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Abstract

In a recent paper Yang and Stufken (2012a) gave sufficient conditions for complete

classes of designs for nonlinear regression models. In this note we demonstrate that

their result is a simple consequence of the fact that boundary points of moment spaces

generated by Chebyshev systems possess unique representations.
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1 Introduction

The construction of locally optimal designs for nonlinear regression models has found con-

siderable interest in recent years [see for example He et al. (1996), Dette et al. (2006), Khuri

et al. (2006), Fang and Hedayat (2008), Yang and Stufken (2012b) among others]. While

most of the literature focuses on specific models or specific optimality criteria, general results

characterizing the structure of locally optimal designs are extremely difficult to obtain due

to the complicated structure of the corresponding nonlinear optimization problems. In a

series of remarkable papers Yang and Stufken (2009), Yang (2010), Dette and Melas (2011)

and Yang and Stufken (2012a) derived several complete classes of designs with respect to the

Loewner Ordering of the information matrices. The first paper in this direction of Yang and

Stufken (2009) investigates nonlinear regression models with two parameters. These results
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were generalized by Yang (2010) and Dette and Melas (2011) to identify small complete

classes for nonlinear regression models with more than two parameters. The most general

contribution is the recent paper of Yang and Stufken (2012a), which provides a sufficient

condition for a complete class of designs and is applicable to most of the commonly used

regression models. The proof of this statement is complicated and requires several auxiliary

results.

The purpose of the present paper is to demonstrate that conditions of this type are inti-

mately related to the characterization of boundary points of moment spaces associated with

a nonlinear regression model. Our main tool is a Chebyshev system [Karlin and Studden

(1966)] appearing in (a transformation of) the Fisher Information matrix of a given design.

The complete class of designs can essentially be characterized as the set of measures cor-

responding to the lower and upper principal representation of the boundary points of the

corresponding moment spaces. With this insight the main result in the paper of Yang and

Stufken (2012a) is a simple consequence of the fact that a representation of a boundary point

of a k + 1-dimensional moment space associated with a Chebyshev system depends only on

the first k functions which are used to generate the moment space.

In Section 2 we present some facts on moment spaces associated with Chebyshev systems

which are of general interest for constructing admissible designs. The design problem and

Theorem 1 of Yang and Stufken (2012a) are stated in Section 3, where we also present our

alternative proof. We finally note that the paper of Yang and Stufken (2012a) contains

numerous interesting examples and provided a further result which are not discussed in this

note for the sake of brevity.

2 Chebyshev systems and associated moment spaces

A set of k real valued functions Ψ0, . . . ,Ψk−1 : [A,B] → R is called Chebychev system on

the interval [A,B] if and only if it fulfills the inequality

det

 Ψ0(x0) . . . Ψ0(xk−1)
...

. . .
...

Ψk−1(x0) . . . Ψk−1(xk−1)

 > 0

for any points x0, . . . , xk−1 with A ≤ x0 < x1 . . . < xk−1 ≤ B. The moment space associated

with a Chebychev system is defined by

Mk−1 =
{
c = (c0, . . . , ck−1)

T
∣∣∣ ci =

∫ B

A

Ψi(x)dσ(x) , i = 0, . . . , k−1 , σ ∈ P([A,B])
}
, (2.1)

where P([A,B]) denotes the set of all finite measures on the interval [A,B]. It can be

characterized as the smallest convex cone containing the curve

Ck−1 =
{

(Ψ0(t), . . . ,Ψk−1(t))
T
∣∣∣ t ∈ [A,B]

}
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[see Karlin and Studden (1966)]. By Caratheodory’s theorem any point of Mk−1 can be

described as a linear combination of at most k + 1 points in Ck−1, where the coefficients

are positive. Moment spaces can be defined for any set of linearly independent functions,

but if the functions {Ψ0, . . . ,Ψk−1} generate a Chebychev system, the moment space has

several additional interesting properties. In particular, less points of Ck−1 are required for

the representation of points in Mk−1. To be precise, we define for a point c0 ∈ Mk−1 its

index I(c0) as the minimal number of points in Ck−1 which are required to represent c0,

where the points (Ψ0(A), . . . ,Ψk−1(A))T and (Ψ0(B), . . . ,Ψk−1(B))T corresponding to the

boundary of the interval [A,B] are counted by 1/2. The index of a finite measure σ on [A,B]

is defined as the index of the point c =
∫ B
A

(Ψ0(x), . . . ,Ψk−1(x))Tdσ(x). The measure σ is

also called representation of the point c ∈Mk−1.

With this convention it follows that the point c0 ∈Mk−1 is a boundary point ofMk−1 if and

only if its index satisfies I(c0) < k
2
. Similarly, c0 is in the interior ofMk−1 if its index is k

2
or

k+1
2

. Following Karlin and Studden (1966) we denote a representation of an interior point c0

as principal, if I(c0) = k
2
. These authors proved that for each interior point c0 ∈Mk−1 there

exist exactly two principal representations. The first is called upper principal representation

and contains the point (Ψ0(B), . . . ,Ψk−1(B))T corresponding to the right boundary of the

interval [A,B], whereas the second is called lower principal representation and does not use

this point. The corresponding measures are denoted by σ+ and σ−. If k is odd the lower and

upper principal representation have k+1
2

support points. On the other hand, if k is even the

lower and upper principal representation have k
2

and k+2
2

support points respectively. The

following Lemma is crucial in the following investigations and a direct consequence of the

discussion on page 55-56 in Karlin and Studden (1966).

Lemma 2.1 Let Ψj : [A,B] → R (j = 0, . . . , k − 1); Ω : [A,B] → R denote real valued

functions and assume that the systems {Ψ0, . . . ,Ψk−1} and {Ψ0, . . . ,Ψk−1,Ω} are Chebychev

systems on the interval [A,B]. If c0 = (c01, . . . , c
0
k−1)

T ∈ Mk−1, then the upper and lower

principal representation σ+ and σ− of c0 are uniquely determined and satisfy

max
{∫ B

A

Ω(t)dσ(t)
∣∣∣ σ ∈ P([A,B]), c0i =

∫ B

A

Ψi(t)dσ(t), i = 0, . . . , k − 1
}

=

∫ B

A

Ω(t)dσ+(t),

min
{∫ B

A

Ω(t)dσ(t)
∣∣∣ σ ∈ P([A,B]), c0i =

∫ B

A

Ψi(t)dσ(t), i = 0, . . . , k − 1
}

=

∫ B

A

Ω(t)dσ−(t).

In particular both representation do not depend on the function Ω : [A,B]→ R.

3 A complete class of designs for regression models

Consider the common non linear regression model

E[Y |x] = η(x, θ) (3.1)
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where θ ∈ Rp is the vector of unknown parameters, x denotes a real valued covariate from

the design space [A,B] ⊂ R and different observations are assumed to be independent with

variance σ2. The function η is called regression function [see Seber and Wild (1989) or

Ratkowsky (1990)] and assumed to be continuous and differentiable with respect to the vari-

able θ. A design is defined as a probability measure ξ on the interval [A,B] with finite

support [see Kiefer (1974)]. If the design ξ has masses wi at the points xi (i = 1, . . . , l) and

n observations can be made by the experimenter, this means that the quantities win are

rounded to integers, say ni, satisfying
∑l

i=1 ni = n, and the experimenter takes ni observa-

tions at each location xi (i = 1, . . . , l). If the design ξ contains l support points x1, . . . , xl
such that the vectors ∂

∂θ
η(x1, θ), . . . ,

∂
∂θ
η(xl, θ) are linearly independent and observations are

taken according to this procedure it follows from Jennrich (1969) that the covariance matrix

of the non-linear least squares estimator is approximately (if n→∞) given by

σ2

n
M−1(ξ, θ) =

σ2

n

(∫ B

A

(
∂

∂θ
η(x, θ)

)(
∂

∂θ
η(x, θ)

)T
dξ(x)

)−1

, (3.2)

An optimal design maximizes an appropriate functional of the matrix n
σ2M(ξ, θ) and numer-

ous criteria have been proposed in the literature to discriminate between competing designs

[see Pukelsheim (2006)]. Note that the matrix (3.2) depends on the unknown parameter θ

and following Chernoff (1953) we call the maximizing designs locally optimal designs. These

designs require an initial guess of the unknown parameters in the model and are used as

benchmarks for many commonly used designs or for the construction of more sophisticated

optimality criteria which require less information regarding the parameters of the model

[Chaloner and Verdinelli (1995) and Dette (1997)].

Most of the available optimality criteria are positively homogeneous, that is Φ
(
n
σ2M(ξ, θ)

)
=

n
σ2 Φ(M(ξ, θ)) [Pukelsheim (2006)]. Therefore it is sufficient to consider maximization of func-

tions of the matrix M(ξ, θ), which is called information matrix in the literature. Moreover,

the commonly used optimality criteria also satisfy a monotonicity property with respect to

the Loewner ordering, that is Φ(M(ξ1, θ)) ≥ Φ(M(ξ2, θ)), whenever M(ξ1, θ) ≥ M(ξ2, θ),

where the parameter θ is fixed, ξ1, ξ2 are two competing designs on the interval [A,B] and Φ

denotes an information function in the sense of Pukelsheim (2006). Throughout this paper we

call a design ξ admissible if there does not exist any design ξ1, such that M(ξ1, θ) 6= M(ξ, θ)

and

M(ξ1, θ) ≥M(ξ, θ). (3.3)

Yang and Stufken (2012a) derive a complete class theorem in this general context which

characterizes the class of designs, which cannot be improved with respect to the Loewner

ordering of their information matrices. For the sake of completeness and because of its

importance we will state this result here again. In particular, we demonstrate that the

complete class specified by these authors corresponds to upper and principal representations

of a moment space generated by the regression functions. For this purpose we denote by P (θ)
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a regular p× p matrix, which does not depend on the design ξ, such that the representation

M(ξ, θ) = P (θ)C(ξ, θ)P T (θ) (3.4)

holds, where the p× p matrix C(ξ, θ) is defined by

C(ξ, θ) =

∫ B

A

Ψ11(x) . . . Ψ1p(x)
...

. . .
...

Ψp1(x) . . . Ψpp(x)

 dξ(x) =

∫ B

A

(
C11(x) CT

21(x)

C21(x) C22(x)

)
dξ(x)

and C11(x) ∈ Rp−p1×p−p1 , C21(x) ∈ Rp1×p−p1 , C22(x) ∈ Rp1×p1 are appropriate block matrices

(1 ≤ p1 ≤ p). Obviously, P (θ) could be chosen as identity matrix, but in concrete appli-

cations other choices might be advantageous [see Yang and Stufken (2012b), Section 4, for

numerous interesting examples]. A similar comment applies to the choice of p1 which is used

to represent the matrix C in a 2× 2 block matrix. Note that the inequality (3.3) is satisfied

if and only if the inequality

C(ξ1, θ) ≥ C(ξ, θ) (3.5)

holds. Following Yang and Stufken (2012a) we define Ψ0(x) = 1, denote the different ele-

ments among {Ψij|1 ≤ i ≤ p, j ≤ p − p1} in the matrices C11(x) and C21(x) which are not

constant by Ψ1, . . . ,Ψk−1 and define for any vector Q ∈ Rp1 \ {0} the function

ΨQ
k (x) = QTC22(x)Q. (3.6)

We are now in apposition to state and prove the main result of this paper.

Theorem 3.1 [Yang and Stufken (2012a)]

1. If {Ψ0, . . . ,Ψk−1} and {Ψ0, . . . ,Ψk−1,Ψ
Q
k } are Chebychev systems for every non-zero

vector Q, then for any design ξ there exists a design ξ+ with at most k+2
2

support points,

such that M(ξ+, θ) ≥M(ξ, θ).

If the index of ξ satisfies I(ξ) < k
2
, then the design ξ+ is uniquely determined in the

set {
η
∣∣∣ ∫ B

A

Ψi(x)dη(x) =

∫ B

A

Ψi(x)dξ(x), i = 1, . . . , k − 1
}

(3.7)

and coincides with the design ξ.

If the index of ξ satisfies I(ξ) ≥ k
2
, then the following cases are discriminated:

(a) If k is odd, then the design ξ+ has at most k+1
2

support points and it can be chosen

such that B is a support point of the design ξ+.

(b) If k is even, then the design ξ+ has at most k+2
2

support points and it can be

chosen such that A and B are support points of the design ξ+.
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2. If {Ψ0, . . . ,Ψk−1} and {Ψ0, . . . ,Ψk−1,−ΨQ
k } are Chebychev systems for every non-zero

vector Q, then for any design ξ there exists a design ξ− with at most k+1
2

support points,

such that M(ξ−, θ) ≥M(ξ, θ).

If the index of ξ satisfies I(ξ) < k
2
, then the design ξ− is uniquely determined in the

set of measures satisfying (3.7) and coincides with the design ξ.

If the index of ξ satisfies I(ξ) ≥ k
2
, then the following cases are discriminated:

(a) If k is odd, then the design ξ− has at most k+1
2

support points and it can be chosen

such that A is a support point of the design ξ−.

(b) If k is even, then the design ξ− has at most k
2

support points.

Proof. We only present the proof of the first part of the theorem, the second part follows

by similar arguments. Yang and Stufken (2012a) showed that a design ξ1 satisfies (3.3) if

the conditions ∫ B

A

Ψi(x)dξ1(x) =

∫ B

A

Ψi(x)dξ(x) i = 1, . . . , k − 1 (3.8)∫ B

A

ΨQ
k (x)dξ1(x) ≥

∫ B

A

ΨQ
k (x)dξ(x)

are satisfied for all vectors Q 6= 0. Consequently an improvement of the design ξ is obtained

by maximizing the “k-th moment”
∫ B
A

ΨQ
k (x)dξ1(x) in the set of all designs satisfying (3.8).

If I(ξ) < k
2
, then this set is a singleton and the maximizing design ξ+Q coincides with ξ.

Otherwise, by Lemma 2.1 the maximizing measure ξ+Q corresponds to the upper principal

presentation of the moment point (
∫ B
A

Ψ0(x)dξ(x), . . . ,
∫ B
A

Ψk−1(x)dξ(x))T , which does not

depend on the vector Q. Finally, assertion 1(a) or 1(b) of Theorem 3.1 follow from the

discussion regarding the number of support points of principal representations given at the

end of Section 2.
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