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Abstract

Design of experiments is an established approach to parameter optimization
for industrial processes. In many computer applications, however, it is usual
to optimize the parameters via genetic algorithms or, recently, via sequential
parameter optimization techniques. The main idea of this work is to analyse
and compare parameter optimization approaches which are usually applied
in industry with those applied for computer optimization tasks using the ex-
ample of a tone onset detection algorithm. The optimal algorithm parameter
setting is sought in order to get the best onset detection accuracy.

We vary in our work essential options of the parameter optimization
strategies like size and constitution of the initial designs in order to assess
their in�uence on the evaluation results. Furthermore we test how the in-
strumentation and the tempo of music pieces a�ect the optimal parameter
setting of the onset detection algorithm.

Keywords: Sequential parameter optimization, Design of experiments,
Tone onset detection

1. Introduction

Parameter optimization is an important issue in almost every industrial
process or computer application. It is remarkable that the parameter op-
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timization strategies which are applied in industry and in computer appli-
cations di�er signi�cantly. In industry often strong assumptions regarding
the relationship between the target variable and the in�uential parameters
are made and then such experimental designs are used, which ful�ll special
criteria (like A- or D-optimality). Many computer optimization approaches,
in contrast, aim to cover the parameter space uniformly by heuristically gen-
erated designs (like Latin Hypercube Sampling designs). Furthermore, when
planning trial series in industry many aspects are considered (like improving
internal and external validity, identifying and controling disturbing factors
or modeling interactions between the in�uential factors) which are often ne-
glected when planning computer optimizations. The number of trials (or
function evaluations) is also very di�erent: While in industry often maxi-
mally 100 trials are allowed, the number of function evaluations in computer
optimization frequently exceeds ten thousands.

The main idea of this work is to combine and compare industrial and
computer simulation based parameter optimization techniques for the op-
timization of a music signal analysis algorithm. The tone onset detection
algorithm, which we aim to optimize here, is presented in Section 2. Two im-
portant factors that can in�uence the optimization results are the optimiza-
tion strategy and the music data set under consideration. The optimization
strategy determines how trial points, where the function is evaluated, are
selected. In Sections 3 and 4 we present a parameter optimization approach
and de�ne characteristics of industrial and computer based parameter opti-
mization which we will compare systematically. Also, we systematically vary
characteristics of the music data in order to assess their in�uence on the eval-
uation results. Section 5 gives the procedure of the music data set generation.
Section 6 presents the simulation results. Finally Section 7 summarizes our
work and provides points for future research.

2. Onset detection algorithm

A tone onset is the time point of the beginning of a musical note or other
sound. Onset detection is an important step for music transcription and
other applications like timbre or meter analysis (see 5, for a tutorial on onset
detection).

The algorithm we will use here is based on two approaches proposed in
(2): In the �rst approach the amplitude slope and in the second approach the
change of the spectral structure of an audio signal are considered as indicators
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for tone onsets. The ongoing audio signal is split up into windows of length
L samples with an overlap of O per cent. In each window (starting with
the second) two features are evaluated: The di�erence between amplitude
maxima (F1) and the correlation coe�cient between the spectra (F2) of
the current and the previous window, respectively. Each of the vectors F1
and F2 is then rescaled into the interval [0,1].

For each window a combined feature CombF is calculated as CombF =
W ·F1+(1−W ) ·F2, where the weight W ∈ [0, 1] is a further parameter,
which speci�es the in�uence of each feature on the sum. In (4) we investigated
further feature combination approaches, where this approach provided the
best results. In order to assess, based onCombF , if a window contains a tone
onset a threshold is required. We will use here aQ%-quantile of theCombF -
vector as such threshold, where Q is the fourth algorithm parameter. If the
CombF -value for the current window, but neither for the preceding nor for
the succeeding window, exceeds the threshold, an onset is detected in this
window. If the threshold is exceeded in multiple, consecutive windows, we
assume that there is only one onset, located in that window with the maximal
CombF -value in this sequence.

For each window with an onset detected its beginning and ending time
points are calculated and the onset time is then estimated by the centre
of this time interval. In this work we assume a tone onset to be correctly
detected, if the absolute di�erence between the true and the estimated onset
time is less than 50 ms (see 7).

As quality criterion for the goodness of the onset detection the so called
F -value is used here: F = 2c

2c+f++f− , where c is the number of correctly

detected onsets, f+ is the number of false detections and f− denotes the
number of undetected onsets (7). Note that the F -value lies always between
0 and 1. The optimal F -value is 1.

The studied ranges of possible settings for the onset detection algorithm
parameters are: L (window length in samples): 512, 1024 and 2048, O
(overlap in per cent): 0 − 50 with step size 5, W (weight of the features):
0− 1 with step size 0.05, Q (%-quantile): 1− 30 with step size 1.

3. Sequential parameter optimization

An experimental design is a scheme that prescribes in which order which
trial points are evaluated. One of our aims here is to compare the classical
parameter optimization, where all trial points are �xed in advance, with the
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sequential parameter optimization, where a relatively small initial design is
given and the next trial points are chosen according to the results of previous
experiments.

We consider a non-linear, multimodal black-box function f : Rk → R,
x 7→ f(x) of k parameters. We aim to minimize f with respect to x. Let
V ⊂ Rk denote the feasible parameter space. The following procedure of
(sequential) parameter optimization is used.

1. Let D ⊆ V denote the initial experimental design with Ninitial trial
points and let Y = f(D) be the set of function values of points in D.

2. Repeat the following sequential step until the termination criterion is
ful�lled:

2.1 Generate a random number s from the distribution: P (s = 0) =
p0, P (s = 1) = 1− p0, 0 ≤ p0 ≤ 1.

2.1a If s = 0, �t a modelM which models the relationship between
D and the response Y = f(D). Find the next trial point
dnext ⊂ V , which minimizes the model prediction.

2.1b If s = 1, let Dsample ⊆ V denote a design with Nsample trial
points from the parameter space V . For each point in Dsample

calculate the Euclidean distance to all points in D and sum
them up. The next trial point dnext is that point in design
Dsample, which has a maximal sum of Euclidean distances.

2.2 Evaluate ynext = f(dnext) and update D ←− D ∪ dnext, Y ←−
Y ∪ ynext.

3. Return the optimal value ybest of the target variable Y and the associ-
ated parameter setting dbest.

The challenge in sequential design of experiments is to �nd the appro-
priate next trial point to evaluate. The major di�erences between the ex-
isting algorithms for sequential parameter optimization lie in step 2.1. A
popular approach here is to just use step 2.1a: Fitting a user-chosen model
M and calculating its prediction for a sequential design Dstep ⊆ V of size
Nstep � Ninitial. The next trial point then is the point in Dstep with the best
predicted value (1). However, choosing the next trial points in this way may
lead to convergence to a local optimum of f . A suitable approach here might
be to take into account not only the model prediction for each point in Dstep

but also the distances of these points to already evaluated trial points. Such
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a methodology is already used in the case of Kriging models (expected im-
provement criterion, 10), which is unfortunately suitable exclusively for these
models. Nevertheless, in order to consider the above mentioned distances of
new points to already evaluated points we implement here a simple approach
for the exploration of the parameter space: In step 2.1 the next trial point
is chosen according to the model prediction (step 2.1a) with a user-de�ned
probability p0 and according to the distance to already evaluated trial points
(step 2.1b) with probability 1− p0.

Our settings for the parameter optimization approach presented above
are: Dstep is a Latin Hypercube Sampling (LHS) design (a design which
covers the parameter space uniformly1, 15) with Nstep = 20.000 points and
Dsample is an LHS design with Nsample = 500. Note that, as described in
step 2.1b, for each point in Dsample we calculate distances to the points in D,
therefore Nsample should not be chosen too large. The termination criterion in
step 2 is de�ned by the total number of evaluations (Ntotal) of the function f .
The probability p0 is set to 0.9. Details regarding the modelM are discussed
in Section 4.

Further important issues here are the initial design and the number of
sequential steps. We propose di�erent settings for the initial designs using
an experimental scheme, in which the size of the sequential design and its
type are considered as control variables. For construction of initial designs
information about the experimental parameters is required. According to
Section 2 there are four parameters to be optimized: L, O, W and Q.

As classical parameter optimization strategy we use here a full factorial
design with 3 levels for each parameter (81 trial points). After evaluating f in
these 81 points a so called veri�cation step is conducted: We identify the next
trial point (in this case just with step 2.1a) and evaluate f at this point. The
total number of evaluations, Ntotal = 82, should not be exceeded by all further
parameter optimization strategies in order to facilitate comparability. Other
settings for the size of the initial designs are approx. one half and approx. one
third of the evaluation budget (Ntotal). Here we aim to investigate, whether
and (if so) how the size of initial designs in�uences the optimization results.

We consider two di�erent types of initial designs: �textbook� designs,
which ful�ll special criteria, and LHS designs. LHS initial designs are com-
monly used in (sequential) parameter optimization of computer applications,

1We use here randomLHS command from R-package lhs (6).
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Table 1: Strategies of (sequential) parameter optimization where Nseq_step is the number
of sequential steps

strategy initial design Ninitial Nseq_step Ntotal

Classic 34 full factorial design 81 1 82
Orth orthogonal design with 3 (for L) or

4 (for O, A and Q) factor levels
48 34 82

Centr central composite design with inner
star

25 57 82

LHS81 LHS design 81 1 82
LHS48 LHS design 48 34 82
LHS25 LHS design 25 57 82

while the �textbook� designs are often applied to optimization of industrial
processes. We employ both in order to assess which leads to better results.

Table 1 presents our parameter optimization strategies. We decided to
implement two widely used �textbook�-designs (in addition to the full fac-
torial design mentioned above): A central composite design with inner star
(17) with 25 trial points and an orthogonal design with 48 trial points2. The
size of the central composite design (k2+1+2 ·k) depends on the number of
parameters k, which is here 4. The size of the orthogonal design depends on
the number of parameters and the number of their levels. For the generation
of the orthogonal design we use the R-package DoE.base (9) where for our
number of parameters and number of levels (see Table 1) only a design with
48 trial points was possible. The disadvantage of most �textbook�-designs in
comparison with LHS-designs is their in�exibility regarding the design size.

4. Model combination

In step 2.1a in the sequential parameter optimization procedure in Section
3 both a single model and a combined model can be used. In this work we will
use four model combination strategies that were introduced and investigated
in (3). In the following we will brie�y review the main ideas.

Let us assume that m models M1,M2, . . . ,Mm are given with response Y
and design D which includes the settings of the in�uential parameters. For
each model we �rst compute a model prediction accuracy criterion (10-fold

2We do not present the trial schemes for the initial designs.
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cross-validated mean squared error) and then calculate model predictions for
each point dj, j = 1, . . . , Nstep, of the sequential design Dstep.

As �rst model combination method we will use the weighted average
approach (WeightAver): For each point dj the weighted sum of the m
model predictions is calculated, where the model weights are de�ned by the
associated values of the prediction accuracy criterion. In each sequential step
the next evaluation is done at that point dj which has the best weighted sum
of predictions.

In the second combination approach (BestModel) we will just choose the
best model according to the model prediction accuracy criterion. Then the
function f is evaluated at that point dj which has the best model prediction
value.

The third combination method (Best2Models) is similar to the second
method but in each step we evaluate two points according to the predictions
of the two best models. We take care that we do not carry out more function
evaluations than allowed (see the termination criterion in Section 3).

In the last model combination approach we determine for each model the
ten trial points with the best predicted values (Best10). Here for each point
dj we do not only consider the model predictions with associated accuracy
criteria but also the number of models for which this point has one of the
ten best predicted values. The core idea is to prefer points which belong to
the best predictions of many models at the same time. For more details see
(3).

5. Data base

Since one of the aims of this work is to determine the in�uence of the
music signal characteristics on the optimal parameter settings of the onset
detection algorithm, we designed a special music data set. There are many
characteristics which describe a music signal like tempo, genre, instrumenta-
tion or sound volume. We consider only the instrumentation and the tempo
as control variables when designing the data set. The special characteristic of
this data set is that the same tone sequences are recorded by di�erent music
instruments with di�erent tempo settings, so that we can explicitly measure
the in�uence of these two control variables on the optimal parameter settings
of the onset detection algorithm.

As we need the information about the true onset times and in order to
vary the tempo and instrumentation of tone sequences we will work with
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Table 2: Used music instruments and their pitch ranges in English tone notation and
MIDI-coding

instrument pitch range MIDI-coding
guitar E2-E5 40-76
piano A0-C8 21-108
�ute C4-C7 60-96
clarinet D3-F6 50-89
trumpet E3-D6 52-86
violin G3-E5 55-76

MIDI-�les3. However, the MIDI-�les are not converted to WAVE-�les4 using
synthetic tones (which is the case for most free and commercial converter
programs), but using a specially developed program, which employs record-
ings of real tones for the WAVE-�le generation5. The challenge here is �nding
such music pieces, which can be played by all music instruments under con-
sideration. Table 2 presents the music instruments we use in our work as well
as their pitch ranges in English tone notation and in MIDI-coding. According
to this table the common pitch range includes 17 tones, from 60 to 76 (in
MIDI-coding). We found two German folk songs, which ful�ll the tone range
condition: S16 with 122 tone onsets from the tone interval [60, 76] and S27

with 138 tone onsets from the tone interval [65, 74].
The tempo of a music piece can be measured by Beats Per Minute (BPM).

We will set the tempo for each piece to 90 BPM (classical tempo marking:
andante) and 200 BPM (classical tempo marking: presto). The sampling
rate of the recordings is set to 44100 Hz. The names of the music signals
follow the pattern: S1tempo_instrument (for example: S190_piano ). The
total number of music pieces in the data set is 24 (2 tempi, 2 music pieces
and 6 instruments).

3http://www.midiworld.com/basics/, date 01.06.2012.
4http://www.sonicspot.com/guide/wave�les.html, date 01.06.2012.
5This program is introduced in detail by (4).
6http://www.ingeb.org/Lieder/haidschi.mid, date 01.06.2012.
7http://www.ingeb.org/Lieder/esgetein.mid, date 01.06.2012.
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6. Results

In order to compare di�erent (sequential) parameter optimization ap-
proaches (see Section 3) we generate an experimental scheme with the fol-
lowing three meta-parameters: model type, model combination type and ini-

tial design. We use the programming language R (version 2.15.0, 14) for
calculation.

The meta-parameter model type determines the model which describes
the relationship between the onset detection algorithm parameters (L, O,
W and Q) and the target variable (F -value, see Section 2). We employ
six model types: A full second order model (FSOM, R-package rsm, 12),
Kriging (KM, R-package DiceKriging, 8), random forests (RF, R-package
randomForest, 13), support vector machines (SVM, R-package kernlab,
11), neural networks (NN, R-package nnet, 16) and the combination of these
�ve models (COMB).

The second meta-parameter �model combination type � is just meaningful
for the sixth model type and has four options (see Section 4): weighted aver-
age (WeightAver), best model (BestModel), best two models (Best2Mod-

els) and best ten points (Best10).
The last meta-parameter � initial design � is related to the initial designs

of the optimization strategies and has six levels: Three �textbook�-designs
with di�erent numbers of trial points and three associated Latin Hypercube
Sampling designs (see Table 1). Note that for the initial designs Classic
and LHS81 the model combination approach Best2Models is not possible,
because in these cases the number of function evaluations (83) would exceed
the experimental budged (82 evaluations).

For each optimization strategy and for each music piece the evaluation is
carried out ten times. This is done in order to average out the in�uence of
chance on the outcome. We actually have a maximization problem here, the
sign of F will be reversed hence to get a minimization problem (see Section
3).

As we aim to know for each music piece and for each optimization strategy,
how close the estimated optima and the true optima are to each other, we
�nd the true optima using a time-consuming grid search. The full factorial
design Grid consists � according to the ranges of the possible parameter
settings (see the last paragraph of Section 2) � of 20790 trial points. For
each of 24 music pieces a vector of function values for the Grid -design is
computed.
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In order to assess the goodness of the optimization strategies the following
procedure is conducted:

• Let i denote the index of a music song, i = 1, ..., 24:

� let qi be the 99%-quantile of the vector Y i
Grid , where Y

i
Grid is the

vector of function values for the Grid -design for the i-th song,

� determine the number of replications (nri) of the current opti-
mization strategy, in which an F -value that exceeds the qi-value
was found,

� compute the relative frequency of these �successful� replications
by freq i = nri/10,

• compute the goodness of the optimization strategy by 1
24
·
∑24

i=1 freq i.

Table 3 shows the goodness values for the parameter optimization strategies.
The strategies whose goodness-values exceed 0.95 are marked with an aster-
isk. One of the most important �ndings when considering Table 3 is that
the strategies with LHS-initial designs (in almost all cases) achieve better
goodness-measures than the associated strategies with �textbook�-initial de-
signs. The best result is achieved by the strategy with ID 38, a single Kriging
model with initial design LHS48, and the second best result is given by the
strategy with ID 52, a combined model (Best10) with initial design LHS48.

When considering only the �textbook�-initial designs we observe in con-
trast to LHS-initial designs that �rstly a model combination approach (Best10,
ID 22) is better than the best single model (Kriging, ID 7), and secondly that
initial designs of size 25 seem to be better than designs of size 48. For �text-
book� as well LHS-initial designs it is obvious that the classical optimization
strategies (where 81 of 82 design points are �xed in advance) are considerably
worse than the sequential optimization strategies.

Further we look at the number of function evaluations which are required
by each optimization strategy for �nding an F -value close to the true opti-
mum. For this purpose we conduct the following procedure for all optimiza-
tion strategies with initial designs of size 25 and 48:

• Let i denote the index of a music song, i = 1, . . . , 24:

� let qi be the 99%-quantile of the vector Y i
Grid ,
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Table 3: Frequency of �nding an F -value close to the optimum by the parameter opti-
mization strategies under consideration (the strategies whose goodness-values exceed 0.95
are marked with an asterisk)

model
type

model combi-
nation type

initial
design

[ID] good-
ness

initial
design

[ID] good-
ness

FSOM - Classic [1] 0.3875 LHS81 [27] 0.6292
KM - Classic [2] 0.3958 LHS81 [28] 0.7042
RF - Classic [3] 0.3958 LHS81 [29] 0.6542
SVM - Classic [4] 0.3917 LHS81 [30] 0.6375
NN - Classic [5] 0.3833 LHS81 [31] 0.6583
FSOM - Centr [6] 0.2875 LHS25 [32] 0.6292
KM - Centr [7] 0.9125 LHS25 [33] 0.9625*
RF - Centr [8] 0.7167 LHS25 [34] 0.7125
SVM - Centr [9] 0.7458 LHS25 [35] 0.7958
NN - Centr [10] 0.6542 LHS25 [36] 0.8375
FSOM - Orth [11] 0.4667 LHS48 [37] 0.6500
KM - Orth [12] 0.8250 LHS48 [38] 0.9875*
RF - Orth [13] 0.6333 LHS48 [39] 0.7708
SVM - Orth [14] 0.7000 LHS48 [40] 0.8125
NN - Orth [15] 0.7208 LHS48 [41] 0.8083
COMB WeightAver Classic [16] 0.3958 LHS81 [42] 0.6417
COMB BestModel Classic [17] 0.3917 LHS81 [43] 0.6708
COMB Best10 Classic [18] 0.3833 LHS81 [44] 0.6792
COMB WeightAver Centr [19] 0.6750 LHS25 [45] 0.8458
COMB BestModel Centr [20] 0.9375 LHS25 [46] 0.9375
COMB Best2Models Centr [21] 0.9167 LHS25 [47] 0.9501*
COMB Best10 Centr [22] 0.9625* LHS25 [48] 0.9585*
COMB WeightAver Orth [23] 0.7083 LHS48 [49] 0.8625
COMB BestModel Orth [24] 0.8500 LHS48 [50] 0.9458
COMB Best2Models Orth [25] 0.8625 LHS48 [51] 0.9625*
COMB Best10 Orth [26] 0.8792 LHS48 [52] 0.9667*
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� determine for each replication j, j = 1, . . . , 10, of the current opti-
mization strategy the number of function evaluations which were
su�cient to �nd an F -value that exceeds the qi-value. Collect
these numbers into the vector NRi = (nr1, nr2, . . . , nr10)

′,

� compute the mean of vector NRi: NRi =
1
10
·
∑10

j=1 nrj,

• calculate the mean and the standard deviation of the vector (NR1,NR2,
. . . ,NR24)

′

The results are shown in Table 4. According to Table 4 all LHS-initial
design strategies (with exception of the strategy with model type FSOM and
initial design Orth) are faster than the associated �textbook�-design strate-
gies (by 5.8 evaluations on average). Frequently the mean number of function
evaluations in Table 4 does not exceed the size of the associated initial design.
This is caused by the fact that in many cases a su�ciently large F -value has
been already achieved in the initial design. The standard deviations (of the
number of steps) of the LHS-initial designs is 1.6 to 3.7 times smaller than
the standard deviations of the associated �textbook�-designs. This seems to
be a further advantage of LHS-initial designs.

Our further analysis of the simulation results refers to the optimal param-
eter settings of the tone onset detection algorithm. As we mentioned above,
we calculated the best parameter setting for each music piece using the full
factorial design Grid . These optimal settings and the corresponding F -values
are presented in Table 5. There is no identi�able system regarding the best
settings for parameters L and O with respect to instrumentation and tempo.
On the one hand this can be caused by the fact that the function, which we
aim to optimize, has many local optima and if we consider e.g. ten best
trial points for one music piece, we can note a certain inhomogeneity within
these points. On the other hand, we generated music pieces using a MIDI
to WAVE converter and such music pieces can be only seen as more or less
acceptable alternatives to true recordings. At the moment it is for example
impossible to model legato (playing musical notes smoothly and connected).
This disadvantage is signi�cant especially for wind instruments.

However we can see a system for the optimal settings for parameter W :
For the instruments whose tone onsets are characterised by an amplitude
increase (piano and guitar) W has a value greater than 0.5. This means
that the amplitude based feature F1, see Section 2) has the major weight in
the combined feature (CombF ). For the wind instruments (�ute, clarinet

12



Table 4: The mean (and the standard deviation) of the number of function evaluations
required to �nd an F -value close to the true optimum

model
type

comb. type initial
design

mean (sd) initial
design

mean (sd)

FSOM - Centr 43.65 (28.62) LHS25 30.78 (8.22)
KM - Centr 37.34 (14.55) LHS25 29.71 (5.03)
RF - Centr 39.61 (15.79) LHS25 30.19 (7.52)
SVM - Centr 41.41 (15.33) LHS25 34.76 (9.05)
NN - Centr 42.11 (18.40) LHS25 34.34 (7.57)
FSOM - Orth 29.07 (19.96) LHS48 34.85 (8.98)
KM - Orth 45.12 (22.99) LHS48 41.16 (6.06)
RF - Orth 40.49 (22.00) LHS48 38.31 (7.09)
SVM - Orth 44.03 (22.39) LHS48 39.72 (9.12)
NN - Orth 44.25 (22.66) LHS48 39.37 (9.38)
COMB WeightAver Centr 45.50 (17.09) LHS25 31.70 (5.62)
COMB BestModel Centr 37.17 (12.35) LHS25 30.94 (5.17)
COMB Best2Models Centr 36.25 (11.62) LHS25 30.58 (4.07)
COMB Best10 Centr 37.61 (12.28) LHS25 30.91 (4.74)
COMB WeightAver Orth 48.93 (25.33) LHS48 39.14 (7.11)
COMB BestModel Orth 46.17 (22.84) LHS48 40.52 (6.68)
COMB Best2Models Orth 44.17 (21.68) LHS48 42.38 (5.94)
COMB Best10 Orth 43.77 (21.56) LHS48 41.23 (6.23)

and trumpet) and for violin we can note small optimal W -values (W < 0.5
with the exception of two cases). This means that in these cases the spectral
based feature has more in�uence on the combined feature. This con�rms
the observations reported in (4). Moreover, it is interesting that for the
instruments piano, guitar, clarinet and trumpet very large optimal F -values
can be achieved (larger than 0.95), whereas the optimal F -values for �ute
and violin lie between 0.831 and 0.974.

Furthermore the relationship between the optimal settings for parameters
Q, L and O and the tempo of music pieces is investigated. The number of
windows in one second depends on L and O. It is monotonically decreas-
ing in L and increasing in O. For a �xed number of onsets in one second
(music tempo) the following can be supposed: Since Q is a quantile of the
CombF -vector (which rules the number of windows, in which an onset can
be detected), with increasing number of windows the parameter Q should
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decrease.
However, for a �xed number of windows in a second we suppose the

following: With increasing tempo we expect that there are more windows
that contain a tone onset (parameter Q should be set higher). We �t a
linear regression with Q as response and L, O and tempo of music piece (in
BPM) as in�uencing parameters:

Q = β0 + β1 ·L+ β2 ·O + β3 · tempo+ ε.

For the model parameter estimation we use the data from Table 5. The
model with estimated parameters is

Q̂ = −4.263 + 0.008 ·L− 0.05 ·O + 0.036 · tempo.

The value for the adjusted R2 is 0.926. This indicates a good model �t.
The above presented suppositions regarding the direction of the relationship
between response and in�uencing variables can be con�rmed by the estimated
model. For our further research we will estimate parameter Q through this
model in order to reduce the number of parameters to optimize.

Table 5: Best parameter settings according to the evaluation of full-factor design Grid

inst. S190 S1200 S290 S2200 inst. S190 S1200 S290 S2200

p
ia
n
o

L 512 2048 512 1024

gu
it
ar

1024 2048 512 2048
O 0 30 0 0 0 0 0 5
W 1.00 0.55 0.95 0.85 0.85 0.90 0.60 0.55
Q 3 18 2 10 5 18 2 18
F -v. 0.996 0.992 0.996 0.996 0.996 0.997 0.996 0.996

cl
ar
in
et

L 512 1024 1024 1024

�
u
te

2048 1024 512 2048
O 5 50 30 50 20 15 30 50
W 0.65 0.35 0.20 0.35 0.30 0.05 0.00 0.00
Q 3 6 6 6 17 12 2 18
F -v. 1.000 0.996 0.996 0.967 0.911 0.875 0.974 0.934

tr
u
m
p
et

L 1024 1024 512 512

v
io
li
n

1024 1024 512 512
O 0 50 0 20 50 30 50 0
W 0.60 0.15 0.05 0.10 0.20 0.15 0.05 0.10
Q 6 7 4 8 3 8 2 9
F -v. 1.000 0.992 1.000 1.000 0.843 0.832 0.923 0.902
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7. Conclusion

In the following we will summarize our work. Di�erent strategies for
sequential parameter optimization were compared on the basis of an algo-
rithm for tone onset detection. We systematically tested the in�uence of
initial design characteristics and model types on di�erent goodness-measures
of the optimization strategies. The LHS-initial designs yield the better re-
sults both by achieving a su�ciently good value of the target variable and by
their �speed� in comparison with the �textbook�-designs. Furthermore we no-
ticed for the LHS-initial design strategies that by using initial designs with
48 trial points (approx. one half of the evaluation budget) slightly better
goodness-values (according to Table 3) could be achieved in comparison with
the initial designs of smaller size (25 trial points, approx. one third of the
evaluation budget) but that the number of necessary function evaluations for
�nding a su�ciently large F -value rises by about 5 evaluations. Regarding
the meta-parameter model we can see that the best model is Kriging (KN),
but that the model combination approaches Best2Models and Best10 also
perform well. Nevertheless, these model combination approaches are more
time-consuming than Kriging since the model prediction accuracies have to
be calculated in each sequential step.

Please note that it might not be unproblematic to generalize the above
results. This is because we used a very speci�c data base, which in fact
increases the internal validity of our study (regarding the analysis of best
parameter settings) but reduces the external validity.

For our further research it is important, on the one hand, to apply the
di�erent parameter optimization strategies de�ned here on other real or ar-
ti�cial optimization problems (by using e.g. Black-Box Optimization Bench-
marking (BBOB) templates which are available on the COCO (COmparing
Continuous Optimisers) platform8). On the other hand, we have to investi-
gate the properties of the proposed onset detection algorithm by applying it
to a wider range of data sets. For this reason it is important �rstly to de�ne
interesting music characteristics (e.g. monophony/polyphony, instrumenta-
tion, classic/modern, slow/fast) and then �nd appropriate music pieces for
each combination of these characteristics.

Furthermore, a parameter optimization of a more complex music signal
analysis algorithm like an algorithm for music transcription is planned. In

8http://coco.gforge.inria.fr/doku.php, date 01.06.2012.
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this case, however, a multi-objective parameter optimization will be required.
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