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Abstract. In this paper, we address the problem of dimension re-
duction for sequentially observed functional data (Xk : k ∈ Z). Such
functional time series arise frequently, e.g., when a continuous time pro-
cess is segmented into some smaller natural units, such as days. Then
each Xk represents one intraday curve. We argue that functional princi-
pal component analysis (FPCA), though a key technique in the field and
a benchmark for any competitor, does not provide an adequate dimen-
sion reduction in a time series setting. FPCA is a static procedure which
ignores valuable information in the serial dependence of the functional
data. Therefore, inspired by Brillinger’s theory of dynamic principal
components, we propose a dynamic version of FPCA which is based on
a frequency domain approach. By means of a simulation study and an
empirical illustration, we show the considerable improvement our method
entails when compared to the usual (static) procedure. While the main
part of the article outlines the ideas and the implementation of dynamic
FPCA for functional Xk, we provide in the appendices a rigorous theory
for general Hilbertian data.

1. Introduction

The tremendous technical improvements in data collection and storage allow to
get an increasingly complete picture of many common phenomena. In principle, all
processes in real life are continuous in time and, with improved data acquisition tech-
niques, they can be recorded at arbitrarily high frequency. To benefit from increas-
ing information, we need appropriate statistical tools that can help us extracting
∗Corresponding author. Email: shormann@ulb.ac.be
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the most important characteristics of some possibly high-dimensional specifications.
Functional data analysis (FDA) has proven in recent years to be an appropriate
tool in many such cases and has consequently evolved into a very important field of
research in the statistical community.

Most classically, functional data are considered as realizations of (smooth) ran-
dom curves. Then every observation X is a curve (X(u) : u ∈ U). One generally
assumes, for simplicity, that U = [0, 1], but U could be a more complex domain like
a cube or the surface of a sphere. Since observations are functions, we are dealing
with high-dimensional, in fact intrinsically infinite-dimensional objects. So, not sur-
prisingly, there is a clear demand for efficient data reduction techniques. As such,
functional principal component analysis (FPCA) has taken a leading role in FDA.
Arguably, it can be seen as the key technique in the field. In analogy to classical
multivariate PCA (see Jolliffe [21]), functional PCA heavily relies on an eigendecom-
position of the underlying covariance function. The mathematical foundations for
this have been laid several decades ago in the pioneering papers by Karhunen [22]
and Loève [25], but it took a while until the method was popularized in the statisti-
cal community. Some earlier contributions are Besse and Ramsay [4], Ramsay and
Dalzell [28] and, later, the influential books by Ramsay and Silverman [29], [30] and
Ferraty and Vieu [10]. Statisticians have been working on problems related to esti-
mation and inference (Kneip and Utikal [23], Benko et al. [3]), asymptotics (Dauxois
et al. [9] and Hall and Hosseini-Nasab [14]), smoothing techniques (Silverman [32]),
sparse data (James et al. [20], Hall et al. [15]), and robustness issues (Locantore et
al. [24], Gervini [11]), to name just a few. Important applications include FPC-based
estimation of functional linear models (Cardot et al. [8], Reiss and Ogden [31]) or
forecasting (Hyndman and Ullah [19], Aue et al. [1]). The usefulness of functional
PCA has also been recognized in other scientific disciplines, like chemical engineering
(Gokulakrishnan et al. [13]) or functional magnetic resonance imaging (Aston and
Kirch [2], Viviani et al. [34]). Many more references can be found in the above cited
papers and in Sections 8–10 of Ramsay and Silverman [30], where we refer to for
background reading. A further reason for the success of FPCA seems to be the fact
that, in contrast to their multivariate counterpart, FPCs do not suffer from the lack
of scale invariance. Roughly speaking, while in the vector case different components
can have completely different measuring units, all points X(u), u ∈ [0, 1], of some
curve are expressed in the same units, and rescaling at different u values is usually
not meaningful.
Most existing concepts and methods in FDA, even though they may tolerate

serial dependence, have been developed for independent observations. This is a
serious weakness, as in numerous applications the functional data under study are
obviously dependent, either in time or in space. Examples include daily curves of
financial transactions, daily patterns of geophysical and environmental data, annual
temperatures measured on the surface of the earth, etc. In such cases, we should
view the data as the realization of a functional time series (Xt(u) : t ∈ Z), where
the time parameter t is discrete and the parameter u is continuous. For example,
in case of daily observations, the curve Xt(u) may be viewed as the observation on
day t with intraday time parameter u. A key reference on functional time series
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techniques is Bosq [7], who studied functional versions of AR processes. We also
refer to Hörmann and Kokoszka [18] for a survey.

Ignoring time dependence in this time series context may result in misleading, or
even completely wrong, findings, and highly inefficient procedures. Similar conclu-
sions motivated Hörmann and Kokoszka [17] to investigate the robustness properties
of some classical FDA methods in the presence of serial dependence. In particular,
they show that usual FPCs still can be consistently estimated within a quite general
dependence framework. Yet, the basic problem remains that FPCA operates in a
static way: when applied to serially dependent curves, it fails to take into account
the potentially very valuable information carried by the past values of the functional
observations under study. In particular, a static FPC with small eigenvalue, hence
negligible instantaneous impact on Xt, may have a major impact on Xt+1, and high
predictive value. Neglecting it, as FPCA does, may have serious consequences.

Besides their failure to produce adequate dimension reduction, static FPCs, while
cross-sectionally uncorrelated at fixed time t, typically still exhibit lagged cross-
correlations. Therefore, unlike in the i.i.d. case, the resulting FPC scores cannot be
analyzed componentwise, but need to be considered as vector time series, which are
less easy to handle and interpret.

These shortcomings motivated our development of dynamic functional principal
components. The idea is to transform the functional time series into a vector time se-
ries (of low dimension 3 or 4, say), where the individual component processes are mu-
tually uncorrelated, and account for most of the dynamics and variability of the origi-
nal process. The analysis of the functional time series can then be performed on those
dynamic principal components. Since the transformed variables are non-correlated,
we can even perform any second-order based analysis componentwise. In analogy to
the static FPCA, the curves can be optimally reconstructed/approximated from the
low dimensional time series via a dynamic version of the celebrated Karhunen-Loève
expansion.

Dynamic PCs first have been suggested by Brillinger [5] for vector time series.
The purpose of this article is to extend the Brillinger approach to a functional, or
more general Hilbert space setting. The methodology heavily relies on a frequency
domain analysis for functional data, which has been only recently brought forth by
Panaretos and Tavakoli [26].

An impression of how well the proposed method works can be obtained from
Figure 1. Its left panel shows ten consecutive intraday curves of some pollutant
level. (A detailed description of the underlying data is given in Section 5.) The
two panels to the right show the reconstructions of these curves after performing
of a dimension reduction to dimension one. We used static FPCA in the central
panel and dynamic FPCA in the right panel. The difference is striking. While the
static method solely reproduces an average level and exhibits a spurious intraday
symmetry, the dynamic counterpart to a large extent catches the evolution of the
curves. In particular, it retrieves remarkably well the intraday trend of the pollution
levels.

The rest of the paper is organized as follows. In Section 2, we describe our
approach and state a number of relevant propositions. In Section 3, we discuss its
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Figure 1: Ten subsequent observations (left panel), the corresponding static
Karhunen-Loève expansion with one component (middle panel) and the
dynamic Karhunen-Loève expansion with one component (right panel).

practical implementation and the related numerical costs. After a simulation study
in Section 4, we illustrate the methodology by a real data example on pollution
curves. Appendix A contains a rigorous mathematical framework and the proofs
in a general Hilbertian setting. Finally, in Appendix B, we justify the proposed
estimation steps by providing some asymptotics.

2. Methodology for L2 curves

In this section, we introduce some necessary notation and tools. Most of the discus-
sion on technical details is postponed to Appendices A and B. While focusing here
on L2([0, 1])-valued processes, i.e. square integrable functions defined on the unit
interval, we will work, in the technical appendices, with processes taking values in
some arbitrary separable Hilbert space. Such general setup facilitates notation and
makes theory clearer, but we postpone it until Appendix A, to make the paper more
easily accessible for readers less familiar with functional analysis.

2.1. Notation and setup

Throughout this section, we consider a functional time series (Xt : t ∈ Z), where
Xt takes values in the space H := L2([0, 1]) of complex-valued square-integrable
functions on [0, 1]. This means that Xt = (Xt(u) : u ∈ [0, 1]) and∫ 1

0

|Xt(u)|2du <∞,

where |z| :=
√
zz̄, with z̄ the complex conjugate of z, denotes the modulus of z ∈ C.

In most applications, observations are real, but, since we will use spectral methods,
a complex vector space definition will serve useful.
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The space H then is a Hilbert space, equipped with the inner product 〈x, y〉 :=∫ 1

0
x(t)ȳ(t)dt, so that ‖x‖ =

√
〈x, x〉 defines a norm. The notation X ∈ LpH is used

to indicate that, for some p > 0, E[‖X‖p] <∞. Any X ∈ L1
H then possesses a mean

curve µ = (E[X(t)] : t ∈ [0, 1]), and any X ∈ L2
H a covariance operator C, defined

by C(x) := E[〈X − µ, x〉(X − µ)]. The operator C is a kernel operator given by

C(x)(u) =

∫ 1

0

c(u, v)x(v)dv, with c(u, v) := cov(X(u), X(v)), u, v ∈ [0, 1].

The process (Xt : t ∈ Z) is called weakly stationary if for all t we have (i) Xt ∈ L2
H ,

(ii) EXt = EX0 and (iii) for all h ∈ Z and u, v ∈ [0, 1]

cov(Xt+h(u), Xt(v)) = cov(Xh(u), X0(v)) =: ch(u, v).

Denote by Ch, h ∈ Z, the operator corresponding to the autocovariance kernels ch.
Clearly, C0 = C. For our problem, the mean is not important, so we will throughout
suppose that random elements are centered. For the rest of the paper, it will be tacitly
imposed that (Xt : t ∈ Z) is a weakly stationary, zero mean process defined on some
probability space (Ω,A, P ).
As in the multivariate case, the covariance operator C of a random element X ∈

L2
H admits an eigendecomposition (see, e.g., p. 178, Theorem 5.1 in [12])

C(x) =
∞∑
`=1

λ`〈x, v`〉v`,

where (λ` : ` ≥ 1) are C’s eigenvalues (in descending order) and (v` : ` ≥ 1) the
corresponding normalized eigenfunctions, so that C(v`) = λ`v` and ‖v`‖ = 1. If C
has full rank, then the sequence (v` : ` ≥ 1) forms an orthonormal basis (ONB) of
L2([0, 1]). Hence X admits the representation

X =
∞∑
`=1

〈X, v`〉v`, (1)

which is called the Karhunen-Loève (KL) expansion of X. The eigenfunctions v`
are called the (static) functional principal components (FPCs) and the coefficients
〈X, v`〉 are called the (static) FPC scores or loadings. It is well known that the basis
(v` : ` ≥ 1) is optimal in representing X in the following sense: if (w` : ` ≥ 1) is any
other ONB of H, then

E‖X −
p∑
`=1

〈X, v`〉v`‖2 ≤ E‖X −
p∑
`=1

〈X,w`〉w`‖2, ∀p ≥ 1. (2)

Property (2) shows that a finite number of FPCs can be used to transform the
function X to a vector of given dimension p with a minimum loss of “instantaneous”
information. It should be noted, though, that this transformation is static in its
nature, meaning that it is performed observation by observation, and does not take
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into account the possible serial dependence of the Xt’s, which is likely to exist in a
time series context. Globally speaking, we should be looking for a transformation
which involves all observations, and is based on the whole family (Ch : h ∈ Z)
rather than on C0 only. To achieve this goal, we introduce below the spectral density
operator, which contains the full information on the family of operators (Ch : h ∈ Z).

2.2. The Spectral Density Operator

Existence of the operator to be defined below requires a summability condition on
the autocovariance operators Ch. Specifically, we assume that

∑
h∈Z

(∫ 1

0

∫ 1

0

|ch(u, v)|2dudv
)1/2

<∞, (3)

a condition that is more conveniently expressed as∑
h∈Z

‖Ch‖S <∞, (4)

where ‖ ·‖S denotes the Hilbert-Schmidt norm (see Section A.1). A simple sufficient
condition for (4) will be provided in Proposition 7. Now, set

fXθ (u, v) :=
1

2π

∑
h∈Z

ch(u, v)e−ihθ, θ ∈ [−π, π],

where i denotes the imaginary unit. By (3), this series converges in mean square for
all θ.

Definition 1. Let (Xt) be a stationary process. The operator FXθ whose kernel is
fXθ (·, ·) is called the spectral density operator of (Xt) at frequency θ.

This concept of a spectral density operator has been very recently introduced
by Panaretos and Tavakoli [26], where we refer to for many interesting details on
estimation and asymptotics. In our context, this operator is used to create particular
functional filters (see Sections 2.3 and A.3) which are the building blocks for the
construction of dynamic FPCs. A functional filter is defined via a sequence Φ =
(Φ` : k ∈ Z) of linear operators between two spaces H and H ′. The filtered variables
Yt have the form Yt =

∑
k∈Z Φ`(Xt−`). For the important case when H ′ = Rp, the

following proposition relates the spectral density operator of (Xt) to the spectral
density matrix of such a filtered sequence (Yt). This simple result plays a crucial
role in our construction. Let ‖Ψ‖ := sup‖x‖≤1 ‖Ψ(x)‖ denote the operator norm of
some operator Ψ.

Proposition 1. Assume that Φ`(x) = (〈x, φ1`〉, 〈x, φ2`〉, . . . , 〈x, φp`〉)′, with φm` ∈ H
and

∑
`∈Z ‖Φ`‖ < ∞. Then

∑
`∈Z Φ`(Xt−`) converges in mean square to a limit Yt.
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The p-dimensional vector process is stationary and has a spectral density matrix FYθ
given by

FYθ =

〈F
X
θ (φ?1(θ)), φ

?
1(θ)

〉
· · · 〈FXθ (φ?p(θ)), φ

?
1(θ)

〉
... . . . ...

〈FXθ (φ?1(θ)), φ
?
p(θ)

〉
· · · 〈FXθ (φ?p(θ)), φ

?
p(θ)

〉
 ,

where φ?m(θ) :=
∑

`∈Z φm`e
i`θ.

To explain the important consequence of this result, first observe that, for every
frequency θ, the operator FXθ is a non-negative, self-adjoint Hilbert-Schmidt oper-
ator. Hence, assuming for the moment that the kernel fXθ (u, v) is continuous in u
and v, we obtain, by Mercer’s theorem (see, e.g., p. 197, Theorem 3.1 in [12]),

fXθ (u, v) =
∑
m≥1

λm(θ)ϕm(u|θ)ϕm(v|θ). (5)

Here, ϕm(u|θ) (in short, ϕm(θ)) and λm(θ) are the eigenfunctions and eigenvalues,
respectively, of FXθ . The series (5) converges absolutely and uniformly on [0, 1]2. We
impose the order λ1(θ) ≥ λ2(θ) ≥ . . . ≥ 0 for all θ ∈ [−π, π], and require that the
eigenfunctions be standardized, so that ‖ϕm(θ)‖ = 1 for all m ≥ 1 and θ ∈ [−π, π].
Then the sequences (ϕm(θ) : m ≥ 1) form orthonormal bases of the closure Im(FXθ )
of the image of FXθ . If FXθ is not full-rank, we can always extend (ϕm(θ) : m ≥ 1)
into a basis of H, and thus, without loss of generality, we assume that the closed
span sp(ϕm(θ) : m ≥ 1) is H.
Assume now that we could choose the functional filters (φm` : ` ∈ Z) such that

φ?m(θ) = ϕm(θ). We then have FYθ = diag(λ1(θ), . . . , λm(θ)), implying that the
coordinate processes of (Yt) are uncorrelated at any lag: cov(Ymt, Ym′s) = 0 for all
s, t if m 6= m′. As discussed in the Introduction, this is a highly desirable property
which the static FPCs do not possess.

2.3. Dynamic FPCs

Motivated by the discussion above, we wish to define φm` in such a way that

φ?m(θ) :=
∑
`∈Z

φm`e
i`θ = ϕm(θ),

which is the case if the φm`’s are the coefficients of the Fourier expansion of ϕm(θ)
as a function in θ. Since φm` = φm`(u) is a curve, the concept of Fourier expansion
requires some explanation here. By Fubini’s theorem,

2π =

∫ π

−π

∫ 1

0

ϕ2
m(u|θ)dudθ =

∫ 1

0

∫ π

−π
ϕ2
m(u|θ)dθdu,

showing that, for all m and almost all u ∈ [0, 1], ϕm(u|θ) is square integrable with
respect to θ ∈ [−π, π]. Thus, for almost all u, the Fourier expansion of ϕm(u|θ) as
a function in θ exists and takes the form

ϕm(u|θ) =
∑
`∈Z

1

2π

∫ π

−π
ϕm(u|s)e−i`sds ei`θ =:

∑
`∈Z

φm`(u)ei`θ. (6)
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This leads to the following definition.

Definition 2 (Dynamic functional principal components). Assume that (Xt : t ∈
Z) is a mean zero stationary process with values in L2

H satisfying assumption (4).
Let φm` be defined as in (6). Then the m-th dynamic functional principal component
(DFPC) score of Xt is

Ymt :=
∑
`∈Z

〈Xt−`, φm`〉, t ∈ Z, m ≥ 1. (7)

We call Φm := (φm` : ` ∈ Z) the m-th DFPC filter coefficients.

The rest of this section is devoted to some important properties of dynamic FPCs.

Proposition 2 (Elementary properties). Assume that (Xt : t ∈ Z) is a real-valued
stationary process satisfying (4) and let Ymt be its dynamic FPC scores. Then,

(a) the eigenfunctions ϕm(θ) are Hermitian, and hence Ymt is real;

(b) if Ch = 0 for h 6= 0, the dynamic FPC scores coincide with the static ones.

Our construction of φm` was motivated through Proposition 1. In order to apply it
to the thus defined functional filters, we shall now impose for some of the subsequent
results that ∑

k∈Z

‖φm`‖ <∞. (8)

Proposition 3 (Second-order properties). Assume (Xt : t ∈ Z) is a stationary pro-
cess satisfying (4) and let Ymt be its dynamic FPC scores. Then,

(a) the series defining Ymt is mean-square convergent, with

EYmt = 0 and EY 2
mt =

∑
`∈Z

∑
k∈Z

〈C`−k(φm`), φmk〉.

Assume that, in addition to the previous assumptions, (8) holds. Then,

(b) for m 6= m′, the dynamic FPC scores Ymt and Ym′s are uncorrelated for all s, t;

(c) the long-run variance of the m-th dynamic FPC score sequence is

lim
n→∞

1

n
Var(Ym1 + · · ·+ Ymn) = 2πλm(0).

It is important to note that Part (a) of Proposition 3 holds without assumption (8).
Thus, the definition of (7) is always meaningful. However, for the derivation of more
general properties of dynamic FPC scores, condition (8) seems to be a minimal
requirement.

The next proposition tells us how we can recover the original process (Xt(u) : t ∈
Z, u ∈ [0, 1]) from (Ymt : t ∈ Z, m ≥ 1). It is the dynamic analogue of the static
Karhunen-Loève expansion (1) associated with static principal components.
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Proposition 4 (Inversion formula). Let Ymt be the DFPC scores related to the
process (Xt(u) : t ∈ Z, u ∈ [0, 1]). Assume that (8) holds. Then,

Xt(u) =
∑
m≥1

Xmt(u) with Xmt(u) :=
∑
`∈Z

Ym,t+`φm`(u) (9)

(where convergence is in mean square). We call (9) the dynamic Karhunen-Loève
expansion of Xt.

The random variables defined by
∑p

m=1Xmt(u), p ≥ 1, can be seen as p-dimensional
reconstructions of Xt(u), which only involve the p time series (Ymt : t ∈ Z), 1 ≤ m ≤
p. Competitors to this reconstruction are obtained by replacing φm` in (7) and (9)
with other elements ψm` and υm`. The next theorem shows that within this class of
p-dimensional processes,

∑p
m=1Xmt(u) approximates Xt(u) in an optimal way.

Proposition 5 (Optimality). Let Ymt be the DFPC scores related to the process
(Xt : t ∈ Z) and let Xmt be defined as in Proposition 4 and assume that (8) holds.
Let X̃mt =

∑
`∈Z Ỹm,t+` υm`, with Ỹmt =

∑
`∈Z〈Xt−`, ψm`〉, where (ψmk : k ∈ Z)

and (υmk : k ∈ Z) are elements of H, such that we have
∑

k∈Z ‖ψmk‖ < ∞ and∑
k∈Z ‖υmk‖ <∞. Then,

E‖Xt −
p∑

m=1

Xmt‖2 =
∑
m>p

∫ π

−π
λm(θ)dθ ≤ E‖Xt −

p∑
m=1

X̃mt‖2 ∀p ≥ 1. (10)

Inequality (10) can be interpreted as the dynamic version of (2). Proposition 5
also suggests the proportion of variance explained by the first p dynamic FPCs as a
natural measure of how well a functional time series can be represented in dimension
p. This proportion is given by∑

m≤p

∫ π

−π
λm(θ)dθ

/
E‖X1‖2. (11)

3. Practical Implementation

In order to handle observed functional series in practice, some preprocessing of
the data material is required. The approach which is commonly taken consists in
representing a curve x(u) which is observed on grid points 0 ≤ u1 < u2 < · · · < ur ≤
1 as a functional observation with a finite number of basis functions (vk : 1 ≤ k ≤ d),
i.e. as x(u) =

∑d
k=1 xkvk(u). Commonly, Fourier bases, b-splines or wavelets are

used. A good choice of the basis and the number of basis functions will heavily rely
on the underlying data. The coefficients xk can be obtained, for example, via least-
squares fitting or some penalized form thereof. We will not go into details here, but
refer, e.g., to Ramsey and Silverman [30, Chapters 3–5]. Once such a representation
is established, the analysis is reduced to that of the space Hd = sp(vk : 1 ≤ k ≤ d)
spanned by the d basis functions.

In the sequel, we write (aij : 1 ≤ i, j ≤ d) for a d× d matrix with entry aij in row
i and column j.

9



3.1. Representation in finite dimension

Let x ∈ Hd, i.e. of the form x = v′x where v = (v1, . . . , vd)
′ and x = (x1, . . . , xd)

′.
We assume that the basis functions are linearly independent, but they need not
be orthogonal. Any statement about x then can be expressed as an equivalent
statement about x. In particular, if A : Hd → Hd is a linear operator, then, for
x ∈ Hd,

A(x) =
d∑

k=1

xkA(vk) =
d∑

k=1

d∑
k′=1

xk〈A(vk), vk〉vk′ = v′Ax,

where A′ = (〈A(vi), vj〉 : 1 ≤ i, j ≤ d). We call A the corresponding matrix of A and
x the corresponding vector of x.

The following simple results are stated without proof.

Lemma 1. Let A,B be linear operators on Hd and let A and B be their correspond-
ing matrices. Then,

(i) for any α, β ∈ C, the corresponding matrix of αA+ βB is αA + βB;

(ii) A(e) = λe iff Ae = λe, where e = v′e;

(iii) letting A :=
p∑
i=1

p∑
j=1

gijvi ⊗ vj, G := (gij : 1 ≤ i, j ≤ d), where gij ∈ C, and

V := (〈vi, vj〉 : 1 ≤ i, j ≤ d), the corresponding matrix of A is A = GV ′.

To obtain the corresponding matrix of the spectal density operators FXθ , first
observe that, if Xk =

∑d
i=1Xkivi =: v′Xk, then

CX
h = EXh ⊗X0 =

d∑
i=1

d∑
j=1

EXhiX0jvi ⊗ vj.

Let CX
h := EXhX

′
0. Then, by Lemma 1 (iii), we get CXh = CX

h V
′ as the correspond-

ing matrix of CX
h , and by the linearity property (i), the corresponding matrix of FXθ

is

FXθ =
1

2π

(∑
h∈Z

CX
h e
−ihθ

)
V ′. (12)

Assume that λm(θ) is the m-th largest eigenvalue of FXθ , with eigenvector ϕm(θ).
Then λm(θ) is also an eigenvalue of FXθ and v′ϕm(θ) is the corresponding eigenfunc-
tion, from which we can compute, via its Fourier expansion, the dynamic FPCs. In
particular, we have

φmk =
v′

2π

∫ π

−π
ϕm(s)e−iksds =: v′φmk,

and hence

Ymt =
∑
k∈Z

∫ 1

0

X′t−kv(u)v′(u)φmkdu =
∑
k∈Z

X′t−kV φmk. (13)
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3.2. Estimators

In view of (12), our main task is to replace the spectral density matrix

FX
θ =

1

2π

∑
h∈Z

CX
h e
−ihθ

of the coefficient sequence (Xk) by some estimate. For this purpose, we can use
existing multivariate techniques. Classically, we would put for |h| < n

ĈX
h :=

1

n

n∑
k=h+1

XkX
′
k−h, h ≥ 0, and ĈX

h := ĈX
−h, h < 0,

(recall that we throughout assume that the data have been centered) and use, for
example, some lag window estimator

F̂X
θ :=

1

2π

∑
|h|≤q

w(h/q)ĈX
h e
−ihθ, (14)

where w is some appropriate weight function and q = qn → ∞. We refer to Chap-
ters 10–11 in Brockwell and Davis [6] or to Politis [27]. In the examples of the
following sections we shall use the Bartlett kernel w(x) = 1 − |x|. We then set
F̂Xθ := F̂X

θ V
′ and compute the eigenvalues and eigenfunctions λ̂m(θ) and ϕ̂m(θ)

thereof, which serve as estimators of λm(θ) and ϕm(θ), respectively. We estimate
the filter coefficients by φ̂mk = v′

2π

∫ π
−π ϕ̂m(s)eiksds. Usually, no analytic form of

ϕ̂m(s) will be available, and one has to perform numerical integration. One may
use, for example,

φ̂mk =
v′

2π(2Nθ + 1)

Nθ∑
j=−Nθ

ϕ̂m(πj/Nθ)e
iks =: v′φ̂mk, (Nθ � 1).

Since in our sample we only observe X1, . . . , Xn, we cannot just substitute φ̂mk
into (13). For example, one may define

Ŷmt =
L∑

k=−L

X′t−kV φ̂mk, t ∈ {L+ 1, . . . , n− L}. (15)

In this case we loose the first L and the last L observations of our sample. Such
boundary problems for moving averages are well known in time series analysis (e.g.,
for exponential smoothing) and can be partly remedied with properly weighted sums.
A simple solution for obtaining Ŷmt when 1 ≤ t ≤ L or n− L + 1 ≤ t ≤ n is to set
X−L+1 = · · · = X0 = 0 and Xn+1 = · · · = Xn+L = 0.

With φ̂mk defined above, along the same line of argumentation as before, we obtain
a p-term dynamic Karhunen-Loève expansion

X̂t =

p∑
m=1

L∑
k=−L

Ŷm,t+kφ̂mk, t ∈ {2L+ 1, . . . , n− 2L}. (16)
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Parallel to (11), the proportion of variance explained by the first p dynamic FPCs
can be estimated through

PVdyn(p) :=
π

Nθ

∑
m≤p

Nθ∑
j=−Nθ

λ̂m(πj/Nθ)
/ 1

n

n∑
k=1

‖Xk‖2.

Alternatively, we may use 1−PVdyn(p) or (see Proposition 5) the normalized mean
squared errors

NMSE(p, L) :=
n−2L∑
k=2L+1

‖Xk − X̂k‖2
/ n−2L∑

k=2L+1

‖Xk‖2 (17)

as measures for the loss of information when considering a p term dynamic KL
expansion. Notice that 1−PVdyn(p) and NMSE(p, L) will, in general, not coincide.
The latter depends on L and, from this point of view, it may look less practical than
1− PVdyn(p). On the other hand, the determination of Ŷk and X̂k also depends on
the choice of L, and so NMSE(p, L) is a more ‘honest’ estimate which we thus
recommend.

3.3. Complexity

The practical implementation of dynamic functional principal components comes
along with a number of calculations. In this section, we shall summarize the numer-
ical costs and compare them with those needed for the computation of static FPCs.
Of course, efficiency and quality of algorithms play an important role in this con-
text, and the numerical complexity we provide is related to those algorithms we used
and implemented in our simulation study (Section 4) and the real data application
(Section 5).
In Table 1, we list the parameters on which the computation time depends.

n sample size
d number of basis functions used to represent curves
Nθ number of integration points θ ∈ [−π, π]
q lag window size in (14)
L truncation level for filters in (15)
p number of dynamic FPCs to be computed

Table 1: Parameters involved for computing DFPCs.

Table 2 displays the building blocks required for the computation of dynamic
FPCs, along with the numerical complexity (number of summations, multiplications
and storing) involved. All these quantities have to be computed over a set of different
parameter values, which introduces an additional multiplicative factor, shown in the
last column of Table 2. Objects obtained in step i − 1 are stored and can be used
for step i, for 2 ≤ i ≤ 5. The computation time CTdyn for the dynamic procedure is

12



thus O(d× [ndq+ dqNθ + pd2Nθ +LpNθ +Lnpd]). In comparison, the computation
time CTstat for static FPCA is O(d × [nd + pd2 + np]). In practice, q and L will
be adapted to the sample size n. From our computational experience, we would
recommend to put q = O(

√
n) and L = O(

√
n), while p is usually small and fixed.

Then we have CTdyn = O(d2 × max{n3/2,
√
nNθ, dNθ}). One may conclude that

CTdyn � max{
√
n,Nθ}CTstat.

step object complexity multiplicity

1 ĈX
h O(nd2) q

2 F̂X
θ O(d2q) Nθ

3 ϕ̂m(θ) O(d3) pNθ

4 φ̂mk O(Nθd) pL
5 Ymk O(d2L) pn

Table 2: Computation complexity for obtaining the different objects required in our
procedure. These quantities have to be computed over a set of different
parameter values, the impact of which is reflected in the multiplicative
factors shown in the third column.

4. Simulation study

In this simulation study, we compare the performance of dynamic PCA with that
of static PCA as follows. For a given time series (Xt), we perform a static and
a dynamic FPC analysis. From the resulting scores, we recover two functional
series (X̂stat

t ) and (X̂dyn
t ) using the static and dynamic Karhunen-Loève expansions,

respectively. Performance is then measured in terms of the respective normalized
mean square errors E‖Xt−X̂stat

t ‖2/E‖Xt‖2 and E‖Xt−X̂dyn
t ‖2/E‖Xt‖2. The latter

quantity can be estimated by NMSE(p, L) or by 1−PVdyn(p). For the static FPCA,
we use the estimate 1 − PVstat(p), where PVstat(p) is the proportion of variance
explained by the first p static FPCs.

For computations we employed the statistical software R along with the fda pack-
age. The data was represented as discussed in Section 3.1 using Fourier basis func-
tions (vi : 1 ≤ i ≤ d), where d = 5, 11, 21. We then set H = sp(vi : 1 ≤ i ≤ d). In
each run we sample a matrix Ψ with i.i.d. standard normal entries and normalize it
to ‖Ψ‖ = κ, where κ = 0.1, 0.3, 0.6, 0.9. This matrix is then used as the correspond-
ing matrix of an operator (with slight abuse of notation, we denote the operator also
by Ψ) on H. With the operator we generate 400 observations from an autoregressive
Hilbertian process of order 1, defined by Xt = Ψ(Xt−1) + εt. The noise (εt) is i.i.d.
Gaussian, obtained as a linear combination of the functions (vi : 1 ≤ i ≤ d) with
i.i.d. standard normal coefficients.

Efficiency of our method also relies on the estimation of the spectral density
operator. We follow the methodology introduced in Section 3 and use a Barlett

13



kernel and q = 20 in (14). The numerical integration for obtaining φ̂mk is performed
on the basis of 400 equidistant integration points. We test truncation levels L =
5, 10, 15, 20, 25 for the filters in (15).
For each choice of d and L, the experiment was repeated 200 times. Results are

presented as boxplots in Figure 2. The dashed lines correspond to the average of
1− PVdyn(p), p = 1, 2, 3, while the solid lines correspond to 1− PVstat(p).

We see that in this sense dynamic FPCA quite significantly outperforms static
FPCA. As one can expect, performance increases with the dependence coefficient κ.

5. Illustrative data example

In this section, we compute and interpret the first dynamic FPC score sequence
of daily air pollution curves and draw a comparison with its static counterpart.
The observations are half-hourly measurements of the concentration (measured in
µgm−3) of particulate matter with an aerodynamic diameter of less than 10µm,
abbreviated as PM10, in ambient air taken in Graz, Austria from October 1, 2010
until March 31, 2011. Following Stadlober et al. [33], a square-root transformation
was applied to the data in order to stabilize the variance and avoid heavy-tailed
observations. The data have been already explored in Aue et al. [1] in the context of
curve prediction. Following their approach, we remove some outliers and a seasonal
(weekly) pattern coming from different traffic intensities on business days and week-
ends. Then we use the software R to transform the data to functional data. The
only difference in our approach is that we use 15 Fourier basis functions instead of
b-splines. This simplifies our computations, but easily can be changed. Eventually,
175 daily functional observations, say, X1, . . . , X175, were obtained, roughly repre-
senting one winter season for which pollution levels are known to be high. They are
displayed in Figure 3.

Next we compute the (estimated) first dynamic functional PC score sequence
(Ŷ dyn

1t : 1 ≤ t ≤ 175). To this end, we first center the data by their empirical
mean µ̂(u) and then follow the procedure introduced in Section 3; in particular, we
set q = 15 in (14) and use the Barlett kernel to obtain an estimator for the spectral
density operator. From this, we obtain the estimated filter elements φ̂1t. Since ‖φ̂1t‖
seems to converge to zero fast, we simply set L = 10 in (15). To obtain DFPC scores
Y dyn
1t for the case 1 ≤ t ≤ 10 and 166 ≤ t ≤ 175 we set x−9 = · · · = x0 = µ̂ and
x176 = · · · = x185 = µ̂. The corresponding time series (Ŷ dyn

1t : 1 ≤ t ≤ 175) is shown
in Figure 4. We shall focus here on one component only, since the first dynamic
FPC already explains 80.2% of the variance. This should be compared to 73.8%
explained by the first static FPC.

Figure 4 shows that the static score sequence (Ŷ stat
1t : 1 ≤ t ≤ 175) is almost

identical to the dynamic one. This is remarkable, as they have been computed
from quite different methods. To get some interpretation, let us analyze the first
static sample FPC v̂1(u), say, and the DFPC filters φ̂1t(u). They are displayed
in Figure 5. We see that v̂1(u) ≈ 1 for all u ∈ [0, 1], and hence the FPC score
Y stat
1t =

∫ 1

0
(Xt(u) − µ̂(u))v̂1(u)du roughly is the average deviation of Xt(u) from

14
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Figure 2: Boxplots: NMSE(p, L) with L = 5, 10, 15, 20, 25, where for each L red,
orange and yellow boxplot corresponds to p = 1, 2, 3, respectively. Solid
lines (red, orange and yellow): 1− PVstat(p) with p = 1, 2, 3, respectively.
Dashed lines: 1− PVdyn(p) with p = 1, 2, 3, respectively.
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Figure 3: We display xt(u), 1 ≤ t ≤ 175, where xt(u) are the square-root transformed
and d etrended daily functional observations of PM10, represented with 15
Fourier basis functions. The solid black line represents the sample mean
curve µ̂(u).

the mean. The effect of a large (small) first score corresponds to a large (small)
daily average of

√
PM10. In view of the similarity of Y dyn

1t and Y stat
1t , it is possible

to attribute the same meaning to the dynamic FPC scores. However, regarding the
dynamic KL expansion, dynamic FPC scores should be interpreted sequentially and
not in a static way. To this end, let us take advantage of the fact that all functions
φ̂1t, |t| > 1, are close to zero (see Figure 5) and thus, in the approximation by a
single-term dynamic KL expansion, we roughly have

Xt(u) ≈ µ̂(u) + Ŷ dyn
1,t−1φ̂1,−1(u) + Ŷ dyn

1t φ̂1,0(u) + Ŷ dyn
1,t+1φ̂1,1(u).

This suggests to study the effect of triplets (Ŷ dyn
1,t−1, Ŷ

dyn
1t , Ŷ dyn

1,t+1) of consecutive scores
on the pollution level of day t, which can be done by adding the functions

eff(δ1, δ2, δ3) := δ1φ̂1,−1(u) + δ2φ̂1,0(u) + δ3φ̂1,1(u), δi = const×±1,

to the overall mean curve µ̂(u). We do this in Figure 6 with δi = ±1. For instance,
the upper left panel shows µ̂(u) + eff(−1,−1,−1); this corresponds to the effect of
three subsequent small DFPC scores. Not surprisingly, they result in a negative
shift of the mean curve. The second panel from the left in top row shows µ̂(u) +
eff(−1,−1,+1). The picture is similar as before, but now the level increases as u
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Figure 4: The sequence of the first static FPC scores (red) and the dynamic ones
(black).

approaches 1. This has a simply explanation. A large value of Ŷ dyn
1,t+1, implies a large

average concentration of
√
PM10 on day t + 1, and since the pollution curves are

highly correlated at the transition from day t to day t + 1, this should indeed be
reflected by an increase of

√
PM10 towards the end of day t. By the same line of

argumentation, it becomes clear why the pollution level is low for the rest of the
day. Similar interpretations can be given for the other panels of Figure 6.

It is interesting to observe that, in this example, the first dynamic FPC seems to
take the role of the first two static FPCs. The second static FPC (see the left panel in
Figure 5) can be interpreted as an intraday trend effect; if the second static score of
day t is large (small), then Xt(u) is increasing (decreasing) over u ∈ [0, 1]. However,
since we are working with sequentially dependent data, we can get information about
such a trend from future and past observations, too. This is exemplified in Figure 1
of Section 1. It shows the ten consecutive curves x71(u)−µ̂(u), . . . , x80(u)−µ̂(u) (left
panel) and compares them to the single-term static (middle panel) and the single-
term dynamic KL expansion (right panel). We see that the dynamic KL version not
only recovers the level, but also the intraday trend.
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Figure 5: First static FPC v̂1(u) (solid line left), and second static FPC v̂2(u)
(dashed line left), and the filters corresponding to first dynamic FPC
(right). The filters φ̂1t(u), t ≥ 1, are dashed and the filters φ̂1t(u), t ≤ 0,
are solid. The larger |t|, the lighter the curve.

6. Conclusion

Functional principal component analysis is taking a leading role in the functional
data literature. As an extremely effective tool for dimension reduction, it is useful
for empirical data analysis as well as for many FDA-related methods, like functional
linear models. A frequent situation in practice is that functional data are observed
sequentially and are serially dependent. For example, this occurs when observations
stem from a continuous time process which is segmented into smaller units, e.g.,
days. In such cases, classical static FPCs still can be consistently estimated, but, in
contrast to the i.i.d. setup, they will not lead to an adequate dimension reduction
technique.

In this paper, we have proposed a dynamic version of functional PCA which
takes into account a potential serial dependence of the functional observations. In
the special case of uncorrelated data, the dynamic methodology reduces to the usual
static FPCA. We have complemented the methodology with (i) practical guidelines
for implementation, (ii) simulations, (iii) a toy example with PM10 pollution data
and (iv) a rigorous mathematical theory, including some asymptotics. Our empirical
work shows that dynamic FPCs have a clear edge over static FPCs in terms of their
ability to represent dependent functional data in small dimension. While we have
presented the method for functional (L2-valued) data, our proofs are general and
cover the theory for separable Hilbert spaces.
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Figure 6: Mean curve µ̂(u) (solid line) and µ̂(u) + eff(δ1, δ2, δ3) with δi = ±1.

A. General Methodology and Proofs

A.1. Hilbertian Framework

In this subsection, we give a mathematically rigorous description of the method-
ology introduced in Section 2.1. We adopt a more general framework which can
be specialized to the functional setup of Section 2.1. Throughout H denotes some
(complex) Hilbert space. We work in complex spaces, since our theory is based on a
frequency domain analysis. Nevertheless, all our functional time series observations
Xt are assumed to be real-valued functions. A crucial structural assumption that we
impose is that H is separable, i.e. possesses a countable orthonormal basis (ONB).

Linear operators. We consider the class L(H,H ′) of bounded linear operators be-
tween two Hilbert spaces H and H ′. With a slight abuse of notation, we use ‖ · ‖
and 〈·, ·〉, for norm and inner product on both, H and H ′. For Ψ ∈ L(H,H ′),
the operator norm is defined as ‖Ψ‖L := sup‖x‖≤1 ‖Ψ(x)‖. The simplest opera-
tors can be defined via a tensor product v ⊗ w; then v ⊗ w(z) := v〈z, w〉. Ev-
ery operator Ψ ∈ L(H,H ′) possesses an adjoint Ψ∗ ∈ L(H ′, H) which satisfies
〈Ψ(x), y〉 = 〈x,Ψ∗(y)〉 for all x ∈ H and y ∈ H ′. It holds that ‖Ψ∗‖L = ‖Ψ‖L. If
H = H ′, then Ψ is called self-adjoint if Ψ = Ψ∗. It is called non-negative definite if
〈Ψx, x〉 ≥ 0 for all x ∈ H.
A linear operator Ψ is said to beHilbert-Schmidt if we have ‖Ψ‖2S :=

∑
k≥1 ‖Ψ(vk)‖2 <

∞ for some ONB (vk : k ≥ 1) of H. Then ‖Ψ‖S defines a norm, the so-called Hilbert-
Schmidt norm of Ψ. It bounds the operator norm: ‖Ψ‖L ≤ ‖Ψ‖S , and can be shown
to be independent of the choice of the ONB. Every Hilbert-Schmidt operator is
compact. The class of Hilbert-Schmidt operators between H and H ′ defines again
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a separable Hilbert space H with inner product 〈Ψ,Ψ′〉S :=
∑

k≥1〈Ψ(vk),Ψ
′(vk)〉.

If Ψ ∈ L(H,H ′) and Υ ∈ L(H ′′, H) then ΨΥ is the operator which maps x ∈ H ′′
to Ψ(Υ(x)) ∈ H ′. Assume that Ψ is a compact operator in L(H,H ′) and let (s2j) be
the eigenvalues of (Ψ∗)Ψ. Then Ψ is said to be trace class if ‖Ψ‖T :=

∑
j≥1 sj <∞.

In this case ‖Ψ‖T defines a norm, the so-called Schatten 1-norm. We have ‖Ψ‖S ≤
‖Ψ‖T , and hence any trace-class operator is Hilbert-Schmidt. For self-adjoint non-
negative operators, it holds that ‖Ψ‖T = tr(Ψ) :=

∑
k≥1〈Ψ(vk), vk〉. If Ψ̃Ψ̃ = Ψ,

then we have tr(Ψ) = ‖Ψ̃‖2S .
For further background on the theory of linear operators we refer to [12].

Random sequences in Hilbert spaces. All random elements that appear in the sequel
are assumed to be defined on a common probability space (Ω,A, P ). We write
X ∈ LpH(Ω,A, P ) (in short, X ∈ LpH) if E‖X‖p < ∞. Every element X ∈ L1

H

possesses an expectation, which is the unique µ ∈ H satisfying E〈X, y〉 = 〈µ, y〉
for all y ∈ H. Provided X and Y are in L2

H , we can define the cross-covariance
operator as CXY := E(X − µX)⊗ (Y − µY ), where µX and µY are the expectations
of X and Y , respectively. We have that ‖CXY ‖T ≤ E‖(X − µX) ⊗ (Y − µY )‖T =
E‖X −µX‖‖Y −µY ‖, and so these operators are trace-class. An important specific
role is played by the covariance operator CXX . This operator is non-negative definite,
self-adjoint with tr(CXX) = E‖X−µX‖2. We call anH-valued process (Xt) (weakly)
stationary, if (Xt) ∈ L2

H and if EXt and CXt+hXt do not depend on t. In this case,
we write CX

h , or shortly Ch, for CXt+hXt if it is clear to which process it belongs. Two
weakly stationary processes (Xt) and (Yt) are called costationary if CXt+hYt does not
depend on t. Then we write CXY

h for the covariance operator CXt+hYt .
Many useful results on random processes in Hilbert spaces or more general Banach

spaces are collected in Chapters 1 and 2 of [7].

Fourier series in Hilbert spaces. For p ≥ 1, consider the space LpH([−π, π]), that is
the space of measurable mappings x : [−π, π]→ H which satisfy

∫ π
−π ‖x(θ)‖pdθ <∞.

For p = 2 this space is again a Hilbert space, with inner product

(x, y) :=
1

2π

∫ π

−π
〈x(θ), y(θ)〉dθ

and norm ‖x‖2 =
√

(x, x). One can show (see e.g. [7, Lemma 1.4]) that, for any
x ∈ L1

H([−π, π]), there exists a unique element I(x) ∈ H which satisfies∫ π

−π
〈x(θ), v〉dθ = 〈I(x), v〉 ∀v ∈ H. (18)

Then we define
∫ π
−π x(θ)dθ := I(x).

For x ∈ L2
H([−π, π]) we can now set the k-th Fourier coefficient equal to

fk :=
1

2π

∫ π

−π
x(θ)e−ikθdθ, k ∈ Z. (19)

Below we write ek for the function θ 7→ eikθ, θ ∈ [−π, π].
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Proposition 6. Suppose x ∈ L2
H([−π, π]) and define fk by equation (19). Then, the

sequence Sn :=
∑n

k=−n fkek has a mean square limit in L2
H([−π, π]). If we denote

the limit by S, then x(θ) = S(θ) for almost all θ.

Proof. Let 0 < m < n and notice that

‖Sn − Sm‖22 =

( ∑
m≤|k|≤n

fkek,
∑

m≤|`|≤n

f`e`

)
=

1

2π

∫ π

−π

∑
m≤|k|≤n

∑
m≤|`|≤n

〈fk, f`〉ei(k−`)θdθ =
∑

m≤|k|≤n

‖fk‖2.

To prove the first statement, we need to show that (Sn) defines a Cauchy sequence in
L2
H([−π, π]), which follows if we show that

∑
k∈Z ‖fk‖2 <∞. We use the fact that,

for any v ∈ H, the function 〈x(θ), v〉 belongs to L2([−π, π]). Then, by Parseval’s
identity and (18), we have, for any v ∈ H,

1

2π

∫ π

−π
|〈x(θ), v〉|2dθ =

∑
k∈Z

(
1

2π

∫ π

−π
〈x(s), v〉e−iksds

)2

=
∑
k∈Z

|〈fk, v〉|2.

Let (vk : k ≥ 1) be an ONB of H. Then, by the last result and Parseval’s identity
again, it follows that

‖x‖22 =
1

2π

∫ π

−π

∑
`≥1

|〈x(θ), v`〉|2dθ =
1

2π

∑
`≥1

∫ π

−π
|〈x(θ), v`〉|2dθ

=
∑
`≥1

∑
k∈Z

|〈fk, v`〉|2 =
∑
k∈Z

‖fk‖2.

As for the second statement, we conclude from classical Fourier analysis results
that, for each v ∈ H,

lim
n→∞

1

2π

∫ π

−π

(
〈x(θ), v〉 −

n∑
k=−n

(
1

2π

∫ π

−π
〈x(s), v〉e−iksds

)
eikθ

)2

dθ = 0.

Now, by definition of Sn, this is equivalent to

lim
n→∞

1

2π

∫ π

−π
〈x(θ)− Sn(θ), v〉2 dθ = 0, ∀v ∈ H.

Combined with the first statement of the proposition and∫ π

−π
〈x(θ)− S(θ), v〉2 dθ ≤ 2

∫ π

−π
〈x(θ)− Sn(θ), v〉2 dθ

+ 2‖v‖2
∫ π

−π
‖Sn(θ)− S(θ)‖2dθ,

this implies that

1

2π

∫ π

−π
〈x(θ)− S(θ), v〉2 dθ = 0, ∀v ∈ H. (20)
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Let (vi) be an ONB of H and Ai := {θ ∈ [−π, π] : 〈x(θ)− S(θ), vi〉 6= 0}. By (20),
we have that λ(Ai) = 0 (λ denotes the Lebesgue measure), and hence λ(A) = 0 for
A = ∪i≥1Ai. Consequently, since (vi) define an ONB, for any θ ∈ [−π, π]\A, we have
〈x(θ)− S(θ), v〉 = 0 for all v ∈ H, which in turn implies that x(θ)− S(θ) = 0.

A.2. On the Spectral Density Operator

Assume that the H-valued process (Xt : t ∈ Z) is stationary with lag h autocovari-
ance operator Ch and spectral density operator

FXθ :=
1

2π

∑
h∈Z

Che
−ihθ.

In order to guarantee convergence of this series, we tacitly impose assumption (4)
throughout this section. It can be easily seen that the operator FXθ is self-adjoint,
non-negative definite and Hilbert-Schmidt. Below, we introduce a weak dependence
assumption established in [17] from which we can derive a sufficient condition for
(4).

Definition 3 (Lp–m–approximability). A random H–valued sequence (Xn : n ∈ Z)
is called Lp–m–approximable if it can be represented as

Xn = f(δn, δn−1, δn−2, ...)

where the δi’s are i.i.d. elements taking values in some measurable space S and f is
a measurable function f : S∞ → H. Moreover, if δ′1, δ′2, ... are independent copies of
δ1, δ2, ... defined on the same measurable space S, then, for

X(m)
n := f(δn, δn−1, δn−2, ..., δn−m+1, δ

′
n−m, δ

′
n−m−1, ...),

we have
∞∑
m=1

(E‖Xm −X(m)
m ‖p)1/p <∞. (21)

Hörmann and Kokoszka [17] show that this notion is widely applicable to linear
and non-linear functional time series. One of its main advantages is that it is a purely
moment-based dependence measure that can be easily verified in many special cases.

Proposition 7. Assume that (Xt) is L2–m–approximable. Then (4) holds and the
operators FXθ , θ ∈ [−π, π], are trace-class.

Instead of Assumption (4), Panaretos and Tavakoli [26] impose for the defini-
tion of a spectral density operator summability of Ch in Schatten 1-norm, i.e.∑

h∈Z ‖Ch‖T < ∞. Under such slightly more stringent assumption, it immedi-
ately follows that the resulting spectral operator is trace-class. The verification of
convergence may, however, be a bit delicate. At least, we could not find a simple
criterion as in Proposition 7.
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Proof of Proposition 7. Without loss of generality, we assume that EX0 = 0. By
independence of X0 and X(h)

h , h ≥ 1, we have

‖Ch‖S = ‖EX0 ⊗ (Xh −X(h)
h )‖S ≤ (E‖X0‖2)1/2(E‖Xh −X(h)

h ‖
2)1/2.

The first statement of the proposition follows.
Fix θ. Since FXθ is non-negative and self-adjoint, it is trace class if and only if

tr(FXθ ) =
∑
m≥1

〈FXθ (vm), vm〉 <∞ (22)

for some ONB (vm) of H. The trace can be shown to be independent of the choice
of the basis. Define Vn,θ = (2πn)−1/2

∑n
k=1Xke

ikθ and note that, by stationarity,

FXn,θ := EVn,θ ⊗ Vn,θ =
1

2π

∑
|h|<n

(
1− |h|

n

)
EX0 ⊗X−he−ihθ.

It is easily verified that the operators FXn,θ again are non-negative and self-adjoint.
Also note that, by the triangular inequality,

‖FXn,θ −FXθ ‖S ≤
∑
|h|<n

|h|
n
‖Ch‖S +

∑
|h|≥n

‖Ch‖S .

By application of (4) and Kronecker’s lemma, it easily follows that the latter two
terms converge to zero. This implies that FXn,θ(v) converges in norm to FXθ (v), for
any v ∈ H.

Choose vm = ϕm(θ). Then, by continuity of the inner product and the monotone
convergence theorem, we have∑

m≥1

〈FXθ (ϕm(θ)), ϕm(θ)〉 =
∑
m≥1

lim
n→∞
〈FXn,θ(ϕm(θ)), ϕm(θ)〉

= lim
n→∞

∑
m≥1

〈FXn,θ(ϕm(θ)), ϕm(θ)〉.

Using the fact that the FXn,θ’s are self-adjoint and non-negative, we get∑
m≥1

〈FXn,θ(ϕm(θ)), ϕm(θ)〉 = tr(FXn,θ) = E‖Vn‖2

=
1

2π

∑
|h|<n

(
1− |h|

n

)
E〈X0, Xh〉e−ihθ.

Since |E〈X0, Xh〉| = |E〈X0, Xh −X(h)
h 〉|, by the Cauchy-Schwarz inequality,∑

h∈Z

|E〈X0, Xh〉| ≤
∑
h∈Z

(E‖X0‖2)1/2(E(Xh −X(h)
h )2)1/2 <∞,

and thus the dominated convergence theorem implies that

tr(FXθ ) =
1

2π

∑
h∈Z

E〈X0, Xh〉e−ihθ ≤
∑
h∈Z

|E〈X0, Xh〉| <∞.
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The eigendecomposition of FXθ gives

FXθ =
∑
m≥1

λm(θ)ϕm(θ)⊗ ϕm(θ), θ ∈ [−π, π],

where λ1(θ) ≥ λ2(θ) ≥ · · · are the eigenvalues and ϕm(θ) the corresponding eigen-
functions of FXθ . We require ‖ϕm(θ)‖ = 1 and hence, if λm(θ) has multiplicity 1,
then ϕm(θ) is unique up to some rotation eiω, ω ∈ [−π, π]. Let x be the conjugate
element of x, i.e. 〈x, z〉 = 〈z, x〉 for all z ∈ H. Then x is real-valued iff x = x.
Proposition 8. Let FXθ be the spectral density operator of the stationary sequence
(Xt) for which the summability condition (4) holds. Let λ1(θ) ≥ λ2(θ) ≥ · · ·
denote its eigenvalues and ϕm(θ) be the corresponding eigenfunctions. Then, (a)
the functions θ 7→ λm(θ) are continuous; (b) if we strengthen condition (4) to∑

h∈Z |h|‖Ch‖S < ∞, the λm(θ)’s are Lipschitz-continuous functions of θ; (c) as-
suming that (Xt) is real-valued, for each θ ∈ [−π, π], λm(θ) = λm(−θ) and ϕm(θ) =
ϕm(−θ).
Proof. We have (see e.g. [12], p. 186) that the dynamic eigenvalues satisfy |λm(θ)−
λm(θ′)| ≤ ‖FXθ −FXθ′ ‖S . Now,

‖FXθ −FXθ′ ‖S ≤
∑
h∈Z

‖Ch‖|e−ihθ − e−ihθ′|.

The summability condition (4) implies continuity, hence part (a) of the proposition.
Using |e−ihθ − e−ihθ′ | ≤ |h||θ − θ′| yields part (b).

To prove (c), we observe that, for any θ ∈ [−π, π],

λm(θ)ϕm(θ) = FXθ (ϕm(θ)) =
1

2π

∑
h∈Z

EXh〈ϕm(θ), X0〉e−ihθ.

Since the eigenvalues λm(θ) are real, we obtain, by computing the complex conjugate
of the above equalities,

λm(θ)ϕm(θ) =
1

2π

∑
h∈Z

EXh〈ϕm(θ), X0〉eihθ = FX−θ(ϕm(θ)).

This shows that λm(θ) and ϕm(θ) are eigenvalue and eigenfunction of FX−θ and they
must correspond to a pair (λn(−θ), ϕn(−θ)); (c) follows.
Remark 1. The eigenfunctions ϕm(θ) are unique up to multiplication with a number
lying on the complex unit circle. Writing ϕm(θ) = ϕm(−θ) more precisely means that
ϕm(θ) = eiωϕm(−θ) for some ω ∈ [−π, π].
Since ‖ϕm(θ)‖2 = 1, we have that ϕm ∈ L2

H([−π, π]). Hence, we can expand it in
a Fourier series in the sense explained in the previous section:

ϕm =
∑
`∈Z

φm`e`, where φm` =
1

2π

∫ π

−π
ϕm(s)e−i`sds.

The coefficients φm` thus defined give rise to the definition of the dynamic FPCs as
in (7).
Remark 2. Since ϕm(θ) is Hermitian, it immediately follows that φm` = φm`, im-
plying that the dynamic FPCs are real if the process (Xt) is real.
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A.3. Functional filters

Computation of dynamic FPCs requires applying time-invariant functional filters
to the process (Xt). Let Ψ = (Ψk : k ∈ Z) be a sequence of linear operators,
each mapping between separable Hilbert spaces H and H ′. Further, let B be the
backshift or lag operator, given by BkXt := Xt−k, k ∈ Z. Then the functional filter
Ψ(B) :=

∑
k∈Z ΨkB

k, when applied to the sequence (Xt), produces an output series
(Yt) in H ′ via

Yt = Ψ(B)Xt =
∑
k∈Z

Ψk(Xt−k). (23)

We call Ψ the filter coefficients, and, in the style of scalar or vector time series, we
call the mapping Ψθ : [−π, π]→ L(H,H ′) with

Ψθ = Ψ(e−iθ) =
∑
k∈Z

Ψke
−ikθ

the frequency response function of the filter Ψ(B).

Proposition 9. Let Ψ(B) be a functional filter with coefficients satisfying
∑

k∈Z ‖Ψk‖L <
∞, and let (Yt) be given as in (23). Then,

(a) if (Xt) ∈ L2
H , the series (23) converges in L2

H′;

(b) the sequence (Yt) is stationary with autocovariance operator

CY
h =

∑
k∈Z

∑
`∈Z

ΨkC
X
`−k+hΨ

∗
` .

Proof. For (a), we need to show that Sn,t =
∑n

k=−n Ψk(Xt−k) is a Cauchy sequence.
If m < n, we get, by application of the Cauchy-Schwarz inequality,

E‖Sn,t − Sm,t‖2 =
∑

m<|k|≤n

∑
m<|`|≤n

E〈Ψk(Xt−k),Ψ`(Xt−`)〉

≤
∑

m<|k|≤n

∑
m<|`|≤n

‖Ψk‖L‖Ψ`‖LE‖Xt−k‖‖Xt−`‖,

and thus

E‖Sn,t − Sm,t‖2 ≤
( ∑
|k|>m

‖Ψk‖L
)2

E‖X0‖2,

which goes to zero as (m,n)→∞.
To establish (b), first remark that, for two sequences (Zn) and (Z ′n) in L2

H with
E‖Zn − Z‖2 → 0 and E‖Z ′n − Z ′‖2 → 0, we have that

‖EZn ⊗ Z ′n − EZ ⊗ Z ′‖S ≤ E‖Zn ⊗ Z ′n − Z ⊗ Z ′‖S
= E‖(Zn − Z)⊗ Z ′n − Z ⊗ (Z ′ − Z ′n)‖S
≤ E‖Zn − Z‖2E‖Z ′n‖2 + E‖Z‖2E‖Z ′ − Z ′n‖2,
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and hence ‖EZn⊗Z ′n−EZ⊗Z ′‖S → 0. Observing moreover that EΨ(Z)⊗Υ(Z ′) =
ΨCZZ′Υ∗, the result follows from the fact that

CY
h = lim

n→∞
ESn,t ⊗ Sn,t−h = lim

n→∞

∑
|k|≤n

∑
|`|≤n

EΨk(Xt−k)⊗Ψ`(Xt−`−h).

Proposition 10. Let (Xt) ∈ L2
H and (X ′t) ∈ L2

H be two costationary processes with∑
h∈Z ‖CXX′

h ‖S <∞ and define their cospectrum as FXX′

θ := (2π)−1
∑

h∈ZC
XX′

h e−ihθ.
Set Yt := Ψ(B)Xt and Y ′t := Υ(B)X ′t, where Ψ(B) and Υ(B) are functional fil-
ters with coefficients satisfying the summability conditions

∑
k∈Z ‖Ψk‖S < ∞ and∑

k∈Z ‖Υk‖S < ∞, respectively. Then (Yt) and (Y ′t ) are again costationary and∑
h∈Z ‖CY Y ′

h ‖S <∞. Furthermore, FY Y ′

θ = Ψθ FXX
′

θ Υ∗θ, where Υ∗θ :=
∑

k∈Z Υ∗ke
ikθ.

Proof. It is easy to see that (Yt) and (Y ′t ) are costationary. Similar as in Proposi-
tion 9, we infer that∑

h∈Z

‖CY Y ′

h ‖S ≤
∑
h∈Z

∑
k∈Z

∑
`∈Z

‖Ψk‖S‖Υ∗`‖S‖CXX′

h+`−k‖S .

Then, using ‖Υ∗‖S = ‖Υ‖S and summing first over h yields∑
h∈Z

‖CY Y ′

h ‖S ≤
(∑

k∈Z

‖Ψk‖S
)(∑

k∈Z

‖Υk‖S
)∑

h∈Z

‖CXX′

h ‖S <∞.

Hence the operator FY Y ′

θ is well defined, and we have

FY Y ′

θ =
1

2π

∑
h∈Z

CY Y ′

h e−ihθ =
1

2π

∑
h∈Z

(∑
`

∑
k

ΨkC
XX′

`−k+hΥ
∗
`

)
e−ihθ

=
1

2π

∑
h∈Z

(∑
`

∑
k

ΨkC
XX′

`−k+he
−i(`−k+h)θΥ∗`e

i(`−k)θ

)

=
1

2π

∑
`

∑
k

Ψk

(∑
h∈Z

CXX′

`−k+he
−i(`−k+h)θ

)
Υ∗`e

i(`−k)θ,

as was to be shown.

Corollary 1. Let (Ψk) be a functional filter such that
∑

k∈Z ‖Ψk‖S <∞ and let (Yt)
be given as in (23). Assume that (Xt) ∈ L2

H is stationary with
∑

h∈Z ‖CX
h ‖S < ∞.

Then
∑

h∈Z ‖CY
h ‖S <∞ and FYθ = Ψθ FXθ Ψ∗θ.

A.4. Proofs for Section 2

We start by observing that Proposition 1 follows directly from Corollary 1. Part (a)
of Proposition 2 also has been established in the previous Section (see Remark 2).
Part (b) is immediate, and thus we can proceed to the proof of Proposition 3.
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Proof of Proposition 3. To prove Part (a) one can proceed along the lines of the
proof of Proposition 9, making use of (4) and∑

k∈Z

‖φmk‖2 =
1

2π

∫ π

−π
‖ϕm(θ)‖2dθ = 1.

Then one shows that the partial sums
∑n

k=−n〈Xt−k, φmk〉 form a Cauchy sequence
in L2 norm, by using

|E〈Xt−k, φmk〉〈Xt−`, φm`〉| = |〈C`−k(φm`), φmk〉| ≤ ‖C`−k‖L‖φm`‖‖φmk‖.

Parts (b) and (c) are immediate consequences of Proposition 1 (and Corollary 1
for the general setup).

Proof of Propositions 4 and 5. Assume we have filter coefficients Ψ = (Ψk : k ∈ Z)
and Υ = (Υk : k ∈ Z) where Ψk : H → Cp and Υk : Cp → H. If (Xt) and (Yt) are
H-valued and Cp-valued processes, respectively, then there exist elements ψmk and
υmk in H, such that

Ψ(B)(Xt) =
∑
k∈Z

(〈Xt−k, ψ1k〉, . . . , 〈Xt−k, ψpk〉)′

and

Υ(B)(Yt) =
∑
`∈Z

p∑
m=1

Yt+`,mυm`.

Hence, the p-dimensional reconstruction of Xt in Proposition 5 is of the form
p∑

m=1

X̃mt = Υ(B)[Ψ(B)Xt] =: ΥΨ(B)Xt.

Letting ψm(θ) =
∑

k∈Z ψmke
ikθ and υm(θ) =

∑
`∈Z υm`e

i`θ, we obtain, for x ∈ H and
y = (y1, . . . , ym)′ ∈ Cp, that the frequency response functions Ψθ and Υθ satisfy

Ψθ(x) =
∑
k∈Z

(〈x, ψ1k〉, . . . , 〈x, ψpk〉)′ e−ikθ = (〈x, ψ1(θ)〉, . . . , 〈x, ψp(θ)〉)′

and

Υθ(y) =
∑
`∈Z

p∑
m=1

ymυm`e
−i`θ =

p∑
m=1

ymυm(−θ).

Consequently,

ΥθΨθ =

p∑
m=1

υm(−θ)⊗ ψm(θ). (24)

Now, using Proposition 10, it can be readily verified that, for Zt := Xt−ΥΨ(B)Xt,
we obtain the spectral density operator

FZθ = FXθ + ΥθΨθFXθ Ψ∗θΥ
∗
θ −ΥθΨθFXθ −FXθ Ψ∗θΥ

∗
θ (25)

=
(
F̃Xθ −ΥθΨθF̃Xθ

)(
F̃Xθ − F̃Xθ Ψ∗θΥ

∗
θ

)
,
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where F̃Xθ is such that F̃Xθ F̃Xθ = FXθ . Also, from Proposition 10 it follows that the
autocovariances of (Zt) are summable in Hilbert-Schmidt norm, that is,

∑
h∈Z ‖CZ

h ‖S <
∞. We can conclude that the integral

∫ π
−π F

Z
θ dθ exists and is equal to EZt ⊗ Zt.

Therefore,

E‖Xt −ΥΨ(B)Xt‖2 = tr (E[Zt ⊗ Zt])

= tr

(∫ π

−π
FZθ dθ

)
=

∫ π

−π
tr(FZθ ) dθ

=

∫ π

−π

∥∥∥F̃Xθ −ΥθΨθF̃Xθ
∥∥∥2
S
dθ. (26)

For the sake of rigor, let us justify that we can interchange above the trace and the
integral. To this end, note that

∫ π
−π F

Z
θ dθ = IFZ if and only if

〈IFZ , V 〉S =

∫ π

−π
〈FZθ , V 〉S dθ, (27)

for all V in the space of Hilbert-Schmidt operators on H. From some ONB (vk)
define VN =

∑N
k=1 vk ⊗ vk. Then (27) implies that

tr(IFZ) = lim
N→∞

N∑
k=1

〈IFZ(vk), vk〉

= lim
N→∞

〈IFZ , Vn〉S = lim
N→∞

∫ π

−π
〈FZθ , Vn〉Sdθ

= lim
N→∞

∫ π

−π

N∑
k=1

〈FZθ (vk), vk〉 dθ.

Since FZθ is non-negative definite for any θ, the monotone convergence theorem
allows to interchange the limit with the integral.

Now, (26) is minimized if we minimize the integrand for every fixed θ under the
constraint that ΥθΨθ is of the form (24). Employing the eigendecomposition

FXθ =
∑
m≥1

λm(θ)ϕm(θ)⊗ ϕm(θ),

we infer that
F̃Xθ =

∑
m≥1

√
λm(θ)ϕm(θ)⊗ ϕm(θ).

The best approximating operator of rank p to F̃Xθ is the operator

F̃Xθ (p) =

p∑
m=1

√
λm(θ)ϕm(θ)⊗ ϕm(θ).

It is obtained if we choose ΥθΨθ =
∑p

m=1 ϕm(θ)⊗ ϕm(θ) and hence

ψm(θ) = ϕm(θ) and υm(θ) = ϕm(−θ).
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Consequently, by Proposition 6 we get

ψmk =
1

2π

∫ π

−π
ϕm(s)e−iksds and υmk =

1

2π

∫ π

−π
ϕm(−s)e−iksds = ψm,−k.

With this choice, it is clear that ΥΨ(B)Xt =
∑p

m=1Xmt. Condition (8) assures that
the involved series are mean square convergent. Hence

E‖Xt −
p∑

m=1

Xtm‖2 =

∫ π

−π

∥∥∥F̃Xθ − F̃Xθ (p)
∥∥∥2
S
dθ =

∫ π

−π

∑
m>p

λm(θ)dθ;

the proof of Proposition 5 follows.
Turning to Proposition 4, observe that by the monotone convergence theorem,

the last integral tends to zero if p→∞, which gives the proof of Proposition 4.

B. Large Sample Properties

In this appendix, we study the consistency of the estimated dynamic FPC scores. For
the sake of a neat and compact theory, we shall put aside the computational aspects
treated in Section 3. More precisely, we assume that we have fully observed functional
data and that all complicated computation (like integration, eigendecomposition,
etc.) can be performed with arbitrary precision. As we already did throughout this
article, we suppose that (Xt : t ∈ Z) is a weakly stationary zero mean time series
such that (4) holds. Then, the natural estimator for Ymt is

Ŷmt :=
L∑

`=−L

〈Xt−`, φ̂m`〉, m = 1, . . . , p and t = L+ 1, . . . n− L, (28)

where L is some integer and φ̂m` are retrieved from the estimated spectral density
operator F̂Xθ . Note that, by a slight abuse of notation, F̂Xθ and φ̂m` are based on
fully observed and not on approximated data, as introduced in Section 3. We impose
the following assumption.

Assumption B.1 The estimator F̂Xθ is consistent in integrated mean square, i.e.
we have ∫ π

−π
E‖FXθ − F̂Xθ ‖2S dθ → 0 (n→∞). (29)

Panaretos and Tavakoli [26] present an estimator which satisfies (29) under some
functional cumulant conditions. Below we will establish an alternative sufficient con-
dition, involving very mild technical conditions, such that Assumption B.1. holds.
By stating (29) as an assumption, we intend to keep the theory more widely appli-
cable.

Since our method requires the estimation of eigenvectors of the spectral density
operator, we need to introduce the following identifiability assumption.
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Assumption B.2 Define α1(θ) := λ1(θ) − λ2(θ) and αm(θ) := min{λm−1(θ) −
λm(θ), λm(θ) − λm+1(θ)} for m > 1, where λi(θ) is the i-th largest eigenvalue of
the spectral density operator evaluated in θ. Then αm(θ) has at most finitely many
zeros.

Theorem 1. Let Ŷmt be the random variable defined by (28). If L = L(n) → ∞
sufficiently slowly, then, under Assumptions B.1 and B.2, we have Ymt

P−→ Ŷmt as
n→∞.

Remark 3. This result does not provide any guidelines how to choose the truncation
level L. This is a common problem for infinite dimensional data and usually can
only be overcome by imposing a number of additional technical assumptions, which
cannot be verified in practice. We refer to Hörmann and Kidziński [16] for a similar
problem in the context of functional regression. A solution would be to follow their
approach, and develop a data-driven algorithm for the choice of L. This, however,
goes far beyond the scope of this article.

For the proof of Theorem 1, we show that E|Ymt − Ŷmt| → 0. Since

E|Ymt − Ŷmt| ≤ E

∣∣∣∣∑
j∈Z

〈Xt−j, φmj〉 −
L∑

j=−L

〈Xt−j, φ̂mj〉
∣∣∣∣

≤ E

∣∣∣∣ L∑
j=−L

〈Xt−j, φmj − φ̂mj〉
∣∣∣∣+ E

∣∣∣∣ ∑
|j|>L

〈Xt−j, φmj〉
∣∣∣∣, (30)

the result follows if each summand in (30) converges to zero. This will be proven in
the two subsequent lemmas.

Lemma 2. If L = L(n)→∞ sufficiently slowly, then, under Assumptions B.1 and
B.2, we have that ∣∣∣∣∣ ∑

|j|≤L

〈Xk−j, φmj − φ̂mj〉

∣∣∣∣∣ = oP (1) (n→∞).

Proof. The triangle inequality and the Cauchy-Schwarz inequality yield∣∣∣∣∣ ∑
|j|≤L

〈Xk−j, φmj − φ̂mj〉

∣∣∣∣∣ ≤
L∑

j=−L

‖Xk−j‖‖φmj − φ̂mj‖

≤ max
j∈Z
‖φmj − φ̂mj‖

L∑
j=−L

‖Xk−j‖.
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Furthermore, Jensen’s inequality and Lemma 3.2 in [17] imply that, for any j ∈ Z,

2π‖φmj − φ̂mj‖ =

∥∥∥∥∥
∫ π

−π
(ϕm(θ)− ϕ̂m(θ))eijθdθ

∥∥∥∥∥
≤
∫ π

−π
‖ϕm(θ)− ϕ̂m(θ)‖dθ

≤
∫ π

−π

8

|αm(θ)|2
‖ΓXθ − Γ̂Xθ ‖S ∧ 2 dθ.

By Assumption B.2, αm(θ) has only finitely many zeros, θ1, . . . , θK , say. Let now
δε(θ) = [θ − ε, θ + ε] and A(m, ε) =

⋃K
i=1 δε(θi). By definition, the length of

this set is |A(m, ε)| ≤ 2Kε. Now define Mε such that M−1
ε = min{αm(θ) | θ ∈

[−π, π]\A(m, ε)}. By continuity of αm(θ) (see Proposition 8), we have Mε < ∞,
and thus∫ π

−π

8

|αm(θ)|2
‖ΓXθ − Γ̂Xθ ‖ ∧ 2dθ ≤ 4Kε+ 8M2

ε

∫ π

−π
‖ΓXθ − Γ̂Xθ ‖dθ =: Bn,ε.

By Assumption B.1, there exists a sequence εn → 0 such that Bn,εn → 0 in prob-
ability. Thus, if we choose L(n) such that L = L(n) → ∞ and LBn,εn = oP (1),
then ∣∣∣∣∣ ∑

|j|≤L

〈Xk−j, φmj − φ̂mj〉

∣∣∣∣∣ ≤ LBn,εn

(
L−1

L∑
j=−L

‖Xk−j‖

)
. (31)

It remains to show that L−1
L∑

j=−L
‖Xk−j‖ = OP (1). By the imposed weak stationarity

we have E‖Xk‖2 = E‖X1‖2, and hence for any R > 0

P

(
L−1

L∑
j=−L

‖Xk−j‖ > R

)
≤
∑L

k=−LE‖Xk‖
LR

≤
3
√
E‖X1‖2
R

.

Lemma 3. Let L = L(n)→∞. Then, under condition (4), we have∣∣∣∣∣ ∑
|j|>L

〈Xk−j, φmj〉

∣∣∣∣∣ = oP (1) (n→∞).

Proof. The triangle and the Cauchy-Schwarz inequalities, and elementary algebraic
transformations give

E

∣∣∣∣∣ ∑
|j|>L

〈Xk−j, φmj〉

∣∣∣∣∣
2

≤
∑
|k|>L

∑
|l|>L

‖Ck−l‖L‖φkm‖‖φlm‖

=
∑
k∈Z

∑
l∈Z

‖Ck−l‖L‖φkm‖‖φlm‖I{|k| > L}I{|l| > L}.
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Now, setting h = k − l, we get

E

∣∣∣∣∣ ∑
|j|>L

〈Xk−j, φmj〉

∣∣∣∣∣
2

≤
∑
k∈Z

∑
h∈Z

‖Ch‖L‖φkm‖‖φ(k−h)m‖I{|k| > L}I{|h− k| > L}

≤
∑
h∈Z

‖Ch‖L
∑
k∈Z

‖φkm‖‖φ(k−h)m‖I{|k| > L}

≤
∑
h∈Z

‖Ch‖L

(∑
k∈Z

‖φkm‖2I{|k| > L}

)1/2(∑
k∈Z

‖φkm‖2
)1/2

.

The proof follows now from condition (4) and
∑

k∈Z ‖φkm‖2 = 1.

We have stated the consistency result under the assumption of weak stationarity
and Assumptions B.1 and B.2. The following proposition shows that Assumption B.1
holds under L4-m-approximability. We use the estimator

F̂Xθ =
∑
|h|≤q

(
1− |h|

q

)
ĈX
h e
−ihθ, 0 < q < n.

Proposition 11. Let (Xt : t ∈ Z) be an L4-m-approximable series and let q =
q(n)→∞ such that q3 = o(n). Then Assumption B.1 holds.

For the proof, we need the following lemma, which is extending a consistency result
from [17] for the empirical covariance operator to lag h autocovariance operators.
We define, for |h| < n,

Ĉh =
1

n

n−h∑
k=1

Xk+h ⊗Xk, h ≥ 0, and Ĉh = Ĉ−h, h < 0.

Lemma 4. Assume that (Xt : t ∈ Z) is an L4-m-approximabable series. Then for

all |h| < n we have E‖Ĉh − Ch‖S ≤ U
√
|h|∨1
n
, where the constant U does neither

depend on n nor on h.

Proof. Let us only consider the case h ≥ 0. Define X(r)
n as the r-dependent ap-

proximation of (Xn) provided by Definition 3. We observe that

nE
∥∥Ĉh − Ch∥∥2S = nE

∥∥∥∥∥ 1

n

n−h∑
k=1

Zk

∥∥∥∥∥
2

S

,

where Zk = Xk+h ⊗Xk − Ch. Set Z(r)
k = X

(r)
k+h ⊗X

(r)
k − Ch. Using the stationarity
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of the sequence (Zk) we obtain

nE

∥∥∥∥∥ 1

n

n−h∑
k=1

Zk

∥∥∥∥∥
2

S

=
∑
|r|<n−h

(
1− |r|

n

)
E〈Z0, Zr〉S

≤
h∑

r=−h

|E〈Z0, Zr〉S |+ 2
∞∑

r=h+1

|E〈Z0, Zr〉S |, (32)

and using the Cauchy-Schwarz inequality gives

|E〈Z0, Zr〉S | ≤ E|〈Z0, Zr〉S | ≤
√
E‖Z0‖2SE‖Zr‖2S = E‖Z0‖2S .

Furthermore, from ‖Xh ⊗X0‖ = ‖Xh‖‖X0‖, we deduce

E‖Z0‖2S = E‖X0‖2‖Xh‖2 ≤
(
E‖X0‖4

)1/2
<∞.

Consequently, we can bound the first sum in (32) by (2h+ 1) (E‖X0‖4)1/2. For the
summands of the second term in (32) we obtain by independence of Z(r−h)

r and Z0

that

|E〈Z0, Zr〉S | = |E〈Z0, Zr − Z(r−h)
r 〉S | ≤ (E‖Z0‖2S)1/2(E‖Zr − Z(r−h)

r ‖2S)1/2.

To conclude, it suffices to show that
∞∑
r=1

(E‖Zr − Z
(r−h)
r ‖2S)1/2 ≤ M < ∞, where

the bound M is independent of h. Using an inequality of the type |ab − cd|2 ≤
2|a|2|b− d|2 + 2|d|2|a− c|2, we obtain

E‖Zr − Z(r−h)
r ‖2S = E‖Xr ⊗Xr+h −X(r−h)

r ⊗X(r−h)
r+h ‖

2
S

≤ 2E‖Xr‖2‖Xr+h −X(r−h)
r+h ‖

2 + 2E‖X(r−h)
r+h ‖

2‖Xr −X(r−h)
r ‖2

≤ 2(E‖Xr‖4)1/2(E‖Xr+h −X(r−h)
r+h ‖

4)1/2

+ 2(E‖X(r−h)
r+h ‖

4)1/2(E‖Xr −X(r−h)
r ‖4)1/2.

Note that E‖Xr‖4 = E‖X(r−h)
r+h ‖4 = E‖X0‖4 and that E‖Xr+h−X(r−h)

r+h ‖4 = E‖Xr−
X

(r−h)
r ‖4 = E‖X0 −X(r−h)

0 ‖4. Altogether we get

E‖Zr − Z(r−h)
r ‖2S ≤ 4(E‖X0‖4)1/2(E‖X0 −X(r−h)

0 ‖4)1/2.

Hence, L4-m-approximability implies that
∞∑

r=h+1

|E〈Z0, Zr〉S | converges and is uni-

formly bounded over 0 ≤ h < n.
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Proof of Proposition 11. By the triangle inequality,

2π‖FXθ − F̂Xθ ‖S =

∥∥∥∥∥∑
k∈Z

Che
−ihθ −

q∑
h=−q

(
1− |h|

q

)
Ĉhe

−ihθ

∥∥∥∥∥
S

≤

∥∥∥∥∥
q∑

h=−q

(
1− |h|

q

)
(Ch − Ĉh)e−ihθ

∥∥∥∥∥
S

+

∥∥∥∥∥1

q

q∑
h=−q

|h|Che−ihθ

∥∥∥∥∥
S

+

∥∥∥∥∥∑
|h|>q

Che
−ihθ

∥∥∥∥∥
S

≤
q∑

h=−q

(
1− |h|

q

)
‖Ch − Ĉh‖S +

1

q

q∑
h=−q

|h|‖Ch‖S +
∑
|h|>q

‖Ch‖S .

The last two terms tend to 0 by condition (4) and Kronecker’s lemma. For the first
term we may use Lemma 4. By taking the expectation, we obtain for some U1 that

q∑
h=−q

(
1− |h|

q

)
E‖Ch − Ĉh‖S ≤ U1

q3/2√
n
.

Note that the bound does not depend on θ, hence q3 = o(n) and the condition (4)
imply that supθ∈[−π,π]E‖FXθ − F̂Xθ ‖S → 0 as n→∞.
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