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Abstract

This paper deals with the local asymptotic structure, in the sense of

Le Cam’s asymptotic theory of statistical experiments, of the signal detec-

tion problem in high dimension. More precisely, we consider the problem

of testing the null hypothesis of sphericity of a high-dimensional covariance

matrix against an alternative of (unspecified) multiple symmetry-breaking

directions (multispiked alternatives). Simple analytical expressions for the

asymptotic power envelope and the asymptotic powers of previously pro-

posed tests are derived. These asymptotic powers are shown to lie very

substantially below the envelope, at least for relatively small values of the

number of symmetry-breaking directions under the alternative. In contrast,

the asymptotic power of the likelihood ratio test based on the eigenvalues of

the sample covariance matrix is shown to be close to that envelope. These
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results extend to the case of multispiked alternatives the findings of an ear-

lier study (Onatski, Moreira and Hallin, 2011) of the single-spiked case. The

methods we are using here, however, are entirely new, as the Laplace ap-

proximations considered in the single-spiked context do not extend to the

multispiked case.

Key words: sphericity tests, large dimensionality, asymptotic power, spiked

covariance, contiguity, power envelope.

1 Introduction

In a recent paper, Onatski, Moreira and Hallin (2011) (hereafter OMH) analyze

the asymptotic power of statistical tests in the detection of a signal in spherical

real-valued Gaussian data as the dimensionality of the data and the number of

observations diverge to infinity at the same rate. This paper generalizes OMH’s

alternative of a single symmetry-breaking direction (single-spiked alternative) to

the alternative of multiple symmetry-breaking directions (multispiked alternative),

which is more relevant for applied work.

Contemporary tests of sphericity in a high-dimensional environment (see Ledoit

and Wolf (2002), Srivastava (2005), Schott (2006), Bai et al. (2009), Chen et al.

(2010), and Cai and Ma (2012)) consider general alternatives to the null of spheric-

ity. Our interest in alternatives with only a few contaminating signals stems from

the fact that in many applications, such as speech recognition, macroeconomics,

finance, wireless communication, genetics, physics of mixture, and statistical learn-

ing, a few latent variables typically explain a large portion of the variation in high-

dimensional data (see Baik and Silverstein (2006) for references). As a possible

explanation of this fact, Johnstone (2001) introduces the spiked covariance model,

where all eigenvalues of the population covariance matrix of high-dimensional data
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are equal except for a small fixed number of distinct “spike eigenvalues.” The alter-

native to the null of sphericity considered in this paper coincides with Johnstone’s

model.

The extension from the single-spiked alternatives of OMH to the multi-spiked

alternatives considered here, however, is all but straightforward. The difficulty

arises because the extension of the main technical tool in OMH (Lemma 2), which

analyzes high-dimensional spherical integrals, to integrals over high-dimensional

real Stiefel manifolds obtained in Onatski (2012) is not easily amenable to the

Laplace approximation method used in OMH. Therefore, in this paper, we de-

velop a completely different technique, inspired from the large deviation analysis

of spherical integrals by Guionnet and Maida (2005).

Let us describe the setting and main results in more detail. Suppose that

the data consist of n independent observations Xt, t = 1, ..., n of a p-dimensional

Gaussian vector with mean zero and positive definite covariance matrix Σ. Let

Σ = σ2 (Ip + V HV ′) , where Ip is the p-dimensional identity matrix, σ is a scalar, H

an r×r diagonal matrix with elements hj ≥ 0, j = 1, ..., r along the diagonal, and V

a (p× r)-dimensional parameter normalized so that V ′V = Ir. We are interested

in the asymptotic power of tests of the null hypothesis H0 : h1 = ... = hr = 0

against the alternative H1 : hj > 0 for some j = 1, ..., r, based on the eigenvalues

of the sample covariance matrix of the data when n, p → ∞ so that p/n → c

with 0 < c < ∞, an asymptotic regime which we abbreviate into n, p →c ∞. The

matrix V is an unspecified nuisance parameter, the columns of which indicate the

directions of the perturbations of sphericity.

We consider the cases of specified and unspecified σ2. For the sake of simplicity,

in the rest of this introduction, we only discuss the case of specified σ2 = 1,

although the case of unspecified σ2 is more realistic. Denoting by λj the j-th largest

sample covariance eigenvalue, let λ = (λ1, ..., λm) , where m = min (n, p). We
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begin our analysis with a study of the asymptotic properties of the likelihood ratio

process
{
L (h;λ) ; h ∈

[
0, h̄
]r}

, where h = (h1, ..., hr) , h̄ ∈ [0,
√
c) and L (h;λ) is

defined as the ratio of the density of λ under H1 to that under H0, considered as

a λ-measurable random variable. Note that L (h;λ) depends on n and p, while

λ is m = min {n, p} -dimensional. An exact formula for L (h;λ) involves the

integral
∫
O(p)

etr(AQBQ′) (dQ) over the orthogonal group O (p), where the p × p

matrix A has a deficient rank r. In the single-spiked case (r = 1), OMH link

this integral to the confluent form of the Lauricella function, and use this link to

establish a representation of the integral in the form of a contour integral (see Wang

(2010) and Mo (2011) for independent different derivations of this contour integral

representation for this particular r = 1 case). Then, the Laplace approximation to

the contour integral is used to derive the asymptotic behavior of L (h;λ).

Onatski (2012) generalizes the contour integral representation to the multi-

spiked case (r > 1). For complex-valued data, such a generalization allows him

to extend OMH’s results to the multi-spiked context. Unfortunately, for real-

valued data, which we are concerned with in this paper, this generalization is not

straightforwardly amenable to the Laplace approximation method. Therefore, in

this paper, we consider a totally different approach. For the r = 1 case, Guionnet

and Maida (2005) (hereafter GM) use large deviation methods to derive a second-

order asymptotic expansion of
∫
O(p)

etr(AQBQ′) (dQ) as the non-zero eigenvalues of A

diverge to infinity (see their Theorem 3). We extend GM’s second-order expansion

to the r > 1 case, and use that extension to derive the asymptotics of L (h;λ).

More precisely, we show that, for any h̄ such that 0 < h̄ <
√
c, the sequence

of log-likelihood processes {lnL (h;λ) ; h ∈ [0, h̄]r} converges weakly to a Gaussian

process
{
Lλ(h); h ∈

[
0, h̄
]r}

under the null hypothesis H0 as n, p→c ∞. The index

λ in the notation Lλ(h) is used to distinguish the limiting λ-log-likelihood process in

the case of specified σ2 = 1, from that of the µ-log-likelihood process considered in
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the case of unspecified σ2, which we denote by Lµ(h) (see Section 2). The limiting

process has mean E [Lλ(h)] = 1
4

r∑
i,j=1

ln (1 − hihj/c) and autocovariance function

Cov
(
Lλ (h) ,Lλ(h̃)

)
= −1

2

∑r
i,j=1 ln

(
1 − hih̃j/c

)
. That convergence entails the

weak convergence, in the Le Cam sense, of the h-indexed statistical experiments Em
λ

under which the eigenvalues λ1, ..., λm are observed, i.e. the statistical experiments

with log-likelihood process
{
lnLλ (h) ; h ∈

[
0, h̄
]r}

(see van der Vaart (1998), page

126). Although this limiting process is Gaussian, it is not a log-likelihood process

of the Gaussian shift type, so that the statistical experiments Em
λ under study

are not locally asymptotically normal (LAN) ones. The weak convergence of Em
λ

implies, however, via Le Cam’s first lemma (see van der Vaart 1998, p.88), that

the joint distributions of the normalized sample covariance eigenvalues under the

null and under alternatives associated with h ∈ [0,
√
c) are mutually contiguous.

An asymptotic power envelope for λ-based tests of H0 against H1 can be con-

structed using the Neyman-Pearson lemma and Le Cam’s third lemma. We show

that, for tests of size α, the maximum achievable asymptotic power against a point

alternative h = (h1, ..., hr) equals 1 − Φ
[
Φ−1 (1 − α) −

√
W (h)

]
, where Φ is the

standard normal distribution function and W (h) = −1
2

∑r
i,j=1 ln (1 − hihj/c). As

we explain in the paper, this asymptotic power envelope is valid not only for the

λ-based tests, but also for all tests that are invariant under left orthogonal trans-

formations of the data Xt, t = 1, ..., n.

Next, we consider previously proposed tests of sphericity and of the equality of

the population covariance matrix to a given matrix . We focus on the tests studied

in Ledoit and Wolf (2002), Bai et al (2009), and Cai and Ma (2012). We find that,

in general, the asymptotic powers of those tests are substantially lower than the

corresponding asymptotic power envelope value. In contrast, our computations for

the case r = 2 show that the asymptotic powers of the λ- and µ-based likelihood

ratio tests are close to the power envelope.
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The rest of the paper is organized as follows. Section 2 establishes the weak

convergence of the log-likelihood ratio process to a Gaussian process. Section 3

provides an analysis of the asymptotic powers of various sphericity tests, derives

the asymptotic power envelope, and proves its validity for general invariant tests.

Section 4 concludes. All proofs are given in the Appendix.

2 Asymptotics of likelihood ratio processes

LetX be a p×np matrix with independent GaussianN (0, σ2 (Ip + V HV ′)) columns.

Let λp1 ≥ ... ≥ λpp be the ordered eigenvalues of 1
np
XX ′ and write λp = (λp1, ..., λpm) ,

where m = min {p,np}. Similarly, let µpi = λpi/(λp1+...+λpp) , i = 1, ..., m and

µp =
(
µp1, ..., µp,m−1

)
.

As explained in the introduction, our goal is to study the asymptotic power,

as np, p →c ∞, of the eigenvalue-based tests of H0 : h1 = ... = hr = 0 against

H1 : hj > 0 for some i = 1, ..., r, where hj are the diagonal elements of the diagonal

matrix H . If σ2 is specified, the model is invariant with respect to left and right

orthogonal transformations; sufficiency and invariance arguments (see Appendix

5.4 for details) lead to considering tests based on λp only. If σ2 is unspecified,

the model is invariant with respect to left and right orthogonal transformations

and multiplications by non-zero scalars; sufficiency and invariance arguments (see

Appendix 5.4) lead to considering tests based on µp only. Note that the distribution

of µp does not depend on σ2, whereas, if σ2 is specified, we can always normalize

λp dividing it by σ2. Therefore, we henceforth assume without loss of generality

that σ2 = 1.

Let us denote the joint density of λp1, ..., λpm at x̃ = (x1, ..., xm) ∈ (R+)m

as fλp (x̃; h), and that of µp1, ..., µp,m−1 at ỹ = (y1, ..., ym−1) ∈ (R+)m−1 as fµp (ỹ; h).
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We have

fλp (x̃; h) = γ̃

∏m
i=1 x

|p−np|−1

2
i

∏m
i<j (xi − xj)

∏r
j=1 (1 + hj)

np/2

∫

O(p)

e−
np
2

tr(ΠQ′XQ) (dQ) , (1)

where γ̃ depends only on np and p; Π = diag
(
(1 + h1)

−1 , ..., (1 + hr)
−1 , 1, ..., 1

)
;

X = diag (x1, ..., xm, 0, ..., 0) is a (p× p) diagonal matrix; O (p) is the set of all

p × p orthogonal matrices; and (dQ) is the invariant measure on the orthogonal

group O (p), normalized to make the total measure unity. Formula (1) is a special

case of the density given in James (1964, p.483) for np ≥ p, and follows from

Theorems 2 and 6 in Uhlig (1994) for np < p.

Let x = x1+...+xm and let yi = xi/x. Note that the Jacobian of the coordinate

change from (x1, ..., xm) to (y1, ..., ym−1, x) is xm−1. Changing variables in (1) and

integrating x out, we obtain

fµp (ỹ; h) = γ̃

∏m
i=1 y

|p−np|−1

2
i

∏m
i<j (yi − yj)

∏r
j=1 (1 + hj)

np/2

∫ ∞

0

x
npp

2
−1

∫

O(p)

e−
np
2

x tr(ΠQ′YQ) (dQ) dx,

(2)

where Y = diag (y1, ..., ym, 0, ..., 0) is a (p× p) diagonal matrix.

Consider the likelihood ratios Lp (h;λp) = fλp (λp; h) /fλp (λp; 0) and Lp (h;µ) =

fµp

(
µp; h

)
/fµp

(
µp; 0

)
. Formulae (1) and (2) imply the following proposition.

Proposition 1 Let O (p) be the set of all p × p orthogonal matrices. Denote by

(dQ) the invariant measure on the orthogonal group O (p) normalized to make the

total measure unity. Put Λp = diag (λp1, ..., λpp) , Sp = λp1 + ... + λpp, and let Dp

be the p × p diagonal matrix diag
(

1
2cp

h1

1+h1
, ..., 1

2cp

hr

1+hr
, 0, ..., 0

)
, where cp = p/np.
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Then,

Lp(h;λp) =

r∏

j=1

(1 + hj)
−np

2

∫

O(p)

ep tr(DpQ′ΛpQ) (dQ) and (3)

Lp

(
h;µp

)
=

r∏

j=1

(1 + hj)
−np

2

(np

2

)npp

2

Γ
(npp

2

)
∫ ∞

0

x
npp

2
−1e−

np
2

x

∫

O(p)

e
p x

Sp
tr(DpQ′ΛpQ)

(dQ)dx. (4)

In the special case where r = 1, the rank of the matrix Dp equals one, and the

integrals over the orthogonal group in (3) and (4) can be rewritten as integrals over

a p-dimensional sphere. OMH show how such spherical integrals can be represented

in the form of contour integrals, and apply Laplace approximation to these contour

integrals to establish the asymptotic properties of Lp (h;λp) and Lp

(
h;µp

)
. In

the r > 1 case, the integrals in (3) and (4) can be rewritten as integrals over a

Stiefel manifold, the set of all orthonormal r-frames in Rp. Onatski (2012) obtains

a generalization of the contour integral representation from spherical integrals to

integrals over Stiefel manifolds. Unfortunately, the Laplace approximation method

does not straightforwardly extend to that generalization, and we therefore propose

an alternative method of analysis.

The second-order asymptotic behavior, as p goes to infinity, of integrals of the

form
∫
O(p)

ep tr(DQ′ΛQ) (dQ) was analyzed in Guionnet and Maida (2005) (Theo-

rem 3) for the particular case where D is a fixed matrix of rank one, Λ a deter-

ministic matrix, and under the condition that the empirical distribution of Λ’s

eigenvalues converges to a distribution function with bounded support. Below, we

extend Guionnet and Maida’s approach to cases where D = Dp has rank larger

than one, and to the stochastic setting of this paper. We then use such an extension

to derive the asymptotic properties of Lp (h;λp) and Lp

(
h;µp

)
.

Let F̂ λ
p be the empirical distribution of λp1, ..., λpp, and denote by FMP

p the
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Marchenko-Pastur distribution function, with density

fMP
p (x) =

1

2πcpx

√
(bp − x) (x− ap), (5)

where ap =
(
1 −√

cp
)2

and bp =
(
1 +

√
cp
)2

, and a mass of max
(
0, 1 − c−1

p

)
at

zero. As is well known, the difference between F̂ λ
p and FMP

p weakly converges to

zero a.s. as p, np →c ∞. Moreover, λp1
a.s→ (1 +

√
c)

2
, and λpp

a.s→ (1 −√
c)

2
if

c > 1, and λpp
a.s→ 0 if c ≤ 1.

Consider the Hilbert transform of FMP
p , HMP

p (x) =
∫

(x− λ)−1 dFMP
p (λ) .

That transform is well defined for real x outside the support of FMP
p , that is, on

the set R\ supp
(
FMP

p

)
. Using (5), we get

HMP
p (x) =

x+ cp − 1 −
√

(x− cp − 1)2 − 4cp

2cpx
, (6)

where the sign of the square root is chosen to be the sign of (x− cp − 1). It is

not hard to see that HMP
p (x) is strictly decreasing on R\ supp

(
FMP

p

)
. Thus, on

HMP
p

(
R\ supp

(
FMP

p

))
, we can define an inverse function KMP

p , with values

KMP
p (x) =

1

x
+

1

1 − cpx
, x ∈ HMP

p

(
R\ supp

(
FMP

p

))
. (7)

The so-called R-transform RMP
p of FMP

p takes the form

RMP
p (x) = KMP

p (x) − 1/x = 1/ (1 − cpx) .

For ε > 0 and η > 0 sufficiently small, consider the subset of R

Ωεη =





[−η−1, 0) ∪
(

0, 1√
c(1+

√
c)

− ε

]
for c ≥ 1,

[
− 1√

c(1−√
c)

+ ε, 0

)
∪
(

0, 1√
c(1+

√
c)

− ε

]
for c < 1.
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From (6), HMP
p

(
R\ supp

(
FMP

p

))
= (−∞, 0)∪

(
0, 1√

cp(1+√
cp)

)
∪
(

1√
cp(√cp−1)

,∞
)

when cp > 1,

(
− 1√

cp(1−√
cp)
, 0

)
∪
(

0, 1√
cp(1+

√
cp)

)
when cp < 1, and (−∞, 0) ∪

(0, 1/2) when cp = 1. Therefore, Ωεη ⊂ HMP
p

(
R\ supp

(
FMP

p

))
with probability

approaching one as np, p→c ∞.

Proposition 2 Let {Θp} be a sequence of random p × p diagonal matrices

diag (θp1, ..., θpr, 0, ..., 0) , where θpj 6= 0, j = 1, ..., r. Further, let vpj = RMP
p (2θpj),

where RMP
p (x) = 1/ (1 − cpx) is the R-transform of the Marchenko-Pastur distri-

bution FMP
p . Assume that, for some ε > 0 and η > 0, 2θpj ∈ Ωε,η with probability

approaching one as np, p→c ∞. Then,

∫

O(p)

ep tr(ΘpQ′ΛpQ) (dQ) = ep
Pr

j=1[θpjvpj− 1
2p

Pp
i=1 ln(1+2θpjvpj−2θpjλp,i)]

×
r∏

j=1

j∏

s=1

√
1 − 4 (θpjvpj) (θpsvps) cp (1 + o(1)) a.s.,

where o(1) is uniform over all sequences {Θp} satisfying the assumption.

This proposition extends Theorem 3 of Guionnet and Maida (2005) to cases

when rank (Θp) > 1, θpj depends on p, and Λp is random. When r = 1, θp1 =

θ > 0 and vp1 = v are fixed, it is straightforward to verify that
√

1 − 4θ2v2cp =
√

4θ2/
√
Z, where Z =

∫ (
KMP

p (2θ) − λ
)−2

dFMP
p (λ) . In Guionnet and Maida’s

(2005) Theorem 3, the expression
√

4θ2/
√
Z should have been used instead of

√
Z − 4θ2/θ

√
Z, which is a typo.

Setting r = 1 and θp1 = 1
2cp

h
1+h

in Proposition 2 and using formula (3) from

Proposition 1 gives us an expression for Lp(h;λp) which is an equivalent of formula

(4.1) in Theorem 7 of OMH. Theorem 3 below uses Proposition 2 to generalize

Theorem 7 of OMH to the multispiked case r > 1.
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Let θpj = hj/2cp (1 + hj) and

Hδ =





[−1 + δ, 0) ∪ (0,

√
c− δ] for c > 1,

[−√
c + δ, 0) ∪ (0,

√
c− δ] for c ≤ 1.

(8)

The condition hj ∈ Hδ for some δ > 0 implies that 2θpj ∈ Θεη for some ε > 0,

η > 0 and p sufficiently large. Below, we are only interested in non-negative values

of hj , and assume that hj ∈ (0,
√
c− δ] under the alternative hypothesis. The

corresponding θpj, thus, is positive.

With the above setting for θpj, we have vpj = 1 + hj and KMP
p (2θpj) =

(cp + hj) (1 + hj) /hj = zj0, say, as in Theorem 7 in OMH. Define

∆p (zj0) =

p∑

i=1

ln (zj0 − λpi) − p

∫
ln (zj0 − λ) dFMP

p (λ) . (9)

Theorem 3 Suppose that the null hypothesis is true (h = 0). Let δ be any fixed

number such that 0 < δ <
√
c, and let C [0,

√
c− δ]

r
be the space of real-valued

continuous functions on [0,
√
c− δ]

r
equipped with the supremum norm. Then, as

p, np →c ∞,

Lp(h;λp)=
r∏

j=1

exp

{
−1

2
∆p (zj0)+

1

2

j∑

s=1

ln

(
1−hjhs

cp

)}
(1+o (1)) and (10)

Lp

(
h;µp

)
=Lp(h;λp) exp





1

4cp

(
r∑

j=1

hj

)2

− Sp−p
2cp

r∑

j=1

hj




(1+o (1)), (11)

almost surely, where the o (1) terms are uniform in h ∈ [0,
√
c− δ]

r
. Furthermore,

lnLp(h;λp) and lnLp

(
h;µp

)
, viewed as random elements of C [0,

√
c− δ]

r
, converge

weakly to Lλ (h) and Lµ (h) with Gaussian finite-dimensional distributions such

that E (Lλ (h)) = −1
2
Var (Lλ (h)), E (Lµ (h)) = −1

2
Var (Lµ (h)) , and, for any

11



h, h̃ ∈ [0,
√
c− δ]

r
,

Cov
(
Lλ (h) ,Lλ

(
h̃
))

= −1

2

r∑

i,j=1

ln

(
1 − hih̃j

c

)
, and (12)

Cov
(
Lµ (h) ,Lµ

(
h̃
))

= −1

2

r∑

i,j=1

(
ln

(
1 − hih̃j

c

)
+
hih̃j

c

)
. (13)

Theorem 3 and Le Cam’s first lemma (van der Vaart (1998), p.88) imply that

the joint distributions of λ1, ..., λm (as well as those of µ1, ..., µm−1) under the

null and under the alternative are mutually contiguous for any h ∈ [0,
√
c)

r
. By

applying Le Cam’s third lemma (van der Vaart (1998), p.90), we can study the

“local” powers of tests detecting signals in noise. The requirement that hj be

positive under alternatives corresponds to situations where the signals contained

in the data are independent from the noise. If dependence between the signals

and the noise is allowed, one might consider two-sided alternatives of the form

H1 : hj 6= 0 for some j. Values of hj between −1 and 0 correspond to alternatives

under which the noise variance is reduced along certain directions. In view of

Proposition 2, it should not be difficult to generalize Theorem 3 to the case of

fully (hj 6= 0, all j’s) or partially (hj 6= 0, some j’s) two-sided alternatives. This

problem will not be discussed here, and is left for future research.

3 Asymptotic power analysis

Denote by βλ (h) and βµ (h) , respectively, the asymptotic powers of the asymp-

totically most powerful λ- and µ-based tests of size α of the null h = 0 against a

point alternative h = (h1, ..., hr) 6= 0 with hj <
√
c, j = 1, ..., r. As functions of h,

βλ and βµ are called the asymptotic power envelopes.
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Figure 1: The power envelopes βλ (h) (upper panel) and βµ (h) (lower panel) for
α = 0.05, as functions of h/

√
c = (h1, h2) /

√
c.

Proposition 4 Let Φ denote the standard normal distribution function. Then,

βλ (h) = 1−Φ


Φ−1 (1−α)−

√√√√−1

2

r∑

i,j=1

ln

(
1−hihj

c

)
 and (14)

βµ (h) = 1−Φ


Φ−1 (1−α)−

√√√√−1

2

r∑

i,j=1

(
ln

(
1−hihj

c

)
+
hihj

c

)
 . (15)

Figure 1 shows the asymptotic power envelopes βλ (h) and βµ (h) as functions

of h1/
√
c and h2/

√
c when h = (h1, h2) is two-dimensional.

It is important to realize that the asymptotic power envelopes derived in Propo-

sition 4 are valid not only for λ- and µ-based tests but also for any test invariant

under left orthogonal transformations of the observations (X 7→ QX, where Q

is a p × p orthogonal matrix), and for any test invariant under multiplication

13



by any non-zero constant and left orthogonal transformations of the observations

(X 7→ aQX, where a ∈ R
+
0 and Q is a p × p orthogonal matrix), respectively.

Let ‖A‖F = tr (A′A) and ‖A‖2 = λ
1/2
1 (A′A) denote the Frobenius norm and

the spectral norm, respectively, of a matrix A. Let H0 be the null hypothesis

h1 = ... = hr = 0, and let H1 be any of the following alternatives: H1 : hj > 0

for some j = 1, ..., r, or H1 : Σ 6= σ2Ip, or H1 :
{
Σ : ‖Σ − σ2Ip‖F > εn,p

}
, or

H1 :
{
Σ : ‖Σ − σ2Ip‖2 > εn,p

}
, where εn,p is a positive constant that may depend

on n and p.

Proposition 5 For specified σ2, consider tests of H0 against H1 that are invariant

with respect to the left orthogonal transformations of the data X = [X1, ..., Xn] .

For any such test, there exists a test based on λ with the same power function.

Similarly, for unspecified σ2, consider tests that, in addition, are invariant with

respect to multiplication of the data X by non-zero constants. For any such test,

there exists a test based on µ with the same power function.

Examples of the former tests include the tests of H0 : Σ = I studied in Chen

et al (2010) and Cai and Ma (2012). An example of the latter test is the test of

sphericity studied in Chen et al (2010). The tests studied in Chen et al (2010) and

Cai and Ma (2012) are invariant, although they are not λ- or µ-based.

For r = 1, OMH show that the asymptotic power envelopes are closely ap-

proached by the asymptotic powers of the λ- and µ-based likelihood ratio tests.

Our goal here is to explore the asymptotic power of those likelihood ratio tests

for r > 1. Unfortunately, as r grows, it becomes increasingly difficult to compute

the asymptotic critical values for the likelihood ratio tests by simulation. For ex-

ample, r = 2 requires simulating a 2-dimensional Gaussian random field with the

covariance function and the mean function described in Theorem 3.
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Figure 2: Profiles of the asymptotic power of the λ-based LR test (solid lines)
relative to the asymptotic power envelope (dotted lines) for different values of
h1/

√
c under the alternative; α = 0.05.

For r = 2, Figure 2 shows sections of the power envelope (dotted lines) and the

power of the likelihood ratio test based on λ for various fixed values of h1/
√
c under

the alternative. Figure 3 shows the same plots for the tests based on µ. To enhance

readability, we use a different parametrization: θj =
√
− ln

(
1 − h2

j/c
)
, i = 1, ..., r.

As hj varies in the region of contiguity [0,
√
c) , θj spans the entire half-line [0,∞) .

Note that the asymptotic mean and autocovariance functions of the log likelihood

ratios derived in Theorem 3 depend on hj only through hj/
√
c =

√
1 − e−θ2

j .

Therefore, under the new parametrization, they depend only on θ = (θ1, ..., θr).

The parameter θ plays the classical role of a “local parameter” in our setting.

Figure 4 further explores the relationship between the asymptotic powers of

the λ- and µ-based LR test and the corresponding asymptotic power envelopes
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Figure 3: Profiles of the asymptotic power of the µ-based LR test (solid lines)
relative to the asymptotic power envelope (dotted lines) for different values of
h1/

√
c under the alternative; α = 0.05.

when r = 2. We pick all values of h = (h1, h2) satisfying inequality h1 ≥ h2 and

such that the asymptotic power envelope for λ-based tests is exactly 25, 50, 75,

and 90%. Then, we compute and plot the corresponding power of the λ-based

LR test (solid lines) against h2/h1. The dashed lines show similar graphs for the

µ-based LR test. The value h2/h1 = 0 corresponds to single-spiked alternatives

h1 > 0, h2 = 0, the value h2/h1 = 1 corresponds to equi-spiked alternatives

h1 = h2 > 0. The intermediate values of h2/h1 link the two extreme cases. We

do not consider values h2/h1 > 1, as the power function is symmetric about the

45-degree line in the (h1, h2) space.

Somewhat surprisingly, the power of the LR test along the set of alterna-

tives (h1, h2) corresponding to the same values of the asymptotic power envelope
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Figure 4: Power of λ-based (solid lines) and µ-based (dashed lines) LR tests plot-
ted against h2/h1, where (h1, h2) are such that the respective asymptotic power
envelopes βλ(h) and βµ(h) equal 25, 50, 75 and 90%.

is not a monotone function of h2/h1. Equi-spiked alternatives typically seem to be

particularly difficult to detect by the LR tests. However, for the set of alternatives

corresponding to an asymptotic power envelope value of 90%, the single-spiked

alternatives are even harder to detect.

A natural question is: how does the asymptotic power of the λ- and µ-based

LR tests depend on the choice of r, that is, how do those tests perform when

the actual r does not coincide with the value the test statistic is based on? For

example, to detect a single signal, one can, in principle, use LR tests of the null

hypothesis against alternatives with r = 1, r = 2, etc. How does the asymptotic

powers of such tests compare? Figure 5 reports the asymptotic powers of the λ-

and µ-based LR tests designed to detect alternatives with r = 1 (solid line) and

r = 2 (dashed line), under single-spiked alternatives. As in Figures 2 and 3, we

use the parametrization θ =
√

− ln (1 − h2/c) for the single-spiked alternative. It

appears that the two asymptotic powers are very close to each other; interestingly,

17



0 2 4 6
0

0.2

0.4

0.6

0.8

1

θ=(−log(1−h2/c))1/2

λ−based LR test

0 2 4 6
0

0.2

0.4

0.6

0.8

1

θ=(−log(1−h2/c))1/2

µ−based LR test

Figure 5: Asymptotic power of the λ-based (left panel) and µ-based (right panel)
LR tests. Solid line: power when r = 1 is correctly assumed. Dashed line: power
when r = 2 is incorrectly assumed.

neither of them dominates the other. Using LR tests designed against alternatives

with r > 1 seems to be beneficial for detecting a single-spiked alternative with

relatively small θ (and h).

In the remaining part of this section, we consider examples of some of the tests

that have been proposed previously in the literature, and, in Proposition 6, derive

their asymptotic power functions.

Example 1 (John’s (1971) test of sphericity H0 : Σ = σ2I.) John (1971) pro-

poses testing the sphericity hypothesis θ = 0 against general alternatives based on

the test statistic

U =
1

p
tr




 Σ̂

(1/p) tr
(
Σ̂
) − Ip




2
 , (16)

where Σ̂ is the sample covariance matrix. He shows that, when n > p, such a test

is locally most powerful invariant. Ledoit and Wolf (2002) study John’s test when

n, p →c ∞. They prove that, under the null, nU − p
d→ N (1, 4) . Hence, the test

with asymptotic size α rejects the null of sphericity whenever 1
2
(nU − p− 1) >

Φ−1 (1 − α).

Example 2 (The Ledoit-Wolf (2002) test of H0 : Σ = I.) Ledoit and Wolf (2002)

18



propose

W =
1

p
tr

[(
Σ̂ − I

)2
]
− p

n

[
1

p
trΣ̂

]2

+
p

n
(17)

as a test statistic for testing the hypothesis that the population covariance ma-

trix is the unit matrix. They show that, under the null, nW − p
d→ N (1, 4) .

As in the previous example, the null is rejected at asymptotic size α whenever

1
2
(nW − p− 1) > Φ−1 (1 − α) .

Example 3 (The Bai et al. (2009) “corrected” LRT of H0 : Σ = I.) When

n > p, Bai et al. (2009) propose to use a corrected version

CLR = tr Σ̂ − ln det Σ̂ − p− p

(
1 −

(
1 − n

p

)
ln
(
1 − p

n

))

of the likelihood ratio statistic to test the equality of the population covariance ma-

trix to the identity matrix against general alternatives. Under the null, CLR
d→

N
(
−1

2
ln (1 − c) ,−2 ln (1 − c) − 2c

)
(still, as n, p →c ∞). The null hypothesis is

rejected at asymptotic level α whenever CLR + 1
2
ln (1 − c) is larger than

(−2 ln (1 − c) − 2c)1/2 Φ−1 (1 − α).

Example 4 (Tracy-Widom-type tests of H0 : Σ = I.) Let ϕ (λ1, ..., λr) be any

function of the r largest eigenvalues increasing in all its arguments. The asymp-

totic distribution of ϕ (λ1, ..., λr) under the null is determined by the functional

form of ϕ (·) and the fact that

(σn,c (λ1 − νc) , ..., σn,c (λr − νc))
d→ TW (r) , (18)

where TW(r) denotes the r-dimensional Tracy-Widom law of the first kind, σn,c =

n2/3c1/6 (1 +
√
c)

−4/3
and νc = (1 +

√
c)

2
. Call Tracy-Widom-type tests all tests

that reject the null whenever ϕ (λ1, ..., λr) is larger than the corresponding asymp-

totic critical value obtained from (18).

Example 5 (The Cai-Ma (2012) minimax test of H0 : Σ = I.) Cai and Ma

(2012) propose to use a U-statistic
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Tn =
2

n (n− 1)

∑

1≤i<j≤n

ℓ (Xi, Xj) ,

where ℓ (X1, X2) = (X ′
1X2)

2 − (X ′
1X1 +X ′

2X2) + p, to test the hypothesis that the

population covariance matrix is the unit matrix. Under the null, as n, p →c ∞,

Tn
d→ N (0, 4c2) . The null hypothesis is rejected at asymptotic level α whenever

Tn is larger than 2
√
p (p + 1) /n (n− 1)Φ−1 (1 − α). Cai and Ma (2012) show that

this test is rate-optimal against general alternatives from a minimax point of view.

Consider the tests described in Examples 1, 2, 3, 4 and 5, and denote by βJ (h) ,

βLW (h) , βCLR (h) , βCM (h) and βTW (h) their respective asymptotic powers at

asymptotic level α.

Proposition 6 The asymptotic power functions of the tests described in Exam-

ples 1-5 are

βTW (h) = α, (19)

βJ (h) = βLW (h)=βCM (h)=1−Φ

(
Φ−1 (1−α) − 1

2

r∑

j=1

h2
j

c

)
, and (20)

βCLR (h) = 1−Φ

(
Φ−1 (1 − α) −

r∑

j=1

hj − ln (1 + hj)√
−2 ln (1 − c) − 2c

)
, (21)

for any h = (h1, ..., hr) 6= 0 such that hj ∈ [0,
√
c) for j = 1, ..., r.

Formula (20) for βCM (h) directly follows from Proposition 2 of Cai and Ma

(2012). The proof of the other formulae follows along the same lines as in the

proof of Proposition 10 in OMH, and is omitted. Except for the Tracy-Widom

tests of Example 4, all those asymptotic power functions are non-trivial. Figures

6 and 7 compare these power functions to the corresponding power envelopes for

r = 2. Since John’s test is invariant with respect to orthogonal transformations

and scalings of the data, Figure 6 compares βJ (h) (solid line) to the power envelope
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βµ (h) (dotted line). The Ledoit-Wolf test, the “corrected” likelihood ratio test,

and the Cai-Ma test are invariant with respect to orthogonal transformations of the

data only, and Figure 7 thus compares the asymptotic power functions βLW (h) =

βCM (h) and βCLR (h) (solid and dashed lines, respectively) to the power envelope

βλ (h) (dotted line). Note that βCLR (h) depends on c. As c converges to one,

βCLR (h) converges to α, which corresponds to the case of trivial power. As c

converges to zero, βCLR (h) converges to βLW (h) = βCM (h). In Figure 7, we

provide plots of βCLR (h) that correspond to c = 0.5.

These comparisons show that, contrary to our LR tests (see Figures 2 and 3), all

those tests either have trivial power α (the Tracy-Widom ones), or power functions

that increase very slowly with h1 and h2, and lie very far below the corresponding

power envelope.

4 Conclusion

This paper extends Onatski, Moreira and Hallin’s (2011) (OMH) study of the

power of high-dimensional sphericity tests to the case of multi-spiked alternatives.

We derive the asymptotic distribution of the log-likelihood ratio process and use it

to obtain simple analytical expressions for the maximal asymptotic power envelope

and for the asymptotic powers of several tests proposed in the literature. These

asymptotic powers turn out to be very substantially below the envelope. We

propose the likelihood ratio test based on the data reduced to the eigenvalues of

the sample covariance matrix. Our computations show that the asymptotic power

of this test is close to the envelope.
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Figure 6: Profiles of the asymptotic power of John’s test (solid lines) relative to the
asymptotic power envelope βµ (dotted lines) for different values of h1/

√
c under

the alternative; α = 0.05.

5 Appendix

All convergence statements made below refer to the situation when np, p →c ∞.

We start with two auxiliary results.

Lemma 7 Let d (µ, ν) be the Dudley distance between measures µ and ν defined

over (R,B):

d (µ, ν) = sup

{∣∣∣∣
∫
f (dµ− dν)

∣∣∣∣ : f (x) ≤ 1 and

∣∣∣∣
f (x) − f (y)

x− y

∣∣∣∣ ≤ 1, ∀x 6= y

}
.

There exists a constant τ > 0 such that d
(
F̂ λ

p , F
MP
p

)
= o (p−1 logτ p) a.s..

Proof: Let us denote the cumulative distribution function corresponding to a

measure µ as Fµ (x) . Further, let us denote inf {|x2 − x1| : supp (µ) ⊆ [x1, x2]} as
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Figure 7: Profiles of the asymptotic power of the Ledoit-Wolf and Cai-Ma tests
(solid lines) and the CLR test (dashed lines, for c = 0.5) relative to the asymptotic
power envelope βλ (dotted lines) for different values of h1/

√
c under the alternative;

α = 0.05.

diam (µ) . Consider the following three distances between measures µ and ν : the

Kolmogorov distance k (µ, ν) = supx |Fµ (x) − Fν (x)| , the Wasserstein distance

w (µ, ν) = sup
{∣∣∫ f (dµ− dν)

∣∣ :
∣∣∣ f(x)−f(y)

x−y

∣∣∣ ≤ 1, ∀x 6= y
}
, and the Kantorovich

distance γ (µ, ν) =
∫
|Fµ (x) − Fν (x)| dx. As is well known (see, for example, ex-

ercise 1 on p.425 of Dudley (2002)), w (µ, ν) = γ (µ, ν) . Therefore, we have

d
(
F̂ λ

p , F
MP
p

)
≤ w

(
F̂ λ

p , F
MP
p

)
= γ

(
F̂ λ

p , F
MP
p

)
≤ k

(
F̂ λ

p , F
MP
p

)(
diam

(
F̂ λ

p

)
+ diam

(
FMP

p

))
.

As follows from Theorem 1.1 of Götze and Tikhomirov (2011), there exists a

constant τ > 0 such that
∑∞

p=1 Pr
(
k
(
F̂ λ

p , F
MP
p

)
> εp−1 logτ p

)
< ∞ for all

ε > 0. Thus, k
(
F̂ λ

p , F
MP
p

)
= o (p−1 logτ p) a.s.. Since diam

(
FMP

p

)
is O(1) and
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diam
(
F̂ λ

p

)
− diam

(
FMP

p

)
→ 0 a.s., the result follows.�

Corollary 8 Suppose that a sequence of functions {fp(λ)} is bounded Lipshitz

on supp
(
FMP

p

)
∪ supp

(
F̂ λ

p

)
, uniformly over all sufficiently large p, a.s.. Then

∣∣∣
∫
fp(λ)d

(
F̂ λ

p (λ) − FMP
p (λ)

)∣∣∣ = o
(
p−1/2

)
, a.s..

5.1 Proof of Proposition 2

Let us denote the integral
∫

O(p)

ep tr(ΘpQ′ΛpQ) (dQ) as Ip (Θp,Λp). As explained in

Guionnet and Maida (2005, p.454), we can write

Ip (Θp,Λp) = EΛp exp

{
p

r∑

j=1

θpj
g̃(j)′Λpg̃

(j)

g̃(j)′g̃(j)

}
, (22)

where EΛp denotes the expectation conditional on Λp, and the p-dimensional vectors
(
g̃(1), ..., g̃(r)

)
are obtained from standard Gaussian p-dimensional vectors

(
g(1), ..., g(r)

)
,

independent from Λp, by a Schmidt orthogonalization procedure. More precisely,

we have g̃(j) =
∑j

k=1Ajkg
(k), where Ajj = 1 and

j−1∑

k=1

Ajkg
(k)′g(t) = −g(j)′g(t) for t = 1, ..., j − 1. (23)

In the spirit of the proof of Guionnet and Maida’s (2005) Theorem 3, define

γ
(j,s)
p1 =

√
p

(
1

p
g(j)′g(s)−δjs

)
and γ

(j,s)
p2 =

√
p

(
1

p
g(j)′Λpg

(s)−vpjδjs

)
, (24)

where δjs = 1 {j = s} stands for the classical Kronecker symbol. As will be shown

below, after an appropriate change of measure, γ
(j,s)
p1 and γ

(j,s)
p2 are asymptotically

centered Gaussian. Expressing the exponent in (22) as a function of γ
(j,s)
p1 and γ

(j,s)
p2 ,

changing the measure of integration, and using the asymptotic Gaussianity will

establish the proposition.

Let γp =
(
γ

(1,1)
p , ..., γ

(r,1)
p , γ

(2,2)
p , ..., γ

(r,2)
p , γ

(3,3)
p , ..., γ

(r,r)
p

)′
, where γ

(j,s)
p =

(
γ

(j,s)
p1 , γ

(j,s)
p2

)
.

Using this notation, (22), (23), and (24), we get, after some algebra,

Ip (Θp,Λp)=

∫
fp,θ

(
γp

)
e

p
Pr

j=1 θpj

“

vpj+γ̂
(j,j)
p −vpjγ

(j,j)
p

” r∏

j=1

p∏

i=1

dP

(
g

(j)
i

)
, (25)
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where P is the standard Gaussian probability measure, and

fp,θ

(
γp

)
= exp

{
r∑

j=1

θpj
N1j+ ...+N6j

Dj

}
with (26)

N1j = −γ(j,j)
p1

(
γ

(j,j)
p2 − vpjγ

(j,j)
p1

)
,

N2j = γ
(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1 (
G

(j)
p2 +Wpj

)(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p1 ,

N3j = −2γ
(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p2 ,

N4j = vpjγ
(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p1 ,

N5j = p−1/2γ
(j,j)
p2 γ

(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p1 ,

N6j = −p−1/2vpjγ
(1:j−1,j)′
p1

(
G

(j)
p1 + I

)−1

γ
(1:j−1,j)
p1 γ

(j,j)
p1 , and

Dj = 1 + p−1/2γ
(j,j)
p1 − p−1γ

(j,1:j−1)′
p1

(
G

(j)
p1 + I

)−1

γ
(j,1:j−1)
p1 ,

where G
(j)
pi is a (j − 1) × (j − 1) matrix with (k, s)-th element p−1/2γ

(k,s)
pi ,

Wpj = diag (vp1, ..., vp,j−1) , and γ
(j,1:j−1)
pi =

(
γ

(j,1)
pi , ..., γ

(j,j−1)
pi

)′
.

Next, define the event

BM,M ′ =
{∣∣∣γ(j,s)

p1

∣∣∣ ≤ M and
∣∣∣γ(j,s)

p2

∣∣∣ ≤M ′ for all j, s = 1, ..., r
}
,

where M and M ′ are positive parameters to be specified later. Somewhat abusing

notation, we will also refer to BM,M ′ as a rectangular region in Rr2+r that consists

of vectors with odd coordinates in (−M,M) and even coordinates in (−M ′,M ′).

Let

IM,M ′

p (Θp,Λp)=

∫
1 {BM,M ′} fp,θ

(
γp

)
e

p
Pr

j=1 θpj

“

vpj+γ̂
(j,j)
p −vpjγ

(j,j)
p

” r∏

j=1

p∏

i=1

dP

(
g

(j)
i

)
,

where 1 {·} denotes the indicator function. Below, we establish the asymptotic

behavior of IM,M ′

p (Θp,Λp) as first p, and then M and M ′, diverge to infinity. We

then show that the asymptotics of IM,M ′

p (Θp,Λp) and Ip (Θp,Λp) coincide.

Consider infinite arrays
{

P
(j)
pi , p = 1, 2, ...; i = 1, ..., p

}
, j = 1, ..., r, of random

centered Gaussian measures
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dP
(j)
pi (x) =

√
1 + 2θpjvpj − 2θpjλpi

2π
e−

1
2
(1+2θpjvpj−2θpjλpi)x

2

dx.

Since vpj = RMP
p (2θpj) = 1/ (1 − 2θpjcp) and 2θpj ∈ Ωεη, there exists ε̂ > 0 such

that, for sufficiently large p,

vpj +
1

2θpj

>
(
1 +

√
c
)2

+ ε̂ when θpj > 0 and

vpj +
1

2θpj

< −ε̂ when θpj < 0.

Recall that λpp ≥ 0, and λp1 → (1 +
√
c)

2
a.s.. Therefore, still a.s., for sufficiently

large p, vpj + 1
2θpj

> λp1 when θpj > 0 and vpj + 1
2θpj

< λpp when θpj < 0. Hence,

the measures P
(j)
pi are a.s. well defined for sufficiently large p. Whenever P

(j)
pi is not

well defined, we re-define it arbitrarily.

We have

IM,M ′

p (Θp,Λp) = ep
Pr

j=1[θpjvpj− 1
2p

Pp
i=1 ln(1+2θpjvpj−2θpjλpi)]JM,M ′

p , (27)

where
JM,M ′

p =

∫
1 {BM,M ′} fp,θ

(
γp

) r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)
. (28)

We now show that, under
∏r

j=1

∏p
i=1 dP

(j)
pi

(
g

(j)
i

)
, γp a.s. converges in distribution

to a centered r2 + r-dimensional Gaussian vector, so that JM,M ′

p is asymptotically

equivalent to an integral with respect to a Gaussian measure on Rr2+r.

First, let us find the mean Epγp, and the variance Vpγp of γp under mea-

sure
∏r

j=1

∏p
i=1dP

(j)
pi

(
g

(j)
i

)
. Note that Vpγp = diag

(
Vpγ

(1,1)
p ,Vpγ

(2,1)
p ,...,Vpγ

(r,r)
p

)
and

Epγp =
(
Epγ

(1,1)
p ,Epγ

(2,1)
p ,...,Epγ

(r,r)
p

)
′. With probability one, for sufficiently large p,

we have

Epγ
(k,s)
p1 =

√
pδks

(
1

p

p∑

i=1

1

(1 + 2θpkvpk − 2θpkλpi)
− 1

)

=
√
pδks

∫
(2θpk)

−1

KMP
p (2θpk) − λ

d
(
F̂ λ

p (λ) − FMP
p (λ)

)
,

which, by Corollary 1, is o (1) uniformly in 2θpk ∈ Ωεη, a.s.. That Corollary 1 can
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be applied here follows from the form of expression (7) for KMP
p (x). Similarly,

Epγ
(k,s)
p2 =

√
p
δks

2θpk

∫
KMP

p (2θpk)

KMP
p (2θpk) − λ

d
(
F̂ λ

p (λ)−FMP
p (λ)

)
=o (1)

uniformly in 2θpk, 2θps ∈ Ωεη, a.s.. Thus,

sup
{2θpj∈Ωεη ,j≤r}

Epγp = o (1) a.s.. (29)

Next, with probability one, for sufficiently large p we have

Vpγ
(k,s)
p1 =

1

p

p∑

i=1

1 + δks

(1 + 2θpkvpk − 2θpkλpi) (1 + 2θpsvps − 2θpsλpi)
.

Let Ĥ
(2)
p,ks =

∫ dF̂ λ
p (λ)

(KMP
p (2θpk)−λ)(KMP

p (2θps)−λ)
and H

(2)
p,ks =

∫ dF MP
p (λ)

(KMP
p (2θpk)−λ)(KMP

p (2θps)−λ)
. Then,

using Corollary 1, we get

Vpγ
(k,s)
p1 =

1 + δks

4θpkθps
Ĥ

(2)
p,ks =

1 + δks

4θpkθps
H

(2)
p,ks + o(1) a.s.,

uniformly in 2θpk, 2θps ∈ Ωεη. Similarly, we have

Vpγ
(k,s)
p2 =

1

p

p∑

i=1

λ2
pi (1 + δks)

(1+2θpkvpk−2θpkλpi) (1+2θpsvps−2θpsλpi)

=
1+δks

4θpkθps

(
1+KMP

p (2θps)K
MP
p (2θpk)H

(2)
p,ks−2θpkK

MP
p (2θpk)−2θpsK

MP
p (2θps)

)
+o(1),

and

Covp

(
γ

(k,s)
p1 , γ

(k,s)
p2

)
=

1

p

p∑

i=1

λpi (1 + δks)

(1 + 2θpkvpk − 2θpkλpi) (1 + 2θpsvps − 2θpsλpi)

=
(1 + δks)

4θpkθps

(
KMP

p (2θps)H
(2)
p,ks−2θpk

)
+ o(1),

uniformly in 2θpk, 2θps ∈ Ωεη, a.s..

A straightforward calculation, using formula (7), shows that

H
(2)
p,ks =

(
1

4θpkθps
− cpvpkvsk

)−1

, and Vpγ
(k,s)
p = V (k,s)

p + o(1), (30)

uniformly in 2θpk, 2θps ∈ Ωεη, a.s., where the matrix V
(k,s)
p has elements
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V
(k,s)
p,11 = (1+δks) (1−4θpkvpkθpsvskcp)

−1 , (31)

V
(k,s)
p,12 = V

(k,s)
p,21 =(1+δks) vpkvsk (1−4θpkvpkθpsvskcp)

−1 , and (32)

V
(k,s)
p,22 = (1+δks)

[
cpvpkvsk+v2

pkv
2
sk (1−4θpkvpkθpsvskcp)

−1] . (33)

This implies that

det
(
V (k,s)

p

)
=

r∏

k≥s

(1+δks)
2 cpvpkvsk (1−4θpkvpkθpsvskcp)

−1 , (34)

which is bounded away from zero and infinity for sufficiently large p, uniformly

over {2θpj ∈ Ωεη, j ≤ r}, a.s..

By construction, γp is a sum of p independent random vectors having uniformly

bounded third and fourth absolute moments under measure
∏r

j=1

∏p
i=1 dP

(j)
pi

(
g

(j)
i

)
.

Therefore, a central limit theorem applies. Moreover, since the function fp,θ

(
γp

)

is Lipshitz over BM,M ′, uniformly in {2θpj ∈ Ωεη, j ≤ r} , Theorem 13.3 of Bhat-

tacharya and Rao (1976), which describes the accuracy of the Gaussian approx-

imations to integrals of the form (28) in terms of the oscillation measures of the

integrand, implies that

JM,M ′

p =

∫

BM,M′

fp,θ (x) dΦ
(
x; Epγp,Vpγp

)
+ oM,M ′ (1) , (35)

where Φ
(
x; Epγp,Vpγp

)
denotes the Gaussian distribution function with mean

Epγp and variance Vpγp, and oM,M ′ (1) converges to zero uniformly in {2θpj ∈ Ωεη, j ≤ r}

as p → ∞, a.s.. The rate of such a convergence may depend on the values of M

and M ′.

Note that, in BM,M ′, as p→ ∞, the difference fp,θ

(
γp

)
− f p,θ

(
γp

)
converges to

zero uniformly over {2θpj ∈ Ωεη, j ≤ r} , where

f p,θ

(
γp

)
= exp

{
r∑

j=1

θpj

(
N̄1j + ...+N̄4j

)
}
, with (36)

N̄1j = −γ(j,j)
1

(
γ

(j,j)
2 − vpjγ

(j,j)
1

)
, N̄2j = γ

(j,1:j−1)′
1 Wpjγ

(j,1:j−1)
1 ,

N̄3j = −2γ
(j,1:j−1)′
1 γ

(j,1:j−1)
2 , and N̄4j = vpjγ

(j,1:j−1)′
1 γ

(j,1:j−1)
1 .
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Such a convergence, together with (29), (30), and (35) implies that

JM,M ′

p =

∫

BM,M′

f p,θ (x) dΦ (x; 0, Vp) + oM,M ′ (1) , (37)

where Vp = diag
(
V

(1,1)
p , V

(2,1)
p , ..., V

(r,r)
p

)
.

Note that the difference
∫

BM,M′

f p,θ (x) dΦ (x;0,Vp) −
∫

Rr2+r

f p,θ (x) dΦ (x;0,Vp) con-

verges to zero as M,M ′ → ∞, uniformly in p for p sufficiently large. On the other

hand, ∫

Rr2+r

f p,θ (x) dΦ (x; 0, Vp)=

r∏

j=1

j∏

s=1

∫

R2

exp

[
−1

2
y′
(
W

(j,s)
p

)−1

y

]

2π

√
det
(
V

(j,s)
p

) dy, (38)

where

(
W (j,s)

p

)−1
=
(
V (j,s)

p

)−1
+ (1 + δjs)

−1




−2θpj (vpj + vps) 2θpj

2θpj 0


 .

Using (31-33), we verify that, for sufficiently large p, W
(j,s)
p is a.s. positive definite,

and

det
(
W (j,s)

p

)
= (1 + δjs)

2 cpvpjvps, and (39)

det
(
V (j,s)

p

)
= (1 + δjs)

2 cpvpjvps (1−4 (θpjvpj) (θpsvps) cp)
−1 . (40)

Therefore,
∫

Rr2+r

f p,θ (x) dΦ (x; 0, Vp)=

r∏

j=1

j∏

s=1

√
1−4 (θpjvpj) (θpsvps) cp

and, uniformly in p for p sufficiently large,

lim
M,M ′→∞





∫

BM,M′

f p,θ (x) dΦ (x; 0, Vp)−
r∏

j=1

j∏

s=1

√
1−4 (θpjvpj) (θpsvps) cp





=0. (41)

Equations (27), (37), and (41) describe the behavior of IM,M ′

p (Θp,Λp) for large p,

M, and M ′.

Let us now turn to the analysis of Ip (Θp,Λp)− IM,M ′

p (Θp,Λp) . Let BM be the

event
{∣∣∣γ(j,s)

p1

∣∣∣ ≤M for all j, s ≤ r
}

, and let
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IM
p (Θp,Λp) = EΛp

(
1 {BM} exp

{
p

r∑

j=1

θpj
g̃(j)′Λpg̃

(j)

g̃(j)′g̃(j)

})
.

As explained in Guionnet and Maida (2005, p.455), γ
(j,s)
p1 , j, s = 1, ..., r are inde-

pendent of g̃(j)′Λg̃(j)/g̃(j)′g̃(j), j = 1, ..., r. Therefore,

IM
p (Θp,Λp) = EΛp (1 {BM}) Ip (Θp,Λp) =

(
1 − EΛp (1 {Bc

M})
)
Ip (Θp,Λp) .

Denoting again by P the centered standard Gaussian measure on R, we have

EΛp

(
1
{∣∣∣γ(j,s)

p1

∣∣∣ ≥M
})

=

∫
1
{∣∣∣γ(j,s)

p1

∣∣∣ ≥M
} r∏

j=1

p∏

i=1

dP

(
g

(j)
i

)
.

For j 6= s and τ ∈
(
−1

2

√
p, 1

2

√
p
)
,

∫
eτγ

(j,s)
p1

r∏

j=1

p∏

i=1

dP

(
g

(j)
i

)
=

1

(2π)p

∫
e

τ 1√
p
g(j)′g(s)

e−
1
2(g(j)′g(j)+g(s)′g(s))

p∏

i=1

(
dg

(j)
i dg

(s)
i

)

=

(
1 − τ 2

p

)− p
2

≤ e2τ2

.

Therefore, using Chebyshev’s inequality, for j 6= s and τ ∈
(
−1

2

√
p, 1

2

√
p
)
,

∫
1
{
γ

(j,s)
p1 ≥M

} r∏

j=1

p∏

i=1

dP

(
g

(j)
i

)
≤ e2τ2

eMτ
.

Setting τ = M/4 (here we assume that M < 2
√
p), we get

∫
1
{
γ

(j,s)
p1 ≥M

} r∏

j=1

p∏

i=1

dP

(
g

(j)
i

)
≤ e−M2/8.

Similarly, we show that the same inequality holds when γ
(j,s)
p1 is replaced by −γ(j,s)

p ,

and thus
∫

1
{∣∣∣γ(j,s)

p1

∣∣∣ ≥M
} r∏

j=1

p∏

i=1

dP

(
g

(j)
i

)
≤ 2e−M2/8. (42)

For j = s, the same line of arguments yields
∫

1
{∣∣γ(j,j)

p

∣∣ ≥M
} r∏

j=1

p∏

i=1

dP

(
g

(j)
i

)
≤ 2e−M2/16. (43)

Inequalities (42) and (43) imply that EΛp (1 {Bc
M}) ≤ 2r2e−M2/16, and there-

fore, for sufficiently large p,

Ip (Θp,Λp) ≥ IM
p (Θp,Λp) ≥

(
1 − 2r2e−M2/16

)
Ip (Θp,Λp) . (44)
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Note that

IM
p (Θp,Λp)= ep

Pr
j=1[θpjvpj− 1

2p

Pp
i=1 ln(1+2θpjvpj−2θpjλi)]

(
JM,M ′

p + JM,M ′,∞
p

)
, (45)

where
JM,M ′,∞

p =

∫
1 {BM\BM,M ′} fp,θ

(
γp

) r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)
.

We will now derive an upper bound for JM,M ′,∞
p .

From the definition of fp,θ

(
γp

)
, we see that there exist positive constants β1

and β2, which may depend on r, ε and η, such that for any θpj satisfying 2θpj ∈ Ωεη,

j ≤ r and for sufficiently large p, when BM holds,

fp,θ

(
γp

)
≤ exp

{
β1M

r∑

s,k=1

∣∣∣γ(k,s)
p2

∣∣∣ + β2M
2

}
.

Let B
(k,s)
M,M ′ = BM ∩

{∣∣∣γ(k,s)
p2

∣∣∣ = maxj,m≤r

∣∣∣γ(j,m)
p2

∣∣∣ > M ′
}

. Clearly, BM\BM,M ′ =

⋃r
k,s=1B

(k,s)
M . Therefore,

JM,M ′,∞
p ≤

r∑

k,s=1

∫

B
(k,s)

M,M′

e
β1Mr2

˛

˛

˛

γ
(k,s)
p2

˛

˛

˛

+β2M2
r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)

≤
r∑

j,m=1

∫
˛

˛

˛

γ
(k,s)
p2

˛

˛

˛

≥M ′

e
β1Mr2

˛

˛

˛

γ
(k,s)
p2

˛

˛

˛

+β2M2
r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)
.

First assume k 6= s.Denote λpi (1 − 2θpkλpi + 2θpkvpk)
−1/2 (1 − 2θpsλpi + 2θpsvps)

−1/2

as λ̃pi and (1 − 2θpjλpi + 2θpjvpj)
1/2 g

(j)
i as g̃

(j)
i . Note that, under P

(j)
pi , g̃

(j)
i is a stan-

dard normal random variable. Further, as long as 2θpj ∈ Ωεη for j ≤ r, λ̃pi consid-

ered as a function of λi is continuous on λi ∈ supp F̂ λ
p for sufficiently large p, a.s..

Hence, the empirical distribution of λ̃i converges. Moreover, λ̃max = maxi=1,...,p(λ̃pi)

and λ̃min = mini=1,...,p(λ̃pi) a.s. converge to finite real numbers. Now, for τ such

that |τ | < √
p/(2λ̃max), we have

∫
eτγ

(k,s)
p2

r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)
= Eeτ

√
p 1

p

Pp
i=1 λ̃pig̃

(k)
i g̃

(s)
i

=

p∏

i=1

Ee
τ 1√

p
λ̃pig̃

(k)
i g̃

(s)
i =

p∏

i=1

(
1 − τ 2

λ̃
2

pi

p

)−1/2

≤ e2λ̃
2
maxτ2
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for sufficiently large p, a.s.. Using this inequality, we get, for sufficiently large p

and any positive t such that β1r
2M + t <

√
p/(2λ̃max),

∫

γ
(k,s)
p2 ≥M ′

eβ1r2Mγ
(k,s)
p2

r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)
≤
∫
e

β1r2Mγ
(k,s)
p2 +t

“

γ
(k,s)
p2 −M ′

” r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)

= e−tM ′

∫
e(β1r2M+t)γ

(k,s)
p2

r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)
≤e−tM ′

e2λ̃
2
max(β1r2M+t)

2

.

Setting t = M ′

4λ̃
2
max

−β1r
2M (here we assume that M and M ′ are such that t satisfies

the above requirements), we get
∫

γ
(k,s)
p2 ≥M ′

eβ1r2Mγ
(k,s)
p2

r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)
≤ e

− (M′)2

8λ̃
2
max

+β1r2MM ′

.

Replacing γ
(k,s)
p2 by −γ(k,s)

p2 in the above derivations and combining the result with

the above inequality, we get
∫

˛

˛

˛

γ
(k,s)
p2

˛

˛

˛

≥M ′

e
β1r2M

˛

˛

˛

γ
(k,s)
p2

˛

˛

˛

r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)
≤ 2e

− (M′)2

8λ̃
2
max

+β1r2MM ′

.

When k = s, following a similar line of arguments, we obtain
∫

˛

˛

˛

γ
(k,k)
p2

˛

˛

˛

≥M ′

e
β1r2M

˛

˛

˛

γ
(k,k)
p2

˛

˛

˛

r∏

j=1

p∏

i=1

dP
(j)
pi

(
g

(j)
i

)
≤ 4e

− (M′)2

16λ̃
2
max

+β1r2MM ′

.

and thus, for sufficiently large p,

JM,M ′,∞
p ≤ 4r2e

− (M′)2

16λ̃
2
max

+β1r2MM ′

. (46)

Finally, combining (44), (45), and (46), we obtain for

Jp = Ip (Θp,Λp) e
−p

Pr
j=1[θpjvpj− 1

2p

Pp
i=1 ln(1+2θpjvpj−2θpjλi)] (47)

the following upper and lower bounds:

JM,M ′

p ≤ Jp ≤
(
1 − 2r2e−

M2

16

)−1
(
JM,M ′

p + 4r2e
− (M′)2

16λ̃
2
max

+β1r2MM ′

)
. (48)

Let τ > 0 be an arbitrarily small number. Equations (37) and (41) imply that

there exist M̄ and M̄ ′ such that, for any M > M̄ and M ′ > M̄ ′,
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∣∣∣∣∣J
M,M ′

p −
r∏

j=1

j∏

s=1

√
1−4 (θpjvpj) (θpsvps) cp

∣∣∣∣∣ <
τ

4

for all sufficiently large p. Let us choose M > M̄ and M ′ > M̄ ′ so that

(
1 − 2r2e−

M2

16

)−1

< 2,

(
1 − 2r2e−

M2

16

)−1

4r2e
− (M′)2

16λ̃
2
max

+β1r2MM ′

<
τ

4
,

and
[(

1 − 2r2e−
M2

16

)−1

− 1

]
sup

{2θpj∈Ωεη ,j≤r}

r∏

j=1

j∏

s=1

√
1−4 (θpjvpj) (θpsvps) cp <

τ

4

for all sufficiently large p, a.s.. Then, (48) implies that
∣∣∣∣∣Jp −

r∏

j=1

j∏

s=1

√
1−4 (θpjvpj) (θpsvps) cp

∣∣∣∣∣ < τ (49)

for all sufficiently large p, a.s.. Since τ can be chosen arbitrarily, we have, from

(47) and (49),

Ip (Θp,Λp) = ep
Pr

j=1[θpjvpj− 1
2p

Pp
i=1 ln(1+2θpjvpj−2θpjλpi)]

×
(

r∏

j=1

j∏

s=1

√
1−4 (θpjvpj) (θpsvps) cp + o(1)

)
,

where o(1) → 0 as p→ ∞ uniformly in {2θpj ∈ Ωεη, j ≤ r} , a.s..�

5.2 Proof of Theorem 3

Setting θpj = 1
2cp

hj

1+hj
, we have vpj = 1 + hj , θpjvpj =

hj

2cp
, and

ln (1+2θpjvpj−2θpjλpi) = ln

(
1

cp

hj

1 + hj

)
+ ln (z0j − λpi) .

Further, by Lemma 11 and formula (3.3) of OMH,
∫

ln (zj0 − λ) dFMP
p (λ) =

hj

cp
−

1
cp

ln (1 + hj) + ln
(1+hj)cp

hj
for sufficiently large p, a.s.. With these auxiliary results,

formula (10) is a straightforward consequence of (3) and Proposition 2.

Turning to the proof of (11), consider the integrals
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I (k1, k2)=

∫ k2

k1

x
npp

2
−1e−

np
2

x

∫

O(p)

e
p x

Sp
tr(DpQ′ΛpQ)

(dQ)dx, k1 < k2 ∈ R.

In what follows, we omit the subscript p in np to simplify notation. Note that I (0,∞)

is the integral appearing in expression (4) for Lp

(
h;µp

)
. Let us now prove that,

for some constant α > 0,

I (0,∞)=I (p−α√p, p+α√p) (1+o (1)) , a.s. (50)

where o(1) is uniform in h ∈ [0,
√
c− δ]

r
.

Since, by Corollary 1, Sp/p → 1 a.s., the set Hδ is bounded from below, and

λp1 → (1 +
√
c)

2
a.s., there exists a constant A1 > 0 that depends only on δ

and r, such that inf[0,
√

c−δ]
r px tr (DpQ

′ΛpQ) /Sp ≥ −A1x/2 for all x ≥ 0 and all

sufficiently large p, a.s.. Therefore, for all h ∈ [0,
√
c− δ]

r
,

2I (0,∞) ≥
∫ ∞

0

x
np
2
−1e−

n+A1
2

xdx =

(
n+ A1

2

)−np
2

Γ
(np

2

)
,

and, using Stirling’s approximation, we get

I (0,∞) ≥
(
n+ A1

2

)−np
2 (np

2

)np
2
e−

np
2

(
4π

np

)1/2

(1 + o (1))

= p
np
2 e

−
„

n
2
+

A1
2
− 1

4

A2
1

n

«

p
(

4π

np

)1/2

(1 + o (1)) , a.s. (51)

Next, there exists a constant A2 > 0 such that, for all x ≥ 0 and all sufficiently

large p, suph∈[0,
√

c−δ]
r px tr (DpQ

′ΛpQ) /Sp ≤ A2x/2, a.s.. Therefore, a.s., for all

sufficiently large p,

I (p+α
√
p,∞)≤

∫ ∞

p+α
√

p

x
np
2
−1e−

n−A2
2

xdx =

(
n−A2

2

)−np
2

Γ
(np

2
, y
)
,

where Γ
(

np
2
, y
)

is the complementary incomplete Gamma function (see Olver 1997,

p.45) with y =
(
p+ α

√
p
) (

n−A2

2

)
. Hence, for sufficiently large p, y > np/2 +

nα
√
p/4, and we can continue

I (p+α
√
p,∞)<

(
n−A2

2

)−np
2

Γ

(
np

2
,
np

2
+
αn

√
p

4

)
, a.s.
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Now, Γ (β, γ) ≤ e−γγβ/(γ − β + 1) whenever β > 1 and γ > β − 1 (Olver 1997,

p.70). Therefore, we have, for sufficiently large p,

I (p+α
√
p,∞) <

(
1 − A2

n

)−np
2 e−

np
2
−αn

√
p

4 p
np
2

(
1 + α

2
√

p

)np
2

αn
√
p/4 + 1

= p
np
2 e

A2p

2
+

A2
2p

4n
e
−np

2
−α2n

16
+ α3n

48
√

p
− α4n

128p

αn
√
p/4 + 1

(1 + o(1))

< p
np
2 e−

np
2
e

p
“

A2−α2n
32p

”

αn
√
p/4 + 1

(1 + o(1)) , a.s.

Comparing this to (51), we see that α can be chosen so that

I (p+α
√
p,∞) = o(1)I (0,∞) , a.s. (52)

Further, for sufficiently large p,

I (0, p−α√p) ≤
∫ p−α

√
p

0

x
np
2
−1e−

n−A2
2

xdx

=

(
n− A2

2

)−np
2
∫ y

0

t
np
2
−1e−tdt, a.s.,

where y =
(
p− α

√
p
)

n−A2

2
< np

2
− αn

√
p

4
. Therefore, for any positive z < np

2
and

sufficiently large p,

I (0, p−α√p) ≤
(
n−A2

2

)−np
2
∫ np

2
−αn

√
p

4

0

t
np
2
−1e−tdt

<

(
n−A2

2

)−np
2
(
np

2
−αn

√
p

4

)z

Γ
(np

2
−z
)

.

Setting z = αn
√
p/4 and using Stirling’s approximation, we have, a.s.,

(
np

2
−αn

√
p

4

)z

Γ
(np

2
−z
)

=

(
np

2
−αn

√
p

4

)np
2
− 1

2

e−
np
2

+
αn

√
p

4

√
2π (1+o (1))

so that

I (0, p−α√p) <

(
n−A2

2

)−np
2
(
np

2
−αn

√
p

4

)np
2
− 1

2

e−
np
2

+
αn

√
p

4

√
2π (1+o (1))

< p
np
2 e−

np
2 e

p

„

A2
2

+
A2

2
4n

−α2n
16p

«

(1+o (1)) , a.s..
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Comparing this to (51), we see that α can be chosen so that

I (0, p−α√p) = o(1)I (0,∞) , (53)

a.s.. Combining (52) and (53), we get (50).

Now, letting θ̃pj = x
Sp
θpj = x

Sp

1
2cp

hj

1+hj
, note that there exist ε > 0 and η > 0 such

that
{

2θ̃pj : hj ∈ [0,
√
c− δ] and x ∈

[
p−α√p, p+α√p

]}
⊆ Θεη for all sufficiently

large p, a.s.. Hence, by (50), and Proposition 2, a.s.,

I (0,∞) =

∫ p+α
√

p

p−α
√

p

x
np
2
−1e−

n
2
xep

Pr
j=1[θ̃pj ṽpj− 1

2p

Pp
i=1 ln(1+2θ̃pj ṽpj−2θ̃pjλpi)] (54)

×
(

r∏

j=1

j∏

s=1

√
1−4

(
θ̃pj ṽpj

)(
θ̃psṽps

)
cp + o(1)

)
dx,

where o(1) is uniform in h ∈ [0,
√
c− δ]

r
and x ∈

[
p−α√p, p+α√p

]
.

Expanding θ̃pj ṽpj − 1
2p

∑p
i=1 ln

(
1+2θ̃pj ṽpj−2θ̃pjλpi

)
and

(
θ̃pj ṽpj

)(
θ̃psṽps

)
into

power series of x
p
− 1, we get

I (0,∞) =

∫ p+α
√

p

p−α
√

p

x
np
2
−1e−

n
2

xe
p

“

B0+B1(x
p
−1)+B2(x

p
−1)

2
”

×
(

r∏

j=1

j∏

s=1

√
1−4 (θpjvpj) (θpsvps) cp + o(1)

)
dx,

where B0, B1 and B2 are O(1) uniformly in h ∈ [0,
√
c− δ]

r
. Further, consider the

integral
I(0) =

∫ p+α
√

p

p−α
√

p

x
np
2
−1e−

n
2
xe

p
“

B1
x
p
+B2(x

p
−1)

2
”

dx.

Splitting the domain of integration into segments
[
p−α√p, p−αpγ

]
, [p−αpγ, p+αpγ ]

and
[
p+αpγ, p+α

√
p
]
, where 0 < γ < 1/2, and denoting the corresponding inte-

grals by I(1), I(2) and I(3), respectively, we have

I(1) < eα2

∫ p−αpγ

p−α
√

p

x
np
2
−1e−

n
2

xeB1xdx < eα2

p
np
2

(
1 − 2B1

n

)np
2
∫ 1−α

2
pγ−1

0

y
np
2
−1e−

np
2

ydy,

I(2) >

∫ p+αpγ

p−αpγ

x
np
2
−1e−

n
2

xeB1xdx > p
np
2

(
1 − 2B1

n

)np
2
∫ 1+α

2
pγ−1

1−α
2

pγ−1

y
np
2
−1e−

np
2

ydy, and

I(3) < eα2

∫ p+α
√

p

p+αpγ

x
np
2
−1e−

n
2
xeB1xdx < eα2

p
np
2

(
1 − 2B1

n

)np
2
∫ ∞

1+α
2

pγ−1

y
np
2
−1e−

np
2

ydy.
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Using the Laplace approximation, we have
∫ 1−α

2
pγ−1

0

y
np
2
−1e−

np
2

ydy = o(1)

∫ 1+α
2

pγ−1

1−α
2

pγ−1

y
np
2
−1e−

np
2

ydy, and

∫ ∞

1+α
2

pγ−1

y
np
2
−1e−

np
2

ydy = o(1)

∫ 1+α
2

pγ−1

1−α
2

pγ−1

y
np
2
−1e−

np
2

ydy,

so that I(2) dominates I(1) and I(3) and

I(0) = (1 + o(1))

∫ p+αpγ

p−αpγ

x
np
2
−1e−

n
2
xe

p
“

B1
x
p
+B2(x

p
−1)

2
”

dx

= (1 + o(1))

∫ p+αpγ

p−αpγ

x
np
2
−1e−

n
2
xeB1xdx

= (1 + o(1))

∫ p+α
√

p

p−α
√

p

x
np
2
−1e−

n
2
xeB1xdx.

This implies that

I (0,∞) =

∫ p+α
√

p

p−α
√

p

x
np
2
−1e−

n
2

xep(B0+B1(x
p
−1))

×
(

r∏

j=1

j∏

s=1

√
1−4 (θpjvpj) (θpsvps) cp + o(1)

)
dx,

and hence, only constant and linear terms in the expansion of

θ̃pj ṽpj − 1
2p

∑p
i=1 ln

(
1+2θ̃pj ṽpj−2θ̃pjλpi

)
into power series of x

p
− 1 matter for the

evaluation of I (0,∞) . Let us find these terms.

By Corollary 1, x
Sp

− 1 = x
p
− Sp

p
+ o(p−1) a.s.. Using this fact, after some

algebra, we get

θ̃pj ṽpj =θpjvpj + θpjv
2
pj

(
x

p
− Sp

p

)
+O

((
x

p
− 1

)2
)
,

ln
(
2θ̃pj

)
=ln (2θpj)+

(
x

p
−Sp

p

)
+O

((
x

p
−1

)2
)
,

and
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p∑

i=1

ln
(
KMP

p

(
2θ̃pj

)
−λpi

)
=

p∑

i=1

ln
(
KMP

p (2θpj)−λpi

)
− p

(
1−4cpθ

2
pjv

2
pj

)(x
p
−Sp

p

)

+O

((
x

p
− 1

)2
)
.

It follows that

I (0,∞) =

∫ p+α
√

p

p−α
√

p

x
np
2
−1e−

n
2
xep

Pr
j=1[θpjvpj− 1

2p

Pp
i=1 ln(1+2θpjvpj−2θpjλpi)] (55)

×e
Pr

j=1 θpjvpj(x−Sp)

(
r∏

j=1

j∏

s=1

√
1−4 (θpjvpj) (θpsvps) cp + o(1)

)
dx

= (1 + o(1))
r∏

j=1

(1 + hj)
np
2 Lp(h;λp)

∫ p+α
√

p

p−α
√

p

x
np
2
−1e−

n
2
xe

Pr
j=1 θpjvpj(x−Sp)dx,

where the last equality in (55) follows from (3) and Proposition 2.

The last equality in (55), (4) and the fact that

∫ p+α
√

p

p−α
√

p

x
np
2
−1e−

n
2

xe
Pr

j=1 θpjvpj(x−Sp)dx=e
Pr

j=1 −
hj
2cp

Sp

(
n

2
−

r∑

j=1

hj

2cp

)−np
2

Γ
(np

2

)
(1+o(1))

imply that

Lp

(
h;µp

)
= (1 + o(1))Lp(h;λp)e

Pr
j=1 − hj

2cp
Sp

(
1−

r∑

j=1

hj

ncp

)−np
2

= (1 + o(1))Lp(h;λp)e
−Sp−p

2cp

Pr
j=1hj+

1
4cp

(
Pr

j=1 hj)
2

,

which establishes (11). The rest of the statements of Theorem 1 follow from (10),

(11), and Lemmas 12 and A2 of OMH.�

5.3 Proof of Proposition 4

To save space, we only derive the asymptotic power envelope for the relatively more

difficult case of real-valued data and µ-based tests. According to the Neyman-

Pearson lemma, the most powerful test of h = 0 against the simple alternative

h = (h1, ..., hr) is the test which rejects the null when Lp

(
h;µp

)
is larger than a

38



critical value C. It follows from Theorem 1 that, for such a test to have asymptotic

size α, C must be
C =

√
W (h)Φ−1 (1 − α) +m (h) , (56)

where

m (h) =
1

4

r∑

i,j=1

(
ln

(
1 − hihj

c

)
+
hihj

c

)
and

W (h) = −1

2

r∑

i,j=1

(
ln

(
1 − hihj

c

)
+
hihj

c

)
.

Now, according to Le Cam’s third lemma and Theorem 1, under h = (h1, ..., hr) ,

lnLp

(
h;µp

) d→ N (m (h) +W (h) ,W (h)) . The asymptotic power (15) follows.�

5.4 Invariance issues and Proof of Proposition 5

Before turning to the proof of Proposition 5, let us clarify the invariance issues

in the problem under study. For basic definitions (invariant, maximal invariant,

etc.), we refer to Chapter 6 of Lehmann and Romano (2005).

Suppose that X is a p× n random matrix with vec (X) ∼ N (0, In ⊗ Σ). This

model is clearly invariant under the group Gp, acting on Rp×n, of left-hand multi-

plications by a p× p orthogonal matrix x 7→ Qx, x ∈ Rp×n, Q ∈ O (p) ; so are the

null hypothesis H0 and the alternative H1. Letting m = min (n, p) , the m-tuple

λ (X) = (λ1, ..., λm) of non-zero eigenvalues of 1
n
XX ′ is clearly invariant under

that group, since 1
n
xx′ and 1

n
(Qx) (Qx)′ = 1

n
Qxx′Q′ share the same eigenvalues

λ (x) for any orthogonal matrix Q and any matrix x ∈ Rp×n. However, λ (X) is

not maximal invariant for Gp, as xx′ and (xP ) (xP )′ = xPP ′x′ = xx′, where P is

an arbitrary n× n orthogonal matrix, share the same λ (x) = λ (xP ) although, in

general, there is no p× p orthogonal matrix Q such that xP = Qx.
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Now, the joint density of the elements of X is

f
(n)
Σ (x) = (2π)−np/2 |Σ|−n/2 exp

{
−1

2
tr
(
Σ−1xx′

)}
, x ∈ R

p×n.

By the factorization theorem, XX ′ is a sufficient statistic, and it is legitimate to

restrict attention to XX ′-measurable inference procedures. Left-hand orthogonal

multiplications Qx of x yields, for xx′, a transformation of the form Qxx′Q′. When

Q range over the family Op of p × p orthogonal matrices, those transformations

also form a group, G̃p, say, now acting on the space of p × p symmetric positive

semidefinite real matrices of rank m. Clearly, λ (x) is maximal invariant for G̃p, as

xx′ and yy′ share the same eigenvalues if and only if yy′ = Qxx′Q′ for some p× p

orthogonal matrix Q.

Combining the principles of sufficiency and invariance thus leads to considering

λ-measurable tests only.

A similar reasoning applies in the case of unspecified σ2, with a larger group

combining multiplication by an arbitrary non-zero constant with the p × p left

orthogonal transformations. Sufficiency and invariance then lead to restricting

attention to µ-measurable tests.

Proof of Proposition 5.

With the same notation as above, write T = T (X) = XX ′ for the sufficient

statistic. Consider an arbitrary invariant (under the group Gp of left orthogonal

transformations of Rp×n) test φ (X), and define ψ (t) = E (φ (X) |T = t). Then

ψ (T ) is a T -measurable test with the same size and power function as φ (X) . It

follows from the proof of Theorem 6.5.3 (i) in Lehmann and Romano (2005) that

ψ (T ) is almost invariant. Moreover, since the conditions of Lemma 6.5.1 (same

reference) hold, this test is invariant under the group G̃p (acting on T ). Since the

ordered m-tuple λ1, ..., λm of the eigenvalues of 1
n
T = 1

n
XX ′ is maximal invariant
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for G̃p, and since any invariant statistic is a measurable function of a maximal

invariant one, ψ (T ) must be λ-measurable. Hence, ψ (T ) is a λ-measurable test

and has the same power function as φ (X) , as was to be shown.

The existence of a µ-measurable test with the same power function as that of

a test φ (X) invariant under left orthogonal transformations and multiplication by

non-zero constants is established similarly.�
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