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1. Introduction

1.1. Neutrino Physics

Neutrinos play an important role in many fields of physics, for example particle- and

astroparticle physics or cosmology. Detailed descriptions of the field can be found in

many papers and textbooks, many aspects of neutrino physics are explained in detail

e.g. in [Zub12]. Here only a brief overview of the most important properties regarding

this work (and a few historical aspects) are given.

1.1.1. Neutrino Properties

The neutrino is one of the longest known elementary particles. It was initially introduced

by Wolfgang Pauli in 1930 as “neutron” to solve an apparent failure of energy and angular

momentum conservation in nuclear β-decay. The now established name neutrino (Italian

diminutive for neutron, i.e. “neutrino” = “small neutron”) was later formed by Enrico

Fermi. The neutrino is the only elementary fermion in the Standard Model of Particle

Physics (SM) that carries no charge. It interacts only via the weak force and can

therefore pass through matter with nearly no interaction at all. This leads to a large

experimental challenge for neutrino experiments. Therefore, it took more than 25 years

until the existence of the neutrino could be verified experimentally [Rei56, Cow56b].

Although more than 50 years have passed since the discovery, several neutrino prop-

erties are still unknown. For example its nature as either Dirac or Majorana particle

(see Subsection 1.1.2) and its absolute mass are still unknown. Initially the neutrino

was introduced in the SM as massless particle. This assumption was disproved with the

observation of neutrino oscillations, see below, but still only limits on the absolute value

of its mass are known.

Neutrinos play an important role in most particle- and nuclear physics processes that

influence our daily life. For example they are emitted from nuclear power plants and

in β-decays of isotopes from the natural radioactive decay chains. A large flux of 6.5×
1010 neutrinos per second per cm2 [Bel04, Ber12] arrives on earth from the nuclear

reactions that power the sun. The flux from primordial neutrinos from the big bang

(relic neutrinos) is even higher. To verify solar models the flux of electron neutrinos from

the sun was measured and compared to theoretical predictions. The flux determined in

[Dav68] was significantly lower than expected. This result was confirmed later on by

other experiments. At first, inaccuracies in the solar model were expected [Bah68],
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1. Introduction

but no other evidence for such flaws were found. In [Hir88] also a much smaller flux

of cosmic ray induced atmospheric muon neutrinos compared to the predicted flux was

measured with the Kamiokande experiment. Both inconsistencies could be resolved with

the concept of massive neutrinos and neutrino mixing (also called neutrino oscillation).

Analogously to the well known Cabibbo–Kobayashi–Maskawa (CKM) mixing ma-

trix [Cab63, Kob73, Hal84] of the quark sector, the Pontecorvo-Maki-Nakagava-Sakata

(PMNS) matrix [Pon60, Mak62], can be defined for neutrino mixing. Initially it was

defined for the two neutrino flavours νe and νµ that were known at that time, but it

was extended to three flavours. The principle idea is that the eigenstates of the weak

interaction, νe, νµ and ντ , are different from the mass eigenstates ν1, ν2 and ν3. Neutri-

nos propagate through space and time with their mass eigenstates and interact via the

electroweak force with their flavour eigenstates. Both eigenstates are connected by the

unitary PMNS matrixνeνµ
ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1

ν2

ν3

 , να =
3∑
i=1

Uαiνi with α = e, µ, τ . (1.1)

If the neutrino masses are not identical, the mass components propagate with different

phase velocities. That means that during the propagation through space the “ratio”

(amplitude) of ν1, ν2 and ν3 can change over time. Consequently a neutrino that was

produced in one flavour eigenstate can interact in a different flavour eigenstate after it

propagated through space. Some electron neutrinos from the sun therefore are detected

on earth as muon neutrinos.

The PMNS matrix can also be expressed as a product of three mixing matrices with

three mixing angles (θ12 describing solar mixing of neutrinos from the sun, θ23 describing

atmospheric neutrino mixing of neutrinos from interactions in earth’s atmosphere and

the smallest angle θ13) and an additional CP-violating phase δ. If the neutrino is its

own antiparticle, a so called Majorana particle, two additional Majorana phases α1 and

α2 have to be added.

Neutrino oscillation was experimentally confirmed for atmospheric muon neutrinos νµ
with the Super-Kamiokande detector [Fuk98] and afterwards by many other experiments,

e.g. with a high statistical significance in [Ahm01, Ahn06]. Numbers for θ12 and θ23 are

given in [Hos06], only recently it could be shown that θ13 > 0 [Abe11, An12, Ahn12]. An

up-to date compilation of the neutrino parameters are listed for example in the neutrino

chapter of the latest PDG Review of Particle Physics [Ber12].

The oscillation probability amplitude is dependent on the mixing angles. The period

of the oscillation is dependent on the energy Eν of the neutrino, the travelled distance

L and the mass squared difference ∆mik
2 = mi

2 − mk
2 of the mass eigenstates. For

example the survival probability for down-going atmospheric electron neutrinos is given

by [Hos06]

P (νe → νe) = 1− sin2(2θ13) sin2

(
1.267 ∆m31

2[eV2]L[km]

Eν [GeV]

)
. (1.2)
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Figure 1.1: Neutrino mass differences

in normal and inverted neutrino mass

hierarchy, taken from [Mü07]. The left

side shows the so called normal (m1
2 <

m2
2 < m3

2) and the right side the in-

verted (m3
2 < m1

2 < m2
2) hierarchy.

With neutrino oscillation experiments

the mass differences ∆mik
2 were deter-

mined (∆m21
2 ≈ 7.6 × 10−5 eV2 and

|∆m31
2| ≈ 2.4× 10−3 eV2 [Ber12]), and

it is maybe possible to determine the

mass hierarchy, but these experiments

cannot give information on the absolute

neutrino mass.

It can be seen that neutrino oscillation experiments are sensitive to the mass squared

difference, but they cannot provide a value for the absolute neutrino mass.

The hierarchy (or ordering) of the mass eigenstates, see Figure 1.1, could also not

be clarified yet. The recently determined comparatively large value of θ13 increases the

chances that the mass hierarchy can be determined in long baseline neutrino oscillation

experiments, such as NOνA [Dav11]. They can derive information on the hierarchy from

differences of the oscillation probability of neutrinos and anti-neutrinos while propagat-

ing through solid matter [Hos06].

There are mainly three methods that are currently applied to probe for the absolute

mass of the mass eigenstates. A good overview of neutrino masses in general can be

found in [Ott08].

From relic neutrinos in cosmology a value for
∑
mi can be deduced. An analysis

of WMAP data resulted in a limit of
∑
mi < 0.58 eV (95 % Confidence Level (CL))

[Kom11]. These values from cosmology are strongly model dependent.

From kinetic energy end-point measurements of β-decays another measure for the

neutrino mass, to be more precise of the mass of the electron neutrino, can be deduced.

As the energy that is equivalent to the mass of the outgoing neutrino cannot contribute

to the kinetic energy of the electron (β-particle), a deviation of the end-point of the

β-particle’s kinetic energy spectrum compared to the case of a vanishing neutrino mass

exists. The mass that can be measured with such experiments is connected to the mass

eigenstates and the PMNS matrix elements as follows [Kra05]

m2(νe) =
3∑
i=1

|Uei|2m2
i (1.3)

The best limit m(νe) ≤ 2.3 eV (95 % CL) for this neutrino mass was obtained by the

Mainz experiment [Kra05]. The currently commissioned KATRIN experiment [Wol10]
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1. Introduction

will probe a region down to 0.2 eV. The planned MARE experiment [Nuc10] aims for a

comparable sensitivity.

The third method for a mass measurement arises if the neutrino is its own antiparticle,

a so called Majorana particle. Then a neutrinoless double beta decay is possible and, as

will be explained in the next section, with a measurement of the half-life of this decay a

measure for the neutrino mass can be obtained.

1.1.2. Neutrinoless Double Beta Decay

Neutrinoless double beta decay gained more and more attention over the last years.

Consequently there are several publications describing the theory and the applied ex-

perimental approaches in detail, see the citations in the following section and especially

[Rod12] for a detailed description of the field, also regarding influences of the PMNS

mixing angles and the mass hierarchy.

Since the beginning of neutrino physics the possibility of the identity of the neutrino

ν and its antiparticle, the anti neutrino ν̄, was discussed. Particle and antiparticle, for

example the electron e− and its antiparticle, the positron e+, have conjugate charge. As

neutrinos do not carry charge, applying charge conjugation does not affect them and it

is theoretically possible that they are their own antiparticles. Majorana even refused

the Dirac theory of particle and antiparticle (with the negative energy state that is

connected to this theory) for neutral particles, but described them as two states of the

same particle corresponding to its spin [Maj37, Fur39].

First experiments [Dav55, Cow56a] disfavoured this possibility as no hints to predicted

processes in this so called Majorana case were observed. Nowadays it is assumed that

the Majorana hypothesis is probable, but that the directly measurable effects are very

small and need extensive experiments with a high sensitivity for their detection.

One reason for the willingness of the acceptance of the Majorana hypothesis is the

possibility to introduce an additional mass term. In the SM the masses of the e, µ

and τ fermions are generated by coupling of a left-handed weak isospin doublet and a

right-handed isospin singlet to the Higgs doublet [Hal84]. The weak force couples only

to left-handed particles (and right handed antiparticles). As neutrinos interact only by

the weak force a right handed neutrino would not be able to interact at all. Therefore

it is convenient that right handed neutrinos are not included in the SM and only right

handed singlets for the upper members of the doublets (i.e. eR, µR, τR) exist. This also

means that the Higgs does not couple to neutrinos and they are massless in the SM. This

was a reasonable prediction at the time of development of the SM because the neutrino

masses are indeed very small.

Now that a non zero neutrino mass is established it seems straight forward to give

a Dirac mass to the neutrino by simply adding a right handed neutrino singlet. From

the point of view that the difference between the lepton Yukawa couplings, which are

a measure for the particle mass, is about four orders of magnitude higher without a

theoretical explanation, it is very unsatisfactory that the Yukawa couplings for neutrinos
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should be even at least five orders smaller (compare the electron mass me = 511 keV

and the limit m(νe) < 2.3 eV).

The assumption of the Majorana nature of the neutrino allows for an additional Ma-

jorana neutrino mass term in the Lagrangian. It leads to a light left handed neutrino ν1

and a heavy right handed neutrino ν2 with the masses [Ott08]

mν1 ≈
m2
D

mRR

, mν2 ≈ mRR . (1.4)

mD is the Dirac mass of the neutrino (similar to the other fermion masses in the SM)

and the mass mRR derives from the Majorana assumption. The heavier mRR (mν2) is,

the lighter mν1 becomes and mD can be in the order of the other fermion masses. For

this reason the approach is called (type I) seesaw mechanism. Also other approaches

(seesaw II and III mechanism) exist.

If the neutrino is in fact its own antiparticle, the non SM process of neutrinoless double

beta decay (0νββ-decay) is possible and it is directly connected to the neutrino mass.

For isobaric nuclei with an even mass number A, the nuclear pairing energy leads to

a splitting of the mass parabola, which describes the masses of nuclei according to the

Bethe-Weizsäcker mass formula [Wei35, Bet36, Pov08], see Figure 1.2.

Due to the splitting it is possible that for a nucleus with nuclear charge Z an energeti-

cally lower state with Z ± 2 exists, but the state with Z ± 1 is energetically higher. The

nucleus cannot decay to the energetically higher Z ± 1 state, but M. Goeppert-Mayer

calculated in [GM35] the possibility of two simultaneous β-decays, i.e. a double beta

decay with emission of two electrons and two anti neutrinos (two-neutrino double beta

decay (2νββ-decay))

(Z,A) → (Z + 2, A) + 2 e− + 2 ν̄e . (1.5)

This formula is for the case of β− decay, in principle the decay is also possible for β+

and Electron Capture (EC) decays. The decay can be described as a second order SM

process. It is strongly suppressed and has a very long half-life. The observation of 2νββ-

decay was first reported in [Ing50] for 130Te → 130Xe by an isotopic analysis of xenon

traces contained in old tellurium ores. Due to the long half-life of the 2νββ-decay it took

more than 35 years until also a direct measurement of a 2νββ-decay was successful, in

this case for 82Se [Ell87]. Since then 2νββ-decay was observed for several isotopes with

half-lives in the order of 1019 − 1021 years, see for example Table 1.1.

If the neutrino is a Majorana particle with non vanishing rest mass a second possibility

arises. In this case our definition of “neutrino” and “anti neutrino” will refer to its state

of left- or right handedness, i.e. to its helicity. For a massive particle the wave function of

the outgoing “neutrino” is a superposition of a left handed and a small fraction of a right

handed particle. Therefore it is possible that an outgoing right handed “anti neutrino”

from a β− decay is absorbed as a left handed “neutrino” in a following inverse β-decay.

11



1. Introduction

Figure 1.2: Mass parabola for isobaric

nuclei with even atomic mass number

A = N + Z (i.e. (N, Z) = (odd, odd)

or (N, Z) = (even, even)). The nu-

clear pair energy causes a splitting into

two parabolas. Single β-decays change

the nuclear charge Z by a value of ±1.

They can only occur if the energy of the

daughter nucleus is smaller than the en-

ergy of the parent nucleus. If this condi-

tion is not fulfilled but the nucleus with

Z ± 2 has a lower energy level, a dou-

ble beta decay via a virtual intermediate

Z ± 1 state is possible.

E

2νββ

0νββ

Emax

Figure 1.3.: Left: Diagrams of the two neutrino (2νββ, a) and the neutrinoless (0νββ, b)

double beta decay. For the 0νββ-decay the anti neutrino ν̄R emitted from one neutron has to

be absorbed from the second neutron as neutrino νL. If the neutrino is a Majorana particle

with non vanishing rest mass, this can be achieved by a helicity flip. Right: In 2νββ-decay the

neutrinos carry away some energy, which cannot be measured inside the detector. Therefore

the measured energy spectrum of the 2νββ-decay is continuous. This decay mode was already

observed in several experiments, see Table 1.1. In the case of 0νββ-decay the whole decay

energy is measured in the detector if the electrons do not escape the detector. The observed

energy will be a line at the decay energy of the isotope. This decay mode, if present at all, is

strongly suppressed compared to 2νββ-decay, therefore the 0νββ-decay line is drawn smaller

than the 0νββ-decay spectrum, see also Figure 1.4.

12



Energy [keV]
2700 2750 2800 2850 2900

C
ou

nt
s 

/ k
eV

 / 
kg

 / 
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
-310×

 signal, 5.0 % FWHMββν0

 signal, 5.0 % FWHMββν2

Combined Signals

Energy [keV]
2700 2750 2800 2850 2900

C
ou

nt
s 

/ k
eV

 / 
kg

 / 
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
-310×

 signal, 2.0 % FWHMββν0

 signal, 2.0 % FWHMββν2

Combined Signals

Figure 1.4.: Combined theoretical 116Cd 2νββ-decay (T 2νββ
1/2 = 2.88× 1019 y) and 0νββ-decay

spectrum for T 0νββ
1/2 = 1.0×1026 y with different energy resolutions. For the plots the theoretical

2νββ spectrum was taken from [Tre95] and convoluted numerically with a Gaussian shaped

energy resolution. Isotopic enrichment ot 90 % in 116Cd is assumed. To disentangle both decay

modes for a high T 0νββ
1/2 , a good energy resolution is necessary. This holds especially if it is taken

into account that the collected statistic will be limited to a few 0νββ-decays, what leads to

large statistical fluctuations. Therefore disentanglement on the basis of expected 2νββ-decays

in the 0νββ-decay region will significantly reduce the sensitivity of the experiment.

This process was first mentioned in [Rac37] and therefore is often called Racah-sequence

(Z,A) → (Z + 1, A) + e−+
(−)
ν e,R,

(Z + 1, A) + νe,L → (Z + 2, A) + e− .

Two years later the Majorana formalism was actually applied to double beta decay in

[Fur39]. Interestingly, a much lower half-life for 0νββ-decay than for 2νββ-decay was

predicted, and rather the detection of 2νββ-decay than the detection of 0νββ-decay was

assumed to be impossible.

At first glance this is a reasonable assumption also from the experimentalists point of

view. For 2νββ-decay the sum energy spectrum of the emitted electrons is distributed

over a wide energy range, whereas a sharp line at the Q-value is expected for 0νββ-decay,

see Figure 1.3. The sharp 0νββ-decay line should in principle be better detectable than

the broad 2νββ-decay spectrum, but in fact, due to the very long half-life of the 0νββ-

decay the 2νββ-decay becomes even an irreducible background that can severely limit the

sensitivity of double beta experiments with a low energy resolution and comparatively

low 2νββ-decay half-life, see Table 1.1 and Figure 1.4.

The half-life of the 0νββ-decay

(
T 0ν

1/2

)−1
= G0ν(Q,Z)

∣∣M0ν
∣∣2(〈mνe〉

me

)2

(1.6)
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Isotope Q-Value [keV]
Nat. Abund.

[%] [Bö05]

G0ν [10−14 y−1]

[Suh98]
T 2νββ [1019 y]

48Ca 4274 [Giu10] 0.19 6.43 4.4 [Bon11]
76Ge 2039 [KK01b] 7.83 0.63 155 [KK01b]
82Se 2995 [Giu10] 8.73 2.73 9.6 [Bon11]
96Zr 3350 [Bon11] 2.80 5.70 2.35 [Bon11]
100Mo 3034 [Giu10] 9.67 11.30 0.72 [Bon11]
116Cd 2814 [Rah11] 7.49 4.68 2.88 [Bon11]
130Te 2527 [Rah11] 33.80 4.14 70 [Arn11]
136Xe 2459 [McC10] 8.86 4.37 238 [Gan12]
150Nd 3371 [Kol10] 5.56 19.40 0.92 [Bon11]

Table 1.1.: Summary of the most promising 0νβ−β− isotopes. An objective comparison of the

prospects of the isotopes is difficult, see also text. To compare isotopes on the basis of Equa-

tion (1.6), besides the given phase space G0ν also matrix elements are necessary. Calculated

matrix elements for several isotopes are plotted in Figure 1.5. In general a low two neutrino

half-life T 2νββ requires a higher energy resolution to disentangle the 2νββ and the 0νββ-decay,

see Figure 1.4 for an example of 116Cd. A compilation of various 2νββ-decay measurements

can also be found in [Bar10]. The natural abundance of most isotopes shows that isotopical

enrichment is needed for a high sensitivity. Here also the number of source nuclei per kg (or

volume) of the actual detector should be taken into account, which is dependent on the actual

detector material composition (e.g. CaF2, TeO2, CdWO4, CdZnTe etc.).

is connected to the so called effective Majorana neutrino mass

〈mνe〉 =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ . (1.7)

Note the difference to the mass definitions from cosmology and kinematic measurements

(1.3). For the effective Majorana neutrino mass a negative interference between the mi

is possible, which can even lead to 〈mνe〉 = 0 by complete cancellation.

The phase space integral G0ν(Q,Z) can be calculated numerically. It is very energy

and charge dependent. For small Q-values it scales with G0ν ∝ Q, whereas for very high

Q values G0ν ∝ Q5 can be approximated [Doi93]. But also the Z dependence is high,

compare e.g. G0ν of 48Ca and 150Nd listed in Table 1.2.

The calculation of the matrix element M0ν is more difficult. Several theoretical ap-

proaches exist. Their results differ strongly, see Figure 1.5. For the comparison of double

beta isotopes on the basis of Equation (1.6) the largest uncertainty therefore derives from

M0ν .

The half-life of the 0νββ-decay is assumed to be even several orders of magnitude

higher than for 2νββ-decay. A measurement of such a low decay rate, which is equivalent

to only a few decays per year in several kilograms of source material, is an ambitious

14



Figure 1.5: Matrix element

calculations for several 0νββ

isotopes with various ap-

proaches, taken from [Rod12].

The determined values for an

isotope differ strongly and

are momentarily the largest

uncertainty for comparisons

of the sensitivity prospects

of double beta isotopes

and obtained 0νββ-decay

limits, e.g. the discovery

claim from [KK01a] for
76Ge (T 0νββ

1/2 = 2.2 × 1025 y)

and the currently high-

est non-germanium limit

(T 0νββ
1/2 > 1.6 × 1025 y) for

136Xe [Aug12].

challenge. Several 0νββ-decay experiments are currently taking data, are commissioned

at the moment or proposed for the future. An objective comparison of the expected

sensitivities of these experiments is difficult because several uncertainties, e.g. of M0ν

on the theoretical side or the actually achievable resolution and background level on the

experimental side, exits. In Subsection 3.3.3 a sensitivity approximation for the planned

large scale COBRA experiment is given. Comparisons between several experiments can

be found in [Giu10, GC11, Sch12b]. As expected, depending on the chosen basis the

ranking of experiments concerning 0νββ-decay sensitivity differs between these authors.

The currently highest limits on 0νββ-decay were obtained for 76Ge by the Heidelberg-

Moscow experiment [KK01b]

T 0νββ
1/2 > 1.9× 1025 y at 90 % CL

〈mνe〉 < 0.35 eV .

and for 136Xe by the EXO-200 experiment [Aug12]

T 0νββ
1/2 > 1.6× 1025 y at 90 % CL

〈mνe〉 < (0.18− 0.38) eV .

The corresponding limits on the neutrino masses depend on the applied nuclear matrix

elements.

Based on the Heidelberg-Moscow data a part of the collaboration independently

claimed evidence for the observation of 0νββ-decay [KK01a]. In a later paper with

different analysis methods the subgroup even claimed a statistical significance for the
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Isotope Decay mode a[%] N0/1g Cd0.9Zn0.1Te Q-value [keV]
106Cd β+β+, β+/EC,EC/EC 1.25 2.889× 1019 2775.4 [Gon11]
108Cd EC/EC 0.89 2.057× 1019 272.0 [Smo12]
114Cd β−β− 28.73 6.640× 1020 534
116Cd β−β− 7.49 1.731× 1020 2813.5 [Rah11]
64Zn β+/EC,EC/EC 48.2 1.248× 1020 1096
70Zn β−β− 0.6 1.541× 1018 1001
120Te β+/EC,EC/EC 0.096 2.465× 1018 1714.8 [Sci09]
128Te β−β− 31.69 8.137× 1020 865.9 [Sci09]
130Te β−β− 33.80 8.680× 1020 2527.0 [Rah11]

Table 1.2.: Decay modes, Q-values, natural abundances a (taken from [Bö05]) and number

of nuclei per gram CdZnTe of double beta isotopes contained in CdZnTe. Partly taken from

[Kie05], Q-values updated as indicated by citations.

detection of more than 6σ and gave the following results [KK06]:

T 0νββ
1/2 =

(
2.23+0.44

−0.31

)
× 1025 y

〈mνe〉 =
(
0.32+0.03

−0.03

)
eV.

The GERDA [Mei11] and the Majorana [Sch12a] experiments will test the claim for
76Ge. The claim is already incompatible with the EXO results for most nuclear matrix

element calculations. However, this discrepancy clearly shows that 0νββ-decay has to

be observed with several isotopes to verify the results. Also from the point of view of the

currently large uncertainty in the nuclear matrix element calculations the observation

with several isotopes is desirable to check at least for consistency of the same calculation

methods for different isotopes.

1.2. The COBRA Experiment

Current and past 0νββ-decay experiments have a sensitivity of up to ≈ 1025 years.

Judging from the results of EXO-200 it seems unlikely that Klapdor’s claim will be

confirmed. Even if it will be confirmed it will be necessary to reconfirm 0νββ-decay

with several isotopes and preferably different experimental approaches, see the reasons

given in the previous section. Furthermore a precise measurement of the half-life and

a high significance of a discovery are desirable. As will be shown in sensitivity studies

in Subsection 3.3.3, the sensitivity, which is usually defined as the sensitivity for the

exclusion of a half-life, is not equivalent to a discovery potential of an experiment.

Therefore new experiments are necessary to either confirm the observation of 0νββ-decay

and measure the half-life precisely or to provide a sensitivity of more than 1025 years.

COBRA [Zub01] is a Research and Development (R&D) project to develop a concept

for such an experiment with CdZnTe (or CdTe) semiconductor detectors. The general
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idea is to build a three dimensional array of CdZnTe detectors to achieve a source mass

of several hundred kg. CdZnTe contains nine double beta candidates, see Table 1.2. The

most interesting ones are 130Te, 116Cd (compare also Table 1.1) and 106Cd.
130Te has a high Q-value. Even though it is not above the highest naturally occurring

γ-line with significant intensity, the 2615 keV γ-particle from 208Tl (see also Section 2.4),

it is exactly between the full-energy peak and the Compton edge of this line. This is

helpful to reduce the γ-background, which is very hard to shield. The certainly most

important features of 130Te are its high natural abundance and its high 2νββ-decay

half-life. Among the most promising double beta isotopes listed in Table 1.1, it is

outstanding in both properties. Expensive isotope enrichment will be cheaper or can

possibly be omitted at all (depending on the required sensitivity and the cost-benefit

ratio compared to a larger detector). The high 2νββ-decay half-life results (in principle)

in less 2νββ-decay background in the 0νββ-decay signal region of 130Te. For a short

discussion of the currently world leading 0νββ-decay half-life limits and current COBRA

limits see Subsection 3.3.3.
106Cd is one of the most promising candidates for 0νβ+β+-decay. Here three decay

modes exist, namely 0νβ+β+, 0νβ+/EC and 0νEC/EC. The emission of a positron

leads to the reduction of the phase space by 2×me = 1022 keV. Therefore longer half-

lives than for the 0νβ−β−-decay are expected, especially for the 0νβ+β+ mode, and the

current attention of most experiments is focused on 0νβ−β−-decay. On the other hand

a confirmation for at least one of the β+ modes would further strengthen a discovery of

the 0νβ−β−-decay. The β+/EC mode is especially sensitive to a possible contribution

of a right handed current [Hir94]. This decay mechanism is the second most popular

theory for 0νββ-decay after the mass driven mechanism. World best limits for double

beta decays of 106Cd can be found in [Bel12a] and references therein.

The most important isotope for COBRA is certainly 116Cd. With its Q-value of

2813.5 keV it is well above the energy of the 208Tl γ-line. This is a large advantage

concerning the achievable background level, see results of Section 2.4. In Subsection 2.4.2

the currently world leading limits for 116Cd are briefly discussed and in Subsection 3.3.3

limits achieved with the current COBRA R&D set-up are calculated.

The drawback of 116Cd is its comparatively low 2νββ-decay half-life. A sufficient

resolution to disentangle the 0νββ-decay and the 2νββ-decay even for half-lives T 0νββ
1/2 >

1026 years was already achieved (compare Figure 1.4 and the actually achieved average

detector resolution of 1.5 % full width at half maximum (FWHM) at 2.8 MeV shown in

Figure 3.18, Subsection 3.3.2), but the sensitivity for decays (to ground state) of the

other double beta isotopes with lower Q-values, e.g. 130Te, will be limited by the 2νββ-

decay of 116Cd. On the other hand COBRA is planned as an array of several thousand

CdZnTe detectors. This opens the possibility for a coincidence analysis. Such an analysis

focuses on the detection of simultaneous detection of signals in more than one detector,

see e.g. Subsection 2.4.3 for an example of a coincidence analysis for 116Cd into the first

excited state of 116Sn. For β+ emitters (120Te and 64Zn) or decays to excited states it
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may be possible to achieve a high sensitivity by searching for the energy deposition of

the electrons in one detector and for the emitted γ-particle in another. The sensitivity

of this analysis method will not be affected by the low 2νββ-decay half-life of 116Cd, and

besides 116Cd also other double beta isotopes can be studied simultaneously in COBRA.

1.2.1. CdZnTe Semiconductor Detectors

An introduction to semiconductor detectors can be found in [Leo94, Gil08]. The principle

is briefly explained in Figure 1.6. For a detailed description of the coplanar grid (CPG)

and the pixel detector principle for CdZnTe and its theoretical basis see e.g. [He01].

Properties of several widely applied semiconductor detectors are listed in Table 1.3.

From the table it can be seen that CdZnTe has much lower charge carrier mobilities

and especially lifetimes than other semiconductor detector materials. Furthermore, the

mobility and the lifetime of the holes are even smaller than for the electrons. Holes can

only move a short distance (compared to a detector size of several millimetres) during

the typical charge collection time of a preamplifier. Therefore, unlike for germanium

detectors, the holes do not (or only little) contribute to the induced charge. For a

simple planar electrode design, as is used e.g. for germanium detectors, this will result

in an interaction-depth dependent signal because the induced charge is dependent on the

drift length of the charge carriers through the detector. That is, an interaction close to

the cathode will lead to a high signal as the electrons have a long drift path through the

detector, whereas the induced charge for an interaction close to the anode will be much

smaller. The dependence of the induced charge ∆Qe on the anode from the interaction

depth 0 < Z < 1 (0 denotes the cathode, 1 the anode) can be calculated to be [He01]

∆Qe ≈ ne0(1− Z) (1.8)

where ne0 is the charge from n electrons moving towards the anode. Consequently, a

common planar electrode design with a simple measurement of the signal height cannot

be applied to build a CdZnTe detector for γ-spectroscopy.

In [Luk94] an alternative anode design, the so-called CPG design, was introduced.

The anode is divided in two comb-shaped parts, the collecting anode (CA) and the non-

collecting anode (NCA), see Figure 1.7. The CA is set to ground potential, the NCA is

set to a small negative potential with the so-called grid bias (GB) voltage that is applied

between the two anodes. On the planar cathode side a negative high voltage (HV) is

applied. The HV (∼ 1 kV) is much higher than the GB (about 40 V up to 120 V), but

due to the small distance between the anode grids (∼ 0.3 mm) compared to the detector

thickness (∼ 1 cm) the electric field between the anode grids is higher than between the

anodes and the cathode. The potential for one CPG electrode is shown in Figure 1.8.

For most parts of the detector the linear potential from the HV is dominating. While

the electron cloud travels through these parts of the detector, charge is equally induced

on both CA and NCA. Very close to the anodes the electric field between CA and NCA
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Figure 1.6: Energy band structure of

insulators, semiconductors and metals

(conductors), according to [Leo94]. For

semiconductors the band gap between

the valence- and the conduction band

is small. The valence band contains

nearly no electrons, but electrons from

the valence band can be excited to the

conductive band. They leave holes in-

side the valence band that behave sim-

ilar to positive charge carriers. Elec-

trons in the conduction- and holes in

the valence band then contribute to the

conductivity.

Property Cd0.9Zn0.1Te CdTe Ge Si

Atomic numbers 48,30,52 48,52 32 14

Density ρ [g/cm3] 5.78 5.85 5.33 2.33

Band gap Eg [eV] 1.57 1.5 0.67 1.12

Pair creation Energy Epair [eV] 4.64 4.43 2.95 3.63

Resistivity ρ [Ω cm] 3× 1010 109 50 < 104

Electron mobility µe [cm2/Vs] 1000 1100 3900 1400

Electron lifetime τe [s] 3× 10−6 3× 10−6 > 10−3 > 10−3

Hole mobility µh [cm2/Vs] 50 - 80 100 1900 480

Hole lifetime τh [s] 10−6 2× 10−6 10−3 2× 10−3

(µ · τ)e [cm2/V] (3− 10)× 10−3 3.3× 10−3 > 1 > 1

(µ · τ)h [cm2/V] 5× 10−5 2× 10−4 > 1 ≈ 1

Table 1.3.: Properties of CdZnTe, CdTe, Ge and Si, taken from [End11].

Figure 1.7: CdZnTe detector with

CPG anodes. On the right picture

the two grids are highlighted in red

and blue. Which anode is the CA

and which is the NCA is defined by

the GB between the two anodes.

The CA is the anode that is set to

zero potential and the NCA is set

to a small negative potential.
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Figure 1.8.: Left: Weighting potential for one of the CPG electrodes. Right: Induced charge

at the collecting anode (qA) and the non collecting anode (qb) together with the difference

signal (qA − qB) as a function of the distance travelled by a charge Q. The small bias of the

NCA influences a moving charge cloud at the end of its path close to the anodes. Even though

the GB is smaller than the HV, the electric field is stronger at the anodes due to the small

distance between the anods. This can be seen from the slow rise of the induced charge Q for

smaller depth and a steep rise vicinity of the anodes. Both figures are taken from [Luk94].

is dominating. The electrons drift towards the CA, what is equivalent to a drift away

from the NCA. While the electrons drift away from the NCA, the induced charge on

the NCA is reduced, charge is transferred from the NCA to the CA. An example for an

interaction close to the cathode is shown in Figure 1.8.

For events with full drift length through the zone of influence of the GB (i.e. in the

vicinity of the anodes), the amount of transferred charge from the CA to the NCA during

the drift through this area is always the same. For areas far away from the anodes the

induced charge is equal on both anodes. By subtracting the NCA signal from the CA

signal, the interaction depth dependent induced charge cancels out and only the depth

independent part from the path directly beneath the anodes remains. It can be shown

that the difference of the anode signals equals the number of electrons that finally arrive

at the surface of the coplanar anodes, independent from the interaction depth of the

initial energy deposition [He01].

The amount of electron-hole pairs (and thus the amount of e− charge within the

detector) that are created in an interaction is proportional to the deposited energy of

the event. Therefore a measure for the deposited energy E can be obtained from

E ∝ CA− w ·NCA . (1.9)

w < 1 is a correction factor for electron trapping. From the numbers in Table 1.3 it can

be seen that trapping in CdZnTe is not only a problem for holes, but also for electrons.

The amount of trapped charge is dependent on the path length. The longer the path of

the charge is, the more charge is trapped. In events close to the cathode the charge has to

travel through the whole detector, whereas events close to the anodes only have to travel

a small way. As shown in Figure 1.8, the induced charge on the NCA returns finally

to zero for cathode events. For events closer to the anodes, the NCA signal becomes
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Figure 1.9: CA vs. NCA plot for a
137Cs (662 keV) measurement. For

events close to the cathode, the NCA

signal is close to zero. It becomes neg-

ative for interactions that take place

closer to the anodes. Events with the

full energy deposition of 662 keV are ac-

cording to Equation (1.9) visible as the

straight line in the upper part of the

plot. From the slope of a linear fit

through this line (shown in red) w =

0.82 can be obtained. The triangular

shaped structure on the lower right side

derives from Compton scattering.

negative as the amount of charge that is transferred in the vicinity of the anodes is

always the same, but the NCA does not collect as much charge from the path away

from the anodes like for an event close to the cathode, see also Figure 1.9. Because the

negative NCA signal is subtracted from the CA signal, effectively the difference signal is

increased by the absolute value of the NCA. The contribution of the NCA is close to zero

for events close to the cathode and large for events close to the anodes. By attenuating

the NCA by w, a first order correction of the electron trapping is achieved by artificially

reducing the signal for events close to the anodes, which have a short drift length, whereas

the signal of events further away from the anodes, which have a longer drift length, is

only marginally influenced by w. The weighting factor w depends on the quality of the

detector material, the HV and the GB. Typical values vary between 0.6 < w < 0.9.

The optimal value of w for a detector can be obtained either by optimising the energy

resolution of γ spectra that are calculated according to Equation (1.9) regarding w, or

by fitting a linear function to the full energy line in a CA vs. NCA plot and taking w

to be the slope, see Figure 1.9.

The energy reconstruction is not absolutely exact close to the cathode and close to

the anodes. Directly at the cathode the holes can contribute to the signal. The energy

calculated according to Equation (1.9) can differ from the actual energy deposition by

about 1 % [Fri12]. Close to the anodes analogously holes can travel towards the NCA.

In an area of about 5 % below the anodes the energy reconstruction is unreliable. In

extreme cases, when the event takes place directly at the NCA, the hole signal can fully

contribute and the energy deposition determined with (1.9) is twice as high as the true

deposited energy. This effect was observed with COBRA CPG detectors in [Teb11].

An effect similar to the CPG principle can be achieved with pixelated CdZnTe detec-

tors. Drifting electrons far away from the anode induce charge in many anode pixels due

to charge sharing. Only in the vicinity of the anode pixels the induced charge increases

rapidly in the pixel(s) directly above the charge clouds. The induced charge in one pixel
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therefore is mainly dependent on the last part of the travelled path and is nearly interac-

tion depth independent. For pixel detectors the effect is called small pixel effect because

it works better for pixels that are small compared to the detector thickness [He01].

In [He96, He05] the reconstruction of the interaction depth Z from the cathode signal

C and the energy deposition E determined from the anode signal

Z ∝ C/E (1.10)

was introduced. The readout of the cathode signal is not contained in the common

COBRA readout electronics because it would require an additional readout channel.

Instead, the approximation of the cathode signal as the sum of the CA and NCA signal

was applied in [Sch11a].

In Equation (1.10) effects like hole and electron trapping are not taken into account.

The method was modified to correct for electron trapping in [Fri12] to

Z = λ · ln

(
1 +

1

λ

∆qCA + ∆qNCA
∆qCA −∆qNCA

)
, λ =

1 + w

1− w
. (1.11)

Here ∆qCA and ∆qNCA are the signal height of the CA and NCA and w is the weighting

factor.

1.2.2. Experimental Set-Up at LNGS

COBRA is currently in the R&D phase to develop a concept for a large-scale experiment.

The R&D set-up is located in the Italian Laboratori Nazionali del Gran Sasso (LNGS)

underground laboratory close to Rome. The experimental set-up can house up to 64

CPG detectors and was temporarily extended for pixelated detectors [Sch11b].

The observation of decays with half-lives of more than 1025 years requires an extremely

low background level. The main sources of background can be divided into background

from decays of primordial nuclides like 40K or 238U and background from (secondary)

cosmic rays. Further secondary background can arise from activation of materials from

neutrons and cosmic rays.

Cosmic rays at the surface consist mainly of muons. The much smaller nucleonic

component can be shielded with an overburden of a few meters of water equivalent

(mwe). At sea level the muon flux is about 1 cm−2 min−1 [Ber12], what is equivalent to

about 170 muons per m2 and second. The muons can produce background directly by

interacting with detector material, or they can produce secondary background, e.g. by

causing a delayed emission of neutrons in materials surrounding the detector. Due to

their high penetration, a high overburden is necessary to effectively shield from muons.

To achieve a very low background level a location with an overburden of several hundred

mwe is necessary. Therefore ultra low background experiments are usually situated in

underground laboratories.

The LNGS laboratory has an overburden of about 1400 meters of rock, what is equiv-

alent to about 3800 mwe. The muon flux in the laboratory is 3.4×10−4 m−2 s−1 [Bel12b].
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Figure 1.10: Former

and current COBRA

locations at LNGS

(red), taken from

[Ree09] and mod-

ified. Also shown

are the locations

of the other large

0νββ-decay experi-

ments at LNGS. The

current COBRA

location is in the

hut of the former

HdM 0νββ-decay

experiment.

Compared to the surface at sea level the muon flux is reduced by nearly six orders of

magnitude. The rock of the Gran Sasso mountain contains comparatively little uranium

and thorium contamination. This results in a neutron flux that is about three orders of

magnitude lower than at sea level [Heu95]. Due to these benefits and a good infrastruc-

ture the LNGS laboratory hosted and hosts many well-known experiments. The current

and former locations of the COBRA set-up in the underground laboratory are shown in

Figure 1.10.

To protect the CdZnTe detectors from background, the set-up consists of several

shielding layers. In 2011 the complete set-up was moved to a new location. In the

scope of the move the set-up was upgraded and several shielding layers were modified.

The current set-up is shown in Figure 1.11. In the following the shielding layers will be

shortly discussed, beginning from the outermost parts. A good overview of of background

sources in general and their suppression can be found in [Heu95]. An overview of the

COBRA readout electronics is given in Subsection 1.2.3.

Neutron Shielding Natural Cadmium contains with 12 % abundance the isotope
113Cd. This isotope has a very high cross section for thermal neutron capture. In

a 113Cd(n, γ)114Cd reaction γ-particles with an energy of several MeV are released.

These γ-particles can produce background in COBRA’s Region Of Interest (ROI). Con-

sequently, the detectors have to be shielded especially from thermal neutrons.

In [Oeh04] the first COBRA neutron shielding consisting of plates of borated Polyethy-

lene (PE) and Parrafin wax bricks was constructed. The high amount of hydrogen in

PE and Parrafin moderates neutrons to lower energies. 10B in the borated PE plates has

a very high cross section for 10Be(n, α)7Li capture reactions. The α-decay can also go

to the first excited state of 7Li. Besides the α-particle then a γ-particle with 477.6 keV
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is released. The α-particles are immediately stopped in the PE and the energy of the

released γ-particle is far below COBRA’s ROI.

The current outermost COBRA shielding layer consists of the 7 cm thick borated PE

plates. It surrounds the passive lead- and copper shielding. The choice of the neutron

shielding as outermost layer is suitable for experiments with a high overburden and thus

low muon flux. For experiments with a smaller overburden, such as the Dortmund Low

Background Facility (DLB) [Ned13], the neutron shielding has to be an inner layer of

the shielding because muons can produce neutrons in the lead surrounding the detector

[Heu95].

Shielding against Electromagnetic Interference Preamplifiers for semiconductor de-

tectors have to be very sensitive. In an interaction with an energy deposition of a few

MeV only a few hundred thousand electron-hole pairs are created within the detector.

This small amount of charge has to be collected and amplified by the preamplifiers. Elec-

tromagnetic (EM) disturbances can fake a physics events, most likely in the cables from

the detectors to the preamplifiers or in the preamplifiers themselves. A good shielding

against electromagnetic interference (EMI) is therefore essential.

Former COBRA set-ups applied copper shieldings. Further inquiries showed that for

the EM frequencies that can produce electronic disturbances for COBRA, shielding of

the magnetic component is very important. The new EMI shielding was therefore build

with steel plates [Ned13], which efficiently absorb the magnetic component.

For the signal cables from the preamplifiers, the power supply of the preamplifiers,

the HV and GB many cables have to be fed into and out of the set-up. A cable feed

through is often the weakest point of an EMI shielding. Therefore a copper chute was

constructed for the COBRA EMI shielding, see Figure 1.11.

Nitrogen Flushing In the natural uranium and thorium decay chains, which are also

contained in rock and concrete, radon isotopes are produced. Radon is a noble gas and

can diffuse out of the rock and concrete and also through thin layers of light materi-

als, such as plastic foils [Heu95]. The activity from airborne radon in buildings differs

depending on the uranium and thorium content in the surrounding materials, but is

usually in the order of several ten Bq/m3.

The 232Th decay chain contains 220Rn, which has a short half-life of 55.6 s, and the
238U decay contains 222Rn with a half-life of 3.8 d. Due to its comparatively short half-life

the influence of 220Rn is small compared to 222Rn. The half-life of 222Rn is sufficient to

diffuse out of rock and concrete and into the experimental set-up. The daughter isotopes

of 222Rn contain several α- and β-decays. One of them is the β-decay of 214Bi with an

energy of the β-particles of up to 3.3 MeV. β-decays are dangerous for COBRA because

they have a much higher penetration depth than α-particles and they can even mimic the

event topology of an 0νββ-decay. Currently, α-decays are the main source of background

in COBRA’s ROI, see e.g. the discussions in Section 2.4 and Subsection 3.1.1. In [Mü07]
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Figure 1.11.: COBRA prototype set-up at LNGS. Visible is the PE neutron shielding (white)

and the EMI-shielding as outermost layers, a preamplifier box and the lead castle. The lead

castle consists of several layers of lead surrounding a copper core (NEST) containing the

detectors. Now the lead castle is surrounded by a radon-tight Tropac foil to ensure efficient

flushing with evaporated nitrogen.

and [Koe08] it was shown that the main source of remaining background for the COBRA

R&D set-up derived from radon diffusing into the inner parts of the set-up.

To reduce the background, a nitrogen flushing and monitoring system was developed

[Mü07, Ale09, Sch11a]. The set-up is flushed with gaseous nitrogen that is evaporated

from liquid nitrogen and filtered with a charcoal filter. Evaporation of liquid nitrogen

instead of using bottled gaseous nitrogen is preferred because it is cheaper and also

cleaner. Uranium and thorium impurities are also contained in steel. When nitrogen

is stored in steel bottles, radon from the thorium and mainly the uranium daughters

can slowly diffuse out of the steel of the bottles and concentrate in the nitrogen. The

emission of radon from the walls of a nitrogen dewar is lower due to the low temperature

of liquid nitrogen. The charcoal filter, which is covered by liquid nitrogen, has a much

higher efficiency at liquid nitrogen temperature because the kinetic energy of the gas

molecules is strongly decreased and thus they stick better to the large surface of the

charcoal filter.

To increase the efficiency of the nitrogen flushing and to reduce the required consump-

tion of nitrogen, a diffusion barrier for radon and an overpressure of nitrogen within the
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set-up is desirable. Initially, the construction of a comparatively gas proof EMI shielding

was tested. It turned out that this cannot be efficiently realised. Surrounding the set-up

with a common plastic foil is also not sufficient because plastics are hardly a barrier for

radon. Following the results of [Mam11], a radon tight enclosure of the whole lead-castle

consisting of Tropac III foil and aluminium sheet angles was constructed in [Teb11].

Even though the immediate background from radon can be significantly reduced by

permanent flushing of the set-up with clean nitrogen, it should be mentioned that the

radon decay daughters stick to surfaces and can produce a long lived background. The
222Rn sub-chain contains the long-lived isotope 210Pb with a half-life of 22.3 years. The

influence of this long-lived background on the current set-up is discussed in Subsec-

tion 3.1.1.

Lead Castle and Copper Nest α- and β-particles are absorbed within a thin layer of

material. The attenuation coefficient for γ-particles on the other hand is comparatively

small. Especially high energetic γ-radiation can deeply penetrate even heavy materials

like lead. Even though COBRA’s ROI is above the highest naturally occurring γ-line

with significant intensity, the 208Tl 2.6 MeV line, a good shielding against γ-radiation

is necessary to have a high sensitivity to other interesting physics processes, such as

the fourfold forbidden β-decay of 113Cd [Daw09a] or 0νββ-decays to excited states. As

the results of Subsection 2.4.3 show, especially for the large scale set-up and a very low

background level also higher energetic γ-lines with a low intensity can become a serious

background source.

To shield the COBRA R&D set-up from external γ-radiation, the detectors are sur-

rounded by a lead castle and an inner core of pure copper. Lead has the advantage

of a high density and high nuclear charge and thus a high attenuation coefficient for γ-

radiation. Furthermore, its cross section for neutron capture and interaction with cosmic

rays is low. On the other hand it is problematic to produce intrinsically clean lead. The

separation of the 210Pb daughter (T1/2 = 22.3 years) of the 238U decay chain from the

lead ore is practically impossible. For intrinsically radiopure lead either ore from a mine

with very low uranium contamination or ancient lead has to be used. The radiopurity

of lead is usually given as the activity of 210Pb per kg lead. Radiopure lead is expensive,

therefore the lead castle is build with lead layers of different grades of radiopurity. In

the scope of the recommissioning of the set-up after the move to the new location in the

former HdM experiment, the innermost lead layer was replaced with 5 cm of ultra clean

lead with a 210Pb activity of less than 3 Bq/kg. In total the 60 cm × 60 cm × 60 cm lead

castle provides a shielding of at least 20 cm of lead in every direction.

The detectors are shielded from remaining intrinsic decays from the outer lead layers

with an innermost 5 cm layer of copper. Due to its high redox potential and its pro-

duction process copper can be produced with a high purity [Heu95]. Furthermore the

mechanical properties of copper make the machining much easier than for lead. The

drawbacks of copper compared to lead are its lower attenuation coefficient, the higher
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Figure 1.12: A 16 detector layer. The white

detector holder structure is made from Delrin

(POM). For the signal readout Kapton cables

are applied to achieve a high density of signal

traces. This high density is required to connect

all 32 detector anodes within the little space

that is available at the anode side of the layer.

The HV is supplied with RG178 coaxial cables

(visible at the upper right corner). The detector

electrodes are connected to the solder pads of

the Kapton and the RG178 cables with gold

wire and LS200 conductive lacquer.

cross section for neutron caption and a higher production rate of radionuclides by acti-

vation from cosmic rays. The problem of activation is especially disturbing for sites with

a low overburden and a high flux of cosmic rays. Experiments with a low overburden

therefore usually apply only a thin inner layer of copper. For experiments like COBRA

with a high overburden, the activation during the run-time of the experiment is negligi-

ble, but the production of long-lived cosmogenics during storage and machining at the

surface has to be taken into account.

Detector Mounting and Contacting The inner copper part of the set-up can house

up to 64 CPG detectors. They are arranged in four layers and each layer contains 16

detectors. A picture of such a detector layer is shown in Figure 1.12. The choice of

the materials for the detector holders was done following the principles of using as little

material as possible and as radiopure material as possible.

The holder structure for the detectors is made from the thermoplastic POM. Actually,

POM produced by DuPont with trade name Delrin is applied. The readout of the anodes

is done with Kapton cable [Raj]. The design of Kapton cables is necessary because a

high density of signal traces is needed to read out all 32 detector anodes and still keep

a decent accessibility to the detectors.

Initially, also for the HV Kapton cables were applied. It turned out that the Kapton

is not suitable for HV and is prone to sparkovers. Therefore RG178 coaxial cables are

applied in the current set-up for the supply of the HV.

The electrodes of the detectors are connected to the Kapton solder pads and the

RG178 cables with gold wire and LS200 conductive lacquer [Koe08, Raj]. LS200 is a

silver based conductive lacquer. 109Ag can be activated by neutrons to the long-lived
110mAg (T1/2 = 249.8 d). From the decay of 110mAg β-particles with an energy up to

2891 keV can be emitted and thus, in principle, produce background in COBRA’s ROI.

However, the emission probability of such a high energetic β-particle is very low and the

amount of conductive lacquer is very small. The actual number of background events in

COBRA’s ROI therefore is expected to be negligible. Measurements of a LS200 sample
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1. Introduction

Figure 1.13: Comparison of spectra taken with

the old peak sensing ADC and the new FADC

(still with single-ended signalling). Both spec-

tra were taken with the same detector and op-

timised settings. With the naked eye the bet-

ter energy resolution is hardly visible from the

smaller width of the red curve, but clearly vis-

ible from the increase in the height of the full-

energy peak. With the new designed electronics

with differential signalling the achieved resolu-

tion with this detector was further improved to

2 % FWHM at 662 keV, see Figure 1.17. Energy [keV]
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[Ned13] and recent simulations based on this measurement confirm this assumption.

1.2.3. Electronics

During the last few years major modifications were made in the COBRA data acquisition

(DAQ). Until 2010 a preamplifier circuit with adjustable gain of the NCA signal and

output of the CA-NCA difference signal was applied. The difference signal was shaped

and amplified with a main amplifier (shaper) and the pulse height was recorded with

a peak sensing analog to digital converter (ADC). The whole electronics, except the

preamplifier modules, was designed and manufactured at TU Dortmund [Kie05, Mü07].

In 2009 several fast analog to digital converters (FADCs) (Struck SIS3300) were reas-

signed from the decommissioned AMANDA experiment to COBRA [Sch11a]. The ap-

plication of FADCs instead of peak sensing ADCs allows for the recording of the whole

signal shape instead of only the absolute signal amplitude. This additional information

is very valuable to identify background events from the shape of the recorded pulses.

This includes background from physics events as well as rejection of EM disturbances.

Furthermore, also an improvement of the achievable energy resolution is possible as the

whole signal processing can be done digitally and sophisticated filters and algorithms

can be applied. A comparison of the achieved resolution with the old DAQ readout

chain and an intermediate stage of the new DAQ readout chain is shown in Figure 1.13.

To profit from the benefits of the FADC data recording the whole DAQ readout chain

had to be replaced. The design of the DAQ software was done in [Sch11a]. The design of

the new electronics was done in close cooperation of Oliver Schulz [Sch11a], Jan Tebrügge

[Teb11] and the author. Most of the electronics are already described in [Sch11a, Teb11],

so here only the most important features are summarised and a few additional comments

are given.

The cables between the detectors and the preamplifiers are kept as short as possible

to reduce effects from cable capacities and EM disturbances that can affect the small

detector signals before the amplification. The preamplifiers are contained within the EMI
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Figure 1.14.: Principle of differential signalling, taken from [Teb11]. To transmit a signal

with differential signalling, at first the SE signal (indicated in blue) has to be duplicated

in a differential transmitter. The duplicated signal is inverted to have two complementary

signals. Both signals are transmitted from the transmitter to the differential receiver on wires

that are close to each other, preferably in twisted pair cables. In the differential receiver the

inverted signal is subtracted from the not inverted signal and thus converted to a SE signal.

The resulting SE signal has an amplitude that is twice as high as the initial signal. EM

disturbances that occur between the transmitter and receiver are likely to affect both wires

similarly (indicated by the red flash). Therefore, they will cancel out during the subtraction

process in the receiver. Even if a disturbance affects only one signal wire (indicated by the

distorted signal on the lower wire), the signal to disturbance ratio is increased by a factor of

two because the signal amplitude is increased by a factor of two.

shielding. The connecting cables between the preamplifiers and the linear amplifiers can

be several meters long and are prone to EM disturbances as soon as they are lead out

of the EMI shielding. To have a more stable signal transition it was decided to use

differential signalling instead of single ended (SE) signal transition. The principle of

differential signalling is explained in Figure 1.14.

The actual charge sensitive preamplifiers are commercially available preamplifier mod-

ules. Mainly Cremat1 CR-110 preamplifier modules are applied in COBRA. Alterna-

tively eV-5093 preamplifier modules from EI Detection & Imaging Systems (EIDIS) are

used. They have a higher amplification and less noise, but are also more expensive, what

has to be taken into account for the amount of readout channels that are necessary for

COBRA.

To operate the preamplifier modules, preamplifier boxes were designed, see Figure 1.15

for a photograph of an eight channel preamplifier box. These preamplifier boxes contain

the preamplifier modules, a circuitry for power buffering and filtering, SE input connec-

tors for the input of the detector signals, a circuitry to convert the amplified SE detector

signals to a differential signal and output connectors to transmit the differential signals

to the linear amplifiers. In the following the term preamplifier will be used synonymously

for the designed preamplifier box.

For the design of the preamplifier a four layer PCB board was chosen to ensure a

1http://www.cremat.com/
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1. Introduction

Figure 1.15.: Signal board of the eight channel (four detector) differential preamplifier box.

The power supply circuitry for the preamplifier modules and the differential ICs is marked

with a red rectangle. The preamplifier modules are surrounded by a sheet steel meander to

shield them from crosstalk and EMI, marked in yellow. The SE to differential conversion of

the preamplifier signals is done with the circuitry marked in white. The jumpers marked in

blue are used to connect the preamplifier modules to an external pulser signal (left row) and

to select CA and NCA channels by applying a negative bias voltage (white plugs) to one of

the two readout channels for each detector (right row, the CA has to be connected to ground

potential with the red jumpers). The jumpers marked with a red circle are used to connect

or disconnect the shield of the RJ45 plugs (the upper two plugs are for the differential signal

output, the lower plug for a differential input of an external pulser signal) to the ground of the

board. A third similar jumper for the signal input plugs is hidden below the meander. The

signal board is set on top of a HV filter board. The reference ground of each HV channel is

connected to the ground of its corresponding signal channel to ensure a good signal return.

The housing of the preamplifier is made from sheet steel to provide a good EMI shielding. The

32 channel (16 detector) preamplifier box is designed analogously.
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solid ground- and voltage plane and enable a good routing of the signal traces. To have

several grounding options, the ground plane of the board is divided into three ground

planes, a major ground plane below the preamplifier modules and the other circuitry

and two other ground planes beneath the input and output connectors. To be as flexible

as possible the ground planes can be connected with jumpers. It turned out that the

best signal quality is achieved when all ground planes are connected with each other and

also with the housing of the preamplifier box.

The preamplifier modules have to be very sensitive to be able to process the small

detector signals. This sensitivity makes them susceptible for EMI and crosstalk between

the preamplifier channels. To reduce both disturbances, the preamplifier modules are

surrounded by a meander made of steel.

GB and HV have to be supplied externally. Both voltages are buffered and filtered

on the preamplifier board. To have a high flexibility, the GB is not fixed to certain

preamplifier channels but can be applied on each channel as desired. This ensures a

flexible choice of the detector anodes concerning operation as CA or NCA. For the HV

a separate two layer board was designed. The signal board (i.e. the actual preamplifier

board) is set on top of the HV board. The reference ground of the HV is directly

connected to the ground of the preamplifier modules with plug contacts to ensure a

short and well defined return path of the signal between the anode and cathode side of

the detector. For the HV board it was taken care to apply only capacitors and resistors

that are suited for HV operation. A first version of the HV board showed sparkovers

due to too small distances between the applied standard solder pads. The solder pads

were modified and the distance between them was extended as much as possible and

the problem with sparkovers was eliminated. The sparkover between the solder pads

is caused by impurities and leakage current on the PCB board surface. For older HV

boards a gap was milled between the solder pads to take advantage of the high breakdown

voltage of about 3 kV/mm of dry air (the dielectric breakdown of dry air occurs at an

electric field strength of about 3× 106 V/m [Tip87]).

At LNGS a detector layer consists of 16 detectors. In laboratory measurements some-

times smaller test layers with up to four detectors are operated, but mainly measure-

ments are done with only one detector. For lab measurements a preamplifier box with

eight readout channels for up to four detectors was designed, for the operation of many

detectors at LNGS the board was extended to a 32 channel (16 detector) preamplifier

box.

For test- and monitoring purposes the preamplifier boxes also contain a pulser input

to connect an external pulser. Analogously to the differential preamplifier signal output

the pulser input is also differential. To convert a SE pulser signal to a differential signal,

hybrids of Nuclear Instrumentation Module (NIM) compatible differential amplifiers and

SE to differential converters were build.

The output signal of the preamplifier modules is very small compared to the input

range of the FADCs. To further amplify the signal and to convert it to a SE signal

31



1. Introduction

Figure 1.16.: Current DAQ chain, taken from [Teb11]. BV (Bias Voltage) is used synony-

mously for HV. The detectors and preamplifier boxes are kept within the EMI shielding (in-

dicated in grey). The signals from the preamplifiers are transferred to the linear amplifiers

with differential signalling. The linear amplifiers amplify the differential signal and afterwards

convert it to a SE signal. They are connected to the VME FADCs with short coaxial cables.

The FADCs are read out with a VME single board computer. The data is transferred to

the actual DAQ computer with Ethernet cables and are stored to disk. The GB and HV are

supplied by Wiener MPOD HV modules. Like the amplification of the linear amplifier they

can be adjusted remotely. To control the linear amplifiers an Arduino micro controller and

differential signalling between the controller and the linear amplifiers is used.

that can be processed by the FADCs, a differential linear amplifier was designed. The

differential signal is amplified before the conversion to a SE signal. The amplification can

be remotely adjusted in 16 steps of 3 dB, what is equivalent to a factor of 103/20 ≈ 1.41

per step. With the lowest setting the signal input is attenuated by about a factor of 0.5,

the highest amplification setting equals a factor of 0.5× 1015×3/20 ≈ 89. A schematic of

the whole new readout chain is shown in Figure 1.16.

With the new readout electronics and the differential signalling the achieved energy

resolution was further improved. Figure 1.17 shows a measurement with a 137Cs source

together with a reference pulser. The resolution that was achieved for the pulser signal

is close to the value given by Cremat for the equivalent noise (resolution) of their pream-

plifier modules. This is a benchmark for the good quality of the designed electronics.

The slightly worse resolution compared to the Cremat specification is certainly due to

the imperfect pulser signal. A pulser amplitude of 8 mV is comparable to a detector

response for a 662 keV energy deposition. To generate such a small pulser signal with

an acceptable signal to noise ratio a good pulser (BNC PB-5 Pulse Generator) with

internal attenuation and an additional external attenuator was applied, but the noise of

the attenuated pulser signal can certainly not be neglected. However, the comparison

of the resolution obtained with the pulser and with a good spectrometer grade CPG

detector shows that the contribution of the electronics to the achievable resolution is
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Figure 1.17: Comparison of a
137Cs (662 keV) CPG detector

spectrum and electronics resolu-

tion determined from a pulser.

The detector spectrum and the

pulser spectrum were taken simul-

taneously. For the measurement

Cremat CR-110 preamplifier mod-

ules were applied. The electronics

resolution of 0.4 % ≈ 2.6 keV is

close to the value of 2.4 keV given

by Cremat as resolution of their

preamplifier modules.

not negligible, but the total resolution is still dominated by the intrinsic resolution of

the detectors.

The complete preamplifier and linear amplifier electronics for the read out of the

COBRA R&D 64 detector array and for laboratory measurements of the Dortmund

COBRA group was build at the mechanical and electronics workshops of the TU Dort-

mund faculty of physics. The knowledge for the assembly of the electronics was also

transferred to the DESY electronics workshop of the Uni Hamburg COBRA group. Ad-

ditional five readout systems for the groups at Hamburg and Dresden were build there.
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2. Simulation Studies

2.1. Geant4 and the VENOM Simulation Program

Important parameters of an experiment such as the detection efficiency or the expected

background contribution can often not be measured directly. The analytical calculation

of such parameters is usually also not possible due to the complexity of the underlying

physical processes. Therefore experiments often rely on computer based simulations to

obtain information on these parameters.

The simulation program developed for and applied by COBRA is called VENOM.

It is based on the Geant41 [Ago03, All06] simulation framework for Monte Carlo (MC)

simulations of the passage and transport of particles through matter. Therefore VENOM

is, like Geant4, object orientated and written in C++.

Geant4 is applied by many high energy particle physics experiments such as AT-

LAS or ALICE, but is also used in space-based astroparticle physics, e.g. by several

ESA projects, as well as in medical and biological applications, e.g. dosimetry and

brachytherapy.

Models for various interactions of particles with matter are implemented in Geant4.

This includes the interaction of hadrons such as protons and α-particles, as well as elec-

tromagnetic interactions of electrons, muons and γ-radiation. The cross sections of all

these interactions are energy dependent. The various fields where Geant4 is applied

require accurate simulations of particle interactions whose energies differ by several or-

ders of magnitude. Especially EM processes, namely the interaction of charged particles

such as electrons and ions, as well as γ-radiation, can be calculated analytically for high

energetic particles. But for COBRA’s main ROI of several keV up to few MeV, these

analytical calculations become unreliable. Therefore Geant4 also provides low energy

extensions for these cases [Cir10].

As Geant4 is a simulation toolkit it provides various methods of particle interactions,

particle generations, geometry definitions and so on. To use these methods a program

has to be designed that makes use of these methods and provides amongst others the

choice of the appropriate interaction method, initialization of parameters, data output

interfaces and geometry definitions. For COBRA this task is fulfilled by VENOM.

As the EM physics methods were revised with the Geant4 9.3 version and many

processes were replaced or not supported any more, VENOM now applies the physics

list of the Geant4 underground physics example. There the Livermore package for low

1See also http://geant4.web.cern.ch
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energy EM processes is applied. It evaluates tabulated data of cross sections from

several data bases to calculate particle interactions. Accurate calculation down to a

particle energy of 250 meV is expected [Cir10].

2.1.1. Random Number Generator Initialisation

Geant4 offers several pseudo random number generators. The user can choose one of

these random number generators and Geant4 methods relying on random numbers auto-

matically receive the numbers from the chosen generator. VENOM applies the CLHEP

RANECU random engine to create pseudorandom numbers. This algorithm first de-

scribed by L’Ecuyer [L’E88] achieves a period of ≈ 1018 [Jam90] by applying two mul-

tiplicative linear congruential generators to produce random numbers. Therefore this

generator has to be initialised with two seeds. For the initialisation in VENOM the

timestamp (in seconds) of the start of the simulation program was used. To generate

large data samples nowadays often many simulations are executed parallel on a cluster.

Therefore it was possible, especially at the beginning of a simulation run and when the

simulations are run on a cluster with computers with identical hardware, that several

simulations had the same timestamps. Therefore, instead of generating many indepen-

dent simulations, at some times a large number of exactly identical simulations were

generated. Reviewing of the generated simulations revealed that up to 70% of the gen-

erated files for a simulation run had to be discarded as duplicate.

This issue was resolved by applying the ROOT [Bru97] TRandom3 random number

generator [Mat98] to create unique seeds for RANECU and thus for the Geant4 methods

applied in VENOM. CLHEP also contains a table with 215 seed pairs. These tables have

maximum periods. When processing simulations in parallel the number of simulated

events per simulation is in the order of 104 − 105 and thus far below the period of

the RANECU generator. But when processing just one simulation with many events

it is desirable to avoid seeds with a low period and therefore the tabulated seeds with

high periods should be taken. Therefore an interface was implemented that offers the

possibility to use the Geant4 seed table.

Furthermore, logging of the initial seed that is generated from TRandom3 as well

as for the initial RANECU seeds and for the final seeds at the end of the simulation

run was implemented. The implementation of the possibility to set the initial seeds

manually allows for the possibility to take the final seeds of a simulation with a long

period as start values for the next simulation. The possibility to exactly reproduce

simulations by applying the same seeds is even more important. This allows for a direct

comparison after upgrades of Geant4 or changes in the VENOM program such as the

physics lists. For this reason detailed logging of the applied Geant4 and VENOM version

was implemented.
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2.1.2. Position Generator

The generation of a primary vertex is divided into two parts. First, the primary particles

with their energy and momentum are generated. Then positions within the set-up are

generated and assigned to the particles to form the initial vertex. Usually it is desired

to simulate decays inside a volume such as a detector or on the surface of a volume or

within a thin coating on top of a volume, e.g. the passivation of a detector. These three

possibilities were already implemented in VENOM. But confining decays to a volume was

complicated. Besides the name of the confining volume also dimensions of an additional

volume (the generating volume) had to be defined. Positions were generated randomly

within this volume and were rejected if the coordinates were not within the confining

volume.

This method had two major drawbacks. At first, the calculation of the generating

volume was often difficult since the positions of the confining volumes had to be calcu-

lated partly from information that is only available in the geometry source code. When

choosing a large generating volume with a large safety margin, the generation of posi-

tions could become inefficient as many positions had to be rejected. If this safety margin

was omitted and the generating volume was not calculated properly, positions were only

generated in parts of the confining volumes and there was no method to check for such

failure. Each modification of the geometry, such as adding further detectors or changing

their size, required a manual recalculation of the generating volume and the risk of the

mentioned miscalculations arose again.

Secondly the method failed for complex geometries consisting of subvolumes, such as a

pixelated detector consisting of volumetric pixels (voxels) or a complex source geometry.

Often it is desired to generate decays in a volume, but not in subvolumes, e.g. 222Rn

decays inside gas surrounding the detectors, but not in the detectors themselves. As the

detectors are subvolumes of the surrounding gas volume, in general decays in subvolumes

were rejected from the algorithm. Therefore the generation within a complex volume

was difficult and for some geometries even impossible.

For these reasons a new approach to position generation was taken. For this new

method the user only has to define the confining volume by name. The algorithm

searches for volumes with the given name in the simulation geometry. If there is more

than one volume with the specified name, e.g. several detectors, the volume in which the

event will be generated is chosen randomly for each event on the basis of the volumetric

ratio of the confining volumes. Then the positions are generated within this volume in

local coordinates and these coordinates are then transformed to global coordinates.

A base position generator class was written that contains this method for arbitrary

volumes. Local positions are generated within the bounding box of the volume, which is

obtained with Geant4 methods, and points that are not within the confining volume are

rejected. Compared to the former VENOM method, the amount of rejected points is

reduced significantly because the bounding box of a volume is the smallest rectangular

volume that still contains all of the confining volume.
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Figure 2.1.: Generated surface random points on the top side of a tube segment (G4Tubs).

Left: Surface points returned by Geant4 methods. As the radius is generated as a uniformly

distributed random variable the generated points cluster quadratically at a low radius.

Right: Surface points generated with the new implemented VENOM surface generator. The

points are uniformly distributed.

Generating uniformly distributed points on the surface of an arbitrary volume is more

difficult. Geant4 offers methods to obtain points on the surface of any Geant4 volume,

but examination of the source code revealed that these points usually are not uniformly

distributed. In the examined methods, geometrical parameters, such as the radius and

angles for the description of a sphere, are generated from uniformly distributed random

variables and they are transformed by applying the common coordinate transformations,

such as from Cartesian to spherical coordinates. But the transformation of the probabil-

ity density functions (PDFs) that are required to obtain uniformly distributed surface

points after the coordinate transformation is not taken into account (see for example

Figure 2.1).

As there seems to be a need for uniformly distributed surface points from several

users, currently there are are attempts to implement such general methods in Geant42.

Algorithms to make use of the Geant4 surface point generation methods have already

been implemented in the new VENOM position generator base class and can be activated

when these Geant4 methods are available.

Typical volumes defined in GDML (the format of the newly implemented VENOM

geometry description method, see Subsection 2.1.3) such as cuboids, cylinders or spheres

are imported to Geant4 as Constructed Solid Geometry (CSG) solids [Gea10]. These are

simple solids that can be described by a small set of parameters such as width, height,

radius and angles. To create surface points at least on simple geometrical volumes and

to replace the volume point generation algorithm for general volumes with more efficient

customised methods, it is possible to derive classes from the position generator base

class. These classes overwrite the methods from the base class. For the most impor-

tant CSG solids, i.e. rectangular volumes (G4Box), which are by far the most applied

2see discussion at http://bugzilla-geant4.kek.jp/show_bug.cgi?id=1074
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solid type in COBRA, as well as tube segments (G4Tubs) and spherical shell segments

(G4Sphere), such derived classes were implemented in VENOM. In these methods prop-

erly calculated random variable transformations (see Appendix A) are applied. A solid

manager determines whether the confining volumes belong to the implemented types

and chooses the appropriate generator and the general point generator otherwise.

The need for a method for the creation of uniformly distributed random surface points

on arbitrary surfaces may arise before the problem is solved in Geant4, or possibly this

problem will not be solved in Geant4 at all. In this case a universal but computational

intensive approach, e.g as proposed in [Det08], can be implemented in VENOM.

2.1.3. GDML Geometry Implementation

The definition of the simulated set-up geometry is usually done by the user in the source

code of his program. This includes the definition of the applied materials as well as the

construction of the volumes composing the physical geometry. This approach is applied

in VENOM. It has the advantage that, if such interfaces are implemented by the user,

parameters such as the dimensions of a detector or a shielding layer can be changed at

runtime. But there are also severe disadvantages.

To generate or modify a geometry a user has to possess a good knowledge of the

C++ programming language, Geant4 methods and the user specific program, in this

case VENOM. Especially generating a new geometry is complex, as a complete C++

class containing the geometry and often also a messenger class to change parameters at

runtime have to be written. The geometry class then has to be registered to the user

program and Geant4 administration classes. This makes it nearly impossible to design

a new geometry quickly or even do simulations in the scope of a short based thesis such

as a bachelor thesis.

The catenation of the actual simulation framework and the simulation geometry may

also complicate the work with the same program in a larger collaboration. As in col-

laborations the programs are usually distributed to several people who download from

a common version controlled source, customisation of a geometry by one person also

affects the results of other users working with the same geometry. Furthermore hard

coded geometries are not portable to other simulation packages as they strongly depend

on the methods of a simulation package.

For these reasons, alternatives were discussed for the implementation of the complex

DLB geometry for VENOM. It was decided to use GDML3 [Chy06]. The main ad-

vantages of GDML are that it is developed at CERN and therefore is supported not

only by Geant4 but also by ROOT. So GDML based geometries can be applied in both

important software frameworks. Furthermore GDML is based on the XML document

structure rules, it is both human-readable and editable with every editor program as

well as machine-readable. The syntax of GDML can be learned fast, hence the effort to

3See also http://gdml.web.cern.ch/GDML/
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set up a geometry and do a simulation is significantly reduced. Even the implementation

of a complex set-up such as the DLB was possible as a part of a bachelor thesis [Sch10].

Geant4 provides methods to import GDML geometries. During the scope of this

work these methods were applied to implement a GDML input and output interface in

VENOM. The complete integration as exchangeable geometry module is not possible

due to Geant4 issues, namely the incomplete recalculation of cross sections after the

addition of materials.

At startup cross sections for several physical processes are calculated for the elements

contained in the materials table. Usually materials applied in a GDML geometry are

defined within the description file. When imported, these materials are added to the

materials list, but for several physics processes the lists of cross sections are not properly

updated. This holds especially for neutron capture cross sections from the HPNeutron-

Data class4. Therefore, physics processes try to access data during the simulation that

is not available, which leads to program termination.

To solve this problem two possibilities were found. First it is possible to apply only

materials already predefined in the VENOM materials list and to omit the definition of

materials in the GDML file completely. This method is contradictory to the main aims

flexibility and independence of geometry and simulation framework. Therefore an option

to initialise VENOM with a GDML geometry including material definitions instead of

the standard geometry was added. The disadvantage of this method is that the standard

materials and thus the hard coded geometries are not available during this simulation

run. But as the change of geometry during one simulation run is very unlikely this is a

minor issue.

As the data output format is left to the user by Geant4, the geometry importing

methods do not provide a direct possibility to set a volume as sensitive volume to read

out information on the deposited energy and to connect it with a data output format.

VENOM contains three data output classes. The GermaniumSensitiveCrystalData class

is for simple geometries and only contains information on the energy deposited in one

volume. To handle more complex structures as a pixel detector and multi-detector set-

ups the PixelDetectorData and Array64SensitiveCrystalData classes are implemented.

Multi-detector set-ups or pixel detectors that consist of an array of pixels are realised

by copying the same volume several times. Every copy is identifiable by its copy-level

specific copy number. For example, a pixel is copied several times in a pixel detector.

This pixel detector can than be copied again. The data output class then reads out the

copy number of the pixel copy level and the detector copy level and assigns them to

pixel- and detector identifiers (IDs).

To mark volumes as sensitive volumes, connect them to appropriate data classes and

assign copy numbers for the volume identification in the output data, methods have

been implemented to the VENOM GDML reader module. Here care was taken that this

VENOM specific information can be implemented in a GDML file without extending or

4See e.g. Geant4.bug report #1156, http://bugzilla-geant4.kek.jp/show_bug.cgi?id=1156
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Figure 2.2: Simplified GDML

model of a CPG (red) measure-

ment set-up. To contact the

cathode from below, a cut-out is

below the detector. The Delrin

structure that is holding the de-

tector was omitted as it consists of

a small amount of light material.

The radioactive source is within

an acrylic plastic container. The

bottom and side plate of the set-up

consist of Aluminium.

breaking the GDML scheme to keep the geometries readable also by other programs.

Therefore the GDML possibility to attach auxiliary information to volumes was used.

As auxiliary GDML information is versatile, also the possibility to assign colours to

volumes or materials for graphical output as auxiliary information was implemented.

The applied parsing methods can easily be used to assign also other information to

volumes if needed.

Several GDML examples have been added to VENOM in order to show the correct

syntax usage and to provide a variety of geometries that can be customised and extended

by the user.

2.1.4. Data Amount and User Cut Settings

In simulations with an external source that is some distance away from the sensitive

volume, e.g. the measurements described in Section 2.2, only a small fraction of the

generated events deposit energy in the sensitive volume. For example, in the 152Eu

simulation energy was deposited in the germanium crystal in only 3 % of the generated

events. Nevertheless, for storing these events the same amount of memory as for events

with energy deposition is needed. Keeping also events without energy deposition adds

certain convenience during the data evaluation. But as especially for the simulation types

described above the generation of many events is necessary, the size of the data output

can be significantly reduced when information of the events without energy deposition

is not stored. Therefore methods and a user interfaces were implemented to allow for

discarding these events. Also the possibility to reduce the amount of information that

is stored by the data classes mentioned in Subsection 2.1.3 (e.g. the ID and z-voxel

information for a pixel detector when simulating only one two-dimensional detector)

were added.

Furthermore often only γ-radiation from the source is able to reach the detector as

electrons or α-particles from the primary decay cannot escape the source. Nevertheless,
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2. Simulation Studies

Figure 2.3: Saving of simulation time for user

range cuts on minimum remaining track range

in a 232Th simulation. The geometry shown in

Figure 2.2 was used and the cuts were set to the

radioactive volume of the source. As the 232Th

chain contains many α- and β-decays and only

0.3 % of all generated events deposit energy in

the sensitive CPG volume the CPU time for

the simulation is decreased significantly with

stronger cuts. Large cuts leading to very low

simulation times may distort the simulation re-

sult in the low energy region as bremsstrahlung

from electrons is also suppressed. mµMinimum remaining track range / 
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Geant4 tracks all particles in all volumes with the precision that is set in the physics

list. Especially for set-ups with little mass such as the CPG test set-up (see Figure 2.2)

it is very likely that γ-particles escape the geometry with no or only few interactions.

Thus the tracking of γ-particles is often much less time consuming than the tracking

and computation of the propagation of solid particles. Therefore often most of the

computation time is used for particles that will not contribute to the result of the

simulation.

For these cases, Geant4 offers the possibilities to connect volumes with so called user

cuts. These cuts have to be specifically activated for particles. There are several user

cuts such as the maximum allowed length of a step, the minimal remaining energy for

a track or the minimum remaining range of a track. The user can set limits to these

conditions. If one of these limits is exceeded, the particle is stopped and the tracking is

aborted. As electrons and α-particles have a very short range in matter, the possibility

to set the user cut of the minimal remaining range of a track for electrons, positrons,

α-particles and also γ-particles was added to VENOM. The cuts can also be applied to

several particle types simultaneously. The reduction of computation time for a 232Th

simulation with the CPG geometry from Figure 2.2 is shown in Figure 2.3. Here the

range cuts were applied to the active source volume for α and β-particles. By applying

such user cuts the required CPU computational time can be reduced in this case by

more than an order of magnitude.

Some detector systems like the DLB have an energy threshold far above the Geant4

energy tracking limit of 250 eV, which is defined in the physics list. In the case of the

DLB, the energy threshold is at about 40 keV due to the detector end-cap. To suppress

tracking of particles below this threshold also the possibility to set a volume specific cut

on the remaining kinetic energy of a track was implemented.
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Year Geant4 Version Efficiency / %

2003 unknown, [Blo07] 66.5

2007 unknown, [Daw09b] 61.0

2010 9.2.p01 55.8

2012 9.4.p04 49.3

Table 2.1: Efficiencies for 116Cd 0νββ-

decay full energy deposition determined

with several Geant4 versions. As the log-

ging of the Geant4 and VENOM version

was only recently implemented the ex-

act Geant4 version is not known for older

simulations.

2.2. First Tests with DLB Geometry

Geant4 supports GDML from version 9.2. So VENOM was migrated together with T.

Neddermann to the current Geant4 version, which was 9.3 at that time. As already

mentioned in Section 2.1, several physics processes in the VENOM physics list were

marked as deprecated and removed in Geant4 version 9.4. As Geant4 9.4 contained a

better GDML support and to profit from the physics model improvements and keeping

VENOM compatible with newer Geant4 versions, the VENOM physics list was replaced

by the Geant4 underground physics example physics list.

Changes in the physics lists or Geant4 versions can lead to noticeable changes in the

outcome of the simulation. As can be seen from Table 2.1, the efficiency of a full energy

deposition in a 1.05 × 1.05 × 1.05 cm3 CdZnTe detector for a 116Cd 0νββ-decay event

decreased steadily with improved Geant4 versions during the last years (because the

logging of the software version for better reproducibility was introduced to VENOM

just in the scope of this work, only for a few simulations the used Geant4 version is

known). A verification of simulated data therefore is desirable.

There are efforts to validate the applied physics models and cross sections, see e.g.

[Apo10, Cir10, Iva11]. They include cross checks with data bases such as NIST as well

as experimental verifications, especially for higher energetic processes. There are also

validation checks outside the Geant4 collaboration, e.g. [Bos11]. But as the simulated

energies and material properties differ for each experiment, it was proposed to define

VENOM standard simulations, if possible verify them experimentally and use them to

validate VENOM with these simulations after major Geant4 upgrades or changes in the

physics list. One good candidate will be explained in the following.

In 2008 the High Purity germanium detector facility DLB was set up at TU Dortmund

[Ned13] to test the radiopurity of materials for COBRA. To calculate the activity of a

material a detection efficiency has to be determined from MC simulations. Therefore the

geometry of the whole set-up was implemented in GDML [Sch10]. As the germanium

crystal itself is enclosed in a vacuum sealed housing, information from the manufacturer

on the crystal dimensions and position were used. As there were several uncertainties

regarding the specifications, an elaborate tuning of the detector geometry is crucial

for an optimal agreement between simulation and measurement. This was done by T.

Neddermann in [Ned13].

For a first test to validate VENOM’s GDML extension and to verify the geometry
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2. Simulation Studies

Energy

[keV]
Meas. [1/s]

Sim., new

PhyList [1/s]
Deviation [%]

Sim., old

Phylist [1/s]
Deviation [%]

81.0 5.871 ± 0.005 5.87 ± 0.10 -0.1 ± 1.6 5.83 ± 0.10 0.7 ± 1.6

160.6 0.137 ± 0.002 0.14 ± 0.01 0.8 ± 10.2 0.19 ± 0.01 -38.4 ± 10.3

223.2 0.085 ± 0.001 0.07 ± 0.01 19.1 ± 13.7 0.08 ± 0.01 7.6 ± 13.9

276.4 1.180 ± 0.002 1.26 ± 0.03 -6.3 ± 2.2 1.23 ± 0.03 -4.0 ± 2.2

302.9 2.846 ± 0.003 3.06 ± 0.05 -7.4 ± 1.9 3.21 ± 0.06 -12.7 ± 1.9

356.0 8.608 ± 0.005 9.09 ± 0.14 -5.7 ± 1.7 9.04 ± 0.14 -5.0 ± 1.7

383.8 1.184 ± 0.002 1.35 ± 0.03 -13.8 ± 2.3 1.36 ± 0.03 -14.8 ± 2.3

Table 2.2.: Measured and simulated count rates of a 133Ba source. Especially for higher ener-

getic lines the simulated count rates in the full-energy peaks are higher than the measurement.

Energy

[keV]
Meas. [1/s]

Sim., new

PhyList [1/s]
Deviation [%]

Sim., old

Phylist [1/s]
Deviation [%]

121.8 7.381 ± 0.005 7.74 ± 0.12 -4.9 ± 1.6 7.88 ± 0.12 -6.7 ± 1.7

244.7 1.520 ± 0.003 1.70 ± 0.03 -11.9 ± 1.9 1.70 ± 0.03 -11.7 ± 2.0

295.9 0.078 ± 0.001 0.08 ± 0.01 -1.8 ± 6.9 0.09 ± 0.01 -10.2 ± 9.8

344.3 4.320 ± 0.004 4.72 ± 0.07 -9.2 ± 1.7 4.67 ± 0.07 -8.0 ± 1.7

367.8 0.132 ± 0.001 0.14 ± 0.01 -4.5 ± 4.2 0.13 ± 0.01 -1.8 ± 5.7

444.0 0.416 ± 0.001 0.45 ± 0.01 -8.1 ± 2.3 0.44 ± 0.01 -5.4 ± 2.7

688.7 0.085 ± 0.001 0.090 ± 0.004 -6.0 ± 5.0 0.114 ± 0.006 -35.1 ± 7.4

778.9 1.177 ± 0.002 1.23 ± 0.02 -4.7 ± 1.8 1.28 ± 0.02 -8.8 ± 2.0

867.4 0.352 ± 0.001 0.38 ± 0.01 -7.1 ± 2.3 0.38 ± 0.01 -9.0 ± 2.9

964.1 1.149 ± 0.002 1.26 ± 0.02 -9.7 ± 1.8 1.24 ± 0.02 -7.6 ± 2.0

1112.1 0.963 ± 0.002 1.07 ± 0.02 -10.7 ± 1.9 1.08 ± 0.02 -11.7 ± 2.1

1213.0 0.096 ± 0.001 0.105 ± 0.003 -5.8 ± 3.6 0.105 ± 0.005 -9.4 ± 4.9

1299.1 0.103 ± 0.001 0.115 ± 0.003 -12.3 ± 3.3 0.113 ± 0.004 -9.9 ± 4.4

1408.0 1.258 ± 0.002 1.39 ± 0.02 -10.8 ± 1.8 1.44 ± 0.03 -14.8 ± 2.0

Table 2.3.: Measured and simulated count rates of a 152Eu source. Especially for higher ener-

getic lines the simulated count rates in the full-energy peaks are higher than the measurement.
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Figure 2.4: Geometry

for DLB reference mea-

surement. The reference

source (the active area

of the source is marked

in red) is placed 21 cm

above the germanium

crystal (marked in yel-

low). The grey shades

indicate the various lay-

ers of the shielding. The

top cover of the set-up

was raised to be able to

put the source above the

detector.

model and the simulation in general, simulations of two reference measurements provided

by T. Neddermann were done and evaluated. As in the applied Geant4 version 9.3 the

old and the new physics lists were still supported, the simulations were done with both

of them to compare the results.

As reference sources 133Ba and 152Eu were taken because these sources were available

with known activity and they provide γ-lines in a wide energy range between 81 keV and

1408 keV. The correct geometry (see Figure 2.4) of the reference source in the GDML

set-up geometry was provided by T. Neddermann. The sources were placed 21 cm above

the detector to avoid near detector effects, such as random or true coincidence summing

of the emitted γ-particles. Additionally, small inaccuracies of the source position have

a smaller influence for larger source-detector distances.

To compare the measurements and the simulations the activity of the sources was

calculated from the manufacturer information of the activity and the reference date.

The relative uncertainty of the activity was given with a 2σ confidence level to be 3 %,

which equals σ
A,rel = 1.5 %. The uncertainty of the activity was taken into account

for the calculation of the time-equivalent of the simulation. This 1.5 % uncertainty is

the largest contribution for the statistical uncertainty of the simulation (except for lines
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2. Simulation Studies

with a very low intensity).

The simulation was convoluted with the resolution information obtained from the

measurement. The peak content within ±1.25×FWHM of the full energy peaks of γ-

lines with a reasonable intensity was determined in the simulation and the measurement,

and activities were calculated for these lines. The wide counting range of ±1.25×FWHM

(equivalent to ±2.9σ or > 0.997 % of a Gaussian distribution) ensures a minor influence

of uncertainties in the exact width of the full energy peak. To obtain an approximation

for the background within the counting area an area of ±1.25×FWHM to the left and

to the right of the signal region was used. Care was taken to choose only γ-lines that

have no other lines in the signal or in the background region.

The results of the comparison are listed in Table 2.2 and Table 2.3 and for direct

comparison the measured and simulated spectra together with the deviation

Dev =
Nmeas. −Nsim.

Nmeas.

of the simulation from the measurement are shown in Figure 2.5 and Figure 2.6. As

can be seen there the general shape and ratios of the intensities of the γ-lines fit well.

The ratio of full energy peak to background is higher in the simulation than in the

measurement. For low energies, readily visible in Figure 2.5 for the 133Ba lines, the

full energy peaks fit well and the simulated background is lower than the measured

background. The simulated and measured background fit well at higher energies, but

the full energy peaks are higher in the simulation than in the measurement. This can

be seen from Figure 2.6 for the 152Eu source. This results in an overestimation of the

full energy peak detection efficiency. The effect is small for lower energies and increases

to about 10 % for higher energies.

Similar effects, also in the same order of magnitude of several per cent, have also been

observed in other Geant4 simulations of germanium detectors [Hau09, Hau10, Bos11].

In these publications, an inaccurate implementation of the geometry is often assumed

to be one of the main reasons for the deviation. As already mentioned, the geometry

applied for these first DLB simulations relied on the information of the manufacturer

and this may not be absolutely precise. Another source of error for the comparison is

the exact position of the reference source.

Other reasons can be inaccuracies in the applied physics processes. For the interaction

of γ-particles with matter the cross sections for the underlying physics processes like

photo- and Compton effect have to be implemented properly. As germanium is an often

applied and well known material, this will certainly be the case. Furthermore also the

propagation and energy deposition of the electrons after the interaction of the γ-particles

have to be implemented properly. As can be seen from Table 2.1, this may be a major

problem.

Finally, Geant4 only supplies the pure energy deposition in the sensitive volume. All

detector effects, such as charge transport, charge trapping or imperfect field distribu-

tions, for example at the edges of the germanium crystal, are not taken into account and
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Figure 2.5.: 133Ba DLB simulation and measurement. Even though the geometry model was

not optimised, simulation and measurement agree well, especially at higher energies. The

simulation shows a higher peak to background ratio than the measurement, especially for lower

energies. The divergence of the full-energy peak contents of the simulation to the measurements

is improved with the new physics list.
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Figure 2.6.: 152Eu DLB simulation and measurement. Simulation and measurement agree

well. Like for the 133Ba measurement, the peak to background ratio is noticeably too large for

low energies and the full energy peak efficiency tends to be overestimated for higher energies.

These discrepancies can be decreased by optimisation of the applied geometry [Ned13].

48



Energy / keV
158 159 160 161 162 163

C
ou

nt
s 

/ k
eV

 / 
kg

 / 
d

6

8

10
12

14

16

18

20
22

24

26

28

310× Ba DLB measurement133

Ba DLB simulation, new PhyList133

Ba DLB simulation, old PhyList133

Energy / keV
675 680 685 690 695

C
ou

nt
s 

/ k
eV

 / 
kg

 / 
d

1000

2000

3000

4000

5000

6000
Eu DLB simulation, oldPhyList152

Eu DLB simulation, new PhyList152

Eu DLB measurement152

Figure 2.7.: Left: 161 keV 133Ba line and Right: 689 keV 152Eu lines with large divergences of

measurement and simulation with the old physics list. It is not clear where these discrepancies

derive from, especially as lines in the vicinity of the 689 keV line were reproduced correctly.

However, the mismatch is corrected with the new physics list.

cannot be computed with Geant4. This is possibly the main reason of the deviations. An

approach to this problem is a tuning of the geometry of the detector so that it may not

reproduce the true detector geometry but agrees better with the measurements [Ned13].

Even though the observed discrepancies between the simulation and the measurement

are in the order of a few per cent, the accuracy is quite good when taking into account the

not optimised detector geometry and neglected detector effects. The large discrepancy

in the simulation with the old physics list for the 689 keV 152Eu and the 161 keV 133Ba

line (see Figure 2.7) were corrected with the new physics list.

2.3. Simulation and Measurement of a 232Th Source for

a CPG Detector

The main COBRA detector material is not germanium but CdZnTe. To test the va-

lidity of CdZnTe simulations therefore also a first test simulation with a γ-source was

done. In the simulation the simplified GDML model of the measurement test set-up

shown in Figure 2.2 was used. For a comparison between measurement and simulation

the calibrated sources applied for the DLB simulations are not suitable because their

activities are very low and the active mass of a CdZnTe detector is much smaller than

for the germanium detector. Also the energy resolution is worse. Instead a 232Th source

was chosen to make a first comparison between measurement and simulation. The 232Th

chain contains many α-decays. Therefore the simulation of this decay chain requires a

lot of computation time. On the other hand, only about 0.1 % of the simulated events
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Figure 2.8.: 232Th simulation and measurement for a CPG detector. For the simulation the

geometry shown in Figure 2.2 and a 10 MeV cut to suppress extensive calculations of α-particles

were used. The simulation was scaled by the ratio of events between 100 keV and 2650 keV

in the measurement and the simulation (by a factor of 2.1). The 2.6 MeV line differs more

certainly due to detector effects that cannot be reproduced with Geant4.

deposit energy in the active detector volume. To have a sufficient statistic, many events

have to be simulated. In this case 2× 109 events were processed. By applying an energy

tracking cut for α-particles (see Subsection 2.1.4) of 10 MeV and only writing events

with energy deposition, the computation time was reduced by more than a factor of 100

and the file size even by a factor of 1000. By not applying cuts to the range of the

β-particles the risk of neglecting bremsstrahlung from the source was avoided.

To compare the measurement and the simulation, the simulated events were convo-

luted with a Gaussian whose parameters were determined from the resolution of the

measured spectrum. The simulated spectrum was then scaled with the sum of events in

the measurement between 100 keV and 2650 keV by a factor of 2.1. The measurement

and the scaled simulation are shown in Figure 2.8 and an enlarged view in Figure 2.9.
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Figure 2.9.: Enlarged view of Figure 2.8. Similar to the DLB simulation the peak to back-

ground ratio is better in the simulation than in the measurement. For CdZnTe this is partly

due to the more complex detector effects. This can be seen from the fact that a Gaussian

energy resolution does not fit perfectly to the full energy peaks and consequently events with

full energy deposition are partly in a low- and high-energy tail.

The general shape of the spectrum fits surprisingly well in the whole energy range,

but it becomes obvious that detector effects play a larger role than for the simulation

of germanium. The approximation of the energy resolution as a Gaussian function does

not fit perfectly. For several peaks a low and high energy tail is visible. This effect is es-

pecially strong for the 2.6 MeV line. An explanation may be that for such a high energy

the interaction process differs significantly from lower energies. The most dominating

effect is Compton scattering followed by pair production (visible from the single escape

peak at 2.10 MeV deriving from one 511 keV positron annihilation γ-particle escaping the

detector and the double escape peak at 1.59 MeV deriving from both 511 keV positron

annihilation γ-photons escaping the detector) . The probability for photoelectric ab-

sorption is up to two orders of magnitude lower than these processes. Therefore the full

energy peak at 2.6 MeV derives mainly from γ-particles undergoing Compton scattering

followed by photoelectric absorption of the scattered γ-particle, a so called multi site

event. This may lead to a different charge transport or charge collection behaviour for

the high energetic γ-particles.

As already observed for the germanium simulation the peak to background ratio seems

to be higher in the simulation than in the measurement. In this case, the effect of the

low and high energy tails described above is one of the main reasons for this mismatch as

the height of the peaks in the measurement is reduced by the number of events in these

tails. The mismatch of simulation and measurement differs also significantly for different

γ-lines, as can be seen in Figure 2.9. This may also be a hint on not exactly implemented
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intensities for the γ-lines in Geant4. For example the 911.2 keV and 969.0 keV from the
228Ac fit well whereas the 338.3 keV line from the same decay is significantly too high.

In contrast to the DLB simulation, the ratio of measurement to simulation increases

with higher energies from a value of 1 (due to the normalisation) at 100 keV to about

a factor of 1.15 at 2500 keV. Even though an exact comparison of the simulation and

the measurement is not possible due to the unknown activity of the applied source, one

can conclude that the average deviation of the simulation from the measurement should

be less than 10 %, which is an acceptable value. To confirm this assumption, reference

measurements with a calibrated source and an exact implementation of the geometry

should be made.

Another reassuring result of the comparison is the comparatively good agreement of

the double escape peak with the rest of the spectrum. The double escape peak derives

from pair creation of the 2.6 MeV γ-particle in the detector. As both 511 keV γ-particles

escape the detector, the whole energy is deposited by the electron and the positron. This

resembles a double beta decay. As the double escape peak is well reproduced also the

simulations of the double beta events should be reliable.

2.4. Background Study for a Large Volume Pixel

Detector

2.4.1. Description of the Large Volume Pixel Detector

Pixel detectors offer new possibilities for the reduction of background with their addi-

tional spatial information. For COBRA three types of pixelated detectors are under

investigation [Sch11b]. Very promising results were achieved in [Sch11a] with a large

pixel detector provided by the group of Z. He from the University of Michigan. All

background events in a region of ±1 FWHM around 2.8 MeV could be discarded by

applying cuts on events in the outer volume and the number of hit pixels.

The applied γ-ray spectrometer detector system (Polaris System [Kay10, Zha07]) con-

sists of up to 18 CdZnTe pixel detectors in a (3 × 3 × 2) configuration. The system is

read out with a 129 channel application-specific integrated circuit (ASIC). 11×11 anode

pixels, the planar cathode and a grid structure, a so called steering grid (see Figure 2.11),

can be read out. The steering grid is slightly negatively biased compared to the poten-

tial of the anodes. It focuses the drifting charge to the pixels in order to minimise the

effect of charge sharing. By evaluating the cathode to anode ratio and/or information

on the drift time of the charge, besides the 2D information from the hit pixel also depth

information is available. So the full 3D position of an interaction can be obtained.

The prototype tested in [Sch11a] consisted of one 2×2×1.5 cm3 pixel detector mounted

on a 3×3 detector board. It was housed on top of the COBRA CPG set-up at LNGS. The

electronics and the detector were not low background optimised. Therefore a shielding

of the system with 10 cm of lead was expected to be sufficient. As the heat producing
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readout electronics are close to the detector, cooling inside the massive lead shielding

is a problematic issue. It was solved by coupling the detector housing thermally to the

lead. The temperature could be stabilised, but as the detector performance decreases

with higher temperatures [Kay10] the heat production maybe negatively influenced the

measurement (see Subsection 2.4.2).

The applied detector was a 2×2×1.5 cm3 detector crystal with 11×11 pixels, a pixel

pitch of 1.8 mm and an anode steering grid. Recently the group of the University of

Michigan achieved an energy resolution of up to 0.5 % FWHM at 662 keV, see [Zha12].

There it was stated that the achieved energy resolution strongly depends on the number

of hit pixels because the electronic noise in each triggered pixel contributes and the

signal crosstalk (charge sharing) between pixels also increases. The effect of charge

sharing can be decreased by the already mentioned steering grid, see also [Kim11], but

it is not compensated completely. In [Zha12] also Geant4 simulations of several sources,

the highest energetic one being 60Co, were compared with measurements. It turned out

that while simulation and measurement agreed well in general for the lower energetic

sources, the full energy peak efficiency for 60Co in the inner 9× 9 pixels also agreed well

with the simulation, but the measured efficiency for the outer pixels was significantly

smaller than predicted. It was assumed that this effect derives from incomplete charge

collection below the steering grid at the edges of the detector. As can be seen from

Figure 2.11, the outer part of the steering grid surrounds the pixels at the edge of the

detector. So maybe the negative potential that focuses the charge inside the steering

grid leads to a larger charge collection inefficiency at the edges.

To cross-check the obtained results and to explore the possibilities of pixel detectors

with large pixel size, the influence and veto capabilities for several background sources

as well as the 0νββ-decay detection efficiency were simulated in the scope of this work.

As detector effects cannot be taken into account and therefore exact comparability with

measured data cannot be achieved, the used geometry was not a detailed model of the

Polaris system but the general dimensions were included. The simulated set-up is shown

in Figure 2.10. 2× 2× 1.5 cm3 CdZnTe pixel detectors with 11× 11× 11 voxels with a

25µm thick passivation on the sides of the detector (cathode and anode are not covered

by the passivation) were put on a 1.5 mm thick FR4 PCB board. As with the Polaris

system the detectors were arranged in two 3 × 3 detector layers and like for the test

set-up at LNGS surrounded by 10 cm of lead. The distances between the detectors were

approximated from information from [Zha07].

2.4.2. Results for 0νββ-decay of 116Cd

Detection Efficiency for 0νββ-decay To obtain information on the distribution of
116Cd 0νββ-decay signal events and the influence to the detection efficiency, 5 × 106

0νββ-decay intrinsic events were simulated within the detector. The detection efficiency

here is defined as the probability to observe an event with full energy deposition in the

detector. Electrons from events close to the surface of the detector crystal can leave the
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Figure 2.10: GDML imple-

mented set-up for the large

volume pixel simulations.

Nine detectors (blue) with

a volume of 2 × 2 × 1.5 cm3

and 11 × 11 × 11 voxels are

arranged in two 3 × 3 arrays

on two PCB boards (green).

The sides of the detectors

are covered with a 25µm

thick passivation (red). The

detectors are surrounded by

a 10 cm thick layer of lead

(grey). The horizontal dis-

tance between the detectors is

5 mm and the vertical distance

10 mm. The dimensions are

roughly adapted from [Zha07]

Figure 2.11.: Left: Steering grid of a Polaris detector, taken from [Sch11a]. Right: One assem-

bled detector module mounted on a 3× 3 detector motherboard, taken from [Zha12].
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Figure 2.12.: Influence of applied large pixel cuts to 0νββ-decay detection efficiency. Left:

About 58% of all full energy events affect less than 3 pixels (here: ideal energy resolution, so

all full energy events are above 2.8 MeV). Right: Spectra of energy deposition summed over all

detector pixels. By applying the cut criteria of less than 3 connected pixels and only events

from the inner 9 × 9 × 9 voxels, the efficiency is reduced from 62% to 18%. The distortion

of the cut histogram in the lower energy region compared to the uncut histogram derives

from discarding most of the events with contribution of bremsstrahlung by applying the ≤ 2

connected pixel constraint.

crystal and thus do not deposit their full energy inside the detector.

Since CdZnTe is a high Z material, another significant process is the production of

bremsstrahlung. As the range of γ-particles in material is longer than the range of

electrons, the escape of the higher energetic bremsstrahlung is more likely than for elec-

trons. It can also occur in events that are not close to the detector surface. γ-particles,

unlike electrons, do usually not deposit energy on their path through matter. However,

it is possible that also the bremsstrahlung is absorbed in the detector. But it is very

likely that the energy deposition of the original electron and from the bremsstrahlung

takes place in different, not connected parts of the detector. Such multi-site events are

discarded as they often derive from background processes. This also reduces the signal

detection efficiency. Spectra of the energy deposition for 0νββ-decays together with the

number of hit pixels for events with an energy ≥ 2.7 MeV is shown in Figure 2.12.

Without any cuts the full energy detection efficiency adds up to 62 %. By discarding

all events with an energy deposition in the outer voxels, the efficiency is reduced by the

loss of active volume, namely a factor of
(

9
11

)3
= 0.55 to 34 %. By additionally accepting

only events with less than three connected pixels the efficiency is further reduced to 18 %.

Simulated Background Model and Background Reduction Possible background was

assumed to derive from contaminations in the detector passivation paint, the PCB car-

rier board and the lead surrounding the set-up. For the paint the activity of the red
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Figure 2.13.: Efficiency of large pixel cuts for γ-particles with energy deposition of more than

2.7 MeV from the simulation of 232Th in lead. As all other particles are stopped in the lead

layer, the energy deposition derives from 208Tl γ-cascades (compare Table 2.6). Always at

least two γ-particles are involved and Compton effect is dominating in this energy region. The

requirement of connected pixels therefore reduces the background significantly. A comparison

with the distribution of hit pixels for 0νββ-decay of 116Cd (see Figure 2.12) shows that a

restriction to less than two pixels gives the optimal signal to background ratio.

Simul. BG Type
Sim.

Events
Frac. of Fit Sim.

to LNGS Data

BG Evts

before Cuts

BG Events

after Cut

Passivation 10 ×106 0.008 134411 0
232Th in PCB Brd 30 ×106 0.1 6691 3
238U in PCB Brd 30 ×106 0.1 4185 2
40K in PCB Brd 10 ×106 0.01 0 0
222Rn in Gas 10 ×106 0.05 29553 1
232Th in Lead 5 ×109 0.01 790 2
238U in Lead 1 ×109 0.02 43 2
40K in Lead 10 ×106 0.01 0 0

Table 2.4.: Simulated background contributions for the Polaris System. As ROI events in the

energy region 2700 keV-3300 keV were taken. Events with lower energies penetrating the ROI

due to finite energy resolution are not included in this table. For the simulation of events in

lead an energy cut < 10 MeV to α-particles was applied. The number of simulated events was

chosen so that the simulation corresponds to at least 10 times the measured data.
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passivation lacquer applied by EIDIS5 (see Table 2.9, Section 2.5) was used.

Judging from the γ-lines in the measured spectrum and by taking into account the

commonly known major background sources the main background derives from decays of

the 232Th chain, the 238U chain, 40K and airborne 222Rn. For each of these background

components separate simulations were produced assuming the decay chains to be in

equilibrium.

Because the volume of the lead layer is large compared to the detector volume and

the interaction probability of high energetic γ-particles from the lead is low, much more

events had to be simulated for this background source. α-particles on the other hand are

stopped immediately in the lead and therefore will not deposit energy in the detectors.

Therefore a < 10 MeV energy cut (see Subsection 2.1.4) on α-particles was used for the

lead simulations to suppress the tracking of α-particles and reduce the computation time.

For the other background sources no cuts were applied to ensure a correct reproduction

of all possible contributions.

The energy (see e.g. Figure 2.14) and penetration depth of α, β- and γ-particles

differ significantly. Therefore they have to be treated differently to achieve an optimal

background suppression. The energy of α-particles is usually at least 1 MeV above

COBRA’s ROI. Their range in matter is very short, only several µm for most materials.

So as their energy loss per travelling length is high, even in gaseous materials, α-decays in

thick material layers such as the lead cannot deposit energy in the detectors. But decays

on the surface of the detectors themselves or surrounding materials close to the detectors,

in the thin passivation lacquer of the detectors or in the gas layer surrounding them are

likely to lose a significant part of their energy and therefore the energy deposited in

the detectors may be lowered to the ROI. In fact, 0νββ-decay experiments with a high

Q-value such as CUORE assume that their main background in their ROI derives from

α-particles that have lost energy in surrounding materials [Pav08]. Also the evaluation

of the simulations done in the scope of this work showed that e.g. most of the events in

the ROI from the PCB boards derive from α-decays. The PCB board is comparatively

thin, which favours decays close to the surface and PCB also consists mainly of light

elements. Nevertheless these α-decays have to occur very close to or on top of the surface

of the PCB board and directly beneath the detectors.

Even though the expected background from α-particles is very high it can be reduced

effectively, because the range of the α-particles is very small and they do not produce

bremsstrahlung. So they can be vetoed completely by discarding events in the outer

voxels.

As can be seen from Figure 2.14, only the 238U chain contains β-decays with energies

up to 3.3 MeV (also 40K emits β-particles with maximum 1.3 MeV). They derive from
214Bi decays with a high probability of 20 % [Fir98]. For high energetic β-particles it has

to be taken into account that their penetration depth even into high Z materials can be

several mms (see Section 2.6) and significantly more in low Z materials like the PCB

5http://www.evmicroelectronics.com/
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Figure 2.14.: Energy and particle dependent composition of decays from the 232Th (top) and
238U (bottom) chain. Plotted are primary particles from Geant4 simulations. The composi-

tion of the background in the main ROI for 116Cd differs for both chains. While several γ-

and β-particles from the 238U chain have energies up to 3.2 MeV the background from these

particles from the 232Th chain stops at 2.6 MeV (not taking into account coincidences). The

monoenergetic β-line in the 232Th spectrum at 2.5 MeV derives from internal conversion of the

2.6 MeV excited state of 208Pb (and therefore these electrons are technically not β-particles

but electrons from the atom shell).
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board. Energy loss in the passivation is negligible.

Like in the case of 0νββ-decay the high energetic β-particles radiate bremsstrahlung

on their way through matter. The bremsstrahlung can escape the detector completely

or be deposited in another part of the same detector, also in the inner voxels. These

events resemble Compton scattered γ-particles. On their path through dense matter,

unlike γ-particles, the electrons constantly deposit energy in the material by ionising

it. Most of the energy in events without emission of bremsstrahlung (see Section 2.6)

is deposited at the end of their path. But still a significant fraction will be deposited

along the path. Because the β-particles always have to pass through the outer voxel

layers, whether they will produce bremsstrahlung or not, and the voxel size is large even

compared to the average penetration depth of the highest energetic electrons, there is

always a measurable energy deposition in the outer pixels. Thus interaction involving

external high energetic β-radiation can also be vetoed by discarding events with energy

deposition in the outer voxels.

Similar to the case of β-particles, the γ-background from the 238U chain seems to be

more dangerous than from the 232Th chain. High energetic γ-particles usually derive

from de-excitation of a nucleus after a β-decay. Even though also α-decays in principle

are often accompanied by γ-radiation, the γ-energies and the intensities are usually much

smaller than for β-decays. The only isotopes in the two decay chains with a higher Q-

value than 2.3 MeV are the 214Bi decay to 214Po (3.3 MeV) from the 238U chain and the
208Tl decay to 208Pb (5.0 MeV) from the 232Th chain.

Both nuclei differ significantly regarding the emitted radiation. 214Bi is a 1− nucleus

and its daughter 214Po a 0+ nucleus. Therefore the transition to the ground state is

possible and results in 20% of the decays in the afore mentioned β-particle with up to

3.26 MeV. Also the decay to many excited states and the de-excitation via a γ-cascade

is possible. The variety of emitted γ-particles is very high, with energies ranging from

several hundred keV up to 3.2 MeV. As there are many decay channels, the intensity of

most γ-lines are below 1 %. γ-particles from this decay with an energy > 2.7 MeV and

intensities > 0.1% are listed in Table 2.6.

In this energy region Compton scattering is by far the dominating effect (see Fig-

ure 2.15). The maximum transferable energy via Compton effect for a 3 MeV γ-particle

is about 2.8 MeV and thus in the ROI. For lower energetic γ-particles with the energy in

the ROI, besides the rather unlikely full energy deposition via photoelectric effect also

Compton scattering with subsequent Photoelectric effect of the scattered γ-particle is

possible. As can be seen from Figure 2.15, this effect is especially likely for events with a

high energy transfer to the electron and a low remaining energy of the scattered photon.

If an interaction with a high energy transfer to an electron takes place, this electron

afterwards behaves like an intrinsic high energetic β-particle. The average range of a

2.8 MeV β-particle is higher than for (on the average) two 1.4 MeV electrons because
dE

dx
usually is higher for lower energies. A simulation (see Figure 2.16) showed that on

average nearly 0.5 more pixels are hit. By applying the same cuts like for 0νββ-decay,
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Figure 2.15.: Attenuation of γ-particles in CdZnTe. Data taken from NIST XCOM.

the full energy detection efficiency amounts to 10 %. Thus the signal to background

ratio in this case is about 1.8.
208Tl is a 5+ and its daughter 208Pb a 0+ nucleus. Therefore the decay to the ground

state is highly suppressed. The β-decay to the 3.2 MeV state of 208Tl (49 %, 1.8 MeV)

is the highest occurring decay. The de-excitation of the excited states nearly always

(Iγ = 99.2 %) happens by emission of a 2614.5 keV γ. Thus in a 208Th decay always at

least two γ-particles, one being the 2.6 MeV γ, occurs. The most frequent coincident

decays are also listed in Table 2.6.

Even though the interaction of one of these γ-particles will not result in an energy

deposition within the ROI, the summing of energy depositions of two γ-particles can

still produce background. The interaction of two γ-particles will often take place in

separate regions of the detector. The background events can be reduced significantly

by accepting only events with energy deposition in few connected pixels. This can be

seen from the number of hit pixels from 232Th chain events in the lead. α-particles

and β-particles are stopped nearly immediately, therefore background with an energy

deposition above 2.6 MeV can only derive from summing of the 208Tl γ-particles. As

shown in Figure 2.13, the number of events with energy deposition in more than two

pixels is by far dominating. The number of events above 2.7 MeV is reduced by more

than an order of magnitude by accepting only events with connected pixels and still by

more than a factor of three for events with less than three hit pixels.

Coincident β-γ energy depositions, e.g. in the PCB close to the detectors, are vetoed

again by discarding all events with energy deposition in the outer pixels.

Taking into account all background sources and the loss of 0νββ-decay efficiency, the

best signal to background ratio was found to be achieved by applying several cuts si-

multaneously. Events with energy deposition in the outer voxels have to be discarded
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Figure 2.16: Number of hit pixels for

full energy deposition of intrinsic

2805 keV electrons. Compared to a

2805 keV 0νββ-decay event (see Fig-

ure 2.12, there 5 · 106 events and here

1 · 106 events were simulated in total)

the average range is larger for a single

electron with also 2805 keV. Applying

the same cuts like for the 0νββ-decay

simulation the detection efficiency of a

full energy event is 10 %, compared to

18 % for a 0νββ-decay event.

Simul. BG Type
Energy Deposition

in Detector [keV]
Decay

Energy of contributing

γ-particles [keV]

232Th in PCB Board 2891.9 208Tl 2614.5 (PE) + 277.4 (PE)
232Th in PCB Board 2796.7 208Tl 2614.5 (CS) + 583.2 (PE)
232Th in PCB Board 2787.0 208Tl 2614.5 (CS+PE) + 583.2 or 510.7 (CS)
238U in PCB Board 2752.2 214Bi 3000.0 (CS)
238U in PCB Board 2760.7 214Bi 3053.9 (CS)
222Rn in Gas 2769.9 214Bi 2769.9 (PE)
232Th in Lead 2802.2 208Tl 2614.5 (CS) + 510.7 (PE)
232Th in Lead 3204.0 208Tl 2614.5 (CS) + 860.6 (CS)
238U in Lead 2921.8 214Bi 2922.1 (CS+PE)
238U in Lead 2715.2 214Bi 3053.9 (CS)

Table 2.5.: Remaining background for the large volume pixel detector after cuts. The remain-

ing background derives from γ-particles, mainly from the 208Tl γ-cascade. CS denotes an

interaction of a γ-particle via Compton scattering and PE via Photo effect. If an interaction

via Compton scattering is involved, the energy deposition within the detector does not have to

be equal to the sum of energies of the contributing γ-particles. Note also the 0.3 keV difference

between the 2921.8 keV line implemented in Geant4 and the energy of 2922.1 keV given by

[Fir98].

61



2. Simulation Studies

Energy / keV
0 500 1000 1500 2000 2500 3000 3500 4000

C
ts

1

10

210

310

410

Th,  all events232PCB, 

Th,  inner evts, <=2 connected pixel232PCB, 

Energy / keV
0 500 1000 1500 2000 2500 3000 3500 4000

C
ts

1

10

210

310

410

Th,  all events232lead, 

Th,  inner evts, <=2 connected pixel232lead, 

Energy / keV
0 500 1000 1500 2000 2500 3000 3500 4000

C
ts

1

10

210

310

410
U,  all events238lead, 
U,  inner evts, <=2 connected pixel238lead, 

Figure 2.17.: Background reduction of cuts for a large volume pixel detector for several back-

ground types. By applying cuts on the inner volume of the pixel detector and the number of

hit pixels the number of background events above 2.6 MeV can be reduced by several orders

of magnitude, but not eliminated totally. The efficiency of the background reduction differs

strongly for materials close to the detector (e.g. 232Th in the PCB board) or further away in

the lead of the shielding. See also Table 2.5.
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to veto external α- and β-particles. Rejecting all multiple detector events reduces the

background from decays with coincident γ-particles and γ-β-coincident decays. Accept-

ing only events with connected pixels and energy deposition in less than three pixels

reduces the remaining γ-background. These cuts are also favoured by the better energy

resolution of events with few triggered pixels and the assumed charge collection inef-

ficiency for edge pixels mentioned in Subsection 2.4.1. The background reduction and

remaining background between 2.7 MeV and 3.2 MeV are listed in Table 2.4 and in de-

tail in Table 2.5. Note that eight of the ten remaining background events are directly in

COBRA’s direct ROI between 2.7 MeV and 2.9 MeV. In Figure 2.17 the resulting spectra

for 232Th events in the PCB board and 232Th and 238U decays in the surrounding lead

are shown.

From the tables and the figures it can be seen that the efficiency of the background

reduction strongly depends on the particle type and the position of the surrounding

material. Before applying cuts, the main entries in the ROI derive from α-decays in the

surrounding gas, the PCB board and the passivation paint and only a small fraction

from energy depositions of γ-particles. Because the reduction of background from α-

and β-particles by discarding events with energy deposition in the outer voxels is very

efficient, the background can be reduced by four to six orders of magnitude. The only

remaining background that can not be discarded by applying the explained cuts derives

from the comparatively small fraction of γ-particles.

Background from the surrounding lead cannot be reduced as effectively as background

from other background sources due to the fact that it consists only of γ-radiation. For
232Th decays the cut to two connected pixels still reduces the background by more than

two orders of magnitude. This cut is efficient for this decay chain because the energy

deposition in the ROI can only happen by the interaction of at least two γ-particles,

and it is unlikely that they will interact in two neighbouring voxels.

In the case of γ-radiation from 238U contaminations in the surrounding lead the back-

ground suppression has the lowest efficiency of all background types. The gain in signal

to background ratio for the applied cuts is still a factor of six. But this ratio shows that

γ-background from the 238U chain certainly is the most dangerous background for pixel

detectors with large pixel size, even though its fraction in the initially emitted particles

is very small.

Comparison with LNGS Data To have an estimate on the main background sources,

to cross-check the experimental results found in [Sch11a] and to obtain a prediction for

the sensitivity of a full 9×9 polaris detector set-up the simulated background was fitted

to the experimental data. For this purpose a histogram with identical binning to the

measured spectrum was created for each background contribution. The spectra were

convolved with the energy information obtained from the experimental data. A function
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Isotope Eγ [keV] Intensity [%] Isotope Eγ [keV] Intensity [%]
214Bi 2770.0 0.024 208Tl 2614.5 + 583.2 49
214Bi 2880.4 0.010 208Tl 2614.5 + 583.2+277.4 6
214Bi 2922.1 0.017 208Tl 2614.5 + 860.6 12
214Bi 2978.8 0.015 208Tl 2614.5 + 510.7 + 583.2 23
214Bi 3000.0 0.010 208Tl
214Bi 3053.9 0.020 208Tl

Table 2.6.: High energetic γ-particles and cascades from 214Bi (238U chain) and 208Tl (232Th

chain) decays. Listed are the lines with the highest intensity for the 214Bi decay and the most

significant cascades for the 208Tl line. Data taken from [Fir98].

with scaling factors ai for each simulated background

f(E) =

Nbg∑
i=1

ai ·BinContentHisti(bin=̂E) (2.1)

was fitted to the experimental data. The scaling factors ai denote the ratio of measured

to simulated time. Hence, together with the number of background events from this

background source, they can also be understood as a measure for the order of importance

of the background source. The determined scaling factors are listed in Table 2.4 and the

resulting simulated spectrum is plotted in Figure 2.18 together with the measurement.

Data in the range from 350 keV up to 3.8 MeV was used for the fit. Below 320 keV the

influence of the intrinsic 113Cd decay influences the spectrum. The description of the

shape of the 113Cd spectrum is still debatable [Daw09a]. To avoid further uncertainties

therefore only data above 350 keV was taken.

As can be seen from Figure 2.18, the fit of the simulated data and the measured data

fit well below 1.4 MeV and above 2.7 MeV. Similar to the comparison of a measured and

simulated 232Th CPG detector spectrum in Section 2.3, the ratio of measurement and

simulation increases with higher energies of the γ-particles. Also similar to Section 2.3,

the divergence is worst for the tails of the 2.6 MeV line, again certainly because detec-

tor effects cannot be taken into account by Geant4 measurements. The slope in the

ratio also suppresses the 40K fraction in the fit. The 40K γ-line at 1461 keV is nearly

completely suppressed. 40K only introduces background by a β-decay to 40Ca with a

branching ratio of 89 % and an energy up to 1312 keV and by the 1461 keV line deriv-

ing from electron capture to 40Ar. Thus it cannot introduce background in COBRA’s

ROI but was originally introduced as background contribution for a better modelling

of the overall spectrum. It is suppressed in the fit because a stronger contribution of

its Compton continuum and β spectrum in the lower energetic region would result in a

stronger deviation of the ratio of measurement to simulation in the region between 1.7

and 2.7 MeV. The average ratio of 1.4 in this energy region can be taken as a measure

for a correction on the maximal upper uncertainty of the predicted background level
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as the rest of the fitted spectrum fits well to the measured data (the average ratio in

the whole fit are is 1.1), and except the 40K line the lines of the 232Th and 238U decay

chains were reproduced well. As the fit includes eight parameters and the influence of

several uncertainties (see below) is not known, the resulting background composition can

only be understood as a rough approximation of the true background. The fit depends

strongly on the full energy peaks to obtain information on the single background com-

ponent. The fit therefore also depends strongly on the applied energy limits, especially

for the components with low contribution. For these reasons in Table 2.4 only the most

significant digit without uncertainties is indicated.

There are certainly three main reasons for the stronger deviation in the middle energy

range. First, as can be seen from the deviation of the tails of the 2.6 MeV line, detector

effects like charge transport and collection, electron trapping, charge sharing or effects

of the measurement electronics could not be taken into account. Usually these detector

types are optimised for an optimal detector behaviour at standard energy lines used

for comparison, such as the 137Cs 661.7 keV line or the 60Co 1173.2 keV and 1332.5 keV

lines and therefore to energies below COBRA’s ROI. Different detector parameters may

improve the detector behaviour and diminish detector effects at higher energies.

Second, as the main focus lay on the general determination of main background sources

for large volume pixel detectors and the exact dimensions of the Polaris system were not

known, the simulated geometry was not a detailed model of the Polaris set-up. Small

hard to measure inaccuracies like dead layers or the thickness of the passivation lacquer

can change the simulation outcome especially in the energy region above 2.7 MeV as there

the main background derives from α-decays. The detector behaviour and efficiency on

the sides close to the steering grid is hard to predict and therefore was not taken into

account. Thus, the deviation of at the most 40% between the γ and the α dominated

part of the spectrum is a surprisingly good result. Also the simulation was done for a

3 × 3 × 2 detector array whereas only one detector was operated at LNGS. Several of

these discrepancies such as the differences in the distances to the lead will certainly be

averaged out, but nevertheless will contribute to the deviation.

Finally, as no measurements of the radiopurity of the applied components existed, it

was assumed that the decay chains are in equilibrium. Especially the 238U chain has

three very long lived members with half-lives > 103 years among the first five daughter

nuclides. So if one of the chain daughters is partly removed, e.g. during the fabrication

process of the PCB board, the chain is no longer in equilibrium. This will lead to a

falsely simulated ratio of α and γ/β-decays in the chain.

A comparison of the measurement and the simulation after the cuts is shown in Fig-

ure 2.20. Here multiple detector events were not discarded because the Polaris oper-

ating system contained only one detector. Discarding multiple detector events changes

the shape of the spectrum significantly, as can be seen in Figure 2.19 due to the large

detector size and the small space between the detectors.

In the ratio of measurement to simulation again a slope is recognisable. In contrast
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Figure 2.18.: Data taken with the Polaris detector system at LNGS [Sch11a] and the simu-

lated background spectrum. The composition of the background was determined by a fit of

the simulated expected background components to the experimental data in the range from

350 keV to 3800 keV (The region below 350 keV was not taken into account as intrinsic 113Cd

decays contribute significantly to this part of the spectrum). The calibration of the measured

spectrum had to be corrected slightly. The simulation was convoluted with a Gaussian energy

resolution determined from the measurement. Like for the simulation in Section 2.3 the ratio

of measurement to simulation increases with higher energies. This effect is stronger here as

the fit of several background components to the data adds a further uncertainty. Because

systematic uncertainties are dominating, no error bars have been added to the ratio.
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Figure 2.19.: Comparison between simulated spectrum with and without discarding multi-

ple detector (coincident) events. Outer pixel and events with more than two hit pixels

were discarded. The rejection of multiple detector events significantly reduces the Compton

background.

to the fit to the full measured events in Figure 2.18, the ratio here is decreasing towards

higher energies. For energies above 1.5 MeV the ratio is too small by about 30 %. Here

the significance of the ratio, especially between the Compton edge and the full energy

peak and at the high energy tail of the full energy peak, is low because only a little data

remained in the measured spectrum after the cuts were applied. Like the deterioration

of the energy resolution for high energies the smaller count rate in the simulation for the

higher energetic region may be a hint to a stronger influence of charge sharing at higher

energies. For further experiments this influence can certainly be reduced by optimising

detector parameters like the steering grid voltage for higher energies. Below 800 keV the

ratio is too high. This effect is especially strong at low energies. Between 700 keV and

1.5 MeV the ratio is in a region of ±20 % around 1.

Certainly also the inaccuracies in the geometry implementation, like shielding effects,

or further background of the many detectors play a more important role when the cuts

are applied. Besides the already mentioned charge sharing between the pixels also the

uncertainties in the background composition and Geant4 inaccuracies (e.g. the range of

high energetic electrons) contribute to the discrepancy between the ratio of measurement

and simulation before and after the cuts were applied.

In [Sch11a] the number of background events between 2.7 MeV and 2.9 MeV could

be reduced to two events and between 2750 keV and 3 MeV even to zero events by

discarding events with more than two connected pixels and events in the outer pixels.

To compare this number also the energy resolution has to be taken into account because

especially in the background from 232Th events in the surrounding lead many 2.6 MeV

energy depositions from the 208Tl decay appear. With the determined energy resolution

of 2.8 % on the average nearly 17 events are measured above 2.7 MeV, see Figure 2.21.
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Figure 2.20.: LNGS Polaris measurement and simulated spectrum after cuts. The simulated

contributions to the background were scaled with the factors determined from the full spectrum,

see Figure 2.18. A slope in the ratio of measurement to simulations is visible. It can certainly

be partly explained by charge sharing between the pixels that could not be taken into account

in the simulation. The error bars in the ratio of measurement to simulation only indicate

statistical errors from the partly sparse statistics.
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Figure 2.21.: With the determined energy resolution of 2.8 % at 2.6 MeV some events from the
208Tl 2615 keV line can be measured above 2.7 MeV. In the case of the simulation of 232Th in

lead, this background up to 2750 keV is even higher than remaining background from coincident

γ-summing because there are many 2.6 MeV energy depositions.
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This number strongly varies with the presumed energy resolution. The number of events

is reduced to zero above 2750 keV. For 232Th in the PCB board still 0.8 events on the

average are observed above 2.7 MeV. For the other background sources this effect is

negligible.

By summing up all background sources and taking uncertainties to the number of

observed events according to [Ber12] from [Fel98] for the case of no background, the

estimated background for the data collected at LNGS is (0.8 ± 0.4) cts. The deviation

between the simulation and the measurement is taken into account by assuming an

uncertainty of 40 % for the time measure determined by the fit of the simulations to the

experimental data. The simulated count rate is still in agreement with the observed two

events.

For a higher accuracy, the simulations can be repeated with the exact Polaris geometry

and with approaches to take also detector effects into account. For the purpose that

was pursued in the scope of this work, i.e. verifying the first experimental results and

to explore the vetoing power of large volume pixel detectors in general, the accuracy of

about 30 % is sufficient.

Estimation of 116Cd 0νββ sensitivity for a full Polaris System To predict the sen-

sitivity of a full 18 detector Polaris system, the number of expected background events

and their variation has to be estimated. Sensitivity is defined as the exclusion of back-

ground fluctuation at a certain CL, usually a 90 % upper limit. This number is used

as an approximation for events that can be interpreted as signal events for the sensi-

tivity estimate. As a measure of the background fluctuation often the square root of

the expected Background
√
B is taken, according to the

√
N estimator in the case of

Poissonian statistics. To obtain the desired CL, this number is scaled by a factor k

determined from the area content of a Gaussian distribution (e.g. k = 1.645 for a 95 %

upper limit and 90 % two sided CL, or k = 1.28 for a 90 % upper limit and 80 % two

sided limit, see e.g. Appendix D).

This procedure is critical in the case of low statistics, as the Poissonian distribution is

asymmetric for small N and approaches the Gaussians distribution only for large mean

values µ (compare e.g. the case of an already large µ = 18.7 and a large µ = 93.6 shown

in Figure 2.22). So applying the Gaussian factor k often does not lead to the desired CL.

In the case of the determined background rate for a Polaris-like system the uncertainty

is comparatively high. When scaling this background rate without taking into account

the uncertainty the determined upper limit can be too low.

For these reasons another approach was taken. To determine the maximal fluctuation

of the background on 90 % CL Poissonian distributed random numbers were generated.

As mean value µ for each random number a Gaussian distributed variable was taken

with the expected number of background events as mean and the error as σ. To obtain a

PDF the resulting histogram was scaled with the number of generated events (105). The

90 % CL upper limit nup on expected background is determined by finding the number
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Figure 2.22.: Poisson distribution with uncertainty of mean µ (blue) and for common Poisso-

nian distribution for exactly known µ (black). The uncertainty of µ was taken into account by

inserting a Gaussian distributed µ in the Poisson distribution. Due to the uncertainty of µ, the

resulting distribution is wider than a usual Poissonian distribution. This effect is especially

strong for large values of µ with large uncertainty sµ. So compared to a prediction for known

µ a gain of accuracy from higher statistics (
√
N law) can be neutralised by the uncertainty of

µ.

n for which the cumulative distribution function (CDF) exceeds 90 %:

nup∑
n=0

P (n) ≥ 0.9 , (2.2)

and the fluctuation nsens as measure for the sensitivity then is taken to be the difference

between µ and nup.

Two examples for obtained PDFs can be seen in Figure 2.22. The distribution of the

Poissonian distributions with Gaussian distributed µ is wider than the normal Poissonian

distribution due to the additional spread of µ. Therefore also the upper limit is higher.

For the cases shown in Figure 2.22, the upper limit without additional uncertainty on

µ is nsens = 6.3 and nsens = 14.4 for µ = 18.7 and µ = 93.6 respectively (compare to

1.28 ·
√

18.7 = 5.5 and 1.28 ·
√

93.6 = 12.4, due to the high slope on the rising edge of

the Poissonian distribution the upper limit is systematically underestimated by the
√
B

approach). When taking into account the uncertainty of the estimated mean value of

events, the upper limits are calculated to be nsens = 8.27 and nsens = 32.4.

Essentially the gain in sensitivity from the
√
N law for Poissonian distributed random

numbers is neutralised by the high uncertainty of the µ itself. This effect becomes more

and more severe with higher uncertainties and higher number of expected counts: The

numbers for µ = 18.7 are still similar, whereas the results for µ = 93.6 differ by more

than a factor of two. When reducing the uncertainties in the described case by a factor

of two the upper limits are calculated to be nsens = 6.3 and nsens = 19.4 respectively.

Consequently, the uncertainty of expected counts has to be taken into account and

has to be reduced as far as reasonably possible. The uncertainty of the determined
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Figure 2.23: Sensitivity for

Polaris-like large volume pixel

detector. The sensitivity is de-

termined on a 90 % CL exclusion

of background fluctuation. For

longer live times the uncertainty

on the expected background level

reduces the sensitivity (compare

Figure 2.22). With a reduced

background level the sensitivity

is better, but not as much as the

background reduction due to the

large uncertainty.

background scaling factors was conservatively estimated from the ratio of simulation to

measurement to be 40 %. To reduce the uncertainty on the main background source, i.e.

events in the PCB board, an additional 108 events were simulated for 232Th and also for
238U. Simulating even more events was dismissed because a main source of uncertainty

are the scaling factors that were determined from the fit to the experimental data. They

cannot be reduced with higher statistics. Furthermore the uncertainty on the remaining

background events is reduced according to the
√
N law only. In total a background

level of (0.30 ± 0.07) cts/keV/kg/yr was calculated for an energy region from 2.7 MeV

to 2.9 MeV.

This background level can be reduced if the set-up is constantly flushed with radiopure

nitrogen and the energy resolution is enhanced so that background caused by resolution

effects, i.e. from the 2.6 MeV 204Tl line, can be neglected (or the ROI is chosen less

conservatively, e.g. ±1 FWHM, equivalent to 2740 keV to 2890 keV). Then the back-

ground rate can be estimated to be (0.15±0.06) cts/keV/kg/yr. The uncertainty is not

reduced as much as the background level itself because the comparatively large uncer-

tainties on the fitted scaling factors stay the same and background with a rather good

known uncertainty is discarded.

By inserting the determined 90 % CL upper limits nsens for the background fluctuation

as measure for signal events in the formula for the half-life determination the sensitivities

plotted in Figure 2.23 and listed in Table 2.7 were calculated. For a live time of about

one year a sensitivity of about 1021 yrs can be achieved. The calculated sensitivity does

not increase significantly with longer live times due to the rather large uncertainty on the

interpolation of the determined to the predicted background. So the actual achievable

sensitivity may be higher than the conservatively determined numbers given here and

can certainly be enhanced considerably with enhanced evaluation methods for the data

measured with a full scale Polaris set-up.
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Livetime µ = 0.30± 0.7 cts/keV/kg/yr µ = 0.15± 0.6 cts/keV/kg/yr

[yrs] nsens
Sensitivity

[1020 yrs]
nsens

Sensitivity

[1020 yrs]
0.5 8.3 8.3 6.4 10.7

1.0 14.5 9.5 11.8 11.6

1.5 20.8 9.9 17.2 12.0

2.0 26.1 10.5 21.6 12.7

2.5 32.4 10.6 27.0 12.7

3.0 38.6 10.7 31.4 13.1

Table 2.7.: Estimated sensitivity for Polaris-like system (90 % CL). On the left side the ex-

pected sensitivity for the determined background level for the LNGS measurement is shown. If

the resolution can be enhanced the background level can be reduced. The gain in predicted sen-

sitivity is not as high as the background reduction because the uncertainty on the background

level is not reduced in the same order as the background itself.

Comparison with current world leading limits for 116Cd The current world leading

limit on 0νββ-decay for 116Cd was established from the Solotvina experiment with ultra

low background CdWO4 scintillation detectors [Dan03]. There a limit of T 0νββ
1/2 > 1.7×

1023 yrs was measured. The achieved background level was stated as 0.04 cts/keV/kg/yr

between 2.5 MeV and 3.2 MeV. With the given energy resolution of 8.9 % FWHM at

2.8 MeV this energy interval corresponds to about ± 1 FWHM around the expected

decay energy of 116Cd. The applied CdWO4 detectors (4× 330 g) were enriched to 83 %

in 116Cd, which is equivalent to a gain of about a factor of 7.3 in source atoms per kg of

detector mass compared to the number of source atoms per kg in CdZnTe. No volume

cuts were applied and the CdWO4 detectors are large and dense. Therefore the efficiency

for full energy deposition was 83 % and thus higher than for smaller CdZnTe detectors.

Together with the gain from enrichment this sums up to a factor of 34 compared to

the assumed not enriched CdZnTe detectors with the applied cuts, and together with

a factor of two from twice the mass under observation to a factor of 68. The live time

of the experiment was about 1.5 yrs and a 90 % CL upper limit of nsig,max = 2.4 signal

events was determined.

To summarise, in a comparable live time the sensitivity of the Solotvina experiment

cannot be reached mainly due to the fact that the detectors are not enriched in 116Cd

and the volume cuts that are very efficient for background reduction also strongly reduce

the efficiency. On the other hand pixel detectors offer a much better energy resolution,

which should enhance the sensitivity of an experiment. The sensitivity of a Solotvina

like experiment to higher half-lives is strongly limited by its comparatively low energy

resolution because the inevitable background from the 2νββ-decay becomes more and

more important for lower half-lives (see e.g. Section 1.2).

The impressive amount of background reduction that can be achieved with large
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CdZnTe pixel detectors clearly shows the huge potential for this detector type if the

main background sources can be reduced. A first step to background reduction may

be replacing the commonly used FR4 PCB boards with cleaner materials, for example

CuFlon [Jos11], and also other electronics components such as capacitors with devices

already measured for the small pixel detectors.

2.4.3. Sensitivity of Large Volume Pixel Detectors for the

0νββ-Decay to excited States

Besides the often discussed 0νββ-decay to the ground state also a decay into an excited

state of the daughter nucleus is possible. Double beta isotopes and their daughters are

0+ nuclei. The mass driven 0νββ-decay is only possible to 0+ states. The transition to

2+ states is also possible, but only if the underlying process is driven by a contribution

from a right handed current. So the observation of a decay to an excited state can help

to disentangle the underlying physics process. Besides it can also serve as cross check

for the 0νββ-decay case [Due11].

Especially for small detectors the probability of observing the energy deposition of

the initial 0νββ-decay in one detector while the de-excitation γ-particle escapes with-

out energy deposition is high. If the de-excitation γ-particle deposits energy in another

detector, preferably by photoelectric effect, the signature of this event is very unlikely

to be mimicked by background events. In the case of 0νβ+β+ decays, the annihilation

γ-particles from the positrons can also be used in a coincidence analysis to improve the

signal to background ratio. Also high energetic γ-particles can cause 511 keV background

after they interacted via pair creation, and furthermore the 208Tl decay from the 232Th

chain contains a γ-particle with 510.8 keV that cannot be resolved from a 511 keV anni-

hilation γ-particle with a CdZnTe detector. Consequently, the background suppression

in this case can be lower than for other decays.

In Subsection 2.4.2 it was shown that the γ-background is very high for the Polaris

system and several isotopes with β-γ coincidences and also several coincident γ-particles

are present. Including also Compton scattered events from the 0νββ-decay de-excitation

γ-particle will increase the 0νββ-decay detection efficiency, but will also significantly

increase the number of events from arbitrary β-γ and γ-γ-background coincidences. As

the background strongly increases with decreasing energy (see for example Figure 2.18),

from this point of view it is desirable to have a balanced energy distribution between the

energies of the electrons and the γ-particles to have the lowest possible background for

both signals. A 0νββ-decay with emission of several γ-particles is even more unlikely to

be mimicked by background event, but the probability of an interaction of the electrons

and the γ-particles inside the array is also very low.

For one layer CPG set-ups coincidence studies were already performed in [Mü07]

and [Hei09]. The obtained results were in general slightly worse than for one detector

analysis because for a two dimensional array of 1 cm3 detectors the detection efficiency is
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Figure 2.24: Energy spectrum of 0νββ

decay of 116Cd to the second excited

state of 116Sn (0+) (data from decay0

event generator [Pon00]). The nu-

cleus always decays via the 1294 keV in-

termediate state. Therefore always a

1294 keV γ-particle and a 463 keV γ-

particle is emitted (the monoenergetic

β-particles derive from internal conver-

sion of the nucleus). The probability

of a full energy deposition of both γ-

particles and the electrons is very low.

The detection efficiency for the decay

to the first excited state (1294 keV) is

much higher. Energy / keV
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low. The low efficiencies could not be compensated by the achieved gain in background

suppression. A Polaris-like set-up favours a coincidence analysis because the active

volume of the detectors (without volume cuts) is six times larger than for a CPG detector

and even with the full volume cuts still about three times larger. This strongly increases

the interaction probability for high energetic γ-particles in one detector. In total, the

dimensions of active CdZnTe mass (about 650 g) in the Polaris detector array are 6 ×
6× 3 cm3, compared to 4× 4× 4 cm3 for the full 64 CPG array (about 380 g). The three

dimensional configuration of the detectors also increases the efficiency. The distance

between the detectors is comparable for both set-ups. So at first glance, it seems likely

that the efficiency for the Polaris system will be higher than for a 64 CPG detector

set-up.

For a test of the possibilities of a coincidence analysis 116Cd was chosen because it

has the highest Q-value and is also the most promising candidate for the 0νββ-decay

to ground state. For a large scale experiment the detectors therefore will be enriched

in 116Cd. It decays to 116Sn, which has several excited 0+ and 2+ states. The first

excited state is the 1294 keV 2+ state. Therefore the 0νββ-decay cannot (or only with

a very small branching ratio [Hir94]) happen via the mass driven mechanism, but for

example in case of a right handed contribution to the electroweak interaction. The

excited state decays under emission of a single 1294 keV γ-particle and the sum of the

electron energies is 1519 keV. The second excited state is the 1757 keV 0+ state, so this

decay is possible in case of the mass driven mechanism. As shown in Figure 2.24, this

excited state always decays to the 1294 keV state under emission of a 463 keV γ. Always

two γ-particles are involved in this decay and its observation with a coincidence analysis

is rather unlikely due to the low detection efficiency. There are also several higher

energetic excited states, but because these decays are suppressed for low decay energies

and thus lower phase space, for this analysis the decay to the first excited state was

74



 / keV1E
500 1000 1500 2000 2500

 / 
ke

V
2

E

200

400

600

800

1000

1200

1400 All evts

 / keV
1E1500

2000
2500

3000

 / keV2
E

0
500

1000
1500

1

10

210

310

410

 E ROI evts∑

Figure 2.25.: Two detector energy deposition for 0νββ-decay of 116Cd to the first excited state

of 116Sn. Left: The energy deposition in two detectors, where the assignment of the energies

(to be E1 and E2) was done by a E1 > E2 criterion. The three most striking features are

the full energy deposition of the electrons (vertical line at E1 = 1515 keV), left to this line a

line deriving from bremsstrahlung of the electrons that is detected in another detector (with

no energy deposition of the 1294 keV γ-particle) and an accumulation of events from a full

energy deposition of the electrons in one detector with a coincident full energy deposition of

the γ-energy in the other detector (E2 = 1294 keV). The line on the right hand side of the

plot denotes the full energy deposition of 2809 keV in two detectors. This can also happen by

backscattering of the 1294 keV γ-particle into the initial detector after Compton scattering.

Right: All two detector events with full energy deposition of 2809 keV (a detailed view of the

mentioned line) is shown. By accepting only events with full 1294 keV γ-energy deposition

in one detector and full 1515 keV e− energy deposition in the other detector, the detection

efficiency is reduced by more than 50 %, but in order to collect a major part of the continuous

backscattering spectrum, search windows of more than 1 MeV for each detector are necessary.

This will strongly increase the background level.

chosen.

With the pixel detectors several possibilities of background reduction are possible.

In this analysis only events with energy deposition in exactly two detectors were taken

into account for the reasons mentioned above. The simplest approach is to add up the

energies in both detectors and accept only events with a sum energy of the Q-value of

the decay. More restrictively, an energy distribution amongst the detectors that matches

a full energy deposition of the electrons in one detector and a full energy deposition of

the γ-particle in the other detector can be required. Additionally requiring connected

pixel for the electron energy is useful to exclude Compton scattered γ-particles. To

reduce background from β-γ coincidences also a confinement of the electron-like event

or even both events to the inner voxels can be applied. But the lower energy region is

dominated by γ-background, and the γ-particles can deposit energy all over the detectors
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Figure 2.26: Energy spectrum of two

detector events for the 0νββ-decay of
116Cd to the first excited state of 116Sn.

By requiring the detected energies to be

only the expected γ-energy (1294 keV)

in one detector and the expected e−

energy (1515 keV) for the other detec-

tor, the number of events with sum en-

ergy deposition matching 2809 keV is re-

duced by more than 50 %, also com-

pare Figure 2.25. The 1294 keV line it-

self does not appear in the two detector

spectrum as this would imply no energy

deposition of the intrinsic electrons of

the 0νββ-decay. Energy / keV
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due to their high penetration depth. Therefore this cut will not be as efficient as for the

0νββ-decay case.

The effect of these cut possibilities on the 0νββ-decay detection efficiency and the

remaining background was determined from the simulations already used for Subsec-

tion 2.4.2. The events from the simulations were convoluted with the energy resolution

obtained from the experimental background. A small energy window for the searches

is important to exclude as many events from neighbouring background γ-lines. On the

other hand, the search window has to be chosen wide enough to still obtain a decent

detection efficiency. In this analysis a search window of ±2σ of the energy resolution was

taken. Assuming a Gaussian resolution, 95 % of a monoenergetic line in one detector

events and 90 % of two detector events are contained in this energy window. A wider

range only marginally increases the detection efficiency, while a smaller range strongly

decreases the detection efficiency, e.g. to 47 % for ±1σ.

The results are listed in Table 2.8. With appropriate cuts the background level can

be reduced to or even below the level of the single detector analysis (compare Table 2.4

in Subsection 2.4.2). On the other hand, the detection efficiency is reduced to about 1 %

or even below, so by a factor of about 10 to 25 compared to the one detector analysis.

When also taking into account the fact that the background level increases from the ROI

of the 0νββ-decay to ground state to the ROI of a single detector analysis (e.g. the most

probable full energy deposition of the 1515 keV from the electrons without interaction

of the γ-particle in the same detector) by much more than two orders of magnitude

(compare Figure 2.20) the gain in signal to background ratio for a coincidence analysis

is still excellent. In the case of the CPG detectors the background increases only by a

factor of about five between 2.8 MeV and 1.5 MeV [Daw09b] and the detection efficiency

even slightly increases with decreasing energy for a one detector analysis. Therefore the

coincidence analysis results were not competitive to the single detector analysis as the
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Figure 2.27.: Two detector energy deposition of events from 232Th in the PCB board. Left:

Due to the quantity of lines in the decay chain, the resulting two detector spectrum is smeared

over a wide energy range. The horizontal and vertical lines derive from full energy deposition of

a γ in one detector and an arbitrary energy deposition in the other detector. Also a diagonal

line (ending at E1 = 2.6 MeV) deriving from Compton-scattering of the 2.6 MeV 208Tl line

in one detector and Photoelectric effect of the scattered γ-particle in the second detector is

clearly visible. Right: Events with sum energy matching the Q value of the 0νββ-decay are

dominated by combinations of arbitrary energy deposition together with full energy deposition

of the 2.8 MeV (first peak) and the 510.8 keV and 583.2 keV (2nd and 3rd peak) lines. Only

a few events are left with energies matching exactly the expected e− and γ-energies from the

0νββ-decay. Therefore, the additional background from all events with matching sum energy

is much higher than the gain of detection efficiency (compare also Figure 2.25).
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Figure 2.28: Background from
232Th in PCB for events with two

triggered detectors. Due to the

high γ-background the number of

events in the ROI with arbitrary

energy depositions summing up

to 2.8 MeV is still high, especially

due to γ-particles from the 208Tl

γ-cascade. This background can be

strongly reduced when accepting

only events with energies exactly

matching the expected e− and

γ-energies from the 0νββ-decay,

compare Figure 2.28.
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2. Simulation Studies

Simul. Descript.
Total Sim.

Evts.

Cut1 rem.

evts.

Cut1 rem.

evts. [%]
Cut2 rem.

evts.

Cut2 rem.

evts. [%]

0νββ to 1294 keV 5× 106 143957 2.9 68218 1.4

Passivation 10× 106 803 8.0× 10−3 2 20× 10−6

232Th in PCB Brd 130× 106 6541 5.0× 10−3 5 3.8× 10−6

238U in PCB Brd 130× 106 241 0.2× 10−3 2 2× 10−6

222Rn in Gas 10× 106 98 1.0× 10−3 3 30× 10−6

232Th in Lead 5000× 106 1221 24× 10−6 1 20× 10−9

238U in Lead 1000× 106 8 0.8× 10−6 0 0

Simul. Descript. 2 det evts
Cut3 rem.

evts.

Cut3 rem.

evts. [%]
Cut3 rem.

evts.

Cut3 rem.

evts. [%]

0νββ to 1294 keV 870× 103 35041 0.70 15608 0.3

Passivation 966× 103 0 0 0 0
232Th in PCB Brd 2517× 103 2 1.5× 10−6 1 0.8× 10−6

238U in PCB Brd 1870× 103 0 0 0 0
222Rn in Gas 378× 103 2 20× 10−6 0 0
232Th in Lead 1354× 103 0 0 0 0
238U in Lead 154× 103 0 0 0 0

Table 2.8.: Simulated two detector events for a Polaris-like system. Cut1 denotes events with

sum energy matching the 0νββ-decay Q-value, Cut2 are events with energy depositions match-

ing full energy deposition of the electrons and γ-particle from the 0νββ-decay, Cut3 adds the

constraint of an interaction of the electron-like energy deposition within the inner 9× 9 pixels

and Cut3 additionally requires the same for the γ-like energy deposition.

gain in background reduction could not compensate the loss in efficiency. In contrast, as

seen above, for a Polaris-like system a coincidence analysis can improve the obtainable

results.

World leading limits for 0νββ-decays to excited states in 116Cd are given, like for the

decay to ground state, by [Dan03]. For the decay to the first excited 2+ state that is

also analysed here a 90 % CL limit of 2.9 × 1022 yrs was given. Similar to the case of

0νββ-decay to ground state discussed in Subsection 2.4.2, this limit cannot be improved

in a few years live time with one Polaris system consisting of not enriched detectors.

However, with a large scale set-up the detection efficiency will increase and therefore a

coincidence analysis will yield an even better signal to background ratio and will therefore

be an important instrument of data analysis, especially because the background from

the 2νββ-decay is irreducible and comparatively high compared to e.g. 130Te due to the

lower half-life of 116Cd in this decay.
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2.5. Survey of Background Contribution of Parylene-C

Passivation

In principle background sources can be divided into external and internal (intrinsic)

background. As semiconductor detectors have to be intrinsically clean to work as de-

tectors, usually the external background is much higher than the intrinsic background.

External background can be reduced by applying carefully chosen materials and addi-

tionally reducing the amount of material close to the detectors as far as possible. From

the results of Section 2.4 it can be seen that external background from α-decays in ma-

terials close to the detectors is a major background source for COBRA’s ROI, especially

for the CPG detectors because they do not have as good veto capabilities as do pixel

detectors. Also the volume to surface ratio is smaller for smaller volumes, such as the

1 cm3 CPG detectors. Consequently contaminations directly on the detector surface

have to be reduced as much as possible.

To prevent the CdZnTe from degrading, e.g. due to increase of the surface leakage

current from dirt or moisture, the detectors have to be protected with a coating. This

coating usually is a few to a few tens of micrometers thick. It covers five sides of

the detectors, so for a 1 cm3 CPG detector the passivation coating covers 5 cm2 and

can therefore contribute significantly to the background level. The cathode side of

the detectors is not covered with a passivation coating to enable an uncomplicated

contacting.

The red standard passivation lacquer from the detector manufacturer was identified as

a major source of background [Ree09]. With alternatively offered clear passivation lac-

quer, the background level could be reduced significantly [Koe08]. Since the passivation

is treated as a corporate secret only little is known about the composition of this clear

passivation and it is not directly available to COBRA. Therefore alternative passivation

coatings are investigated. Two alternatives were proposed by the COBRA CdZnTe crys-

tal growing group at Freiburger Materialforschungszentrum (FMF). A resin suitable for

wafer application called Cyclotene was first investigated in [Sch09]. The second possi-

bility is a vapour deposited polymer called Parylene C. To coat a surface with Parylene,

at first a powder is evaporated in a vacuum chamber. This gas is then converted to a

stable monomeric diradical by heating it. This gaseous monomer is transferred into a

room temperature deposition chamber. There the Parylene polymerizes and adsorbs to

surfaces. Parylene is preferred by the crystal growing group because its impenetrability

to moisture is superior to Cyclotene, during its application no heating of the detectors

for curing of the passivation is needed and it can be applied in very thin layers of a

few micrometers. To determine the possible contribution to the background level from

Parylene C, measurements were evaluated and the background level simulated together

with T. Neddermann [Ned13].

A first measurement was done at the DLB at Dortmund. The impurity level of the

Parylene C powder sample obtained from Plasma Parylene Systems, Rosenheim (Ger-
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2. Simulation Studies

many), turned out to be too low to be measured with the DLB, so 500 g of Parylene

C powder were measured by Matthias Laubenstein at LNGS. The results together with

activities of the standard red passivation lacquer, the colourless passivation provided

by EIDIS (both also measured by M. Laubenstein) and a measurement of Cyclotene

done by the Verein für Kernverfahrenstechnik und Analytik Rossendorf e.V (VKTA)

Rossendorf are listed in Table 2.9.

The limits of the colourless EIDIS passivation are comparatively weak because the

manufacturer provided a sample of only 4.2 g. To obtain better results for the eV Colour-

less Paint sample, the sample was analysed with the inductively coupled plasma mass

spectrometry (ICP-MS) method at the Laboratory of Chemistry at LNGS. Also a small

fraction of Parylene C was analysed with ICP-MS at LNGS. The results of both mea-

surements are listed in Table 2.10. Results were given by the Laboratory of Chemistry as

parts per billion (ppb), denoting here 10−9 g of an element / g of sample. Assuming that

decay chains are in equilibrium and the abundance in the sample matches the natural

abundance a of the isotope of interest, the contaminations in ppb can be converted into

the activity of a (long lived) isotope with half-life T1/2 and atomic mass matomic via

1 [ppb] =
ln(2)

T1/2

· a ·NA

matomic

· 10−3 [mBq/kg] (2.3)

with the Avogadro constant NA. Conversion factors for 232Th, 238U and 40K are listed

in Table 2.11.

When comparing the results determined with γ-spectroscopy (Table 2.9) and with

ICP-MS (Table 2.10) for Parylene C, the results from both methods differ noticeably,

even up to a factor of two. In general, the results obtained by ICP-MS are lower than the

results obtained with γ-spectroscopy. A certain divergence is expected because the two

approaches differ fundamentally. For example the activity of 40K is measured directly

with γ-spectroscopy, but because for ICP-MS 40Ar is used to produce a plasma torch

only the content of 39K can be determined and the 40K content has to be calculated

assuming its natural abundance. For the U and Th chains the level of contamination is

determined from different isotopes of the decay chains. While with ICP-MS the amount

of the initial isotopes 232Th and 238U are measured, the activities from γ-spectroscopy

are obtained from daughter nuclei of the chain (see Table 2.9). The different activities

of 228Ra and 228Th of the 232Th decay chain are a hint to an imbalance within the chain.

Such an effect will certainly be stronger for the 238U chain because it contains several

isotopes with half-lives > 103 years (see e.g. Appendix C), but this cannot be verified

because only one isotope from the 238U chain could be detected.

For an estimation of the background contribution, a four micrometer thick coating

on top of five sides of the full 64 detector prototype array was simulated. To avoid

underestimation of the background level, the activity measurements obtained from γ-

spectroscopy were taken as input for the simulation since they are higher than the

values obtained from ICP-MS. The chains were not taken to be in equilibrium, but the
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Isotope
eV Red Paint

[mBq/kg]

Cyclotene

[mBq/kg]
EIDIS clear

paint [mBq/kg]

Parylene C

[mBq/kg]
238U:226Ra 2100± 100 < 1000 < 140 18± 2
238U:234Th 1100± 300 < 5200 < 1500 < 110
238U:234mPa 1600± 1000 < 4300 < 31
238U:210Pb < 8600
235U 170± 30 < 15 < 6.8
232Th:228Ra 1100± 100 < 1200 < 180 8± 2
232Th:228Th 730± 70 < 370 < 190 3± 1
40K 6900± 800 3500± 1400 < 1000 120± 20
137Cs < 15 1040± 180 < 56 < 1.7

Table 2.9.: Activities of two detector passivation lacquers provided by the detector manufac-

turer EIDIS, Cyclotene and Parylene C determined by γ-spectroscopy. The measurements

were done by M. Laubenstein at LNGS except for the Cyclotene measurement that was done

by the VKTA at Rossendorf. The origin of the high 137Cs contamination for Parylene could

not be clarified. Measurements are given with Gaussian standard distribution quantile k = 1

(68.3 % central CL) and upper limits with k = 1.645 (95 % upper CL).

Element
EIDIS clear

paint [ppb]

EIDIS clear

paint equiv.

[mBq/kg]

Parylene C

[ppb]

Parylene C

equiv.

[mBq/kg]

U 0.115± 0.010 1.4± 0.1 0.71± 0.10 8.8± 1.2

Th 0.146± 0.015 0.59± 0.06 0.91± 0.21 3.7± 0.9

K 1640± 400 51± 12 2750± 850 85± 26

Table 2.10.: Activities of clear detector passivations determined by ICP-MS (compare γ-

spectrometric results listed in Table 2.9). The measurements were done by the chemistry

lab at LNGS. ppb here refers to 10−9 g of element / g of sample. The activities are calculated

as contributions of the 238U and 232Th chains and 40K assuming 99.3 % natural abundance of
238U, 100 % of 232Th and 0.00117 % for 40K, see Table 2.11 for details.

Conversion
natural

Abundance

Atomic

Weight [u]

T1/2

[109 yrs]

Conversion

[ppb]→ [mBq/kg]

Conversion

[mBq/kg]→ [ppb]

K ↔ 40K 0.0117% 39.098 1.277 0.0310 32.3

Th ↔ 232Th 100% 232.038 14.05 4.06 0.246

U ↔ 238U 99.27% 238.029 4.468 12.3 0.081

Table 2.11.: Factors for [ppb] (10−9 g of element / g of sample) ↔ [mBq/kg] conversion cal-

culated according to Equation (2.3). For the conversion it is assumed that the decay chains

are in equilibrium and the abundance of the isotopes equals the natural abundance.
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Figure 2.29.: Simulated Parylene C background spectrum for the full 64 CPG detector array,

assuming the activities listed in Table 2.9. The finite energy resolution of the detectors was

not taken into account. α-particles lose nearly no energy during their passage through the

thin passivation coating, therefore sharp α-lines appear above 4 MeV. Clearly visible are the

1461 keV 40K and the 609 keV 214Bi line. The average background level in the ROI between

2.7 MeV and 2.9 MeV is 0.036 cts/keV/kg/yr.

activities of parts of the chains were adjusted according to the results listed in Table 2.9.

For example, the sub-chain from 232Th to 228Ac was assigned an activity of 8 mBq/kg

from 228Ra, and from 228Th until the last nuclides of the chain the activity of 3 mBq/kg

from 228Th was taken. When only upper limits could be determined, e.g. for 235U, the

upper limit was taken as activity. An exception to this procedure was made for the part

of the 238Th chain beginning with 234U. The upper limit for this isotope is much higher

than the measured value for 226Ra and the upper limit for 234mPa. Therefore the upper

limit of 31 mBq/kg of the mother isotope 234mPa was taken for the 234U sub-chain.

The simulated spectrum is shown in Figure 2.29. As the coating layer is very thin,

α-particles lose nearly no energy during their passage through the passivation. This

leads to clearly distinguishable α peaks. Especially for low energies the background

is comparatively high. Close to the ROI at 2.8 MeV it reaches a minimum. Between

2.7 MeV and 2.9 MeV the average background level is 0.036 cts/keV/kg/yr.

For the current set-up the achieved background level is in the order of 1 ct/keV/kg/yr.

So a Parylene C coating will not be the dominating remaining background source for

the 64 detector array. On the other hand, the background level is far too high for a large

set-up. Here an overall background level of 10−4−10−3 cts/keV/kg/yr has to be reached.

The background level obtained from the simulation can be lower than the actual one

because partly only upper limits for some activities were used. Furthermore it may

be possible that the material is cleaned during the evaporation and the radiopurity of

the resulting coating can be lower than for the powder. However, these effects will not

decrease the contamination level by several orders of magnitude. Even though Parylene

C is a solution for the 64 detector array, it will consequently not be an option for the

full-scale set-up.
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2.6. Penetration Depth of High Energetic Beta

Radiation

CPG detectors do not posses as good veto capabilities for α and β-particles as do like

pixelated detectors. But the method of depth sensing (see Subsection 1.2.1) adds a

certain veto capability also to CPG detectors. As can also be seen from the discussion

in Section 2.4, the main remaining background in the ROI derives from α-particles and

β-particles because their fraction and also their interaction probability is much higher

in the ROI than for γ-particles.

The interaction depth information is especially valuable for the CPG detectors because

the cathode metallization consists of platinum, which contains the α radiation source
190Pt (see Section 3.1) Due to the high negative bias voltage of the cathode, also the

positively charged decay products of airborne 222Rn and other contaminants accumulate

at the cathode. The currently applied silver conductive glue contains the β-radiation

emitter 110mAg with β-energies of up to 2891 keV.

The range of α-particles in CdZnTe is very short and therefore the energy deposition

is localised to a small area. Thus α-particles on the cathode or anode side can be vetoed

efficiently and with a minimal loss of active volume. β-particles on the other hand have

a much longer range in matter. Furthermore, they lose energy by ionisation all along

their path through matter and do not move through the material in a straight line but

in a kind of random walk due to many scattering processes along their track inside the

material. The penetration depth of high energetic electrons was examined in the scope

of this work.

Often the continuous slowing down approximation (CSDA) range is taken as an esti-

mate for the average range of an electron in a material. The CSDA range is calculated

by approximating an average energy loss of an electron along its path by its stopping

power. The energy is reduced by the approximated average energy loss for each step

until it is slowed down to rest [NIS]. The integral of all step lengths is the CSDA range.

Therefore it equals not the average penetration depth of electrons in their initial direc-

tion of entrance in the material because the electrons change direction very often due to

scattering. As can be seen from Table 2.12 the CSDA range rather equals the maximal

penetration depth of the electrons in their initial direction of flight.

To have an estimate for the distribution of the penetration depth, Geant4 simulations

with a CdZnTe 1×1×1 cm3 detector were done. To have depth information, the detector

was set up of 0.1 mm slices of CdZnTe. Two types of simulations were done for several

electron energies. At first monoenergetic electrons were shot perpendicular to the detec-

tor surface to obtain information on the maximal penetration depth. β-particles from

natural decays on the detector surface have an isotropic angular distribution. Therefore

the simulations were repeated with monoenergetic electrons on the detector surface with

an isotropic distribution of initial direction.

For the determination of the interaction depth the production of bremsstrahlung has
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Figure 2.30.: Simulated penetration depth of monoenergetic 500 keV (left) and 3 MeV (right)

electrons in CdZnTe. The electrons were shot perpendicular to the detector surface. The

maximal penetration depth is continuously distributed due to scattering inside the detectors.

The maximum penetration depth corresponds roughly to the CSDA range (see e.g. [NIS]).

Because of bremsstrahlung energy is deposited in higher depth than the original penetration

depth of the electrons. This effect is stronger for higher energies.

to be taken into account. For 500 keV and 3 MeV electrons shot perpendicular to the

detector surface, the distribution of the simulated penetration depth is shown in Fig-

ure 2.30. Even though all electrons are stopped after less than one millimetre in the case

of 500 keV electrons the irradiated bremsstrahlung can be detected all over the detector.

With pulse shape analysis it is possible to distinguish such a multi site like event from

a usual energy deposition of an electron. The fraction of events with bremsstrahlung

increases strongly with higher electron energies. For the high energetic 3 MeV electrons

also pair production from the produced bremsstrahlung is possible and was observed in

the simulations in a small fraction of the events.

The obtained average and maximal penetration depths are listed in Table 2.12. As

can be seen there high energetic electrons can deeply penetrate the detector. However

the possible background reduction from the depth information is still very high. For the

isotropic 3 MeV electrons more than 50 % of these external events can be discarded with

a 1 mm depth cut to the cathode while reducing the detector volume by only 10 %, even

when the measured interaction depth is assumed to be the maximal penetration depth

of the electrons. In fact, the measured interaction depth will be lower than the maximal

penetration depth, as explained as follows.

Electrons deposit energy all along their path through (dense) matter. Therefore, it

is not totally clear what actual depth will be measured with the method explained in

Subsection 1.2.1 for electrons that move vertically through the detector. In general, two

84



Source

Type

Energy

[keV]

Avrg

Range

with BS

[mm]

Avrg

Range

without

BS [mm]

Max

Range

without

BS [mm]

E-Avrgd

Range

without

BS [mm]

CSDA

Range

[mm]

Fraction

of BS

Evts [%]

beam 500 0.21 0.18 0.70 0.14 0.52 2.3%

beam 700 0.30 0.25 1.00 0.18 0.81 3.7%

beam 1000 0.46 0.38 1.50 0.26 1.25 5.7%

beam 1500 0.76 0.60 2.40 0.40 1.97 9.0%

beam 2000 1.07 0.84 3.40 0.55 2.66 12.2%

beam 3000 1.71 1.33 4.90 0.86 3.95 17.7%

isotropic 500 0.17 0.15 0.70 0.12 0.52 1.6%

isotropic 1000 0.33 0.27 1.50 0.20 1.25 3.9%

isotropic 3000 1.12 0.85 4.90 0.54 3.95 12.3%

Table 2.12.: Range of β-radiation in CdZnTe perpendicular to the detector surface. Due to

scattering inside the material the average range is considerably lower than the CSDA range.

The CSDA range was taken from [NIS]. The number of electrons producing bremsstrahlung

(BS) increases significantly with higher electron energies. Listed here is the fraction of events

where also the bremsstrahlung is measured in the detector. The E-Avrgd Range is the average

path weighted with the energy deposition per volume (see text).
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Figure 2.31.: Average energy deposition and depth of maximal energy deposition for 3 MeV

electrons with a penetration depth of 3 mm. On the average the electrons deposit about

60 keV/mm along the first part of its track. The most energy is deposited at the end of the

track, but for some events the highest energy deposition also occurs at lower depths.
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Figure 2.32.: Assumed measured penetration depth calculated as energy weighted average

path. The energy weighted average path is significantly lower than the maximal penetration

depth (compare also Figure 2.31).

possibilities are likely. Either, if a distinct maximal energy deposition exists, the point of

this maximum may be measured as interaction depth. Electrons, unlike heavy particles

like protons or α-particles, usually do not deposit most of their energy at the end of

their path, a typical Bragg peak does not have to exist. To investigate this possibility,

the maximal and average energy deposition was investigated. An example for 3 MeV

electrons with a maximal penetration depth of 3 mm is shown in Figure 2.31. These

plots are typical representatives for the distributions of these quantities. For higher

penetration depths it was found that, on the average, the electrons lose most of their

energy at the end of their path, but the spread is comparatively high. The maximum

of the energy loss of the electrons is about 10 %-20 % below the maximal penetration

depth.

The second, and more likely, possibility is to take the path of the electron and weight

it with the amount of deposited charge. Then a possible measured interaction depth zm
is the path weighted with the deposited charge

zm =

∑
zi ·Ei∑
Ei

. (2.4)

This measured depth is lower than the point of maximal energy deposition and far lower

than the maximal penetration depth of the electron, see Figure 2.31 and Figure 2.32 as

well as Table 2.12. Thus the gain in background suppression to loss of active volume

will be even better than assumed above.

The actual measurement of the calculated interaction depth compared to the true

penetration depth of electrons is rather difficult due to the fact that β-particles have

a continuous energy distribution. But a comparison of a simulation and a measured

86



Penetration Depth / mm
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
ts

1

10

210

310

410

510

sβMax. penetr. depth, without bremsstr. evts, isotropic 3 MeV 

sβMax. penetr. dept, without bremsstr. evts, perpendicular 

Penetration Depth / mm
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

sβ
R

at
io

 P
er

pe
nd

. /
 Is

ot
ro

p.
 

0
1
2
3
4
5
6
7

Figure 2.33.: Isotropic and directional 3 MeV β-radiation on CdZnTe detector surface. The

number of β-particles with an isotropic distributed direction directly on the detector surface

with a high penetration in the detector is comparatively high because the initial direction of

the β-particles is changed nearly immediately by scattering within the material.

depth spectrum from a high energetic β-particle source, e.g. 90Sr, can give approximate

information. In [Teb11] first measurements with a 204Tl source were done. But because

the maximal β-particle energy of 204Tl is only 764 keV and all the data was taken together

with a 137Cs source for calibration purposes, a direct comparison of these measurements

with simulations is not possible. The measurements could not be repeated without the
137Cs source as the detector that was especially prepared for these experiments failed

shortly after the measurements. However, measurements for a better understanding of

the interaction depth with a proton beam and β-particle sources are planned for the

future.

While the simulation of beam-like electrons perpendicular to the detector surface is

useful to investigate the general penetration depth, β-particles from radioactive decays

on the cathode (or the anode) are usually isotropically distributed. Therefore the sim-

ulation was repeated for several energies with isotropically distributed electrons. As

expected, the average penetration depth of these electrons is lower than for directed

electrons. For low energies the ratio of directed to isotropically distributed electrons is
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smaller than the factor of two that can be obtained by pure geometrical considerations,

see Figure 2.33 as example for 3 MeV electrons. This is caused by the scattering of the

electrons inside the detector.

The ratio steadily increases with higher penetration depth. Therefore the vetoing

capacity of a depth cut to the cathode in the case of isotropically distributed electrons

is higher for higher penetration depths, i.e. the suppression of high energetic β-particles

from radioactive decays, as occurring in COBRA, can be done with lower depth cuts

than for beam-like electrons.
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3. Data Analysis

3.1. LNGS Data and Possible Background Contributions

By replacing the former red passivation lacquer with a clear coating and flushing the

whole set-up with evaporated nitrogen the background level was reduced significantly

[Koe08, Sch11a]. Together with the installation of the first 16 colourless detector layer

in September 2011 a radon tight foil was set up to increase the efficiency of the nitrogen

flushing [Teb11]. Furthermore permanent nitrogen refill was arranged to ensure per-

manent flushing and thus good data quality. In this chapter 12.7 kg days of data from

the first 16 colourless detector layer taken between September 2011 and March 2012 is

analysed. From the installed 16 detectors 15 were operational.

Compared to the former 16 detector set-up consisting of detectors passivated with

red lacquer [Ree09, Mü07] and most of the data taken with the first detectors with

clear passivation [Sch09, Koe08] the possibilities to reject and identify background are

increased. The energy resolution is a factor of two to three better. Together with the

comparatively large number of well operating detectors that is needed to gain sufficient

statistics, with the achieved low background level the sensitivity to γ-lines is increased.

With the depth information obtained from the recorded pulse shapes (see Chapter 1)

another important tool became available. For the depth calculation the refined method

Equation (1.11), which was developed and implemented into the COBRA pulse-shape

data processing program MAnTiCORE [Sch11a] by M. Fritts, was used.

In Figure 3.1 a plot of deposited energy versus the calculated interaction depth is

shown. Several features are visible in the spectrum and it becomes obvious how valuable

the interaction depth information is. Most of the events above 2 MeV occurred at the

cathode side (z = 1) of the detectors. Two clusters at about 3 MeV and 5 MeV are

visible. In the full energy spectrum shown in Figure 3.2 it can be seen that these two

clusters have the typical shape of α-decays with a broad peak width and a long low

energy tail.

3.1.1. 210Po α-Decays

A cut-out of the cluster around 5 MeV is shown in Figure 3.3. It derives from the 210Po→
206Pb α-decay with an energy of the α-particles of 5.30 MeV [Fir98]. Due to energy loss

of the particles in the cathode metallisation and due to the fact that besides energy loss

from ionisation α-particles also lose a small amount of energy by interaction with the
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Figure 3.1.: Depth vs. energy plot of the first 16 detector layer data taken at LNGS. Higher

depths denote the cathode side (z = 1), smaller depth the anode side of the detector (z = 0).

The spectrum contains several features (see also text as well as Figure 3.2 and Figure 3.5).

A line at about 500 keV is visible. These events are distributed relatively uniformly in depth

z. At 3.2 MeV a cluster of events at the cathode side deriving presumably from 190Pt events

can be seen. At 5.3 MeV another cluster at the cathode side most likely deriving from 210Po

appears.

crystal lattice and thus producing phonons, the mean of the measured energy deposition

is a bit below 5.3 MeV. Also a small shift to lower energies (certainly in the order of 1 %)

of reconstructed energies of cathode events is noticed in [Fri12]. The small shift derives

from a contribution of the holes that is no longer completely negligible for events at

the cathode. The actual size of this shift is small and difficult to determine. Therefore,

the effect is neglected in the energy reconstruction of MAnTiCORE. Additionally the

presence of a deadlayer with a thickness of a few nm on the cathode side, which would

also lead to a small energy loss, cannot be excluded.
210Po is a daughter of 222Rn from the 238U decay chain (see also remarks on the

222Rn shielding in Subsection 1.2.2 and Table C.1). Besides 210Po the 222Rn decay chain

contains three other α-particle emitters with a high branching ratio. They emit α-

particles with energies of 5.49 MeV (222Rn), 6.00 MeV (218Po) and 7.67 MeV (214Po). In

the LNGS background spectrum shown in Figure 3.2 no statistically significant clusters

at these energies are visible, especially compared to the number of counts at 5.2 MeV.

From the absence of these decays it can be concluded that the 210Po contamination does

not derive from 222Rn still diffusing into the set-up despite the nitrogen flushing. It

is rather due to pollution from 222Rn of the detectors or carrier materials prior to the
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Figure 3.2.: Full LNGS background spectrum without depth cuts, compare Figure 3.1. The

low energy spectrum is dominated by the intrinsic 113Cd β-decay [Daw09a]. A γ-line at about

500 keV is clearly distinguishable from the background. At 3 MeV and 5 MeV two α-peaks

with the typical low energy tail are visible. Above 5.5 MeV no clear signal of further peaks is

present.

assembly of the detector layer. The 222Rn chain contains the sub chain

210Pb
T1/2=22.3 y
−−−−−−−→
β, 0.06 MeV

210Bi
T1/2=5.0 d
−−−−−−→
β, 1.2 MeV

210Po
T1/2=138 d
−−−−−−→
α, 5.3 MeV

206Pb (stable)

with the long lived β-emitter 210Pb. 222Rn itself has a half-life of only 3.8 d. The most

likely way of contamination is the decay of 222Rn in the surrounding air. The emitted α-

particle removes electrons from the atomic shell along its path. Therefore, the resulting
218Po is positively charged [Heu95]. 218Po or one of the decay products then deposits on

surfaces. There they stick to the surface or can even diffuse several tenths of µm into

the surface [Cle11]. The time it takes to decay down to 210Pb is in the order of several

tens of minutes to a few hours.

The 210Pb contamination can be directly on the detector surface or on the surface of

surrounding materials, in the case of the current detector holders in particular on the

Delrin carriers. The detectors are set with the cathode side directly on top of a Delrin

plate with openings for the contacting of the cathode. As the radon daughters are pos-

itively charged they are attracted especially by statically charged materials. Therefore

plastics such as plexiglass but also Teflon strongly attract the Rn daughters. Delrin is not

regarded to build up as much electrostatic charge as these materials. But nevertheless

a certain amount of pollution will be unavoidable. Even though the Delrin holders are

91



3. Data Analysis

E [keV]
4400 4600 4800 5000 5200 5400 5600

C
ts

 / 
20

 k
eV

0

2

4

6

8

10

12

14

16
LNGS Background Spectrum, 0.9<z<1.1

Detector Nr.
2 4 6 8 10 12 14 16

C
ts

0

10

20

30

40

50

Activity per Detector, 4.5 MeV < E < 5.5 MeV, 0.9 < z < 1.1

Figure 3.3.: Spectrum and count rates at the energy region of the 210Po α-decay. The rate

of detector 5 is significantly higher than the other counting rates. See also Figure 3.4 for

comparison of the data taken in 2011 and 2012.

cleaned carefully with acetone and isopropanol before the assembly, during the time of

assembly and the commissioning phase a certain amount of radon pollution accumulates.

Depending on the material and radon concentration several hours are sufficient to pro-

duce measurable surface activity [Gui11]. Common radon concentrations are in the order

of several ten Bq per m3, e.g. (35± 2 Bq/m3) were measured in the old COBRA LNGS

cabin, even (142± 2) Bq/m3 in the new hut (both measurements were done by Matthias

Laubenstein from the Special Techniques Services at LNGS) and (12.9 ± 0.2) Bq/m3

in the DLB with ventilation of air from the outside and (32.4 ± 1.0) Bq/m3 without

ventilation [Ned13].

The surface contamination on the detectors themselves can be divided into contam-

ination on top of the passivation lacquer and on the cathode. The area of the coated

surfaces is five times as large as the blank cathode side. On the other hand already

several ten µm of a passivation coating are sufficient to reduce and smear the energies

of the α-particles significantly. Therefore α-particles from the 210Po decays on the pas-

sivated surfaces will be detected at much lower energies and the energy spectrum will

furthermore be smeared. The exact thickness of the current passivation coating and also

important material properties such as the density and also variations of the thickness of

the coating are not exactly known. As the attenuation of α-radiation is very sensitive to

small changes in material composition and thickness, no reliable calculation or simula-

tion of the expected shape and intensity of a measured spectrum is possible. Cleaning of

the coated surfaces is difficult because most solvents also etch the passivation. Treating

the surface with a (weak) solvent such as isopropanol therefore not only brings the risk

of damaging the passivation coating but also the risk of introducing the surface con-
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Figure 3.4.: Comparison of count rates in the 210Po energy region for data taken in 2011 (left,

75.5 days measuring time) and 2012 (right, 64.9 days of measuring time).

taminations into the slightly solved upper layers of the passivation and thus irreversibly

contaminating the coating itself.

The metallised cathode of the detectors is not coated. Furthermore a high negative

voltage of about 1 kV is applied during measurements. For the characterisation of the

detectors before the installation and also for testing of the layers during commissioning,

the detectors are operated in normal air. Due to the negative high voltage of the cathode,

the radon daughters are highly attracted, certainly even much stronger than to statically

charged plastics. The detector characterisation measurements take several hours, the

commissioning phase of the detector layers can even last a few days. Furthermore, lead

sticks very well to metals and especially well to gold (this can e.g. be seen from gold

coated solder pads for soldering with lead-containing solder). For these reasons the

contamination on the cathode is expected to be higher than on the passivated surfaces.

Cleaning the cathode is difficult because by mechanical force, i.e. wiping the surface, a

damage of the only 100 nm thick gold coating is possible. In [Gui11] it is furthermore

shown that the progenies of radon can diffuse even into copper. These contaminations

cannot be removed by simply cleaning the surface, but a thin layer of the material has

to be removed, e.g. by etching.

The energy versus depth plots in Figure 3.1 and Figure 3.5 show that nearly all of the

events with matching 210Po energy occur directly at the cathode. As explained above

the α-particles from decays on the coated surfaces lose some of their energy. So 210Pb

contaminations will appear at lower energies, several of the events in Figure 3.5 with

medium interaction depth derive from these decays. But even though the sum of the

area of the passivated side surfaces is four times as high as the area of the cathode side,

the number of 210Po events directly at the cathode is much higher than the number of
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Figure 3.5: High energy cut-out of

Figure 3.1. The main 210Po

and 190Pt pollution is at the

cathode side, but there are also

lower energetic entries at medium

depth. They probably derive from
210Po decays on the coated sur-

faces where the α-particles lose

noticeably energy while travelling

through the coating. At about

6.4 MeV a cluster deriving from

charge doubling 190Pt events at the

anode side (z = 0) is visible.

events with medium interaction depth between 2 MeV and 5 MeV. This indicates that

for the reasons mentioned above the pollution on the cathode side is much higher than

of the passivated sides.

As explained above the contamination at the cathode side can either be located di-

rectly on the cathode or a pollution of the Delrin carrier. As can be seen in Figure 3.3

and Figure 3.4 the count rates per detector for cathode events between 4.5 MeV and

5.5 MeV differ strongly. Especially the contamination on detector 5 is very high, about

25 % of all events occurred on this detector. That the comparatively large spread in the

decay rates is certainly not only due to statistical fluctuations can be concluded from

the fact that they appear in the three months of data taking in 2011 as well as the

three months of data taking in 2012, see Figure 3.4. Taking this spread into account, a

stronger contamination of the cathode is more likely than a contamination on the Delrin

carrier. The Delrin carrier was cleaned carefully in an ultrasonic bath of first acetone

and afterwards isopropanol. Remaining contamination on the Delrin surface therefore

should be distributed uniformly all over the carrier. In contrast the treatment of the

detectors may have differed significantly. For example a longer measurement time during

characterisation may be an explanation for the higher contamination.

Even though the main 210Po is located on the cathode and can be vetoed with the

interaction depth information, cleaning of the cathode before assembly and storage of

the detectors and the Delrin carrier during the assembly and commissioning as much as

possible is worthwhile. Also cleaning the coated sides of the detectors, e.g. with clean

distilled water to prevent solving the passivation lacquer, should be taken into account

as presumably a large fraction of the background in the ROI derives from 210Po decays

with energy loss in the passivation.

The rate of cathode events between 4.5 MeV and 5.5 MeV during the 75.5 days of

measurement in 2011 was (0.081± 0.008) cts/day/detector and during the 64.9 days of

measurement at the beginning of 2012 it was (0.096± 0.010) cts/day/detector. The rate
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in 2012 is higher than in 2011. Due to the high half-life of 210Pb of 22.3 y the rate is

expected to be constant if the sub chain is in equilibrium. The half-life of 210Pb of 22.3 y

is long compared to the time between production and installation of the detectors, and

especially between the characterisation measurements and the installation. The 210Po

half-life of 138 d is also comparatively long. Therefore it is possible that the decay chain

was not in full equilibrium shortly after installation and the count rate slightly increased

while approaching its equilibrium.

The decay rate can also increase if radon is still diffusing into the set-up despite the

radon shielding. But with the low statistics the slightly higher rate in 2012 cannot be

taken as a sound hint of an increasing background level. Furthermore, radon should

also be visible by the aforementioned other α-decays of the radon chain, but in contrast

in 2011 in the energy region from 5.5 MeV to 7.5 MeV 11 events were observed at the

cathode side whereas only 1 event occurred in the same energy region in the 2012 data

(see Figure 3.6). These events are equally distributed over all detectors. Striking is that

nearly no events occurred after December 2011 even though neither the set-up nor the

nitrogen flushing level was changed.

3.1.2. 190Pt α-Decays

The second cluster of cathode events derives from 190Pt in the electrode metallisation.

The presence of this background source was already assumed in [Ree09] to be present in

the first red detector layer. With the now available interaction depth information and

the reduced background level the presence can now be confirmed. According to private

communication with the detector manufacturer the electrode metallisation consists of

a 100 nm thick gold coating on top of a 100 nm thick platinum coating. The typical

variation of the coating thickness is approximatively 15 %.

Platinum contains the α-particle emitter 190Pt with a small natural abundance of
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Figure 3.7.: Spectrum and count rates at the energy region of the 190Pt decay. The events

are distributed much more evenly amongst the detectors than for the 210Po events, here also

a variance of about 15 % in the cathode thickness has to be taken into account. The average

count rate at the cathode between 2.8 MeV and 3.3 MeV is (0.12± 0.01) cts/day/detector.

(0.014± 0.001) %. [Bö05]1. 190Pt decays via two subsequent α-decays to 182W [Fir98]

190Pt
T1/2=6.5 · 1011 y
−−−−−−−−−−→
α, (3164±15) keV

186Os
T1/2=2.0 · 1015 y
−−−−−−−−−−−→
α, (2757.7±2.4) keV

182W .

Platinum is cleaned during the production process of metallic platinum. Furthermore,

the half-life of 190Pt is already very high, in fact more than an order of magnitude higher

than the live time of the universe, and the half-life of 186Os is even nearly four orders of

magnitude higher. Therefore, it can be assumed that no or negligibly few decays from
186Os are to be expected.

Mentionable are the high discrepancies of the natural abundance, the α-particle energy

and the half-life in literature. [Tav06] lists measurements with resulting half-lives in the

range of (3.2−6.9)×1011 years. Also the natural abundance differs, e.g. the online decay

data bases [KAE12, Chu99] give an abundance of 0.01 %. α-particle energies range from

(3164± 15) keV [Fir98] over (3175± 14) keV [KAE12] up to (3180± 6) keV [Chu99].

The measured LNGS cathode spectrum around 3 MeV is shown in Figure 3.7 together

with the distribution of these events amongst the detectors. The drop in the spectrum

above the α-decay energy of about 3.2 MeV is clearly visible. On the lower energy

side a long tail that is typical for α-particles is noticeable (compare also Figure 3.2).

Compared to the 210Po events the distribution of events amongst the detectors is quite

uniform. Between 2.8 MeV and 3.3 MeV the average count rate of cathode events is

(0.12± 0.01) cts/day/detector.

The number of observed events can be compared to the number of expected events.

Here, the determination of the detection efficiency is difficult. From geometric consid-

1see also http://www.nist.gov/pml/data/comp.cfm
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Figure 3.8.: 190Pt at the anodes (left) and simulations of 190Pt (3175 keV α-particles) at the

cathode (right). Due to the charge doubling effect for anode events [Teb11] (see also Subsec-

tion 1.2.1) the calculated charge for events at the anodes is twice as high as for normal events.

Therefore the 3.2 MeV α-decays on the anode side appear at about 6 MeV. The reproduction of

the 190Pt peak at the cathode side is difficult as detector effects and small uncertainties in the

geometry have a large influence. The simulations were convoluted with an energy resolution

of 2 % FWHM at 3 MeV. For the simulation without a dead layer the detection efficiency was

determined to be 46 % and for the simulation with an additional 100 nm dead layer to be 43 %

in a region of 2.8 MeV - 3.3 MeV. When taking into account only the broad part of the 100 nm

dead layer peak (2.95 MeV - 3.3 MeV) the detection efficiency is calculated to be 38 %. As the

measured peak seems to be even a bit wider than the simulated peak with 100 nm dead layer, a

detection efficiency of (40± 5) % for a counting interval of 2.8 MeV - 3.3 MeV can be assumed.

erations one can assume the number of observed events to be in the order of 50 % of

the occurred decays. Like for the 210Po events a simulation is difficult. For the reason

mentioned for 210Po, the measured peak is broader than expected from a simple simu-

lation, see Figure 3.8. From the simulation of 3.175 keV α-particles in a 100 nm thick

platinum metallisation 46 % of all simulated events are found in an energy region from

2.8 MeV to 3.3 MeV when taking also into account an energy resolution of 2 % FWHM

at 3 MeV. When trying to take into account the detector effects by adding a small dead

layer of 100 nm below the cathode, the maximum of the observed energy distribution is

decreased and the distribution is slightly widened. For this simulation a detection effi-

ciency of 43 % was determined and the maximum of the distribution is below 3.1 MeV.

The peak in the measured spectrum is even wider than in this simulation, but the max-

imum is above 3.1 MeV. Below 2.8 MeV the measured spectrum drops to about 10 % of

its height in the region of about 3.1 MeV. The simulated spectrum with 100 nm dead

layer drops to 10 % of its maximal height at about 2.95 MeV and the detection efficiency

in this simulation is 38 % for an energy interval from 2.95 MeV to 3.3 MeV. Taking all

this into account, the detection efficiency for the measurement can be estimated to be
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about (40± 5) % for a counting interval from 2.8 MeV to 3.3 MeV.

Taking the half-life T1/2 = 6.5 × 1011 y from [Fir98], the natural abundance (mole

fraction) a = (0.014 ± 0.001) % from [Bö05] and calculating the average atomic mass

from numbers given therein to be 〈mPt〉 = (195.1 ± 0.2) amu and approximating the

platinum layer to have a thickness of (100± 15) nm for the 1 cm3 detectors the expected

measured count rate is (assuming a measurement time ∆t = t2 − t1 � T1/2)

A(t) = −ε∆N
∆t

= −εN(t2)−N(t1)

∆t

Taylor Ser.
≈ N0 · ε ·

ln(2)

T1/2

= 0.11
cts

det · day
, (3.1)

where N0 is the number of 190Pt atoms per detector cathode and ε is the assumed

detection efficiency of 40 %. The measured rate is (0.12±0.11) cts/detector/day. Giving

a reliable estimate for the uncertainty of the expected number of events is not possible

because the measured half-lives given in literature differ strongly and in [Fir98] no uncer-

tainty for the half-life is given at all. Instead a half-life for the 190Pt decays on the basis

of the number of observed events can be calculated. From Figure 3.5 and Figure 3.1 it

can be concluded that nearly no 210Po events contribute to the cathode events below

3.5 MeV. Therefore it can be assumed that all 255 cathode events between 2.8 MeV and

3.3 MeV derive from 190Pt. With the numbers given above and taking the uncertainty

of the detection efficiency as systematic error, the half-life of 190Pt can be deduced to be

T1/2 = N0 · ε ·
ln(2)

Noberved

· tmeas. = (5.8± 1.0 (stat.)± 0.7 (syst.))× 1011 y (3.2)

for the measurement time of 140.4 days of the first colourless detector layer. This

half-life is in good agreement with the one given in [Fir98] and rather disfavours the

lower half-lives given in [Tav06].

Also the metallisation of the anodes consists of platinum and gold. The amount of

platinum and gold is much smaller because the anode grids cover only about 30 % of

the anode side. Due to the effect of charge doubling for anode side events observed in

[Teb11] (see also Subsection 1.2.1), the measured energy for many anode side events is

twice as high as for cathode side events. Therefore the 190Pt decays on the anode side

appear at about 6.2 MeV. The cluster of these events can be clearly seen in Figure 3.5

and is also shown in Figure 3.8.

The decay of 190Pt to the first excited state of 186Os under emission of a 137.2 keV

γ-particle was measured for the first time [Bel11]. There, a half-life of T1/2 =

2.6+0.4
−0.3(stat.) ± 0.6 (syst.) × 1014 y was determined. This half-life is even more than

two orders of magnitude higher than for the decay to the ground state. The expected

decay rate is 0.02 decays/detector/month, or 16 decays/64 detectors/y for the whole 64

detector array. This small number of events will not be detectable in the background

from the 190Pt decays to ground state because due to the small difference in the energy
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of the emitted α-particles, the decays to excited states will vanish in the low energy tail

of the decays to ground state.

A coincidence analysis can be applied to disentangle these two decays, but the detec-

tion efficiency for two detector events will be smaller than the detection efficiency for

the decay to the ground state. Between the cathode side of a detector and the anodes

of the detector below is a Delrin layer and a gap of about 1 cm. The probability for an

interaction via photoelectric effect is comparatively high for a 137.2 keV γ-particle. On

the one hand this will increase the detection efficiency, but on the other hand it also

means that a coincidence analysis will certainly only be useful for γ-particles that are

emitted towards the detector below the cathode. This reduces the detection efficiency

by a factor < 0.5. Furthermore, only 75 % of all detectors do have a detector below their

cathode side. Therefore ε < 0.2 can be assumed and even with more than one year of

data taking with the full 64 detector array it will be difficult to detect the 190Pt decay

to the first excited state.

3.1.3. Search for γ-Lines

The only γ-line in the background spectrum that can be detected with higher statistical

significance is at about 510 keV. It can be concluded that this line derives from γ-

particles because the calculated interaction depths are distributed all over the detector,

see Figure 3.1. This line was first observed in [Sch09] in data taken with four cyclotene

passivated detectors and four detectors with the colourless passivation from EIDIS. The

line was observed after the installation of the Cyclotene passivated detectors and could

not be detected in the data of the four detectors with clear EIDIS coating that had

already been running for several months. The resolution of the Cyclotene passivated

detectors was by more than a factor of two better than for the other four detectors.

Also the amount of nitrogen flushed data with low background before the installation of

the Cyclotene passivated detectors was low. Therefore it is possible that the peak was

already present but was not noticeable.

Between the measurements with the Cyclotene passivated detectors and the mea-

surement with the 16 colourless detector layer the set-up was moved from the former

COBRA cabin to the new space in the former location of the Heidelberg-Moscow exper-

iment [KK01b]. Within the scope of the move the inner 5 cm lead layer was replaced

with lead with an 210Pb activity < 3 Bq/kg. The inner copper parts were thoroughly

cleaned by the LNGS Chemistry laboratory (see Appendix E). During the installation

of the 16 detector layer all detectors, the detector holders and even the calibration tubes

that go directly into the set-up were replaced. Assuming that the 500 keV line in the

older data and in the new data of the 16 detector has the same origin, many sources

of background, e.g. surface contaminations of the inner copper parts or the Cyclotene

passivation, can be excluded.

To investigate the events in the region of the 500 keV peak, the reduction of β- and

α-decays on the electrodes with a cut on the interaction depth is useful. In the following
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Figure 3.9.: Fit of the 511 keV line in the sum spectrum and distribution of 511 keV ± 2σ

events amongst the detectors. The line is clearly visible and fits well to a 511 keV positron

annihilation γ. The count rate slowly decreases with time, see Figure 3.11. Most of the events

were detected in the upper three detectors, especially in detector 4, compare also Figure 3.10.

To exclude electronic disturbances as cause of this line about 20 % of the 511 keV ± 2σ event

pulses from detector 4 were inspected by eye, but no irregularities were found.
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Figure 3.10.: Comparison of the spectrum of detector 4 with the sum spectrum of all other

detectors and configuration of the detectors within a detector layer. The 511 keV peak is

much higher in the data of detector 4 than for the rest of the detectors. As can be seen from

Figure 3.9 three of the upper four detectors (4, 8 and 16) have an increased count rate at

511 keV.
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Data Mean [keV]
Resolution

FWHM [%]
Cts / day

from Fit

Cts / day from

counting

2011 511.6 ± 1.2 4.5 ± 0.6 2.5 ± 0.3 2.7 ± 0.3

2012 512.7 ± 1.5 4.1 ± 0.9 1.8 ± 0.3 1.5 ± 0.3

2011 and 2012 512.0 ± 0.9 4.3 ± 0.5 2.1 ± 0.2 2.0 ± 0.2

Table 3.1.: Fitted data of the 511 keV peak. The average energy resolution matches the energy

resolution of 4 % determined from calibration data of detector 4. The decrease of the counting

rate is unlikely to derive from statistical fluctuations. As the Gaussian fit fits not exactly to

the data (compare Figure 3.11), the counting method (±2σ for peak region, 2σ above and 2σ

below for background region) is more reliable. The counting rate is given as counts per day

for the whole detector layer.

in general only events with an interaction depth 0.2 ≤ z ≤ 0.9 were taken into account.

In Figure 3.9 the peak and the rate of decays in the region of the peak for each detector

are shown. To fit the peak, a Gaussian distributed signal was used. To describe the

background close to the peak, a quadratic polynomial was applied. The fitted mean

µ = (512± 1) keV of the peak matches well to the 511 keV positron annihilation energy.

The deviation of about 1 keV (0.2 %) is very small compared to the detector resolution

of about 4 % FWHM at 500 keV. Also most direct γ-lines from nuclear decays could be

excluded in [Sch09] as origin of the line by taking into account the intensities of other

lines from the same decays that should also be present in the energy spectrum. This

rather favours a β+ decay as the source of the contamination.

The distribution of the count rates per detector, also plotted in Figure 3.9, shows

an excess of 511 keV events in detector four. A comparison of the spectrum of this

detector with a sum spectrum of the other 14 detectors shows that the line is also visible

in the data of the other detectors, but the rate is much higher for detector four, see

Figure 3.10. Also the detectors eight and sixteen show a significantly increased count

rate. These four detectors form together with detector twelve the upper column of the

detector layer. This could be a hint to a contamination of the holder material or the

surrounding copper in this region of the layer, but detector twelve does not show an

excess of events. To exclude an origin of this peak from electronic disturbances about

20 % of the pulse shapes of detector four in the region of the 511 keV peak were inspected

manually, but no suspicious pulse shapes were found. In [Sch09] a uniform distribution

of the events in all detectors with an average rate of about 1.3 cts per detector and day

was determined. This count rate is similar to the activity in detector four.

A comparison of the data from 2011 and 2012 showed that the count rate of the

511 keV events decreases with time, see Figure 3.11. To have a better estimate for the

count rates, the method of counting was applied to the data to decrease the influence

of the assumed shape of the fit function. Therefore, the counts in the signal interval of

±2σ around the fitted peak were summed and background determined from a 2σ region

above and a 2σ region below the signal region was subtracted. The results of the fits
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Figure 3.11.: Spectrum and fit of 510 keV line with quadratic BG approximation for 2011 (left)

and 2012 (right) data. The general background rate around the 511 keV peak is similar in the

2011 and 2012 data whereas the height of the peak decreases. The determined resolution of

∼4 % FWHM at 510 keV matches the resolution of detector 4 obtained from calibration data.

This also disfavours electronic disturbances as a cause of this peak.

and the counting are listed in Table 3.1.

As the decrease of the activity is clearly visible during the measurement time, the

assumption ∆t� T1/2 and thus Equation (3.2) is not valid. However, from the number

of counts an estimate for the half-life of a decay can be obtained by solving

N(t1 ≤ t ≤ t2)

N(t3 ≤ t ≤ t4)
=

t2∫
t1

−N0
ln(2)
T1/2

exp
(
− ln(2)

T1/2
· t
)

t4∫
t3

−N0
ln(2)
T1/2

exp
(
− ln(2)

T1/2
· t
) =

e

(
− ln(2)
T1/2
· t1
)
− e

(
− ln(2)
T1/2
· t2
)

e

(
− ln(2)
T1/2
· t3
)
− e

(
− ln(2)
T1/2
· t4
) (3.3)

numerically. Simplifying, it can be assumed that the measurement time equals approx-

imately the whole passed time (i.e. t1 = 0 days, t2 = 75.5 days, t2 = t3, t4 = 140.4 days)

as the calculation will only give a rough estimate of the half-life anyway. This is partly

due to the exponential dependency in Equation (3.3) which leads to large changes in

T1/2 for comparatively small changes in the count rates. To have an estimate for the

uncertainty of the obtained half-life, Gaussian distributed random numbers N1 and N2

with mean and sigma according to the measured count rates listed in Table 3.1 were

generated. For these random numbers Equation (3.3) was solved numerically. The re-

sulting distributions of the half-lives are plotted in Figure 3.12. From this distribution a
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Figure 3.12: Distribution of

half-lives for the 511 keV peak

determined from MC random

variables. Equation (3.3) was

solved numerically assuming

Gaussian distributed values

of the count rates listed

in Table 3.1. Due to the

exponentials in eq. (3.3),

small changes in N1 and N2

lead to large changes in the

calculated half-life. Therefore

the distribution is very broad,

especially for N1 ≈ N2.

68.27 % (1σ) CL can be determined. For the rates determined by counting in the peak

region, a half-life of T1/2 = 112+106
−42 days was calculated. A similar calculation for the

rates determined by the fit is more difficult. The confidence intervals of the two count

rates nearly overlap. This results in a broad distribution for the resulting half-lives with

a very long tail towards high half-lives and leads to a very high upper uncertainty of

the calculated half-life of T1/2 = 275+5345
−159 days. As the method of counting to determine

the peak contents is supposed to be more precise for the reasons mentioned above, the

half-life of the decay can be regarded to be > 70 days and smaller than several hundred

days.

The half-life of the decay that causes the 511 keV line is probably smaller than two

years but still a high count rate is present after nearly three years between the first

observation and the installation of the new detectors. Therefore, the origin of the line

from activation of the detectors by cosmic rays during the storage prior to the installation

is likely. A significantly earlier production date or a different storage of some detectors

may be an explanation for the excess in activity for some detectors. In [Por00] CdTe

was irradiated with 1.7 GeV protons to have an estimate for activation from cosmic

rays. Observed isotopes with either a half-life of more than ten days or with a long-lived

daughter nuclide are listed in Table 3.2.

No nuclides with a long half-life and also a high branching ratio for β+ decay are found

there. The only β+ emitter with a long half-life of 106.7 d is 88Y. But the branching ratio

is only 0.2 % and thus the γ-lines from the competing EC decay should be clearly visible

in the spectrum. Interestingly 85Sr with a γ-line at 514 keV is a daughter of the isotope
85mY, which is produced by proton irradiation. In [Sch09] this isotope was quoted as

one of the few possible background sources, but no reasonable explanation for the origin

of the contamination could be found. However, the cross sections for the production

of most of the isotopes listed in Table 3.2 are similar, at least for the irradiation with

1.7 GeV protons. Therefore, it is unlikely that only one of the isotopes is produced
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3. Data Analysis

Isotope
Mode of

decay
Half-life γ-lines [keV]

Long-lived

daughters

Exp. Cross

Section [mb]

129mTe
IT (63%),

β− (37%)
33.6 d 695.9 (3%) 129I (15.7× 106 y) 7.5 ± 0.9

129I β− 15.7× 106 y 39.6 (7.6%) - -

121mTe
IT (88.6%),

EC (11.4%)
154 d

212.2 (81.4%),

1102.1 (2.5%)
- 5.4 ± 0.6

121Te EC 16.78 d
507.6 (17.7%),

573.1 (80.3%)
- 3.4 ± 0.5

126Sb β− 12.46 d
414.8 (83.3%),

666.3 (99.6%)
- 1.4 ± 0.2

124Sb β− 60.2 d
602.7 (97.8%),

1690.9 (47.3%)
- 6.2 ± 0.4

114mIn EC 49.51 d
190.27 (14.7%),

725.2 (4%)
- 1.3 ± 0.3

105Ag EC 41.29 d
280.4 (30.2%),

344.5 (41.4%)
- 10.5 ± 0.5

101Pd
β+ (5%),

EC (95%)
8.47 h

296.3 (19.2%),

590.4 (12.1%)
101Rh (3.3 y) 8.0 ± 2.0

101Rh EC 3.3 y
198.0 (73%),

325.2 (11.8%)
- -

99Rh
β+ (4%),

EC (87%)
16.1 d

353.1 (30%),

528.2 (33%)
- 3.5 ± 0.5

88Nb
β+ (96.7%),

EC (7.2%)
14.5 m

1057.1 (100%),

1082.6 (100%)

88Zr (83.4 d),
88Y (106.7 d)

1.0 ± 0.3

88Zr EC 83.4 d 392.9 (97.2%) 88Y (106.7 d) 10.9 ± 0.7

88Y
β+ (0.2%),

EC (99.8%)
106.7 d

898.0 (93.7%),

1836.0 (99.2%)
- 3.3 ± 0.5

85mY
β+ (58.1%),

EC (42.2%)
4.86 h 231.7 (22.8%) 85Sr (64.8 d) 4.3 ± 0.6

85Sr EC 64.8 d 514.0 (96%) - -

75Br
β+ (73.1%),

EC (27.1%)
1.61 h

141.2 (7%),

286.5 (88%)
75Se (119.8 d) 2.0 ± 0.2

75Se EC 119.8 d
264.7 (59%),

400.7 (11%)
- -

Table 3.2.: Long lived isotopes produced in CdTe by proton irradiation (1.7 GeV), taken from

[Por00], the rel. intensities noted in brackets next to the γ-energies are taken from [KAE12].

Listed are isotopes with either a half-life > 10 d or a long lived daughter nuclide. If the long-

lived daughter nuclide was not produced in the proton irradiation the data was looked up from

[KAE12].
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Isotope
Mode of

decay
Half-life [d] γ-lines [keV]

Unstable Daughter

Nuclides
89Sr β− 50.5 909.0 (0.01%) -
91Y β− 58.5 1204.8 (0.3%) -

124Sb β− 60.2
602.7 (98.3%),

1691.0 (47.8%)
-

91mNb EC 60.9 1204.8 (2.9%) -

95mTc EC, IT 61.0
582.1 (30.0%),

835.1 (26.6%)
-

95Zr β− 64.0
724.2 (44.2%),

756.7 (54.0%)
95Nb

95Nb β− 35.0 765.8 (99.8%) -
85Sr EC 64.8 514.0 (96%) -

58Co
β+ (14.9%),

EC (85.1%)
70.9 810.8 (99%) -

56Co
β+ (19.0%),

EC (81%)
77.3

846.8 (100%),

1238.3 (67.6%)
-

73As EC 80.3 53.4 (10.3%) -
88Zr EC 83.4 392.9 (100%) 88Y

46Sc β− 83.8
889.3 (100%),

1120.5 (100%)
-

83Rb EC 86.2
520.4 (44.7%),

529.6 (29.3%)
-

113Sn EC 115.1 391.7 (65.0%) -

75Se EC 119.8
264.7 (58.9%),

279.5 (25.0%)
-

139Ce EC 137.6 165.9 (80%) -

121mTe
EC (88.6%),

IT (11.4%)
154.0 212.2 (81%) 121Te

121Te EC 16.8
507.6 (17.7%),

573.1 (80.3%)
-

102Rh
β− (20%),

EC (80%)
207.0

475.1 (38.4),

556.4 (96.0)
-

65Zn EC 244.3 1115.5 (50.6%) -

110mAg
β− (98.6%),

IT (1.4%)
249.8

657.8 (94.0%),

937.5 (34.1%)
-

57Co EC 271.8
122.1 (85.6%),

136.5 (10.7%)
-

54Mn EC 312.1 834.8 (100%) -
109Cd EC 462.6 88.0 (3.6%) -

134Cs β− 754.2
604.7 (97.6%),

795.9(85.5%)
-

22Na
β+ (89.9%),

EC (10.1%)
950.3 1274.5 (99.9%) -

Table 3.3.: Isotopes with half-lives 50 d < T1/2 < 3 y and mass number 10 < A < 140. Data

taken from [KAE12, Chu99, Fir98].
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3. Data Analysis

significantly more often than all the others, and besides the 511 keV line also other lines

should be clearly visible in the spectrum.

In Table 3.3 isotopes and their unstable daughter nuclides with a half-life between

50 d and 3 y and an atomic mass number 10 < A < 140 are listed. This mass range

covers most of the common nuclides. Isotopes from the natural decay chains (see e.g.

Appendix C), which have a higher atomic mass number, can be inspected separately,

but here again more lines should be visible for a contamination from the natural decay

chains. Besides 85Sr no nuclide with a high intensity γ-emission close to 500 keV was

found. 121Te has a line at 507.6 keV, but it also has a γ-line at 573.1 keV that has an

intensity that is a factor of four higher.

The only long-lived β+ emitter with a high β+ intensity compared to its γ-lines is
22Na. It has a half-life of 2.6 years (950.3 days). This is considerably higher than the

estimated half-life, but as explained above, the upper uncertainty of the estimated value

is weak and therefore a higher half-life than the one given above cannot be generally

excluded. 22Na has only one γ-line at 1274.5 keV. At this energy also a possible feature

in the LNGS background spectrum of detector four is visible, see Figure 3.14. With the

extended likelihood method described in Section 3.3 a fit at this energy was performed.

The result is shown in Figure 3.15. The peak maximum seems to be slightly below

1274.5 keV. Therefore, the fit was repeated with a 0.5 % lower energy at 1268.1 keV

(the implemented extended likelihood method is supposed to fit the signal strength at

a known energy and is not intended to also estimate the mean of a Gaussian signal).

The signal mainly appears in detector four, and an energy shift of 0.5 % is considerably

smaller than its energy resolution of 2.6 % FWHM at 1275 keV. However, both fits are

consistent with a signal strength nsig > 0 at a CL > 99 %.

A 22Na wire source is applied for calibration purposes at LNGS. Therefore a direct

comparison is possible. In Figure 3.13 a calibration spectrum and the background spec-

trum of detector four are shown. Due to the very low number of events in the background

spectrum above 600 keV the assumption of a 22Na origin cannot be proved, but the agree-

ment of the calibration and the background spectrum seems to be very good. Even the

Compton edge of the 1275 keV line fits well.
22Na is produced by spallation of atmospheric argon [Per65], but it can also be pro-

duced by activation with neutrons or protons, e.g. in Al [Ste74], or spallation in a

nuclear reactor or nuclear weapons tests. It is not obvious where a contamination of the

detectors or the surrounding materials with 22Na could have happened. A contamination

from the calibration source can be nearly excluded as mainly one detector is affected

and the position of this detector is far away from the calibration tubes that are used

to guide the wire source. However, as one main limiting factor of the identification of

the line is the limited amount of data, more installed detectors and longer measurement

time will be needed to probe the origin of the line with higher reliability.

Besides the 511 keV and the 1275 keV peak also a hint to the presence of the 40K line

is visible in the spectrum, see Figure 3.14. Also for this line a fit with the extended likeli-
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Figure 3.13.: LNGS background spectrum and 22Na calibration for detector 4. Besides the

511 keV line also a feature at about 1275 keV is visible. Both lines fit to 22Na. A 22Na source is

used for calibration purposes at LNGS. A comparison of a calibration run and the background

spectrum shows good agreement, even though it is not clear where the contamination could

derive from. The calibration spectrum was scaled so that the height of the 511 keV lines match.
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Figure 3.14: Possible γ-lines in the

LNGS spectrum. To reduce back-

ground from α- and β-decays on

the cathode and the anodes, a

depth cut 0.1 ≤ z ≤ 0.95 was ap-

plied. Besides the possible peak

at 1.28 MeV (left red arrow) also

a peak at 1.46 MeV (right red ar-

row), the γ-line of 40K, are present,

compare also Figure 3.15 and Fig-

ure 3.16. The small excess close

to the energy of the 208Tl 2.6 MeV

double escape line (1.59 MeV) is

too narrow to derive from a γ-line

and derives most probably from

statistical fluctuations.
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3. Data Analysis

hood method was done. The result is shown in Figure 3.16. It is consistent with a signal

strength nsig > 0 with a CL > 99 %. If a passivation coating thickness of about 20µm

is assumed and the results for the Parylene C simulation determined in Section 2.5 are

scaled to the 40K of the EIDIS passivation lacquer, it can be concluded that the amount

of 40K from the passivation coating should not be visible with the current background

level. Possible sources of 40K contamination can be intrinsic impurities of the RG178 HV

coaxial cables, the Kapton signal cables or the applied glues. Also remnants of surface

contaminations of the Delrin detector holders, the cables or the detectors themselves

despite careful cleaning prior to the assembly are possible.

However, none of the discussed nuclides that can cause the γ-peaks in the spectrum

can produce background in the ROI of COBRA. The main background comes from the

α-sources discussed above and can be significantly reduced with a cut to the interaction

depth. By requiring an interaction depth of 0.1 ≤ z ≤ 0.95, the background level in the

ROI between 2.7 MeV and 2.9 MeV (≈ ±2×FWHM of the average detector resolution)

can be reduced from (11.4± 1.3) cts/keV/kg/y (79 cts) to (4.5± 0.8) cts/keV/kg/y (31

cts). Thus, by reducing the active detector volume by about 15 %, the background level

can be reduced by about 60 %. With more restrictive cuts and advanced pulseshape

analysis, as proposed by Matthew Fritts, the background level and also the sensitivity

can even be improved further.

3.2. Requirements of an Analysis Method

3.2.1. General Considerations

To obtain an estimate θ̂(x) of a physical parameter θ and an estimate for an interval

θ1 ≤ θ ≤ θ2 for this parameter from measured values x, mainly two approaches are used.

They are commonly known as the frequentist (or often also called classical) and the

Bayesian approach [Jam81, Ber12]. Even though the obtained results are often similar,

the underlying concepts differ fundamentally.

In the frequentist approach the point of view is taken that analysed data derive from

(infinitely often) repeatable experiments. The underlying physical parameters of interest

are unknown, but constant. On the other hand, the observed data samples differ from

realisation to realisation of the experiment and thus are treated as random samples. The

data, and therefore also the reported value θ̂(x), is dependent on the unknown, but fixed

parameter θ. Probability distributions can only be defined for the random variables, i.e.

for the measured values as f(x|θ) and for the estimated results as f(θ̂(x)|θ). In this

context the concept of a confidence interval is used to give an estimate for the precision

of the method. For a certain CL of β, the confidence interval is defined in such a way

that the calculated confidence interval [θ1, θ2] for the outcome of an experiment contains

the true value θ for a fraction β of all experiments (i.e. the outcome of an experiment
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Figure 3.15.: Fit to the 1275 keV line with the extended likelihood method described in Sec-

tion 3.3. As the line seems to be slightly shifted to smaller energies the fit was repeated with

a shift of 0.5 % to the right (at 1268 keV), see bottom plot. Both fit results are consistent with

nsig > 0 with a CL > 99 % (kα = 2.58).

can be repeated with a certain frequency):

β = P
(
θ1 ≤ θ̂ ≤ θ2|θ

)
=

θ2∫
θ1

f(θ̂′|θ) d θ̂′ (3.4)

If the fraction of experiments that contain the true θ in the estimated interval really

equals β, the method is said to have a good coverage. If θ is contained less frequently than

β the method suffers from so called undercoverage, if it is contained more frequently it

has an overcoverage. Often overcoverage is regarded to be ’conservative’ and is accepted

rather willingly than undercoverage, but in general it should be aimed for an estimator

with neither (or only slight) over- and undercoverage.

In [Fel98] a method to construct such confidence intervals, the so called unified ap-

proach to the classical statistical analysis of small signals, was introduced. There an
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Figure 3.16.: Fit to 40K line at 1460.8 keV with the extended likelihood method described in

Section 3.3. The fit result is consistent with nsig > 0 with a CL > 99 % (kα = 2.58).

example for a Poisson distributed signal and known background is shown. This method

even automatically switches from an upper limit (i.e. no signal was observed) to a cen-

tral CL limit. This method therefore is suitable for classical counting experiments with

known background. However, additional information like the shape of the signal and the

background distribution in a measured energy spectrum is not taken into account. This

is very valuable information that can increase the sensitivity significantly. Hence, this

method is not optimal for experiments that have access to such additional information.

In the Bayesian approach the point of view concerning measured data and physical

parameters is inverted. Here, the physics parameter θ itself is treated as a random

variable and the decision is made on the basis of the degree of belief p(θ|x) in the true

value θ for the measured result x. It is derived from Bayes’ Theorem and is given as the

PDF (often also called posterior PDF)

p(θ|x) =
L(x|θ) p(θ)

P (x)
. (3.5)

Here L(x|θ) is the joint PDF for the observed data given a certain value of θ, the

so called likelihood function (see also below). p(θ) is the so called prior PDF and

P (x) =
∫
L(x|θ′) p(θ′) d θ′ is just a constant to normalise p(θ|x) to unity. The prior p(θ)

represents all (subjective) belief on θ before the measurement is carried out. There are

no general rules how to obtain p(θ). It is usually chosen on the basis of experience (e.g.

previous experiments), to avoid an unphysical parameter region (e.g. negative mass

values) or even ’researcher intuition’. The outcome of an analysis can differ strongly

depending on the choice of the prior. The prior therefore is one of the main points of

criticism from non-Bayesians.

The value θ̂ for which p(θ|x) takes on its maximum value is taken as (point) estimate

for θ. For this point a so called Bayesian or credible interval [θ1, θ2] is constructed so
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that it contains the true parameter θ with a probability of β:

β =

θ2∫
θ1

p(θ|x) d θ . (3.6)

Due to the choice of the prior, these intervals can differ significantly from the frequentist

confidence intervals determined from Equation (3.4), and their numerical calculation

can be computationally extensive. Since the computational power increased significantly,

also the interest in Bayesian analysis has increased during the last years and today several

Bayesian analysis tools exist, e.g. the Bayesian Analysis Tool (BAT) [Bea11, Cal09].

Whether the frequentist or the Bayesian method is the better statistical choice was

often discussed passionately. A comparison and some remarks can be found in [Cou95].

The frequently, or maybe even most commonly, used method of Maximum Likelihood

(ML) is often regarded to have certain properties of both approaches.2 It is described in

most statistic textbooks in detail, e.g [Cow98, Cas02, Jam08], so here the general idea will

be explained only briefly. For measured statistically independent values x = (x1, . . . , xN)

with PDF f(xi, θ) the joint PDF

L(x|θ) =
N∏
i=1

f(xi, θ) (3.7)

is called likelihood function. The estimator θ̂ is the value of θ that maximises L(x|θ).
For numerical reasons usually the negative log likelihood function

− lnL(x|θ) = −
N∑
i=1

ln(f(xi, θ)) (3.8)

is evaluated because a sum can be calculated easier than a product and most computer

programs are designed to find a minimum of a function, and not a maximum. The max-

imum of L(x|θ) and the minimum of − lnL(x|θ) are equivalent because the logarithm

is a monotonically increasing function. The global extremum of the function can either

be found by differentiating and solving

∂ L(x|θ)
∂ θ

= 0 or − ∂ lnL(x|θ)
∂ θ

= 0 (3.9)

or by finding the extremum numerically, e.g. with the minimisation program MINUIT

[Jam75]. To obtain information on the uncertainties of a likelihood fit also two methods

exist [Jam81, Ber12]. The first is to obtain the covariance matrix V by inverting the

second derivative matrix of the log-likelihood function at its maximum θ̂(
V̂ −1

)
ij

= − ∂2 lnL
∂ θi ∂ θj

∣∣∣∣
θ̂

. (3.10)

2The statistician G. Casella once referred to ’Likelihoodists’ as ’Bayesians - but they don’t know it’,

www.stat.ufl.edu/~casella/Talks/BayesRefresher.pdf
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3. Data Analysis

For a parabolically shaped likelihood function this method is suitable. The second

method is sometimes referred to as the method of MINOS, because the MINUIT routine

that is called for the error estimation has this name. In this method the limits of a

certain confidence interval are obtained directly from the contour of the log likelihood

function. The equivalent limits to kα Gaussian standard deviations (kα is often also

referred to as the Gaussian quantile or the coverage factor, see also Appendix D) can be

obtained by determining the points θ′ where the log likelihood function increased by

− lnL(θ′) = − lnLmin +
kα

2

2
(3.11)

from its minimum value. This method was originally proposed by CERN staff in the

1960s, but nowadays it is also applied by statisticians, e.g. in the profile likelihood

method [Rol01, Rol05]. In the case of central confidence intervals the obtained limits

will in general be asymmetric. Even though the intervals often have a good coverage

in the classical sense, a good coverage is not guaranteed and should be checked for the

problem at hand.

To judge an estimator θ̂ mainly four properties should be revised. Desirable in an

estimator is that it is consistent, unbiased, efficient and robust. Consistency means that

the estimate θ̂ should converge to the true value of θ as the amount of available data

increases:

lim
n→∞

θ̂ = θ . (3.12)

It can be shown that this is true for ML estimators in general [Blo98, Jam08]. The

bias of the estimator is defined as the difference between the expectation value of the

estimator and the true value θ of the parameter [Cas02]

bθ̂ = E(θ̂)− θ . (3.13)

The bias can be regarded as a measure of accuracy of an estimator and bθ̂ = 0 is desired.

The consistency of the ML estimator implies that it is at least asymptotically unbiased.

For low statistics it has to be checked carefully whether the estimator is unbiased. This

can be seen from the certainly most famous examples of ML estimators with a small

bias, namely the ML estimator of the variance σ2 of a Gaussian distributed random

variable

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 , E
[
σ̂2
]

=
n− 1

n
σ2 6= σ2 (3.14)

and the ML estimator for the decay time τ and the decay constant λ = 1/τ of an

exponential distribution:

f(t, τ) = 1
τ

e−t/τ , τ̂ = 1
n

n∑
i=1

ti , E [τ̂(t1, . . . , tn)] = τ (3.15)

but f(t, λ) = λ e−t ·λ , λ̂ = 1
τ̂
, E

[
λ̂
]

= λ n
n−1
6= λ (3.16)

112



see e.g. [Cow98] for details. Therefore an estimator has to be tested for a bias either ana-

lytically or with MC simulations. Even though ideally an estimator should be unbiased,

sometimes a small bias can be acceptable if other advantages like numerical stability

or a small variance of the estimator are regarded to be very beneficial. Nevertheless

the magnitude of the bias has to be determined to estimate the trustworthiness of the

method.

An estimator is called efficient if its variance is as small as possible. With the Cramér-

Rao lower bound it can be shown that under very general conditions the ML estimator

is at least asymptotically efficient [Blo98, Jam08].

Sometimes the PDF of a parameter or of the measured data in general is not exactly

known. If deviations in the data and the assumed PDF have only little influence on the

resulting estimate, an estimator is called robust.

Usually not all of these requirements can be completely satisfied. For example ML

estimators have a good variance, but if the assumed PDF is not correct, the obtained

result can differ strongly from the true value, i.e. especially efficiency and robustness

are often contradictory.

Besides the choice of the statistical analysis philosophy another often discussed issue

is the treatment of parameters near unphysical boundaries. For example the neutrino

mass or the count rate of a decay are known to be positive (or zero). In the Bayessian

approach this information can be added in the prior p(θ), and it is also possible to

artificially introduce such a boundary in the likelihood function of the ML estimator.

Minimization programs such as MINUIT also contain options to restrict the range of

the fitted variables. The drawback of these methods is that it is usually not possible

to construct an unbiased estimator with such a restricted parameter range if the true

value θ is close to a boundary. If the true value, e.g. the count rate, is zero, an

unbiased estimator has to result in negative estimates half of the time. If due to the

aforementioned restrictions only positive results are calculated, the true value θ = 0 can

never be obtained by combining the results of several experiments. Therefore here the

point of view described in [Jam91] is taken. There it is proposed to apply an unbiased

method and to publish the obtained result of the experiment (and not only calculated

limits), even if it is in the unphysical region.

For the search for 0νββ-decay in COBRA data special requirements arise. The set-up

consists of many detectors. These detectors differ in properties like energy resolution

and live time. The energy resolution can also vary over time. The estimator therefore

has to be able to combine the data of many single measurements.

3.2.2. Former Binned Likelihood Approach

For the data collected before the background reduction by about an order of magnitude,

which was achieved by constant nitrogen flushing and replacement of a red detector

passivation lacquer, a binned ML approach was applied for the determination of 0νββ-

decay limits [Blo07, Daw09b]. Its properties, advantages and disadvantages will be
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3. Data Analysis

explained shortly in the following. For each detector and each measurement period a

histogram for the observed counts is generated. For the fit the bin content of each

histogram bin is regarded as a random variable following the Poisson distribution

f(ni|µ) =
µni

ni!
e−µ . (3.17)

ni is the number of observed events in bin i and µ = µsig+µbg is the expected value of the

sum of background and signal events (signal and background strength). As each mea-

sured bin content of a detector histogram and each measurement period can be regarded

as independent, the resulting likelihood function is the product of the PDFs (3.17) for a

single bin (compare Equation (3.7)). µ itself has an energy (bin) dependence following

the expected signal and background distribution, that is, a Gaussian shaped signal at

the Q-value of the decay and an exponentially decreasing background. Alternatively

also a signal distribution in the form of a histogram, e.g. a simulated 0νβ+β+ spectrum,

can be applied. The log likelihood function (omitting µ independent summands) is

lnL =
∑

Period

∑
Det

∑
Bin

(nBin ln(µBin)− µBin) . (3.18)

The signal rate is the same for all detectors, but the background rate can vary for each

detector. For the background estimation a function

fBG(E) = p7 ·

(
p0 + p1 · e−p2 E + p3 · e−p4 E +

p5

p6

√
2π
· e−

(E−Epeak)
2

2 p6
2

)
(3.19)

containing two exponentials, one to describe the spectrum at higher energies and one

for the lower energies, and a constant term together with known γ-peaks is fitted to the

sum spectrum of all detectors. In a first step, parameters describing the composition of

these background events (in total five to seven parameters) are fitted to the experimental

data in a wide energy range of 400 keV to 3200 keV. Afterwards these parameters are

fixed for the 0νββ-decay fit, but a further parameter, p7, which is used to scale the

overall background level for each detector individually, is varied in the final fit for the

0νββ-decay signal.

The method fulfils many of the desired requirements. Different energy resolutions and

also energy resolutions that vary over time can be taken into account. The binning of the

data is useful for a comparatively high background level. If the number of data points

is high, the calculation of an unbinned likelihood function is computationally extensive

and can become numerically unstable. Histogramming of the data reduces the amount

of summands that have to be calculated in the likelihood function.

On the other hand the histogramming also means a loss of available information.

For a small amount of data the outcome of the fit becomes also strongly dependent

on the chosen bin width. For the already achieved background level of 5 cts/keV/kg/y,

histogramming of the data can even be counterproductive regarding the reduction of
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summands in the likelihood function. With this background rate an average of only

17 cts/detector/y in a region of 2.5 MeV to 3.1 MeV are expected. For a measurement

period of three months this will be only about four events per detector. So even for

such a wide energy interval most of the histogram bins will be empty and there will be

more histogram bins than data points. For a background level of 1 ct/keV/kg/y, which

is achievable with new sophisticated pulse-shape analysis methods for the planned 64

detector array, the amount of data will even be lower and most histograms will be

completely empty.

The idea to allow for an individual background level for each detector is in general

good. But here again the limited amount of information has to be taken into account.

A fit with many parameters becomes highly unreliable for a small amount of data. Even

if the parameters for the background shape are fixed during the final fit and only the

relative height of the background is varied, a total number of 65 parameters has to be

fitted for the whole 64 detector array. This is already in the order of the total number

of data points for the background level of 1 cts/keV/kg/y.

A further aspect is the robustness of the estimator. In general the background can be

described well with the two exponential functions. But there is no verified model for the

current background composition. Deviations from the assumed exponential behaviour of

the background distribution can distort the result of a fit and lead to large discrepancies

in the actual ROI. This holds especially for the treatment of the background in the

former binned likelihood approach. In order to gather enough data, the background is

fitted in a wide energy range. This range is much wider than the range that is used

for the actual fit for the 0νββ-signal. As the amount of data is higher at lower energies

due to the higher background, the influence of this data will be higher than for the

higher energetic data that is closer to the actual ROI. Currently unknown or uncertain

background, for example the only recently explored 190Pt decay that is very close to the

ROI at 2.8 MeV, could be suppressed in the background fit from data at much lower

energies.

3.3. Extended Maximum Likelihood

For the reasons illustrated in Subsection 3.2.2 a new fit approach for the 0νββ-decay

search in COBRA data has to be found. The method has to combine the data of all

detectors in a meaningful way, i.e. it has to take the different energy resolutions of

the detectors into account. Modelling an own background level for each detector is in

principle regarded to be desirable, but is not feasible with the low data for a single

detector.

The two most promising candidates for a fit method are the Bayesian approach and

the method of maximum likelihood. From the authors point of view, the method of

maximum likelihood is preferred. Bayesian analysis is a very powerful tool. But the

subjective choice of a prior, even though it often is regarded as virtue, also brings the risk
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of a strong bias. Furthermore, the concept of coverage of a classical confidence interval is

regarded to be a good measure for the reliability of an estimator. Therefore, the method

of extended maximum likelihood was evaluated as candidate for the replacement of the

binned likelihood method.

3.3.1. General Idea of the Extended Maximum Likelihood Method

Advantageous of the binned likelihood approach is that it makes use of the information

obtained from the shape of the measured spectrum, as well as the Poissonian nature of

nuclear decays by modelling each bin as a Poissonian random variable. In the common

form of Equation (3.7) of the likelihood function usually only the shape of the measured

spectrum is used. If both the information from the Poisson nature of the decay as well as

the shape of the spectrum can be exploited, a smaller variance and thus a more efficient

estimator is expected.

Furthermore the proper implementation as Poissonian random variables is very im-

portant for a good coverage. The main variable of interest is in fact not the realisation

nsig of signal events in the actual data sample, but the expected value µsig of the distri-

bution of signal events. The Poissonian variation of nsig as realisation of µtrue therefore

has to be taken into account to achieve a good coverage for the confidence interval of

µfit
sig. Of course for the point estimate, i.e. the estimate of signal events, the number of

fitted signal events and the expected value of the distribution are identical: nfit
sig = µfit

sig.

Therefore in the following both notations will be used synonymously, but it should be

kept in mind that the actual estimate and its confidence interval are calculated for µsig.

The difference between the confidence intervals for nfit
sig and µfit

sig can be seen from an

example. Let us assume a realisation of nsig = 6 events in a data sample (measurement)

for the true expected value µsig = 10 events. Good estimators will yield nfit
sig = µfit

sig = 6

counts as point estimate. Concerning the confidence interval two questions can be asked.

First: How many signal events are truly contained in this measured data set? Second:

If six events were measured in this particular data set, what can we assume for the true

expected value µsig? The answers to both questions will clearly be different. In our case

we have to ask the second question.

In the extended likelihood approach [Cow98] the Poisson distribution (3.17) of the

number n of measured events is taken into account by multiplying the likelihood function

of the background PDF with the Poisson probability to observe n events

L(x|µ,θ) =
µn

n!
e−µ

n∏
i=1

f(xi|θ) . (3.20)

θ = (θ1, . . . , θk) are the parameters of the model for the measured spectrum, i.e. for

example the mean and variance of a Gaussian signal and parameters to describe the

background.

In our case the total number of observed events n consists of ns signal and nb back-

ground events, and the expected value for n therefore is µ = µs + µb. If the energy
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dependent PDF of the signal events is fs(x|θ) and fb(x|θ) for the background then the

PDF for the sum of signal and background is

f(x|µ,θ) =
µs

µs + µb
fs(x|θ) +

µb
µs + µb

fb(x|θ), with

∫
f(x|θ) dx = 1 . (3.21)

Combining Equation (3.20) and Equation (3.21) gives the final negative log-likelihood

function (omitting parameters independent from µ and θ)

− lnL(x|µ,θ) = (µs + µb)−
n∑
i=1

ln (µs fs(xi|θ) + µb fb(xi|θ)) . (3.22)

Here, the full information of each event is preserved and the data of all detectors is

naturally combined to equal one homogeneous detector set-up.

3.3.2. Implementation and Consistency Tests

For semiconductor detectors the distribution of (monoenergetic) signal events has a

Gaussian shape. It is implemented with a normal distribution

fs(xi|E0, σ
2) = N (E0, σ

2) =
1

σ
√

2π
e−

(xi−E0)
2

2σ2 . (3.23)

The mean of the Gaussian distribution and its variance are not taken as free parameters

in the fit. E0 is given as the Q-value of the 0νββ-decay and σ is determined from

calibration data. The PDFs of the likelihood function have to be normalised to unity in

the fit range. In the actual implementation the signal distribution is therefore normalised

to unity for the energy interval of the fit to match
∫ x2
x1
fs(x|E0, σ

2) dx = 1.

The modelling of the background distribution is more difficult. Often a sum of an

exponentially decreasing background and a constant term is assumed. In this case, the

expected value for the background strength has to be split to µb = µb1 + µb2 . The

normalisation of the exponential background PDF

fb1(x|τ) = c1e−
x
τ , c1 =

1

τ
(

e−
x1
τ − e−

x2
τ

) (3.24)

is dependent on the background fit parameter τ itself. In the implementation of the

likelihood fit this normalisation has to be recalculated for every variation in τ . A fit of

this background model to LNGS data taken with the first four colourless detectors and

the Cyclotene passivated detectors [Sch09] is shown in Figure 3.17. Due to the features

in the background discussed in Section 3.1, a fit range of 1.5 MeV to 3.0 MeV was taken.

The result of the fit is strongly dependent on the fit range. Especially the parameters

of the exponential part have large uncertainties.

These are hints that the background cannot be precisely described with this model.

The exponential dependence can also lead to numerical instabilities. Furthermore, a
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3. Data Analysis

Figure 3.17: Fit of f(E) = p0 + p1 · e−
E
τ to

LNGS data taken with the first four colour-

less and Cyclotene passivated detectors to de-

termine input parameters for MC data samples.

The features mentioned in Section 3.1 (190Pt,

the 511 keV and the 1275 keV γ-line) are also

clearly visible in this spectrum. The 190Pt de-

cay at the cathode leads to an increasing back-

ground level above 3 MeV. The fit to the back-

ground was performed in an energy range of

1.5 MeV to 3 MeV. The fit results for the ex-

ponential function strongly depend on the fit

ranges.
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wide fit range and therefore also data far away from the actual ROI has to be used to

have a good estimate for its parameters. As already stated in Subsection 3.2.2 this can

lead to an inappropriate background description in the ROI.

On the other hand, the slope of the background spectrum is small for wide energy

ranges. That means that for a smaller fit range also a polynomial can be appropriate to

describe the background. The usage of a polynomial can also be seen as an approxima-

tion of the background by expanding the true background function to a Taylor series.

The remainder term of a Taylor series is smaller for smaller derivatives of the function

at the point of expansion. This makes this approach especially suitable for a smooth

background. Therefore also a likelihood function with a linear or a quadratic function

describing the background was implemented. The choice of the order of the polynomial

has to be taken on the basis of the background shape in the ROI. The quadratic approx-

imation should in principle give a better background approximation but can also lead

to a larger variance of the estimator and even numerical instabilities due to the higher

order of the parameter space. The shape of the background in the main ROI at 2.8 MeV

is comparatively flat (see Figure 3.19 and Figure 3.17) and can certainly be described

with a linear approximation in a fit range that is not too wide.

For the minimisation of the negative log likelihood function the MINUIT [Jam75,

Jam04] package, which is included in the ROOT framework as the C++ Minuit2 li-

braries, is used. The minimisation in a multidimensional parameter space is always

difficult, and it is prone to numerical instabilities. The MINUIT package is known

to have good minimisation algorithms that can help to avoid these instabilities and is

therefore widely used.

For the error estimation according to Equation (3.11) the MINUIT method MINOS

is applied. In this method the parameter uncertainty, in the implemented case a 90 %

CL upper limit for the number nsig of signal events with kα = 1.282, are obtained by

scanning the shape of − lnL. The procedure is to vary the parameter nsig, then fix it and

minimise − lnL with respect to all other parameters. This is repeated until the Relation
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Figure 3.18: Distribution of detector

resolutions of the first 16 colourless de-

tector layer at 2.8 MeV. The resolution

was interpolated from 22Na and 228Th

calibration data. 15 of the 16 installed

detectors were operational. The resolu-

tion information of these detectors were

taken as input for the generated MC

data samples for the ML estimator val-

idation. The resolution of the new de-

tectors is good, but it differs by up to

a factor of two between the individual

detectors. This has to be taken into

account in the analysis method of the

data.

(3.11) is fulfilled and the resulting nsig is taken as boundary for the uncertainty interval.

With this procedure parameter correlations and non-linearities are treated properly by

MINOS.

Random data samples were generated to evaluate the estimator. Parameters for the

background shape were taken from the fit to the LNGS background. The τ parameter

for the exponential decrease was fixed to the fitted value, but the signal and background

strength was treated as a Poisson variable. 10,000 data samples each for a background

level of bg = [1, 2, 5, 10] cts/keV/kg/y in the region of 1.5 MeV up to 3.0 MeV and µs =

[0, 1, 5, 10] signal events at an energy of 2.8 MeV were generated. Values for the resolution

of the detectors and their spread were taken from LNGS calibration data of the first 16

colourless detector layer, see Figure 3.18. The main focus lies on the behaviour of the

method for small statistics. Therefore data samples equivalent to one year of data taking

with the 64 detector array were generated. The data samples with bg = 1 cts/keV/kg/y

for the 1.5 MeV to 3.0 MeV region are comparable to half a year of data taken with the

current 16 detector layer with a background level of about 5 cts/keV/kg/y in a region

of 2.7 MeV to 2.9 MeV.

The ML fit was performed for all data samples. It was noticed that the fit with the

exponentially decreasing background is numerically more unstable than the polynomial

background fits. It needs a higher amount of data and good start parameters to converge.

For the tests of this algorithm a fit range of 1.5 MeV to 3.0 MeV and a range of 2.0 MeV

to 3.0 MeV was chosen.

For the algorithm with the interpolating polynomial background a trade-off has to

be made in the choice of the fit range. A wider fit interval has more data points and

therefore less statistical uncertainty. To have enough data for the background and the

signal determination a fit range equivalent to at least ±6σ of the detector resolution

should be taken. For an energy resolution of 2 % FWHM at 2.8 MeV this is equivalent
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Figure 3.19.: Examples of generated MC data for one year of data taking with one detector

layer and a background level of 1 cts/keV/kg/y. Here the problem of low statistics becomes

obvious. Although a signal strength of 10 cts/y is clearly visible in the large data sample on

the right (here all of the 10,000 created data samples were combined) even a comparatively

strong signal of 15 events nearly vanishes in the background fluctuation (middle). The spectra

with no signal (left) and the strong signal are hardly distinguishable with the naked eye. It

should also be noted that the spectra are composed from the data of 16 detectors with different

energy resolution (compare Figure 3.18). Therefore, a straight fit to the plotted histograms is

not possible, but the data of each detector has to be treated separately. This can be achieved

with the unbinned extended ML approach.

Figure 3.20: Fits of polynomial

background to MC data sample in

the ROI around 2.8 MeV. A lin-

ear (top row) and quadratic (bot-

tom row) function was fitted to a

sum spectrum of all 10,000 MC

data samples for 1 cts/keV/kg/y.

For a fit region of 2.5 − 3.1 MeV

(left plots) the quadratic approxi-

mation fits much better than the

linear one. The best χ2/ndf ratio is

achieved with the quadratic back-

ground approximation in a fit range

of 2.5− 3.1 MeV.
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Figure 3.21.: Fit of quadratic background approximation to lower energetic background re-

gion. The slope of the spectrum is higher for these energies than at 2.8 MeV. The quadratic

approximation is no longer sufficient to describe the background well in a wider fit range

(middle). For a smaller fit range the approximation is better (right). As expected from the re-

mainder of a Taylor series the divergence becomes stronger with higher slope (compare χ2/ndf

of left and right plot).

to about 150 keV. On the other hand the quadratic approximation is less precise for

wide energy ranges, especially for a higher slope in the background shape. The choice

of appropriate fit intervals was taken on the basis of tests with the 1 cts/keV/kg/y data

sample with zero signal events, see Figure 3.20 and Figure 3.21. As minimal fit range an

interval of ±200 keV and an additional interval of ±300 keV were chosen for the fit in the

ROI. For these fit ranges the approximation to the MC background is still acceptable.

For lower energies the fit range should be chosen smaller or the exponential background

approximation should be taken. With a fit range of ±200 keV the fit with quadratic

background approximation yields still good results for fits at 2.0 MeV and 1.8 MeV, see

Figure G.7, Appendix G. In general a smaller fit range can be chosen for lower energies

because the absolute energy resolution is also smaller and the number of events is higher.

Detailed results of the tests are listed in Appendix F and plotted in Appendix G. An

example of the most important parameters for the fit with quadratic background ap-

proximation for the data sets with µtrue = 5 cts and a background level of 1 cts/keV/kg/y

is shown in Figure 3.23. The fits with the linear background approximation tend to a

small negative bias. The bias is larger for the wider fit range of 2.5 MeV to 3.1 MeV.

This can be explained with the exponential shape of the generated background. In the

wider fit range the background in the centre of the fit interval is systematically below

the fitted linear background, see Figure 3.22 for an extreme case in the lower energetic

region. The method fills the missing background events up with signal events, what

leads to the underestimation of the signal strength. This effect is smaller for a narrower

fit range and a smaller slope of the exponentially decreasing background.

For the quadratic background approximation the estimator seems to have a small

negative bias for low background rates, but for higher background rates the estimated

signal strength seems to be slightly too high. However, the true signal strength is still

contained in an interval of ±2σ of the variance σ2 of all 10,000 fit results for each set of
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3. Data Analysis

Figure 3.22: Fit of a linear BG to the lower en-

ergetic region of the generated data samples.

The inappropriate fit interval was chosen to

demonstrate the underestimation of the BG in

the centre of the fit interval. In the ROI at

about 2.8 MeV the disagreement is much lower,

see Figure 3.20. The lack of events in the cen-

tre of the fit interval can lead to a systematic

underestimation of the signal strength. The

effect is much smaller for the quadratic BG

approximation.
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data samples.

The fits with the exponential background model tend to a small positive bias. The

presence of this small bias, even though exactly the same spectral shape was fitted to

the data that was used to produce the MC data samples, shows how important the

consistency tests are. As can be seen from the example given in Section 3.2 even the

fit of the decay constant to pure exponentially decreasing data is biased (note that in

the implemented case not λ but τ was taken as parameter). Therefore a small bias in a

much more complex model with additional constant background and Gaussian signal is

not surprising.

However, the bias of all estimators is small compared to the variance of the determined

signal. The worst bias to statistical spread ratio, which was determined to be b/σ =

3.7 %, is found for the linear background approximation with the wider fit range.

The variance of the fit methods with the linear and the exponential background func-

tion are nearly identical. The statistical spread of the fits with the quadratic background

is about 10 % higher. For this background model the increase in the fit range yields a

higher improvement in variance than for the other two. The reasons for the slightly

higher variance are probably the additional parameter compared to the linear fit and

the much smaller amount of data compared to the exponential background fits due to

the smaller fit interval.

All three methods have a constantly good coverage. In general a small, still acceptable

undercoverage of about 1 % is observed. For the commonly applied 90 % CL upper

limits the worst determined true coverage was found to be (87.9 ± 0.9) %, it occurred

in the fit with the quadratic background approximation in the smaller fit range. The

0νββ-decay signal strength for the COBRA 64 detector array prototype is far below

the achievable background level. Therefore, no observation but only upper limits are

expected and the coverage is the most important property of the fit method to be sure

that trustworthy limits are obtained. Note that the good coverage of the expected value

µsig
true of the Poissonian distributed signal could only be achieved because the Poissonian

distribution of the signal and the background strength is taken into account by the

extended likelihood method.
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Figure 3.23.: Fit results for µsig = 5 cts and a background level of 1 cts/keV/kg/yr. The

upper left plot shows the distribution of the fitted number of signal events. The mean of the

fitted signal events is consistent with the true value µtrue = 5 cts of the MC data samples. In

the upper right plot the Poisson distribution of the signal events in the MC data samples is

plotted. The lower left plot shows the distribution of the determined 90 % CL upper limits.

(89.5±0.9)% of the limits are higher than µtrue = 5 cts, this value is consistent with the desired

CL of 90 %. The statistical spread of the upper limits is (6.04± 0.04) cts. It is slightly higher

than the statistical spread of the fitted signal events of (5.38 ± 0.04) cts. On the lower right

side the correlation between the number of fitted events and the determined upper limit is

shown. From this plot, similar to the higher variance of the two distributions, it can be seen

that even though a general linear correlation exists, the upper limit cannot be determined by

simply adding a constant factor to the fitted signal.

From the point of reliability of convergence the linear background approximation has

the best performance. All fits have converged with this algorithm. The exponential

fit method also converged for all fits in the 1.5 MeV to 3.0 MeV fit region, but the fit

failed in up to 3.5 % of all cases for the smaller fit region of 2.0 MeV to 3.0 MeV. The

failure of this method for the smaller fit range has three causes. First, the statistics

are lower. Second, the exponential dependence of the likelihood Equation (3.24) is

in general more sensitive to fluctuations than the polynomial approach. Certainly the

main reason is the smaller slope of the background in the higher energetic region. Above

2 MeV the generated spectra are dominated by the constant background contribution.

This reduces the sensitivity to the decay constant τ . The method is also computational

more extensive than for the polynomial approximation. For the consistency tests several

hundred CPU hours of computational time were needed, about a factor of ten more than
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Figure 3.24.: Sum spectra of data taken with the old peak sensing ADC (left) and the new 16

detector layer with FADC readout (right). With the peak sensing ADC no interaction depth

reconstruction was possible. Therefore, the BG at the cathode (see Section 3.1) cannot be

discarded in this data and the BG level increases in the energy region of the 190Pt decay. Both

spectra show the same features at 0.51 MeV and 1.3 MeV (see also Section 3.1).

for the polynomial case. The quadratic background approximation has a good stability

for both fit ranges. For most of the data sets all fits converged, the by far worst rate of

failure was 0.3 %.

In summary it can be said that all fit algorithms have a good performance. The

linear approximation should only be applied for a flat background and with a narrower

fit range. The exponential fit is especially appropriate for lower energetic regions with

more data and a higher slope, but it should only be applied if there is strong evidence for

an exponentially decreasing shape of the background level. The quadratic background

approximation has a slightly higher variance than the other two methods. But on the

other hand it has the smallest bias and a good robustness. It is reliable for a background

distribution with little and also with higher slope. Due to the smallest bias and the high

robustness in the scope of this work it will be applied to LNGS data as the preferred

method.

3.3.3. Results

0νββ Limits for 116Cd and 130Te

Due to their heigh Q-values 116Cd and 130Te are the most promising 0νββ-decay can-

didates in COBRA. Therefore these two decays are examined with the new extended

likelihood approach. The fit method was applied to two data sets. The first data set was

taken with the formerly used peak sensing ADC and up to eight detectors with colourless

passivation (EIDIS clear passivation and Cyclotenen, see [Koe08, Sch09]). Most of these

detectors had a far worse energy resolution than the recently installed 16 detector layer.

Also neither the pulse shape nor interaction depth information is available. Therefore,
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discarding background events at the cathode and also the unreliable small area directly

below the anodes is not possible. This leads to an increasing background level in the

energy region of the 190Pt decay. To have a low background level only data with nitro-

gen flushing of the set-up is included in this data set. In total 6.5 kg days of data with

nitrogen flushing were acquired.

The second data set is the data taken with the new 16 detector layer (12.7 kg days, see

Section 3.1). For this data set the depth cut 0.1 < z < 0.95 was applied for background

reduction and discarding the unreliable area below the anodes. Sum spectra of both

data sets are shown in Figure 3.24.

Due to the large differences in the data taking methods and the background shape

it was decided to analyse the data sets separately. Fits at the Q-values of 116Cd

(2813.5 keV) and 130Te (2527.0 keV) were done for each data set with a fit interval of

±300 keV.

Both intervals contain, in principle, the 2614.5 keV γ-line of the 208Tl decay from the
232Th chain. No obvious signal is visible in the spectrum at this energy. Also at the

energies of the other γ-lines from the 232Th chain no significant peaks are visible. Adding

another Gaussian signal at 2614.5 keV to take the 208Tl line into account would increase

the number of fit parameters and therefore decrease the sensitivity to the actual 0νββ-

decay signal. To check for the presence of a line at 2614.5 keV the extended likelihood

fit was performed in a fit interval of ±300 keV around this energy. The results are shown

in Figure 3.25. A signal strength of

n208T l = 1.9+5.9
−4.7 cts, Peak Sens. ADC data , n208T l = 0.5+3.6

−2.9 cts, FADC data (3.25)

(uncertainties on central 68 % CL) was determined. As can also be seen from Figure 3.25

the fits to both data sets are consistent with n208T l = 0 and adding a further line at

2614.5 keV to the background model was discarded.

From the limit on observed 0νββ-decay signal events nup during the live time t a

half-life limit can be obtained from

T1/2 ≥ ε · ln(2) ·N0

nup
· t , (T1/2 � t) (3.26)

with the number of source atoms N0 and the detection efficiency ε. N0 is taken from

Table 1.2.

The efficiency has to be calculated for each data set and each Q-value separately

because the detectors have slightly different weights (∼ 6.5 g/detector for the old and

∼ 5.9 g/detector for the new detectors) and different cuts are applied (see above). To

determine the efficiency of a full energy deposition of a 0νββ-decay in the detector two

approaches were tested. 0νββ-decays were simulated in a segmented 1.02 cm3 (5.9 g,

edge length 1.005 cm) CdZnTe detector and in a segmented 1.12 cm3 (6.5 g, edge length

1.040 cm) CdZnTe detector. The detectors were divided into 100 slices along the z

direction. It was noticed that the small variation in the edge length has an even smaller

influence on the detection efficiency (∼ 0.5 % absolute or ∼ 1 % relative).
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Figure 3.25.: Fit results for the 208Tl line (2614.5 keV). Both data sets are consistent with no

detected decays. Shown are the fitted spectra and the negative log likelihood function − ln(L)

calculated as explained in Subsection 3.3.2. The arrows indicate the 68 % CL central limits

(kα = 1) on the fitted signal events.

The first approach for the determination of the detection efficiency was the energy

(or deposited charge) weighted path length calculation explained in Section 2.6. The

z-distribution of a 116Cd VENOM simulation for all simulated events and events with

full energy deposition are shown in Figure 3.26. Close to the edges of the detector

the probability of an escape of one or even both electrons from the detector is high.

Therefore the probability of a full energy deposition for events close to the edges is low.

This means that the reduction of efficiency for shallow depth cuts is lower than the

actual loss of active volume. For the 116Cd simulation and a cut on interaction depth of

0.05 < z < 0.9 the determined efficiency is ε = 46 %. Without z-cuts the efficiency was

calculated to be ε = 49 %.

The second approach is to sum only the energy deposition in z-slices within the cut

region and to ignore energy deposition in all other slices. The detector parts outside the
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Figure 3.26.: Distribution of energy (charge) weighted interaction depth (see Section 2.6) of

a VENOM 116Cd 0νββ-decay simulation. Close to the edges the probability for electrons to

escape the detector is high. For these events a short path length is calculated. Therefore a

cluster at z ∼ 0 and z ∼ 1 arises in the left plot of the interaction depth of all simulated events.

For the same reason the probability of a full energy deposition close to the edges is low. This

can be seen in the drop of the number of full energy events at z ∼ 0 and z ∼ 1 in the right

plot of events with deposition of the full 0νββ-decay energy in the detector.

z-range cuts are treated as insensitive material. For the 116Cd simulation this approach

yields an efficiency of ε = 41 % for a full energy deposition. This efficiency is smaller than

the efficiency determined with the energy weighted path-length method. The reduction

of efficiency for this method is equivalent to the loss of active volume.

In general the method of the energy weighted path-length is regarded to be more

realistic than the second method. On the other hand both methods do not take detector

effects, such as electron trapping, into account. These effects will lead to a slightly lower

true detection efficiency in a real measurement than determined from the simulation.

Presumably this influence will be comparatively small, but nevertheless the slightly more

conservative efficiencies determined with the second method will be used to prevent an

overestimation of ε.

For the data taken with the peak sensing ADC a depth cut of 0.05 < z < 1 in the

simulated data was applied to take the uncertainty in the energy reconstruction directly

below the anodes into account.

The fit to the data taken with the peak sensing ADC resulted in

116Cd: ε = 47 %, nsig = −6.0 cts, nup = 6.9 cts , T 0νββ
1/2 > 1.5× 1020 y (90 % CL)

130Te: ε = 52 %, nsig = −1.8 cts, nup = 5.6 cts , T 0νββ
1/2 > 1.0× 1021 y (90 % CL)

see Figure 3.27 for the determined spectra and the shape of the negative log-likelihood

function − ln(L). With the data taken with the FADC the following results were ob-
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Figure 3.27.: Fit results for the colourless detector data taken with the old peak sensing ADC.

Shown are the fitted spectra and the negative log likelihood function − ln(L) calculated as

explained in Subsection 3.3.2. The arrows indicate the 90 % CL upper limits (kα = 1.282) on

the fitted signal events. The upper plots show the results for 130Te and the lower plots the

results for 116Cd.

tained

116Cd: ε = 41 %, nsig = 2.2 cts, nup = 7.1 cts , T 0νββ
1/2 > 2.4× 1020 y (90 % CL)

130Te: ε = 46 %, nsig = 3.3 cts, nup = 8.6 cts , T 0νββ
1/2 > 1.1× 1021 y (90 % CL)

see Figure 3.28. Even though there is a small statistical excess for 130Te, the obtained

number of signal events for the FADC data are still consistent with nsig = 0

n
116Cd
sig = 2.2+3.7

−3.0 , n
130Te
sig = 3.3+4.0

−3.3 (both on 68 % central CL). (3.27)

The better energy resolution of the data taken with the new detectors results in

smaller confidence intervals, compare − ln(L) shown in the figures. On the other hand
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statistical fluctuations in the signal region can have a higher influence because the ROI,

and therefore also the amount of statistics, is smaller than for a worse energy resolution.

Due to such statistical fluctuations the results for 130Te from the data taken with the

new 16 detector layer are only slightly better than the data taken with the old peak

sensing ADC data despite the better resolution and more live time.

The world best limits for the examined decays are T 0νββ
1/2 > 1.7 × 1023 y [Dan03] for

116Cd and T 0νββ
1/2 > 2.8 × 1024 y [And11] for 130Te. The results of [Dan03] were already

discussed at the end of Section 2.4.2. The results of [And11] were obtained with 19.75 kg

y data taken with an array of tellurium oxide bolometers. The bolometers were partly

enriched in 130Te. The average energy resolution at 2530 keV was ∼ 0.3 % FWHM and

the achieved background level in the ROI ∼ 0.2 cts/keV/kg/y [Arn08].

Previously published COBRA results for a former test set-up [Daw09b] were T 0νββ
1/2 >

9.4× 1019 y for 116Cd and T 0νββ
1/2 > 5.0× 1020 y for 130Te. These results were obtained for

18 kg days of data taken with a test layer with a background level of ∼ 100 cts/keV/kg/y

in the region of 2.7 MeV to 2.9 MeV. The average resolution of the detectors was about

a factor three worse than for the new 16 detector layer. For the detection efficiency

values of ε = 61 % for 116Cd and ε = 65 % for 130Te were assumed (see also remarks

in Section 2.2). The now obtained half-life limits are better by more than a factor of

two. For the first time ever COBRA reached the region of T 0νββ
1/2 > 1020 y for 116Cd and

T 0νββ
1/2 > 1021 y for 130Te.

Sensitivity Studies for the 64 and 64,000 Detector Array

With the generated MC data samples also an estimation of the 116Cd 0νββ-decay sen-

sitivity for the 64 detector prototype set-up and the 64,000 detector large scale set-up

is possible. Sensitivity for 0νββ-decay is not defined as discovery potential, but as the

potential to exclude the true value of the half-life up to certain value [GC11]. For this

exclusion usually a 90 % CL upper limit is chosen.

The generated MC data samples with a background level of 1 cts/keV/kg/y for the

64 detector array are equivalent to data taken with the 64,000 detector large scale

experiment with 10−3 cts/keV/kg/y, which is the worst background level aimed for with

COBRA. For the sensitivity test data samples for the 64 array with a background rate

of 5 cts/keV/kg/y between 2.4 MeV and 3.2 MeV, which is the current background rate

between 2.7 MeV and 2.9 MeV, and 1 cts/keV/kg/y, what can certainly be achieved with

more restrictive cuts, were generated. The detector resolution was again taken from the

calibration data of the first 16 colourless detector layer. In previous sensitivity studies

the average detector mass of 6.5 g/detector of the first detector layer with red passivation

was used. With this weight the total source mass of a 64 detector array is 0.416 kg. The

average weight of the currently installed detectors is 5.9 g/detector, what equals 0.378 kg

for the whole 64 detector array. As several of the old detectors will be reworked and then

will be applied in the 64 detector array an average mass of 6.0 g/detector was assumed
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Figure 3.28.: Fit results for the colourless detector data taken with the new FADC. Shown are

the fitted spectra and the negative log likelihood function − ln(L) calculated as explained in

Subsection 3.3.2. The arrows indicate the 90 % CL upper limits (kα = 1.282) on the fitted signal

events. The upper plots show the results for 130Te and the lower plots the results for 116Cd.

For the plotted signal shape the individual detector resolutions and live times were taken into

account. In comparison to Figure 3.27 the improved energy resolution of the detectors are

clearly noticeable.
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for the sensitivity study. This equals a total mass of 0.384 kg. The obtained limit on the

number of signal events is, for a given background index in [cts/keV/kg/y], independent

from the actual source mass. Therefore, the obtained results can easily be scaled to

different detector weights.

Detailed results of the fits are listed and plotted in Appendix H. From the obtained

limit nup on the number of signal events (on 90 % CL) half-lives were calculated with

Equation (3.26), assuming the efficiency ε = 41 % determined in the previous paragraph.

The estimations for the 64 detector array are shown in Figure 3.29. The uncertainties of

the half-lives derive from the statistical spread of the 90 % CL upper limits on the number

of determined signal events. As can be seen from the plot a sensitivity of T1/2 > 1021 y

can be achieved within a realistic measurement time of two years, even with the already

achieved background level of 5 cts/keV/kg/y.

As mentioned above, also an approximation for the 64,000 detector array with a

background index of 10−3 cts/keV/kg/y is possible. For the large scale array enrichment

in 116Cd to 90 % was assumed. The sensitivities for a live time of 1 y, 2 y, 3 y, 5 y and

10 y are plotted in Figure 3.30. The aimed sensitivity of T1/2 > 1026 y can be achieved

with 10 y of live time.

With better detectors, maybe by cooling the detectors and more sophisticated signal

processing algorithms further improvement in energy resolution will certainly be possi-

ble. To investigate the influence, MC data samples with an average resolution of 1.0 %

FWHM at 2.8 MeV were created and analysed. Such an improvement in energy resolu-

tion still seems to be feasible and realistic for CdZnTe as it was already achieved with

several detectors, see Figure 3.18. The results of the sensitivity estimates with the better

resolution are shown in Figure 3.30. By improving the resolution by a factor of 1.5 the

sensitivity is increased by a factor of 1.2 to 1.3. For 10 y of live time a sensitivity of

(1.3± 0.6)× 1026 y is estimated.

Further improvement of the energy resolution beyond 1 % FWHM to achieve an even

higher sensitivity will be very difficult. Instead, the most efficient approach will certainly

be to use bigger detectors. At the moment, the main source of background seems

to derive from α-particles from surface contamination, see results of Section 3.1 and

Section 2.4. By increasing the current detector size of (1 × 1 × 1) cm3 to the size of

(2.0 × 2.0 × 1.5) cm3 of the large scale pixel detectors the volume to surface ratio is

increased by a factor of 1.8 from 0.17 to 0.30. A reduction of the background level in the

same order is realistic. Furthermore, also the detection efficiency ε will be increased with

larger detectors. The increase in efficiency is especially beneficial as ε enters linearly in

the half-life calculation (3.26). Additionally a higher source mass is possible with larger

detectors. Taking all effects into account an improvement in sensitivity by at least a

factor of two seems to be possible with large volume CdZnTe detectors.

Another often applied approximation of the sensitivity of an experiment can be ob-

tained from the background fluctuation. For a background index θB [cts/keV/kg/y]

the number of expected background counts and its Poissonian uncertainty in an energy

131



3. Data Analysis

Live Time [y]
1 2 3 4 5 6 7 8 9 10

 y
]

21
 S

en
si

tiv
ity

 [1
0

ββν
0 1/

2
T

2

4

6

8

10

12

64 Detector Array, BG Level 1.0 cts/keV/kg/y

Live Time [y]
1 2 3 4 5 6 7 8 9 10

 y
]

21
 S

en
si

tiv
ity

 [1
0

ββν
0 1/

2
T

1

2

3

4

5

64 Detector Array, BG Level 5.0 cts/keV/kg/y

Figure 3.29.: Sensitivity of the 64 detector array for a BG level of 1 and 5 cts/keV/kg/y. The

reduction of the BG by a factor of 5 increases the sensitivity by approximately
√

5 = 2.2. With

about two years of live time a sensitivity to T1/2 > 1021 y (on 90 % CL) for the 0νββ-decay of
116Cd is achievable, even with the higher BG level. The error bars were calculated from the

statistical fluctuations of the fit results.
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Figure 3.30.: Sensitivity of the 64,000 detector array (6.0 g/detector, enriched in 116Cd to

90 %) for a BG level of 10−3 cts/keV/kg/y and an average energy resolution of 1.5 % FWHM

(left) and 1.0 % FWHM (right) at 2.8 MeV. The numbers were obtained by scaling the results

of the sensitivity estimations of the 64 detector array, see text and Figure 3.29.
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region ∆E for an experiment with source mass M are

nb = θB ·∆E ·M · t , σnb = kα ·
√
θB ·∆E ·M · t (3.28)

during the measurement time t. kα is the coverage factor for the desired confidence level,

e.g. kα = 1.282 for an upper 90 % CL, see Appendix D.

Taking the background fluctuation σnb as approximation for the upper limit on de-

termined signal events nup and calculating the number N0 of source isotopes from the

isotopic abundance a, the stoichiometric factor s (s = 0.9 for Cd0.9Zn0.1Te), Avogadro’s

number NA and the weighted molar mass 〈MCdZnTe〉 = 234.5
g

mol
as

N0 =
NA ·M · s · a
〈MCdZnTe〉

(3.29)

yields for Equation (3.26)

T1/2 >
ln(2)

kα
· ε · NA · a · s
〈MCdZnTe〉

·
√

M · t
θB ·∆E

. (3.30)

This approximation has mainly three drawbacks. First, the approximation of the vari-

ance of a Poisson variable according to Equation (3.28) is only valid for a large number

of events. The Poisson distribution is asymmetric for low statistics, see also remarks

in Section 2.4.2. Second, it gives no information on the uncertainty of the sensitivity

estimation. The uncertainties due to statistical fluctuations obtained with the extended

likelihood fit to MC data are in the order of nearly 50 % and therefore are also of interest

for a serious sensitivity estimation. Third, there is no general agreement on the actual

width of ∆E. Often the resolution (FWHM) of the detector is taken. This system-

atically overestimates the achievable sensitivity because it is chosen too small. Only

76 % of a Gaussian peak are contained in a range of one FWHM (≈ ±1.18σ), see e.g.

Appendix D. Therefore no real experiment would chose such a small energy window for

the signal estimation. Furthermore also an area for the background estimation has to

be taken into account. [ISO00] proposes an interval of 2.5×FWHM for the signal region

and at least the same width for the interval of the background estimation. This yields

∆E = 5×FWHM, what leads to a reduction of the estimated sensitivity by a factor of√
5 = 2.2 compared to the often used ∆E = 1×FWHM.

Furthermore, the information on the signal and background shape is not taken into

account. The insensitivity to this information will lead to a lower sensitivity estimation

compared to the estimation with the extended likelihood method applied to MC data

samples. Here the insufficiency of the approximation (3.30) becomes obvious. A wider,

more realistic ∆E, which will result in better sensitivity estimates for the extended

likelihood method because more data is available, will lead to worse sensitivities with

Equation (3.30).

However, in Figure 3.31 Equation (3.30) is plotted for ∆E = 2×FWHM. For this ∆E

the sensitivity estimation agrees well with the results from the MC data evaluation for
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Figure 3.31: Sensitivity estimations obtained

with Equation (3.30) (ε = 41 %, ∆E =

2×FWHM and kα = 1.28) for several reso-

lutions and background levels. For the BG

window of ∆E = 2×FWHM the estimates of

the 10−3 cts/keV/kg/y background level agree

well will the sensitivity estimates obtained from

analysis of MC data with the extended likeli-

hood method shown in Figure 3.30. If a higher

∆E is taken the obtained limits are weaker than

from the fits to the MC data. Live  Time [y]
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both energy resolutions. For the evaluation of the 64 detector MC data with different

background levels also an increase of sensitivity comparable to the
√

1/θB dependence

of Equation (3.30) was noted, see Figure 3.29. But in general it can be said that the

sensitivity estimates determined with the extended likelihood method from MC data are

more reliable for the reasons given above.

It should also be noted that the exclusion sensitivity on the basis of a 90 % CL upper

limit is not equivalent to a sensitivity for a discovery. If a true 0νββ-decay half-life

for 116Cd of T 0νββ
1/2 = 1.0 × 1026 y is assumed an average of 2.3 observed 0νββ-decays

per year is expected in the whole 64,000 detector array (90 % enrichment in 116Cd, 6.0

g/detector, ε = 41 %). Data samples for the 10−3 cts/keV/kg/y background level and

the resolution of 1.5 % FWHM at 2.8 MeV for a live time of 10 y were generated. The

data sets contain a Poissonian distributed signal with µsig
true = 23.0 cts. The results are

shown in Figure 3.32. The extended ML method shows again a good performance . The

mean of the distribution of fitted signal events (23.1± 0.2) is higher than the statistical

spread of the fitted signal (17.9 cts). The coverage of the determined confidence intervals

is also good. Nevertheless, about 38 % of all experiments will calculate a lower limit for

µsig that is still consistent with µsig = 0 (on 68 % CL for a central confidence interval).

To have a good discovery potential for half-lives in the order of 1026 y several of the

experimental parameters, i.e. source mass, background level and energy resolution, have

to be improved even further.
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Figure 3.32.: Fit results of MC data equivalent to 10 y of data taking with the 64,000 detector

array with a BG level of 10−3 cts/keV/kg/y and a 0νββ half-life of 116Cd of T
116Cd
1/2 = 1026 y.

Note that the MC data for the 64 detector array with a BG level of 1 cts/keV/kg/y was used.

These data sets can be used for the sensitivity approximation of the 64,000 detector array as

the number of detectors and the BG level are both scaled by a factor of 1000.

On the upper left plot the distribution of the fitted signals is shown. The average of the

distribution (µ̄sig
fit = 23.1 cts) is in very good agreement with the true expected value of the

MC data (µsig
true = 23.0 cts) and more than 1σ (17.9 cts) above zero. Nevertheless, the lower

limits of nearly 38 % of all results will be consistent with µsig = 0 (on 68 % central CL), see

top right plot. The fit method shows a good coverage also for 68 % (1σ) central confidence

limits, see bottom plots (note: 68 % CL central limit means that for 68 % of all determined

confidence intervals the true value will be contained, but also that 32 %
2 = 16 % of all resulting

lower limits µlow are higher than µsig
true, which is equivalent to an 84 % CL lower limit, and also

16 % of all resulting upper limits µup are smaller than µsig
true, which is equivalent to an 84 % CL

upper limit).
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4. Summary and Outlook

The COBRA experiment is currently in the R&D phase for a large scale 0νββ-decay

experiment. The final experiment will have a source mass of several hundred kg of

CdZnTe semiconductor detectors to achieve a sensitivity in the order of 1026 y.

In this work a significant contribution was made to the enhancement of the sensitivity

of the current R&D set-up and studies were carried out to obtain estimates for the

large-scale experiment.

In close cooperation with Oliver Schulz and Jan Tebrügge the complete DAQ read-

out chain was replaced in order to enable pulse shape readout. With the new readout

electronics an enhancement of the energy resolution and lower vulnerability to electro-

magnetic interferences was achieved. The preamplifier and linear amplifier electronics

to operate the whole 64 CPG detector R&D array was produced together with the

mechanical and electronics workshops of the TU Dortmund department of physics.

The pulse shape readout offers new possibilities of background reduction, such as the

rejection of unphysical electromagnetic disturbances or the calculation of the interaction

depth of an energy deposition. By applying an analysis of the interaction depth to data

taken with the experimental set-up at LNGS, two major sources of background were

identified and the background level in COBRA’s region of interest around 3 MeV was

reduced by about 60 %. It was shown that the α-decay of 190Pt, which is contained in

the 100 nm thick detector electrode metallisation with a natural abundance of 0.014 %,

was the main source of background. It can be totally eliminated by rejecting events

with an interaction depth close to the detector electrodes. The half-lives of 190Pt quoted

in literature differ significantly. With data from the COBRA set-up a half-life for the

α-decay of 190Pt of T1/2 = (5.8± 1.0 (stat.)± 0.7 (syst.))× 1011 y was determined. This

value favours rather the higher literature values.
210Po α-decays from the 210Pb sub chain of the 238U natural decay chain were identified

as a second source of background. These contaminations derive from decay products of

airborne 222Rn. Energy depositions from these α-decays were detected at the cathode

of the detectors. It is assumed that the major part of the remaining background derives

from 210Po decays on top of the detector passivation. The α-particles lose energy during

their passage through the passivation and can therefore deposit energy in COBRA’s

region of interest.

In the current COBRA R&D set-up CdZnTe CPG detectors are applied, but CdZnTe

can also be operated as pixelated detectors. These detector types have a large potential

for background suppression. In Monte Carlo simulations the possibilities for a large
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volume pixel detector were investigated. Experimental results from [Sch11a] could be

reproduced. It was shown that the background level can be reduced by several orders

of magnitude by applying fiducial volume cuts. These cuts are very efficient for α- and

β-particles, but the background from high energetic γ-particles can not be completely

discarded and will be the main source of remaining background. However, even with

a not low background optimised detector system a background level of less than one

count/keV/kg/y can be achieved. This shows that large volume pixel detectors are a

good candidate for a large scale COBRA set-up and should be further investigated.

The COBRA simulation program VENOM was extended. Methods to significantly

reduce the required computation time and data storage, a new position generator and an

interface to load geometries defined in the GDML markup language were implemented.

By comparing experimental and simulated data it was shown that the results obtained

from simulations do not match perfectly because detector effects, such as charge trans-

port and trapping, are not implemented in VENOM, but are in general reliable in the

order of several per cent.

An unbinned extended maximum likelihood fitter was developed to search for a 0νββ-

decay signal in data with low statistics. The fit method was thoroughly tested with

Monte Carlo data and showed a good performance, i.e. a small bias, good coverage and

robustness. With 12.7 kg days of data taken at LNGS, half-life limits for the 0νββ-decay

of T 0νββ
1/2 > 2.4 × 1020 y of 116Cd and T 0νββ

1/2 > 1.1 × 1021 y for 130Te on 90 % CL were

obtained. These are the highest limits achieved by COBRA so far.

From Monte Carlo studies an approximation for the expected sensitivity with the full

64 detector R&D array for the 0νββ-decay of 116Cd were deduced. For a live time of

about one year an expected sensitivity of T1/2 > 1021 y was determined. For a large

scale set-up with a source mass of about 400 kg of CdZnTe and a background level of

10−3 cts/keV/kg/y a sensitivity of up to 1026 y for 10 years live time was estimated.

The results of this work show that COBRA is a promising candidate for a large scale

0νββ-decay experiment. In the future, two major challenges have to be mastered. Ways

for a further reduction of the background have to be found in order to achieve the

aimed background level of 10−3 cts/keV/kg/y. Additional investigation into pulse shape

analysis of CPG pulses, new cleaning procedures for the detector surfaces and the use of

pixelated detectors are promising approaches. Furthermore, concepts to scale the CPG

and pixel detector R&D set-ups to a large scale set-up have to be found and investigated.

Isotopic enrichment in 116Cd is also a key issue to achieve a sensitivity in the order of

1026 y with a large scale set-up.
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schwätzens nicht scheuen) nötigt mir größten Respekt ab. Für den Rückhalt, den mir

beide sowohl im privaten Leben als auch am Lehrstuhl gegeben haben und ihre Freund-
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A. Applied Cumulative Distribution
Function (CDF) Transformations

As uniformly (0, 1] distributed random variables are available from many random genera-

tors, it is desirable to create a random variable Y with arbitrary CDF FY (y) = P (Y ≤ y)

and PDF fY (y)

FY (y) =

y∫
−∞

fY (t) dt (A.1)

from a uniformly distributed random variable X in (0, 1] with PDF fX(x) = 1 and CDF

UX(x)

UX(x) =

x∫
0

1 dt = x . (A.2)

As usual for the random variables themselves (a random variable is defined as a

function that maps a sample space S into the real numbers) capital letters (X, Y etc.)

are used and lower case letters (x, y etc.) denote values for the corresponding possible

realisations of the random variable (i.e. the real numbers that are mapped into).

A simple approach like inserting X into the desired PDF does not lead to a random

variable with the desired distribution. This can be seen from the following rules that

apply for the transformation of random variables [Cas02]:

For a random variable X with CDF FX(x) and the transformation Y = g(X) the

CDF FY (y) is given by

FY (y) = FX(g−1(y)) (A.3)

if g(x) is an increasing function and by

FY (y) = 1− FX(g−1(y)) (A.4)

for a decreasing function g(x).

Then, if g(x) is a monotone function and g−1(y) has a continuous derivative, the PDF

of Y is

fY (y) = fX(g−1(y))

∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ . (A.5)

So for example inserting uniformly distributed random variables X in g(x) = exp(−x)

results not in random variables with exponentially decreasing PDF (as needed e.g. for
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A. Applied Cumulative Distribution Function (CDF) Transformations
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Figure A.1.: PDF (top) and CDF (bottom) of a random variable Y resulting from inserting a

uniform U(0, 1] random variable X in an exponential function g(X) = exp(−X).

the modelling of the background in Subsection 3.3.2), but in random variables Y with

PDF fY (y) = 1
y

and CDF FY (y) = 1 + ln(y) (see Figure A.1).

So an appropriate transformation to a new random variable Y = g(X) with the

required CDF is needed. To find a proper transformation g(x) of UX(x) Equation (A.3)

can be applied:

FY (y) = FY (g(x))
(A.3)
= UX(g−1(y))

(A.2)
= g−1(y) = x . (A.6)

So by solving

FY (g(x)) = x (A.7)

the appropriate transformation can be found and the random variable

Y = F−1
Y (x) (A.8)

follows the required distribution. For example for an exponentially decreasing back-

ground in y ε [y0, y1] with decay constant λ the required PDF is

fY (y) =
λ

exp(−λ y0)− exp(−λ y1)
e−λ y . (A.9)
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Then the following equation has to be solved to obtain the random variable Y with the

PDF (A.9) from uniformly (0, 1] distributed X:

FY (y) =
y∫
y0

fY (t) dt = λ
exp(−λ y0)−exp(−λ y1)

(
e−λ y0 − e−λ y

)
= x (A.10)

⇒ Y = − 1
λ

ln
(
X e−λ y1 + e−λ y0(1−X)

)
. (A.11)

For the position generator described in Subsection 2.1.2 PDFs had to be transformed

from Cartesian to cylindrical and to spherical coordinates. In the cylindrical case the

the tube segment is described by a length h1, an inner- and an outer radius r1 and r2

and a start and end angle φ1 and φ2. So random variables for one radius r ε [r1, r2],

one angle φ ε [φ1, φ2] and one height h ε [−h1/2, h1/2] have to be generated from three

uniformly distributed random variables Z1, Z2, Z3. The required CDF is given by

FR,Φ,H(r, φ, h) =
1

V

∫
dV =

1

(φ2 − φ1)(h1)( r2
2

2
− r12

2
)

r∫
r1

φ∫
φ1

h∫
−h1

2

r′ dr′ dφ′ dh′ . (A.12)

To obtain the transformation for one variable, the others have to be integrated out and

the analogous of Equation (A.8) has to be solved. To obtain for example the radius

random variable R from Z1, the following has to be solved

FR(r) = 1

(φ2−φ1)(h1)
(
r2

2

2
− r1

2

2

) r∫
r1

φ2∫
φ1

h1
2∫

−h1
2

r′ dr′ dφ dh = z1

⇔ r2−r12
r22−r12 = z1 ⇒ R =

√
Z1(r2

2 − r1
2) + r1

2 . (A.13)

Analogously the other random variables can be derived

Φ = Z2(φ2 − φ1) + φ1 (A.14)

H =

(
Z3 −

1

2

)
h1 (A.15)

To describe a spherical segment (G4Sphere) in spherical coordinates the variables

inner and an outer radius r1 and r2 and angles φ1, φ2, θ1 and θ2 are required. Thus,

the three random variables R,Φ,Θ have to be generated. For spherical coordinates the

CDF is given by

FR,Φ,Θ(r, φ, θ) =
1

V

∫
dV =

1

(φ2 − φ1)(cos θ1 − cos θ2)( r2
3

3
− r13

3
)

r∫
r1

φ∫
φ1

θ∫
θ1

r′ sin θ′ dr′ dφ′ dθ′ .

(A.16)

The resulting formulas are (analogously obtained to the cylindrical case):

R = 3
√
Z1(r2

3 − r1
3) + r1

3 (A.17)

Φ = Z2(φ2 − φ1) + φ1 (A.18)

Θ = arccos [Z3 (cos θ2 − cos θ1) + cos θ1] . (A.19)

145





B. Large Pixel Background Reduction
Plots

Energy / keV
500 1000 1500 2000 2500 3000 3500

C
ts

1

10

210

310

410 U,  all events238PCB, 

U,  inner evts, <=2 connected pixel238PCB, 

Energy / keV
500 1000 1500 2000 2500 3000 3500

C
ts

1

10

210
K,  all events40lead, 

K,  inner evts, <=2 connected pixel40lead, 

Figure B.1.: Background reduction for 238U in PCB board and 40K in lead. For the 238U in

the PCB the contribution of γ-particles is much higher than for the background sources shown

in Figure B.2. Therefore the level of background suppression is much lower. The background

from 40K in the surrounding lead consists only of γ-particles. So the background reduction is

worst here.
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B. Large Pixel Background Reduction Plots
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Figure B.2.: Background reduction for passivation paint and 222Rn. The background can be

reduced significantly with the cuts as mainly β-particles contribute and they always deposit

energy in the outer pixels of the detector. The large contribution of β-particles is due to the

small distance of the materials to the detectors, the low attenuation within the materials and

because there is no or only little shielding material between the background source and the

detector. The large fraction of β-particles can also be seen from the small γ peaks compared

e.g. to events in the PCB board or the lead.
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C. Tables of 238U and 232Th Decay
Chains

Isotope
Decay

Mode

Daughter

Nuclide
Intensity [%]

Q-Value

[MeV]
Half-life

238U α 234Th 100 4.27 4.468× 109 yrs
234Th β 234mPa 100 0.27 24.10 d
234mPa β 234U 99.84 2.27 1.17 min
234U α 230Th 100 4.86 2.455× 105 yrs
230Th α 226Ra 100 4.77 7.538× 104 yrs
226Ra α 222Rn 100 4.87 1600 yrs
222Rn α 218Po 100 5.59 3.8235 d
218Po α 214Pb 99.98 6.12 3.10 min
214Pb β 214Bi 100 1.02 26.8 min
214Bi β 214Po 99.98 3.27 19.9 min
214Po α 210Pb 100 7.83 164.3 us
210Pb β 210Bi 100 0.06 22.3 yrs
210Bi β 210Po 100 1.16 5.013 d
210Po α 206Pb 100 5.41 138.38 d
206Pb Stable - 100

Table C.1.: Isotopes of the 238U decay chain with Q-values and half-lives. Branchings with

branching ratios < 1 % were omitted. Data taken from [Fir98].
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C. Tables of 238U and 232Th Decay Chains

Isotope
Decay

Mode

Daughter

Nuclide
Intensity [%]

Q-Value

[MeV]
Half-life

232Th α 228Ra 100 4.083 1.405× 1010 yrs
228Ra β 228Ac 100 0.046 5.75 yrs
228Ac β 228Th 100 2.127 1.17 min
228Th α 224Ra 100 5.52 6.15 h
224Ra α 220Rn 100 5.789 3.66 d
220Rn α 216Po 100 6.405 55.6 s
216Po α 212Pb 100 6.906 0.145 s
212Pb β 212Bi 100 0.574 10.64 h
212Bi β 212Po 64.1 2.254 60.55 min
212Bi α 208Tl 35.9 6.207 60.55 min
212Po α 208Pb 100 8.954 0.299 µs
208Tl β 208Pb 100 5.001 3.053 min
208Pb Stable -

Table C.2.: Isotopes of the 232Th decay chain with Q-values and half-lives. Branchings with

branching ratios < 1 % were omitted. Data taken from [Fir98].
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D. Statistic Remarks

D.1. The Normal (Gaussian) Distribution

The Normal Distribution (also called Gaussian Distribution) is defined as

N(x) =
1

σ
√

2π
exp−1

2

(
x− µ
σ

)2

(D.1)

with mean (or expectation) µ and standard deviation σ (and variance σ2). With µ = 0

and σ = 1 it is called the standard normal distribution (see Figure D.3). It is often

used to describe the PDF of measured variables. For a measurement of a variable with

expectation value µ and variance σ2 the probability to obtain a measured value of x

with

|x− µ| ≤ 1σ is 68.27% .

|x− µ| ≤ 2σ is 95.45% .

|x− µ| ≤ 3σ is 99.73% .

The other way round, a measured value x will be in a range of

|x− µ| ≤ 1.6449σ

with a probability of 90 % (90 % CL). This is a central confidence interval. For a one

sided upper confidence interval with 90 % CL holds

−∞ < x− µ ≤ 1.28155σ ,

see also Figure D.2 and Tables D.1 and D.2. The number of standard deviations that

corresponds to a certain CL is often also referred to as the Quantile or coverage factor

kα.

To obtain the relation between σ and FWHM one has to solve

N(x1/2)
!

=
N(µ)

2

⇔ 1

2

1

σ
√

2π

!
=

1

σ
√

2 π
exp−1

2

(
x1/2 − µ

σ

)2

⇒ x±1/2 = µ±
√

2 ln(2)σ .
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D. Statistic Remarks
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Figure D.1.: σ and FWHM of the standard normal distribution.
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Figure D.2.: 90 % central and upper limit equivalent areas (red) for a Gaussian Distribution.

This yields

FWHM = x+
1/2 − x

−
1/2 = 2

√
2 ln(2)σ =

√
8 ln(2)σ ≈ 2.35σ , (D.2)

see Figure D.1 for illustration.

D.2. Integrated Normal Distribution and Error Function

The CDF (the probability to obtain a measurement x in an interval (−∞, x]) of the

normal distribution is given by

Φ(x) =
1√
2π

∫ x

−∞
exp−(t− µ)2

2σ2
d t . (D.3)

This integral can not be solved analytically. It is connected to the often used Gauss

error function
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Figure D.3.: Standard Gauss distribution (µ = 0, σ = 1). The red areas are equivalent to the

probability to obtain |x− µ| ≤ 1σ = 68.27% (left) and |x− µ| ≤ 2σ = 95.45% (right).

erf(x) =
2√
π

∫ x

0

e−t
2

dt (D.4)

(erf(0) = 0 and erf(∞) = 1) via

Φ(x) =
1

2

(
1 + erf

(
x− µ)√

2σ

))
.

Tabulated values for Φ(x) are listed in Table D.2. erf(x) and also the inverse error

function erf−1(x) are also implemented in ROOT’s TMath class.
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x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Table D.1.: Values of the integrated standard Gauss Distribution F (x) = 1√
2π

∫ x
−∞ e−z

2/2 dz

(applied e.g. to obtain upper CL limits).
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x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0080 0.0160 0.0239 0.0319 0.0399 0.0478 0.0558 0.0638 0.0717

0.1 0.1125 0.1236 0.1348 0.1459 0.1569 0.1680 0.1790 0.1900 0.2009 0.2118

0.2 0.1585 0.1663 0.1741 0.1819 0.1897 0.1974 0.2051 0.2128 0.2205 0.2282

0.3 0.2358 0.2434 0.2510 0.2586 0.2661 0.2737 0.2812 0.2886 0.2961 0.3035

0.4 0.3108 0.3182 0.3255 0.3328 0.3401 0.3473 0.3545 0.3616 0.3688 0.3759

0.5 0.3829 0.3899 0.3969 0.4039 0.4108 0.4177 0.4245 0.4313 0.4381 0.4448

0.6 0.4515 0.4581 0.4647 0.4713 0.4778 0.4843 0.4907 0.4971 0.5035 0.5098

0.7 0.5161 0.5223 0.5285 0.5346 0.5407 0.5467 0.5527 0.5587 0.5646 0.5705

0.8 0.5763 0.5821 0.5878 0.5935 0.5991 0.6047 0.6102 0.6157 0.6211 0.6265

0.9 0.6319 0.6372 0.6424 0.6476 0.6528 0.6579 0.6629 0.6680 0.6729 0.6778

1.0 0.6827 0.6875 0.6923 0.6970 0.7017 0.7063 0.7109 0.7154 0.7199 0.7243

1.1 0.7287 0.7330 0.7373 0.7415 0.7457 0.7499 0.7540 0.7580 0.7620 0.7660

1.2 0.7699 0.7737 0.7775 0.7813 0.7850 0.7887 0.7923 0.7959 0.7995 0.8029

1.3 0.8064 0.8098 0.8132 0.8165 0.8198 0.8230 0.8262 0.8293 0.8324 0.8355

1.4 0.8385 0.8415 0.8444 0.8473 0.8501 0.8529 0.8557 0.8584 0.8611 0.8638

1.5 0.8664 0.8690 0.8715 0.8740 0.8764 0.8789 0.8812 0.8836 0.8859 0.8882

1.6 0.8904 0.8926 0.8948 0.8969 0.8990 0.9011 0.9031 0.9051 0.9070 0.9090

1.7 0.9109 0.9127 0.9146 0.9164 0.9181 0.9199 0.9216 0.9233 0.9249 0.9265

1.8 0.9281 0.9297 0.9312 0.9328 0.9342 0.9357 0.9371 0.9385 0.9399 0.9412

1.9 0.9426 0.9439 0.9451 0.9464 0.9476 0.9488 0.9500 0.9512 0.9523 0.9534

2.0 0.9545 0.9556 0.9566 0.9576 0.9586 0.9596 0.9606 0.9615 0.9625 0.9634

2.1 0.9643 0.9651 0.9660 0.9668 0.9676 0.9684 0.9692 0.9700 0.9707 0.9715

2.2 0.9722 0.9729 0.9736 0.9743 0.9749 0.9756 0.9762 0.9768 0.9774 0.9780

2.3 0.9786 0.9791 0.9797 0.9802 0.9807 0.9812 0.9817 0.9822 0.9827 0.9832

2.4 0.9836 0.9840 0.9845 0.9849 0.9853 0.9857 0.9861 0.9865 0.9869 0.9872

2.5 0.9876 0.9879 0.9883 0.9886 0.9889 0.9892 0.9895 0.9898 0.9901 0.9904

2.6 0.9907 0.9909 0.9912 0.9915 0.9917 0.9920 0.9922 0.9924 0.9926 0.9929

2.7 0.9931 0.9933 0.9935 0.9937 0.9939 0.9940 0.9942 0.9944 0.9946 0.9947

2.8 0.9949 0.9950 0.9952 0.9953 0.9955 0.9956 0.9958 0.9959 0.9960 0.9961

2.9 0.9963 0.9964 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972

3.0 0.9973 0.9974 0.9975 0.9976 0.9976 0.9977 0.9978 0.9979 0.9979 0.9980

3.1 0.9981 0.9981 0.9982 0.9983 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986

3.2 0.9986 0.9987 0.9987 0.9988 0.9988 0.9988 0.9989 0.9989 0.9990 0.9990

3.3 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.4 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995

Table D.2.: Values of the integrated standard Gauss Distribution G(x) = 1√
2π

∫ x
−x e−z

2/2 dz

(symmetric intervall around 0, applied to obtain central CL levels).
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E. Copper Cleaning Procedure

Before the recommissioning of the set-up in the new LNGS location, the inner copper

parts were cleaned thoroughly by the LNGS Chemistry and Chemical Plants Division in

their laboratory. It was taken care that the copper parts were brought to the laboratory

directly before the cleaning and were brought to the tunnel again directly after the

cleaning procedure to prevent as much activation of the Copper from cosmic rays as

possible. The cleaning procedure was written down by the staff in Italian. This is a

translation of the described procedure.

Required Materials

• Polyethylene bags or plastic beaker

• Ultrasonic bath

• Acid soap for ultrasonic bath (ELMA Clean 60, prod. No. 289440605 from Carlo

Erba), solution of 3 %

• Cidric acid (5 %)

• Demineralised water

Cleaning Procedure

• The copper parts are put in Polyethylene bags with a solution of about 3 % of

ELMA 60 (if they are very dirty a 5 % solution is used)

• The bags are put in an ultrasonic bath for about 40 minutes

• Afterwards the copper parts are rinsed carefully with demineralised water

• The cleaned copper parts are put in clean Polyethylene bags with a solution of

cidric acid (5 %)

• The bags are put in an ultrasonic bath for about 1 h

• Afterwards the copper parts are rinsed carefully with demineralised water again

• Afterwards they are wiped with a cloth that does not leave residues to remove

most of the remaining water
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E. Copper Cleaning Procedure

• The copper parts are completely dried in an oven

• Afterwards they are put immediately in vacuum sealed plastic bags to keep them

clean
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F. Tables of Extended Likelihood Tests

Fit Range

[MeV]
µtrue

BG Level

[cts/keV/kg/y]
Fitted nsig σ nsig

Bias

b/σ [%]

Coverage

[%]

Failed Fits

[%]

1.5 − 3.0 0 1 0.05 ± 0.04 4.3 1.1 89.6 0.00

1.5 − 3.0 0 2 0.00 ± 0.06 6.0 -0.1 89.8 0.00

1.5 − 3.0 0 5 0.11 ± 0.10 9.6 1.1 90.0 0.00

1.5 − 3.0 0 10 0.26 ± 0.14 13.7 1.9 89.8 0.00

1.5 − 3.0 1 1 1.07 ± 0.05 4.5 1.5 89.3 0.00

1.5 − 3.0 1 2 1.03 ± 0.06 6.2 0.5 89.3 0.00

1.5 − 3.0 1 5 1.08 ± 0.10 9.7 0.9 89.7 0.00

1.5 − 3.0 1 10 1.27 ± 0.14 13.5 2.0 90.2 0.00

1.5 − 3.0 5 1 5.04 ± 0.05 5.0 0.9 89.3 0.00

1.5 − 3.0 5 2 5.05 ± 0.07 6.5 0.8 89.4 0.00

1.5 − 3.0 5 5 5.18 ± 0.10 9.9 1.8 89.9 0.00

1.5 − 3.0 5 10 5.36 ± 0.14 13.7 2.7 90.5 0.00

1.5 − 3.0 10 1 9.98 ± 0.06 5.5 -0.3 88.8 0.00

1.5 − 3.0 10 2 10.02 ± 0.07 7.0 0.4 89.4 0.00

1.5 − 3.0 10 5 9.98 ± 0.10 10.3 -0.2 89.3 0.00

1.5 − 3.0 10 10 10.23 ± 0.14 14.0 1.6 90.2 0.00

2.0 − 3.0 0 1 0.08 ± 0.04 4.3 1.8 89.9 3.52

2.0 − 3.0 0 2 0.08 ± 0.06 6.1 1.3 90.0 2.43

2.0 − 3.0 0 5 0.21 ± 0.10 9.7 2.2 90.2 0.34

2.0 − 3.0 0 10 0.24 ± 0.14 14.0 1.7 89.7 0.32

2.0 − 3.0 1 1 1.09 ± 0.05 4.6 2.0 89.5 2.77

2.0 − 3.0 1 2 1.12 ± 0.06 6.3 2.0 89.6 1.63

2.0 − 3.0 1 5 1.17 ± 0.10 9.9 1.7 89.9 0.35

2.0 − 3.0 1 10 1.28 ± 0.14 13.9 2.0 90.3 0.37

2.0 − 3.0 5 1 5.02 ± 0.05 5.0 0.4 89.3 3.13

2.0 − 3.0 5 2 5.11 ± 0.07 6.6 1.7 90.0 1.79

2.0 − 3.0 5 5 5.26 ± 0.10 10.1 2.6 90.0 0.33

2.0 − 3.0 5 10 5.34 ± 0.14 14.1 2.4 90.5 0.32

2.0 − 3.0 10 1 9.90 ± 0.06 5.6 -1.7 88.8 3.28

2.0 − 3.0 10 2 10.05 ± 0.07 7.0 0.7 89.5 1.97

2.0 − 3.0 10 5 10.05 ± 0.10 10.4 0.5 89.2 0.36

2.0 − 3.0 10 10 10.20 ± 0.14 14.4 1.4 89.8 0.44

Table F.1.: Fit results MC data tests for extended likelihood, expon. background assumption.
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F. Tables of Extended Likelihood Tests

Fit Range

[MeV]
µtrue

BG Level

[cts/keV/kg/y]
Fitted nsig σ nsig

Bias

b/σ [%]

Coverage

[%]

Failed Fits

[%]

2.5 − 3.1 0 1 -0.10 ± 0.04 4.3 -2.4 89.0 0.00

2.5 − 3.1 0 2 -0.21 ± 0.06 6.1 -3.4 88.9 0.00

2.5 − 3.1 0 5 -0.25 ± 0.10 9.6 -2.6 89.8 0.00

2.5 − 3.1 0 10 -0.37 ± 0.14 13.7 -2.7 89.1 0.00

2.5 − 3.1 1 1 0.92 ± 0.05 4.6 -1.7 88.8 0.00

2.5 − 3.1 1 2 0.86 ± 0.06 6.2 -2.3 89.0 0.00

2.5 − 3.1 1 5 0.73 ± 0.10 9.8 -2.7 89.2 0.00

2.5 − 3.1 1 10 0.65 ± 0.14 13.6 -2.5 89.6 0.00

2.5 − 3.1 5 1 4.88 ± 0.05 5.0 -2.5 88.6 0.00

2.5 − 3.1 5 2 4.84 ± 0.07 6.5 -2.4 89.2 0.00

2.5 − 3.1 5 5 4.83 ± 0.10 10.0 -1.7 89.0 0.00

2.5 − 3.1 5 10 4.76 ± 0.14 13.8 -1.7 89.6 0.00

2.5 − 3.1 10 1 9.82 ± 0.06 5.6 -3.2 88.1 0.00

2.5 − 3.1 10 2 9.84 ± 0.07 7.0 -2.3 88.9 0.00

2.5 − 3.1 10 5 9.62 ± 0.10 10.3 -3.7 88.6 0.00

2.5 − 3.1 10 10 9.58 ± 0.14 14.1 -3.0 88.8 0.00

2.6 − 3.0 0 1 -0.08 ± 0.04 4.5 -1.7 89.2 0.00

2.6 − 3.0 0 2 -0.16 ± 0.06 6.3 -2.6 89.1 0.00

2.6 − 3.0 0 5 -0.11 ± 0.10 9.9 -1.1 89.4 0.00

2.6 − 3.0 0 10 -0.09 ± 0.14 14.1 -0.6 89.3 0.00

2.6 − 3.0 1 1 0.94 ± 0.05 4.7 -1.2 89.0 0.00

2.6 − 3.0 1 2 0.92 ± 0.06 6.4 -1.2 89.1 0.00

2.6 − 3.0 1 5 0.87 ± 0.10 10.1 -1.3 89.3 0.00

2.6 − 3.0 1 10 0.94 ± 0.14 14.0 -0.4 89.6 0.00

2.6 − 3.0 5 1 4.92 ± 0.05 5.2 -1.6 88.7 0.00

2.6 − 3.0 5 2 4.90 ± 0.07 6.7 -1.5 89.3 0.00

2.6 − 3.0 5 5 4.97 ± 0.10 10.3 -0.3 89.5 0.00

2.6 − 3.0 5 10 5.00 ± 0.14 14.2 0.0 90.1 0.00

2.6 − 3.0 10 1 9.84 ± 0.06 5.7 -2.9 88.1 0.00

2.6 − 3.0 10 2 9.89 ± 0.07 7.2 -1.6 89.1 0.00

2.6 − 3.0 10 5 9.72 ± 0.11 10.6 -2.6 88.6 0.00

2.6 − 3.0 10 10 9.86 ± 0.14 14.5 -1.0 89.4 0.00

Table F.2.: Fit results MC data tests for extended likelihood, linear background assumption.
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Fit Range

[MeV]
µtrue

BG Level

[cts/keV/kg/y]
Fitted nsig σ nsig

Bias

b/σ [%]

Coverage

[%]

Failed

Fits [%]

2.5 − 3.1 0 1 -0.07 ± 0.05 4.7 -1.5 89.0 0.01

2.5 − 3.1 0 2 -0.14 ± 0.07 6.6 -2.2 89.1 0.01

2.5 − 3.1 0 5 -0.02 ± 0.10 10.3 -0.2 89.5 0.00

2.5 − 3.1 0 10 0.17 ± 0.15 14.7 1.1 89.7 0.17

2.5 − 3.1 1 1 0.97 ± 0.05 4.9 -0.6 88.8 0.03

2.5 − 3.1 1 2 0.96 ± 0.07 6.7 -0.7 89.0 0.00

2.5 − 3.1 1 5 0.98 ± 0.11 10.6 -0.2 89.6 0.00

2.5 − 3.1 1 10 1.15 ± 0.15 14.7 1.0 89.7 0.14

2.5 − 3.1 5 1 4.94 ± 0.05 5.4 -1.1 89.0 0.02

2.5 − 3.1 5 2 4.94 ± 0.07 7.0 -0.8 89.4 0.00

2.5 − 3.1 5 5 5.09 ± 0.11 10.7 0.8 89.7 0.00

2.5 − 3.1 5 10 5.19 ± 0.15 14.8 1.3 90.6 0.17

2.5 − 3.1 10 1 9.87 ± 0.06 5.9 -2.2 88.6 0.00

2.5 − 3.1 10 2 9.94 ± 0.07 7.5 -0.8 89.2 0.00

2.5 − 3.1 10 5 9.82 ± 0.11 11.0 -1.6 89.0 0.00

2.5 − 3.1 10 10 10.04 ± 0.15 15.1 0.3 89.7 0.30

2.6 − 3.0 0 1 -0.10 ± 0.05 5.1 -2.1 88.9 0.01

2.6 − 3.0 0 2 -0.17 ± 0.07 7.0 -2.5 89.2 0.00

2.6 − 3.0 0 5 -0.04 ± 0.11 11.0 -0.4 89.3 0.00

2.6 − 3.0 0 10 0.27 ± 0.16 15.8 1.7 89.8 0.00

2.6 − 3.0 1 1 0.95 ± 0.05 5.3 -0.9 88.7 0.03

2.6 − 3.0 1 2 0.94 ± 0.07 7.3 -0.8 88.5 0.00

2.6 − 3.0 1 5 0.96 ± 0.11 11.3 -0.3 88.6 0.00

2.6 − 3.0 1 10 1.20 ± 0.16 15.8 1.3 89.8 0.00

2.6 − 3.0 5 1 4.92 ± 0.06 5.8 -1.5 88.5 0.00

2.6 − 3.0 5 2 4.90 ± 0.08 7.6 -1.3 87.9 0.02

2.6 − 3.0 5 5 5.11 ± 0.11 11.5 0.9 89.5 0.00

2.6 − 3.0 5 10 5.10 ± 0.16 15.9 0.6 90.4 0.00

2.6 − 3.0 10 1 9.91 ± 0.06 6.3 -1.4 89.3 0.02

2.6 − 3.0 10 2 9.95 ± 0.08 8.0 -0.6 88.1 0.00

2.6 − 3.0 10 5 9.79 ± 0.12 11.9 -1.8 88.5 0.00

2.6 − 3.0 10 10 10.10 ± 0.16 16.3 0.6 89.7 0.00

Table F.3.: Fit results MC data tests for extended likelihood, quadratic background

assumption.

161





G. Plots of Extended Likelihood Tests
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Figure G.1.: Average determined signal strength for different background fit functions and MC

data background levels. The markers in the plots were slightly shifted from their true values

(1, 2, 5 and 10 cts/keV/kg/y) for a better visibility. The performance of the fit with linear

background in the 2.6-3.0 MeV region has the worst performance. An increasing negative bias

towards higher background levels is noticeable. The quadratic BG approximation also tends to

a small negative bias for low background levels, whereas the exponential fit has a positive bias

that seems to be increasing with higher energies. However, the bias of all fit methods is only a

few per cent of the statistical spread of the method, compare Figure G.4, and the determined

upper limits have a good coverage, see Figure G.2.
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G. Plots of Extended Likelihood Tests
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Figure G.2.: Determined coverage for different background fit functions and MC data back-

ground levels. The desired upper CL is 90 %. The coverage of all methods is good for a wide

range of the background and the signal strength. The polynomial background approximation

tends to a small undercoverage, but even the lowest determined coverage of 87.9 % (compare

also tables in Appendix F) is still close to the desired 90 %.
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Figure G.3.: Statistical spread σ (=
√
V (nsig) of method variance V (nsig)) of the fitted signal

strength for different background fit functions and MC data background levels. The spread of

the fits with the linear background approximation is nearly identical to the exponential BG

fit (compare also tables in Appendix F). The statistical spread of the quadratic background

approximation is in general about 10% larger than for the other two methods.
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G. Plots of Extended Likelihood Tests
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Figure G.4.: Fit bias normalised to statistical spread σ of fit results (b/σ) for different back-

ground fit functions and MC data background levels. The linear BG approximations tends to

a small negative bias, it has the largest bias of all three methods. The quadratic BG has a

small negative bias for a low BG level, but it increases slightly with increasing BG level. The

exponential fit method tends to a small positive bias. However, all biases are small (< 4 %)

compared to the variance of the fit methods.
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Figure G.5.: Example distributions of fit results for polynomial background approximation for

the 1 cts/keV/kg/y MC data sample. Shown are the distributions of the point estimate and

the distribution of 90 % CL upper limits.
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G. Plots of Extended Likelihood Tests
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Figure G.6.: Example distributions of fit results for the exponential background approximation

for the 1 cts/keV/kg/y MC data sample. Shown are the distributions of the point estimate

and the distribution of 90 % CL upper limits.
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Figure G.7.: Distributions of fit results for the quadratic background approximation for the

1 cts/keV/kg/y MC data sample (0 signal events) at lower energies. The fit was performed for a

signal search in the centre of the fit interval. The quadratic approximation is still valid for lower

energies despite the higher slope of the background. The obtained number of signals shows a

small negative bias, but it is smaller than 2 % of the statistical spread of the distribution. The

coverage of about 89 % nearly matches the desired CL of 90 %. In the fitrange from 1.8-2.2 MeV

63 fits (0.63 %) did not converge.
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BG[
cts

keV kg y

] Live

Time [y]
nfitsig σ(nfitsig) nfitup σ(nfitup ) T lim1/2 [y]

5 1 -0.27 ± 0.12 12.2 16.0 12.9 (1.2± 0.5) × 1021

5 2 -0.22 ± 0.17 17.2 22.6 17.9 (1.6± 0.7) × 1021

5 3 -0.16 ± 0.21 21.2 27.6 21.9 (2.0± 0.9) × 1021

5 5 0.04 ± 0.27 27.3 35.7 28.0 (2.6± 1.1) × 1021

5 10 0.66 ± 0.39 38.9 50.9 39.6 (3.6± 1.6) × 1021

1 1 0.00 ± 0.06 5.6 7.6 6.2 (2.4± 1.1) × 1021

1 2 0.06 ± 0.08 7.7 10.6 8.4 (3.5± 1.6) × 1021

1 3 -0.04 ± 0.09 9.4 12.7 10.1 (4.4± 1.9) × 1021

1 5 0.08 ± 0.12 12.3 16.4 13.0 (5.7± 2.5) × 1021

1 10 -0.07 ± 0.17 17.3 22.7 18.0 (8.2± 3.6) × 1021

Table H.1.: Sensitivity results from fits with the extended likelihood method to MC data for

the 64 detector array. The data sets contained no signal (ntruesig = 0). The extended likelihood

method shows again a good performance. From the 90 % CL upper limit on present signal

events nupsig and its statistical spread σ(nupsig) half-life limits according to Equation (3.26) were

calculated. For the efficiency the number ε = 41 % deduced in Section 3.3.3 was used.
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BG[
cts

keV kg y

] FWHM @

2.8 MeV

[%]

Live

Time

[y]

nfitsig σ(nfitsig) nfitup σ(nfitup ) T lim1/2 [y]

1 1.5 1 0.00 ± 0.06 5.6 7.6 6.2 (2.9± 1.3) × 1025

1 1.5 2 0.06 ± 0.08 7.7 10.6 8.4 (4.2± 1.9) × 1025

1 1.5 3 -0.04 ± 0.09 9.4 12.7 10.1 (5.3± 2.3) × 1025

1 1.5 5 0.08 ± 0.12 12.3 16.4 13.0 (6.8± 3.0) × 1025

1 1.5 10 -0.07 ± 0.17 17.3 22.7 18.0 (9.8± 4.3) × 1025

1 1.0 1 0.02 ± 0.04 4.4 6.1 5.1 (3.7± 1.7) × 1025

1 1.0 2 0.04 ± 0.06 6.1 8.3 6.8 (5.4± 2.4) × 1025

1 1.0 3 0.01 ± 0.07 7.3 10.0 8.1 (6.7± 3.0) × 1025

1 1.0 5 0.08 ± 0.09 9.5 12.8 10.2 (8.7± 3.8) × 1025

1 1.0 10 -0.10 ± 0.13 13.4 17.7 14.1 (1.3± 0.6) × 1026

Table H.2.: Sensitivity results from fits with the extended likelihood method to MC data for

the 64,000 detector array (enriched to 90 % in 116Cd). The other parameters are the same as

given in Table H.1. The improvement of the energy resolution from 1.5 % FWHM to 1.0 %

FWHM at 2.8 MeV leads to a sensitivity improvement of a factor 1.2 to 1.3.
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Figure H.1.: Distributions of fit results for the 64 detector array MC data with

5 /cts/keV/kg/y BG level.
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Figure H.2.: Distributions of fit results for the 64 detector array MC data with

1 /cts/keV/kg/y BG level. These data samples are equivalent to the 64,000 detector array

with a background level of 10−3 /cts/keV/kg/y.
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Figure H.3.: Distributions of fit results for the 64 detector array MC data with

1 /cts/keV/kg/y BG level and improved energy resolution to 1 % FWHM at 2.8 MeV.

These data samples are equivalent to the 64,000 detector array with a background level of

10−3 /cts/keV/kg/y.
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Genf, Switzerland, homepage http://cern.ch. 39, 112

CKM Cabibbo–Kobayashi–Maskawa. 8

CL Confidence Level. 9, 15, 69, 71, 72, 78, 81, 103, 106, 108–110, 118, 122, 123, 125,

126, 128–135, 138, 151, 154, 155, 164, 167–169

CLHEP Class Library for High Energy Physics, C++ libraries, homepage http:

//proj-clhep.web.cern.ch. 36

COBRA CdZnTe 0νββ Research Apparatus. 15–18, 21–29, 33, 35, 39, 43, 49, 52, 57,

63–65, 79, 88, 89, 92, 99, 108, 113, 115, 122, 124, 129, 137–141, 175, 176

197

http://aliceinfo.cern.ch
http://icecube.wisc.edu/
http://atlas.ch/
http://cern.ch
http://proj-clhep.web.cern.ch
http://proj-clhep.web.cern.ch


Acronyms

CP Charge- and Parity Symmetry. 8

CPG coplanar grid. 18–22, 27, 32, 33, 41, 42, 49, 50, 52, 64, 73, 74, 76, 79, 82, 83, 137,

138

CPU Central Processing Unit. 42, 123

CSDA continuous slowing down approximation. 83–85

CSG Constructed Solid Geometry. 38

CUORE Cryogenic Underground Observatory for Rare Events, homepage http://

crio.mib.infn.it/wigmi/pages/cuore.php. 57

DAQ data acquisition. 28, 32, 137

DESY Deutsches Elektronen-Synchrotron, Hamburg, homepage http://www.desy.de.

33

DLB Dortmund Low Background Facility. 24, 39, 40, 42, 43, 45–49, 51, 52, 79, 92

EC Electron Capture. 11, 17, 103–105

EIDIS EI Detection & Imaging Systems, formerly eV Microelectronics, formerly eV

Products, http://www.evmicroelectronics.com/. 29, 57, 80, 81, 99, 108, 124

EM Electromagnetic. 24, 28, 29, 35, 36

EMI electromagnetic interference. 24–26, 28–32

ESA European Space Agency, homepage http://www.esa.int. 35

EXO Enriched Xenon Observatory, homepage http://www-project.slac.stanford.

edu/exo/. 15, 16

FADC fast analog to digital converter. 28, 31, 32, 124, 127, 128, 130

FMF Freiburger Materialforschungszentrum. 79

FWHM full width at half maximum. 17, 28, 46, 52, 53, 71, 72, 97, 101, 102, 106, 108,

119, 129, 131–134, 151, 152, 170, 173

GB grid bias. 18–21, 24, 31, 32

GDML Geometry Description Markup Language, homepage http://gdml.web.cern.

ch/GDML/. 38–41, 43, 45, 49, 54, 138

198

http://crio.mib.infn.it/wigmi/pages/cuore.php
http://crio.mib.infn.it/wigmi/pages/cuore.php
http://www.desy.de
http://www.evmicroelectronics.com/
http://www.esa.int
http://www-project.slac.stanford.edu/exo/
http://www-project.slac.stanford.edu/exo/
http://gdml.web.cern.ch/GDML/
http://gdml.web.cern.ch/GDML/


Acronyms

Geant4 GEometry ANd Tracking, C++ based software framework for the simulation of

particles through matter [All06, Ago03], see also http://http://geant4.cern.

ch. 35–40, 42, 43, 45, 46, 49, 50, 52, 53, 58, 61, 64, 67, 83

GERDA GERmanium Detector Array for the search of 0νββ-decay in 76Ge at LNGS,

homepage: http://www.mpi-hd.mpg.de/gerda/. 16

HdM Heidelberg-Moscow 0νββ-decay experiment. 15, 23, 26

HV high voltage. 18, 20, 21, 24, 27, 30–32, 108

IC integrated circuit. 30

ICP-MS inductively coupled plasma mass spectrometry. 80, 81

ID identifier. 40, 41

IT Isomeric Transition, γ transition from an isomeric state of a nucleus [Gil08]. 104,

105

KATRIN KArlsruhe TRItium Neutrino experiment, homepage http://www.katrin.

kit.edu/. 9

LNGS Laboratori Nazionali del Gran Sasso, underground physics laboratory close to

l’Aquila, Italy, homepage http://www.lngs.infn.it/. 22, 23, 25, 31, 52, 53, 56,

63, 65, 66, 69, 72, 80, 81, 90–92, 95, 96, 99, 106, 107, 117–119, 124, 137–140, 157

MAJORANA 0νββ-decay experiment for 76Ge, homepage http://www.npl.

washington.edu/majorana/. 16

MAnTiCORE Multiple-Analysis Toolkit for the COBRA Experiment. 89, 90

MARE Microcalorimeter Arrays for a Rhenium Experiment, homepage http://mare.

dfm.uninsubria.it. 10

MC Monte Carlo. 35, 43, 103, 113, 118–123, 129, 131, 133–135, 167–173

MINOS MINUIT algorithm to calculate parameter errors. 112, 118, 119

MINUIT Numerical minimization program developed at CERN, also implemented

in ROOT as MINUIT2, see also http://lcgapp.cern.ch/project/cls/

work-packages/mathlibs/minuit/index.html for documentation. 111–113, 118

ML Maximum Likelihood. 111–113, 119, 120, 134

mwe meters of water equivalent. 22

199

http://http://geant4.cern.ch
http://http://geant4.cern.ch
http://www.mpi-hd.mpg.de/gerda/
http://www.katrin.kit.edu/
http://www.katrin.kit.edu/
http://www.lngs.infn.it/
http://www.npl.washington.edu/majorana/
http://www.npl.washington.edu/majorana/
http://mare.dfm.uninsubria.it
http://mare.dfm.uninsubria.it
http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit/index.html
http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit/index.html


Acronyms

NCA non-collecting anode. 18–22, 28, 30, 31

NIM Nuclear Instrumentation Module. 31

NIST National Institute of Standards and Technology, homepage http://www.nist.

gov/index.html. 43, 60

PCB Printed Circuit Board. 29, 31, 53–55, 57, 60, 62, 63, 65, 69, 71, 73, 77, 147, 148

PDF probability density function. 38, 69, 70, 110, 111, 113, 114, 116, 117, 143–145, 151

PDG Particle Data Group, homepage http://pdg.lbl.gov/. 8

PE Polyethylene. 23–25

PMNS Pontecorvo-Maki-Nakagava-Sakata. 8–10

POM Polyoxymethylene, a thermoplastic. 27

ppb parts per billion. 80

R&D Research and Development. 16, 17, 22, 25, 26, 33, 137, 138

ROI Region Of Interest. 23, 24, 26, 27, 35, 56–60, 63–65, 71, 76, 77, 79, 82, 83, 94, 108,

115, 118, 120–122, 129

ROOT Object orientated analysis framework developed at CERN [Bru97], see also

http://root.cern.ch/. 36, 39, 118, 153

SE single ended. 29–32

SM Standard Model of Particle Physics. 7, 10, 11

VENOM Vicious Evil Network Of Mayhem, Geant4 based simulation program for

COBRA. 35–43, 126, 127, 138

VKTA Verein für Kernverfahrenstechnik und Analytik Rossendorf e.V. 80, 81

VME Versa Module Eurocard (Bus), IEEE 1014-1987. 32

voxel volumetric pixel. 37, 41, 53–55, 57, 59, 60, 63, 75

WMAP Wilkinson Microwave Anisotropy Probe, homepage http://map.gsfc.nasa.

gov/. 9

XML Extensible Markup Language, data format for encoding documents both human-

and machine readable. 39

200

http://www.nist.gov/index.html
http://www.nist.gov/index.html
http://pdg.lbl.gov/
http://root.cern.ch/
http://map.gsfc.nasa.gov/
http://map.gsfc.nasa.gov/

	Introduction
	Neutrino Physics
	Neutrino Properties
	Neutrinoless Double Beta Decay

	The COBRA Experiment
	CdZnTe Semiconductor Detectors
	Experimental Set-Up at LNGS
	Electronics


	Simulation Studies
	Geant4 and the VENOM Simulation Program
	Random Number Generator Initialisation
	Position Generator
	GDML Geometry Implementation
	Data Amount and User Cut Settings

	First Tests with DLB Geometry
	Simulation and Measurement of a 232Th Source for a CPG Detector
	Background Study for a Large Volume Pixel Detector
	Description of the Large Volume Pixel Detector
	Results for 0νββ-Decay of 116Cd
	Sensitivity for 0νββ-Decay to excited States

	Survey of Background Contribution of Parylene-C Passivation
	Penetration Depth of High Energetic Beta Radiation

	Data Analysis
	LNGS Data and Possible Background Contributions
	210Po α-Decays
	190Pt α-Decays
	Search for γ-Lines

	Requirements of an Analysis Method
	General Considerations
	Former Binned Likelihood Approach

	Extended Maximum Likelihood
	General Idea of the Extended Maximum Likelihood Method
	Implementation and Consistency Tests
	Results


	Summary and Outlook
	Acknowledgements / Danksagung
	Applied Cumulative Distribution Function (CDF) Transformations
	Large Pixel Background Reduction Plots
	Tables of 238U and 232Th Decay Chains
	Statistic Remarks
	The Normal (Gaussian) Distribution
	Integrated Normal Distribution and Error Function

	Copper Cleaning Procedure
	Tables of Extended Likelihood Tests
	Plots of Extended Likelihood Tests
	CPG Array Sensitivity Results
	Publications
	Bibliography
	List of Figures
	List of Tables
	Acronyms

