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Introduction

1.1. State-of-the-art

Recently, the Lattice Boltzmann Method (LBM) has appeared as a potential alternative
to conventional methods in computational fluid dynamics. The popularity of the Lattice
Boltzmann method is based on the simplicity of the scheme, which approximates a quite
complicated system, namely the Navier-Stokes equations. The basic LB algorithm con-
sists of two explicit decoupled steps, the stream-step and the collide-step. These steps are
performed alternatingly and combined with no-slip boundary conditions for the domain
boundaries or rigid obstacles. In the streaming step, particles move along lattice vectors
to the neighboring nodes and in the second step, the particles are redistributed after local
collisions. This simple LB algorithm can be implemented by roughly a single page of C
or Matlab code but the explicit nature of this method implies tight restrictions concerning
stability (discussed in [39] for the standard BGK LBM), or the Courant Friedrichs Levy
(CFL) condition.

Historically, the lattice Boltzmann method was derived from the Lattice Gas Automata
(LGA) and in particular the FHP model (named after Frisch, Hasslacher and Pomeau who
published the model in [21]). Later, Chapman and Cowling [11], by using Chapman En-
skog multiscale expansion, proved that this model is able to reproduce the weakly com-
pressible Navier Stokes equations by modelling the flow with fictitious particles moving
on a regular lattice and obeying very simple collision rules. The LGA comprises of two
steps: streaming and collision. The streaming is represented by a lattice pattern and colli-
sion is done by a collision operator. From a physical point of view, on macroscopic level,
these two steps simulate convection and diffusion phenomena, respectively. The equation
for LGA is

nα(x+ eα, t +1) = nα(x, t)+Ωα[n(x, t)], α = 0,1, ...,M (1.1)

where nα is a Boolean variable that is used as an indication of the presence with nα = 1
or absence nα = 0 of particles, eα is the local constant particle velocity, Ωα is the colli-
sion operator, and M is the number of directions of the particle velocities. The physical
variables, density and velocities are defined by

ρ =
M

∑
α=0

< nα > , ui =
1
ρ

M

∑
α=0

< nα > eαi (1.2)

1



2 Introduction

in which < nα > denotes the ensemble average of nα in statistical physics. It is observed
that simulations generated with a LGA are very noisy due to its Boolean nature [16]. Also,
the numerical procedure involves probabilities which reduces the efficiency of a LGA.

In order to overcome the difficulties faced by LGA, the Lattice Boltzmann method
was introduced where Boolean variables of LGA are replaced by particle distribution
functions fα and accordingly equation (1.1) takes the form

fα(x+ eα, t +1) = fα(x, t)+Ωα[ f (x, t)], α = 0,1, ...,M (1.3)

This approach eliminates the statistical noise in a LGA and at the same time it retains all
the advantages of locality in the kinetic form of a LGA. Due to the complicated nature of
the collision term Ωα, various simplifications have been proposed in the literature. How-
ever, the most well accepted version due to its simplicity and efficiency is the Bhatnagar-
Gross-Krook (BGK) model [4]. This approximation of the collision term writes the colli-
sion operator as a function of the difference between the value of the distribution function
and the equilibrium distribution function as

Ωα =−1
τ
( fα− f eq

α ) (1.4)

where τ is the single time relaxation parameter, and f eq
α is obtained by expanding the

Maxwell-Boltzmann distribution function in Taylor series of u up to second order [12, 30],
and can be expressed in general as as

f eq
α = ρWα

[
1+

3
c2 (eα ·u)+

9
2c4 (eα ·u)2− 3

2c2 u2
]

(1.5)

in which c = ∆x
∆t is the particle speed and the coefficients Wα depend on the discrete veloc-

ity set {eα}. The macroscopic density ρ and velocity vector u are related to the distribution
function by

ρ =
M

∑
α=0

fα , ρu =
M

∑
α=0

fαeα (1.6)

The pressure can be calculated from p = c2
s ρ with the speed of sound cs = c/

√
3 and the

viscosity of the fluid is ν = c2
s (τ− ∆t

2 ).

The BGK choice of the collision operator makes the lattice Boltzmann equation extremely
simple and efficient; hence it has been widely used in many different areas including
the investigation of multiphase flows and multicomponent flows [25–27], turbulent flows
[15, 72], fluid flow in porous media [1, 9, 28], simulation of heat transfer and reactive
flows [14, 36, 46] and magnetohydrodynamics [13].

As will be described in section 2.5.2, one of the key features of the LBM with fully
structured lattices is that a parallel implementation is very easy. Due to the availability of
modern computational hardware, a lot of research is going on, especially in view of High
Performance Computing. Advanced Lattice Boltzmann solvers on CPUs and GPUs have
been implemented by Tölke and Krafczyk [64], Thürey [63] and Pohl [49]. In the same
direction, Geveler et al. [24, 53] developed different kernels based on lattice Boltzmann
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methods using multi and manycore architectures. We would like to mention the SKALB
project (www.skalb.de) as a recent initiative with the aim of efficiently implementing and
the development of Lattice Boltzmann based CFD solvers for the simulation of complex
multiphysics applications on petascale class computers.

However, most of the research has been done on the structured framework and only a
few references can be found utilizing Lattice Boltzmann approach on unstructured grids.
Also, an implicit treatment of LBE appears in only very few places. Some authors tried
to work on unstructured grids by combining LBM with finite element and finite volume
approaches with more or less success. The motivation of our work is to use implicit
time discretization approaches for the lattice Boltzmann equation on unstructured grids
introduced recently in [33].

1.2. Contribution of the thesis

The aim of this thesis is twofold, first to overcome the limitations faced by standard Lat-
tice Boltzmann method which is thoroughly discussed in literature and secondly, to extend
the new approach initiated by Hübner in [33] towards non-Newtonian fluids, in particular,
the generalised Newtonian fluids. In these fluids the viscosity of the fluid is depending
on the shear rate, but there are no memory effects as in viscoelastic fluids. The viscosity
is either decreasing or increasing with growing shear rate. These two cases correspond
to shear-thinning or shear-thickening effects. There are many industrial flow problems
in which the non-Newtonian viscosity effects are very important. In case of Newtonian
fluids the only nonlinearity is due to the collision term whereas for non-Newtonian case
we have additional nonlinearity due to the nonlinear viscosity function.

Unlike the standard LBM, we consider unstructured (off-lattice) discretizations on nonuni-
form triangular grids in combination with a fully-implicit time-discretization as proposed
in [33]. In this work, we treat mainly the discerete Boltzmann equation also called dis-
crete velocity model (DVM) with the Bhatnagar-Gross-Krook collision operator as in
[50], given by the following equations

∂ fi

∂t
+ξξξi ·∇ fi =−

1
τ
( fi− f eq

i ) i = 0,1, ...,M (1.7)

which means single-time relaxation of the fi towards equilibrium f eq
i on a typical timescale

τ. We consider the two dimensional case, and therein the D2Q9 model that has the neces-
sary conservation and symmetry properties. The set of discrete lattice vectors ei is given
as

ei =


(0,0) i = 0
(cosθi,sinθi) i = 1,3,5,7√

2(cosθi,sinθi) i = 2,4,6,8
(1.8)

where θi = (i− 1)π/4. The so-called ’velocities’ ξξξi = cei correspond to the scaled lat-
tice vectors, with the parameter c which determines the speed of sound, cs = c/

√
3, of the
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system. The equilibrium term f eq
i is given by

f eq
i = ρWi

[
1+

3
c2 (ξξξi ·u)+

9
2c4 (ξξξi ·u)2− 3

2c2 u2
]

(1.9)

with weights Wi equal to 4
9 for the zero velocity, 1

9 for the orthogonal and 1
36 for the

diagonal velocities. The distributions are summed up to get the moments of density and
momentum:

ρ =
8

∑
i=0

fi , ρu =
8

∑
i=0

ξξξi fi (1.10)

In this thesis, we apply a simpler model proposed by He and Luo [29], which reduces
the equilibrium term to a quadratic polynomial in the primary solution variables. This
simpler equilibrium term is obtained by explicitly substituting ρ = ρ0 + δρ in which ρ0
is a constant density and δρ represents the fluctuations in the density and neglecting the
terms proportional to δρ(u/c) and δρ(u/c)2 which are of the order O(Ma3) or higher,
where Ma = U/c is the Mach number. The equilibrium distribution function of this, the
so-called ’incompressible model’ is given by

f eq
i =Wi

[
ρ+ρ0(

3
c2 (ξξξi ·u)+

9
2c4 (ξξξi ·u)2− 3

2c2 u2)
]

(1.11)

with ρ0 = 1 and corresponding weights Wi. This approach approximates the Navier-
Stokes equation (see [50]), whereas the viscosity ν is included via ν = c2

s τ in the DVM
(see [65]) and the distributions are summed up to get the moments of density and velocity:

ρ =
8

∑
i=0

fi , ρ0 ·u =
8

∑
i=0

ξξξi fi (1.12)

There is an additional error component associated with this system which is of order
O(Ma2) (see [22, 52]). This error is termed as the compressibility error. It should be
noted that in the equation (1.7), the parameter c appears as a linear scaling factor to
the differential operator, and quadratic in the collision term through τ. This means that
for small c and large viscosity ν the equation is transport dominated, while increasing c
makes it collision dominated, the same for decreasing ν. The interplay between c,h, and
ν is thoroughly discussed in [33] since it vastly influences the approximation.

The extension of the Lattice Boltzmann equation to non-Newtonian fluids has recovered
limited attention so far, in spite of the fact that a reliable extension of LBE to simulate non-
Newtonian fluids would be very valuable. LBE offers excellent possibilities for simulating
non-Newtonian fluids due to the reason that the shear tensor can be computed locally, with
no need of taking space derivatives of the velocity field [69]. An early extension of the LB
model to simulate non-Newtonian fluid flows has been reported by Aharonov and Roth-
man [2] using the Power-Law model. Gabbenelli et al. [23] have extensively tested the
accuracy of the LB model for non-Newtonian fluid flows using the truncated power law
model. Kehrwald [37] simulated a shear thinning flow using the Carreau-Yasuda model
and instead of using velocity gradients, they used intrinsic quantities of the LB model to
calculate the strain rate. A second order accurate LB model was developed by Boyd et al.
[6] to study shear thinning and shear thickening flow behaviour for a range of Power-Law
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model parameters. Malaspinas et al. [42] simulated the Power Law and Carreau-Yasuda
fluids in the cases of steady Poisseuille and 4:1 contraction flows.

Regarding our contribution for the case of non-linear viscosity, we modify the mono-
lithic approach given in chapter 3 to work for shear dependent viscosities. The idea behind
this extension is to determine the value of relaxation time locally in such a way that the
desired value of viscosity is recovered. One should note that the viscosity itself is related
to the local rate of strain γ̇ through the constitutive equation for the stress tensor as given
for non-Newtonian models [23] while γ̇ in the Lattice Boltzmann framework can be taken
as a function of non-equilibrium functions and the relaxation time τ which itself depend
on the viscosity. Due to this cycle one cannot get an explicit expression for the viscos-
ity and hence an implicit treatment of the viscosity is very difficult. Therefore, in each
non-linear iteration we use the viscosity calculated at the previous iteration and instead of
using full Newton method we use a variant of Newton where we treat the advection part
fully implicitly like we did in Newtonian case, but we treat the non-linear viscosity in a
semi-implicit way.

1.3. Outline of the thesis

The outline of this thesis is the following. In Chapter 2 we give a brief introduction to
computational fluid dynamics and some classical approaches to solve CFD problems. In
the same chapter, we also present various ingredients of the standard Lattice Boltzmann
method which can be considered as a special case of our general approach to Lattice Boltz-
mann Equation (LBE) and we highlight some advantages of this method over traditional
approaches to CFD. The implicit time discretization of the Lattice Boltzmann Equation
and our special high order upwind space discretization along with a useful sorting algo-
rithm, is presented in Chapter 3. Various types of initial and boundary conditions used in
LBE are given in Chapter 4. We write the resulting nonlinear problems in matrix form in
Chapter 5 and discuss various nonlinear and linear solvers for the solution of the problem.
In Chapter 6, a detailed solver analysis is given to show the efficiency of our nonlinear
and linear solvers examining the driven cavity problem at different Reynold numbers and
with different start procedures. We also discuss the aspect of temporal accuracy by pre-
senting the results for nonstationary flow around cylinder. We modify the configuration
of the well known flow around cylinder benchmark [58], using a time dependent inflow
profile and plot drag, lift and pressure forces acting on the cylinder. Chapter 7 deals with
the extension of our new approach towards non-Newtonian flow problems, in particular,
using the Power Law and Carreau models for two dimensional channel flow and driven
cavity configurations. The results show that our approach is applicable to a wide range
of shear-dependent viscosities. Finally, we give a concluding summary in Chapter 8 and
some future plans to couple LBE with the discontinuous Galerkin approach in order to
get higher order space discretization schemes to reduce the discretization error and the
number of unknowns considerably.
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Computational Fluid Dynamics (CFD)

In this chapter we give a short introduction into Computational Fluid Dynamics (CFD)
and some traditional approaches to solve CFD problems.

2.1. Computational Fluid Dynamics

Computational Fluid Dynamics is defined as the set of methodologies that enable the
computer to provide us with a numerical simulation of fluid flows. It is a science of pre-
dicting fluid flows by solving the mathematical equations which govern the fluid motion
by means of numerical procedures. During the last few decades or so, there has been a
lot of progress in developing codes for solving a variety of Fluid Dynamics problems and
a lot of useful software packages for the simulation of fluids have been released. These
packages are based on traditional approaches like finite difference methods, finite element
methods, finite volume methods and boundary element methods. In the following sections
we briefly describe these approaches together with their pros and cons.

2.2. Finite Difference Methods

Finite Difference methods [45, 47, 54] are one of the oldest methods applied to obtain
numerical solution of differential equations. These methods are based on the properties
of Taylor expansion and the straightforward application of the definition of derivatives.
They are probably the simplest methods to apply on the uniform meshes. A finite differ-
ence method proceeds by replacing the derivatives in the differential equations by finite
difference approximations. This gives a large algebraic system of equations to be solved
in place of the differential equation, something that is easily solved on a computer. The
limitation of structureds grid makes it difficult to apply for problems with complex ge-
ometries. Another disadvantage of finite difference methods is that a local refinement is
not possible or hardly possible.

2.3. Finite Volume Methods

Finite Volume Methods [31, 40] are amongst the most versatile discretization techniques
used in CFD. The popularity of FV methods is due to the fact that they are based directly
on the integral form of conservation laws instead of the differential form. Due to the
integral form the terms in the discretized formulation have direct physical interpretation.

7



8 Computational Fluid Dynamics (CFD)

These methods are well adapted for the discretization of various convection dominated
partial differential equations. An additional feature of FVMs is the local conservativity
of the numerical fluxes, that is the numerical flux is conserved from one discretization
cell to its neighbour. This feature makes the finite volume method quite attractive when
modelling problems for which the flux is of importance, such as in fluid mechanics, semi
conductor device simulation, heat and mass transfer etc. They are able to handle com-
plex geometries. Since these methods are suitable for flux calculations so they are rarely
applied in solid mechanics.

2.4. Finite Element Methods

The Finite Element Method [17, 51, 61] is relatively new as compared with finite dif-
ference and finite volume methods. The origin of FEM can be traced from the field of
structural analysis. In Finite Element Methods, the original PDEs are multiplied by a test
function and integrated over the domain, resulting in the weak formulation of the problem.
The infinite dimensional space which contains the unknown function is then replaced by a
subspace of finite dimension, chosen in such a way that the approximate solution consists
of piecewise polynomial functions. Suitable choice of test function leads to a system of
algebraic equation. These methods are based on the definition of function values attached
to the nodes of the mesh, where the numerical value of the unknown functions, and even-
tually their derivatives, will have to be determined. These methods can be used for any
irregular shaped domain and all types of boundary conditions. Also the accuracy of the
solution can be easily improved either by proper refinement of the mesh or by choosing
approximations via higher degree polynomials.

2.5. Lattice Boltzmann Method

The Lattice Boltzmann method [29, 62, 73] is relatively new and it contrasts with the
traditional approaches to CFD by adopting a bottom-up approach rather than a top-down
approach to fluid modeling (see fig.2.1). To achieve this, it describes the fluid at a meso-
scopic level and proposes models for the collision between the molecules. Though, histor-
ically LBM is a pre-averaged improvement to its predecessor, the Lattice Gas Automata
[21, 55], however it can also be considered as a special finite difference form of the con-
tinuous Boltzmann equation [30].

2.5.1. Lattice structures

In lattice Boltzmann methods, we divide the computational domain into a large number
of cells, each cell is called a lattice. A lattice structure with n lattice directions, defined
on a m dimensional space, is commonly identified by the name DmQn lattice. For 2D
case, there are generally two types of lattice patterns: square lattice and hexagonal lattice.
A square lattice can have 4-speed (D2Q4), 5-speed (D2Q5), 8-speed (D2Q8) or 9-speed
(D2Q9) models, and the hexagonal lattice can have 6-speed (D2Q6) and 7-speed (D2Q7)
models. A few 2D and 3D lattice structures are given in figures 2.2–2.3. It should be noted
that the choice of lattice structure is not arbitrary because not all of these models have
sufficient lattice symmetry which is a dominant requirement for the recovery of correct
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Figure 2.1: Connection between bottom up and top down approaches

flow equations [21]. For example, the D2Q5 model is unable to recover the Navier-Stokes
equations. In order to recover the correct fluid dynamic equations in the macroscopic
limit, the set of discrete speeds must satisfy mass, momentum and energy conservation,
as well as rotational symmetry. Only a limited class of lattices exhibits the right symmetry
to ensure the conservation constraints.

2.5.2. Advantages of Lattice Boltzmann Method

The Lattice Boltzmann Method has several advantages over the traditional Computational
Fluid Dynamics approaches. Some of them are:

• Simple Explicit Algorithms

• Low memory requirements

• Data Locality

• High Performance Computing on many processor architectures

• No need for explicitly solving pressure dynamics

Because of these attractive features, the Lattice Boltzmann method has been particularly
successful in simulations of fluid flows.
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Figure 2.2: 2D Lattice sets
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Figure 2.3: 3D Lattice sets
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2.5.3. Differences between LBM and other CFD methods

As a computational tool, the lattice Boltzmann method differs from methods which are
directly based on the Navier-Stokes equations in various aspects. They are summarized
below as in [71]:

1. The Navier-Stokes equations are second-order PDEs (macroscopic equations) while
the LBE consists of a set of first order PDEs (kinetic equations).

2. The Navier-Stokes solver must deal with non-linear convective term u.∇u, whereas
in the LBE models the convection terms are linear and handled by simple advection
using uniform data shifting.

3. For incompressible flow, the Navier-Stokes solver needs to solve the Poisson equa-
tion for the pressure, which involves global data communication. In the LBE meth-
ods, the pressure is obtained through an equation of state and data communication
is always local.

4. Usually in the LBE method, the grid Courant-Friedrichs-Lewy (CFL) number is
equal to 1, based on the lattice units of ∆x = ∆t = 1. Also, the coupling between
the discretized momentum space and physical space leads to regular square grids.

5. Due to the kinetic nature of the Boltzmann equation, the physics associated with
the molecular level interaction can be incorporated more easily in the LBE model.

6. The Navier-Stokes solvers usually employ iterative procedures to obtain a con-
verged solution; the standard LB models are usually explicit and do not need it-
erative procedures.

2.5.4. Sources of Errors in LBM

Compressibility Error

The Lattice Boltzmann method is a compressible discretization of the Boltzmann equation
so there is a small compressibility effect present in the Lattice Boltzmann method. Com-
pressibility errors are caused by the dependence of pressure on density. It has been shown
that the Lattice Boltzmann equation represents the Navier-Stokes equations in nearly in-
compressible limit for the small Mach number limit (Ma = U

cs
<< 1). This error is termed

as the compressibility error which is of O(Ma2) (see [29]).

Discretization Error

As solution of the Lattice Boltzmann equation is generally found using some numerical
method so discretization by any method will lead to some discretization error. In con-
text of our finite difference upwind schemes, by assuming an arbitrary discretization of
order γ of the convective term, Lattice Boltzmann equation accounts for an additional dis-
cretization error O(Ma−1hγ) decreasing with grid spacing h and for higher order space
discretization techniques. However, it includes an inverse contribution of the Mach num-
ber and makes predicting the convergence of overall numerical scheme difficult [33].
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2.6. Dimensionless Numbers

In fluid flows, each of the pressure, viscous and transient forces dominates under certain
conditions. In order to investigate the importance of each of these forces, the equations of
motion are written in a dimensionless form, through defining dimensionless parameters.
The major dimensionless parameters used in this study are:

• The Reynolds Number(Re)

The Reynolds number describes the ratio between convective inertial and viscous
forces and is relevant in every flow situation. It is defined as

Re = ρUL/η =UL/ν

where ρ is the density, U is maximum velocity, L is a characteristic length scale, η

is dynamic viscosity and ν = η

ρ
is kinematic viscosity. For low Reynold numbers

the viscous forces are dominant, whereas for high Reynold numbers, the inertial
forces are more relevant. Thus the Reynolds number is an indicator how far the
flow field is from turbulence.

• The Mach Number(Ma)

The compressibility effect can be analyzed by considering the dimensionless Mach
number

Ma = u/cs

which relates the modulus of the flow velocity to the speed of sound. In (nearly)
incompressible fluids, sound waves travel at infinite speed (c→ ∞) so that the Ma
number tends to zero. As the lattice Boltzmann method is a "semi-compressible
method", the Mach number is used to guarantee the validity of the method.

• The Strouhal Number(St)

The Strouhal number is important in situations describing oscillating flow mecha-
nisms and it is defined as

St = f D/U

where f is the frequency of vortex shedding, D is the characteristic length and U is
the velocity of the fluid. It represents a measure of the ratio of inertial forces due
to unsteadiness of the flow (local acceleration) to the inertial forces due to changes
in velocity from point to point in the flow field (convective acceleration). This type
of unsteady flow may develop when a fluid flows past a solid body placed in the
moving stream.

• The Knudsen Number(Kn)

The Knudsen number is defined as the ratio between the mean free path of molecules
to a representative physical length scale

Kn = λ/L

where λ is mean free path of molecules and L is the reference length scale. This
number is useful for determining whether statistical mechanics or the continuum
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mechanics formulation of fluid dynamics should be used.

The following list shows different flow regimes depending on the values of the Knudsen
number.

� Kn < 10−3 continuum regime

� 10−3 < Kn < 10−1 slip regime

� 10−1 < Kn < 101 transitional regime

� 101 < Kn free molecular regime

2.7. Invariants of a tensor

From a tensor τ, three independent scalars can be formed by taking the trace of τ, τ2 and
τ3

I = trτ = ∑
i

τii

II = trτ2 = ∑
i

∑
j

τi jτ ji

III = trτ3 = ∑
i

∑
j
∑
k

τi jτ jkτki

They are called invariants of the tensor τ, because their values are independent of the
choice of coordinate system to which the components of τ are referred. Other scalars can,
of course be formed, but they will be combination of these three. For example

I1 = I

I2 =
1
2
(I2− II)

I3 =
1
6
(I3−3I.II +2III) = detτ

The second invariant is very important in many cases, for example, the second invariant
of rate of strain tensor is used in constitutive equations when dealing with generalized
Newtonian fluids (see section 7.1).
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3

Time and Space Discretization of LBE

In this chapter a short introduction into the space and time discretization for the Lattice
Boltzmann Equation is presented. Unlike the standard LBM, we consider unstructured
(off-lattice) discretizations on nonuniform triangular grids in combination with a fully-
implicit time-discretizations developed by Hübner in [33]. Time-independent problems
are efficiently solved in a direct way [35] while nonstationary benchmark problems con-
sidered in this thesis are also successfully simulated with second order accuracy and large
time step independent of the mesh width: In space, we use a FEM-like constant character-
istic upwind scheme for the transport-term. This second order accurate finite-difference
discretization with a special resorting of the unknowns leads to lower triangular transport
matrices which in turn can also be used as a special preconditioner for transport dominated
cases as will be described in Section 5.5.1.

3.1. Implicit time-discretization

We start with the time-discretization of the discrete Lattice Boltzmann equation

∂ fi

∂t
+ξξξi ·∇ fi =−

1
τ
( fi− f eq

i ). (3.1)

A numerical, off-lattice treatment usually begins with integrating the equation (3.1) over
the interval [tn, tn+1]. Accordingly, we write

f n+1
i − f n

i +∆t
∫ tn+1

tn
ξξξi ·∇ fidt =

∫ tn+1

tn
Ωidt

with the usual collision term Ωi =−1
τ
( fi− f eq

i ). We evaluate both integrals appearing in
the above equation by a general one-step θ scheme given by

f n+1
i − f n

i +∆t[θξξξi ·∇ f n+1
i +(1−θ)ξξξi ·∇ f n

i ] = ∆t[θΩ
n+1
i +(1−θ)Ωn

i ] (3.2)

in which θ can be chosen arbitrarily from the interval [0,1] which give rise to explicit and
implicit schemes of different orders. For example:

• θ = 0 corresponds to the explicit Euler method:

f n+1
i +∆t (ξξξi ·∇ f n

i −Ω
n
i ) = f n

i (3.3)

15
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• θ = 1 yields the implicit Euler discretization which is first order in time:

f n+1
i +∆t

(
ξξξi ·∇ f n+1

i −Ω
n+1
i
)
= f n

i (3.4)

• θ = 1/2 yields the second order Crank-Nicolson scheme:

f n+1
i +

∆t
2
(
ξξξi ·∇ f n+1

i −Ω
n+1
i
)
=

∆t
2
(Ωn

i −ξξξi ·∇ f n
i )+ f n

i (3.5)

In order to treat transient flow problems a high (higher than first) order time-discretization
is necessary to obtain sufficient accuracy using moderate up to large time steps, while a
first order scheme usually demands micro-timestepping. Furthermore, we can proceed
straightforwardly by combining the stability of equation (3.4) with the accuracy of equa-
tion (3.5) in the so-called fractional step θ scheme described in [68].
It is also possible to omit the time-dependence for the direct stationary treatment of
steady-state problems with equation

ξξξi ·∇ fi(x)+
1
τ
( fi(x)− f eq

i (x)) = 0 (3.6)

which is also used in Chapter 7 for the case of non-constant viscosity.

Independent of the applied time-scheme the discretization needs to be completed in space,
which will be accomplished by a special finite difference technique in the next section.

3.2. The short-characteristic discretization in space

The convective term ξξξi ·∇ fi appearing in equation (3.1) can be discretized in space using
finite differences [12], finite elements [41], [19] or finite volume method [48]. In this
section we describe a quite general finite difference scheme for the discretization of the
convective term, since we allow unstructured meshes. This task has been performed very
efficiently in [32], [34] using a backward difference scheme of up to second order accu-
racy. For each of the constant characteristics we regard the transport problem as a simple
one dimensional differential equation. Actually, this procedure does not only apply for
the set of lattice velocities, but for any arbitrary characteristic β (see Fig. 3.1). Therefore,
and for reason of simplicity, we assume a hyperbolic equation with pure convection

nβ ·∇u(x) = f (x), (3.7)

for a function u : Rd → R with the unity vector nβ. In the following we describe the
construction of the so-called upwind discretization procedure for the transport term in
(3.7), of first and second order accuracy, respectively.
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Figure 3.1: Constant characteristic upwind
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3.2.1. First order upwind

Due to the constant characteristics in the Boltzmann equation as well as in the exemplary
convection equation (3.7), we can view the problem as purely one dimensional as in Fig.
3.2. Consequently, we can write the spatial derivative as

nβ ·∇u(v0) = u′(v0) =
u(v0)−u(v1)

h1
+O(h1), (3.8)

using an upwinding of first order (to be denoted as upw1). This approximation yields a
backward difference quotient and we denote the linear operator as

∇upw1u(v0) :=
u(v0)−u(v1)

h1
. (3.9)

This means we discretize in each grid-point using local and backward information, in Fig.
3.1 represented by nodes v0 and v1, respectively.

h
1

h
2

v
0

v
1

v
2

Figure 3.2: 1D view along the characteristic

Interpolation

Using unstructured meshes, we cannot expect to come across actual grid nodes going
back along the characteristics. Instead, we assume virtual nodes right on the intersection
with the edge of the next backward element. The function value in the virtual node has to
be interpolated from the function values in the neighbouring nodes. For first order upwind
we apply linear interpolation between the solution in the corners p1

1, p2
1 of the respective

edge, obtaining
u(v1) = α1u(p1

1)+(1−α1)u(p2
1).

This scheme is of first order for the interpolation of u(v1) and therefore sufficient for the
overall consistency of the discretization scheme (3.9).



3.2. The short-characteristic discretization in space 19

3.2.2. Second order upwind

It is obvious that the difference quotient for the second order upwinding needs in total
3 function values, from one local and two backward nodes, to achieve the desired accu-
racy on arbitrary grids. The coefficients in the scheme can be found using the so-called
’polynomial fitting’ technique. Due to our constant characterisitic approach, we assume
a simplified problem in 1D as previously, but need to take into account a non-equidistant
distribution of the grid-points. A second order scheme is supposed to give us exact results
for the first differential if the solution of the equation is a quadratic polynomial. That is
why we make the ansatz

u(x) = a+bx+ cx2

and use three grid-points (the local point where to evaluate u′ and two upwind points) to
determine the unknown coefficients. For the polynomial fitting it is sufficient to assume:

x0 = 0
x1 = −h1

x2 = −h1−h2 =−r ·h1 r > 1

In order to approximate the first differential of u in x0, we differentiate the ansatz function
and obtain

∂u
∂x

= b+2cx

Evaluating the differential in 0 shows that we need to determine the coefficient b = u′(0).
We obtain a determined linear system for the coefficients a,b,c when we evaluate the
ansatz function in the three points u0 = u(x0), u1 = u(x1), u2 = u(x2)

u(0) = a
u(h1) = a−bh1 + ch2

1
u(−rh1) = a−brh1 + c(rh1)

2
−→

 1 0 0
1 −h1 h2

1
1 −rh1 (rh1)

2

 a
b
c

=

 u0
u1
u2


The unique solution for the coeficient b is

b =
−(1− r2)u0− r2u1 +u2

h1(r2− r)
= (

∂u
∂x

)0

We summarize that we found the coefficients for the second order upwind scheme (to be
denoted as upw2) in v0 (with h1 + h2 = rh1): The equidistant case (h1 = h2 ⇔ r = 2)
results in the well known scheme

u′(v0)∼
3u(v0)−4u(v1)+u(v2)

2h1

Analogously, the LB differential operator will be discretized for each of the 8 constant
characteristics using a scaling by parameter c:

ξξξi ·∇ fi =

{
cni ·∇ fi , othogonal vectors√

2cni ·∇ fi , diagonal vectors

Additionally the diagonal characteristics have a scaling factor of
√

2, due to the construc-
tion of the Lattice Boltzmann scheme.
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FEM like Interpolation:
To achieve the overall second order of the previously described scheme, it is not suffi-
cient to use first order interpolation between the corners on the considered edge. We need
additional degrees of freedom and place them in the edge midpoints. Thus, we obtain a tri-
angulation corresponding to second order finite elements with 6 degrees of freedom each
(see Fig. 3.1). Function values in each virtual node, for example in v1, are interpolated
from 3 edge values in the following way.

u(v1) = λ1u(p1
1)+λ2u(p2

1)+λmu(m1)

With weights depending on the value α1:

λ1 = (1−α1)(1−2α1) , λ2 = α1(2α1−1) , λm = 4α1(1−α1)

The following exemplary α values show how the interpolation scheme collapses back into
the actual grid nodes.

α1 = 0.0 ⇒ λ1 = 1,λ2 = 0,λm = 0
α1 = 1.0 ⇒ λ1 = 0,λ2 = 1,λm = 0
α1 = 0.5 ⇒ λ1 = 0,λ2 = 0,λm = 1
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3.3. Special sorting technique

Due to the upwind discretization using information from ’backward’ nodes, one is in-
clined to think that, starting from the inflow boundary and ’traversing’ the domain to the
opposite wall, one can directly solve a pure convection problem as in Eq. (3.7). In fact, as
described in [34], for each constant characteristic β, resp., lattice vector ξξξi, it is possible
to find a numbering of the grid nodes so that the resulting discretization matrix is lower
triangular. The numbering is determined in a preprocessing routine and differs for each
direction. At simulation time, whenever one has to solve a transport step (for example
in preconditioning), it is possible without actually inverting a matrix but by following
the numbering and performing a simple backward insert of the solution starting from the
given boundary values. The sorting algorithm is based on topological sorting from the
field of graph theory (see [18]) and can be written in pseudo-code (see Alg. 3.1) which
was previously presented in [32].

Algorithm 3.1 Topological Sorting.
ORDER (QUEUE[*], IN-NODES[*][*], OUT-NODES[*][*], NVT)

0. INIT:
i.) QUEUE[*]=0, OUTDEG[*] = 0 , k = 1
ii.) FOR EACH ENTRY IN OUT-NODES[i][*] DO OUTDEG[i]++
iii.) FOR EACH i WITH OUTDEG[i]=0 DO i→ QUEUE

1. DO WHILE k < NVT
a.) v=QUEUE[k]
b.) IF v=0 THEN OUTPUT ’Graph is cyclic!’, STOP!
c.) FOR EACH j IN IN-NODES[v][*] DO:
d.) OUTDEG[j]- -
e.) IF OUTDEG[j]=0 THEN j→ QUEUE
f.) END FOR
g.) k = k + 1

The effect of this sorting algorithm is presented in figure 3.3 (also given in [33]). After
applying the according permutation matrices to the 8 transport parts situated on the block
diagonal of the system matrix, we see a change in the original location. The entries that
belong to the finite difference discretization of the differential operator are permuted into
a lower triangular allocation in the matrix. The off diagonals contain the collision-term
entries.
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(a) Unsorted (b) Sorted

Figure 3.3: Symbolic representation of effect of sorting algorithm

3.4. Algebraic systems

The finite difference upwinding of second order presented in section (3.2.2) yields lower
triangular transport matrices due to the resorting of unknowns using special algorithm.
However, this FD approach has a special consequence in the context of the Boltzmann
equation. Let ∇h,i be an approximation of order γ of the normal derivative in the i-th
direction. Then, the transport in Eq. (3.1) yields the asymptotic relation

ξξξi ·∇ fi = c(eeei ·∇ fi) = c(∇h,i fi +O(hγ)) = c∇h,i fi +O(c hγ) (3.10)

for unity lattice vectors eeei. In total, the error due to finite grid spacing is amplified by
the sound parameter c. With the relation Ma = O(1/c) we have therefore a specific dis-
cretization error O(Ma−1hγ) with an inverse Mach number influence which is opposed to
the compressibility error O(Ma2). A balancing of the two contributions is achieved by
setting the simulation parameters according to

hγ = O(Ma3) = O(1/c3)

which then yields the optimum asymptotic and quadratic convergence in the Mach num-
ber. The assumption was confirmed in [35] by a numerical analysis of the L2-error for
different steady-state CFD problems.

However, in order to write the algebraic system we identify two operators. First, we
sum up the linear (discrete) transport and identity terms from Eq. (3.1) and denote

Ti fi := fi +θ∆t[ξξξi ·∇ fi +
1
τ

fi]

or
Th

i fi := fi +θ∆t[c∇h,i fi +
1
τ

fi]

Second, take the equilibrium (the remaining part of the collision-term)

∑
k

ωik fk := f eq
i (ρ,u) =Wi

[
ρ+ρ0

(
3
c2 (ξξξi ·u)+

9
2c4 (ξξξi ·u)2− 3

2c2 u2
)]

.



3.5. Linearization of collision 23

In short, we have the nonlinear form

f eq
i = ∑

k
ωik fk with ωik = ω(i,k,c,u) (3.11)

the corresponding weights obtained after resolving the equilibrium (1.9) in terms of the
distributions fi. The discrete equation obtained so far in these terms is

Ti f n+1
i − θ∆t

τ
∑
k

ωik f n+1
k = gn

i (3.12)

where the right hand side is taken from the previous time step

gn
i = f n

i − (1−θ)∆t
(

c∇h,i f n
i +

1
τ

f n
i −

1
τ

f n,eq
i

)
.

The corresponding nonlinear algebraic block-system can be written as


T0
T1

. . .
T8

− θ∆t
τ


ω00 ω01 . . . ω08

ω10 ω11
...

... . . . ...
ω80 . . . . . . ω88





f n+1
0

f n+1
1
...

f n+1
8

=


gn

0
gn

1
...

gn
8

(3.13)

and we have to deal with a coupled algebraic system of equations which consists of a
nonlinear operator introduced through the equilibrium term f eq

i and a linear operator (cor-
responding to the discrete transport and identity terms). The former is purely local, while
for the latter we obtain the favourable triangular matrix property due to a renumbering of
the unknowns in the finite difference upwinding scheme.

3.5. Linearization of collision

The implicit treatment of collisions gives rise to nonlinearity in the primary variables fi.
In the macroscopic variables we have the two quadratic terms (ξξξi ·u)2 and u2 appearing
in the equilibrium term

f eq
i = Wi

(
ρ+ρ0

(
(ξξξi ·u)

c2
s

+
(ξξξi ·u)2

2c4
s
−

(u2
1 +u2

2)

2c2
s

))
of the (incompressible) SRTBGK model, but their linearization is quite straightforward:
The general product uαuβ composed of velocity-components is substituted by uαũβ where
ũ can be chosen for example from the solution at the previous time-step or as the last iter-
ate in a fixed-point nonlinear solver (see also Section 5.1.1). In the primary distributions
we write ũ = ∑iξξξi f̃i. This ansatz is sufficient for a linearization of the above schemes
and we complete it by eliminating the macroscopic variables. We apply the summation
(1.12) for ρ and u= (u1,u2)

T and introduce the constant coefficients Dik = ei ·ek, formally
devising

(ξξξi ·u) = c2
∑
k

Dik fk , u1 = c∑
k

D1k fk , u2 = c∑
k

D2k fk.
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Altogether, the equilibrium is linearized as

f eq
i = Wi

(
ρ+

(ξξξi ·u)
c2

s
+

(ξξξi ·u)(ξξξi · ũ)
2c4

s
− (u1ũ1 +u2ũ2)

2c2
s

)
= Wi

(
∑
k

fk +3∑
k

Dik fk

+
9
2 ∑

k
Dik fk ∑

k
Dik f̃k

−3
2
(∑

k
D1k fk ∑

k
D1k f̃k +∑

k
D2k fk ∑

k
D2k f̃k)

)
=: ∑

k
ω̃ik fk. (3.14)

Linearizing the collisions in this way we get rid of macroscopic terms and all c in the
denominator cancel out. Even without them, one has to keep in mind the low Mach
number nature of the approximation of the BGK model, i.e. the limit of Ma = u

cs
→

0, and c2 appearing in the dominating term 1
τ
. However, the resulting coefficients are

independentent of c, so formally ω̃ik = ω̃i,k( f̃ ) holds.

3.6. Generalized equilibrium formulation

For an efficient treatment of the linear subproblems, the so-called generalized equilibrium
formulation for the monolithic steady approach was introduced in [35]. Now we formulate
it for the time stepping variant. We start with the general algebraic system 3.12, now
stripped from the temporal indices, linearized and rearranged to

Tk fk =
θ∆t

τ
f eq
k +gk k = 0, ...,8 (3.15)

where the temporal indices were omitted, can be rewritten as

fk = T−1
k

(
θ∆t

τ
f eq
k +gk

)
k = 0, ...,8 (3.16)

and for all i = 0, ...,8 we multiply with the corresponding weights ω̃ik from equation
(3.14) which yields:

ω̃ik fk = ω̃ikT−1
k

(
θ∆t

τ
f eq
k +gk

)
k = 0, ...,8

Summing up over k finally gives us for each linearized (generalized) equilibrium term
f eq
i = ∑k ω̃ik fk:

f eq
i = ∑

k
ω̃ikT−1

k
θ∆t

τ
f eq
k +∑

k
ω̃ikT−1

k gk i = 0, ...,8

I− θ∆t
τ


ω̃00T−1

0 ω̃01T−1
1 . . . ω̃08T−1

8

ω̃10T−1
0 ω̃11T−1

1
...

... . . . ...
ω̃80T−1

0 . . . . . . ω̃88T−1
8





f eq
0

f eq
1
...

f eq
8

=


∑k ω̃0kT−1

k gk

∑k ω̃1kT−1
k gk

...
∑k ω̃8kT−1

k gk

(3.17)
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Above implicit system matrix is applied in linear iterative solvers and allows additional
preconditioning. The diagonal entries of the inverse transport matrices are explicitly
known, so we can assemble the local collision entries and apply the inverse of each 9x9
block to the system. We denote the solution of the plain system (3.17) as GEF, while the
block-Jacobian variant is denoted GEF(\).
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4

Initial and Boundary Conditions for LBE

This chapter is devoted to describe various initial and boundary conditions that can be
used while implementing the Lattice Boltzmann equation. There is a lot of literature
available on different types of boundary conditions depending on the problem description
and given data. One of the major difficulties while implementing boundary conditions in
LBE is that one has to translate given information from macroscopic variables to distri-
bution functions fi, since it is the only variable to be evaluated in the Lattice Boltzmann
algorithms. First, we describe initial conditions and then we present different types of
boundary conditions for LBE.

4.1. Initial Conditions

In the Lattice Boltzmann equation framework there arise some problems from the discrep-
ancy between using distributions as primary simulation variables and including macro-
scopic moments, for example as initial conditions or taking saved pressure and velocity
to consistently recover fi. Although it is easy to transform distributions into macroscopic
variables, we do not have a simple inverse mapping, even the number of variables is not
equal. To overcome these problems, we can prescribe the initial conditions in two ways.
First way is to set random value between 0 and 1 for the distribution functions fi. The
other possibility is to define flow field first and calculate the local equilibrium distribution
function f eq

i which are known in terms of density and velocity and then use these f eq
i as

an initial condition for fi i.e. fi = f eq
i . The error that results from this approximation can

be overcome by discarding the first few steps and measuring the parameters of the flow
afterwards. In the LB context, initial conditions have been suggested differently by many
authors, see for example [8, 44, 59].

4.2. Boundary Conditions

The boundary conditions play an important role for the stability and convergence of the
numerical method designed for the mathematical model under consideration because a
numerical method includes not only the particular model equation, but also well defined
initial and boundary conditions, guaranteeing both the existence and uniqueness of the
approximate solution for the particular flow configuration. To solve a problem uniquely
there is a need of correct boundary conditions. In case of boundary conditions there are
techniques that avoid the inverse mapping as in the case of initial conditions. These tech-
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niques will be discussed in the later sections.

In general, the boundary may consist of different parts

Γ = Γ
−∪Γ

+∪Γ
◦

in which Γ−, Γ+ and Γ◦ are the inflow part, outflow part and solid walls of the boundary
respectively and they are defined as:

Γ
−
i := { fi(x) | x ∈ ∂Ω, nx · ei < 0}

Γ
+
i := { fi(x) | x ∈ ∂Ω, nx · ei > 0}

Γ
◦
i := { fi(x) | x ∈ ∂Ω, nx · ei = 0}

where nx is outward unit normal. Since we are using unstructured meshes, so boundary
configuration is quite easy in our case. These are adapted to the geometry of the domain,
therefore we can easily place the boundary nodes right on the wall. This is not the case
with standard LBM which works on uniform grids where a boundary node can occur
which is between a fluid node and an outside node. A special treatment is required to
obtain higher order accurate schemes.

In our implementation we worked consecutively, starting from the eastern point and suc-
cessively numbering the directions anticlockwise. Expressed as cardinal points, ei, i =
1, . . . ,8 were taken from

{E,NE,N,NW,W,SW,S,SE}

with the rest particle as 9th direction. However, in literature it is common to take first the
orthogonal vectors, followed by the diagonals, with the numbering according to

{E,N,W,S, NE,NW,SW,SE}.

We will apply the second convention while discussing boundary schemes.

4.2.1. No Slip or Bounce Back scheme

The bounce-back scheme is the most popular method to handle stationary no-slip bound-
aries. The basic idea behind the bounce-back scheme is very simple and it states that
an incoming particle distribution towards the boundary is bounced back into the fluid. It
means we prescribe

fi(x) = f−i(x) on Γ
−
i . (4.1)

It follows that opposing contributions in the sum ∑iξξξi fi results in a zero momentum,
implying that this bounce back scheme leads to no-slip boundary conditions. Because of
its simplicity and easy implementation, this scheme is the most popular way for no-slip
boundary conditions used in the Lattice Boltzmann method for simulating fluid flows.
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4.2.2. Periodic Boundary Conditions

In some situations, a periodic boundary condition may be required. For example, when
a flow region consists of a number of same modules where the flow pattern repeats itself
module after module, only one module is actually required to be modelled together with
a periodic boundary condition. These conditions are easy to implement by assigning the
incoming populations on the inlet to the corresponding outgoing populations on the outlet
and assigning the incoming populations on the outlet to the corresponding outgoing pop-
ulations on the inlet. Despite the simplicity, it perfectly fits the simulations of fluid flow
on symmetric geometries, such as a simple 2D channel. However, for complex asym-
metric geometries, such as backward facing step, we cannot use the periodic boundary
conditions.

4.2.3. LADD Scheme

CFD models simulated in this work mostly define a slip-velocity ubc. In order to im-
pose this Dirichlet boundary conditions we chose mostly a scheme described by Ladd in
[38]. Therein, the above bounce-back treatment is extended by adding components of the
momentum of the wall, obtaining

fi = f−i +2ρ0 ·Wi
ξξξi ·ubc

c2
s

. (4.2)

The implementation of (4.2) is simple, as example we give the resulting equations for the
D2Q9 model in case of a south wall aligned with the x-axis:

f2 = f4 +
2
3

ux

c

f5 = f7 +
1
6

ux

c
+

1
6

uy

c

f6 = f8−
1
6

ux

c
+

1
6

uy

c

4.2.4. ZOU HE Scheme

Zou and He [74] introduced a new bounce-back scheme which is based on the idea of
’applying the bounce-back rule to off-equilibrium parts’. From the assumption

fi + f eq
i = f−i + f eq

−i

one can compute a scheme which differs from Ladd’s conditions especially in the case of
a slip boundary. We present the modified scheme again for a south wall:

f2 = f4 +
2
3

ux

c

f5 = f7−
1
2
( f1− f3)+

1
3

ux

c
+

1
6

ux

c
+

1
6

uy

c

f6 = f8 +
1
2
( f1− f3)−

1
3

ux−
1
6

ux

c
+

1
6

uy

c
In practice it means that the macroscopic slip-condition is enforced by taking into account
the distributions aligned with the wall and an additional term of the wall velocity.
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4.3. Special cases of boundary conditions

There are certain cases where the boundary conditions need special attention, for example,
how to implement boundary conditions in case if there exist singular points in the com-
putational domain, how to treat the Neumann boundary part. We discuss these cases in
the following sections. At the end, we will show how to implement boundary conditions
directly into the system matrix for an implicit treatment.

4.3.1. Singular points

There are some situations for which we have special boundary nodes that are not by def-
inition in the set of Γ−, that is we cannot apply the scheme described above, therefore
we have to introduce a special treatment. In Fig. 4.1a we have a pair of opposing dis-
tributions exactly in the corner enclosing the flow domain, which cannot be treated by
the bounce-back equation (4.5), nor by the upwind-discretisation of the LBE, because in
this case both fi and f−i are facing out of the domain and are located in a singular point.
In addition to this case, the grid processing routines which are part of FEATFLOW [67]
define some points at concave walls (secant running through solid) as incoming boundary
values, for example the north and south distributions in Fig. 4.1b). In both cases, it is out
of question to neglect these values because we need the complete sum of 9 distributions to
obtain the local density, resp., pressure. We found and implemented two consistent ways
how to treat special boundaries. First, assuming a no-slip boundary with u = 0, we insert
the moments u and ρ into the equilibrium term, resulting in

f eq
i (ρ,0) =Wiρ. (4.3)

Identifying the distribution fi with its equilibrium, which is a common scheme for boundary-
conditions, we can account for the missing equation by

fi := f eq
i (ρ,0) =Wi ∑ fk.

We can derive the opposing distribution in an analoguous way, or just identify f−i := fi
according to Eq. (4.5) for the considered no-slip case where opposing contributions must
cancel out.

4.3.2. Boundary by extrapolation

The second way to treat exceptional configurations is especially suited for the case of a
slip boundary with u 6= 0, where equation (4.3) does not hold and we want to compute
values of fi and f−i in the corner with a nonzero wall-velocity. In this case we want to
derive the unknowns by extrapolation and to this purpose use our finite difference dis-
cretization. We exploit upwind information of an adequate characteristic and use known
values from inside of the domain in the constant extrapolation scheme

f4(v0) = f4(v1) = λ1 f4(p1
1)+λm f4(m1)+λ2 f4(p2

1), (4.4)

or the linear extrapolation

f4(v0) = (1+
1

α−1
) f4(v1)−

1
α−1

f4(v2).
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(a) Treatment in corners (b) Concave case

Figure 4.1: Special boundary configurations

4.3.3. Implementation of boundary conditions into the system-matrix

In this work we treat the boundary conditions implicitly and we directly implement them
into the system matrix. There are two main reasons for this treatment. First, in the case of
the direct stationary solution an implicit treatment is necessary for the efficient solution
of the nonlinear equations and second, for nonstationary flow it improves stability when
using large time steps. Most of the results in this thesis are given for Ladd’s scheme and
in our monolithic approach we include the boundary conditions into our matrix in a fully
implicit way as

fi− f−i = 2ρ0 ·Wi
ξξξi ·ubc

c2
s

. (4.5)

The components of velocity ubc appear in the right hand side of our algebraic system.
However, it is possible to use an explicit boundary scheme in the nonstationary model of
Eq. (3.2). Then the bounce back contribution of the outgoing f−i is taken from the last
time step, and appears in the right hand side:

f n+1
i = f n

−i +2ρ0 ·Wi
ξξξi ·ubc

c2
s

(4.6)

4.3.4. Neumann boundary

The final configuration to be discussed is the Neumann boundary conditions used for
example for the outflow of the channel in the flow around cylinder benchmark [58]. To
satisfy the natural condition ∂u

∂n = 0, we use the constant extrapolation given in equation
(4.4), following the characteristic pointing in the outward direction n. We apply this
scheme on all distributions fk,k 6= 0 except the rest particles. This corresponds to the
treatment in the standard Lattice Boltzmann method, where the values are ’copied’ from
the last layer before the boundary in the structured mesh.
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5

Nonlinear and Linear Solvers

5.1. Nonlinear solvers

The system of algebraic equations derived in Chapter 3 is nonlinear due to the presence of
the terms uαuβ in the equilibrium distribution function occuring in the collision operator
which implies a quadratic nonlinearity fi f j in the primary solution variables. After using
the linearization given in section 3.4 it is possible to update f̃ = f n only once every
step. Then we have multiple possibilities, for example to apply 2nd order extrapolation
f̃ = 2 f n− f n−1 in a (pseudo) time-stepping with very small ∆t which yields a semi-
implicit scheme. The stability and accuracy of such a scheme would be poor and a fully
stationary approach is even impossible. A better approach in view of stability would be
to iterate f̃ until a fixed point is reached. However, much more efficient would be to use
Newton’s method to obtain full control of nonlinear defect.

5.1.1. Fixed point iteration

After the space and time discretization introduced in Chapter 3 , we get a non-linear
coupled algebraic system. We write the non-linear system in the form

N(x)x = g (5.1)

with x representing the solution vector for the distributions fi and N(x) the full operator
consisting of discrete transport and collision. Equation (5.1) can be solved by simple
fixed-point iteration

xn+1 = xn +σN(xn)−1
[
N(xn)xn−g

]
, σ > 0 (5.2)

with optional damping by a factor σ. The results given in Chapter 6 show that the con-
vergence of this basic scheme is too poor for large time steps and in case of strong non-
linearities appropriate damping is recommended, but the convergence can be easily and
significantly improved by a Newton scheme described in the next section.
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5.1.2. Newton method

As alternative to the fixed-point iteration we present Newton’s scheme, (for details see
Appendix B) which is well known for its quadratic convergence behaviour. To start the
procedure we write system (5.1) in residual form

R(x) =N(x)x−g = 0. (5.3)

The Jacobian
[

∂R(xn)
∂x

]
is then used in the following iterative scheme:

xn+1 = xn−
[

∂R(xn)

∂x

]−1

R(xn) (5.4)

The computation of Jacobian matrix usually represents a major task in the implementation
of Newton’s method. In most cases the Jacobian matrix is not available in analytic form
so it is, therefore, approximated by using a finite difference quotient but fortunately, in our
case the Jacobian can be obtained analytically. In short, summing up the partial derivatives
∂ f eq

i
∂ fk

for all k and linearization yields:

d f eq
i = Wi(∑

k
fk +3∑

k
Dik fk +

9
c2 ∑

k
Dik fk(ξξξi · ũ)−

3
c
(∑

k
D1k fkũ1 +∑

k
D2k fkũ2))

=: ∑
k

ω̄ik fk (5.5)

So, the derivation simply results in a scaling by 2 in each quadratic term and gives us
the linearized collision entries ω̄ik of the Jacobian, quite similar to ω̃ik in Eq. (3.14).
The remaining terms of the Jacobian are trivial, they include the constant coefficients
due to the transport difference quotient or possible identity terms from the time-stepping
variants. The Jacobian used to solve the steady state equation is therefore given by

[
∂R(xn)

∂x

]
=




T0

T1
T2

. . .
T8

−
1
τ


ω̄00 ω̄01 ω̄02 · · · ω̄08
ω̄10 ω̄11 ω̄21

ω̄20 ω̄21 ω̄22
...

... . . .
ω̄80 · · · ω̄88




while in an analoguous way the GEF monolithic approach results in the Jacobian

[
∂R(xn)

∂x

]GEF

=

I−


ω̄00

1
τ
T−1

0 ω̄01
1
τ
T−1

1 · · · ω̄08
1
τ
T−1

8

ω̄10
1
τ
T−1

0 ω̄11
1
τ
T−1

1
...

...
. . .

...
ω̄80

1
τ
T−1

0 · · · · · · ω̄88
1
τ
T−1

8


 .

The time stepping variant of the Jacobian is given by

[
∂R(xl)

∂x

]
=




T0
T1

. . .
T8

− θ∆t
τ


ω̄00 ω̄01 . . . ω̄08

ω̄10 ω̄11
...

... . . . ...
ω̄80 . . . . . . ω̄88
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Similarly, an improved condition number is obtained by including the inverse transport
operator into the system with the GEF approach

[
∂R(xl)

∂x

]GEF

=

I− θ∆t
τ


ω̄00T−1

0 ω̄01T−1
1 · · · ω̄08T−1

8

ω̄10T−1
0 ω̄11T−1

1
...

...
. . .

...
ω̄80T−1

0 · · · · · · ω̄88T−1
8


 .

We summarize the whole procedure, now combining the algebraic reformulation (GEF)
with the Newton iteration in Algorithm 5.1.

Algorithm 5.1 The Newton method with GEF approach
1) In every time-step, the nonlinear system for the distributions f n+1

i reads

Ti f n+1
i − θ∆t

τ
∑
k

wik f n+1
k = gn

i i = 0, ...,8.

2) In each nonlinear iteration, perform a Newton iteration for l = 0,1, . . . with the resulting
linear block-system

xl+1 = xl−
[

∂R(xl)

∂x

]−1

R(xl)

3) Solve the linear system [
∂R(xl)

∂x

]
∆x =−R(xl)

with the resulting linear block-system

[
∂R(xl)

∂x

]
=




T0
T1

. . .
T8

− θ∆t
τ


ω̄00 ω̄01 . . . ω̄08

ω̄10 ω̄11
...

... . . . ...
ω̄80 . . . . . . ω̄88


 .

or with an improved condition number by including the inverse transport operator into
the system with the GEF approach

[
∂R(xl)

∂x

]GEF

=

I− θ∆t
τ


ω̄00T−1

0 ω̄01T−1
1 · · · ω̄08T−1

8

ω̄10T−1
0 ω̄11T−1

1
...

...
. . .

...
ω̄80T−1

0 · · · · · · ω̄88T−1
8


 .

4) Update the solution

xl+1 = xl +σ∆x(l)

where σ > 0 is the damping parameter.
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5.2. Solution of Linear Problems

After having done with the linearization of operator N(x), we obtain a linear system ma-
trix A corresponding to the time and space discretization. We need to solve a linear system
Ax = b (x representing the discrete solution vector of all fi) in each non-linear step and
it is the most time consuming part of a simulation process. Beforehand, let us look at
the obtained structure of the linear system to have a basic understanding of the problem.
The main diagonal of the system matrix can be determined by two basic numbering tech-
niques. In the first case which is standard, listing for every direction the spatial nodes just
as they were identified by the grid generator, gives nine so-called ’transport blocks’ each
of size n×n. The solution vector is then given by

f1(x1), . . . , f1(xn)︸ ︷︷ ︸
f1

, . . .︸︷︷︸
fi

, f9(x1), . . . , f9(xn)︸ ︷︷ ︸
f9

.

In the second case, if we use the local unknowns as the first index, we obtain a narrower
block-diagonal of 9×9 blocks, with the solution vector enumerated as

f1(x1), . . . , f9(x1)︸ ︷︷ ︸
f(x1)

, . . .︸︷︷︸
f(xi)

, f1(xn), . . . , f9(xn)︸ ︷︷ ︸
f(xn)

.

In both cases we see additional entries outside of the block-diagonal, otherwise the solu-
tion of the system would be trivial. All in all, the matrix allocation is dependent on the
node numbering (for example to obtain lower triangular matrices as described in Section
3.3, see Fig. 3.3) and on the primary index being either the spatial or directional variable.
In detail, the collisions cause in every grid-point a coupling of the distributions. For each
direction we have 9 matrix-entries on the off-diagonals, it means a 9 by 9 collision block
for the distributions in one grid point. If boundary conditions are treated implicitly, the
incoming distribution fi is coupled to the outgoing f−i which can be regarded as a small
collision. In contrast to this example of local coupling, nodes from neighbouring nodes
are mainly coupled through the transport term, in this case we talk about distributions
with the same constant characteristic. Altogether, the resulting matrix allocation is quite
sparse.
Linear solvers are generally divided into two broad categories, the direct solvers and iter-
ative solvers. The choice of the solution method is largely independent of the underlying
discretization techniques but the size and structure of the matrix A need to be taken into
account.

5.2.1. Direct Methods

Direct methods for solving linear systems accomplish the task in one step. The input pa-
rameters are the matrix A and the right-hand side b. The result is the solution vector x.
The solution obtained by direct methods is exact upto the machine accuracy. The most
commonly used direct methods are the Gaussian Elimination and LU decomposition. The
complexity of these methods is O(n3) [60, 66], where n is the number of degrees of free-
dom associated with matrix A. Another direct method is the Cholesky factorization for
symmetric positive definite matrices (SPD) which also has the same complexity as Gaus-
sian Elimination. Direct methods are often used for small dense problems and become
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prohibitively expensive for large problems due to their asymptotically cubic runtime. Al-
though the associated coefficient matrices are sparse but unfortunately their structure is
such that after a few steps of Gaussian elimination, the computational effort grows signif-
icantly because most of the zero elements are replaced by nonzero ones (see [7] for more
details). Moreover, one major disadvantage of these methods is a need to form an explicit
matrix which in practice requires a lot of storage.

5.2.2. Iterative Methods

Iterative methods solve linear systems using a sequence of explicit updates starting with an
initial guess which must be supplied as another input parameter. Such an algorithm is said
to be convergent if each update brings the solution closer to that exact solution.Iterative
methods use a rather small amount of computer memory. Many of them do not even
require that the matrix A is available. All they need is a subroutine that evaluates the
residual of the linear system for a given tentative solution.

5.2.3. Stationary iterative solvers

The basic iterative methods used for solving large linear systems Ax = b, where A is
a given matrix and b is a given vector, are the stationary iterative solvers. Stationary
iterative methods are those which can be expressed in the simple form.

x(k) = Bx(k−1)+ c

(where neither the matrix B nor the vector c depend upon the iteration count k) [3]. These
iterative methods are based on relaxation of the coordinates. Starting with an initial guess,
these methods modify the components of the approximation, one or a few at a time and
in a certain order, until the convergence is reached. Nowadays these methods are rarely
used as stand-alone iterative solvers due to the poor convergence. Nevertheless, they have
not lost their importance. Indeed they are often used in conjunction with modern efficient
iterative methods, for example in the Krylov space method for preconditioning, and in the
multigrid method for smoothing. The four main stationary methods are the following:

• Jacobi method (JAC),

• Gauss-Seidel method (GS),

• Successive overrelaxation method (SOR),

• Symmetric successive overrelaxation method (SSOR).

All these methods can be formulated as a defect-correction as follows

x(k) = x(k−1)+ωP−1(b−Ax(k−1)),

where P is matrix for which we classify for A = L+D+R:

JAC: P = D
GS: P = D+L
SOR: P = D+ωL, 0 < ω < 2

SSOR : P = (D+ωL)D−1(D+ωU).
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Here, L,D,R denote the lower triangular, diagonal and upper triangular part of the matrix
A.

5.2.4. Nonstationary iterative solvers

Nonstationary iterative methods are based on computations which involve information
that changes at each iteration k. A well known class in this category is the class of Krylov
space methods, i.e., methods that seek to generate better approximations from the Krylov
subspace. These methods find an approximation xk to the linear system Ax = b over the
m-th Krylov subspace Km(A,r0)+ x0, where x0 is the initial solution and r0 represents
the initial residual vector, given by r0 = b−Ax0. A Krylov subspace of dimension m ∈N
generated by a matrix A∈Rn×n and a vector r ∈Rn is the subspace spanned by the vectors
of the Krylov sequence:

Km(A,r) = span
{

r,Ar,A2r, · · · ,Am−1r
}
.

The dimension of this subspace increases by one for every step of the approximation
process. These methods are extensively used nowadays for the solution of linear systems
arising from the discretization of partial differential equations (PDEs). Commonly known
Krylov space methods are

• Conjugate Gradient (CG),

• Generalized Minimal Residual (GMRES),

• Biconjugate Gradient (BiCG),

• Quasi-Minimal Residual (QMR),

• Conjugate Gradient Squared (CGS),

• Biconjugate Gradient Stabilized (BiCGStab),

A comprehensive study regarding the Krylov space methods can be found in [3].

Bi-Conjugate Gradient Stabilised Method (BiCGStab)
The Bi-Conjugate Gradient Stabilised method was originally developed by van der Vorst
[70] in 1992 from the CGS, BiCG and GMRES methods, for the solution of non-symmetric
linear system of equations while avoiding the often highly irregular convergence behav-
ior of CGS and BiCG, and the large storage requirements of GMRES. This algorithm
requires six auxiliary vectors, and performs two preconditioning steps in each iteration.
Furthermore, the two matrix-vector product are also perform in each BiCGStab step. For
many problems, the BiCGStab algorithm converges rather smoothly and also often faster
than BiCG and CGS. Like other iterative methods, BiCGStab method is usually combined
with a preconditioning to speed up its convergence. We apply the standard algorithm for
the preconditioned BiCGStab method in our numerical study (see [70]). The pseudocode
for the Preconditioned BiCGStab is given in Algorithm 5.2.
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Algorithm 5.2 The Preconditioned BiConjugate Gradient Stabilized Method (BiCGStab).

Choose r(0) = b−Ax(0) for some initial guess x(0)

Choose r∗ (for example, r∗ = r(0))
for i = 1,2, . . .
ρi−1 = r∗T ri−1

if ρi−1 = 0 method fails
if i = 1
p(i) = ri−1

else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
p(i) = ri−1 +βi−1(p(i−1)−ωi−1vi−1)
endif
Solve Mp̂ = p(i)

vi = Ap̂
αi = ρi−1/r∗T vi
s = ri−1−αivi
check norm of s; if small enough: set x(i) = x(i−1)+αi p̂ and stop
Solve Mŝ = s
t = Aŝ
ωi = tT s/tT t
x(i) = x(i−1)+αi p̂+ωiŝ
r(i) = s−ωit
check convergence; continue if necessary
for continuation it is necessary that ωi 6= 0
end



40 Nonlinear and Linear Solvers

Generalized Minimal Residual Method (GMRES)
The Generalized Minimal Residual Method (GMRES) was proposed by Saad and Schultz
[57] in 1986 to find the solution of non-symmetric linear systems. This method is an
extension of the minimal residual method (MINRES) which is only applicable for the
solution of symmetric systems. In the GMRES method, a sequence of orthogonal vec-
tors is generated and all the previously computed vectors in the orthogonal sequence
are required to calculate the next iteration. Consequently, the required storage for these
vectors often exceeds the available memory limit before reaching the stopping criterion
which is the drawback of this method. To remedy this difficulty, a restarted version of
this method, usually referred by GMRES(m) is commonly used where the algorithm is
restarted in every m steps for fixed integer m. The GMRES method has an advantage over
BiCGStab method due to its convergence behavior since it is more stable in practice for
ill-conditioned systems. Moreover, only one matrix-vector multiplication is performed in
the GMRES while the BiCGStab requires two matrix-vector products. The pseudocode
for the Preconditioned GMRES(m) is given in Algorithm 5.3.

Algorithm 5.3 The Preconditioned Generalized Minimal Residual Method (GMRES(m)).
Choose the initial guess x(0)

for j = 1,2, . . .
Solve r form Mr = b−Ax(0)

v(1) = r/‖r‖2
s := ‖r‖2e1
for i = 1,2, . . . ,m
Solve w form Mw = Av(i)

for k = 1, . . . , i
hk,i = (w,v(k))
w = w−hk,i− v(k)

end hi+1,i = ‖w‖2

v(i+1) = w/hi+1,i
apply J1, . . . ,Ji−1on(h1,i, ...,hi+1, i)
construct Ji, acting on ith and (i+1)st component
of h., i, such that (i+1)st component of Jih.,i is 0
s := Jis
if s(i+1) is small enough then (UPDATE(x̃, i) and quit)
end
UPDATE(x̃, i)
end
end



5.3. Multigrid method 41

5.3. Multigrid method

Multigrid methods are well known for being the fastest numerical methods to solve linear
systems arising from the discretization of PDEs. These methods are generally applied
for problems showing level-dependent convergence behaviour. In contrast to other iter-
ative methods, the convergence rate of multigrid methods is usually independent of the
mesh level. A multigrid method needs a hierarchy of grids and appropriate grid transfer
operators which are responsible for data communication between the grids. To convert a
coarse grid solution to fine grid solution, a prolongation operator is used while a restric-
tion operator is used for the opposite transfer. Beside these prolongation and restriction
operators, we need to use an efficient coarse grid solver and choose an iterative solution
method as smoother. We present a standard two-grid algorithm in Algorithm 5.4 which
is used mainly in our tests. A two grid algorithm starts at the fine level with s1 number
of pre-smoothing steps, performs a correction by solving a coarse grid auxiliary problem
and ends with s2 number of post-smoothing steps. In practice, we iterated the algorithm
with a certain number s = s1 + s2 of smoothing steps until the linear defect is sufficiently
reduced. A full multigrid algorithm is obtained when the routine is called recursively in
the correction step, and the inverse matrix is applied only on the coarsest level. Such
V-cycle can be further altered by modifying the number of defect-correction calls on each
level. However, here we would like to mention that better results were obtained using
’multigrid as preconditioner’, i.e. performing one coarse-grid correction gaining several
digits of accuracy in every GMRES iteration.

Algorithm 5.4 Basic twogrid algorithm
TG (x,b, l)
auxiliary vectors d,v

pre-smoothing x = Ss1
l (x,b)

compute defect dl = Alx−b
restriction dl−1 = Rdl
correction vl−1 = A−1

l−1(dl−1)
prolongation vl = Pvl−1
assemble solution x = x−vl
post-smoothing x = Ss2

l (x,b)

5.3.1. Prolongation and Restriction

One of the main ingredients of multigrid are grid transfer operators which are responsible
for prolongation and restriction. The prolongation is performed elementwise, whereas an
efficient implementation of the restriction is more difficult. For the restriction operator,
which is the transposed to the prolongation, values from a node need to collect information
from neighboring elements. In unstructured meshes, the number of elements meeting in
one point is arbitrary, while it amounts to 4 in the case of a uniform rectangular mesh,
resp., 6 elements in the case of a uniform triangular mesh in 2D case. The details about
the prolongation and restriction operators used in this thesis can be found in [33].
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5.4. Preconditioning Techniques

The convergence of the iterative methods is mainly dependent on the spectral properties of
the system matrix A since the rate of convergence for most iterative linear solvers degrades
as the condition number of the matrix A increases. Preconditioning is a technique by
which the condition number of the system matrix is improved to speed up the convergence
rate of the iterative methods. It is an important ingredient behind the success of iterative
methods [56]. In the subject of numerical analysis, a preconditioner P for a matrix A can
be chosen in a way such that P−1A has a smaller condition number than A. Rather than
solving the original system, we solve the system Ax = b indirectly by solving

P−1Ax = P−1b.

One may apply the preconditioner P either from the left or right. For a symmetric posi-
tive definite matrix A, it is also suggested that the preconditioner P should be symmetric
positive definite.
There is always a trade-off between the cost of applying P−1 and the improvement of
the convergence properties. The two extreme cases corresponds to the choices P = I and
P = A. If we choose P = I then this is ’do nothing’ case since P−1 is also identity matrix
and we are solving the original system and hence no preconditioning of the system matrix
at all. If we choose

P = A,

in this case we have perfect preconditioning as the condition number becomes one and
the solution of the system is reached only in one iteration. However, it is not much useful
as calculating the inverse of the matrix A is not so easy. Thus only parts of the matrix A
are taken while developing preconditioners as described in the next section.

5.4.1. Commonly used Preconditioners

In actual practice, the preconditioner P is chosen depending on the properties of the sys-
tem matrix A and it serves as a key component of the iterative solution method. A few
general comments concerning the design of a preconditioner are:

• P−1A should be close to the identity matrix or at least have a spectrum that is clus-
tered.

• The operation x 7→ P−1x should be cheap.

The most common used preconditioners [3, 56] are

Jacobi preconditioner: P = D
Gauss-Seidel preconditioner: P = D+L
SOR preconditioner: P = D+ωL, 0 < ω < 2

SSOR preconditioner : P = (D+ωL)D−1(D+ωU).

Here, L,D,R denote the lower triangular, diagonal and upper triangular part of the matrix
A.
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5.5. Special Preconditioners for LBE

In this thesis, mainly we used two Krylov space solvers namely the BiCG-stab and GM-
RES method. In fact both of them are rarely used as standalone solvers. In practice,
they are always applied in collaboration with some preconditioner. Therefore, we have
designed some special preconditioners for these Krylov space solvers to meet the ill con-
ditioning of our linear subproblems. We describe these preconditioners in the following
subsections.

5.5.1. Transport Preconditioner(tr-pre)

For transport dominated cases, it is useful to choose the convection part of the matrix as
a preconditioner. In this case we improve condition number of P−1A significantly and
independently of the mesh size as seen from the eigenvalue analysis given in [33]. Here
we can directly invert P consisting of lower triangular blocks-taking for every direction
the prepared numbering as shown in Fig. 5.1. This results in a linear run time in the
number of unknowns. But in case of stiff configurations due to low Mach number, ’tr-pre’
is not useful, so we give an alternative approach in the next section.

(a) special characteristic sorting (b) transport-block for one direction

Figure 5.1: Preconditioning by transport part

5.5.2. Block-diagonal collision preconditioner(bl-jac)

In case of large values of c, we are in a collision dominated regime and our linear system
has a very bad condition number. In this situation ’tr-pre’ is not suitable. As an alterna-
tive we construct another preconditioner that takes into account the collision term. We
implemented another numbering of the unknowns taking the coordinate as primary index
instead of the direction. We start the numbering with the 9 characteristics fi, i = 1, . . . ,9
for the first point x1 and continue in this way with 9 successive values each for all remain-
ing points. Consequently, the local collisions form a diagonal consisting of 9×9 blocks.
At the same time, the entries for the spacial coupling due to transport are freely scattered
off the block-diagonal (see Fig. 5.2). The solution process of the preconditioner (to be de-
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noted as ’bl-jac’) is accomplished efficiently, as we need to invert therein a block-Jacobian
matrix C. The inverse C−1 consist of the inverses of n decoupled matrices), i.e.

C−1 = diag(C1,C2, . . . ,Cn)
−1 = diag(C−1

1 ,C−1
2 , . . . ,C−1

n ) , Ci ∈ R9×9

This inverse can be calculated by using Gaussian elimination of each 9× 9 system. The
overall runtime, even using this plain direct solver, is of the order O(n) due to the constant
number of operations to invert a matrix with 81 entries. Unfortunately, bl-jac does not
longer contain information about the transport part of the Boltzmann equation, we lost
it in giving up the special numbering and consequently the lower triangular form of the
transport blocks. This means that even we can expect good results for small systems
with c→ ∞, the convergence will be strongly dependent on the level, resp., number of
unknowns. The following, final section concerning preconditioning will show a technique
which combines the advantages of both numbering techniques.

(a) local collision sort (b) one 9×9 block

Figure 5.2: Block-Jacobian preconditioning by collision part

5.5.3. Special preconditioning of the GEF system matrix

As described in Section 3.6, we see that the inverse transport becomes a part of the gen-
eralized equilibrium formulation, and the special numbering following the characteristics
gives a significant gain applying the implicit system matrix. Most importantly, in contrast
to the original system which solves for the distributions fi, the new formulation allows
additional preconditioning.

Additional preconditioning by collisions

The GEF matrix consists mainly of weighted inverses of transport matrices, easily to
be solved due to their lower triangular form. For the same reason we can apply additional
preconditioning to the system and therefore enhance the GEF approach, by taking advan-
tage of this triangular matrices to construct a preconditioner. The system is composed of
blocks

Gik = I− ω̃ik
1
τ

T−1
k ∈ Rn×n



5.5. Special Preconditioners for LBE 45

with I the corresponding identity matrix. So each Gik contains information about the
(possibly dominating) collisions mainly due to the relaxation rate 1

τ
. Even though the

overall structure of the Gik is not known explicitly, we know diag(Gik), they are easily
obtained since diag(T−1

i ) = diag(Ti)
−1 with Ti lower triangular. We construct a local

preconditioner (similar to the previous section) by collecting the 81 matrix entries per grid
point and calculating the corresponding 9× 9 inverse matrices. The full block-Jacobian
preconditioner can be expressed as (or assembled into) the global matrix

C−1 =


diag(G00) diag(G01) · · · diag(G08)

diag(G10) diag(G11
...

... . . . ...
diag(G80) · · · · · · diag(G88)


−1

although the implementation is matrix-free. However, applying above C−1 in iterative
solvers we expect an additional stabilizing effect in the case of large c, while due to the
basic construction the solution of GEF performs well even without preconditioning.



46 Nonlinear and Linear Solvers



6

Newtonian Results

This chapter presents results for the case of Newtonian incompressible fluids to guarantee
the success of our implicit treatment of Lattice Boltzmann equation on unstructured grids
and to show the efficiency of our non-linear and linear solvers. In order to obtain quanti-
tative and qualitative results based on our discretization schemes we chose two different
classical problems the Driven Cavity problem and the well known Flow around Cylinder
benchmark [58].

6.1. Driven Cavity Problem

As a first test case we consider the Driven Cavity problem which has been extensively
used as a benchmark problem to evaluate numerical techniques that solves the Navier-
Stokes equations. The computational domain is a unit square with origin located at the
lower left corner. A grid on this unit square is presented in figure ??. Starting from a
coarse mesh we get one level of refinement by connecting the edge midpoints which give
rise to four new element from each element. To obtain the given macroscopic boundary
conditions for velocity we use Ladd’s scheme described in chapter 4. The left, right and
bottom walls have no-slip conditions, while the flow is driven by a uniform translation of
upper lid with u =

(1
0

)
. Due to these boundary conditions, no fluid can leave or enter the

square domain but the flow turns around, with small separation zones along the boundary
walls. The complexity of the problem depends on the speed of the lid, viscosity of the
fluid and shape of the cavity.

The Reynolds number Re =
Ure f Lre f

ν
in our case is simplified to Re = 1

ν
so the only pa-

rameter responsible for the change in the Re number is ν. For the driven cavity problem
and small up to moderate Re numbers, the flow is not time dependent. However, we
consider this case to analyze our basic solvers and the influence of time-stepping on the
convergence of linear, resp., nonlinear solvers. We performed simulations of the driven
cavity problem at various Reynolds numbers with different start procedures. Our quanti-
tative results are mainly based on this test case.

47
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6.2. Solver Analysis

In this section we present a detailed solver analysis to compare the performance of our
non-linear and linear solvers. To solve the coupled non-linear problems given in section
3.4, we used the Fixed point and Newton method in each time step. We performed simu-
lations at different Reynolds numbers and with different start procedures. Regarding our
linear solvers, we also discuss the advantages of our special preconditioners designed for
transport dominated and collision dominated cases. We also discuss the GEF formulation
which combines the advantages of both the preconditioners and with this approach we see
a significant improvements in the convergence rates. We should keep in mind that small
c means transport dominated equations, while large c means dominant collisions. How-
ever, copt seems to be in an intermediate range, where both effects have to be considered.
Consequently, it is by far not trivial to solve systems with a larger number of unknowns.

Mesh information upw1 upw2
Level Elements Vertices Midpoints Total unknowns Total unknowns

0 2 4 5 4 9
1 8 9 16 9 25
2 32 25 56 25 81
3 128 81 208 81 289
4 512 289 800 289 1 089
5 2 048 1 089 3 136 1 089 4 225
6 8 192 4 225 12 416 4 225 16 641
7 32 768 16 641 49 408 16 641 66 049

Table 6.1: driven cavity mesh information

6.2.1. Nonlinear Solver Analysis

In this section we present the results for the nonlinear solvers, comparing the performance
of the fixed point iteration with the Newton method. A comparison is given in Table 6.2
for the Driven Cavity configuration with zero starting solution. Using different values of
∆t, the simulations are run until a specified criterion for a steady state is reached. Despite
of the low Reynolds number of 100, we need many fixed point iterations for a time step
of ∆t = 1, while the Newton results are very good. Smaller time steps, typically around
∆t = 0.001 act as a damping of the nonlinearity and the fixed point scheme is improving
significantly.
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c = 1 c = 10 c = 100
∆t Grid points Newton FP Newton FP Newton FP

289 4 14 4 10 3 7
1089 4 22 4 13 4 9

1 4225 4 28 4 22 4 10
16641 4 28 5 26 5 10
66049 6 39 7 32 6 26
289 2 8 3 9 3 5

1089 2 9 3 8 3 6
0.1 4225 2 10 3 8 3 6

16641 3 12 4 10 4 8
66049 4 13 5 12 5 10
289 1 3 2 4 2 4

1089 1 3 2 4 2 4
0.01 4225 1 3 2 5 2 4

16641 2 5 2 5 3 5
66049 3 5 4 6 5 7
289 1 2 1 2 2 3

1089 1 2 1 2 2 4
0.001 4225 1 2 1 3 2 4

16641 2 3 2 4 2 4
66049 2 3 3 4 3 5

Table 6.2: Driven Cavity: upw2, Averaged no. of non-linear iterations to reduce the
non-linear defect by 10−6, using Implicit Euler, Re = 100
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6.2.2. Linear Solver Analysis

In this section, we compare the performance of used Krylov Space solvers BiCG-Stab
and GMRES, in context of our special preconditioners. We continued the simulations
until the criteria for steady state is reached and then we calculated the average number of
linear iterations per time step. The results for BiCG-stab are given in the tables 6.3–6.4. It
could be seen from these results that our preconditioners are highly adapted to the values
of the sound parameter c. More linear iterations are needed for increasing c. It is also
observed that it is easier to solve for smaller time steps due to the better conditioning of
the system matrix. However, with BiCG-stab scheme, the convergence behaviour can fail
unexpectedly, even for the moderate configuration with higher values of c. Therefore, we
also implemented a GMRES solver which is well known for its monotone convergence
behaviour. The corresponding results are given in tables 6.5–6.7.

BiCGSTAB
∆t Grid points tr-pre bl-jac GEF GEF(\)

289 13 21 12 9
0.1 1089 16 43 16 13

4225 19 96 19 16
289 4 6 4 3

0.01 1089 4 9 4 3
4225 4 15 4 4
289 3 3 2 2

0.001 1089 3 3 2 2
4225 2 4 2 2

Table 6.3: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Implicit Euler, Re = 100, c = 1

BiCGSTAB
∆t Grid points tr-pre bl-jac GEF GEF(\)

289 101 54 96 42
0.1 1089 183 130 164 95

4225 317 321 278 170
289 33 19 21 12

0.01 1089 47 34 28 17
4225 66 64 39 27
289 9 5 8 4

0.001 1089 10 7 8 5
4225 11 11 8 7

Table 6.4: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Implicit Euler, Re = 100, c = 10
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GMRES
∆t Grid points tr-pre bl-jac GEF GEF(\)

289 23 39 21 17
0.1 1089 28 76 27 23

4225 31 157 31 29
289 8 11 7 5

0.01 1089 8 16 7 6
4225 8 27 7 6
289 4 5 4 3

0.001 1089 4 6 4 3
4225 4 7 4 3

Table 6.5: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Implicit Euler, Re = 100, c = 1

GMRES
∆t Grid points tr-pre bl-jac GEF GEF(\)

289 124 71 126 57
0.1 1089 225 173 225 125

4225 411 446 349 239
289 53 33 47 18

0.01 1089 71 59 66 28
4225 102 109 95 45
289 15 10 14 7

0.001 1089 16 14 16 9
4225 18 21 17 12

Table 6.6: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Implicit Euler, Re = 100, c = 10

GMRES
∆t Grid points tr-pre bl-jac GEF GEF(\)

289 290 108 346 110
0.1 1089 784 383 645 389

4225 831 652 912 866
289 195 69 226 62

0.01 1089 373 174 444 149
4225 626 415 726 325
289 81 29 63 23

0.001 1089 137 53 97 42
4225 215 107 161 86

Table 6.7: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Implicit Euler, Re = 100, c = 100
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BiCGSTAB
∆t Grid points tr-pre bl-jac GEF GEF(\)

289 10 15 8 7
0.1 1089 12 29 10 9

4225 13 61 12 11
289 4 4 3 3

0.01 1089 4 6 3 3
4225 4 9 3 3
289 2 2 2 2

0.001 1089 2 3 2 2
4225 2 3 2 2

Table 6.8: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Crank Nicolson, Re = 100, c = 1

BiCGSTAB
∆t Grid points tr-pre bl-jac GEF GEF(\)

289 78 38 68 34
0.1 1089 124 89 113 66

4225 185 179 182 124
289 25 12 21 10

0.01 1089 29 19 27 14
4225 37 35 35 22
289 8 4 6 5

0.001 1089 8 5 6 5
4225 9 8 6 5

Table 6.9: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Crank Nicolson, Re = 100, c = 10

GMRES
∆t Grid points tr-pre bl-jac GEF GEF (\)

289 19 26 14 13
0.1 1089 21 49 17 16

4225 22 99 20 19
289 6 8 6 6

0.01 1089 7 11 6 6
4225 6 17 6 6
289 4 4 4 4

0.001 1089 4 5 4 4
4225 4 6 4 4

Table 6.10: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Crank Nicolson, Re = 100, c = 1
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GMRES
∆t Grid points tr-pre bl-jac GEF GEF(\)

289 112 49 87 45
0.1 1089 190 121 149 93

4225 262 236 251 180
289 43 22 32 18

0.01 1089 52 34 41 26
4225 64 46 54 38
289 14 8 10 9

0.001 1089 14 10 11 9
4225 14 14 11 9

Table 6.11: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Crank Nicolson, Re = 100, c = 10

GMRES
∆t Grid points tr-pre bl-jac GEF GEF(\)

289 412 106 284 110
0.1 1089 670 276 541 276

4225 822 745 623 792
289 208 54 134 45

0.01 1089 384 109 249 91
4225 735 203 483 227
289 72 18 47 15

0.001 1089 113 33 73 27
4225 161 60 112 46

Table 6.12: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Crank Nicolson, Re = 100, c = 100
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6.3. Solver Analysis with prolongation approach

In this section, we use the same configuration but we perform the solver analysis with a
different start procedure. Here we use the idea of prolongation which means calculating
the solution at some coarse level and using it as starting solution for a higher level. In
practice it is easy to prolongate the solution obtained at some level ’l’ and use it as starting
solution for the level ’l + 1’. In this way the gained initial defect is non-zero, but in the
first non-linear step it does not grow so much as compared with zero starting solution.

6.3.1. Non-linear Solver Analysis

In table 6.13, the converged solution is taken from the previous level by prolongation as
starting guess. For the smaller ∆t we performed the corresponding number of time steps to
reach 0.5 seconds, showing the averaged number of nonlinear iterations for one timestep.
We also compare with the full nonlinear sweep of the stationary solver (∆t = ∞) and one
with ∆t = 1, observing that the two configurations give quite similar results.

c = 1 c = 10 c = 100
∆t Grid points Newton FP Newton FP Newton FP

1089 4 18 3 11 3 6
∞ 4225 3 20 3 17 3 10

16641 3 22 3 21 4 16
66049 3 23 4 22 5 26
1089 3 18 3 10 3 6

1 4225 3 19 3 15 3 9
16641 3 20 3 19 4 14
66049 3 20 4 20 4 19
1089 2 10 3 7 3 5

0.1 4225 2 11 3 8 3 6
16641 2 11 3 10 3 8
66049 2 11 3 11 3 10
1089 2 3 2 3 2 4

0.01 4225 2 4 2 4 2 4
16641 2 4 2 4 2 4
66049 2 4 2 4 2 4
1089 1 2 1 2 1 2

0.001 4225 1 2 1 2 1 2
16641 1 2 1 2 1 2
66049 1 2 1 2 1 2

Table 6.13: Driven Cavity Re = 100: Absolute (∆t = ∞ and 1) and averaged No. of
nonlinear iterations per time step to reduce the nonlinear defect by 10−6, using Implicit
Euler
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6.3.2. Linear Solver Analysis

We present the linear solvers results only for the case of GMRES. We take the converged
solution from the monolithic stationary solver and perform only one time step to cal-
culate the average number of linear iterations to gain 6 digits. The results at Re = 100
with the Implicit Euler scheme are given in Table 6.14 As expected, the results are highly
dependent on c but at the same time, linear convergence rates can always be improved
by reducing ∆t. Comparatively better results are obtained with the second order Crank-
Nicolson approach, see table 6.15.

GMRES
c = 1 c = 10 c = 100

∆t Grid points GEF GEF(\) GEF GEF(\) GEF GEF(\)
289 22 18 165 88 348 159

1089 28 24 263 162 819 409
0.1 4225 31 29 411 297 1000 1000

16641 32 31 656 524 1000 1000
66049 37 34 776 726 1000 1000

289 7 6 48 27 250 99
1089 8 7 63 40 438 179

0.01 4225 9 8 87 63 904 437
16641 9 9 115 94 1000 1000
66049 10 10 127 124 1000 1000

289 3 3 14 8 84 29
1089 4 3 15 10 117 43

0.001 4225 4 4 17 13 212 91
16641 4 4 20 16 357 174
66049 5 4 21 19 510 304

Table 6.14: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Implicit Euler, Re = 100
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GMRES
c = 1 c = 10 c = 100

∆t Grid points GEF GEF(\) GEF GEF(\) GEF GEF(\)
289 15 14 119 61 334 147

1089 18 17 178 112 736 330
0.1 4225 21 20 272 193 1000 928

16641 22 21 395 320 1000 1000
66049 25 25 492 467 1000 1000

289 5 5 32 18 193 67
1089 6 6 39 25 321 121

0.01 4225 7 7 50 36 653 292
16641 7 7 61 51 1000 630
66049 8 8 72 69 1000 1000

289 3 3 11 8 59 19
1089 4 4 11 9 72 26

0.001 4225 4 4 12 10 123 51
16641 4 4 13 11 187 91
66049 4 4 14 13 256 158

Table 6.15: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Crank Nicolson, Re = 100

6.3.3. Multigrid preconditioned GMRES

We also compare the results of plain GMRES with multigrid preconditioned GMRES by
giving single grid and two-grid convergence in figure 6.1. We show the plots for the three
highest levels and GEF only. For the case ∆t = 0.01 on the right, the two variants both
converge with few iterations, except for the case c=100, where we obtain good results with
coarse grid correction, but we observe strong level-dependence of the single grid curves.
For a large time step of ∆t = 1 on the other hand, multigrid always shows significant
improvements, with the exception of the case c = 1, which is by construction well suited
for the GEF approach.
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(a) Convergence for c = 1
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(b) Convergence for c = 10
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(c) Convergence for c = 100

Figure 6.1: Convergence of (normalized) linear defect with GMRES (single-grid and MG
preconditioned), 4225 to 66049 grid points, ∆t = 1 vs. ∆t = 0.01
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6.4. Numerical results for Driven Cavity at Re=5000

In this section we extend our solver tests to the case Re = 5000. From table 6.16 it could
be seen that a large c is better for the non-linear rates and Newton is almost independent of
the number of grid points while Fixed Point needs more iterations with growing number
of degrees of freedom. The choice of bigger c positively influences the non-linear solvers,
especially for the fixed point method. However, by looking at the results of linear solvers
given in table 6.17 and 6.18, an optimal parameter range is known to be around c = 10
which is also confirmed by the theoretical and analytical results given in [35].

c = 10 c = 100
∆t Grid points Newton Fixed Point Newton Fixed Point

289 4 12 3 6
1089 4 12 3 7

0.1 4225 4 13 3 8
16641 5 18 4 8
66049 8 34 6 26

289 2 10 2 5
1089 3 11 2 5

0.01 4225 4 12 2 5
16641 4 12 3 6
66049 6 13 3 10

289 2 7 2 5
1089 2 7 2 5

0.001 4225 3 9 2 5
16641 3 10 3 6
66049 5 11 3 8

Table 6.16: Driven Cavity: upw2, Result of non-linear solvers to gain 6 digits using
Implicit Euler, Re = 5000, zero starting solution
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GMRES
c = 10 c = 100

∆t Grid Points GEF GEF(\) GEF GEF(\)
289 277 99 391 158

1089 576 224 1000 467
0.1 4225 1000 569 1000 1000

16641 1000 1000 1000 1000
66049 1000 1000 1000 1000

289 98 30 283 98
1089 169 53 597 210

0.01 4225 302 99 1000 473
16641 553 179 1000 1000
66049 1000 456 1000 1000

289 36 9 99 29
1089 43 13 174 50

0.001 4225 58 18 321 94
16641 70 26 690 188
66049 130 53 1000 321

Table 6.17: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Implicit Euler, Re = 5000

GMRES
c = 10 c = 100

∆t Grid points GEF GEF(\) GEF GEF(\)
289 218 72 363 149

1089 431 150 902 394
0.1 4225 881 338 1000 978

16641 1000 732 1000 1000
66049 1000 1000 1000 1000

289 68 19 228 70
1089 106 32 439 143

0.01 4225 176 56 875 308
16641 286 93 1000 763
66049 585 236 1000 1000

289 28 10 71 19
1089 32 11 111 30

0.001 4225 40 13 189 53
16641 45 16 378 101
66049 71 30 642 235

Table 6.18: Driven Cavity:upw2, No. of averaged linear iterations to gain 6 digits, using
Crank Nicolson, Re = 5000
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In Table 6.19 we compare the Newton and Fixed point schemes at Re = 5000 taking
the Re = 100 solution as starting guess. It is observed that for large ∆t and large number
of unknowns, the non-linear convergence can fail and the FP method requires explicit
damping (here σ = 0.75), while the Newton method performs remarkably well. For the
Newton method results are almost grid independent especially for smaller values of time
step size. In the same table, we compare the results for linear convergence rates for sin-
gle grid and two grid application. We also show that the linear solver can deal with the
high Reynolds number by use of multigrid and that the GEF(\) has a strong impact on
the convergence rates. However, on the highest refinement level. using multigrid with
the plain GEF smoothing steps is quite similar to smoothing with GEF(\), which is also
visible in the linear convergence plots in figure 6.2. Again, we observe that the collision
preconditioning takes stronger effect on the small levels and otherwise may be omitted to
optimize the runtime.

nonlinear linear single grid linear two-grid
∆t Grid points Newton Fixed Point GEF GEF(\) GEF GEF(\)

289 3 10 8.27E-1 3.56E-1 5.37E-1 2.33E-1
1089 3 15 9.51E-1 7.24E-1 5.67E-1 4.27E-1

1 4225 4 21 9.84E-1 9.19E-1 6.13E-1 5.45E-1
16641 5 25 9.96E-1 9.76E-1 6.14E-1 5.95E-1
66049 5 32 9.97E-1 9.91E-1 6.64E-1 7.55E-1

289 3 7 2.23E-1 1.29E-4 1.48E-1 1.15E-4
1089 3 7 2.23E-1 1.29E-4 1.48E-1 1.15E-4

0.01 4225 3 8 5.91E-1 9.48E-2 2.35E-1 3.76E-2
16641 4 9 7.26E-1 2.82E-1 2.67E-1 1.05E-1
66049 4 10 8.20E-1 5.41E-1 3.32E-1 2.38E-1

289 2 5 9.80E-7 4.93E-7 1.67E-7 5.18E-7
1089 3 5 5.99E-7 1.42E-7 5.35E-7 1.59E-7

0.001 4225 3 6 1.70E-7 1.51E-7 9.98E-7 1.73E-7
16641 3 7 6.02E-7 5.80E-7 1.36E-7 7.74E-8
66049 3 7 6.60E-5 2.50E-7 1.41E-5 1.90E-7

Table 6.19: Driven Cavity Re = 5000: Results of nonlinear/linear solvers to gain 6 digits,
only case c=10, nonlinear results with Re = 100 as starting guess
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Figure 6.2: Driven Cavity Re= 5000: Convergence of linear defect with GMRES (single-
grid and MG preconditioned), 4225 up to 66049 grid points, ∆t = 1 vs. ∆t = 0.01
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6.5. Flow around cylinder: bench3

After having shown the solver’s efficiency with the driven cavity problem, we now switch
to check the accuracy of the applied time discretization schemes and the space discretiza-
tion on highly adapted grids. For this purpose, the well known flow around cylinder [58]
benchmark is considered. The geometry of this benchmark is indicated in figure 6.3.
Here, the domain Ω consists of a channel of height H = 0.41 and length L = 2.2 having a
circular cylinder located at (0.2,0.2) with diameter D = 0.1. The value of the kinematic
viscosity is set to ν = 10−3. The Reynolds number Re determining the flow is defined as
Re = UmeanD

ν
in which Umean =

2
3Umax.

The drag and lift values are

FD =
∫

S
(ρν

∂ut

∂n
ny− pnx)dS, FL =−

∫
S
(ρν

∂ut

∂n
nx + pny)dS

representing the total forces in the horizontal and vertical directions, respectively. Fur-
thermore, the pressure drop between two points on the cylinder which is defined as

∆p = pA− pB,

where A(0.15,0.2) and B(0.25,0.2) are points on the boundary of the cylinder. We modify
our configuration used in [33], using a time dependent inflow profile given by

U(0,y, t) = 4Umaxy(H− y)(sin(t.π/8))/H2, V (0,y, t) = 0.

with Umax = 1.5 and the time interval is 0 ≤ t ≤ 8s. This gives a time varying Reynolds
number between 0 ≤ Re(t) ≤ 100 and we plot the forces acting on the cylinder for the
whole 8 seconds of simulation time. The accuracy of the problem depends on the follow-
ing benchmark quantities.

• the drag coefficient CD = 2FD
ρU2

meanD

• the lift coefficient CL = 2FL
ρU2

meanD

• pressure difference ∆p between front and back of the cylinder

Figure 6.3: Geometry for the flow around cylinder configuration in 2D.

In Figure 6.5 we obtain excellent results for the pressure difference ∆p between front and
back of the cylinder, when we use extrapolation of the pressure on the boundary. How-
ever, as described in [33] this has no influence on the drag and lift when using the force
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Figure 6.4: Triangular grid for flow around cylinder

evaluation method proposed in [43]. With grid refinement, we are successively increasing
c and obtain a good approximation of the reference drag (from Featflow). The lift shows
strong oscillations and is more difficult to reproduce, as shown in Figure 6.6. However,
we get the right period on the highest refinement level and a good approximation of the
amplitude when the Mach-number is sufficiently reduced. The accuracy using a large
time step of ∆t = 1/100 is compared to a semi-implicit simulation with ∆t = 1/4000.
The advanced performance in time becomes abundantly clear from the contiguous graphs
over the whole simulation time. The results of drag and lift for two fixed levels (16k and
66k) but with increasing the value of c successively are given in figures 6.7–6.10 along
with their zoomed versions. The results for drag and lift are strongly dependent on the
Mach number.

Nevertheless, the results are not perfect and in a next step we will try to increase the
order of the spatial discretization. The Discontinuous Galerkin method is a first extension
to our method which allows to preserve the developed upwinding techniques, while basis
functions of arbitrary order can be used, especially in crucial parts of the geometry. For
further details and some initial results, see Appendix C.

Mesh information upw1 upw2
Level Elements Vertices Midpoints Total unknowns Total unknowns

0 520 286 806 286 1 092
1 2 080 1 092 3 172 1 092 4 264
2 8 320 4 264 12 584 4 264 16 848
3 33 280 16 848 50 128 16 848 66 976
4 133 120 66 976 200 096 66 976 267 072

Table 6.20: flow around cylinder mesh information
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7

Non Newtonian Fluids

This chapter is devoted to the extension of our monolithic stationary approach for New-
tonian fluids given in Chapter 3 towards the non-constant viscosity case. In general, the
viscosity may depend on pressure, temperature and shear-rate. However, in this chapter
we deal with the case of shear-dependent viscosity and we modify our non-linear solvers
to tackle with the increased non-linearity. First, we describe some models in which the
viscosity is a function of shear-rate and then we present the results based on these models
for selected configurations.

7.1. Generalised Newtonian Fluids

Fluids that are not adequately described by a linear constitutive relation are usually re-
ferred to as ’non-Newtonian fluids’. Several constitutive relations have been proposed
to describe these fluids. An important subclass of non-Newtonian fluids are ’generalized
Newtonian fluids’. A significant progress is made in developing the mathematical theory
of generalized Newtonian fluids during the last two decades. Examples of these models
include the Power Law, Carreau-Yasuda, Eyring and Cross models.

7.1.1. Power Law Model

For the power law model, the viscosity is a function of shear rate and it is given by the
following relation

µ = µ0(ε+ γ̇
2)n/2−1

where γ̇ is the shear rate which is related to the second invariant of the strain rate tensor
D (i.e. γ̇ =

√
Di jDi j), n is the power law exponent and ε is a regularisation parameter.

If n/2 < 1, the model describes shear thinning behaviour while for the cases n/2 > 1, it
describes shear-thickening behaviour.
Although the power-law model offers the simplest representation of shear thinning and
shear thickening behaviour, it does have a number of shortcomings. Generally, it applies
over only a limited range of shear rates and this model does not predict the zero and
infinite shear viscosities.

71
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7.1.2. Carreau-Yasuda Model

The Carreau-Yasuda model [5] is used to describe the shear thinning behaviour of many
fluids and it incorporates two limiting viscosities µ0 and µ∞. In this model the viscosity µ
is given by

µ(γ̇)−µ∞

µ0−µ∞

= (1+(λγ̇)a)
n−1

a

where µ0 is the zero-shear-rate viscosity (γ̇→ 0), µ∞ is the infinity-shear-rate viscosity
(γ̇→ ∞), λ is the time constant and n < 1 is the power-law exponent and a is a model
constant. This five parameter(µ0,µ∞,λ,a,n) model is able to describe shear thinning be-
haviour over wide ranges of shear rates but only at the expense of the added complexity
of some extra parameters. This model predicts Newtonian fluid behaviour when either
n = 1 or λ = 0 or both.

7.1.3. Carreau Model

If we choose a = 2 in the Carreau-Yasuda model, then we obtain the Carreau model as a
special case given by

µ(γ̇)−µ∞

µ0−µ∞

= (1+(λγ̇)2)
n−1

2

where symbols have the same meaning as described above.

7.2. Derivation for the expression of norm D

First of all we derive an expression for the norm of D for the two dimensional case.

V = 〈u,v,0〉

∇V =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]

(∇V )T =

[
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

]

∇V +(∇V )T =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
+

[
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

]

=

[
2∂u

∂x
∂u
∂y +

∂v
∂x

∂u
∂y +

∂v
∂x 2∂v

∂y

]

There are two formulations for D:

1. Gradient formulation
For the Gradient formulation we take D = ∇V and in this case the norm D is given
by

||D(u)||2 =
(

∂u
∂x

)2
+
(

∂u
∂y

)2
+
(

∂v
∂x

)2
+
(

∂v
∂y

)2
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2. Tensor formulation
For the tensor formulation we take DDD = (∇V +(∇V )T )/2 and in this case the norm
D is given by

||D(u)||2 =
(

∂u
∂x

)2
+
(

∂v
∂y

)2
+

1
2

(
∂u
∂y

+
∂v
∂x

)2

For the Newtonian case both the gradient and tensor formulations are equivalent in
case when Dirichlet data is imposed on boundaries but for non-Newtonian case, the two
formulations are not equivalent. We will consider the tensor formulation in our tests.

7.3. Computation of Stress Tensor via LBM

The computation of the stress tensor for an incompressible fluid with pressure p is given
by

σαβ =−pδαβ +2Sαβ.

As the standard way to evaluate the term Sαβ is

Sαβ = ν(∂βuα +∂αuβ)

which involves the derivatives of the corresponding velocity field. This is usually done
as a post processing step after having obtained the velocity field. This involves additional
cost in conventional CFD methods, however in LB method we can directly calculate Sαβ

via the summation

−∑
i

ξi,αξi,β( fi− f eq
i )

We get the summation-coeffcients by evaluating the product of the corresponding entries
in ξξξi = c · ei with

ei ∈
{(

1
0

)
,

(
1
1

)
,

(
0
1

)
,

(
−1
1

)
,

(
−1
0

)
,

(
−1
−1

)
,

(
0
−1

)
,

(
1
−1

)}
which means that we get the three terms

S11 =−c2( f neq
E + f neq

NE + f neq
NW + f neq

W + f neq
SW + f neq

SE )

S22 =−c2( f neq
NE + f neq

N + f neq
NW + f neq

SW + f neq
S + f neq

SE )

S12 =−c2( f neq
NE − f neq

NW + f neq
SW − f neq

SE )

So the stress tensor components can be obtained without any additional computational
cost. Also, computing the shear in this manner is efficient since it removes the need to
calculate derivatives of the velocity.
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7.4. The Modified Newton Method

In this section, we present the modified Newton scheme for the case of non-linear viscos-
ity. As described in Chapter 1, for the shear dependent viscosity, the advection is treated
fully implicitly while the viscosity is treated in a semi-implicit way. We modify the Algo-
rithm 5.1 for the monolithic stationary approach and for non-linear viscosity and the new
algorithm for this Modified Newton’s method is given in Algorithm 7.1.

Algorithm 7.1 The Modified Newton Method for non-constant viscosity
1) The nonlinear system for the stationary monolithic approach for f n+1

i is given by

Ti f n+1
i − 1

τ
∑
k

ωik f n+1
k = 0 i = 0, ...,8.

2) In each nonlinear iteration, perform a Newton iteration for n = 1,2, . . . with the result-
ing linear block-system

xn+1 = xn−
[

∂R(xn)

∂x

]−1

R(xn)

Derivation of Jacobian (analytically)

d f eq
i =Wi

[
ρ+ρ0

(
3
c2 (ξξξi ·u)+

9
c4 (ξξξi ·u)(ξξξi · ũ)−

3
c2 u · ũ

)]
=: ∑

k
ω̄ik fk

Coefficients ω̄ik and ωik are only different by a factor of 2 in front of the quadratic terms.

3) Solve the linear system [
∂R(xn)

∂x

]
∆x =−R(xn)

with

[
∂R(xn)

∂x

]
=




T0
T1

. . .
T8

− 1

τ(γ̇)(n−1)


ω̄00 ω̄01 . . . ω̄08

ω̄10 ω̄11
...

... . . . ...
ω̄80 . . . . . . ω̄88


 .

4) Update the solution

xn+1 = xn +σ∆x(n)

where σ > 0 is the damping parameter.
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7.5. Channel flow with Power law and Carreau models

We consider 2D stationary flow in a straight channel. This benchmark is the well known
Poiseuille flow. The flow in the channel is either driven by a constant pressure gradient or
by enforcing the velocity profile from the analytical solution of the flow at the inlet. We
consider a bounded domain Ω ⊂ R2 with Ω = [0,1]× [0,1] and we prescribe an inflow
parabolic profile as

u = 4y(1− y), v = 0 (7.1)

We performed our simulations based on the Power law and Carreau models with different
settings of respective parameters. For the case n = 2, the Power law model corresponds
to the Newtonian case, for which we have analytical expressions for velocity and stress
components. Therefore, we compute the L2 error between the LB solution and exact
solution (see Figures 7.1–7.2) using both the Ladd and Zou-He boundary schemes. As
expected, the results of L2 error are better with Zou-He method and also the range of
optimal c is bigger as compared with Ladd scheme.
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Figure 7.1: Poiseuille Flow:Comparison of L2 error for boundary schemes, µ0 = 1
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Figure 7.2: Poiseuille Flow: Comparison of L2 error for boundary schemes, µ0 = 0.01
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From figures 7.3–7.6, it is evident that the computation of stress components using
LB approach is better than using the derivative based (DB) approach, just in the optimal
area of c, and also on finer grids. The reason is that in stress computation via derivative
based approach, one might calculate the derivatives of the obtained velocity field which
leads to loss of accuracy while in LB approach we use non-equilibrium distributions to
calculate the stress tensor (see section 7.3). Therefore, the stress tensor components can
be obtained without almost any additional cost. We also see that the L2 error starts to
grow up for larger values of c due to Mach dependent space discretization error.

We also present results for the obtained velocity and viscosity profiles for the Power law
and Carreau model cases. The value of sound parameter is set to c = 10 in these tests.
Typical behaviour of viscosity for shear thinning and shear thickening cases for different
values of the power law exponent n could be seen from the figures 7.7 and 7.8 for the
cases µ0 = 1 and µ0 = 0.1 respectively. Also as the Carreau model generally used only
for shear-thinning cases, so we show the solution only for the shear-thinning cases, see
figures 7.9–7.12 for different settings of the parameters appearing in the Carreau model.
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Figure 7.3: Poiseuille Flow: Stress components by FEM method, UPW2, µ0 = 1
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Figure 7.4: Poiseuille Flow: Stress components by LBM method, UPW2, µ0 = 1
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Figure 7.5: Poiseuille Flow: Stress components by FEM method, UPW2, µ0 = 0.01
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Figure 7.6: Poiseuille Flow: Stress components by LBM method, UPW2, µ0 = 0.01
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Figure 7.9: Carreau model: Comparison of U , λ = 1, µ∞ = 0, µ0 = 1, c = 10
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7.6. Driven Cavity

As a second test case for non-Newtonian flows, we consider the driven cavity problem.
The computational domain is a unit square. The left, right and bottom walls have no slip
conditions and the flow is driven by a uniform translation of the upper lid. We use the
Ladd boundary scheme to implement the macroscopic boundary conditions. Simulations
are conducted using the Power Law model at µ0 = 0.1 and µ0 = 0.01 and for different
values of the power law exponent n. Predicted horizontal and vertical velocities along the
horizontal and vertical wall bisectors are shown in Figures 7.13–7.16. Since we do not
have a closed form solution for the driven cavity problem, therefore, the simulated results
are compared with the finite element reference solutions obtained by Featflow [67] and
the agreements are quite satisfactory. The effect of the power law exponent n on horizon-
tal and vertical components of the velocity is also given in figure 7.17.
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Figure 7.13: Predicted horizontal velocities of driven cavity flows, µ0 = 0.01, c = 10
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Figure 7.14: Predicted vertical velocities of driven cavity flows, µ0 = 0.01, c = 10
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Figure 7.15: Predicted horizontal velocities of driven cavity flows, µ0 = 0.1, c = 10
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Figure 7.16: Predicted vertical velocities of driven cavity flows, µ0 = 0.1, c = 10
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7.7. Non-Linear Solver analysis

In this section, we compare the non-linear solvers modified for the non-constant viscosity
case. Here, we have additional non-linearity due to different non-linear viscosity func-
tions described in section 7.1. As described in Chapter 1, for the non-linear viscosity, we
can not treat the viscosity in a fully implicit way, therefore we do not use a full Newton
method for this case, instead we use a modified Newton approach, see Algorithm 7.1,
in which we treat the advection fully implicitly, however, we use the viscosity in an ex-
plicit way by taking its value from the previous non-linear iteration. As it could be seen
from the tables 7.1–7.4 that even this modified Newton method still gave far better con-
vergence rates as compared with the fixed point iteration. Also, it is clear that larger c is
better for the non-linear solvers but increasing the number of grid points increases Fixed
Point iterations while our (semi) Newton scheme meets the criteria in a few iterations.
The deviation from n = 2 means departure from the Newtonian case. In case of shear-
thickening n = 2.5 we need more iterations as compared with shear-thinning case n = 1.5
means shear-thickening is more hard to tackle.

shear thinning Newtonian shear thickening
n = 1.5 n = 2.0 n = 2.5

Grid points Newton Fixed Point Newton Fixed Point Newton Fixed Point
81 4 4 3 5 5 6

289 5 5 2 5 5 7
1089 6 7 2 5 6 9
4225 8 9 2 4 9 13

16641 9 10 2 4 12 20

Table 7.1: Driven Cavity:Power Law, No. of non-linear iterations to reduce the non-linear
defect by 10−6, UPW=1, ε = 0.01, µ0 = 0.01, c = 10

shear thinning Newtonian shear thickening
n = 1.5 n = 2.0 n = 2.5

Grid points Newton Fixed Point Newton Fixed Point Newton Fixed Point
81 3 4 2 3 4 5

289 4 4 2 3 4 5
1089 4 4 2 3 5 6
4225 5 5 2 3 5 7

16641 6 6 2 3 6 8

Table 7.2: Driven Cavity:Power Law, No. of non-linear iterations to reduce the non-linear
defect by 10−6, UPW=1, ε = 0.01, µ0 = 0.01, c = 100
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shear thinning Newtonian shear thickening
n = 1.5 n = 2.0 n = 2.5

Grid points Newton Fixed Point Newton Fixed Point Newton Fixed Point
81 5 6 4 7 6 6

289 6 8 4 8 7 11
1089 9 13 5 12 11 28
4225 12 18 5 17 20 85

16641 14 24 5 20 47 131

Table 7.3: Driven Cavity: Power Law, No. of non-linear iterations to reduce the non-
linear defect by 10−6, UPW=2, ε = 0.01, µ0 = 0.01, c = 10

shear thinning Newtonian shear thickening
n = 1.5 n = 2.0 n = 2.5

Grid points Newton Fixed Point Newton Fixed Point Newton Fixed Point
81 4 4 2 4 6 6

289 4 5 3 5 6 6
1089 6 7 3 7 7 10
4225 8 13 3 11 10 25

16641 11 20 3 18 24 104

Table 7.4: Driven Cavity: Power Law, No. of non-linear iterations to reduce the non-
linear defect by 10−6, UPW=2,ε = 0.01, µ0 = 0.01, c = 100
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7.8. Linear Solvers with Modified Preconditioners

We also modified our preconditioners in order to be able to use iterative solvers in an
efficient manner for the case of a non-linear viscosity function. In Tables 7.5–7.7, we
give the results using the transport preconditioner and block-Jacobi preconditioner in the
GMRES solver. It can be seen that the transport preconditioner is suitable for transport
dominated cases i.e. for smaller values of c. However, it is not suitable for large values of
c; especially the deviations from the Newtonian case are very large for higher values of
c. On the other hand the block-Jacobi performs well for collision dominated cases i.e. for
larger values of c, at least for small number of unknowns.

Although the Power-Law model is the simplest representation of shear thinning and shear
thickening behaviour, it has certain shortcomings. Generally, it applies over only a lim-
ited range of shear rates and it does not predict the zero and infinite shear rate viscosities,
therefore, in the Power-Law model, the viscosity might change dramatically. So in or-
der to have a better understanding of our preconditioners, we also performed simulations
using Carreau model. The corresponding results are given in tables 7.11–7.13. Here the
case n = 1 corresponds to the Newtonian case. Since the Carreau model is generally
used to describe the shear-thinning behaviour, so we chose the values of n describing the
shear-thinning effect only. In this model when we deviate from n = 1, the average number
of linear iterations does not change too much in contrast to the behaviour shown by the
Power Law model.

tr-pre bl-jac
thinning Newtonian thickening thinning Newtonian thickening

Grid points n=1.5 n=2.0 n=2.5 n=1.5 n=2.0 n=2.5
81 52 44 59 189 153 197

289 66 56 71 453 352 519
1089 90 71 99 1000 778 1000
4225 148 92 161 1000 1000 1000

Table 7.5: Driven Cavity: Power Law, No. of averaged linear iterations to gain 6 digits,
using GMRES, UPW=2, µ0 = 0.1, c = 1



7.8. Linear Solvers with Modified Preconditioners 93

tr-pre bl-jac
thinning Newtonian thickening thinning Newtonian thickening

Grid points n=1.5 n=2.0 n=2.5 n=1.5 n=2.0 n=2.5
81 149 118 158 88 83 102

289 271 155 362 198 192 203
1089 502 184 564 456 448 479
4225 715 221 834 983 951 1000

Table 7.6: Driven Cavity: Power Law, No. of averaged linear iterations to gain 6 digits,
using GMRES, UPW=2, µ0 = 0.1, c = 10

tr-pre bl-jac
thinning Newtonian thickening thinning Newtonian thickening

Grid points n=1.5 n=2.0 n=2.5 n=1.5 n=2.0 n=2.5
81 287 238 311 82 87 108

289 546 431 685 268 208 287
1089 843 647 1000 552 525 594
4225 1000 875 1000 1000 1000 1000

Table 7.7: Driven Cavity: Power Law, No. of averaged linear iterations to gain 6 digits,
using GMRES, UPW=2, µ0 = 0.1, c = 100
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tr-pre bl-jac
thining Newtonian thickening thining Newtonian thickening

Grid points n=1.5 n=2.0 n=2.5 n=1.5 n=2.0 n=2.5
81 114 102 126 89 84 92

289 182 133 192 205 187 221
1089 283 158 298 464 439 475
4225 415 179 443 1000 1000 1000

Table 7.8: Driven Cavity: Power Law, No. of averaged linear iterations to gain 6 digits,
using GMRES, UPW=2, µ0 = 0.01, c = 1

tr-pre bl-jac
thining Newtonian thickening thining Newtonian thickening

Grid points n=1.5 n=2.0 n=2.5 n=1.5 n=2.0 n=2.5
81 253 226 264 74 66 79

289 573 401 589 196 172 202
1089 1000 617 1000 569 521 585
4225 1000 858 1000 1000 1000 1000

Table 7.9: Driven Cavity: Power Law, No. of averaged linear iterations to gain 6 digits,
using GMRES, UPW=2, µ0 = 0.01, c = 10

tr-pre bl-jac
thining Newtonian thickening thining Newtonian thickening

Grid points n=1.5 n=2.0 n=2.5 n=1.5 n=2.0 n=2.5
81 319 305 342 70 64 73

289 777 731 796 174 153 181
1089 1000 1000 1000 519 492 576
4225 1000 1000 1000 1000 1000 1000

Table 7.10: Driven Cavity: Power Law, No. of averaged linear iterations to gain 6 digits,
using GMRES, UPW=2, µ0 = 0.01, c = 100
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tr-pre bl-jac
Grid points n=0.5 n=0.8 n=1.0 n=0.5 n=0.8 n=1.0

81 47 44 42 177 162 153
289 60 54 51 394 373 352

1089 82 75 71 788 758 727
4225 113 99 92 1000 1000 1000

Table 7.11: Driven Cavity: Carreau Model, No. of averaged linear iterations to gain 6
digits, using GMRES, UPW=2, µ0 = 0.1, µ∞ = 0, λ = 1, c = 1

tr-pre bl-jac
Grid points n=0.5 n=0.8 n=1.0 n=0.5 n=0.8 n=1.0

81 154 132 114 96 91 87
289 256 221 148 287 275 319

1089 409 301 182 682 664 651
4225 576 367 224 1000 1000 1000

Table 7.12: Driven Cavity: Carreau Model, No. of averaged linear iterations to gain 6
digits, using GMRES, UPW=2, µ0 = 0.1, µ∞ = 0, λ = 1, c = 10

tr-pre bl-jac
Grid points n=0.5 n=0.8 n=1.0 n=0.5 n=0.8 n=1.0

81 253 241 232 89 87 83
289 556 532 421 233 221 215

1089 1000 1000 645 622 599 530
4225 1000 1000 864 1000 1000 1000

Table 7.13: Driven Cavity: Carreau Model, No. of averaged linear iterations to gain 6
digits, using GMRES, UPW=2, µ0 = 0.1, µ∞ = 0, λ = 1, c = 100
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7.9. Remarks

In this Chapter, we have presented the results for the nonlinear shear-dependent viscosity
using a monolithic stationary framework. As a final remark we expect to get better con-
vergence results for non-linear and linear solvers in a non-stationary framework which has
been very successful as shown by the results given in Chapter 6 for the case of constant
viscosity case. The time stepping schemes would damp the non-linearities for smaller
time step sizes giving improved convergence rates for Newton and Fixed Point solvers.
At the same time, linear convergence rates in iterative schemes can always be improved
by reducing ∆t.
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Conclusion and Outlook

In this thesis we have used new algorithms for the Lattice Boltzmann equation based on
modern techniques from Numerics for PDEs. These algorithms eliminate the drawbacks
faced by standard Lattice Boltzmann method and they work for constant and non-constant
viscosity. To give a final summary, we revisit our achievements and set our future plans
as follows.

Alternative approach to standard LBM

We have treated the Lattice Boltzmann equation in a more general framework to increase
the applicability of the lattice Boltzmann approach for incompressible flow problems.
A new collision/advection implicit off-lattice discretization is used as an alternative to
the standard Lattice Boltzmann method, first motivated by Hübner in [33]. With this
monolithic approach we are able to remove the limitations faced by standard LBM such
as the use of structured grids, the restrictions due to the CFL condition and the stability
problems.

Implicit time discretization

In this thesis, we have used implicit time stepping schemes for accurate and robust nu-
merical simulations of nonstationary flow problems. The accuracy of these schemes is
verified by the flow around cylinder benchmark , with a special focus on stable simula-
tions using large ∆t. We have also discussed possible variants of semi-implicit schemes
all of which lead to nonsymmetric linear systems. The stability limits of the semi-implicit
scheme and a comparison with fully implicit schemes is also given.

Higher order upwind schemes for space discretization

Independently of the time stepping, a spatial discretization based on short characteristic
upwinding approach is used for the advection term. This special finite difference dis-
cretization led to lower triangular transport matrices after the application of a special
sorting algorithm in each direction. Corresponding schemes of first and second order
upwinding are successfully implemented.
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Sorting Algorithm
Based on graph theory we have used a very useful sorting algorithm. On one hand, we
obtained high numerical efficiency due to this sorting technique which yielded lower tri-
angular matrices for the transport step and on the other hand this sorting algorithm proved
to be the basis for a powerful preconditioner especially in transport dominated configura-
tions.

Non linear and linear solvers
In our monolithic approach the collision operator has to be treated implicitly, resulting in
a nonlinear system. For the common incompressible model it was easy to use a contin-
uous Newton method, obtaining throughout excellent convergence independent of mesh
refinement.

Efficient Preconditioners
We have used efficient preconditioners which can deal with transport and collision dom-
inated cases. Our numerical results showed that the proposed preconditioners improve
the condition number , depending upon the range of c and h. Convection dominated
cases have been solved very efficiently using the lower triangular transport blocks. Also a
new GEF reformulation of the LBE is derived which can combine the efficiency of direct
transport solvers on one hand with special preconditioning for collision dominated cases
on the other hand leading to a very efficient and robust monolithic solver. A sophisticated
application of the GEF resulted in a prototypical algorithm where multigrid is used as a
preconditioner in Krylov-space methods and achieves very good convergence rates for all
configurations.

Treatment of non-constant viscosity
After the numerical tests for Newtonian cases, we also implemented our approach towards
non-linear viscosity. We modified our basic non-linear solvers to work for non-linear
viscosity case. In this case, the implementation of full Newton method was difficult so
instead of using full Newton method, we implement a Quasi Newton method, in which the
advection is treated fully implicitly while the viscosity is handled in an explicit fashion.
Nevertheless this modified approach for Newton gave improved results as compared with
fixed point method. We have also modified the basic preconditioners for the linear solvers,
in order to use them for nonlinear viscosity functions.

Coupling of LB with Discontinuous Galerkin Method
Regarding future developments, a promising way to combine the upwinding approach
with finite element methods can be realized using upwind Discontinuous Galerkin (DG)
schemes. These schemes provide a practical framework for the development of high-order
accurate methods using unstructured grids. The good thing is that we can use our sort-
ing technique in the same style but now instead the sorting could be done elementwise.
Corresponding research is ongoing and we expect advantages using higher order DG ap-
proximations especially compared to the finite difference upwinding which naturally has
to use first order differences at the boundary.
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A

From Lattice Boltzmann to Navier-Stokes Equation

The macroscopic flow behavior governed by the Navier-Stokes equations can be recov-
ered from lattice Boltzmann equation by the application of Chapman-Enskog procedure.
We start with the LBGK model with SRT given as

fα(x+ eαδt, t +δt) = fα(x, t)−
1
τ
[ fα(x, t)− f (eq)

α (x, t)] (A.1)

Performing a Taylor series expansion in time and space with δx = δt to the second order,
we obtain

δt
∂ fα

∂t
+δteαk

∂ fα

∂xk
+
(δt)2

2

[
∂ fα

∂t
+2eαk

∂2 fα

∂t∂xk
+eαkeαn

∂2 fα

∂xk∂xn

]
+

1
τ
( fα− f (eq)

α )= 0 (A.2)

In order to relate the LB equation with macroscopic Navier Stokes equations, it is nec-
essary to formally separate different time scales. In this way, physical phenomena oc-
curring at different time scales are discussed separately and contribute individually to the
final equations of motion. To obtain this, the time and space derivatives are expanded us-
ing the Chapmann-Enskog expansion [10, 20], which in essence is a standard multi-scale
expansion, as

∂

∂t
= ε

∂

∂t1
+ ε

2 ∂

∂t2
(A.3)

∂

∂x
= ε

∂

∂x1
(A.4)

Here the expansion parameter ε << 1 can be identified as the Knudsen number. The
Knudsen number has to be much smaller than one, in order for the treatment of the fluid
as a continuous system to be valid.

The time expansion (A.3) has a simple justification as the advection and diffusion phe-
nomena happen at different time scales and the idea behind this expansion is that all
involved terms (∂t1and ∂t2) are of the same order of magnitude, and the smallness is intro-
duced via the parameter ε. As advection is faster than the diffusion therefore t1 describes
advection and t2 describes the diffusion scale.

The distribution function fα is also expanded using the expansion parameter ε as follows

fα = f (0)α + ε f (1)α + ε
2 f (2)α +O(ε3) (A.5)
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Inserting Eqs. (A.3)–(A.5) into Eq. (A.2), we obtain:

ε
2
[
δt
{

∂ f (1)α

∂t1
+

∂ f (0)α

∂t2
+ eαk

∂ f (0)α

∂x1k

}
+

(δt)2

2

{
∂2 f (0)α

∂t2
1

+2eαk
∂2 f (0)α

∂t1∂x1k
+ eαkeαn

∂2 f (0)α

∂x1k∂x1n

}
+

1
τ

f (2)α

]
+ ε

[
δt

∂ f (0)α

∂t1
+δteαk

∂ f (0)α

∂x1k
+

1
τ

f (1)α

]
=−1

τ

[
f (0)α − f (eq)

α

]
(A.6)

Collecting terms in the ascending order of ε;

O(ε0) : f (0)α = f (eq)
α (A.7)

O(ε1) : f (1)α =−τδt
[

∂ f (0)α

∂t1
+ eαk

∂ f (0)α

∂x1k

]
(A.8)

O(ε2) : f (2)α =−τδt
[

∂ f (1)α

∂t1
+

∂ f (0)α

∂t2
+ eαk

∂ f (0)α

∂x1k

]
(A.9)

− τ
(δt)2

2

[
∂2 f (0)α

∂t2
1

+2eαk
∂2 f (0)α

∂t1∂x1k
+ eαkeαn

∂2 f (0)α

∂x1k∂x1n

]
Using Eq. (A.8) into (A.9) and performing some algebra, we get;

O(ε2) : f (2)α =−τδt
∂ f (0)α

∂t2
+(

1
2
− τ)δt

[
∂ f (0)α

∂t1
+ eαk

∂ f (0)α

∂x1k

]
(A.10)

From Eq.(A.7), we see that fα is not far from the equilibrium state, so we re-write Eq.
(A.5) as

fα = f (eq)
α + ε f (1)α + ε

2 f (2)α +O(ε3) (A.11)

The equilibrium distribution function satisfies the following constraints

ρ = ∑
α

f eq
α , ρu = ∑

α

eα f (eq)
α (A.12)

which leads to the following constraints

∑
α

f k
α = 0 , ∑

α

eα f (k)α = 0 k = 1,2, . . . (A.13)

Multiplying Eqs. (A.8) and (A.10) by eαn and summing over all α and using the con-
straints given by Eqs. (A.12) and (A.13) we obtain the following macroscopic equations:

O(ε1) :
∂ρ

∂t1
+

∂ρuk

∂x1k
= 0 (A.14)

O(ε1) :
∂ρun

∂t1
+

∂

∂x1k
∑
α

eαneαk f (k)α

∂ f (eq)
α

∂x1k
= 0 (A.15)

O(ε2) :
∂ρ

∂t2
= 0 (A.16)

O(ε2) :
∂ρun

∂t2
+(1− 1

2τ
)

∂

∂x1k
∑
α

eαneαk f (k)α

∂ f (1)α

∂x1k
= 0 (A.17)
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Combining Eq. (A.14) and (A.16), the continuity equation is recovered to the second
order of ε:

∂ρ

∂t
+

∂ρuk

∂xk
= 0 (A.18)

Combining Eq. (A.15) and (A.17), the momentum equation is recovered to the second
order of ε:

∂ρun

∂t
+

∂

∂x1k
∑
α

eαneαk f (k)α

∂ f (eq)
α

∂x1k
+(1− 1

2τ
)

∂

∂x1k
∑
α

eαneαk f (k)α

∂ f (1)α

∂x1k
= 0 (A.19)

Substituting Eq. (A.18) into (A.19), the momentum equation becomes

∂ρun

∂t
+

∂

∂x1k
∑
α

eαneαk
∂ f (eq)

α

∂x1k
+(τ− 1

2
)∑

α

[
eαneαk

∂2 f (eq)
α

∂t1∂x1k
+ eαneαkeαm

∂2 f (eq)
α

∂x1k∂x1m

]
= 0

(A.20)
From eq. (A.19), we can identify the momentum flux tensor

Παβ = Π
(0)
αβ

+Π
(1)
αβ

= ∑
i

eiαeiβ

[
f (eq)
i +(1− 1

2τ
) f (1)i

]
= 0 (A.21)

with the zero order momentum tensor and first order momentum tensor given by the fol-
lowing equations

Π
(0)
αβ

= ∑
i

eiαeiβ f (eq)
i (A.22)

Π
(1)
αβ

= ∑
i

eiαeiβ(1−
1
2τ

) f (1)i (A.23)

To specify the detailed form of Παβ, the lattice structure and corresponding equilibrium
distributions have to be specified. We consider D2Q9 model here since this is the widely
used model. Derivation for other lattice structures can be obtained in a similar fashion.
For the D2Q9 model, the following identities are observed [16].

∑
α

wαeαmeαneαkeα j =
c4

9

(
δmnδk j +δmkδn j +δm jδnk

)
(A.24)

∂

∂x1m

∂

∂x1k
∑
α

wαeαmeαneαkeα jρu j =
c4

9

[
∂2(ρun)

∂x1m∂x1m
+2

∂2(ρun)

∂x1m∂x1n

]
(A.25)

Substituting f eq
α into (A.20) and using the identity (A.25), we find

∑
α

[
eαneαk

∂2 f (eq)
α

∂t1∂x1k
+ eαneαkeαm

∂2 f (eq)
α

∂x1k∂x1m

]
=

c2

3

[
∂2(ρun)

∂x1m∂x1m
+2

∂2(ρun)

∂x1m∂x1n

]
(A.26)

Substituting eq.(A.26) back into eq. (A.20), the momentum equation becomes
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∂ρun

∂t
+

∂ρukun

∂x1k
=− ∂p

∂x1n
+(τ− 1

2
)
c2

3

[
∂2(ρun)

∂x1m∂x1m
+2

∂2(ρun)

∂x1m∂x1n

]
(A.27)

where the pressure p ans kinematic viscosity ν are given by:

p = c2
s ρ =

ρ

3
(A.28)

ν = c2
s (τ−

1
2
) (A.29)

Therefore, the LBE recovers the Navier-Stokes equations in the incompressible flow limit

∂uα

∂xα

= 0 (A.30)

∂uβ

∂t
+uα

∂uβ

∂xα

=−1
ρ

∂p
∂xβ

+ν∇
2uβ (A.31)
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Newton Method

In this appendix, we present the widely used method to solve the system of nonlinear
algebraic equations, namely, the Newton method which is well-known for its quadratic
convergence. We consider a system of nonlinear algebraic equations of the form

F(x) = 0, (B.1)

where

F(x) =


f1(x1,x2, . . . ,xn)
f2(x1,x2, . . . ,xn)

...
fn(x1,x2, . . . ,xn)

 , (B.2)

for each fi : Rn→ R, x = (x1,x2, . . . ,xn), i = 1, . . . ,n. To apply the Newton method for
approximating the solution of problem (B.1), we define the following Jacobian matrix

J(x) =



∂ f1
∂x1

(x) ∂ f1
∂x2

(x) . . . ∂ f1
∂xn

(x)
∂ f2
∂x1

(x) ∂ f2
∂x2

(x) . . . ∂ f2
∂xn

(x)
...

∂ fn
∂x1

(x) ∂ fn
∂x2

(x) . . . ∂ fn
∂xn

(x)


. (B.3)

Then, the Newton method can be expressed as a sequence of approximations

x(k+1) = x(k)−σ

[
J(x(k))

]−1
F(x(k)) (B.4)

where σ > 0 is damping parameter. The Newton’s method is generally expected to con-
verge quadratically, if the initial approximation x(0) is sufficiently close the exact solution
x? and the inverse of the Jacobian matrix J(x) exits. In practice, we do not actually com-
pute the inverse of the Jacobian matrix, but instead solve a linear system of equations

J(xk)∆x(k) =−F(x(k)). (B.5)
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The step by step procedure in the Newton’s implementation is given as follows:

1. Given an initial guess x(0), set k = 0

2. Solve the linear subproblem

J(x(k))∆x(k) =−F(x(k)).

3. Update the iterate to obtain

x(k+1) = x(k)+σ∆x(k)

4. Set k = k+1 , Go to step 2.

This procedure should be repeated until the norm of F(x(k)) is below a certain threshold.

Inexact Newton
In order to apply pure Newton method it is required to solve the linear system given in B.5
exactly. The techniques based on Gaussian elimination or another type of factorization of
the coefficient matrix can be expensive when the number of variables is large. Instead, if
the linear system B.5 is solved by using an iterative method, then the Newton method is
called inexact Newton since we are not solving the linear problems exactly. The schemes
are identified as Newton-Jacobi, Newton-SOR or Newton-Krylov methods, according to
the iterative process that is used for the solution of linear systems.



C

Discontinuous Galerkin formulation for LBE

Regarding our future research, we would like to extend our Finite Difference upwind
approach presented in this thesis using higher order finite elements. Our aim is the devel-
opment of similar monolithic, off lattice discretization schemes but with higher accuracy.
One choice is to use standard high order Finite Volume schemes on general grids but they
are not suitable due to extended stencils. Therefore, we chose Discontinuous Galerkin
approach.

• Consider a general continuity equation of type

∂q
∂t

+∇ ·F(q) = 0

• Boltzmann-Transport F(q) = ξξξi ·q

– Simplest physical flux with constant characteristic

• Continue with standard FEM

– Multiply with test function ω

– Integrate over control volume Ω

– Apply Gaussian Formula (partial integration)∫
Ω

ω
∂q
∂t

dx−
∫

Ω

∇ω ·F(q) dx+
∫

∂Ω

ωF(q) ·n ds = 0

• Standard high order Finite Volume⇒ exploding stencil

• Therefore, apply Discontinuous Galerkin

• Discontinuity⇒ no uniqueness of solution along the edge

• Introduce mumerical flux F̂(q−,q+,n)∫
Ω

ω
∂q
∂t

dx−
∫

Ω

∇ω ·F(q) dx+
∫

∂Ω

ωF̂(q−,q+,n) ds = 0

• For example central flux⇒ not stable
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• Lax-Wendroff, Godurov etc. for our problem yield all upwind flux

F̂(q−,q+,n) =
{

(v ·n)q− v ·n≥ 0
(v ·n)q+ v ·n < 0

Also, in this case information flows in one direction between neighbouring elements
so we can apply the same topological sorting algorithm, but instead of sorting the
nodes we sort elementwise which gives lower triangular block matrices for transport
in every direction.

• Choice of basis functions T 0 or Q0 comparable to constant Finite Volumes

• Q1, Q2 bi-linear, bi-quadratic

• Alternative Taylor-basis (compare Taylor expansion)

• Number of unknowns per quad-element:

– Q1 – 4 (corners)

– Q2 – 9 (corners and midpoints)

– T1 – 3 (all in midpoint)

– T2 – 6 (all in midpoint)

• Direct solution of transport for any basis function

• Example, mesh for flow around cylinder, before and after sorting for e2 = (1,1)T

Figure C.1: mesh for the flow around cylinder benchmark
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Figure C.2: affect of sorting algorithm

• Easily applicable p-adaptivity, local solutions, no steady dependence over edges
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Results for Poiseuille flow on unit square, Ladd vs. Zou-He boundary
conditions

Exact solution (up to machnie accuracy) for Zou-He bc’s with Q2 on a single element
(and higher levels, same for T2):

Q2 c=1 c=2 c=4 c=8
level 1 5.4E-09 6.9E-09 1.1E-08 8.2E-09

Table C.1: Poiseuille flow: L2-error with Zou-He boundary scheme

Results with Ladd bc’s (only error of O(Ma2), not h):

Q2 c=1 c=2 c=4 c=8 c=16 c=32 c=64 c=128
level 1 3.5E-04 1.1E-04 3.0E-05 7.8E-06 2.0E-06 5.1E-07 1.3E-07 3.0E-08

T2 c=1 c=2 c=4 c=8 c=16 c=32 c=64 c=128
level 1 2.9E-04 7.8E-05 2.0E-05 5.1E-06 1.3E-06 3.2E-07 9.2E-08 2.3E-08

Table C.2: Poiseuille flow: L2-error with Ladd boundary scheme

Again better Zou-He bc’s, now basis Q1 (only influence of h, same for T1):

Q1 c=1 c=2 c=4 c=8
level 1 7.5E-02 7.5E-02 7.5E-02 7.5E-02
level 2 2.3E-02 2.4E-02 2.4E-02 2.5E-02
level 3 5.6E-03 5.7E-03 5.8E-03 5.9E-03
level 4 1.3E-03 1.4E-03 1.4E-03 1.4E-03
level 5 3.3E-04
level 6 8.1E-05
level 7 2.0E-05
level 8 5.0E-06

Table C.3: Poiseuille flow: L2-error with Zou-He boundary scheme, influence of h
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Results for flow around cylinder: stationary benchmark with Re=20

The first results are given for the flow around cylinder benchmark [58] for the stationary
case at Re = 20. The geometry of this benchmark is indicated in figure C.1. Here, the
domain Ω consists of a channel of height H = 0.41 and length L = 2.2 having a circular
cylinder located at (0.2,0.2) with diameter D = 0.1. The Reynolds number Re determin-
ing the flow is defined as Re= UmeanD

ν
in which Umean =

2
3Umax. The value of the kinematic

viscosity is set to ν = 10−3 and Umax = 0.3 giving a value of Re = 20.

c=1 c=2 c=4
# EL Drag Li f t Drag Li f t Drag Li f t

T0 130 22.04 5.552E-01 42.01 7.640E-01 81.86 1.171E+00
520 17.92 3.178E-01 31.97 4.854E-01 59.91 7.581E-01

1080 12.21 2.176E-01 19.78 3.461E-01 34.82 4.960E-01
4320 8.871 9.288E-02 12.68 1.601E-01 20.30 2.303E-01

T2 130 5.851 1.695E-02 6.219 2.184E-02 6.867 3.854E-02
520 5.539 9.567E-03 5.617 9.558E-03 5.697 9.748E-03

1080 5.514 1.055E-02 5.552 1.037E-02 5.559 1.059E-02
4320 5.522 1.060E-02 5.559 1.048E-02 5.564 1.038E-02

Table C.4: Drag and Lift for Benchmark, Reference cD = 5.5795, cL = 1.06E-02

Outlook for DG implementation

• Monolithic steady approach using DG

• Extension to 3D flow problems

• Higher order basis functions

• p-adaptivity

• Limiter
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