1) or CN while the dG(1)-method achieves this accuracy for which
the associated time step is 5 time larger than that of cGP(1) or CN. The same numerical tests have
been performed for different (space) mesh levels and almost the same results are obtained for all
levels.

As a second test problem, we chose the nonstationary flow for a high Reynolds number through
a venturi pipe. If the inflow speed from the inlet is sufficiently enough, then due to the Bernoulli
principle, the narrow section in the middle of the pipe produces a low pressure which creates a
flux through the upper part of the small pipe. The objective of this simulation is to control the
instantaneous and mean flux through this device. In order to compare the presented temporal dis-
cretizations the flow is restarted from the same start solution (Stokes solution) and the simulations
are performed for 30 seconds with various time step sizes. The numerical results have demon-
strated that the time step size for cGP(2) for which almost the same results are obtained as for
cGP(1) or CN, is again 10 times larger than the associated time steps for cGP(1) or CN while for
the dG(1) this factor is 5 as compared to cGP(1) or CN. This factor becomes even more clear for
higher space mesh levels. Consequently, we can say that the cGP(2)-method is 10 times faster
than the cGP(1) or CN and dG(1) is 5 times faster than cGP(1) or CN at comparable numerical
costs.

At the end, we have analyzed the behavior of the nonlinear and linear solvers for all the pre-
sented time discretization schemes. This analysis is performed for both test problems. In order to
measure and compare the efficiency of the nonlinear solver for the presented time discretization
schemes, we showed the averaged number of nonlinear iterations per time step for the fixed-point
and Newton method for different (space) mesh levels. The numerical results have shown that
almost the same number of iterations is required for every time discretization scheme for both
fixed-point and Newton method. Moreover, the number of nonlinear iterations decreases by re-
ducing the time step size as expected. Furthermore, the well-known Newton method converges 2-3
time faster as compared to the fixed-point method due to its quadratic convergence. Next, we also
performed numerical tests to analyze the corresponding behavior of the multigrid solver for the
solution of linear subproblems for the different time discretization schemes. Here, the multigrid
solver is almost independent of the spatial mesh and the time step size.

11.2. Outlook

The work done in the presented thesis can be extended in various directions to improve the effi-
ciency and stability of the FE solver for the nonstationary simulation of complex time dependent
flow problems. For instance, the following improvements can be made:

• The nonlinear solver can be improved by choosing an optimal damping in each nonlinear
step (see [58]).

• The efficiency of the linear multigrid solver can be increased if more powerful smoothing is
used (see [50]).

• The same implementation and analysis of cGP(k)-method can be extended by increasing the
degree of time polynomials, i.e., cubic polynomials can be used to 3 (for which we obtained
the cGP(3)-method) to increase temporal accuracy.

• One time step corresponds to multiple fully coupled Navier-Stokes equations in time; system
solved with a monolithic Newton multigrid solver which treats all solution components in
one time step simultaneously. Analysis of the LPSC type smoother for k > 2.
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• Adaptivity in time can be used to improve the time accuracy.

Future developments and alternative approaches

The presented time discetization cGP(k)-method is good in stability and accuracy of arbitrary or-
der. However, a lot of development is currently going on in the construction of time discretization
schemes. On particular example is dG_C0(k + 1)-method, a new time discretization scheme of
variational type is proposed in [40], which is derived from the dG(k)-method. The idea in this
method is to increase the global smoothness of the discrete solution space space by one level
higher than the original dG(k)-method, i.e., the smoothness of the discrete solution is increased
form C−1- to C0-continuity. Consequently, the continuity constraints of the discrete solution at the
end-points of the time intervals allow us to increase the polynomial order to k+1 without increas-
ing the total number of unknowns in the discrete system being solved in each time step. Therefore,
by increasing the polynomial order, the accuracy of the new method is one order higher with the
same computational cost. Moreover, the dG-C0(k+1)-method generates the same solution values
at the end-points of the time intervals as the dG(k)-method. Thus, we obtain the strong A-stability
of the dG-C0(k+ 1)-method from the strong A-stability of the original dG(k)-method. We have
presented and shortly analyzed the dG-C0(k)-method for the heat equation in Appendix B.1. In
particular, we have also performed preliminary numerical tests to demonstrate the accuracy of the
dG-C0(2)-method. The experimental order of convergence confirms the theoretical order of con-
vergence. In our future work, we also plan to extend the dG-C0(2)-method, implemented for the
heat equation in Appendix B.1, for the nonstationary Navier-Stokes equations to simulate complex
time dependent flow problems together with highly sophisticated Newton-multigrid techniques for
the corresponding saddle point problems. The results are already promising and a future analysis
will reveal advantages and disadvantages in comparison to the cGP(k)-method introduced in this
thesis.
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A

The cGP(1)-method and Crank-Nicolson scheme

In this appendix we show that the cGP(1)-method and the well-known Crank-Nicolson scheme are
identical for the heat equation.

Proof. On each time interval [tn, tn+1] the cGP(1)-method applied to the heat equation is given
as

un+ 1
2 −un

dt
= f n+ 1

2 +4un+ 1
2 (A.1)

where dt = τn
2 , and the corresponding linear extrapolation to find the solution at time tn+1 is

un+1 = 2un+ 1
2 −un. (A.2)

Applying a finite element discretization, we have

(M+
τn

2
L)Un+ 1

2 = dtFn+ 1
2 +MUn (A.3)

where L =−4 denotes the Laplacian matrix and M is the mass matrix. Combining equation (A.2)
and (A.3), we obtain

(M+
τn

2
L)Un+1 =

τn

2
(Fn+1 +Fn)+MUn− τn

2
LUn (A.4)

which is the well-known Crank-Nicolson scheme. �
Next, we perform some numerical experiments which confirm the above theoretical results.

Example A.1 As a test example we consider the following two dimensional heat equation

dtu(x, t)−∆u(x, t) = f in Ω, ∀ t ∈ [0,1],
u = 0 at ∂Ω

(A.5)

where
f = x(1− x)y(1− y)et +2[y(1− y)+ x(1− x)]et

is a given function and Ω⊂ R2 is the unit square and u(x, t) = x(1− x)y(1− y)et .

We apply the cGP(1) and Crank-Nicolson method with an equidistant time step size τ. The error
over the time interval [0,1] for the analytical solution can be seen in the following table.
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cGP(1) CN
1/τ ‖u−uτ‖2 EOC ‖u−uτ‖2 EOC
10 6.27E-05 6.27E-05
20 1.57E-05 2.00 1.57E-05 2.00
40 3.92E-06 2.00 3.92E-06 2.00
80 9.80E-07 2.00 9.80E-07 2.00
160 2.45E-07 2.00 2.45E-07 2.00
320 6.13E-08 2.00 6.13E-08 2.00
640 1.53E-08 2.00 1.53E-08 2.00
1280 3.83E-09 2.00 3.83E-09 2.00

Table A.1: Error norms ‖u−uτ‖2 for the test case with known analytical solution.

From the above Table A.1, the results demonstrate that the cGP(1) and Crank-Nicolson schemes
are identical. Hence, the experimental results confirm the theoretical results.
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The dG-C0(k)-method

In this appendix, a new variational time discretization proposed in [40], is considered for the
heat equation which is a variant of the dG(k)-method, called the dG-C0(k+1)-method. This was
numerically analyzed for the Burgers equation by [40]. The dG-C0(k+1)-method is derived from
the dG(k)-method by increasing the level of the global smoothness of the discrete solution from
C−1- to C0-continuity. In this way, due to the continuity constraint on the time derivative of the
solution at the endpoints of the time intervals, they can increase order of the time polynomials
to k+1 without increasing the total number of unknowns in the system. Thus, we obtain a new
method called dG-C0(k + 1) which has the same computational costs as for the dG(k)-method
but with a one order higher accuracy due to the approximation by polynomials with a one higher
degree. Similar to the original dG(k)-method, the dG-C0(k)-method is also strongly A-stable (or L-
stable). Moreover, the new higher order method and the original method coincide at the endpoints
of the time intervals.

2.1. The dG-C0(k)-method for the heat equation

To apply the dG-C0(k)-method for the heat equation (5.1), the idea is to make the discrete solution
one level smoother in time such that in the time marching process more information of the solution
from the previous time interval can be reused in the new time interval. This allows to reduce the
computational costs. That means in our case, we have to change from a discontinuous solution in
the dG(k)-method to a continuous solution in the dG-C0(k)-method. The result is a method that
combines variational equations with left-sided collocation conditions at the rightmost Gauß-Radau
points on the time intervals.

We start by decomposing the time interval I = [0,T ] into N subintervals In := [tn−1, tn], where
n= 1, . . . ,N and 0= t0 < t1 < · · ·< tN−1 < tN = T. The symbol τ will denote the time discretization
parameter and will also be used as the maximum time step size τ := max1≤n≤N τn, where τn :=
tn− tn−1. Then, we approximate the solution u : I→ V by means of a function uτ : I→ V which
is piecewise polynomial of some order k with respect to time, i.e., we are looking for uτ in the
discrete time space

Pc
k(Mτ) := {u ∈C(I,V ) : u

∣∣
In
∈ Pk(In,V ) ∀ In ∈Mτ}, (B.1)

where

Pk(In,V ) :=
{

u : In→V : u(t) =
k

∑
j=0

U jt j , ∀ t ∈ In, U j ∈V, ∀ j
}
.

and (Mτ) = {I1, . . . , In} is the time mesh. We introduce the discrete time test space

Pdc
k (Mτ) := {v ∈ L2(I,V ) : v

∣∣
In
∈ Pk(In,V ) ∀ In ∈Mτ} (B.2)
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consisting of piecewise polynomials of order k− 1 which are globally discontinuous at the end
points of the time intervals. Now, we multiply the first equation in (5.1) with a test function
vτ ∈ Y k

τ , integrate over Ω× I, use Fubini’s Theorem and partial space integration of the Laplacian
term and obtain the following the "global dG-C0(k)-method":

Find uτ ∈ Pc
k(Mτ) such that uτ(0) = u0,∫ T

0

{
(dtuτ(t),vτ(t))Ω

+a(uτ(t),vτ(t))
}

dt =
∫ T

0
( f (t),vτ(t))Ω

dt ∀ vτ ∈ Pdc
k−2(Mτ)

(B.3)
and

dtu−n −4u−n = f (tn) ∀ n = 1, . . . ,N. (B.4)

where
dtu−n := lim

t→tn−0
dtuτ(t)

is the left-sided derivative at tn. The discontinuity of the test space allows to calculate the solution
of the dG-C0(k)-method in a time-marching process. Again, we choose test functions vτ(t) =
vψn,i(t) with an arbitrary time independent v ∈ V and a scalar function ψn,i : I → R which is
zero on I \ In and a polynomial of order less or equal k− 2 on In. Then, we obtain the following
"In-problem of the exact dG-C0(k)-method ":

Find uτ|In ∈ Pk(In,V ) such that

uτ(tn−1) = u−n−1,

dtu−n −4u−n = f (tn),∫
In

{
(dtuτ(t),v)Ω

+a(uτ(t),v)
}

ψn,i(t)dt =
∫

In

( f (t),v)
Ω

ψn,i(t)dt ∀ ψ ∈ Pk−2(In).

(B.5)

If we apply the right-sided k-point Gauß-Radau quadrature formula, we get the following "In-
problem of the numerically integrated dG-C0(k)-method":

Find uτ|In ∈ Pk(In,V ) such that

uτ(tn−1) = u−n−1,

dtu−n −4u−n = f (tn),

k

∑
j=1

ŵ j

{
(dtuτ(tn, j),v)Ω

+a(uτ(t),v)
}

ψn,i(tn, j)dt =
k

∑
j=1

ŵ j ( f (tn, j),v)Ω
ψn,i(tn, j)dt ∀ v ∈V.

(B.6)

To determine uτ|In we represent it by a polynomial ansatz

uτ(t) :=
k

∑
j=0

U j
n φn, j(t) ∀ t ∈ In, (B.7)

where the ”coefficients” U j
n are elements of the Hilbert space V and the real functions φn, j ∈ Pk(In)

are the Lagrange basis functions with respect to k+1 suitable nodal points. In the following, we
specify the dG-C0(k)-method for the cases k = 2 which leads to the dG-C0(2)-method.
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2.1.1. dG-C0(2)-method

We apply the 2-point Gauß-Radau formula with the points t̂1 =−1/3, t̂2 = 1, i.e.,

tn,1 =
(tn−1 + tn)

2
− τn

6
, tn,2 = tn

and the reference weights ŵ1 =
3
2 , ŵ2 =

1
2 . Then, the 2×2 block system on time interval In reads:

For given U0
n ∈ Rmh , find U1

n,U
2
n ∈ Rmh such that

τn

2
LU1

n +MU2
n =

τn

2
F2

n , (B.8)

2

∑
j=0

{
2

∑
k=1

ŵkφ̂
′
j(t̂k)

}
MU j

n +
τn

2
ŵ1

2

∑
j=0

φ̂ j(t̂1)LU j
n +

τn

2
ŵ2LU1

n =
τn

2
(
ŵ1F1

n + ŵ2F2
n
)
, (B.9)

where M, L denote the mass and Laplacian matrix, respectively. U1
n and U2

n are the value and the
derivative of the solution vector at the time discrete point tn. F1

n , F2
n are RHS vectors at point tn,1

and tn. Computing the constants β j := φ̂ j(t̂1), we obtain

β0 :=
4
9
, β1 :=

5
9
, β2 :=−4

9
.

Thus, from (B.9) we get

M
(
U1

n −U0
n
)
+

3τn

4

(
4
9

LU0
n +

5
9

LU1
n −

4
9

LU2
n

)
+

τn

4
LU1

n =
τn

4
(
3F1

n +F2
n
)
.

The final block-system reads: (
τn
2 L M

M+ 2τn
3 L − τn

3 L

)(
U1

n
U2

n

)
=

(
R1

n
R2

n

)
(B.10)

where
R1

n = τn
2 F2

n
R2

n = τn
4

(
3F1

n +F2
n
)
+
(
M− τn

3 L
)

U0
n.

2.2. Numerical results

In this section, we perform some numerical tests to show the accuracy of the dG-C0(2)-method.
We consider the same problem (5.1) as a test example with the domain Ω := (0,1)2 and the right
hand side

f (x,y, t) = x(1− x)y(1− y)et +2[y(1− y)+ x(1− x)]et ,

which has been derived from the prescribed exact solution

u(x,y, t) = x(1− x)y(1− y)et .

The initial data is u0(x,y) = u(x,y,0). The behavior of the standard L2-norm ‖·‖2 := ‖·‖L2(I,L2(Ω))

and the discrete L∞-norm of the time discretization error u(t)−uτ(t) over the time interval I = [0,1]
can be seen in Table B.1. The estimated value of the experimental order of convergence (EOC)
is also calculated and compared with the theoretical order of convergence. From Table B.1, we
see that the L2-norm and the discrete L∞-norm of the error behave like order of 3. This means the
experimental order of convergence confirms the theoretical results.
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dG-C0(2)
1/τ ‖u−uτ‖2 EOC ‖u−uτ‖∞ EOC
10 4.71E-07 1.21E-06
20 6.14E-08 2.94 1.74E-07 2.80
40 7.90E-09 2.96 2.34E-08 2.89
80 1.01E-09 2.98 3.04E-09 2.94

160 1.27E-10 2.99 3.87E-10 2.97
320 1.59E-11 2.99 4.89E-11 2.99
640 2.00E-12 3.00 6.14E-12 2.99

1280 2.49E-13 3.00 7.67E-13 3.00
2560 3.10E-14 3.01 9.54E-14 3.01
5120 3.61E-15 3.10 7.96E-15 3.58

Table B.1: L2- and L∞-error norms for the test case.
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