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Chapter 1

Introduction

1.1 Motivation

In terms of content this thesis deals with nonparametric smoothing and tests for
detection of level shifts / jumps and trends.

Nonparametric smoothing is used to estimate an unknown regression function f
based on some observations. The connection between f and the observations is dis-
turbed by unobservable error terms. It is often advantageous to use nonparametric
local estimation procedures rather than global parametric regression, as the nonpara-
metric versions have a larger flexibility concerning the form of f , which has to be
known in the parametric case, except a limited number of parameters. Nevertheless
classical smoothing procedures based on means or kernel means can not handle dis-
continuities in f and are also not robust against outliers in the errors, meaning that
largely deviating observations can strongly influence the estimation of f .

In nonparametric smoothing there are two primary targets, which are pursued:
(i) An overall good fit of the estimation of f .

(ii) Estimation / Detection of the jumps in f , particularly the number and location
of the jump positions and if necessary the jump height.

Of course questions (i) and (ii) are interdependent. Incorrectly detected jumps due to
a bad estimation of the true jump positions will lead to larger differences between true
and estimated function values at design points close to this jump. Therefore an overall
worse fit of f is the result and a distance measure like the Averaged Squared Error
(ASE), which measures the quality of the overall fit by averaging the squared distances
between true and estimated function values over all design points, will become larger
then. On the other hand a large ASE-value can be due to a bad jump preservation
of the smoother, but can also be caused by other properties of the true function or
outliers in the errors, which make the used smoothing procedure inappropriate. To
separate these two questions, Gijbels et al. (2007) distinguish between the direct and
the indirect approach in jump-preserving smoothing.

In the direct approach the true function is estimated directly without any prior
assumptions on number, location or height of the jumps. Each design point is con-
sidered as a potential discontinuity point and changes in the location level should be
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incorporated automatically by the smoothing procedure. The main focus here lies on
a good overall performance, e.g. measured by the ASE, what does not necessarily
depend on a good jump detection. One way to smooth the true function is via local
parametric fitting, e.g. to choose a local neighborhood around each design point and
to use the corresponding observed values to estimate f .

The indirect approach includes the estimation of the jump positions as the first
step. The resulting segments between the jumps are assumed to be continuous and
can be estimated via a global procedure. The main focus of this approach lies on a
good jump-detection-rule. The estimation of f in the continuous regions is secondary.
One way to detect the jump locations is via test statistics which compare the location
parameters between two samples. These tests are made at each design point, where
the design point separates the two samples, respectively. The most likely design
points of those, where the tests are rejected, are used as estimated jump locations.

For both approaches a proper choice of the smoothing parameter k is essential.
For the direct approach, smoothing with a too large number of observations 2k+ 1 in
each window can lead to the loss of important details of f , e.g. non-preserved jumps,
and so to a small variance, but a large bias of the estimation. On the other hand, a
too small number of observations can cause an overfit to the observations and hence
to a wiggly estimate, what brings a small bias, but large variance. For the indirect
approach the parameter k delivers the sample size of the two samples for each test
problem. For a too small chosen k not all true jumps may be detected due to a small
power of the tests. For a too large chosen k only jumps in the middle of the design
area can be detected, while the true jump locations are not necessarily located there.
Thus variance and bias behave in a similar way as for the direct approach.

One way to choose k is via cross-validation (CV). Much work is done here for
the direct approach, concerning optimality results of the classical L2-CV (Haerdle
and Marron, 1985; Haerdle, Hall and Marron, 1988), but also for robust CV-criteria
(Leung et al., 1993; Wang and Scott, 1994; Zheng and Yang, 1998; Leung, 2005),
which are needed in the presence of outliers in the noise terms, as L2-CV performs
poorly in this connection. However the theoretical results are always obtained under
the assumption that the regression function is smooth, with a function f , which is
two times differentiable or at least Hoelder-continuous. In particular this means also
that f has no abrupt jumps. Further, as war as I know, practical comparisons of
robust CV-criteria are also only made for the case of a smooth f .

For the indirect case only one cross-validated proposal is known to me, but it dif-
fers from our proposal. It uses the derivative of the Nadaraya-Watson-estimator
(Nadaraya, 1964; Watson, 1964) as diagnostic function (Gijbels and Goderniaux,
2004a,b). A first rough estimation of the jump locations is given by those posi-
tions, where the derivative has a large value. These positions are improved then by
a smooth least-squares estimation in a shorter sequence around the jump locations.
However, it is only based on the L2-CV-criterion and so for the indirect approach the
behaviour of robust CV-criteria to my knowledge has not been investigated yet.

This thesis closes these two gaps in the literature, as it deals with a robust analysis
of the direct approach, when additionally jumps in f occur, and with an analysis of
the indirect approach, if additionally outliers in the errors are observed. Both prob-
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lems are analysed via simulation studies as theoretical results for the cross-validated
smoothers and tests are hard to determine. In a first step, piecewise constant func-
tions are used to compare the performance of different cross-validated local constant
smoothers and cross-validated test statistics.

The null hypothesis of the test problem from the indirect approach is the hypo-
thesis of randomness, e.g. the observed values of both samples are one realisation
of independent and identically distributed (i.i.d.) random variables. The alternative
hypothesis includes a level shift between the two samples, i.e. both samples contain
i.i.d. random variables, differing in a location parameter like the mean (or if not
existing, e.g. the median). In contrast to that, in Chapter 4 the alternative hypothesis
of a monotone trend is analysed. Here the random variables are still independent,
but at least two of them are not identically distributed, as they differ in their location
parameter. Furthermore, all location parameters are ordered by the time points, i.e.
they are an increasing or decreasing sequence, building up a monotone trend.

Diersen and Trenkler (1996) reinvestigate tests based on records and Diersen and
Trenkler (2001) apply a weighted and splitted form of these tests on a time series with
seasonal effects. Splitting the observed time series sequence enlarges the robustness
of the record tests against seasonality. The last part of the thesis deals with this
fact and extends the idea of splitting the time series to several linear and nonlinear
rank statistics. Beside the robustness against seasonality, the robustness against
autocorrelation is examined. The procedures are further applied to two climate time
series from the gauging station in Potsdam.

1.2 Outline

This thesis has two parts. The first part deal with nonparametric smoothing, in
Chapter 2 with the direct and in Chapter 3 with the indirect approach. The second
part in Chapter 4 closes with trend tests for seasonal time series. All Chapters in this
thesis can be read individually, with identical notations in Chapter 2 and 3.

Chapter 2 investigates the direct approach for nonparametric smoothing, espe-
cially the performance of different robust CV-criteria, like median-CV (Zheng and
Yang, 1998), M-CV (Leung et al., 1993; Leung, 2005; Bianco and Boente, 2006) with
the Huber- and the Tukey-criterion, least trimmed squares-CV and a proposal by
Bianco and Boente (2006), which considers the sum of a robustified estimation of the
bias- and the variance-component of a cross-validated smoother. In addition to mean-
and median-smoothers, some methods from signal processing and the commonly ap-
plied standard Lowess are taken for comparison.

The cross-validated smoothers are compared in situations with both piecewise
constant and sine-functions under variation of design-parameters like percentage and
magnitude of outliers, number and height of jumps and the sample size. The main
results of Chapter 2 are the advantage of robust CV-criteria like Tukey- and Boente-
CV in the presence of outliers and of M-CV-criteria, like the L1, Huber- and Tukey-
criterion in the presence of jumps. Overall, Tukey-CV seems to be an adequate choice
of a CV-criterion, if outliers and jumps are present. Furthermore, L1-CV, which is
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often cited as a robust CV-criterion (Wang and Scott, 1994; Lee and Cox, 2010) per-
forms poorly in the presence of large outliers, due to an unbounded loss function. The
same is true for the smoother Lowess, which loses its robustness for a large number of
outliers, independently of the used CV-criterion. This Chapter is accepted for publi-
cation under the name ”On robust cross-validation for nonparametric smoothing”.

In Chapter 3 the indirect approach is considered. Several jump detection rules
are constructed under variation of a test statistic, a selection criterion for the level of
significance, a selection rule for the jump candidates and a CV-criterion. Beside the
classical t-test and linear rank tests, the comparative study also includes two sample
test statistics based on trimmed means, medians and Hodges-Lehmann-estimators.
For choosing the level of significance, multiple comparisons with the rules of Bonfer-
roni and Bonferroni-Holm are considered as well as a fixed level for all test problems
for all chosen sample sizes k. As one jump often leads to rejection of the Null for
more than one design point close to the jump location, the selection rules of Wu and
Chu (1993) and Qiu and Yandell (1998) are modified and compared, too.

The main results of Chapter 3 are a better performance of a multiple chosen
level of significance, compared to a fixed one. The method of Bonferroni performs
slightly better than the one of Bonferroni-Holm. Furthermore the procedure of Qiu
and Yandell delivers closer estimations of the jump locations than the method of Wu
and Chu for most of the tests. A small modification of Qiu and Yandell’s original
selection rule leads to an improvement here. Also in situations with outliers, robust
CV-criteria are again superior to the classical L2-CV-criterion. The Tukey-CV is
again an adequate choice. From the test statistics, the two-sample-Hodges-Lehmann-
test and the median-test perform best in the presence of large outliers. The content
in this Chapter is unpublished yet, but considered for possible future publication.

Chapter 4 deals with a comparison of nonparametric tests based on records and
ranks for trend detection in seasonal time series. Please note that the notation in this
Chapter is slightly changed, due to a somewhat different data situation. The power of
these nonparametric tests is compared for time series with four seasons and different
sample sizes for linear, convex and concave trends. Furthermore, the detection rate
of the tests is determined for observations, which are positive autocorrelated. For all
tests beside the unsplitted version, different multiples of the number of seasons are
used as splitting factors, respectively.

The main findings here are: While an increasing splitting factor increases the
power of a record test, the power decreases for all reliable rank tests. Thereby the
best rank tests based on the rank correlation coefficients of Spearman (Spearman,
1904) and Kendall (Kendall, 1938) perform better than any record test, even if the
record test is splitted with a large splitting factor. However, the detection rates of the
tests, if positive autocorrelated observations instead of a monotone trend are existent,
deliver a smaller sensitivity against positive autocorrelation for the record tests than
for the rank tests. This Chapter is published as:

Morell, O. and Fried, R. (2009): On nonparametric tests for trend detection
in seasonal time series. In: Schipp, B., Krämer, W. (Eds): Statistical Inference,
Econometric Analysis and Matrix Algebra, Festschrift in Honour of Götz Trenkler,
Physica, Heidelberg, 19–40.178.
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1.3 Outlook

The good performance of robust CV-criteria in case of local constant smoothers in
the direct approach and two sample test statistics in the indirect approach leads to a
couple of questions, which should be analysed in future work.

At this point only cross-validated local constant smoothers have been analysed
for the direct approach. The use of local linear smoothers could bring advantages for
functions with large slope or changes in the slope. Section 2.4.5 shows the advantage
of Lowess as a local linear procedure, as long as the amplitude of the sine-function
has a larger impact than the jump height. A similar performance can be expected for
other local linear smoothing methods, while some robust regression methods could
bring a better jump preservation, if they are used locally. A comparison of local
linear smoothers with a smoothing parameter chosen by different robust CV-criteria
is an interesting topic for future work. Beside classical L2- and L1-regression, robust
regression methods like the repeated median (Siegel, 1982), least trimmed squares
regression (Rousseeuw, 1984) or least quartile difference regression (Croux et al.,
1994) can be used. All these linear regression methods can also be used for the
indirect approach. Instead of comparing an estimated constant location measure
of two samples, a comparison of the intercepts of the estimated straight lines of
both samples can bring information about a jump within a curved function. This
has been done for classical regression methods, but not for the above mentioned
robust regression procedures. The problem of finding critical values can possibly be
solved by the use of the permutation principle (see also Section 3.2.1), but will be
computationally expensive.

The computational effort to compute the exact solution of an optimisation problem
for a robust regression technique is generally a difficult task. This effort increases even
more, when leave-one-out-CV is used for the selection of the smoothing parameter
k, as a robust estimation is needed for each possible k and all other design points,
when each design point is left out for one time. Algorithms, which deliver an updated
estimation can help here (see Bernholt and Fried 2003 for the repeated median),
as well as evolutionary computation (see Morell et al. 2008 for the least trimmed
squares and Nunkesser and Morell 2010 for the least quartile difference regression).
Further improvements to compute the CV-residuals for cross-validated smoothers and
cross-validated test procedures are still needed and also an issue of future work.

Till now a global smoothing parameter k is chosen. Each locally chosen data win-
dow includes the same number of observations. A larger flexibility of the smoothing
procedures can be achieved by a local adaptive smoothing parameter, especially if the
true function has changes in the slope. This allows different choices of the smoothing
parameter around different design points. Proposals for adaptive bandwidth-selectors
like local cross-validation (Fan et al., 1996) are based on the L2-norm and a compar-
ison of these methods with a robust criterion can be promising.

The multivariate setting has also not been treated yet. Choosing a multidimen-
sional smoothing parameter requires a reasonable preselection of possible tuples of
window widths for each direction, to avoid a too large computational amount. Beside
the robust CV-criteria proposed here, existing approaches for multivariate selection
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of a window width (Kerkyacharian et al., 2001; Lafferty and Wasserman, 2008; Zhang
et al., 2009) can be robustified. Again the computation of the robust smoothers and
tests increases for a increasing dimension, what shows again the need of updating and
evolutionary algorithms.

CV is not only used for nonparametric smoothing, but also in many other fields of
statistical research. One example are time series, where alternative L2-proposals to
the classical leave-one-out-CV have been introduced (Francisco-Fernandez and Vilar-
Fernandez, 2005). The use of robust CV-criteria instead of the L2-criterion will give
an improvement for choosing the smoothing parameter in robust time series analysis
and can be a part of future work, too.
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Chapter 2

On robust nonparametric smoothing:
The direct approach

2.1 Introduction

We consider a regression model

Yi = f(xi) + Ei, i = 1, . . . , n , (2.1)

where f is an unknown piecewise continuous function, x1, . . . , xn are values of a
covariate generated from a random design X1, . . . , Xn, E1, . . . , En are i.i.d. errors
possibly contaminated by some outliers, and Y1, . . . , Yn are observations of a response
variable measured at x1, . . . , xn, with realisation y1, . . . , yn. For simplicity of the
exposition we assume the data to be ordered according to the size of the xi, x1 ≤
x2 ≤ . . . ≤ xn.

Local parametric fitting allows us to estimate the unknown regression function f
under weak assumptions, i.e. without the need of specifying a global functional form
of f , which is known except for some unknown parameters. We concentrate on local
constant smoothing here. Several such smoothers have been proposed, based on the
idea to approximate f within suitably chosen local data windows by a constant.

The choice of the window width h is crucial for the performance of any local fitting
method. If h is chosen small, the bias of the estimate becomes small and the variance
large, leading to a wiggly estimate. If h is chosen large, the variance of the estimate
gets smaller, but the bias increases. Important details of f can be lost then. A data-
based approach to select the window width adaptively is cross-validation (CV). The
following theoretical results are obtained under different assumptions, which always
include f to be two times differentiable or at least Hoelder-continuous.

The basic idea of the commonly used leave-one-out-L2-CV is to choose the win-
dow width h as the value that minimises the average squared distance between the
true observations y1, . . . , yn and the leave-one-out-estimates f̂−1;h(x1), . . . , f̂−n;h(xn),
see Section 2.3 for details. Haerdle and Marron (1985) proved the asymptotic op-
timality of L2-CV for linear kernel regression estimators with respect to goodness-
of-fit-measures based on the L2-norm, like the Integrated Squared Error (ISE), the
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Conditional Mean Integrated Squared Error (CMISE) or the Averaged Squared Error
(ASE). Asymptotic optimality with respect to a distance measure ∆ is defined as

lim
n→∞

∆
(
f̂ĥCV

(xi), f(xi)
)
i=1,...,n

∆
(
f̂ĥ∆

(xi), f(xi)
)
i=1,...,n

 = 1, (2.2)

with probability one, see Shibata (1981). In this formula ĥCV is the L2-cross-validated

and ĥ∆ is the ∆-optimal window width. For nonlinear kernel M-smoothers, Haerdle
(1984) showed the convergence in probability of ĥCV against the ASE-optimal window

width under the assumption of finite second moments. Although ĥCV and the ASE-
optimal window width ĥASE are asymptotically the same, Haerdle, Hall and Marron
(1988) showed that the relative difference (ĥCV − ĥASE)/ĥASE has only a slow rate of

convergence of n−1/10 and so for different samples from the same model, ĥCV can lead
to rather different window widths and also to quite different estimations of f than
ĥASE. Nevertheless it seems to be the best possible rate, as the relative difference
between the optimal window widths for the ASE and the mean of the ASE converge
with the same rate (Haerdle, Hall and Marron, 1988).

Both smoother and CV-criterion should be chosen robustly if outliers occur (Leung
et al., 1993). The commonly used L2-CV is not robust, so alternatives like L1-CV
(Yang and Zheng, 1992; Wang and Scott, 1994), M-CV (Leung et al., 1993; Cantoni
and Ronchetti, 2001; Leung, 2005) and median-CV (Zheng and Yang, 1998) have been
proposed. We also consider the least trimmed squares criterion of Rousseeuw (1984),
applied by Serneels et al. (2005), and a modified version of a CV-proposal of Bianco
and Boente (2006) and Boente and Rodriguez (2008). For kernel M-smoothers, the

window width selected via M-CV is asymptotically equivalent to ĥASE (Leung, 2005).

The optimal window width ĥ∆ for a goodness-of-fit-measure ∆ based on squared
distances depends for linear (e.g. Haerdle (2002), pp. 30) and nonlinear smoothers
(Wang and Scott, 1994; Zheng and Yang, 1998; Leung, 2005) on the second derivative
of the true function f . Asymptotic optimality as in (2.2) and even consistency is
unclear, if f has edges or abrupt jumps, what are effects of discontinuities in the first
derivative or f itself.

In practice the assumption of a smooth regression function is often not appropri-
ate, because of jumps or edges. As there is a lack of theory and experimental stu-
dies in situations with discontinuities, we check via simulations which cross-validated
smoothers yield the best results then. We compare the different CV-criteria in situa-
tions with jumps in the regression function f and outliers in the errors E1 . . . , En. We
focus on classical local constant smoothers based on means or medians and methods
from signal processing, like double window and linear hybrid smoothing methods.

Section 2.2 reviews local constant smoothers. Section 2.3 introduces different CV-
criteria. Section 2.4 describes the results of a simulation study, comments consistency
of the estimators and includes some applications to real data. Section 2.5 concludes.
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2.2 Local constant smoothers

We distinguish between moving window (MW) and nearest neighbour (NN) smoothers.
A MW-smoother estimates f at each point xi by a location estimator of the obser-
vations at the 2k + 1 design points xi−k . . . , xi+k centered at xi, if available. For the
first and the last k design points we take the estimations based on the first and the
last k observations, respectively. Using the sample mean we get the moving average

Ξ1(xi) =
1

2k + 1

k∑
j=−k

yi+j . (2.3)

Let xi,(j) be the j-th nearest neighbour of xi,
∣∣xi,(1) − xi

∣∣ ≤ ∣∣xi,(2) − xi
∣∣ ≤ . . . ≤∣∣xi,(n) − xi

∣∣, and yi,(j) the value observed at xi,(j), for j = 1, . . . , n. Then a κ-NN-
smoother is a location measure of the observations yi,(1), . . . , yi,(κ). We choose κ =
2k + 1 to use the same number of observations for MW- and NN-smoothers in each
window. The NN-mean is then defined as

Ξ2(xi) =
1

2k + 1

2k+1∑
j=1

yi,(j). (2.4)

A MW- and a NN-smoother with the same location measure give identical results
at xk+1, . . . , xn−k in case of an equidistant fixed design, but are different in general,
since the NN are not necessarily distributed equally to the left and the right of xi.

An advantage of mean-smoothers is their high efficiency in case of normal errors.
However, a single outlier affects the estimation and can make it completely mean-
ingless locally. The robustness of an estimate against outliers can be measured by
the finite sample breakdown point (Donoho and Huber, 1983). It corresponds to the
minimal fraction of modifications in a sample which can drive the estimate to the
boundaries of the parameter space. In case of a sample of size 2k + 1 it is 1/(2k + 1)
for the sample mean, meaning that a single outlier can cause a spike of any size in
the estimate Ξ1(xi) or Ξ2(xi). Moreover, mean smoothers smear jumps, leading to
strongly biased and even inconsistent estimates there, since the estimates average
observations before and after the jump-location.

Median smoothers improve upon both these shortcomings. The MW-median

Ξ3,a(xi) = Med(yi−k, . . . , yi+k) , (2.5)

which is also called running median in the literature, and the NN-median

Ξ4,a(xi) = Med(yi,(1), . . . , yi,(2k+1)) (2.6)

both offer a finite sample breakdown point of (k + 1)/(2k + 1) within each window,
which is optimal within the class of all location-equivariant estimators. Moreover,
jumps between two constant parts of the function are preserved if there are at least
(k + 1) observations for each part available and the smoother uses the same number
of observations left and right of the jump. In a random design this is guaranteed
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for the MW-median, but not for the NN-version. Under Gaussian noise, the sample
median offers an asymptotic efficiency of only 63.7% relatively to the sample mean.

Other MW- and NN-smoothers based on robust location measures like the Huber-
and Tukey-M-estimator (Maronna et al., 2006, pp. 22–31), the 12.5%- and 25%-
trimmed mean, the 50%- and 75%-least trimmed squares (LTS) estimator (Rousseeuw,
1984) or the Hodges-Lehmann-estimator (Hodges and Lehmann, 1963) can be defined
analogously. In a preliminary simulation study only the MW-version of the 50%-LTS-
smoother showed both adequate jump-preservation and robustness against outliers,
but performed worse compared to the MW-median. To keep the simulation study
manageable none of these smoothers will be considered in the following.

Another approach from signal processing for local constant function fitting are
linear median hybrid (LMH) filters (Heinonen and Neuvo, 1987). The outputs of m
linear subfilters H1, . . . , Hm are calculated for each xi and their median is taken to
estimate f(xi). As proposed by Heinonen and Neuvo, we use m = 3 and define

Ξ5(xi) = Med(H1(yi), H2(yi), H3(yi)), with

H1(yi) =
1

k

k∑
j=1

yi−j, H2(yi) = yi, H3(yi) =
1

k

k∑
j=1

yi+j . (2.7)

H1(yi) and H3(yi) take the average of the k observations left and right of the current
design point xi, respectively, whereas the output of H2(yi) is yi itself to improve the
preservation of jumps. To increase the robustness against outliers, Fried et al. (2006)
use the median instead of the average in the subfilters and derive median median
hybrid (MMH) smoothers,

Ξ6(xi) = Med(M1(yi),M2(yi),M3(yi)), with M2(yi) = yi,

M1(yi) = Med(yi−k, . . . , yi−1), M3(yi) = Med(yi+1, . . . , yi+k) . (2.8)

Another method from signal processing based on MW is the double window mod-
ified trimmed mean (DWMTM), see Lee and Kassam (1985). Defining a trimming
factor $ ∈ (0, 0.5), a $-trimmed mean is an average of the observations, with the
100$% smallest and the 100$% largest values being disregarded. Trimmed means
achieve larger efficiency under normal noise than the sample median, which corre-
sponds to the limiting case $ = 0.5, but do not preserve jumps exactly. Therefore a
procedure with an adaptive, data-based choice of $, like the DWMTM, is preferable.

The DWMTM, denoted by Ξ7, uses two windows with smoothing parameters k and
l, respectively, with l ≤ k. The median ỹi and the median absolute deviation from the
median (MAD) ŝM as a robust measure of location and variability, respectively, are
calculated from the possibly smaller inner window yi−l, . . . , yi+l. Then all observations
z ∈ {yi−k, . . . , yi+k} with |z − ỹi| > δ · ŝM are trimmed and the remaining values are
averaged. Here, δ is a predefined constant regulating the amount of trimming. We
choose δ = 2, as proposed by Lee and Kassam, and fix l = bk/2c for the reason of
simplicity. Working with a short inner window gives little biased initial estimates of
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location and variability. The subsequent averaging step with an adaptively chosen
trimming constant reduces the variability of the final estimate.

We also consider a robust version of locally weighted regression (Cleveland, 1979),
called Lowess and denoted by Ξ8 here, since it is a commonly applied standard. Let
W3 be the bisquare function and W2 be the tricube function, with

Wβ(x) =

{
(1− |x|β)β , if |x| < 1

0 , if |x| ≥ 1
, β = 2, 3 (2.9)

and dik be the absolute distance between xi and its (2k + 1)-th NN xi,(2k+1). Using

the weights wj(xi) = W3(
xj−xi
dik

), j = 1, . . . , n, for each data point (xj, yj), a locally
weighted regression is done in an initial step. By construction these weights are de-
creasing for an increasing distance of xi to xj and zero, if xj is none of the first 2k
NN of xi. The obtained residuals ê1, . . . , ên are used to derive new robustness weights

δ1, . . . , δn, with δj = W2

(
êj

6êMed

)
, where êMed is the median absolute residual. Then a

new locally weighted regression, using the robust localized weight δj ·wj(xi) is calcu-
lated for each (xj, yj). Observations with large residuals compared to êMed get a small
weight or are trimmed completely. This step can be repeated, calculating another ro-
bust locally weighted regression with weights based on the previous step. Cleveland
states that two iterations are typically enough. We use the R-function Lowess (R
Development Core Team, 2011) for the computations. Lowess is often called a robust
smoothing method, but as it uses a non-robust weighted least squares regression as
initial estimation, its robustness against outliers is questionable (Maechler, 1989).

2.3 Robust cross-validation

The performance of every procedure described in Section 2.2 depends on its smoothing
parameter k, which delivers the number of observations 2k+1 within each window and
the window width h. A way to choose k adaptively, i.e. based on the data, is cross-
validation (CV). For a given k let f̂k(xi) be the estimate of f at xi derived by one of

the smoothers Ξ1, . . . ,Ξ8. Then f̂−i;k(xi) is the estimate of f , when the point (xi, yi)
itself is left out and not used for the estimation. For the moving window techniques we
base the estimation f̂−i;k(xi) on the 2k+1 points in {xi−1−k, . . . , xi−1, xi+1, . . . , xi+k}.
We denote the cross-validated residuals by êi;k = yi − f̂−i;k(xi), i = 1, . . . , n.

A common criterion for the choice of k is the traditional least squares CV, or
briefly L2-CV. It minimises the averaged sum of squared residuals as a function of k:

LSCV (k) = arg min
k

1

n

n∑
i=1

(
yi − f̂−i;k(xi)

)2

= arg min
k

1

n

n∑
i=1

ê 2
i;k . (2.10)

Note that the expectation of LSCV (k) becomes infinite for each k if the second
moment of the error distribution does not exist (Leung et al., 1993). So a single
outlier in moderate samples can already lead to a nearly constant LSCV (k) due to
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its large squared error for all values of k (Wang and Scott, 1994). This makes L2-CV
practically useless in the presence of outliers, see also Section 2.4.

An alternative is to use absolute instead of squared distances. This leads to least
absolute deviations CV, or briefly L1-CV:

LADCV (k) = arg min
k

1

n

n∑
i=1

|yi − f̂−i;k(xi)| = arg min
k

1

n

n∑
i=1

|êi;k|. (2.11)

Wang and Scott (1994) introduced locally weighted L1-regression, combined with L1-
CV as a robust alternative to L2-CV, to estimate f . Their simulations indicated that
L1-CV works better than L2-CV if the error distribution is heavy-tailed. Pointwise
consistency was also shown for the L1-regression smoother with a theoretically optimal
k in case of two times continuous differentiable regression functions.

Yang and Zheng (1992) considered L1-CV for NN-median smoothing and proved
weak consistency of this cross-validated smoother if f is Hoelder-continuous and the
first moment of the errors exists. If the latter assumption is not fulfilled, the expec-
tation of LADCV (k) becomes infinite, meaning that L1-CV may have problems with
outliers. Therefore Zheng and Yang (1998) introduced median-CV

MEDCV (k) = arg min
k

Med (|ê1;k|, |ê2;k|, . . . , |ên;k|) , (2.12)

in combination with NN-median smoothing, as a robust alternative to L1- and L2-CV.
In their work they show the uniform strong consistency of median-CV under Hoelder-
continuity of f and compare it via simulations with L1- and L2-CV, but only for one
data situation with outliers, where median-CV delivered better results than the two
competitors. A possible disadvantage of median-CV is that a lot of information gets
lost for the determination of k since only the median of the absolute residuals is used.
Therefore we also consider other robust measures different from the median.

One alternative is M-CV, see Leung et al. (1993), Leung (2005) and Lee and Cox
(2010). Bianco and Boente (2006) considered

MρCV (k) = arg min
k

1

n
σ̂2
k

n∑
i=1

ρ

(
êi;k
σ̂k

)
. (2.13)

Note that the robust error variance estimate σ̂2
k depends on the cross-validated

residuals and hence on the smoothing parameter k. We consider two different ρ-
functions for M-CV. Denoting the indicator function of a subset A ⊂ R by 1A, we
get a monotone M-criterion using the Huber-ρ-function

ρH(z) = z21[0,`H ](|z|) +
(
2`H |z| − `2

H

)
1(`H ,∞)(|z|) (2.14)

and a redescending M-criterion using the Tukey-ρ-function

ρT (z) =

1−

(
1−

(
z

`T

)2
)3
1[0,`T ](|z|) + 1(`T ,∞)(|z|) (2.15)
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to derive CV-criteria with possibly different properties. We choose `H = 1.345 and
`T = 4.685 as tuning constants to achieve an efficiency of 95% for both criteria at the
normal distribution in a location problem. We found the Qn (Rousseeuw and Croux,
1993) estimator for σk to give better results than the MAD or the τ -scale estimator
(Maronna and Zamar, 2002) for both ρ-functions. The Qn corresponds roughly to
the first quartile of the ordered absolute pairwise differences |êi;k − êj;k|, i 6= j.

For the Huber-ρ-function, one can also consider the following modified criterion

arg min
k

(
1

n

n∑
i=1

ê 2
i;k1[0,`H ]

(
|êi;k|
σ̂k

)
+

1

n

n∑
i=1

|êi;k|1(`H ,∞)

(
|êi;k|
σ̂k

))
, (2.16)

but we found a larger robustness of the Huber-CV as in (2.13) in a preliminary study.
Serneels et al. (2005) used a robust CV-criterion based on least trimmed squares

(LTS) for continuum regression. It is defined by

LTStCV (k) = arg min
k

1

btnc

btnc∑
j=1

ê 2
(j);k , (2.17)

where (1 − t) ∈ (0, 0.5) is a trimming factor and ê 2
(j);k, j = 1, . . . , n are the order

statistics of the squared cross-validated residuals. The btnc smallest squared residuals
are averaged and the others are trimmed. We consider the cases t = 0.5 to achieve a
highly robust criterion and t = 0.75 to compromise between robustness and efficiency.

Another class of CV-criteria was introduced by Bianco and Boente (2006) and
Boente and Rodriguez (2008) in the semiparametric regression case. Their criterion
considers the sum of the squared bias and the variance of the cross-validated smoother.
They estimate both components robustly, the squared bias via the squared median
residual and the variance via some robust estimator σ̂2

k. The authors recommend the
τ -scale estimator, but we found in preliminary simulations again a better performance
of the Qn estimator. So we define a modified criterion as

BOECV (k) = arg min
k

Med2 (ê1;k, . . . , ên;k) + Q2
n (ê1;k, . . . , ên;k) . (2.18)

In most of the papers cited above, the proposed robust CV-criterion is only com-
pared to the classical L2-CV. For robust kernel smoothing, Leung (2005) compared L1-
CV with a Huber-criterion similar to (2.16), which has the same problems as L1-CV
if the first moment of the error distribution does not exist, due to its unboundedness.
Bianco and Boente (2006) find their proposal to perform slightly better than M-CV
(2.13) with the Huber- and the Tukey-ρ-function, respectively, for semi-parametric
partly linear autoregression.

None of these papers examines situations with a discontinuous regression function
f . Theoretical results are always obtained under the basic assumption that f is
at least two times continuously differentiable or Hoelder-continuous. As there are
no theoretical or practical comparisons between robust smoothers or CV-criteria for
discontinuous regression functions available, we analyse the behaviour of the robust
procedures, when this basic assumption is violated due to jumps in f .
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2.4 Comparison of the cross-validated smoothers

In this Section we present a simulation study to compare the performance of the
smoothers and CV-criteria for different data situations with outliers and jumps. For
every situation each of the eight smoothers Ξ1, . . . ,Ξ8 from Section 2.2 is combined
with one CV-criterion of each class (L1-, L2-, median-, Huber-, Tukey-, LTS- and
Boente-CV). For the Huber- and Tukey-CV we use (2.13) with the Qn scale estimator.
Unless indicated otherwise, we use 75%-LTS-CV instead of 50%-LTS-CV due to its
better efficiency. The Boente-CV will be computed as in (2.18). If any CV-criteria
delivers its smallest criterion-value for more than one argument k, then the minimum
of these arguments is taken as cross-validated smoothing parameter for estimating f .

2.4.1 Measuring the quality of a cross-validated smoother

We consider model (2.1) with X1, . . . , Xn being drawn from an uniform random de-
sign, i.e. X1, . . . , Xn being i.i.d. uniformly distributed on the interval [0, 1]. The
noise terms E1, . . . , En are i.i.d. N (0, σ2) with some outliers at positions chosen at
random. For obtaining π percent outliers, max{bnπc, 1} of all n positions are drawn
without replacement. At outlier positions, the value ±γ is added to the noise, with
the same sign as the closest level shift to produce a more challenging situation. The
function f is chosen as piecewise constant with m jumps of height s, whose positions
ξ1, . . . , ξm within the interval (0,1) are fixed. We choose γ and s depending on the
error variance σ2, here for σ = 1. We use a piecewise constant function since we
assume the effects of jumps and outliers on the estimates to be more severe than a
slight slope.

Let f̂(xλi ) be the estimate of f for a given data set λ at its i-th design point xλi ,
derived by one of the smoothers Ξ1, . . . ,Ξ8 combined with a CV-criterion of Section
2.3. The performance of f̂ for the λ-th data set can be measured by the Averaged
Squared Error (ASE; see Haerdle 2002, pp. 90)

∆̃λ
A =

1

n

n∑
i=1

(
f̂(xλi )− f(xλi )

)2

. (2.19)

The ASE averages the squared distances between true and estimated function values
at all design points of one data set. We use the design points, because these are the
only positions in the support, where we have information about the true function.
Additional comparisons gave only small changes when evaluating the fit on an equally
spaced grid.

If ν data sets are generated for a given data situation, the mean ASE-value
(MASE)

∆A =
1

ν

ν∑
λ=1

∆̃λ
A =

1

νn

ν∑
λ=1

n∑
i=1

(
f̂(xλi )− f(xλi )

)2

(2.20)

can be calculated. Here ∆̃λ
A is the ASE-value and xλi is the i-th design point for the

λ-th data set, λ = 1, . . . , ν.
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Instead of squared distances in (2.19) the average

∆̃λ
B =

1

n

n∑
i=1

|f̂(xλi )− f(xλi )|. (2.21)

and the median value

∆̃λ
C = Med(|f̂(xλ1)− f(xλ1)|, . . . , |f̂(xλn)− f(xλn)|) (2.22)

of the absolute distances between the true and the estimated function values can be
used, denoted by the Averaged Absolute Error (AAE) and the Median Absolute Error
(MAE), respectively. For the comparison of ν data sets, appropriate performance
measures are the mean AAE-value (MAAE)

∆B =
1

ν

ν∑
λ=1

∆̃λ
B =

1

νn

ν∑
λ=1

n∑
i=1

|f̂(xλi )− f(xλi )| (2.23)

and the median MAE (MMAE)

∆C = Med(∆̃1
C , . . . , ∆̃

ν
C) (2.24)

For these two alternative performance measures larger distances, due to a bad
estimation of f at only some design points or only for some data sets, are less relevant
than for the MASE. Therefore the MAAE and the MMAE can favor other cross-
validated smoothers than the MASE. We will use the MASE ∆A in the following and
set n = 200 and ν = 1000 for all data situations. In Section 2.4.4 we will present
results for other sample sizes n and the MAAE and the MMAE, respectively.

It is also of interest to compare the performances for p different data situations
jointly. We have q = 56 estimators combining all smoothers with all CV-criteria.
In order to simplify this evaluation, we define a summary measure to compare their
relative performances. For the η-th data situation, η = 1, . . . , p, we consider the
relative loss

Λυ
η =

∆
υ

A;η −∆
?

A;η

∆
?

A;η

, (2.25)

with ∆
υ

A;η as the MASE of estimator f̂υ, υ = 1, . . . , q, for data situation η and

∆
?

A;η = min
(

∆
1

A;η, . . . ,∆
q

A;η

)
(2.26)

the minimal MASE-value of all estimators for data situation η. So Λυ
η is the relative

loss in the MASE-value due to not using the best estimator, relatively to ∆
?

A;η. Values

of Λυ
η close to zero indicate that f̂υ performs almost as well as the best estimator for

situation η. We use the mean relative loss (MRL) in the MASE-value

Λ
υ

=
1

p

p∑
η=1

Λυ
η (2.27)

as global performance measure in the comparison for the included data situations.
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2.4.2 Robust smoothing without jumps

We start with situations, where problems are mainly caused by outliers and not by
jumps. We draw n = 200 observations (xi, yi) with one small jump of height 1 at
the position ξ1 = 0.4 and vary the percentages π ∈ {0.01, 0.05, 0.15} and magnitudes
γ ∈ {3, 6, 12} of the outliers. The MRL Λ

υ
from (2.27) based on these p = 9 data

situations is illustrated in Fig. 2.1 (left). We use a logarithmic scale for the ordinate
since we want to visualise differences among the better estimators, accepting less
visibility of the differences among the worse estimators. The results for the mean and
the LMH smoothers are not shown, because of their bad performance due to the lack
of robustness against outliers.

Lowess performs best, followed by DWMTM. Tukey-CV gives the best results for
all smoothers except for the MMH, followed by Boente- and Huber-CV. A closer look
at the loss for the different situations is given for Lowess in Table 2.1. The order of
the CV-criteria is similar for the other robust smoothers. The bad performance of L1-
CV is due to the situation with many large outliers, indicating its smaller robustness
compared to the other robust CV-criteria. This leads us to look at situations with
higher values of γ and π.

Looking at larger outliers, we take again π ∈ {0.01, 0.05, 0.15} and vary γ in
{24, 48, 96, 192}. Fig. 2.1 (right) shows the MRL for all robust smoothers based on
these p = 12 data situations. Generally, Tukey-, Boente- and LTS-CV lead to the
best results for all robust smoothers. This can also be seen in Fig. 2.2, where the
MASE-values for an increasing outlier magnitude are shown for the MW-median and
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Figure 2.1: MRL for moderate percentages of moderate (left) and large (right) out-
liers. Lowess (with Tukey-CV) delivers the smallest relative loss.
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Table 2.1: Relative loss of Lowess with different CVs for situations with moderately
large outliers.

situation Λυ
η for Lowess with different CV-criteria

(π, γ) LADCV LSCV MEDCV MHubCV MTukCV LTS75CV BOECV

(0.01,3) 0.095 0.030 0.320 0.045 0.047 0.229 0.126
(0.01,6) 0.065 0.022 0.261 0.020 0.025 0.164 0.077
(0.01,12) 0.033 0.136 0.273 0.000 0.001 0.184 0.067
(0.05,3) 0.078 0.040 0.215 0.028 0.035 0.172 0.104
(0.05,6) 0.032 0.111 0.236 0.000 0.000 0.148 0.049
(0.05,12) 0.087 0.556 0.271 0.054 0.000 0.162 0.068
(0.15,3) 0.196 0.216 0.345 0.197 0.199 0.218 0.209
(0.15,6) 0.157 1.004 0.165 0.044 0.037 0.031 0.004
(0.15,12) 1.595 4.511 0.287 0.291 0.000 0.042 0.024

Lowess. Fig. 2.2 also points out that Lowess is only robust against large outliers, if
an appropriate CV-criterion is used. L1-CV, introduced by Lee and Cox (2010) as a
robust alternative to L2-CV for Lowess, is not appropriate here, as it performs poorly
for larger outliers. This confirms the results of Zheng and Yang (1998) that a robust
CV-criterion is preferable if the data are contaminated by large outliers, but the
median-CV proposed by them is also outperformed by all other robust CV-criteria.
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Figure 2.2: MASE-values for an increasing magnitude of outliers for the MW-median
(left) and Lowess (right). L2- and L1-CV perform worst for an increasing outlier
magnitude.
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Figure 2.3: MRL for situations with moderate (left) and large (right) percentages of
outliers. Boente-CV gives good results for moderate and large outlier percentages.
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Figure 2.4: MASE-values for an increasing percentage of outliers for the MW-median
(left) and Lowess (right). Lowess loses its robustness for large outlier percentages.
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Next we increase the numbers of outliers. We vary π in {0, 0.05, . . . , 0.45} and
use moderate outlier magnitudes γ ∈ {3, 6, 12}. Fig. 2.3 shows the MRL-values for
situations with moderate (π ≤ 0.2) and large (π ≥ 0.25) percentages of contamina-
tion. Note that we have replaced 75%-LTS-CV for the larger percentages π ≥ 0.25
with the more robust version, the 50%-LTS-CV.

Lowess loses its robustness for π ≥ 0.3, and the median-smoothers become prefer-
able. From the CV-criteria, Boente-CV performs best for the robust smoothers,
except for the MMH. It is even slightly better than high breakdown point criteria
like median- and 50%-LTS-CV. So the use of a median-smoother with Boente-CV is
recommended for situations with an arbitrary number of outliers and without large
jumps, as this combination delivers good results for moderate and large percentages
of contamination. Fig. 2.4 illustrates the MASE-values for the running median and
Lowess for an increasing number of outliers.

2.4.3 Robust smoothing with jumps

Next we look at situations with jumps. We take n = 200 observations (xi, yi) and
include m ∈ {1, 2, 5} jumps of height s ∈ {1, 3, 6}. For m = 2 the jumps are located
at ξ1 = 0.4 and ξ2 = 0.6 and for m = 5 we fix ξ1 = 0.2, ξ2 = 0.4, ξ3 = 0.55, ξ4 = 0.7,
and ξ5 = 0.85. At first we only include some small outliers, fixing π = 0.01 and γ = 3.

Fig. 2.5 (left) shows that NN-median performs worse than the MW-median, due to
the worse jump-preservance of a NN-method. From the jump-preserving smoothers,
the MW-median and the DWMTM perform well for moderate jumps, but the un-
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Figure 2.5: MRL for different jump situations with moderate and large jumps.
DWMTM with Tukey- or Huber-CV performs best for moderate and large jumps.
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Figure 2.6: MRL for different jump situations with 5 and 15% outliers.
Tukey-CV delivers good results for smoothing with jumps and outliers.

expected bad performance of the hybrid smoothers leads us to look at larger shifts.
We consider m ∈ {1, 2, 5} jumps of height s ∈ {12, 24, 48, 96}, see Fig. 2.5 (right).
Although the MW-median and the two hybrid smoothers are jump-preserving, too,
the DWMTM delivers a much smaller loss. While L2-CV seems to break down for an
increasing jump height, M-CV-criteria like L1-, Huber- and Tukey-CV deliver good
results for an arbitrary jump size.

Now we return to situations with smaller jumps, compare Fig. 2.5 (left), including
higher percentages of larger outliers. We take π = 0.05 and π = 0.15 percent of
outliers, respectively, each with a magnitude of γ = 12 so that the outliers are larger
than the jumps. See Fig. 2.6 for the results. Tukey-CV is the best choice for both
percentages and is preferable for situations with jumps and a moderate number of
outliers. While for π = 0.05 L1-CV also delivers good results, we observe for π = 0.15
again the superiority of a robust CV-criterion, like Boente- and LTS-CV.

The bad performance of the jump-preserving smoothers compared to Lowess in
Fig. 2.6 (right) is mostly due to an incorrect jump detection because of outliers.
Fig. 2.7 shows two examples of the same situation, including many large jumps and
outliers. In the left example the DWMTM performs better than Lowess due to its
better jump preservation, while in the right example Lowess is superior due to a
wrongly tracked jump by the DWMTM. For robust jump-preserving smoothing with
only a small percentage of outliers, the DWMTM with Huber- or Tukey-CV leads
to good results. For larger percentages of outliers there is a trade-off between jump-
preservation and outlier-robustness. If possible, one should specify lower limits for k
based on the minimal number of observations in between subsequent shifts.
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Figure 2.7: Two data examples of piecewise constant functions with 15% outliers of
magnitude γ = 12 and m = 5 jumps with height s = 6.

2.4.4 Performance for different sample sizes

An open question is if the cross-validated smoothers deliver consistent estimations
of the regression function f in the presence of jumps. While much is known about
consistency of linear and robust smoothers if f is smooth, the asymptotic behaviour
of these estimators is rather unknown if this assumption is violated. Mueller (2002)
investigated the asymptotic behaviour of robust estimators, which are asymptotically
linear, at jump positions and derived rather strong conditions under which robust es-
timators like the median or the LTS-estimator are consistent there. For these results
a window width h = n−1/3 is assumed, what is not guaranteed for a cross-validated
window choice. Furthermore Hillebrand and Mueller (2006) showed that the func-
tion estimations of redescending M-kernel-smoothers can be consistent even at jump
locations under some strict assumptions.

To investigate if the cross-validated smoothers are consistent we perform more
simulations. We take a data set with 35 observations, 15% outliers of magnitude 192
and one jump of height 6. Then an increasing number of observations from the same
model is added and the resulting sequence of estimations at the original 35 points
is analysed. Note that the jump is fixed for all sample sizes, while the positions of
additional outliers are randomly chosen.

Fig. 2.8 (left) shows that the performance of the MW-median combined with the
L1-CV-criterion can still be strongly influenced by outliers for n = 200, as for this
data set short sequences of outliers are two times regarded as jumps. This leads to
the short choice of k = 2, due to a nearly constant CV-criterion-value LADCV (k).
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Figure 2.8: MW-median with L1- (left) and Boente-CV (right) for an increasing n
over the whole support. L1-CV is sensitive to outliers for n = 200.

This phenomenon can generally be observed more often for L1-CV than for robust
CV-criteria, what is also an explanation for the worse performance of L1-CV in the
situation with large outliers (compare Fig. 2.1). Robust CV-criteria like Tukey-CV
(not shown) and Boente-CV, see Fig. 2.8 (right), deliver for this data set larger
values with k = 10 and k = 15, respectively. For the given data, these criteria lead
to an estimation, which is not influenced by the outlying sequences. For larger n
the performance of L1-CV gets better, leading to consistent estimations at outlying
points. For n > 25000, L1-, Tukey- and Boente-CV deliver the same values of k.

On each side of the jump there is one design point with a distance of about 0.1
and one with a distance of nearly 0.0001 to the jump. Fig. 2.9 (right) shows that
for the two points with a distance of 0.1 the MW-median achieves good results for
n ≥ 5000. This is not the case for the two design points closer to the jump, where
even for n = 125000 the estimated function values are far away from the true ones.
This indicates possible problems of consistency at the jump positions. The same is
observed for the MMH and the DWMTM, independently of the CV-criterion.

To further study the behaviour for an increasing sample size n, we consider ν = 100
data sets for each of n ∈ {50, 55, . . . , 100, 110, . . . , 200, 220, . . . , 400} and look for two
data situations at the MASE-values of the different smoothers in dependence of n.
See Fig. 2.10 for one situation with jumps and one with jumps and additional large
outliers. The L2-CV is used for the mean smoothers and Tukey-CV for the others.
As expected all MASE-values decrease for an increasing n.

In the situation without large outliers, compare Fig. 2.10 (left), the two hybrid
smoothers stay best for all n, while for n > 300 the DWMTM is only slightly worse,
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Figure 2.9: MW-median with L1- (left) and Boente-CV (right) for an increasing n near
the jump. At the jump locations, cross-validated smoothers seem to be inconsistent.

4.0 4.5 5.0 5.5 6.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

● ●

● ●●

●
●●

●●●
●

● ●
●●●

●
●●●

● ● ●●
●●

●●●●

4.0 4.5 5.0 5.5 6.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

Hybrid−Mean
Hybrid−Median
DWMTM
LoWess

● MW−Median
NN−Median
MW−Mean
NN−Mean

4.0 4.5 5.0 5.5 6.0

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E ●

●
● ●

●
●●

●

●
●

●

●

● ●

●

●
●●

●
●●

●

● ●
●

●
●

●

●●
●

4.0 4.5 5.0 5.5 6.0

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

4.0 4.5 5.0 5.5 6.0

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Logarithmic Sample Size

Lo
ga

rit
hm

ic
 M

A
S

E

Hybrid−Mean
Hybrid−Median
DWMTM
LoWess

● MW−Median
NN−Median
MW−Mean
NN−Mean

Figure 2.10: Changes in the MASE for different n for situations with 5 jumps of height
6 and without large outliers (left) or with 15% outliers of magnitude 192 (right).

indicating that especially for smaller samples the hybrid smoothers show a better
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jump preservance than the DWMTM. Fig. 2.10 (right) shows for the situation with
large outliers that the performance of Lowess becomes better for an increasing n, as
it performs worst for small n and becomes best for n = 400. One explanation is that
for a larger sample it is more probable that a short sequence of outliers will be falsely
detected as additional jump by jump-preserving smoothers, leading to larger average
squared distances between true and estimated function.

However, the MASE-criterion penalises estimators, which deliver good results for
the majority of the data sets, but fail occasionally, e.g. due to incorrectly detected
jumps. This becomes clear from Fig. 2.11 and 2.12, where the results for the same
data situations are presented, if the Mean Averaged Absolute Error (MAAE) and
the Median Median Absolute Error (MMAE), respectively, are used as performance
measure. Jump-preserving smoothers sometimes detect false jumps, leading to large
squared distances between true and estimated function there. In terms of the MAAE,
the DWMTM becomes the best smoother for n ≥ 140 in the situation without outliers
and for n ≥ 240 in the situation with outliers, see Fig. 2.11. In terms of the MMAE,
the DWMTM is the best smoother for all sample sizes, so using the MASE as criterion
has obviously disadvantaged the DWMTM, while Lowess has been favored.

The computation times needed by the several smoothers and CV-criteria are an-
other interesting point, see Fig. 2.13. We use R (R Development Core Team, 2011)
for our simulations. All functions for smoothers and CV except Lowess are self-made
implementations. Faster update-algorithms could be used for smoothing with a fixed
smoothing parameter, see Fried et al. (2006) for the LMH and the MMH and Bernholt
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Figure 2.11: Changes in the MAAE for different n for situations with 5 jumps of height
6 and without large outliers (left) or with 15% outliers of magnitude 192 (right).
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Figure 2.12: Changes in the MMAE for different n for situations with 5 jumps of
height 6 and without large outliers (left) or with 15%outliers of magnitude 192 (right).

et al. (2006) for the DWMTM. Note that both axes in Fig. 2.13 are on a logarith-
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Figure 2.13: Computation times for the different smoothers and CV.
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mic scale. For a large n the computation time of Lowess increases stronger than
those of the other smoothers. The larger computation times for Huber-, Tukey- and
Boente-CV are due to the calculation of the Qn.

2.4.5 Performance for regression functions with curvature

Next we consider functions which are not piecewise constant. We modify the HeaviSine-
function (Donoho and Johnstone, 1994), by including the amplitude α of the sine
function as additional parameter, f(x) = 4 sin(απ̃x), where π̃ = 3.1416.

The parameters π and γ for percentage and magnitude of the outliers as well as m
and s for number and height of the jumps are regulated as in Section 2.4.2 and 2.4.3,
respectively, so that we have the same simulation design here, using another class of
regression functions. The situations from Section 2.4.2 and 2.4.3 can be interpreted
as the special case α = 0. The sign of the jump height is always the same as the
sign of the slope of f at the jump position. We consider α ∈ {1, 2, 3, 4, 5}. Fig.
2.14 shows two data examples, each with π = 0.15, γ = 12, m = 5 and s = 6 and
amplitudes α = 2 (left) and α = 5 (right). Beside the jump-preservance, which is
more difficult in the presence of outlying sequences, the curvature seems to be an
additional problem, especially for the local constant DWMTM, what can for example
be seen at the boundaries of the true function.

Lowess, as a local linear procedure, achieves the smallest losses for this new class
of regression functions. For Lowess the Tukey-CV-criterion is again appropriate,
just like it was in the constant function case. For the local constant smoothers an
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Figure 2.14: Two data examples of the modified HeaviSine-function with 15% outliers
of magnitude 12, five jumps of height 6 and amplitudes α = 2 (left) and α = 5 (right).
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Figure 2.15: MRL-values for an increasing amplitude for moderate (first 5 amplitudes)
and large (second 5 amplitudes) jumps for the MW-median (left) and Lowess (right).

unbounded CV-criterion like L1-, L2 or Huber-CV now delivers better results than
Tukey-CV for situations, where the sine function has a large amplitude and thus a
greater impact than the outliers and the jumps. Lowess is still outperformed by robust
local constant smoothers like the MW-median, the MMH or the DWMTM in case of
large jumps or large percentages of outliers, even if the amplitude is large. For these
situations, where outliers or jumps have a greater impact than α, Tukey-CV is again
appropriate for the jump-preserving smoothers. See Fig. 2.15 for the MRL-values of
the MW-median and Lowess for small and large jumps and an increasing amplitude.

2.5 Real data analysis

Finally the cross-validated smoothers are applied to three real data sets. The results
will be shown only for two smoothers in each case.

The well-log data (O Ruanaidh and Fitzgerald, 1996) are measurements of the
nuclear magnetic response of underground rocks at 4050 time points. The underlying
function f looks piecewise constant with several jumps. Each sequence belongs to a
stratum of a single type of rock. There are also some short patches of large outliers.
While O Ruanaidh and Fitzgerald fixed the number of jumps and removed the outliers
before the data analysis, Fearnhead and Clifford (2003) used hidden Markov models
to distinguish outliers from jumps automatically with the help of hyperparameters,
which need prior knowledge about the magnitudes to discriminate between jumps
and outliers. Robust jump-preserving smoothers also work automatically, but do not
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Figure 2.16: Well-log data with a robustly and a non-robustly estimated regression
curve.

need such prior assumptions. Fig. 2.16 shows the data with a fit of the MW-median
combined with Tukey-CV and the MW-mean with L2-CV. As expected the median
preserves all important jumps and is almost uneffected by short patches of outliers,
while the MW-mean breaks down at outlying sequences. We have taken the median
here, because it works well in situations with jumps and large outliers. Again, Tukey-
CV shows good performance in such situations.

The second data set consists of 100 observations of the annual volume of discharge
from the Nile, measured from 1871 to 1970 at Aswan in Egypt. A local constant fit
seems to be adequate. Cobb (1978) recognized a decrease in the water level after
1898. There are some moderate outliers in the data. Using the results from Section
2.4.3 the MW-Median and the DWMTM, both with Tukey-CV, are jump-preserving
smoothers, which can possibly handle this situation. Comparing Fig. 2.17 (left), both
smoothers preserve the jump after 1898 (vertical solid line) well, but the DWMTM
gives a smoother curve, especially after the jump, due to the small smoothing para-
meter which is proposed by the Tukey-criterion for the MW-median.

Finally we analyse the motorcycle impact data of Schmidt et al. (1981). The 133
observations are taken from a study, where the effectiveness of the helmets in collisions
is determined. Time is measured in milliseconds (ms), head acceleration is measured
in units of g, which is 9.8 meters per second. This is a challenging situation as the
design is random, the noise heteroscedastic and the underlying function has a strong
slope at about 20 ms. We show the results for the DWMTM with 75%-LTS-CV and
Lowess with Tukey-CV in Fig. 2.17 (right). Both procedures give an adequate fit.
Even though we expect an adaptive approach to choose local window widths instead
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Figure 2.17: Nile data (left) and motorcycle data (right), both with estimated regres-
sion curves of the DWMTM and a robust competitor.

of a global one to perform even better for this data situation, a global width chosen by
classical leave-one-out-CV based on the Tukey-criterion already delivers rather good
results, except for the local extreme at about time 22. The fit of the DWMTM seems
to be better here, due to the smaller window width chosen by 75%-LTS-CV.

2.6 Conclusions

Jumps and outliers are challenges for smoothers. Both, smoothing method and cross-
validation (CV) criterion need to be chosen properly then. L1-CV is often considered
to be a robust CV-criterion, but like L2-CV, it can lead to poor results in the presence
of large outliers. In the absence of large jumps, Boente-CV with theQn scale estimator
leads to the best results among the robust criteria, as it deals well even with a large
number of outliers. If the regression function includes discontinuities, CV-criteria
based on Huber’s or Tukey’s loss function work well for jumps of arbitrary size.
Tukey-CV even delivers good results if the data are additionally contaminated by
outliers. Use of L2-CV is discouraged in the presence of large outliers or jumps.

From the smoothers considered here, Lowess with a robust CV-criterion is to
be recommended, if the contamination by outliers is moderate and the underlying
constant function has no relevant jump discontinuity. For more than 25% outliers or
for large jumps, Lowess loses its superiority and a jump-preserving smoother like the
double window modified trimmed mean (DWMTM) is preferable. This even applies
to curved functions like the sine.
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Multivariate extensions are possible, but computationally expensive, as one should
allow different window widths for all regressors. Not only the CV-criteria, but also
a reasonable preselection of tuples of bandwidths has to be considered then. Alter-
natively, existing approaches for window width selection for multivariate regression
(Kerkyacharian et al., 2001; Lafferty and Wasserman, 2008; Zhang et al., 2009) or
regression with functional data (Benhenni et al., 2007) could be robustified.

Further investigations could be made considering the window width selection for
local linear smoothers in the presence of outliers and jumps. Although our procedures
worked well for the motorcycle impact data, local linear procedures should work better
for functions with larger slopes. There are many robust regression methods (Davies et
al., 2004; Gather et al., 2006), which could be combined with the robust CV-criteria
considered here. If additionally the error terms are dependent, like in time series,
there are alternative types of CV to the classical leave-one-out-version (Francisco-
Fernandez and Vilar-Fernandez, 2005), which can also be robustified and compared.
This can provide improvements e.g. for robust time series analysis.
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Chapter 3

On robust nonparametric smoothing:
The indirect approach

3.1 Introduction

We consider a regression model

Yi = f(Xi) + Ei, i = 1, . . . , n , (3.1)

where f is an unknown piecewise continuous function, x1, . . . , xn are values of a
covariate generated from a random design X1, . . . , Xn,E1, . . . , En are i.i.d. normal
distributed errors, possibly contaminated by some outliers, and Y1, . . . , Yn are obser-
vations of a response variable measured at x1, . . . , xn, with realisation y1, . . . , yn. For
simplicity of the exposition we assume the data to be ordered according to the size
of the xi, x1 ≤ x2 ≤ . . . ≤ xn.

In this Chapter we want to find good estimations of the jump locations ξ1, . . . , ξm
of the true function f . These estimations should accomplish the following goals:

(i) The estimated number of jumps m̂ should coincide with the true m.

(ii) The estimated jump locations ξ̂1, . . . , ξ̂m̂ should be close to ξ1, . . . , ξm.

(iii) The resulting estimation f̂ should give an appropriate fit of f .

These three goals should not be treated separately, because they are interdependent.
Especially (i) and (ii) should be researched jointly, as a jump detection rule is only
good, if the true number of jumps is estimated correctly and if the true jump locations
are determined at the same time.

The proposed jump detection rules in this Chapter are constructed in the same
way, which Gijbels et al. (2007) describes as indirect approach: In a first step the jump
locations ξ1, . . . , ξm are estimated, what also delivers an estimation of the number of
jumps m. In a second step the whole support is splitted into several parts, which are
separated by the estimated jump locations. In each part of the support, f is assumed
to be continuous and estimated by a global location estimator.

To find good selection rules for different situations with outliers, we use an ap-
proach based on test statistics, which compare the location parameters between two
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samples. To test, if the function f has a jump discontinuity between the design points
xi and xi+1, i = k, . . . , n − k, we assume that the observations yi−k+1, . . . , yi are a
realisation of i.i.d. random variables with location parameter µi− and analogously
yi+1, . . . , yi+k are a realisation of i.i.d. random variables with location parameter µi+.
Then rejection of Hi

0 in the test problem

Hi
0 : µi− = µi+ vs. Hi

1 : µi− 6= µi+ , i ∈ {k, . . . , n− k} fixed (3.2)

indicates a jump discontinuity. This can be repeated for each design point xi, except
x1, . . . , xk−1, xn−k+1, . . . , xn, because we have not enough observations to the left of
xk−1 and to the right of xn−k+1, respectively. Which location measure and thus which
test statistic to use depends on further assumptions on the data. Furthermore for a
fixed n we have a different number of test problems (3.2) for different choices of k.
Thus a multiple adjustment of the level of significance by the method of Bonferroni
or Bonferroni-Holm can possibly bring an improvement over a fixed chosen level for
each test, which is independent of k.

The subscription of the observations shows that the performance of the jump
detection rule will depend on an appropriate choice of the (smoothing) parameter k.
A too large value of k can lead to non-detection of some discontinuities, e.g. if less than
k observations between two jumps are observed. Also too small choices of k can lead
to the detection of too many jumps. This implies shorter sequences of observations
and so more imprecise estimations of the true function in these sequences.

A proper choice of the parameter k can be made by cross-validation (CV). Morell
et al. (2012) compare several robust CV-criteria in the context of jump-preserving
smoothing in situations with jumps and outliers. A similar comparative study is
of interest for the indirect approach described above. Till now, there is only one
proposal, which uses CV for choosing k in the indirect approach. Gijbels and Goder-
niaux (2004a,b) take the derivative of the Nadaraya-Watson-estimator as a diagnostic
function to obtain a first rough estimation of the jump discontinuity. This rough es-
timation is then improved by a smooth estimation based on least squares in a shorter
interval around the estimated jump location. L2-CV is used to achieve the window
width with the maximal absolute value of the derivative in the first step and the
length of the interval in the second step. However, in the presence of outliers, L2-
CV delivers an inappropriate choice of k and robust CV-criteria are needed. The
behaviour of those robust CV-criteria has obviously not been investigated for the
indirect approach, yet.

Another problem in this context is that one jump can induce the rejection of more
than one null hypothesis Hi

0. Assume that we have a jump discontinuity between
the design points xi and xi+1. The null hypothesis Hj

0 may not only be rejected for
j = i, but also for other values of j in the neighborhood of i. Therefore Wu and Chu
(1993) and Qiu and Yandell (1998) proposed rules to detect the most likely jump
location points out of all candidates under the assumption that candidates, which are
too close to each other, belong to the same jump discontinuity, see Section 3.2.3 for
details. We also consider slightly modifications of the two original rules, which bring
advantages in most data situations.

Altogether there are several questions belonging to the indirect approach:

32



(a) Which two sample test statistics and corresponding smoothers work well in
robust jump detection, when outliers are observed?

(b) What is preferable for the explorative test procedures: A multiple level of sig-
nificance for the whole data set or a fixed level at each design point?

(c) Which procedure for finding the most likely candidates for a jump should be
used: The approach of Wu and Chu or the one of Qiu und Yandell?

(d) Which cross-validation criteria are appropriate to improve the jump detection?
(e) Which criteria provide information about the quality of a jump detection rule?

We will try to answer these questions in the following. Section 3.2 gives informa-
tions about the single detection rules and Section 3.3 will show the results of several
simulation studies. Section 3.4 finally concludes.

3.2 Description of the used detection rules

3.2.1 Detection rules: Test statistics

In a first step we introduce the explorative use of the two sample test statistics. For
a fixed i ∈ {k, . . . , n− k} we define two samples

S i− = {Yi−k+1, . . . , Yi} =: {Y i
1;−, . . . , Y

i
k;−} and (3.3)

S i+ = {Yi+1, . . . , Yi+k} =: {Y i
1;+, . . . , Y

i
k;+},

which consist of k i.i.d. random variables (rv), respectively. Further the rvs
Yi−k+1, . . . , Yi+k are independent altogether. Regarding model (3.1) and assuming
additionally that all expectations exist, we have

E(Yj) = E(f(Xj))︸ ︷︷ ︸
=µi−

+ E(Ej)︸ ︷︷ ︸
=0

= µi− and E(Yj′) = E(f(Xj′))︸ ︷︷ ︸
=µi+

+ E(Ej′)︸ ︷︷ ︸
=0

= µi+ , (3.4)

respectively, for j = i − k + 1, . . . , i and j′ = i + 1, . . . , i + k. We check the null
hypothesis Hi

0 of the test problem

Hi
0 : µi− = µi+ vs. Hi

1 : µi− 6= µi+ (3.5)

by testing whether a level shift occurs between the design points Xi and Xi+1. A
popular choice for this problem is the ordinary two sample t-test

T1 =
|Y i

− − Y
i

+|

Ŝi
√

2
k

, (3.6)

with Y
i

− =
1

k

k∑
j=1

Y i
j;− and Y

i

+ =
1

k

k∑
j′=1

Y i
j′;+ (3.7)

being the two sample means and the pooled empirical variance

Ŝi
2

=
1

2(k − 1)

(
k∑
j=1

(Y i
j;− − Y

i

−)2 +
k∑

j′=1

(Y i
j′;+ − Y

i

+)2

)
(3.8)
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within the two samples. Under Gaussian noise, T1 follows a t-distribution with 2(k−1)
degrees of freedom and the threshold value t1 is the (1−α

2
)-quantile of this distribution,

with α ∈ (0, 1) being the level of significance. In this situation the t-test is the best
unbiased test for Hi

0 vs Hi
1.

If outliers occur, the t-test can easily lead to a wrong decision. Ylvisaker (1977)
defines the concept of resistance to acceptance and rejection for a given test as a
similar concept of robustness like the breakdown point εN for estimators, N = 2k. The
finite sample breakdown point corresponds to the minimal fraction of modifications
in a sample which can drive the estimate to the boundaries of the parameter space.

Similarly, the resistance to acceptance ε0 corresponds to the minimal fraction k0

of modifications in the entire sample Yi−k+1, . . . , Yi+k, which leads to the acceptance
of Hi

0, independently of the 2k − k0 other observations. For T1 we have ε0(T1) = 1
2k

,
since for every k and α one outlier can change a mean to any value and can lead to
a numerator of zero and to acceptance, independently of the other observations.

Analogously the resistance to rejection ε1 is defined as the minimal fraction k1

of modifications in the entire sample Yi−k+1, . . . , Yi+k, which leads to the rejection
of Hi

0, independently of the 2k − k1 other observations. This resistance is harder to
determine, as large outliers will not only lead to a large difference of the means, but
also to a large sample variance. Furthermore finding k1 so that Hi

0 can be rejected
for all α in arbitrary samples, needs the modification of at least k1 = k observations
(Fried, 2007). Nevertheless, for a given level α fewer modifications can be enough to
exceed the critical value, see Ylvisaker (1977) for α = 0.05, where k1 = 4 outliers are
already enough to reject Hi

0 for all k ≥ 4.
Several robust alternatives to the t-test are presented in the literature. One idea

is to replace the low breakdown-point estimators Y
i

−, Y
i

+ and Ŝi, respectively, by
robust estimators. Yuen and Dixon (1973) introduced a trimmed t-test:

T2 =
|Y i

$;− − Y
i

$;+|

Ŝi$

√
1

(k−2ϑ)(k−2ϑ−1)

, (3.9)

with $ ∈ (0, 0.5) being a trimming factor, defining the number ϑ = bk$c of obser-
vations, which is trimmed away, and correspondingly the trimmed means

Y
i

$;− =
1

k − 2ϑ

k−ϑ∑
j=ϑ+1

Y i
(j);− and Y

i

$;+ =
1

k − 2ϑ

k−ϑ∑
j′=ϑ+1

Y i
(j′);+ (3.10)

as well as the winsorised sum of squared deviations to the trimmed means

Ŝi$
2

= ϑ(Y i
(ϑ+1);− − Y

i

$;−)2 +
k−ϑ∑
j=ϑ+1

(Y i
(j);− − Y

i

$;−)2 + ϑ(Y i
(k−ϑ);− − Y

i

$;−)2

+ ϑ(Y i
(ϑ+1);+ − Y

i

$;+)2 +
k−ϑ∑

j′=ϑ+1

(Y i
(j′);+ − Y

i

$;+)2 + ϑ(Y i
(k−ϑ);+ − Y

i

$;+)2 .

The winsorised mean delivers better results than the trimmed mean at the Gaussian
distribution, but for heavy-tailed distributions, where robust methods are necessary,
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the trimmed mean is often more efficient (Tukey and McLaughin, 1963). For stan-
dardisation of the trimmed mean the winsorised variance is more appropriate than
the trimmed variance (Tukey and McLaughin, 1963), what explains the combination
from above. We choose $ = 0.25 to compromise between robustness and efficiency.

Yuen and Dixon (1973) showed that under normality for sample sizes k ≥ 7, the
empirical distribution of T2 can be approximated by a t-distribution with 2(k−2ϑ−1)
degrees of freedom. So for sample sizes large enough, the realised value t2 can be
compared to the (1 − α

2
)-quantile of this t-distribution. For sample sizes k < 7 one

should simulate the empirical (1− α
2
)-quantiles of T2 and compare it to the observed

value of t2. Under Gaussian noise the power efficiency of T2 compared to T1 is nearly
100(1− 2ϑ

3k
)%. Under symmetric heavy tailed noise the trimmed version delivers better

results than the original t-test. The approximation seems to be appropriate for an
adequate relation between trimmed sample size and proportion of outliers.

Fried and Dehling (2011) introduced three alternative tests, based on medians and
Hodges-Lehmann-estimators. All tests are distribution free. The first test statistic

T3 =
|Ỹ i

0.5;− − Ỹ i
0.5;+|

Med

({
|Yi−k+j − Ỹ i

0.5;−|
}
{j=1,...,k}

,
{
|Yi+j′ − Ỹ i

0.5;+|
}
{j′=1,...,k}

) (3.11)

is based on a comparison of medians. It is asymptotically normally distributed, but
for sample sizes k ≤ 20 Fried and Dehling (2011) suggest to use permutation tests to
derive critical values for T3. The possible number of all permutations if the sample
is splitted into two parts of size k is

(
2k
k

)
/2 and so increases with an exponential

growth rate for an increasing k. It is recommended to draw 1000 random samples,
to calculate the value of T3 for each sample and to use the (1 − α

2
)-quantile of the

empirical distribution as critical value.
Fried and Dehling (2011) also considered two tests based on Hodges-Lehmann

estimators (HLE; see Hodges and Lehmann 1963) instead of medians. The first is
based on the difference of the two one-sample-HLEs, which are defined as

Ŷ i
1;− = Med

({
Yj1 + Yj2

2

}
{i−k+1≤j1<j2≤i}

)
and (3.12)

Ŷ i
1;+ = Med

({
Yj′1 + Yj′2

2

}
{i+1≤j′1<j′2≤i+k}

)
.

The test statistic is given by

T4 =
|Ŷ i

1;− − Ŷ i
1;+|

Med

({
|Yi−k+j̃ − Ỹ i

0.5;j̃± − Yi−k+j̃′ + Ỹ i
0.5;j̃′±|

}
{1 ≤ j̃ < j̃′ ≤ N}

) . (3.13)

Note that the scale estimator in the denominator compares all pairs of the N obser-
vations of both samples, corrected with the respective sample median

Ỹ i
0.5;j̃± =

{
Ỹ i

0.5;−, j̃ ≤ k

Ỹ i
0.5;+, j̃ > k

and Ỹ i
0.5;j̃′± =

{
Ỹ i

0.5;−, j̃
′ ≤ k

Ỹ i
0.5;+, j̃

′ > k
(3.14)
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to yield an appropriate estimation of the variability within the samples.
The next test uses the two-sample-HLE (Hodges and Lehmann, 1963):

T5 =
|Med({Yi−j+1 − Yi+j′}{j=1,...,k, j′=1,...,k})|

Med

({
|Yi−k+j̃ − Ỹ i

0.5;j̃± − Yi−k+j̃′ + Ỹ i
0.5;j̃′±|

}
{1 ≤ j̃ < j̃′ ≤ N}

) . (3.15)

The two-sample-HLE is the median of all differences between two observations of
different samples. It corresponds to the value, which is needed to obtain the same
or at least a most similar rank-sum in both samples. For both tests T4 and T5 the
permutation principle should be used again for sample sizes k ≤ 12 to derive critical
values as the asymptotic test versions do not achieve approximately correct levels of
significance there (Fried and Dehling, 2011).

In the following we will slightly differ from Fried and Dehling (2011) and use
the two sample-MAD-scale-measure from equation (3.11) for standardisation of T4

and T5. It achieves better results, when large magnitudes or percentages of outliers
are observed and it takes less computation time. Also, as the computation of the
cross-validated smoothers would take too much time, we will not use the permutation
principle, but compute exact critical values of T3, T4 and T5, respectively, under the
normality assumption, as in a first step we will only consider normally distributed
error terms, which are possibly contaminated by outliers.

Another test based on ranks is the well-known Wilcoxon rank-sum test

T6 =
k∑
j=1

N∑
j̃=1

1(0,∞)(Yi−k+j − Yi−k+j̃),

which sums the ranks of the first sample, when the ranks are calculated over all N =
2k observations Yi−k+1, . . . , Yi+k. The critical value of T6 can be derived from the exact
distribution, which is easy to calculate, because under Hi

0 all possible permutations
of the N ranks have the same probability.

Another linear rank statistic is the one used in the median-test

T7 =
k∑
j=1

1(0,∞)(Yi−k+j − Ỹ i
0.5), (3.16)

which calculates the median Ỹ i
0.5 over all N observations Yi−k+1, . . . , Yi+k and counts

the number of observations from the first sample, which exceed Ỹ i
0.5. T7 follows a

hypergeometric distribution under Hi
0 with k drawings, successes and failures, respec-

tively. Its (1− α
2
)-quantile can be used as threshold-value.

Fried and Dehling (2011) found the two tests T4 and T5 based on HLEs to perform
better than the related linear Wilcoxon rank-statistic T6, when the error distribution
is heavy-tailed or outliers occur, while being similarly good for Gaussian noise. T5

performed slightly better than T4 in their simulations. Similar results were observed
for the median-based tests T3 and T7, where the linear rank-statistic performed inferior
to the median-comparison for all considered distributions.
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3.2.2 Detection rules: Adjustment of the level of significance

Beside the test-statistic, there are other important questions to answer in data-based
jump detection. The first important question is the value of the significance level
α, which has to be chosen before the data analysis. For a sample size of n and
a smoothing parameter k we have n − 2k + 1 test problems for the same data set
and so the need of adjusting α due to a multiple test problem. Even if we use the
test procedures from Section 3.2 only as an explorative tool to find candidates for
the jump positions, an adjusted level chosen by the procedures of e.g. Bonferroni or
Bonferroni-Holm (Holm, 1979) could lead to a better comparability of data situations
with different sample sizes n or parameter values k. We compare a fixed level of
significance of αf = 0.01 with an adjusted level αb (by the Bonferroni-method) and αh
(by the Bonferroni-Holm-method), both with a global level of significance of αg = 0.2.

Given a multiple comparison with n− 2k + 1 test problems, the method of Bon-
ferroni simply splits the global level αg uniformly to all test problems, leading to
αib = αg

n−2k+1
, i = k, . . . , n−k. So we will reject Hi

0 for each i, where the p-value to the

realised test statistic is smaller than αib. This correction rule is conservative, leading
to a smaller power of the related test and so possibly to a smaller detection rate. We
will also consider the less conservative adjustment rule of Bonferroni-Holm. Here in
a first step the p-values pi of all n− 2k + 1 test problems are sorted and the ordered
p-value p(i′) is compared with αi

′

h = αg
n−2k+2−i′ for all i′ ∈ {1 . . . , n − 2k + 1}, until

for the first i′ the related test can not be rejected. Then all the following tests with
larger p-values will not be rejected, too.

So for Hi
0 with the smallest pi, α

i
b and αih are the same, while for each of the other

test problems, αih will have a greater value, so that the Bonferroni-Holm-method can
find more jump location candidates than the Bonferroni-method in a given data set.

3.2.3 Detection rules: Selection of the jump positions

If a jump between xi and xi+1 exists, we will not only reject the corresponding Null
Hi

0 with high probability, but also Hj
0, j = i − k + 1, . . . , i − 1, i + 1, . . . , i + k − 1,

as one of the related samples Sj− and Sj+ includes at least one observation from the
sample S i− before the jump and at least one observation from the sample S i− after the
jump. Therefore we have to eliminate some detected jump-candidates. Intuitively,
the probability of a rejection will be generally decreasing, if j drifts further away
from i. We denote Υi = {xi−k+1, . . . , xi, xi+1, . . . , xi+k} as the neighbourhood of xi
and assume xi to be the position of the true jump, if Hi

0 is rejected.
Wu and Chu (1993) propose a rule to eliminate close-by jump-candidates for jump

detection with kernel-estimators, which we will modify here for an arbitrary testing
procedure Ta, e.g. T1, . . . , T7, with its critical value c

1−αi
2

;a
and αi chosen fixed or

multiple adjusted by Bonferroni or Bonferroni-Holm. Let

Ψa
1 = {i ∈ {k, . . . , n− k} : |Ta(Υi)| > c

1−αi
2

;a
} (3.17)

be the set of indices belonging to the design points, for which Hi
0 can be rejected.

So Ψa
1 includes the indices of all possible candidates for a jump of f , detected via
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test-procedure Ta. Following Wu and Chu (1993) we use the algorithm below for
estimating the true jumps within the interval [xk, xn−k], starting with b = 1 and
assuming that Ψa

1 6= ∅, otherwise the algorithm will not detect any jump for the
given data set. The algorithm uses the following steps:
Step 1: Find the index ψb = arg max

i∈Ψab

|Ta(Υi)|, for which the corresponding Hi
0 is most

clearly rejected (i.e. the index with the smallest p-value).

Step 2: Estimate the corresponding jump location ξ̂b = xψb .
Step 3: Define a new set Ψa

b+1 by Ψa
b+1 = Ψa

b \ {ψb − 2k, . . . , ψb + 2k}
Step 4: Stop if Ψa

b+1 = ∅, otherwise set b = b+ 1 and go back to Step 1.
This algorithm leads directly to estimations of the number of jumps m̂ = b and of
the m̂ jump locations ξ̂1, . . . , ξ̂m̂. Assuming again that a jump is detected between
xi and xi+1, the subtracted value 2k from Step 3 causes that no other jump location
will be detected in the interval [xi−2k, xi+2k] and possible rejections of

Hj
0, j = i− 2k, . . . , i− 1, i+ 1, . . . , i+ 2k (3.18)

will not be taken into further consideration.
As mentioned before, a jump between xi and xi+1 will not affect the test statistics

related to Hj
0, j = i − 2k, . . . , i − k and j = i + k, . . . , i + 2k, so the rule of Wu and

Chu (1993) is rather restrictive and we also consider an alternative set Ψ′,ab+1 in Step
3 by defining Ψ′,ab+1 = Ψ′,ab \ {ψb− k, . . . , ψb + k}. We will denote the estimators of the

resulting jump locations by ξ̂′1, . . . , ξ̂
′
m̂ and call the two procedures WC2 and WC1,

depending on the number of subtracted observations 2k and 1k, respectively.
An alternative algorithm was introduced by Qiu (1994) and used for local polyno-

mial jump detection in nonparametric regression by Qiu and Yandell (1998). Assume
that Ψa

1 has cardinality card(Ψa
1) = ζ and its elements are given by k ≤ ϕ1 < . . . <

ϕζ ≤ n − k. We start with the smallest index ϕ1 and put indices, which are very
close together and possibly belong to the same jumps, in the same subset, until the
last index ϕζ is used. Formally denoted:

If indices r1;b̃ and r2;b̃ exist with k ≤ r1;b̃ ≤ r2;b̃ ≤ n− k, such that

ϕr1;b̃
− ϕ(r1;b̃−1) > 2k (3.19)

ϕ(r2;b̃+1) − ϕr2;b̃
> 2k

ϕκ+1 − ϕκ ≤ 2k, for r1;b̃ ≤ κ ≤ (r2;b̃ − 1),

then r1;b̃ and r2;b̃ give the smallest and the largest index of subset b̃, respectively, with

Φr1;b̃,r2;b̃,b̃
= {ϕr1;b̃

, . . . , ϕr2;b̃
} ⊆ Ψa

1 and ξ̂1;b̃ =
xϕr

1;b̃
+ xϕr

2;b̃

2
, b̃ = 1, . . . , m̃ (3.20)

as the related m̃ estimators of the jump-locations, whereas r1;1 = ϕ1 and r2;m̃ = ϕζ .
In case that r1;b̃ = r2;b̃ the resulting subset Φr1;b̃,r2;b̃,b̃

includes only one point and

ξ̂1;b̃ = xϕr
1;b̃

is the estimated jump location of the subset. We use m̃ as estimated

value for m and ξ̂1;1, . . . , ξ̂1;m̃ as estimators for the m jump locations ξ1, . . . , ξm.
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Instead of taking the middle point ξ̂1;b̃ from each subset Φr1;b̃,r2;b̃,b̃
, as proposed by

Qiu and Yandell (1998), we also consider the two alternatives

ξ2;b̃ =
1

card(Φr1;b̃,r2;b̃,b̃
)

∑
j∈Φr

1;b̃
,r

2;b̃
,b̃

xϕj (3.21)

and
ξ̃3;b̃ = xϕ?r

1;b̃
,r

2;b̃
, with ϕ?r1;b̃,r2;b̃

= arg max
j∈Φr

1;b̃
,r

2;b̃
,b̃

|Ta(Υj)|, (3.22)

which are the average over all candidates from Φr1;b̃,r2;b̃,b̃
and the candidate of Φr1;b̃,r2;b̃,b̃

with the smallest p-value, respectively. Like we have proposed for the method of Wu
and Chu (1993), we also compare the procedure of Qiu and Yandell (1998) in a less
restrictive way, by using the distance k instead of 2k, to find the subsets of indices.
We will denote the six different rules with QY11, QY12, QY13, QY21, QY22 and
QY23, the first digit gives the minimal length 1k or 2k between two subsets and the
second digit gives the used method to calculate the jump candidate of a given subset.

3.2.4 Detection rules: Robust cross-Validation

In the following we call a detection rule a combination of one of the two sample test
statistics Ta, a = 1, . . . , 7 from Section 3.2.1 with a level of significance chosen fixed or
by Bonferroni or Bonferroni-Holm and one of the methods to find the jump locations
within all candidates (see Section 3.2.3). If we want to detect a jump between xi and
xi+1, i = k, . . . , n−k, then the value of the test statistic and so the decision, whether
a jump is found at position xi, depends on the parameter k. If we assume i.i.d. rvs
in both samples, the test efficiency will increase for an increasing sample size k. But
if at least one of the two samples contains outliers or observations before and after a
jump, what is more probable for an increasing value of k, this assumption is no longer
fulfilled and the power of the test can decrease.

One way to choose k adaptively, i.e. based on the data, is cross-validation (CV). In
classical leave-one-out-CV for each point (xi, yi) the function value f(xi) is estimated
with the information of all observations except (xi, yi). The distance between yi and

the f̂(xi) is then used to find a good selection of the smoothing parameter k. For the
indirect approach we have to exclude the related observation (xi, yi) already before
the jump locations are determined:

For a given k and a given detection rule we consider the sample without (xi, yi).

From the remaining n − 1 observations we estimate the jump-locations ξ̂i,k1 , . . . , ξ̂i,km̂
and divide the design points and observations into the m̂+ 1 subsets

X i
r = {xj, j = 1, . . . , i− 1, i+ 1, . . . , n : ξ̂i,kr−1 < xj ≤ ξ̂i,kr } and (3.23)

Y ir = {yj, j = 1, . . . , i− 1, i+ 1, . . . , n : xj ∈ X i
r}, r = 1, . . . , m̂+ 1,

with ξ̂i,k0 = 0 and ξ̂i,km̂+1 = 1 and consider r with xi ∈ X i
r . The function value f(xi) can

then be estimated by f̂−i;k(xi) = Ξ̃a(Y ir), with Ξ̃a being a location estimator related to
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the test statistic Ta. For the t-test T1, Ξ̃1 is the sample mean, for the trimmed t-test
T2, Ξ̃2 is the 25%-trimmed-mean, for the median comparison T3 and the median-test
T7, Ξ̃3 = Ξ̃7 is the sample median and for the two Hodges-Lehmann-tests T4 and T5

and the Wilcoxon-rank-sum-test T6, Ξ̃4 = Ξ̃5 = Ξ̃6 is the one-sample HLE. Estimating
f̂−i;k(xi) for each i gives us the n cross-validated residuals êi;k = yi − f̂−i;k(xi).

We consider five different CV-criteria in the following. We refer to the results of
Chapter 2, where several CV-criteria were compared for jump-preserving smoothing.
Beside the common L2-CV

LSCV (k) = arg min
k

1

n

n∑
i=1

(
yi − f̂−i;k(xi)

)2

= arg min
k

1

n

n∑
i=1

ê 2
i;k (3.24)

we also include L1-CV

LADCV (k) = arg min
k

1

n

n∑
i=1

|yi − f̂−i;k(xi)| = arg min
k

1

n

n∑
i=1

|êi;k|, (3.25)

as it is often used in connection with the direct approach (Yang and Zheng, 1992;
Wang and Scott, 1994), see Section 2.3 for details. Both L2- and L1-CV have problems
in robust jump-preserving, if large outliers are observed. Therefore it is of interest,
how they perform in the indirect approach considered here.

To include an alternative with a highly robust criterion, we also consider median-
CV (Zheng and Yang, 1998)

MEDCV (k) = arg min
k

Med (|ê1;k|, |ê2;k|, . . . , |ên;k|) . (3.26)

The last two criteria are taken, because of their good performance in the direct
approach in situations with outliers and jumps. We consider one M-CV-criterion

MρCV (k) = arg min
k

1

n
σ̂2
k

n∑
i=1

ρ

(
êi;k
σ̂k

)
. (3.27)

by using the redescending Tukey-ρ-function

ρT (z) =

(
1−

(
1−

( z

4.685

)2
)3
)
1[0,4.685](|z|) + 1(4.685,∞)(|z|) (3.28)

and the approach of Bianco and Boente (2006) and Boente and Rodriguez (2008)

BOECV (k) = arg min
k

Med2 (ê1;k, . . . , ên;k) + Q2
n (ê1;k, . . . , ên;k) , (3.29)

which we will call again Boente-CV.
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3.3 Comparison of the detection rules

3.3.1 Measuring the quality of a jump detection rule

In the following we introduce some measures of accuracy for estimating the true
number of jumps m, the jump locations ξ1, . . . , ξm and the true function f . Imagine
we have ν replications of the same data situation and each replication consists of n
observations. For the interesting quantities and a given jump detection rule we obtain

m̂λ, ξ̂λ1 , . . . , ξ̂
λ
m̂λ and f̂(xλi ), λ = 1, . . . , ν, i = 1, . . . , n (3.30)

as estimations. We further denote

Xr = {xi, i = 1, . . . , n : ξ̂r−1 < xi ≤ ξ̂r} and

Yr = {yi, i = 1, . . . , n : xi ∈ Xr}, r = 1, . . . , m̂λ + 1, (3.31)

with ξ̂0 = 0 and ξ̂m̂λ+1 = 1, as the subsets that include all design points and the
corresponding observations, respectively, belonging to the design interval between
two estimated subsequent jumps. The estimation of f at position xi is done again
with a location estimator Ξ̃a, a = 1, . . . , 7, applied to that Yr with ξ̂r−1 < xi ≤ ξ̂r.

For the true number of jumps m, two things are of interest here. Firstly, how
often is m estimated correctly and secondly, how far are the estimations away from
m on average . Let m̂λ be the estimated number of jumps for the λ-th data set, then

∆1 =
1

ν

ν∑
λ=1

1{0}(|m̂λ −m|) (3.32)

is the relative frequency that the estimated number of jumps is equal to m and

∆2 =
1

ν

ν∑
λ=1

|m̂λ −m| (3.33)

measures the absolute mean distance between true and estimated number of jumps. It
is reasonable to consider both measures, as we are generally interested in estimating
the true m correctly as often as possible (what is measured by ∆1), but without
taking a too large loss, if m and m̂λ are different (what will be measured by ∆2).

On the other hand we are interested in a good estimation of the true jump locations
ξ1, . . . , ξm. Again two issues are of interest here. Firstly, we want our estimated jump
locations to be as close as possible to the true ones. Secondly, we want as few as
possible wrongly detected jump locations. For the first question we consider

∆̌λ =
1

m

m∑
ι=1

∆̌λ
ι , with ∆̌λ

ι = 1{1,...,m̂λ}

 m̂λ∑
ι′=1

1Jλι (ξ̂λι′ − ξι)

 (3.34)

with the interval

Jλι = [min(ξι − 2δλ, xλξι;−),max(ξι + 2δλ, xλξι;+)], (3.35)
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which includes the average distance between two neighboured design points

δλ =
1

n− 1

n−1∑
i=1

(
xλi+1 − xλi

)
(3.36)

as well as xλξι;− and xλξι;+, which are the largest design point smaller than the jump
ξι and the smallest design point larger than ξι, respectively. Preliminary calculations
show that using [ξι−δλ, ξι+δλ] deliver a too hard criterion, while [ξι−2δλ, ξι+2δλ] gives
better possibilities for comparison. As we work with a random design it is possible
that no design point is in the latter interval. To prevent this case, we choose Jλι from
(3.35), what allows at least one design point before and after ξι, respectively, to be
detected as jump candidate without taking the risk to obtain a too short interval.

The value ∆̌λ measures the relative frequency of the detected jumps in sample λ.
A jump ξι is regarded as detected, if at least one of the estimated jump locations is
within Jλι . The average value

∆3 =
1

ν

ν∑
λ=1

∆̌λ =
1

νm

ν∑
λ=1

m∑
ι=1

∆̌λ
ι (3.37)

gives the mean relative frequency of the detected jumps over all ν data sets. If m̂λ = 0
we do not detect any jump in this data set and to that effect is ∆̌λ = 0.

Detection rules, which lead to similar values of ∆3, may differ in the number
of estimated jump locations, which are too far away from any true jump. As we
also want to prevent incorrectly detected jump locations, we consider an alternative
measure, which penalises estimated values ξ̂λι′ , which have too large distances to all
true jump locations, namely

∆4 =
1

ν̂

ν∑
λ=1

∆̂λ with ∆̂λ = max
ι′∈{1,...,m̂λ}

min
ι∈{1,...,m}

|ξ̂λι′ − ξι| . (3.38)

∆4 calculates the averaged distance of the estimated jump location, which has the
largest distance to its closest ξι. The max-min value is advantageous over an simple
average, as we are especially interested in those jump locations, which do not belong
to any ξι, as they have a too large distance to any true jump location.

The last question is how good the true f is fitted, after a detection rule with
subsequent estimation f̂ is performed. The performance of f̂ for a single data set is
measured by the Averaged Squared Error (ASE; see Haerdle 2002, pp. 90)

∆̃λ
A =

1

n

n∑
i=1

(
f̂(xλi )− f(xλi )

)2

. (3.39)

and for all ν data sets by the mean ASE-value (MASE)

∆A =
1

ν

ν∑
λ=1

∆̃λ
A =

1

νn

ν∑
λ=1

n∑
i=1

(
f̂(xλi )− f(xλi )

)2

(3.40)

For the following simulations we take n = 200 and ν = 100 for all data situations.
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3.3.2 Planning and evaluating the simulation design

We consider model (3.1) with X1, . . . , Xn being drawn from an uniform random de-
sign, i.e. X1, . . . , Xn being i.i.d. uniformly distributed on the interval [0, 1]. The
noise terms E1, . . . , En are i.i.d. N (0, 1) with some outliers at positions chosen at
random. For obtaining π percent outliers max{bnπc, 1} of all n positions are drawn
without replacement. At outlier positions, the value ±γ is added to the noise, with
the same sign as the closest level shift to produce a more challenging situation for
the tests and so for the jump detection rules. The regression function f is chosen as
piecewise constant with m jumps, each of height s. The positions ξ1, . . . , ξm of the
discontinuities within the interval (0,1) are fixed.

As we have seen in the Sections before, there are many options in constructing a
jump detection rule. If we only consider the methods described here, we have

(1) seven test procedures to find possible jump candidates: T1, . . . , T7

(2) three ways to choose the level of significance: αf , αb and αh
(3) eight rules to select jump candidates: the method of Wu and Chu and three

variants of the method of Qiu and Yandell, each with a distance k and 2k
(4) five CV-criteria to select k: L2-, L1-, median-, Tukey- and Boente-CV.

implying q = 840 possible jump detection rules altogether.
To compare these 840 detection rules for p different data situations, we do the

comparison in two steps. Firstly we compare for each combination of test statistic
and CV-criteria, the performance of the several choices of α and the jump candidate
selectors. After finding a recommendation of (2) and (3) for each cross-validated test
statistic, we compare the remaining 35 detection rules in a second step.

These two comparisons will be made for some sets of data situations jointly. Each
set consists of nine different data situations, as we vary m ∈ {1, 2, 5} and s ∈ {1, 3, 6}.
For m = 1 the jump is located at ξ1 = 0.4, for m = 2 the second jump is located at
ξ2 = 0.6 and for m = 5 we fix ξ1 = 0.2, ξ2 = 0.4, ξ3 = 0.55, ξ4 = 0.7, and ξ5 = 0.85.
The sets differ in the percentages and magnitudes of the outliers as we consider the
cases (π, γ) with (0.01, 3), (0.05, 12), (0.15, 12), (0.30, 12), (0.15, 48) and (0.15, 192).

In order to simplify the evaluation for a set, we define a summary measure to
compare the relative performance of the detection rules. For the η-th data situation
and a given accuracy measure ∆, we consider the relative loss

Λυ
η;1 =

∆
υ

η −∆
?

η;1

∆
?

η;1

and Λυ
η;2 = ∆

?

η;2 −∆
υ

η , (3.41)

respectively, depending on the measure ∆. If small values for ∆ are desirable, like
for ∆2,∆4 and ∆5, Λυ

η;1 is the relative loss, if large values for ∆ are desirable, like for

∆1 and ∆3, Λυ
η;2 is the relative loss. ∆

υ

η is the realised value of ∆ for data situation
η and estimator υ, η = 1, . . . , p and υ = 1, . . . , q. The values

∆
?

η;1 = min
(

∆
1

η, . . . ,∆
q

η

)
and ∆

?

η;2 = max
(

∆
1

η, . . . ,∆
q

η

)
(3.42)
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give the criterion value of the best estimator for the given data situation η, depending
on ∆. Values of Λυ

η close to zero indicate that detection rule υ performs almost as
well as the best detection rule for situation η. We use the mean relative loss (MRL)

Λ
υ

1 =
1

p

p∑
η=1

Λυ
η;1 and Λ

υ

2 =
1

p

p∑
η=1

Λυ
η;2 (3.43)

as global performance measure in the comparison for the included data situations for
the accuracy measures ∆c, c = 1, . . . , 4, A for the different sets of data situations.

3.3.3 Choosing the level of significance and
the selection criterion for the jump candidates

In a first step we will analyse the performance of the different combinations of choosing
the level of significance α and selecting good jump candidates for the different cross-
validated test procedures. We call the alternatives of choosing the level of significance
α-selectors and the procedures of Wu and Chu (1993) and Qiu and Yandell (1998)
jump-selectors in the following. For this first comparison, the MRL (3.43) based on
all 54 data situations of the six sets described in Section 3.3.2 will be calculated for
each accuracy measure ∆c, c = 1, . . . , 4, A. For each of these measures, we will only
present the graphic of one CV-criterion for four different tests and comment shortly
the results for the other cross-validated test statistics. The following results show
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Figure 3.1: MRL in ∆1 for the trimmed t-test (left) and the Wilcoxon-test (right),
each with Tukey-CV.
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Figure 3.2: MRL in ∆1 for the tests based on HLEs T4 (left) and T5 (right), each
with Tukey-CV.

that for the different criteria ∆c we gain different recommendations of α- and jump-
selectors. Note that we use a logarithmic scale for the ordinate, because we want to
visualise differences among the better detection rules.

For the relative proportion of data sets ∆1 with a correctly estimated number of
jumps m, a procedure with a smaller distance 1k is preferable. For the t-test, the
Wilcoxon-test and the two-sample-HLE test, the rule of Qiu and Yandell is preferable,
while the approach of Wu and Chu is better for the trimmed t-test, the median-test
and the two robust tests based on the comparisons of one-sample medians and HLEs.
An adjusted α delivers smaller losses for the t-tests and the rank tests, but for the
three tests of Fried and Dehling, the fixed choice of α is appropriate. Compare Fig.
3.1 and Fig. 3.2 for the results of four tests, each combined with Tukey-CV.

Considering the mean absolute distance ∆2 between true and estimated number
of jumps, the t-tests and the rank tests perform best, if one of the procedures of Qiu
and Yandell with the smaller choice 1k and an adjusted α is used. See Fig. 3.3 for one
cross-validated trimmed t-test and Wilcoxon-test, respectively. For the three tests of
Fried and Dehling, the procedure of Wu and Chu, again with the smaller distance 1k
and α selected by the Bonferroni- or Bonferroni-Holm-method is better, see Fig. 3.4.

For the relative proportion ∆3 of detected true jump locations, all cross-validated
tests have smaller loss values, if the fixed chosen α = 0.01 is considered as α-selector.
However, for each test another jump-selector seems to be advantageous, but the
differences in the MRL-values are rather small. So it seems not to be crucial for ∆3,
which jump-selector to use. See Fig. 3.5 for two cross-validated linear rank tests and
3.6 for two cross-validated tests of Fried and Dehling.
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Figure 3.3: MRL in ∆2 for the trimmed t-test (left) and the Wilcoxon-test (right),
each with Tukey-CV.
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Figure 3.4: MRL in ∆2 for the tests based on differences of medians T3 (left) and
HLEs T4 (right), each with Tukey-CV.
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Figure 3.5: MRL in ∆3 for the Wilcoxon-test (left) and the median-test (right), each
with Tukey-CV.
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Figure 3.6: MRL in ∆3 for the tests based on differences of medians T3 (left) and
HLEs T4 (right), each with Tukey-CV.
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Analysing the maximal distance ∆4 of an estimated jump location to a true loca-
tion ξι, a fixed value of α performs rather poorly for all tests. The criterion QY23,
which uses the smallest p-value of a subset and a distance of at least 2k points between
two subsets, delivers one of the smallest MRL-values for all test-CV-combinations (see
Fig. 3.7 for two examples), except the three tests of Fried and Dehling, where again
the jump-selector WC1 delivers the smallest MRL, see Fig. 3.8.

Even if the primary aim of the indirect approach is a good estimation of the jump
locations, it is also of interest to compare the resulting estimations of f via the MASE
∆A. The results of four tests combined with Tukey-CV are shown in Fig. 3.9 and 3.10.
The jump-selectors based on the rule of Wu and Chu perform best for all tests. WC1
delivers the smallest loss for all tests, except the two t-tests, where WC2 is superior.
Again a multiple adjusted level α delivers smaller losses than the fixed chosen α.

A comparison of the MRL, calculated over all measures ∆c, c = 1, . . . , 4, A, brings
the following recommendations: While we observe a smaller loss for the t-tests and
the linear rank tests, if the procedure of Qiu and Yandell (1998) is used, the three
robust tests of Fried and Dehling (2011) show a better performance with the method
of Wu and Chu (1993). For Qiu and Yandell’s approach, we observe smaller losses for
our modifications in (3.21) and (3.22) than for the original proposal (3.20) of Qiu and
Yandell in most of the data situations. The proposal with the smallest p-value (3.22)
performs slightly better. For the t-tests, a larger distance 2k is preferable, while for
the other tests the distance 1k is used. This means that for the t-tests we use QY23,
for the tests T3, T4 and T5 we use WC1 and for the linear rank tests we use QY13
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Figure 3.7: MRL in ∆4 for the trimmed t-test (left) and the median-test (right), each
with Tukey-CV.
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Figure 3.8: MRL in ∆4 for the tests based on differences of medians T3 (left) and
based on the median difference T5 (right), each with Tukey-CV.

QY11 QY12 QY13 WC1 QY21 QY22 QY23 WC2
Selection rule for jump positions

Lo
ga

rit
hm

ic
 M

R
L 

in
 ∆

A
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

QY11 QY12 QY13 WC1 QY21 QY22 QY23 WC2
Selection rule for jump positions

Lo
ga

rit
hm

ic
 M

R
L 

in
 ∆

A
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

QY11 QY12 QY13 WC1 QY21 QY22 QY23 WC2
Selection rule for jump positions

Lo
ga

rit
hm

ic
 M

R
L 

in
 ∆

A
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0 α fixed
α Bonferroni
α Bonferroni−Holm

QY11 QY12 QY13 WC1 QY21 QY22 QY23 WC2
Selection rule for jump positions

Lo
ga

rit
hm

ic
 M

R
L 

in
 ∆

A
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

QY11 QY12 QY13 WC1 QY21 QY22 QY23 WC2
Selection rule for jump positions

Lo
ga

rit
hm

ic
 M

R
L 

in
 ∆

A
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

QY11 QY12 QY13 WC1 QY21 QY22 QY23 WC2
Selection rule for jump positions

Lo
ga

rit
hm

ic
 M

R
L 

in
 ∆

A
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

α fixed
α Bonferroni
α Bonferroni−Holm

Figure 3.9: MRL in ∆A for the trimmed t-test (left) and the median-test (right), each
with Tukey-CV.
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Figure 3.10: MRL in ∆A for the tests based on HLEs T4 (left) and T5 (right), each
with Tukey-CV.

for the following analysis. For all tests we use an adjusted level of significance, for
the t-tests and the linear rank tests the method of Bonferroni is superior, while for
the three tests of Fried and Dehling the procedure of Bonferroni and Holm performs
slightly better. With these presettings we will continue in the following.

3.3.4 Comparison of the cross-validated test statistics

This Section includes the final comparison of the cross-validated test statistics with
the previous setted α- and jump-selectors from Section 3.3.3. The estimations of the
true number of jumps m, the true locations ξ1, . . . , ξm and the true f are compared.

To compare the estimations of m of the different cross-validated test statistics, the
accuracy measures ∆1 and ∆2 are used. Fig. 3.11 shows the MRL-values of the set
(0.01,3) without large outliers. While the Wilcoxon-test performs best in terms of the
relative proportion of a correctly estimated m, see Fig. 3.11 (left), the two tests based
on HLEs deliver smaller loss values in terms of the mean absolute distance of m̂ to
m, see Fig. 3.11 (right). Tukey-CV seems to be an appropriate choice in both cases.
The different MRL-values for ∆1 and ∆2 are due to the situations with a small jump
height s = 1 and more than one jump. Here the Wilcoxon-test is the only test, which
gains a detection rate over 50% and 5% of the true m = 2 and m = 5, respectively,
leading its much smaller loss values for ∆1. All other tests underestimate m here.
However, if the true m is missed, the two tests based on HLEs are most reliable to
find an estimation close to m, especially in situations with a larger jump height.
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Figure 3.11: MRL in ∆1 (left) and ∆2 (right) for the situation set (π = 0.01, γ = 3).
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Figure 3.12: MRL in ∆1 (left) and ∆2 (right) for the situation set (π = 0.15, γ = 192).
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Figure 3.13: MRL in ∆3 for the situation sets (0.01, 3) (left) and (0.15, 192) (right).
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Figure 3.14: MRL in ∆4 for the situation sets (0.01, 3) (left) and (0.15, 192) (right).
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For large outliers, see e.g. the results for the set (0.15,192) in Fig. 3.12, the
trimmed t-test, the test based on the two-sample-HLE-and the median-test perform
best. Tukey- and Boente-CV are superior here, while the unrobust L2-CV performs
poorly in the presence of large outliers. Due to their loss-values, the t-test and the
Wilcoxon-test do not give reliable estimations of m, if large outliers are observed.

Looking at the relative proportion ∆3 of the detected jumps, we find in the situ-
ation without large outliers, see Fig. 3.13 (left), smaller loss values, when the linear
rank-tests or the t-test is used. When large outliers are included the same tests than
in 3.12 are preferable. Altogether the median test seems to be a proper choice, if out-
liers with an arbitrary size are observed and the primary objective is the detection of
the true jumps. Furthermore, this test is also recommendable for larger percentages
of contamination (not shown), as it is only outperformed by the median comparison
T3 for the situation set (30,12). The use of Tukey-CV is again recommendable, as
this criterion delivers good results for all good tests for the respective data situation.

In terms of ∆4, which measures the averaged maximum distance of an estimated
jump location to its closest true jump, we find that the two Hodges-Lehmann tests
give the smallest loss values, see Fig. 3.14 (left). For large outliers the results can
be found in Fig. 3.14 (right). Here, the two-sample-Hodges-Lehmann test performs
best. Note that Tukey-CV is again the proper choice for all robust tests.

In the last step we compare the estimations of the true function f . Thereby it
has to be considered that estimations do not only depend on the jump detection rule,
but also on the corresponding location estimator Ξ̃a, a = 1, . . . , 7. In terms of the
MASE, the jump detection rules based on the t-test combined with L2-CV perform
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Figure 3.15: MRL in ∆A for the situation sets (0.01, 3) (left) and (0.15, 12) (right).
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Figure 3.16: MRL in ∆A for the situation sets (0.15, 192) (left) and (0.30, 12) (right).

best, if no large outliers are observed, see Fig. 3.15 (left). Note that the t-test with
Tukey-CV also delivers a small loss-value. As soon as small percentages of larger
outliers are included, t-test-jump detectors become considerably worse, due to the
lack of robustness of the sample mean Ξ̃1 and the t-test. Detection rules based on the
trimmed t-test perform best for a moderate outlier magnitude γ, see Fig. 3.15 (right).
For larger γ, see Fig. 3.16 (left), or larger percentages of outliers, see Fig. 3.16 (right),
the median-test delivers jump detection rules with the smallest loss-values. Tukey-
CV, it is only outperformed for π = 0.3 by the highly robust median-CV-criterion.
Therefore, the good performance of Tukey-CV in the direct approach can be obtained
for the indirect approach. Fig. 3.16 does also show that in the presence of outliers
L2-CV performs poor, regardless of the used test-statistic.

Fig. 3.17 shows two examples, where the fitted functions of a cross-validated test
statistic and a jump-preserving smoother are compared in situations with moderate
sized outliers. In the left example the test misses one jump, while in the right exam-
ple wrong jumps are tracked by the smoother. Applying the indirect approach gives
smoother curves and so more suitable estimated function values for a piecewise con-
stant function. However, in case of a curved f , a direct approach would be superior,
due to its larger flexibility to the functional form of f . The main target of the indirect
approach is a good estimation of the true jump locations and not of the true f .
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Figure 3.17: Two data examples with 15% outliers of magnitude γ = 12 and m = 5
jumps with height s = 6.

3.4 Conclusions

Outlying values are a challenge for jump detection rules based on cross-validated test
statistics. The ordinary t-test and the L2-CV perform poorly then, in terms of esti-
mating the true jump locations and consequently the true function f . Several robust
jump detection rules are compared for different data situations with outliers. The
Tukey-CV-criterion delivers good results for all test statistics, whether outliers are
observed or not. In the presence of large outliers the two-sample-Hodges-Lehmann-
test and the median-test are appropriate choices for estimating the number of jumps
and the jump locations. The latter test combined with a median estimation of the
segments between the estimated jumps does also deliver good estimations of f .

To achieve further improvements, the level of significance should be chosen by
the rule of Bonferroni. Furthermore, the algorithm of Wu and Chu (1993) leads to
a good selection out of all jump candidates for tests based on medians and Hodges-
Lehmann-estimators. For the t-tests and the rank tests the algorithm of Qiu and
Yandell (1998) is preferable and an improvement to the original version is obtained,
if the jump candidate with the smallest p-value of each set is taken.
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Chapter 4

On nonparametric tests for trend
detection in seasonal time series

4.1 Introduction

One interest in time series analysis is to detect monotonic trends in the data. Several
parametric and nonparametric procedures for trend detection based on significance
tests have been suggested. Parametric methods rely on strong assumptions for the
distribution of the data, which are difficult to check in practice and possibly not
fulfilled. Furthermore a parametric form of the trend has to be specified, where only
some unknown parameters need to be estimated. Nonparametric test procedures are
more flexible as they afford only rather general assumptions about the distribution.
Also the trend often only needs to be monotonic without further specifications.

First ideas for nonparametric test procedures based on signs (see e.g. Cox and
Stuart 1955 or Moore and Wallis 1943), ranks (see e.g. Daniels 1950 or Mann 1945)
and records (Foster and Stuart, 1954) have been developed early. However, all these
approaches need the assumption of i.i.d. random variables under the null hypothesis.
For time series with seasonal behavior this assumption is not valid. One way to handle
this problem is to estimate and subtract the seasonality. Another approach is to use
tests which are robust against seasonal effects. Hirsch et al. (1982) develop a test
procedure based on Kendall’s test of correlation (Kendall, 1938). Diersen and Trenkler
(1996) propose several tests based on records. They show that splitting the time series
increases the power of the record tests, especially when seasonal effects occur. The
procedures of Hirsch et. al. and Diersen and Trenkler use the independence of all
observations to calculate a statistic separately for each period and sum them to get
a test statistic for a test against randomness. The same ideas can be used for the
above mentioned tests based on signs or ranks.

We apply the procedures to two climate time series from a gauging station in
Potsdam, Germany: mean temperature and total rainfall. Such climate time series
often show seasonality with a period of one year. Section 4.2 introduces the test
problem of the hypothesis of randomness against a monotonic trend as well as test
procedures which can also be used for seasonal data, namely some tests based on
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records for the splitted time series and the seasonal Kendall–Test. We also modify
other nonparametric test statistics to consider seasonality. The mentioned sign– and
rank–tests are transformed to new seasonal nonparametric tests. In Section 4.3 we
compare the power of the several test procedures against different types of monotone
trends and in the case of autocorrelation. In Section 4.4 the two climate time series
are analysed. In particular, the test procedures are used to check the hypothesis of
randomness. Section 4.5 summarizes the results.

4.2 Nonparametric tests of the hypothesis

of randomness HR

A common assumption of statistical analysis is the hypothesis of randomness. It
means that some observations x1, . . . , xn are a realisation of independent and identi-
cally distributed (i.i.d.) continuous random variables (rvs) X1, . . . , Xn, all with the
same cumulative distribution function (cdf) F . There are several test procedures
which can be used to test the hypothesis of randomness H0 against the alternative
H1 of a monotonic trend. However, in time series analysis the observations x1, . . . , xn
are a realisation of a stochastic process and can be autocorrelated, implying a lack of
independence of X1, . . . , Xn. Additionally, many time series show seasonal effects and
so X1, . . . , Xn are not identically distributed, even if there is no monotonic trend. We
modify the hypothesis of randomness for seasonal data to handle at least the second
problem:

Firstly, if there is a cycle of k periods, the random sample ~X = (X1, . . . , Xn) is
splitted into k parts

~X = ( ~X1, ~X2, . . . , ~Xk) with ~Xj = (X1,j, X2,j, . . . , Xnj ,j) and Xi,j = Xk(i−1)+j (4.1)

for j = 1, . . . , k and i = 1, . . . , nj. ~Xj thus includes all nj observations of season j.
Under the null hypothesis H0 of no trend the continuous rvs X1, . . . , Xn are still
considered to be independent but only for each j the rvs X1,j, . . . , Xnj ,j are identically
distributed with common cdf Fj. Under the alternative H1 of a monotonic trend
there are values 0 = a1,j ≤ a2,j ≤ . . . ≤ anj ,j with ai,j < ai+1,j for at least one
i ∈ {1, . . . , nj − 1} and j ∈ {1, . . . , k} such that Fi,j(x) = Fj(x − ai,j) in case of
an increasing and Fi,j(x) = Fj(x + ai,j) in case of a decreasing trend. Under H0

the hypothesis of randomness within each period is fulfilled. In the following we
denote the test problem of the hypothesis of randomness for seasonal data against a
monotone trend alternative with HR and introduce test procedures for HR.

4.2.1 Tests based on record statistics for HR

Foster and Stuart (1954) introduce a nonparametric test procedure for HR based on
the number of upper and lower records in the sequence X1, . . . , Xn and the reversed
sequence Xn, . . . , X1. A test procedure for HR based on this approach which is robust
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against seasonality is introduced by Diersen and Trenkler (1996). A first application
of their procedure is given in Diersen and Trenkler (2001).

Using (4.1) we define upper and lower record statistics U o
i,j, L

o
i,j, U

r
i,j and Lri,j of

the original and the reversed sequence for all periods j = 1, . . . , k at i = 2, . . . , nj as

U o
i,j =

{
1 , if Xi,j > max{X1,j, X2,j, . . . , Xi−1,j}
0 otherwise

(4.2)

Loi,j =

{
1 , if Xi,j < min{X1,j, X2,j, . . . , Xi−1,j}
0 otherwise

(4.3)

U r
nj−i+1,j =

{
1 , if Xnj−i+1,j > max{Xnj−i+2,j, Xnj−i+3,j, . . . , Xnj ,j}
0 otherwise

(4.4)

Lrnj−i+1,j =

{
1 , if Xnj−i+1,j < min{Xnj−i+2,j, Xnj−i+3,j, . . . , Xnj ,j}
0 otherwise

(4.5)

with
U o

1,j = Lo1,j = U r
nj ,j

= Lrnj ,j = 1 (4.6)

as the first value of a sequence is always an upper and a lower record.
Under H0 for a larger i the probability of a record will get smaller. Therefore

Diersen and Trenkler (1996) recommend to use linear weights wi = i− 1 for a record
at the i−th position of the original or reversed sequence. The sum of the weighted
records of the original sequence

U o =
k∑
j=1

nj∑
i=1

wiU
o
i,j and Lo =

k∑
j=1

nj∑
i=1

wiL
o
i,j , (4.7)

and the sum of the records of the reversed series

U r =
k∑
j=1

nj∑
i=1

wiU
r
nj−i+1,j and Lr =

k∑
j=1

nj∑
i=1

wiL
r
nj−i+1,j (4.8)

can be used as test statistics for HR. They are sums of independent rvs and all have
the same distribution under H0. The expectations and variances are given by

E(U o) =
k∑
j=1

nj∑
i=1

wi
i

and Var(U o) =
k∑
j=1

nj∑
i=1

w2
i

i− 1

i2
(4.9)

and especially

E(U o) = k

n1∑
i=1

i− 1

i
and Var(U o) = k

n1∑
i=1

(i− 1)3

i2
(4.10)

if linear weights wi = i − 1 are used and all periods j have the same number of
observations n1.

58



If an upward trend exists, U o and Lr become large while Lo and U r become small.
The opposite is true, if a downward trend exists. These informations can be used to
combine the sums in (4.7) and (4.8) and to use the statistics

T1 = U o − Lo , T2 = U o − U r , T3 = U o + Lr , T4 = U o − U r + Lr − Lo (4.11)

for HR. Under H0 the distributions of T1, T2 and T3 will not change, if T̃1 = Lr−U r,
T̃2 = Lr − Lo and T̃3 = U r + Lo, respectively, are taken instead of the sums given in
(4.11). From these statistics, only

T1 = U o − Lo =
k∑
j=1

nj∑
i=1

wi
(
U o
i,j − Loi,j

)
(4.12)

can be expressed as a sum of independent rvs, because here records from the same
sequence are combined. We have under H0

E(T1) = 0 and Var(T1) = 2
k∑
j=1

nj∑
i=1

w2
i

i
. (4.13)

In contrast to T1, in T2, T3 and T4 we use records from the original sequence as well
as from the reversed sequence. So the summands here are not independent. We get
the expectations

E(T2) = E(T4) = 0 and E(T3) = 2
k∑
j=1

nj∑
i=1

wi
i
. (4.14)

while the variances of T2, T3 and T4 become unwieldly expressions and are given in
Diersen and Trenkler (2001) for the case n1 = . . . = nk.

Diersen and Trenkler (2001) recommend a splitting with large k and small nj,
j = 1, . . . , k, due to better asymptotic properties of the statistics in (4.11). With
X1, . . . , Xn assumed to be independent and n1 = . . . = nk, the statistics T1, T2, T3 and
T4 are the sum of k i.i.d. rvs. So for k →∞ all four test statistics are asymptotically
normal distributed. These asymptotics are not fulfilled, if the statistics in (4.11) are
only weighted but not splitted. Diersen and Trenkler (1996) showed for this case
that the asymptotic distribution is not a normal one. Furthermore compared to the
best parametric test in the normal linear regression model and the (non seasonal)
Kendall–Test, the asymptotic relative efficiency (Noether, 1955) of the unsplitted
record tests is zero, while it stays positive for an increasing splitting factor (Diersen
and Trenkler, 1996, 2001). So it is also an interesting question if the performance of
other nonparametric tests can be increased, if the time series is splitted with a large
k and a small number nj of observations in each period j.

4.2.2 The seasonal Kendall-test

Mann (1945) introduced a test forHR based on Kendall’s test for independence of two
random variables in a bivariate distribution. It was modified by Hirsch et al. (1982)
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to robustify the test statistic against seasonal effects. Taking the splitted series in
(4.1), they use the test statistic

S =
k∑
j=1

Sj with Sj =

nj−1∑
i=1

nj∑
i′=i+1

sgn(Xi′,j −Xi,j) (4.15)

for HR. So in Sj the number of pairs (Xi,j, Xi′,j) with Xi,j < Xi′,j is subtracted from
the number of pairs (Xi,j, Xi′,j) with Xi,j > Xi′,j, i < i′, for period j. If there is
a positive (negative) monotonic trend in period j, the statistic Sj is expected to be
large (small) while it will probably realise a value near 0 if there is no monotonic
trend. If the same positive (negative) monotonic behavior can be observed for all
periods, the statistic S will also become large (small). S will also take a value close
to 0, if no monotonic trend exists.

The exact distribution of S under H0 is symmetric with

E(S) =
k∑
j=1

E(Sj) = 0 (4.16)

and if there are no identical values (ties) in the observations of any period j, the
variance is given by

Var(S) =
k∑
j=1

Var(Sj) =
k∑
j=1

nj(nj − 1)(2nj + 5)

18
(4.17)

as S1, . . . , Sk are independent. A pair of observations is called a tie of extend δ, if δ
observations of x1, . . . , xn have the same value. If X1, . . . , Xn are continuous rvs, the
probability of a tie is zero, but for rounded values, ties can be observed. Let nδ,j be

the number of ties within ~Xj with extend δ. Then the variance of S becomes smaller:

Var(S) =
k∑
j=1

(
nj(nj − 1)(2nj + 5)−

nj∑
δ=1

nδ,jδ(δ − 1)(2δ + 5)

)
18

(4.18)

As every Sj is asymptotically normally distributed for nj → ∞, the statistic S as a
finite sum of independent asymptotically normally distributed rvs is asymptotically
normal, too, if nj converges to infinity for each j. The exact distribution of S under H0

(neglecting ties) can be determined by enumerating all permutations of X1,j, . . . , Xnj ,j

for each j and calculating the values of Sj for every permutation of each j. The
individual values and their frequencies can be easily calculated with Chapter 5 of
Kendall and Gibbons (1990). According to the frequencies of the single values for each
Sj, the distribution of S can be obtained by reconsidering every possible combination
of the values and multiplying the corresponding frequencies. However, for large n
calculating the exact distribution of S is time consuming, so the normal approximation
should be used whenever possible. Hirsch et al. (1982) state that already for k = 12
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and nj = 3 the normal approximation of Sj works well. They also claim that their test
is robust against seasonality and departures from normality, but not robust against
dependence. Hirsch and Slack (1984) develop a test for HR, which performs better
than S if the data are autocorrelated. This test uses estimates of the covariances
between two seasons based on Spearman’s rank correlation coefficient. The estimated
covariances are used to correct the variance of S in the normal approximation.

4.2.3 Tests based on rank statistics for HR

Aiyar et al. (1979) compare the asymptotic relative efficiencies of many nonparametric
tests for the hypothesis of randomness against trend alternatives. They consider
mostly linear and nonlinear rank statistics, which we will use in the following for HR:

Taken the splitted series from (4.1) let R(X1,j), . . . , R(Xnj ,j) be the ranks of the
continuous rvs X1,j, . . . , Xnj ,j, for j ∈ {1, . . . , k}. Then two linear rank test statistics
based on Spearman’s rank correlation coefficient are given by

R1 =
k∑
j=1

R̃1,j with R̃1,j =

nj∑
i=1

(
i− nj + 1

2

)(
R(Xi,j)−

nj + 1

2

)
(4.19)

and

R2 =
k∑
j=1

R̃2,j with R̃2,j =

nj∑
i=1

(
i− nj + 1

2

)
sign

(
R(Xi,j)−

nj + 1

2

)
. (4.20)

Both statistics are symmetric and have an expected value of 0. Their variances are

Var(R1) =
k∑
j=1

Var(R̃1,j) =
k∑
j=1

n2
j(nj + 1)2(nj − 1)

144
(4.21)

and

Var(R2) =
k∑
j=1

Var(R̃2,j) with (4.22)

Var(R̃2,j) =



k∑
j=1

n2
j(nj + 1)

12
, nj even

k∑
j=1

nj(nj − 1)(nj + 1)

12
, nj odd .

Instead of considering all rvs like in (4.19) and (4.20), the (1− 2γ) truncated sample
can be taken for all periods, with γ ∈ (0, 0.5). Like Aiyar et al. (1979) we define

ci,j =


−1 , 0 < i ≤ bγnjc

0 , bγnjc < i ≤ nj − bγnjc
+1 , nj − bγnjc < i ≤ nj

(4.23)
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so that the two statistics

R3 =
k∑
j=1

R̃3,j with (4.24)

R̃3,j =

nj∑
i=1

ci,j

(
R(Xi,j)−

nj + 1

2

)
=

k∑
j=1

 nj∑
i=nj−bγnjc+1

R(Xi,j)−
bγnjc∑
i=1

R(Xi,j)


and

R4 =
k∑
j=1

R̃4,j with (4.25)

R̃4,j =

nj∑
i=1

ci,j sign

(
R(Xi,j)−

nj + 1

2

)

=

nj∑
i=nj−bγnjc+1

sign

(
R(Xi,j)−

nj + 1

2

)
−
bγnjc∑
i=1

sign

(
R(Xi,j)−

nj + 1

2

)

compare the sum of the most recent bγnjc ranks (signs) with the sum of the first bγnjc
ranks (signs). Again the expectation of R3 and R4 is 0. Under the null hypothesis,
the variances are given by

Var(R3) =
k∑
j=1

nj(nj + 1)bγnjc
6

and (4.26)

Var(R4) =
k∑
j=1

Var(R̃4,j) with (4.27)

Var(R̃4,j) =

{
2

nj
nj − 1

bγnjc , nj even

2bγnjc , nj odd .

Again the above variances are only valid if all observations have different values. If
ties occur, one possibility, which leads to a loss of power but keeps the variances from
(4.23) and (4.28) under the null hypothesis is to give random ranks to tied observa-
tions. Alternatives like average ranks, which reduce the loss of power compared to
random ranks, are not considered here.

In addition to this, Aiyar et al. (1979) also consider nonlinear rank statistics. In
analogy to them we define for each period j

1i,i′,j =

{
1 , if Xi,j < Xi′,j

0 , otherwise
, (4.28)

i, i′ ∈ {1, . . . , n}, i 6= i′. Under the null hypothesis of randomness, we have

E(1i,i′,j) =
1

2
and Var(1i,i′,j) =

1

4
. (4.29)
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Based on the sign difference test Moore and Wallis (1943) we define for HR

N1 =
k∑
j=1

Ñ1,j with Ñ1,j =

nj∑
i=2

1i−1,i,j (4.30)

which counts the number of pairs for each period j, where the consecutive observation
has a larger value and then sums these pairs over all periods. For each j we have
nj − 1 differences. Under H0 and from (4.29) we get

E(N1) =
k∑
j=1

1

2
(nj − 1) and Var(N1) =

k∑
j=1

1

12
(nj + 1) . (4.31)

For each j the distribution of Ñ1,j converges to a normal distribution (Moore and
Wallis, 1943). Therefore N1 is asymptotically normally distributed, too.

Another test for HR based on Cox and Stuart (1955) is given by

N2 =
k∑
j=1

Ñ2,j with Ñ2,j =

bnj/2c∑
i=1

(nj − 2i+ 1)1i,nj−i+1,j . (4.32)

Cox and Stuart (1955) show that N2 leads to the best weighted sign test with respect
to the efficiency of a sign test of HR. The linear rank test statistics R1 and R2 and
the procedure S of Kendall compare all pairs of observations, while in (4.32) each
observation is taken only for one comparison. Using (4.29) we get under H0

E(N2) =
k∑
j=1

E(Ñ2,j) with E(Ñ2,j) =

{
n2
j

8
, nj even

n2
j−1

8
, nj odd

and Var(N2) =
k∑
j=1

1
24
nj(n

2
j − 1) . (4.33)

Cox and Stuart (1955) also introduce a best unweighted sign test, which can be
formulated for HR as follows

N3 =
k∑
j=1

Ñ3,j with Ñ3,j =

νj∑
i=1

1i,nj−νj+i,j . (4.34)

The value νj ≤ 1
2
nj is taken to compare observations further apart. We get

E(N3) =
k∑
j=1

νj
2

and Var(N3) =
k∑
j=1

νj
4

(4.35)

under H0. Cox and Stuart (1955) recommend νj = 1
3
nj.

Again a splitting with small n1 = . . . = nk and large k leeds asymptotically to a
normal distribution for all introduced test statistics, as k i.i.d. rvs are added.
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4.3 Comparison of the nonparametric tests

4.3.1 Robustness against seasonality

Now we compare the different tests presented in Section 4.2 for different sample sizes
and splitting factors and for various alternatives. We consider the time series model

Xi,j = ai,j + Ei,j j = 1, . . . , k, i = 1, . . . , nj, (4.36)

where E1,1, . . . , Enk,k are Gaussian white noise with expected value 0 and constant
variance σ2

E = 1. Xi,j is the i−th observation for season j. For simplicity we fix
the number of seasons to k = 4 and assume that each season has the same sample
size n1. Furthermore, the slopes are given by a1,j ≤ . . . ≤ an1,j. We are interested
in particular in three different kinds of monotone trends, with the same trend struc-
ture in each season. This means that for each j we have the same slopes. With
ai,j = iθ we achieve a linear trend, where the parameter θ controls the slope of the
straight line. We also consider a concave case with ai,j = θ

√
n1i, and a convex case

with ai,j = θi2/n1, so that all trends increase to θn1. We consider sample sizes

n ∈ {12, 24, 32, 48, 64, 96, 120} and splittings into k̃ ∈ {1, 4, 8, 12, 16, 24, 32} groups

whenever ñ1 = n/k̃ is an integer. We do not consider splittings with ñ1 = 2 as here
R3 and R4 for γ = 1

3
as well as N3 with ν1 = . . . = νk̃ = 1

3
are not defined. The

other test statistics are equivalent in this case, as they all consider an unweighted
ranking of two observations in each splitting. With k̃ = 1 the unsplitted case is also
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Figure 4.1: Power functions of the record tests for n = 64, small θ and k̃ = 1 (left)

and k̃ = 4 (right) for linear trends.
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Figure 4.2: Power functions of the record tests for n = 64, small θ and k̃ = 1 (left)

and k̃ = 4 (right) for concave trends.

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er Uo

Lr

T1

T2

T3

T4

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slope θ

P
ow

er Uo

Lr

T1

T2

T3

T4

Figure 4.3: Power functions of the record tests for n = 64, small θ and k̃ = 1 (left)

and k̃ = 4 (right) for convex trends.
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Figure 4.4: Power functions of the record tests for n = 12 (top) with k̃ = 1 (left) and

k̃ = 4 (right).
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Figure 4.5: Power functions of the record tests for n = 96 (top) with k̃ = 4 (left) and

k̃ = 12 (right).
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taken into account. In case of seasonal effects the power of all tests will probably be
reduced if k̃ = 1 is chosen. We compare the power of the tests of Section 4.2 for all
reasonable combinations of k̃ and n from above and take 1000 random samples from
(4.36) for each combination. The percentage cases of rejections of H0 estimate the
power of the several test procedures. Here we only consider the case of an upward
trend, i.e. θ > 0.

We consider the linear, the convex and the concave case from above and calcu-
late the power of all tests for θ ∈ {0.01, 0.02, . . . , 0.49, 0.50}. To achieve monotone
power functions, we use the R–function isotone from the R–package EbayesThresh

for monotone least squares regression to smooth the simulated power curves (R De-
velopment Core Team, 2011; Silverman, 2005).

Firstly we compare the weighted record statistics. For n ≥ 64 all power functions
take values close to 1, independently of the splitting factor k̃, if a linear trend with
θ > 0.1 exists. In the concave case only U o and T2 with k̃ = 1 perform worse for
n = 64. An explanation for this is the strength of the slope. A positive concave trend
increases less towards the end of the time series. Hence there will be fewer records
at the end of the time series and U o will perform worse than Lr. As our version
of T2 also uses U o we receive similar results for this test statistic. In the convex
case similar results can be obtained for Lr as a convex upward trend of the original
sequence means a concave downward trend of the negative reversed series. The power
functions of the record tests for k̃ = 1 and k̃ = 4 can be seen in Fig. 4.1 for the linear,
in Fig. 4.2 for the concave and in Fig. 4.3 for the convex case. Looking also at other
sample sizes n in the linear case (see Fig. 4.4 and 4.5), we find that T3 performs best
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Figure 4.6: Power functions for S (left) and R1 (right) for different k̃ with n = 64
and a concave trend.
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Figure 4.7: Power functions for R2 (left) and R3 (right) for different k̃ with n = 64
and a concave trend.
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Figure 4.8: Power functions for N1 (left) and N2 (right) for different k̃ with n = 64
and a concave trend.
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among the record tests in most of the cases. Generally, the power of the record tests
gets larger in the above situations, if a larger k̃ is chosen. Only T3 performs better
for a medium value of k̃, e.g. k̃ = 4 for n = 32 or k̃ = 12 for n = 96. The previous
findings are confirmed in the case of a convex or concave trend.

In Fig. 4.6, 4.7 and 4.8 the power functions of the rank tests are shown, when
different k̃ for a fixed n = 64 are used. We show the concave case here, because the
differences are qualitatively the same, but slightly bigger than for the linear or the
convex trend. The seasonal Kendall–Test S and Spearman–Test R1 perform best,
when a small k̃ is used. Conclusions about an optimal splitting for the other rank
tests are hard to state. If k̃ is large compared to n, the power of the tests is reduced
for most of the situations. However, generally we observe for all these tests (except

N1) good results, if k̃ = 4 is chosen. N1 performs worse than the other tests in most
situations even though it is the only test statistic with an increasing power in case of
a larger splitting factor k̃. From the rank tests S and R1 achieve the largest power
in most situations. Comparing the best rank tests S and R1 with k̃ = 4 and the best
record tests T3 and T4 with a large splitting factor k̃ = 4, S and R1 have a larger
power in every situation.

4.3.2 Robustness against autocorrelation

Next we consider a situation with autocorrelated data. Here the hypothesis of ran-
domness is not fulfilled, but no monotone trend exists. It is interesting which test
procedures are sensitive to autocorrelation in the sense that they reject H0 even
though there is no monotone trend. We consider an autoregressive process of first
order (AR(1))

Et = %Et−1 + εt , t = 1, . . . , n , (4.37)

with autocorrelation coefficient %, i.e. we assume the sequence E1, . . . , En to be auto-
correlated with correlation % and hence the autocorrelation within E1,j, . . . , En1,j with
Ei,j = Ek(i−1)+j is smaller than %. The innovations ε1,j, . . . , εn1,j are i.i.d. normally
distributed random variables with expectation 0 and variance σ2

ε , where

σ2
ε = (1− %2)σ2

E = (1− %2) (4.38)

as we want to keep σ2
E equal to 1 again. We vary % in {0.025, 0.05, . . . , 0.875, 0.9}.

The resulting detection rates of the record tests can be seen in Fig. 4.9 and 4.10
for n = 96 and different values of k̃. T3 is more sensitive to positive autocorrelation
than T1, T2 and T4 if a small k̃ is used, but this difference vanishes for a large k̃. The
better performance of T1, T2 and T4 for small k̃ can be explained by the fact that they
subtract statistics which become large in case of monotonically decreasing sequences
from statistics which become large in case of monotonically increasing sequences.
Positive autocorrelations cause both patterns to occur so that the effects cancel out.

For the rank tests we get the following findings, compare Fig. 4.11 and 4.12:
N2 seem to be less sensitive against autocorrelations % ≤ 0.6 for larger sample sizes
n ≥ 48, if we choose k̃ so that we have three observations in each split. We observe for
the pairs n = 48, k̃ = 16 and n = 96, k̃ = 32 for most of the values of % a detection
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Figure 4.9: Detection rates of the record tests for n = 96 with k̃ = 1 (left) and k̃ = 4
(right) for autocorrelated series.
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Figure 4.10: Detection rates of the record tests for n = 96 with k̃ = 16 (left) and

k̃ = 32 (right) for autocorrelated series.

70



0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

S
R1

R2

R3

R4

N1

N2

N3

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Autocorrelation coefficient ρ

D
et

ec
tio

n 
ra

te

S
R1

R2

R3

R4

N1

N2

N3

Figure 4.11: Detection rates of the rank tests for n = 24 with k̃ = 4 (left) and k̃ = 8
(right) with autocorrelation.
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Figure 4.12: Detection rates of the rank tests for n = 48 with k̃ = 12 (left) and k̃ = 16
(right) with autocorrelation.
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rate of less than α = 0.05. If we choose a splitting factor leading to n1 > 3 the better
performance of N2 is lost. N1 behaves the most insensitive against autocorrelation
for a large k̃, but N1 was also the test with the smallest power if a trend exists. For
the other tests we have for a fixed n a higher detection rate, when a smaller splitting
factor k̃ is used. If we compare the record tests with the rank tests, we find that
the record tests react less sensitive to autocorrelation than the rank tests in most
situations.

4.4 Analysis of the climate time series

from Potsdam

Now the methods from Section 4.2 are applied to some real time series data. The two
series analysed here consist of the monthly observations of the mean air temperature
and the total rainfall in Potsdam between January 1893 and April 2008. There are no
missing values. The secular station in Potsdam is the only meteorological station in
Germany for which daily data have been collected during a period of over 100 years.
The measures are homogeneous, what is due to the facts that the station has never
changed its position, the measuring field stayed identical and the sort of methods,
prescriptions and instruments, which are used for the measuring, have been kept.

Before the methods from Section 4.2 can be applied, we have to check if the as-
sumptions are fulfilled. Independence of the observations can be checked with the
autocorrelation function (ACF) and the partial autocorrelation function (PACF).
Before this we detrend the time series by subtracting a linear trend. We also de-
seasonalize the time series by estimating and subtracting a seasonal effect for each
month. The original and the detrended deseasonalized time series can be found in
Fig. 4.13 and 4.14, respectively, for the total rainfall and in Fig. 4.15 and 4.16 for
the mean temperature, respectively. The autocorrelation functions of the detrended
and deseasonalized time series do not show correlation in case of the rainfall (see
Fig. 4.17) and positive autocorrelations at small time lags in case of the temperature
(see Fig. 4.18). For the temperature series, a first order autoregressive model with a
moderately large AR(1) coefficient gives a possible description of the correlations. We
use the test statistics from Section 4.2 to test the hypothesis of randomness against
the alternative of an upward trend in both time series.

We consider all test statistics except Lo and U r as these tests are only useful to
detect a downward trend. As we have in both time series monthly observations for
more than 115 years, we choose the splitting factor k̃ as multiples of 12, more precisely
k̃ ∈ {12, 24, 60, 120, 240, 360}. This guarantees that even R3, R4 (with γ = 1

3
) and

N3 (with νj = 1
3
nj) can be computed for each split. For every test procedure we use

the asymptotic critical values, which seems to be reasonable for the above k̃. The
resulting p–values can be seen in Table 4.1 for the total rainfall time series and in
Table 4.2 for the mean temperature.
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Figure 4.13: Original total rainfall time series.
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Figure 4.14: Detrended and deseasonalized total rainfall time series.
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Figure 4.15: Original mean temperature time series.
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Figure 4.16: Detrended and deseasonalized mean temperature time series.
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Figure 4.17: Autocorrelation (left) and partial autocorrelation function (right) of the
detrended and deseasonalized total rainfall time series.
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Figure 4.18: Autocorrelation (left) and partial autocorrelation function (right) of the
detrended and deseasonalized mean temperature time series.
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Table 4.1: p–values for the total rainfall time series (in percent)

k̃ 12 24 60 120 240 360

U o 6.4 40.9 11.7 18.3 11.1 6.1
Lr 9.3 21.3 32.4 26.8 38.7 7.9
T1 4.2 34.9 14.2 7.9 14.8 9.8
T2 4.3 31.8 3.3 11.9 12.8 7.4
T3 2.3 23.7 12.9 15.7 17.8 4.6
T4 1.9 22.5 6.0 7.8 17.6 7.5
S 17.2 12.8 28.1 25.6 24.1 9.1
R1 19.4 15.7 33.2 39.2 37.5 13.0
R2 26.7 19.2 36.3 42.2 33.1 26.5
R3 44.0 38.6 57.0 58.9 45.5 11.1
R4 48.7 44.8 63.4 61.8 41.2 20.5
N1 8.2 35.6 32.4 18.6 5.1 5.8
N2 4.6 5.1 58.4 61.7 49.1 20.0
N3 61.1 61.1 46.1 46.1 46.1 14.6

For the total rainfall time series the record tests T1, T2, T3 and T4 with k̃ = 12
detect a monotone trend at a significance level of α = 0.05. From the rank tests only
N2 finds a monotone trend at this α. Using a larger splitting factor we only find a
monotone trend with T2 for k̃ = 60. Of course we need to keep in mind that we
perform multiple testing and thus expect about four significant test statistics among
the more than 80 tests performed here even if there is no trend at all.

Table 4.2: p–values for the mean temperature time series (in percent)

k̃ 12 24 60 120 240 360

U o 0.00 0.00 0.00 0.00 0.00 0.00
Lr 0.00 0.03 0.01 0.00 0.00 0.00
T1 0.00 0.00 0.00 0.00 0.00 0.00
T2 0.00 0.00 0.00 0.00 0.00 0.00
T3 0.00 0.00 0.00 0.00 0.00 0.00
T4 0.00 0.00 0.00 0.00 0.00 0.00
S 0.00 0.00 0.00 0.00 0.00 0.00
R1 0.00 0.00 0.00 0.00 0.00 0.00
R2 0.00 0.00 0.00 0.00 0.00 0.00
R3 0.00 0.00 0.00 0.00 0.00 0.00
R4 0.00 0.00 0.00 0.00 0.00 0.00
N1 97.42 13.40 5.04 21.07 0.05 0.06
N2 0.00 0.00 0.00 0.00 0.00 0.00
N3 0.00 0.00 0.00 0.00 0.00 0.00

76



1893 1903 1913 1923 1933 1943 1953 1963 1973 1983 1993 2003

−
10

−
5

0
5

Year

R
es

id
ua

ls

Figure 4.19: Residuals of the temperature time series obtained from fitting an AR(1)
model to the deseasonalized temperature time series.
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Figure 4.20: ACF (left) and PACF (right) of the AR(1) residuals of the deseasonalized
temperature series.
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Table 4.3: p–values for the residual temperature time series (in percent)

k̃ 12 24 60 120 240 360

U o 0.30 0.19 0.07 0.07 0.00 0.15
Lr 2.77 0.41 0.13 0.93 0.24 0.09
T1 0.01 0.01 0.00 0.00 0.00 0.01
T2 0.44 0.07 0.05 0.08 0.00 0.12
T3 0.05 0.01 0.00 0.01 0.00 0.03
T4 0.02 0.00 0.00 0.01 0.00 0.01
S 0.00 0.00 0.00 0.00 0.00 0.01
R1 0.00 0.00 0.00 0.00 0.00 0.00
R2 0.00 0.00 0.00 0.00 0.00 0.02
R3 0.00 0.00 0.00 0.00 0.00 0.00
R4 0.00 0.00 0.00 0.00 0.00 0.01
N1 93.10 23.01 11.80 53.56 0.10 1.91
N2 0.00 0.00 0.00 0.00 0.01 0.01
N3 0.01 0.03 0.00 0.00 0.00 0.00

All tests except N1 detect a monotone trend in the temperature time series for
all splittings k̃. The statistic N1 only detects a monotone trend, if k̃ is large. But
as all tests need the assumption of independence, the results of Table 4.2 can not be
interpreted as p–values of unbiased tests. This is why we deseasonalize the temper-
ature time series and fit an AR(1)–Model to the deseasonalized series by maximum
likelihood. If the data generating mechanism is an AR(1) process with uncorrelated
innovations, then the residuals of the fitted AR(1) model are asymptotically uncorre-
lated. The residuals are even asymptotically independent, if the innovations are i.i.d.
The residuals are asymptotically normal, if the innovations are normally distributed
(see Section 5.3 of Brockwell 2002). Looking at the plot of the scaled residual time
series in Fig. 4.19 and its ACF in Fig. 4.20, we do not find significant autocorrelations
between the residuals. However, the residuals do not seem to be identically normally
distributed, as we can find some outliers in the residual plot. Table 4.3 shows the
p–values of the record and rank tests for the residuals. We find mostly larger p–values
than in Table 4.2, but again all tests except N1 detect a positive monotone trend at
α = 0.05, what confirms the previous findings.

4.5 Conclusions

We have considered nonparametric tests for trend detection in time series. We have
not found large differences between the power of the different tests. All tests based
on records or ranks react sensitive to autocorrelations. Our results confirm findings
by Diersen and Trenkler that T3 can be recommended among the record tests because
of its good power and its simplicity. Robustness of T3 against autocorrelation can
be achieved for the price of a somewhat reduced power by choosing a large splitting
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factor k̃. However, even higher power can be achieved by applying a nonparametric
rank test like the seasonal Kendall–Test S or the Spearman–Test R1 with a small k̃,
even though for the price of a higher sensitivity against positive autocorrelation. The
power of all rank tests except N1 gets smaller, if a larger splitting factor is used. For
N1 a larger splitting factor enlarges the power, but N1 is not recommended for use,
as even with a large splitting factor it is less powerful than the other tests. From the
rank tests the test N2 is more robust against autocorrelations below 0.6 than the other
tests, if only three observations are taken in each block. Another possibility to reduce
the sensitivity to autocorrelation is to fit a low order AR model and consider the AR
residuals. We have found a significant trend in the time series of the monthly mean
temperature in Potsdam both when using the original data and the AR(1) residuals.
Since in the plot of the scaled residuals for this series we find some outliers, another
interesting question for further research is the robustness of the several tests against
atypical observations.
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