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Abstract

The present article is a draft of a chapter in the Handbook of Design and Analy-

sis of Experiments and provides a survey of results on experimental design for linear

regression models with correlated responses.
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1 Estimation and design for correlated errors: the main

approaches

1.1 Introduction

The common linear regression model is given by

y(x) = θ1f1(x) + . . .+ θmfm(x) + ε(x) , (1)

where f1(x), . . . , fm(x) are given linearly independent functions, ε(x) denotes a centered
random error process or field, θ1, . . . , θm are unknown parameters and x is the explanatory
variable, which varies in the design space X ⊂ Rd.

We assume that N observations can be taken at experimental conditions x1, . . . , xN to esti-
mate the parameters in the linear regression model (1). If an estimate of θ = (θ1, . . . , θm)T

has been chosen, the quality of the statistical analysis can be further improved by choos-
ing an appropriate design for the experiment. In particular, an optimal design minimizes
a functional of the variance-covariance matrix of the estimate, where the functional should
reflect certain aspects of the goal of the experiment. In contrast to the case of uncorrelated
errors, where numerous results and a rather complete theory are available [see for example
the monograph of Pukelsheim (2006)], the construction of optimal designs for dependent
observations is intrinsically more difficult. However, this problem is of particular practical
interest as in most applications the observations are correlated. Typical examples include
models, where the explanatory variable x represents the time and all observations correspond
to one subject.

Because explicit solutions of optimal design problems for correlated observations are rarely
available several authors have proposed to determine optimal designs based on asymptotic
arguments, see for example Sacks and Ylvisaker (1966, 1968), Bickel and Herzberg (1979),
Näther (1985a), Zhigljavsky et al. (2010). Roughly speaking, there exist three approaches
to embed the optimal design problem for regression models with correlated observations in
an asymptotic optimal design problem.

The first one is due to Sacks and Ylvisaker (1966, 1968), who assumed that the covariance
structure of the error process ε(x) is fixed and that the number of design points tends to
infinity. As a result of this assumption, the design points become very close to each other and
the corresponding asymptotic optimal designs depend only on the behavior of the correlation
function in a neighborhood of the point 0.

Alternatively, Bickel and Herzberg (1979) and Bickel et al. (1981) considered a different
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model, where the ordinary least square estimate is used and the correlation function depends
on the number of observations. The covariance matrix of the estimate is of order O(1)
in the model considered by Sacks and Ylvisaker (1966) and of order 1/N in the model
discussed by Bickel and Herzberg (1979). Therefore the approach of Bickel and Herzberg
(1979) makes the optimal designs derived for the dependent and independent cases more
comparable. These authors assumed that the observations in model (1) have a correlation
structure corresponding to a nondegenerate stationary process with short range dependence
where a correlation function ρ satisfies ρ(x) = o(1/x) if x→∞. Dette et al. (2009) extended
results of Bickel and Herzberg (1979) to the case where an error process has long range
dependence. Recently Zhigljavsky et al. (2010) modified the Bickel-Herzberg approach and
allowed the variance (in addition to the correlation function) to vary as the number of
observations changes. As a result, the asymptotic covariance matrices may contain a kernel
with a singularity at the diagonal.

Significant research has been devoted to constructing exact optimal designs for the best
linear unbiased estimator (BLUE), see Section 3. The simplest algorithm was proposed
in Brimkulov et al. (1980). Other algorithms are based on the method of virtual noise
developed by Pázman and Müller (2001) and the method of the expansion of the covariance
kernel suggested by Fedorov and Müller (2007). Note that BLUE can only be used if the
correlation structure of errors is known, and its misspecification can lead to a severe loss
of efficiency. On the other hand, the ordinary least squares estimate does not employ the
correlation structure. Obviously the ordinary least squares estimate can be less efficient than
BLUE but in many cases the loss of efficiency is either small or negligible.

The structure of this survey is as follows. In Section 1.2 we introduce different variations of
the optimal design problem for the linear regression model (1). In particular, we consider var-
ious assumptions about the design space X , the vector-function f(x) = (f1(x), . . . , fm(x))T ,
the covariance kernel K(x, x′) = E[ε(x)ε(x′)], and also different sets of designs, three differ-
ent estimates of the unknown parameters and corresponding covariance matrices. In Section
1.3 we briefly discuss the concept of information contained in design points and discuss some
well-known paradoxes.

Section 2 is devoted to the problem of designing experiments for one-parameter models.
This problem is often easier than similar problems for the multi-parameter case and in some
cases it can be solved explicitly, see for example, Theorem 5 in Section 2. The easiest one-
parameter model is the so-called location scale model where the variance of the ordinary
least square estimate leads to a convex design optimality criterion and makes many tools
of the convex optimization theory applicable. Moreover, if the correlation function ρ of the
stationary error process in a location scale model is convex for x > 0, then the ordinary least
square estimate coincides with BLUE, see Theorem 4 in Section 2.

Section 3 is devoted to the problem of optimal design for BLUE. We review classical Sacks-
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Ylsvisaker results and also less classical results of Fedorov-Müller and Pazman-Müller. More-
over, we also consider the well-known exchange algorithm for the construction of N -point
optimal designs. Additionally, we review one of Harman’s results on optimal design for
prediction in the case of quadratic model and Wiener process [see Harman and Stulajter
(2010)].

Section 4 reviews some results concerning characterization and construction of optimal de-
signs for the ordinary least square estimate. We explain the classical Bickel-Herzberg ap-
proach and its extension for the case of a long-range dependent error process. We also review
some of the recent results of the authors concerning the explicit construction of optimal de-
signs for models with m ≥ 2 parameters and some particular covariance kernels.

Section 5 contains selected proofs and a table of common correlation functions that appear
in discussions on optimal design for correlated observations.

The authors are aware of the following three substantial surveys devoted to the theory of
optimal designs for correlated observations, see also a short survey in Müller’s book [Müller
(2007)]. The first one is an excellent book by Näther (1985a) and the other two are the
surveys by Cambanis (1985) and Fedorov (1996). As much research has been done in recent
years, we feel that there is a need in a new survey on the subject.

1.2 Different versions of the problem

1.2.1 General regression problem

The general multi-parameter linear regression model (1) can be written as

y(x) = θTf(x) + ε(x), (2)

where the explanatory variable x belongs to a design space X , f(x) = (f1(x), . . . , fm(x))T is
a vector of linearly independent regression functions, ε(x) denotes random process or field
with E[ε(x)] = 0 and E[ε(x)ε(x′)] = σ2K(x, x′). The vector of parameters θ = (θ1, . . . , θm)T

is unknown and has to be estimated on the basis of observations taken from one realization
of a stochastic process (or field) y(x). The function K(·, ·) will be called covariance kernel.
The multiplier σ2 is a positive constant and may also be unknown.

Throughout this article we consider different variations and specifications of the model (2)
in relation to the problem of optimal design.

vi



1.2.2 Design space X

We make a distinction between the following forms of the design space:
(a) X is a finite set;
(b) X is an interval [−1, 1];
(c) X ⊆ R;
(d) X ⊆ Rd with d ≥ 1.
In the case d = 2 the model (2) is called spatial model. If d ≥ 2 then ε(x) is called a random
field. If nothing is assumed about X , then the most general case, which is (d), is considered.

1.2.3 Vector of regression functions f(x)

We will distinguish the following forms of the vector of functions f(x):
(a) the general case with m ≥ 1;
(b) the case of m = 1 where the model (2) is called one-parameter model, see Section 2;
(c) the case of m = 1 and f(x) = 1 where the model (2) is called location scale model, see
Section 2.2.

To avoid technical difficulties, we always assume that all the components of the vector f(x)
are continuous functions.

1.2.4 Covariance kernels K

We will distinguish the following cases for the covariance kernel K(·, ·):

1. the general positive definite function K(·, ·);

2. kernels of stationary processes or fields which have the form K(x, x′) = ρ(x−x′), where
ρ(·) is a correlation function. Examples of commonly used correlation functions are
given in the Appendix [see Table 1];

3. kernels with nugget term, that is, K(x, x′) = γK0(x, x′)+(1−γ)δx,x′ , where 0 < γ < 1,
the kernel K0 is continuous on the diagonal and δ denotes Kronecker’s symbol;

4. kernels with singularity at the diagonal: these kernels possess the property thatK(x, x′)→
∞ as x→ x′ and K(x, x) is not defined for some x ∈ X (see Section 4.4 for examples).

By the definition, a kernel K : X × X → R is called positive definite if K(x, x′) = K(x′, x)
for all x, x′ ∈ X and for any set of distinct points x1, . . . , xn in X the matrix

Σ = (K(xi, xj))
N
i,j=1
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is non-negative definite. We shall call the kernel K strictly positive definite if the inequality∫ ∫
K(u, v)ζ(du)ζ(dv) > 0

holds for any signed measure ζ on X such that 0 < |ζ|(X ) <∞.

1.2.5 Designs

The following three types of designs will be considered in this article:

1. an exact N -point design ξN = {x1, . . . , xN};

2. an approximate design ξ(dx) corresponding to a probability measure on the design
space X ;

3. a signed design defined as a signed measure ξ(dx) on the design space X with

|ξ|(X ) = ξ+(X ) + ξ−(X ) <∞.

We denote the spaces of exact N -point designs on X , general approximate designs on X and
signed design measures on X by ΞN , Ξ and Ξ(S), respectively.

1.2.6 Interpretation of approximate designs

Consider an approximate design ξ which is a probability measure on the design space X .
In asymptotic investigations for the case X ⊆ R it is usually assumed that a sequence of
exact designs ξN = {x1,N , . . . , xN,N}, is generated on the base of a continuous nondecreasing
function a : [0, 1]→ X by

xi,N = a ((i− 1)/(N − 1)) , i = 1, . . . , N,

where the function a is the inverse of a distribution function corresponding to ξ. For the
multi-dimensional space, we can suppose that exact designs are generated as centers of
partitions of the design space assuming that the diameters of partitions tend to zero but the
volumes of the cells Ci,N in these partitions are proportional to ξ(Ci,N).
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1.2.7 Methods of estimation and covariance matrices

Assume that an exact design ξN = {x1, . . . , xN} with a corresponding vector of observations
Y = (y1, . . . , yN)T is given. We consider the following three estimates of the unknown
parameters θ: the best unbiased linear estimate (BLUE), ordinary least squares (OLS) and
signed least squares (SLS). These estimates are respectively defined by

BLUE θ̂ = (XTΣ−1X)−1XTΣ−1Y (3)

OLS θ̃ = (XTX)−1XTY (4)

SLS θ̃S = (XTSX)−1XTS Y (5)

where X = (fi(xj))
i=1,...,m
j=1,...,N , Σ = (K(xi, xj))i,j=1,...,N and S is a N×N diagonal matrix with

+1 and −1 on the diagonal. The covariance matrices of the estimates (3), (4) and (5) are
given by

Var(θ̂) = σ2(XTΣ−1X)−1 ,

Var(θ̃) = σ2(XTX)−1XTΣX(XTX)−1,

Var(θ̃S) = σ2(XTSX)−1XTSΣSX(XTSX)−1,

respectively. Note that for the BLUE, there exists a non-trivial optimal design problem in
the space ΞN but the corresponding problem in Ξ is trivial: we simply observe the whole
process, see Section 3. On the other hand, for the OLS estimate, the optimal design problems
in the spaces ΞN and Ξ are meaningful, see Section 4. For the SLS estimate, we consider
the optimal design problem in the space Ξ(S), see Section 2.3.

1.2.8 Optimality criteria

The following criteria of design optimality will be considered:
(a) the variance of an estimate in a one-parameter model;
(b) universal optimality of the covariance matrix;
(c) a functional of the covariance matrix, e.g. the determinant or the trace, see Sections 3
and 4;
(d) the mean square error (MSE) of the best linear predictor at some point, see Section 3.6.
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1.2.9 Information matrix

To express information obtained from a design ξN , we use the Fisher information matrix
based on the assumption of normality

M(ξN) = −E
[∂2 ln p(Y |ξN)

∂θ∂θT

]
where p(Y |ξN) is the normal density with mean (θTf(x1), . . . , θTf(xN)) and covariance ma-
trix Σ = (K(xi, xj)). Standard calculus gives that the matrix M(ξN) equals

M(ξN) = XTΣ−1X .

That is, the Fisher information matrix M(ξN) is the inverse of the covariance matrix of the
BLUE.

A very important observation concerning the information matrix M(ξN) is the fact that
in general M(ξN) cannot be decomposed into the sum of the information measures for the
individual design points. This makes the problem of designing experiments for correlated
observations much more difficult than in the case of uncorrelated errors.

1.2.10 Possible generalizations of the model (2)

Possible generalizations of the model (2) which are not considered in this survey include:

(a) non-linear in parameters regression models having the general response Ey(x) = η(x, θ),
see Atkinson (2008); Dette et al. (2010); Fedorov et al. (2012);

(b) models with covariance kernel K depending on unknown parameters, see Müller and
Stehĺık (2004); Pázman (2010); Zimmerman (2006);

(c) random-effect and mixed-effect models including population models, see Atkinson
(2008); Fedorov (1996); Schmelter (2007); Dette and Holland-Letz (2009); Dette et al.
(2010); Holland-Letz et al. (2011, 2012);

(d) treatment models with search for block designs, see Cutler (1993a,b); Kiefer and Wynn
(1981, 1984); Kunert et al. (2010);

(e) models where observations are split into groups corresponding to independent realiza-
tions of a stochastic process, resulting the block-diagonal structure of the matrix Σ,
see Dette et al. (2010); Holland-Letz et al. (2011); Schmelter (2007);

(f) models with observational noise, that is, cov(y(xi), y(xj)) = σ2K(xi, xj) + (σ′)2δi,j, so
that we can repeat observations at same points, see Bates et al. (1996); Bettinger et al.
(2008).
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1.3 Information contained in design points

1.3.1 Points providing zero information

To express information obtained from a design ξN , we use the information matrix

M(ξN) = XTΣ−1X =
∑
i,j∈N

f(xi)g
N
ij f

T (xj)

where (gNi,j) = Σ−1 and N = {1, . . . , N}. Despite the fact that the information matrix
M(ξN) cannot be decomposed into the sum of information measures for each point, we can
characterize the points that provide zero information.

Lemma 1 (Pázman (2010), Lemma 1) Let ξN = {x1, . . . , xN} be a design and A be a
subset of N . If there exist vectors ai ∈ Rm, i ∈ A, such that

f(x) =
∑
i∈A

K(x, xi)ai

for all x ∈ supp(ξN), then all points in the set {xi | i 6∈ A}, provide zero information, that is

M({xi}i∈A) = M(ξN).

Corollary 1 (Pázman (2010), Corollary 1) Let ξN = {x1, . . . , xN} be a design. Define
the vector

ai =
N∑
j=1

gNij f(xj).

If ai = 0 for some i, then the point xi provides zero information.

Example 1 Consider the linear regression model, that is f(x) = (1, x)T , with covariance
kernel K(u, v) = max{0, 1 − |u − v|}. Then the 3-point design {−1, 0, 1} gives the same
information as the whole process observed on [−1, 1] and any N -point design that includes
points −1, 0, 1 in its support.

Let us now present two paradoxes which are specific for the case of correlated observations,
see Näther (1985a).
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1.3.2 Smit’s paradox

Consider the location scale model y(x) = θ+ ε(x) with the correlation function ρ(x) = e−|x|

and the design interval X = [−∞,∞]. Let us compare two estimates of the parameter θ:

• the mean for an exact design

θ̄ξN = N−1

N∑
i=1

y(xi)

• the mean for the continuous design

θ̄c =

∫ 1

−1

y(x)dx/2.

For the design ξ5 = {−1,−0.5, 0, 0.5, 1} straightforward calculation shows that Var(θ̄ξ5) =
0.529 while Var(θ̄c) = 0.568. We can see that Var(θ̄ξ5) < Var(θ̄c) which is called Smit’s
paradox [see Smit (1961)].

Consider now the design ξ9 = {−1,−3
4
,−1

2
, . . . , 1

2
, 3

4
, 1} with 9 support points. Note that ξ9

is obtained from ξ5 by adding 4 points. Calculus gives that Var(θ̄ξ9) = 0.542 and we can
observe that Var(θ̄ξ9) > Var(θ̄ξ5). This means that for correlated observations the variance
of the mean θ̄ξN can be increased by additional observations, which never happens in the
case of independent errors.

It is worth to note that the variance of the continuous BLUE is 0.5 that is slightly smaller
than Var(θ̄ξ5). This means that the observation of a process at 5 points gives almost the
same information as the continuous observation of the process.

1.3.3 Estimates with zero variance

Another interesting effect happens if we consider the location model with a correlation func-
tion such that ρ(2) = −1. Then for the 2-point design ξ2 = {−1, 1} we have Var(θ̄ξ2) = 0.
This means that the BLUE yields exactly the true value of the parameter θ which can never
be in the case of uncorrelated observations. In general, estimation with zero variance is
possible only if the correlation function is positive semidefinite but not positive definite.
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2 Designs for one-parameter models

In this section, we consider the one-parameter model

y(x) = θf(x) + ε(x), (6)

where θ is a scalar parameter, f(x) is a continuous function on X , E[ε(x)] = 0 and
E[ε(x)ε(x′)] = σ2K(x, x′).

2.1 Designs for BLUE

2.1.1 Designs for a continuous observation

Suppose that X ∈ R and that an observation of the whole process {y(x)}x∈X is available.
The estimate θ̂ is called BLUE if θ̂ admits the representation

θ̂ =

∫
X
y(x)dG(x),

where G is a function of bounded variation, that is G ∈ BV(X ), E[θ̂] = θ and

E(θ̂ − θ)2 = inf
{
E
(∫
X
y(x)dG(x)− θ

)2∣∣∣G ∈ BV(X ) ,

∫
X
y(x)dG(x) = θ

}
.

Note that the condition of unbiasedness in terms of G has the form∫
X
f(x)dG(x) = 1.

The following result is proved in Näther (1985a), p. 19.

Theorem 1 (Näther (1985a), Theorem 2.3) If∫
X
K(x, z)dG(x) = Cf(z)

for all z ∈ X and
∫
X f(x)dG(x) = 1, then the estimate

θ̂(G) =

∫
X
y(x)dG(x)
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is BLUE. Moreover,
Var(θ̂) = C.

The existence of the solution of the Wiener-Hopf integral equation∫
X
K(x, z)dG(x) = f(z)

in the general case is a very hard and often ill-posed problem. Some analytic results have
been obtained in the case of stationary processes having the spectral density in the form of
the ratio of polynomials [see Pisarenko and Rozanov (1963) and Näther (1985a), Sec. 2.3].

2.1.2 Results of Sacks and Ylvisaker

Let {ξN}N∈N be a sequence of designs that converges to a continuous design µ, where for
each N ∈ N, ξN is an N -point design. Then the design problem can be viewed as how the
discrete BLUE θ̂(ξN) approximates the continuous BLUE θ̂(µ). The most known asymptotic
result was obtained by Sacks and Ylvisaker (1966, 1968), who studied a sequence of exact
designs which is asymptotically optimal in the sense that the convergence

lim
N→∞

|θ̂(ξN)− θ̂(µ)|2 = 0

holds with the best possible convergence rate.

Suppose that the design space X is an interval [a, b]. The sequence {ξN} is called asymptotic
optimal for the BLUE if

lim
N→∞

Var(θ̂(ξN))− Var(θ̂(µ))

infξ′N Var(θ̂(ξ′N))− Var(θ̂(µ))
= 1.

To formulate the main result of Sacks and Ylvisaker (1966), we first define

α(x) = lim
z↗x

∂K(x, z)

∂z
− lim

z↘x

∂K(x, z)

∂z
.

Theorem 2 (Sacks and Ylvisaker (1966)) Assume that α(x) > 0 and the function f(x)
enables the representation

f(x) =

∫
K(z, x)h(z)dz
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where h(z) is continuous. Then the sequence {ξN}N∈N defined by ξN = {x11, . . . , xNN} where
xiN is such that ∫ xiN

a

|α(x)h2(x)|1/3dx =
i− 1

N − 1

∫ b

a

|α(x)h2(x)|1/3dx,

i = 1, . . . , N , is asymptotically optimal. Moreover,

Var (θ̂(ξN))→ Var (θ̂(µ))

with the rate O(N−2).

Remark 1 Consider the one-parameter model

y(x) = θx2 + σW (x),

where x ∈ [a, b] and {W (x)}x∈[a,b) is a Wiener process. The equidistant design on [a, b] is
asymptotically optimal for estimating θ, see Sacks and Ylvisaker (1966). Moreover, for the
model

y(x) = θxγ + σW (x), γ < 1/2, x ∈ [0, 1],

the design with points xi = (i/N)3/(2γ−1), i = 1, . . . , N , is asymptotically optimal.

Remark 2 Consider the location scale model with correlation structure given by the sta-
tionary Ornstein-Uhlenbeck process, i.e. ρ(t) = e−λ|t|. Then equidistant designs are optimal,
see Kiselak and Stehĺık (2008), Zagoraiou and Baldi-Antognini (2009).

2.2 Optimal design for OLS

For a design ξN ∈ ΞN , the variance of the OLS estimate is given by

Var(θ̃) = σ2

N∑
i=1

N∑
j=1

K(xi, xj)f(xi)f(xj)
/( N∑

i=1

f(xi)
)2

.

Consequently, for an approximate design ξ ∈ Ξ, we consider the functional

D(ξ) =

[∫
X
f 2(u)ξ(du)

]−2∫
X

∫
X
K(u, v)f(u)f(v)ξ(du)ξ(dv) (7)

as the design optimality criterion. In general, the optimality criterion (7) is not convex and
therefore the problem of finding the optimal design is hard. The situation is much simpler
in the case of the location scale model where f(x) = 1 for all x ∈ X .

xv



2.2.1 Location scale model

For the function f(x) = 1, the design optimality criterion (7) becomes

D(ξ) =

∫
X

∫
X
K(u, v)ξ(du)ξ(dv) . (8)

Lemma 2 The functional D defined in (8) is convex. Moreover, if the covariance kernel K
is strictly positive definite, then D is strictly convex. That is,

D((1− α)ξ + αξ0) < (1− α)D(ξ) + αD(ξ0)

for all 0 < α < 1 and any two measures ξ and ξ0 on X such that ξ−ξ0 is a non-zero (signed)
measure.

The following result serves as an equivalence theorem, which can be used to verify the
optimality of a given design.

Theorem 3 (Zhigljavsky et al. (2010))

(i) A design ξ∗ minimizes the functional D defined in (7) if and only if

min
x∈X

b(x, ξ∗) ≥ D(ξ∗). (9)

where the function b is given by

b(x, ξ) =

∫
K(x, u)ξ(du).

(ii) In particular, a design ξ∗ is optimal if the function b(·, ξ∗) is constant, that is

b(x, ξ∗) = D(ξ∗)

for all x ∈ X .

In the following examples we present cases where analytical expressions for optimal designs
can be found and verified using Theorem 3. In these examples we suppose that X = [−1, 1].
Details can be found in Zhigljavsky et al. (2010).

Example 2 For the location scale model with correlation function ρ(x) = e−λ|x| the optimal
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design ξ∗ is a mixture of the continuous uniform measure on the interval [−1, 1] and a two-
point discrete measure supported on {−1, 1}, that is, the design ξ∗ has the density

p∗(u) = ω∗
(

1

2
δ1(u) +

1

2
δ−1(u)

)
+ (1− ω∗)1

2
1[−1,1](u),

where ω∗ = 1/(1+λ), δx(·) denotes the Dirac measure concentrated at the point x and 1A(·)
is the indicator function of a set A. Note that the function b(·, ξ∗) is constant and given by
D(ξ∗) = 1/(1 + λ).

Example 3 For the location scale model with correlation function ρ(x) = max{0, 1− λ|x|}
we have the following.

(a) For λ ∈ N the optimal design is a discrete uniform measure supported at the 1 + 2λ
equidistant points, tj = j/λ− 1, j = 0, 1, . . . , 2λ. For this design, D(ξ∗) = 1/(1 + 2λ).

(b) For any λ > 0, the optimal design ξ∗ is a discrete symmetric measure supported at 2n
points ±t1,±t2, . . . ,±tn with weights w1, . . . , wn at t1, . . . , tn, where n = d2λe,

(w1, . . . , wn) =
1

n(n+ 1)
(dn/2e, . . . , 3, n− 2, 2, n− 1, 1, n).

the symbol dze stands for the smallest integer that is larger or equal to z. Here t1, . . . , tn
denote the ordered quantities |u1|, . . . , |un|, where uj = −1 + j/λ, j = 1, . . . , n − 1,
un = 1. Moreover, D(ξ∗) = 2λ/(n(n+ 1)) .

The support points for various values of λ are depicted in Figure 1.

0 1 2 3 4 5

−1

−0.5

0

0.5

1

λ

Figure 1: Support points of the optimal designs in the location scale model with triangular
correlation function ρ(x) = max{0, 1− λ|x|} for different values of λ.
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Example 4 Let ρ(x) = − ln(x2). Then the asymptotic optimal design minimizing the
criterion (8) is the arcsine density on the interval [−1, 1] with density

p∗(x) =
1

π
√

1− x2
.

Example 5 Let ρ(x) = 1/|x|α with 0 < α < 1. Then the asymptotic optimal design
minimizing the criterion (8) is a Beta distribution on the interval [−1, 1] with density

p∗(x) =
2−α

B(1+α
2
, 1+α

2
)
(1 + x)

α−1
2 (1− x)

α−1
2 .

2.2.2 Hajek result

The following result is proved by Hajek (1956).

Theorem 4 (Hajek (1956)) Consider the location scale model with stationary error pro-
cess {ε(x)}x∈X . Suppose that the correlation function ρ is convex on (0,∞). Let G∗ be a
function such that the estimate

θ̂ =

∫
X
y(x)dG∗(x)

is BLUE. Then the function G∗ is monotonically increasing.

Thus, for the model (6) with f(x) = 1 and a stationary error process having a convex
correlation function, G∗ is a proper distribution function corresponding to a probability
measure. This means that the pair OLS plus optimal design for OLS is the best possible
pair and coincides with BLUE for a continuous observation of the process.

Note that the exponential and triangular correlation functions are convex.

Example 6 For the location scale model with the exponential correlation function

ρ(x) = e−λ|x|, X = [a, b],

we have that

dG∗(x) =
1

2 + λ(b− a)
[δa(x) + δb(x) + 1]dx

and

θ̂ =
1

2 + λ(b− a)
[y(a) + y(b) +

∫ b

a

y(x)dx]

is BLUE, see Näther (1985a), p. 57 for details.
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2.3 Optimal design for SLS

Consider the model (6) and assume that the design space is a discrete set X = {x1, . . . , xn}
and f(xi) 6= 0 for all i = 1, . . . , n (if f(xj) = 0 for some j then the point xj can be removed
from X without changing the value of the estimates). Assume also that we are using SLS
and the matrix S with signs on the diagonal can be chosen along with the weights p1, . . . , pn
assigned to the points x1, . . . , xn in X . The design optimality criterion D(ξ) becomes

D(ξ) =
n∑
i=1

n∑
j=1

K(xi, xj)f(xi)f(xj)sisjpipj

/( n∑
i=1

f(xi)sipi

)2

(10)

with si ∈ {−1, 1} for all i = 1, . . . , n and
∑n

i=1 pi = 1.

Denote wi = sipi and call it signed weight of a point xi in the design ξ. Since
∑n

i=1 |wi| =∑n
i=1 pi = 1, the signed measure ξ which assigns weights wi to points xi, i = 1, . . . , n, belongs

to the space Ξ(S) of signed measures.

The problem of finding an optimal design and an optimal SLS estimate simultaneously in the
linear regression model with one parameter consists therefore in optimizing the functional

n∑
i=1

n∑
j=1

K(xi, xj)f(xi)f(xj)wiwj

/( n∑
i=1

f(xi)wi

)2

(11)

with respect to the signed weights {w1, . . . , wn} such that
∑n

i=1 |wi| > 0. Note that the value
of the criterion (10) does not change if we change all the weights wi → cwi (i = 1, . . . , n) for
arbitrary c 6= 0.

Despite the fact that the functional is not convex, the problem of optimal design can be
easily solved by applying the Cauchy-Schwartz inequality.

Theorem 5 Assume that the matrix Σ = (K(xi, xj))i,j=1,...,n is positive definite and f(xi) 6=
0 for all i = 1, . . . , n. Then the optimal weights w∗i , . . . , w

∗
n minimizing (11) subject to∑n

i=1 |wi| = 1 are given by

w∗i = c
(Σ−1f)i
f(xi)

i = 1, . . . , n,

where c = (
∑n

i=1(Σ−1f)i/f(xi))
−1 and f = (f(x1), . . . , f(xn))T .

For the design ξ∗ = {x1, . . . , xn;w∗1, . . . , w
∗
n} we have D(ξ∗) = (f Σ−1f)−1, that is, the vari-

ance of the SLS estimate coincides with the variance of the BLUE constructed using all
observations. This means that the pair {SLS estimate, design ξ∗} provides the optimal pair
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{estimate, design} for the problem (6). This result (in a slightly different form) is obtained
in (Näther, 1985a, Theorem 5.3).

Example 7 Consider the location scale model on X = {−1, 0, 1} and the Gaussian corre-
lation function

ρ(x) = e−x
2/2.

Then we obtain the optimal signed measure

ξ∗ = {−1, 0, 1; 0.455,−0.09, 0.455}

with Var(θ̂BLUE) = Var(θ̃S|ξ∗) = 0.563. Note that for OLS the optimal design is

ξ∗OLS = {−1, 0, 1; 0.5, 0, 0.5}

and Var(θ̃|ξOLS) = 0.568; this is slightly larger than the variance of BLUE.

3 Optimal designs for BLUE

Consider the general model (2) with θ ∈ Rm. Recall from Section 1.2 that having N obser-
vations the BLUE of the parameter θ has the form

θ̂ = (XTΣ−1X)−1XTΣ−1Y

which is the solution of the weighted least squares problem and the covariance matrix of
BLUE is given by

Var(θ̂) = σ2(XTΣ−1X)−1 .

3.1 BLUE for continuous observations

Suppose that an observation of the whole process {y(x)}x∈X is available. The estimate θ̂ is
called BLUE if θ̂ admits the representation

θ̂ =

∫
X
y(x)dG(x),
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where G(x) = (G1(x), . . . , Gm(x))T is a vector of functions with bounded variation, E[θ̂] = θ
and

E‖θ̂ − θ‖2 = inf
{
E
∥∥∥∫
X
y(x)dG− θ

∥∥∥2∣∣∣G such that

∫
X
y(x)dG(x) = θ

}
.

Note that the condition of unbiasedness in terms of G has the form∫
X
f(x)dGT (x) = Im,

where Im is the m×m identity matrix.

The following result is proved in Näther (1985a), p. 19.

Theorem 6 (Näther (1985a)) If∫
X
K(x, z)dG(x) = Cf(z)

for all z and ∫
X
f(x)dGT (x) = Im,

then the estimate

θ̂(G) =

∫
X
y(x)dG(x)

is BLUE. Moreover, Var(θ̂) = C.

Note that numerical computation of the continuous BLUE can be done as follows. First, one
has to find a solution H of the integral equation∫

X
K(x, z)dH(x) = f(z),

and then the matrix

C =
(∫
X
f(x)dHT (x)

)−1

is defined. If the matrix C is non-singular, then the BLUE is given by

θ̂ = C

∫
X
y(x)dH(x).

Remark 3 Note that there does not exist a design problem in the case of continuous ob-
servation since measurements are performed at all points. However, observation of a process
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by exact designs can approximate continuous observation in many ways. Suppose that a
sequence of exact designs ξN converges to a continuous measure µ and another sequence of
exact designs ξ′N converges to a continuous measure µ′. Then it follows that variances of
BLUE for designs ξN and ξ′N converge to the same value if the supports of the measures µ
and µ′ are the same.

3.2 Results of Sacks and Ylsvisaker

Let {ξN}N∈N be a sequence of designs that converges to a continuous design µ. Then the
problem is how the discrete BLUE θ̂(ξN) approximates the continuous BLUE θ̂(µ). To for-
mulate the main result of Sacks and Ylvisaker (1968), we first define (assuming its existence)

α(x) = lim
z↗x

∂K(x, z)

∂z
− lim

z↘x

∂K(x, z)

∂z
, (12)

where the covariance kernel K can correspond to a stationary or non-stationary process.

In the multi-parameter case the covariance matrix D(ξN) converges to a limiting matrix. To
compare matrices corresponding to different designs, we have to use a suitable functional,
for example, the L-criterion Ψ(M) = tr(LM) with a given positive definite matrix L. The
sequence {ξN}N∈N is called asymptotically L-optimal for the BLUE if

lim
N→∞

inf
ξ′N

Ψ(D(ξN)−D(µ))

Ψ(D(ξ′N)−D(µ))
= 1.

In addition to the L-criterion, some other ways to define criteria of the asymptotic optimality
are considered in Sacks and Ylvisaker (1968).

Theorem 7 Assume that the function α defined in (12) is positive and the components of
the vector f(x) = (f1(x), . . . , fm(x))T satisfy the representation

fj(x) =

∫
K(z, x)hj(z)dz,

where the functions hj(z) are continuous, j = 1, . . . ,m. Consider the design ξN = {x11, . . . , xNN}
where the points xiN are defined by (h = (h1, . . . , hm)T )∫ xiN

a

|α(x)hT (x)Lh(x)|1/3dx =
i− 1

N − 1

∫ b

a

|α(x)hT (x)Lh(x)|1/3dx,

i = 1, . . . , N , then the sequence {ξN}n∈N is asymptotically L-optimal.
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Remark 4 In the linear and quadratic regression model with exponential covariance func-
tion e−λ|x| the exact n-point D-optimal design converges to the equally spaced design as
λ→ 0, see Dette et al. (2008).

In the following sections we present three methods of numerical construction of optimal
designs: the method of exchange of points, the method of virtual noise and the method
using the expansion of the covariance kernel.

3.3 Exchange type algorithms

The steps of the exchange algorithm for computing an exact Ψ-optimal N -point design are
as follows.

First, we have to choose a starting design ξ
(0)
N such that the covariance matrix D(ξ

(0)
N ) is

non-singular. At iteration j, one point from the design ξ
(j)
N is replaced by another point from

the design space, where we need to find a replacement giving a decrease of the Ψ-criterion.
The algorithm has to be stopped if the decrease is smaller than a given tolerance bound and
be proceeded to the next iteration otherwise.

For the D-optimality criterion, Brimkulov et al. (1980) proposed the procedure where simul-
taneously a new point is introduced, which is defined by

x+ = arg max
x∈X\ξ(j)N

φ(x, ξ
(j)
N )

and a point is removed which is defined by

x− = arg max
x∈ξ(j)N

φ(x, ξ
(j)
N ).

Here the function φ is given by

φ(x, ξ) =
ψ2(x, ξ) + f̃T (x, ξ)M−1(ξ)f̃T (x, ξ)

ψ2(x, ξ)
,

where

ψ2(x, ξ) = K(x, x)− kT (x, ξ)Σ−1(ξ)k(x, ξ),

k(x, ξ) = (K(x, x1), . . . , K(x, xN)),
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f̃(x, ξ) = f(x)− f(ξ)Σ−1(ξ)K(x, ξ).

Note that the procedure proposed in Brimkulov et al. (1980) is based on ideas of using an
analog of the sensitivity function from the equivalence theorem for the case of uncorrelated
observation. Ucinski and Atkinson (2004) have developed formulas for the straightforward
exchange algorithm which provides the best decrease of the criterion as follows.

1. Select an initial design ξ(0) = {x(0)
1 , ..., x

(0)
N } such that x

(0)
i 6= x

(0)
j for i 6= j and

detM(ξ(0)) 6= 0. Define the matrices X(0) = (f(x
(0)
1 ), . . . , f(x

(0)
N ))T , Σ(0) = (K(x

(0)
i , x

(0)
j ))Ni,j=1

and M (0) = X(0)T
(
Σ(0)

)−1
X(0).

2. Set j = 0.

3. Determine

(i∗, t∗) = arg max
(i,t)∈{1,...,N}×X

∆(ti, t),

where
∆(ti, t) = (detM(ξ

(j)
ti�t)− detM(ξ(j)))/ detM(ξ(j))

and ξ
(j)
ti�t denotes the design obtained from ξ(j) if the points ti and t are interchanged.

4. If ∆(ti, t) < δ, where δ is some given positive tolerance, then terminate. Otherwise,

set ξ(j+1) = ξ
(j)
tj�t and determine F (j+1), Σ(j+1) and M (j+1) corresponding to ξ(j+1)

(expressions simplifying the numerical computation are given in Ucinski and Atkinson
(2004). Set j ⇐ j + 1 and go to step 3.

This method has been used in a number of practical examples, see Glatzer and Müller
(1999); Müller (2005, 2007); Müller and Stehĺık (2010); Stehĺık et al. (2008).

3.4 Constructing optimal designs by expansion of the covariance

kernel

Fedorov and Müller (2004) proposed to approximate the model (2) by the following mixed-
effect model

y(x) = θTf(x) +

q∑
j=1

βjψj(x) + εo(x)

where θ is the vector fixed-effect parameters, βj are random-effect parameters, ψj(x) are
eigenfunctions of Mercer’s expansion of the covariance kernel and εo(x) is an error process
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with no correlation. Then an optimal design is determined using the truncated D-criterion,
namely, the minimization of the determinant of the covariance matrix for the parameter
θ while both parameters θ and β are considered as unknown parameters. In general, the
computation of optimal designs requires the knowledge of eigen functions ψj. Fedorov and
Müller (2004) developed an approximation of the sensitivity function φ(x, ξ) which is used in
the exchange algorithm for computing discrete optimal designs for models with uncorrelated
observations. Specifically, for a discrete design ξ = {x1, . . . , xn;w1, . . . , wn} the function
φ(x, ξ) has the form

φ(x, ξ) = f̃T (x, ξ)M−1(ξ)f̃(x, ξ)

where
f̃T (x, ξ) = fT (x) + kT (x, ξ)Σ−1

Sξ
(W + Σ−1

Sξ
)−1WX,

M = X(W −W (W + Σ−1
Sξ

)−1W )XT ,

and the matrices X and W are defined by X = (f(x1), . . . , f(xn)), W = N
s2

diag{w1, . . . , wn},
k(x, ξ) = (K(x, x1), . . . , K(x, xn)), Sξ = supp(ξ), ΣSξ = (K(xi, xj))

n
i,j=1 and s2 is a tuning

parameter which should be close to zero, for example, s2 = 10−6.

This method has been used in a number of practical examples [see Fedorov and Flanagan
(1997); Müller (2005, 2007)].

3.5 Method of virtual noise

Pázman and Müller (2001) have proposed the method of virtual noise to determine optimal
designs. This method considers the following extended model

ỹ(x) = θTf(x) + ε(x) + ε(x)

where ε(x) is the original stochastic process such that Cov(ε(x1), ε(x2)) = σ2K(x1, x2) and
ε(x) is an additional heteroscedastic white noise depending on a design. The two processes
ε(x) and ε(x) are assumed to be uncorrelated. For a given design ξ = {x1, . . . , xn;w1, . . . , wn},
the variance of white noise at design points is given by Var(ε(xj)) = γσ2 ln(maxiwi/wj),
where γ is a tuning parameter which should be small, for example, γ = 10−6.

The information matrix for the model with virtual noise is given by

Mε(ξ) = XT (ΣSξ + γdiag(ln[max
i
wi/w1], . . . , ln[max

i
wi/wn]))−1X

where X = (f(x1), . . . , f(xn))T . Note that despite the presence of the weights wi, the designs
ξ in this approach can only be considered as exact N -point designs [see Pázman and Müller
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(1998)].

To deal with the optimal design problem Φ(Mε(ξN)) → maxξN∈ΞN , several algorithms have
been proposed [see Müller and Pázman (1999) and Müller and Pázman (2003)]. These
algorithms consist of a stepwise one-point correction of the design. For example, in Müller
and Pázman (2003) the design ξ(j) is updated as

ξ(j+1) =
j

j + 1
ξ(j) +

1

j
δx∗

where δx = {x; 1} is the one-point measure supported at x ∈ X . The point x∗ minimizes the

directional derivative of Φ(Mε(ξ
(j))) in the direction of δx where ξ(j) = {x1, . . . , xn;w

(j)
1 , . . . , w

(j)
n }.

Thus x∗ = xi∗ , where

i∗ = arg min
i=1,...,n

1

w
(j)
i

(
d(xi)−

1Bj(i)

NBj

n∑
k=1

d(xk)
)
,

d(x) = aT (x)∇Φ(M)a(x), a(x) =
∑n

k=1 gikf(xk), Σ−1 = (gik), M = XTΣX, ∇Φ(M) =
∂Φ(M)/∂M , X = (fi(xj))

i=1,...,m
j=1,...,N , NBj is the cardinality of the set Bj = {i ∈ {1, . . . , n} :

wi = maxk w
(j)
k } and 1Bj(i) is the indicator function of the set Bj. An initial design ξ(0) can

be chosen as the uniform discrete design supported at points forming a discretization of the
design space.

This method has been used in a number of practical examples [see Müller (2005, 2007)].
A relation between the method of virtual noise and the method of the expansion of the
covariance kernel is discussed in Pázman (2010); Pázman and Müller (2010).

3.6 A design for prediction in the quadratic model

Consider the quadratic model

y(x) = θ1 + θ2x+ θ3x
2 + σW (x) (13)

where x ≥ 0, f(x) = (1, x, x2)T , W (x) is the standardized Wiener process with

K(u, v) = cov(W (u),W (v)) = min(u, v).

Note that the Wiener process is non-stationary. In addition to estimation of parameter
θ = (θ1, θ2, θ3)T , one can be interested in prediction of the process {y(x)}x∈[a,b] at a point x,
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where x > b and [a, b] is a design interval. The best linear unbiased predictor is given by

ŷ(x) = θ̂Tf(x) + kT (x, ξ)Σ−1(Y −Xθ̂)

where k(x, ξ) = (K(x, x1), . . . , K(x, xN))T , Y = (y(x1), . . . , y(xN))T is a vector of observa-
tions at design points x1, . . . , xN , and θ̂ is the BLUE of θ. The mean squared error of ŷ(x)
can easily be calculated as

MSE(ŷ(x)) = K(x, x)− kT (x, ξ)Σ−1k(x, ξ) + cTx (XTΣ−1X)−1cx

where X = (fi(xj))
i=1,...,m
j=1,...,N and cx = f(x)−XTΣ−1k(x, ξ).

Theorem 8 (Harman and Stulajter (2011)) Consider the process (13) with design in-
terval [a, b]. Then the N-point design with points xi = a+(b−a)(i−1)/(N−1), i = 1, . . . , N ,
is optimal for estimating the unknown parameters θ1, θ2, θ3 with respect to any continuous
Loewner isotonic criterion as well as for the mean squared error of the best linear unbiased
predictor.

Further results on optimal designs for prediction of processes can be found in Harman and
Stulajter (2010, 2011); Zimmerman (2006). Note that the design problem for prediction is
a major problem in computer experiments, [see Bates et al. (1996); Dette and Pepelyshev
(2010); Pronzato (2012)].

4 Optimal designs for OLS

Recall that the ordinary least squares estimate is given by θ̃ = (XTX)−1XTY with covariance
matrix

Var(θ̃) = σ2(XTX)−1XTΣX(XTX)−1. (14)

Note that the BLUE can only be used if the correlation structure of the errors is known, and
its misspecification can lead to a considerable loss of efficiency. At the same time, the OLS
estimate does not employ the structure of the correlation. Obviously the OLS estimates can
be less efficient than the BLUE but in many cases the loss of efficiency is small. For example,
consider the location scale model with a stationary error process, the Gaussian correlation
function ρ(x) = e−λx

2
and the exact design ξ = {−1,−2/3,−1/3, 1/3, 2/3, 1}. Suppose that

the specified value of λ equals 1 while the true value is 2. Then the variance of the BLUE is
0.528 while the variance of the OLS estimate is 0.433. If the specified value of λ equals the
true value, then the variance of the BLUE is 0.382. A similar relation between the variances
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holds if the location scale model and the Gaussian correlation function are replaced by a
polynomial model and a triangular or exponential correlation function, respectively. For
a more detailed discussion concerning advantages of the ordinary least squares against the
weighted least squares estimate see Bickel and Herzberg (1979) and Section 5.1 in Näther
(1985a).

Some results on the efficiency of the OLS estimation comparing to the BLUE estimation are
obtained in Kiefer and Wynn (1981); Bischoff (1995a,b) and Puntanen et al. (2011).

4.1 OLS for approximate designs

Consider the case when a continuous observation of a process is available and let ξ be an
approximate design with non-singular matrix M(ξ) =

∫
X f(x)fT (x)ξ(dx). Hence the least-

squares problem has the form∫
X

(y(x)− θTf(x))2ξ(dx)→ inf
θ

with the solution

θ̃ = M−1(ξ)

∫
X
f(x)y(x)ξ(dx)

which is called the continuous LSE. The covariance matrix of the estimate θ̃ has the form

Var(θ̃) = σ2M(ξ)−1B(ξ, ξ)M(ξ)−1,

where

B(ξ, ν) =

∫
X

∫
X
K(u, v)f(u)fT (v)ξ(du)ν(dv).

The general approximate design problem is therefore given by

Φ(D(ξ))→ min
ξ∈Ξ

,

where Φ is some functional on the set of m×m matrices and the matrix D is defined by

D(ξ) = M(ξ)−1B(ξ, ξ)M(ξ)−1 .

xxviii



4.2 Results of Bickel and Herzberg

Consider the general model (2) with stationary error process. Suppose that for N observa-
tions, the correlation function is given by

ρN(t) = ρo(Nt) (15)

where ρo(t) = γρ(t) + (1 − γ)δt and ρ(t) → 0 as t → ∞, γ ∈ (0, 1]. The following regular-
ity conditions are needed to present a main result of Bickel and Herzberg [see Bickel and
Herzberg (1979)].

(C1) The regression functions f1(t), . . . , fp(t) are linearly independent and bounded on the
interval [−T, T ] and satisfy a first order Lipschitz condition, that is

|fi(t)− fi(s)| ≤M |t− s|

and
|fi(t)| ≤M

for all t, s ∈ [−T, T ], i = 1, . . . , p.

(C2) There exists a twice differentiable quantile function a : (0, 1) → R and a positive
constant M <∞ such that for all u ∈ (0, 1)

1

M
≤ a′(u) ≤M, |a′′(u)| ≤M. (16)

The quantile function a is used to generate exact N -point designs ξN = {t1N , . . . , tNN}, that
is

tiN = a
( i− 1

N − 1

)
i = 1, . . . , N. (17)

(C3) the correlation function ρ(t) is differentiable with bounded derivative, that is |ρ′(t)| ≤M,

t ∈ (0,∞) and satisfies ρ′(t) ≤ 0 for sufficiently large t. This assumption implies that ρ(t)
is nonnegative for sufficiently large t.

(C4) The correlation function ρ is integrable, i.e.
∫
|ρ(t)|dt < ∞. As a consequence, the

function

Q(t) =
∞∑
j=1

ρ(jt) (18)

is well defined and finite for all t > 0.
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Theorem 9 (Bickel and Herzberg (1979)) Consider the model (2) with correlation func-
tion ρN defined in (15) for observations at N points t1N , . . . , tNN defined in (17). Assume
that the correlation function ρ, the quantile function a and the regression functions f1, . . . , fm
satisfy the regularity assumptions (C1)–(C4) and suppose that the elements of the matrix

R(a) =

(∫ 1

0

fi(a(u))fj(a(u))Q(a′(u)) du

)m
i,j=1

exist and are finite. Then the variance-covariance matrix of the least squares estimate given
in (14) is well defined and

lim
N→∞

σ−2NVar(θ̃) = W−1(a) + 2γW−1(a)R(a)W−1(a),

where the matrix W (a) is given by

W (a) =

(∫ 1

0

fi(a(u))fj(a(u)) du

)m
i,j=1

.

The conditions on the quantile function a imply that the corresponding design ξ has a
continuous density, say p : [0, 1] → R. Therefore, the matrices W (a) and R(a) can be
expressed in terms of p as follows

R(ξ) =

(∫ 1

0

fi(t)fj(t)Q(1/p(t))p(t) dt

)m
i,j=1

,

and

W (ξ) =

(∫ 1

0

fi(t)fj(t)p(t) dt

)m
i,j=1

.

In the remaining part of this section we consider the one-parameter case when f = f1. Define
H(t) = Q(t)− tQ′(t) and the function q(x, µ, τ) by

q(t, µ, τ) =


1

H−1(µ(1− τ/f 2(t)))
, µ(1− τ/f 2(t)) ≥ 0,

0, otherwise,

Theorem 10 (Bickel and Herzberg (1979)) Assume that the regression function f in
the one-parameter linear model (6) is continuous and Q defined in (18) is strictly convex.
Then the optimal design exists and its density is of the form q(t, µ∗, τ ∗), where the parameters
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µ∗ and τ ∗ satisfy the equations ∫
q(t, µ∗, τ ∗)dt = 1

and

2
∫
Q(1/q(t))f 2(t)q(t)dt∫

f 2(t)q(t)dt
= µ∗ − 1

2γ
.

4.3 Results for long-range dependence error structure

As in previous section, we consider the general model (2) with stationary error process having
long-range dependence. Suppose that for N observations, the correlation function is given
by

ρN(t) = ρo(Nt)

where ρo(t) = γρ(t)+(1−γ)δt and ρ(t)→ 0 as t→∞, γ ∈ (0, 1]. As in the previous section,
we assume that regularity conditions (C1)–(C3) are satisfied and instead of assumption (C4)
of Bickel and Herzberg (1979) we now assume that∫ ∞

0

|ρ(t)| dt =∞. (19)

The condition (19) means the long-range dependence of the observations. Note that in this
case it follows that ∫ ∞

0

|ρ(t)| dt =
∞∑
k=0

|ρ(k)| =∞

where ρ(k) = cov(ε(t), ε(t + k)). The correlation function of a stationary process with long
range dependence can be written as

ρα(t) =
L(t)

|t|α
, |t| → ∞ (20)

where 0 < α ≤ 1 and L(t) is a slowly varying function (SVF) for large t [see Doukhan et al.
(2003)]. In particular ρα satisfies

ρα(t) = O(1/|t|α) , |t| → ∞,

and we will say that ρα(t) belongs to SVF family.
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At first we introduce two parametric families of correlation functions which are important
in applications. The correlation function ρα belongs to the Cauchy family if it is defined by

ρα(t) =
1

(1 + |t|β)α/β
, (21)

where β > 0, 0 < α ≤ 1. The correlation function ρα belongs to the Mittag-Leffler family if
it is defined by

ρα(t) = Eν,β(−|t|α), Eν,β(−t) = Γ(β)
∞∑
k=0

(−t)k

Γ(νk + β)
, (22)

where 0 < α ≤ 1, 0 < ν ≤ 1, β ≥ ν [see Dette et al. (2009) for more details].

In the following we present optimal designs for the three families of correlation functions,
which are given by (20), (21) and (22). The function Q(t) =

∑∞
j=1 ρ(jt) plays an important

role in the asymptotic analysis by Bickel and Herzberg (1979), but in the case of long range
dependence this function is infinite. For an asymptotic analysis under long range dependence
we introduce the function

Qα(t) = lim
N→∞

1

dα(N)

N∑
j=1

ρα(jt), (23)

where the normalizing sequence is given by

dα(N) =


N1−α if α < 1 and ρα has the form (21) or (22)

lnN if α = 1 and ρα has the form (21) or (22)

L(N)N1−α if α < 1 and ρα has the form (20)

L(N) lnN if α = 1 and ρα has the form (20)

and show in Lemma 3 below that the function Qα(t) is well defined.

Lemma 3 (Dette et al. (2009)) If the correlation function ρα(t) belongs either to the
Cauchy, Mittag-Leffler or SVF family, then the limit in (23) exists and is given by

Qα(t) =


c

(1− α)|t|α
, 0 < α < 1,

c
|t| , α = 1,

where

c =

{
Γ(β)

Γ(β−ν)
, if ρα(t) belongs to the Mittag-Leffler family,

1 , otherwise.
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The following result describes the asymptotic behavior of the OLS for the case of the long-
range dependence.

Theorem 11 (Dette et al. (2009)) Consider the model (2) with correlation function ρN
defined in (15) for observations at N points t1N , . . . , tNN defined by (17). Assume that the
correlation function ρα is either an element of the Cauchy, Mittag-Leffler or SVF family.
If
∫ 1

0
Qα(a′(t)) dt < ∞ and the regularity assumptions (C1)–(C3) stated in the previous

subsection are satisfied, then we obtain for the variance-covariance matrix of the least squares
estimate defined in (14)

σ−2 N

dα(N)
Var(θ̃) = 2γW−1(a)Rα(a)W−1(a) +O(1/dα(N)),

where the matrices W and Rα are given by

W (a) =

(∫ 1

0

fi(a(u))fj(a(u)) du

)m
i,j=1

,

Rα(a) =

(∫ 1

0

fi(a(u))fj(a(u))Qα(a′(u)) du

)m
i,j=1

.

Note that the constant γ only appears as a factor in the asymptotic variance-covariance
matrices of the least squares estimate. Because most optimality criteria are positively ho-
mogeneous [see e.g. Pukelsheim (1993)] it is reasonable to consider the matrix

W−1(a)Rα(a)W−1(a),

which is proportional to the asymptotic variance-covariance matrix of the least squares es-
timate. Moreover, if the function a corresponds to a continuous distribution with a density,
say φ, then a′(t) = 1/φ(t) and the asymptotic variance-covariance matrix of the least squares
estimate is proportional to the matrix

Ψα(φ) = W−1(φ)Rα(φ)W−1(φ),
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where the matrices W (φ) and Rα(φ) are given by

W (φ) =

(∫ T

−T
fi(t)fj(t)φ(t) dt

)
i,j=1,...,m

,

Rα(φ) =

(∫ T

−T
fi(t)fj(t)Qα(1/φ(t))φ(t) dt

)
i,j=1,...,m

=
c

1− α

(∫ T

−T
fi(t)fj(t)φ

1+α(t) dt

)
i,j=1,...,m

,

respectively, and we have used the representation Qα(t) = c/((1 − α)|t|α) for the last iden-
tity. An (asymptotic) optimal design for classical least squares estimation minimizes an
appropriate function of the matrix Ψα(φ). Note that under long range dependence the
variance-covariance matrix of the least squares estimate converges slower to zero than in the
case of independent or short-range dependent errors. In the case of short-range dependence,
no other normalization is necessary apart from normalizing the variance-covariance matrix.
Under long-range dependence an additional factor dα(N)/N is needed. Moreover, it is worth-
while to note that under long range dependence the asymptotic variance-covariance matrix
is fully determined by the function Qα(t) and does not depend on the particular correlation
function ρα. In the following section we discuss several examples in order to illustrate the
concept.

In most cases, the asymptotic optimal designs for the regression model (2) have to be found
numerically; explicit solutions are only possible for very simple models. The following result
established optimal designs for linear models with one parameter.

Theorem 12 (Dette et al. (2009)) Assume that the correlation function ρα is either an
element of the Cauchy, Mittag-Leffler or SVF family. Then, for the one-parameter linear
regression model (6), the asymptotic optimal design exists, it is absolute continuous with
respect to the Lebesgue measure and has the density

p∗(t) =


1

H−1
α (µ− τ/f 2(t))

=
(1− α

1 + α
(µ− τ/f 2(t))

) 1
α
, µ− τ/f 2(t) ≥ 0,

0, otherwise,

(24)

where the constants µ and τ are given by

µ = 2

∫
f 2(t)Qα(1/p∗(t))p∗(t) dt∫

f 2(t)p∗(t) dt
,

τ =

∫
f 2(t)Qα(1/p∗(t))p∗(t) dt+

∫
f 2(t)Q′α(1/p∗(t)) dt.
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We now consider two special cases, which are of particular importance. If p = 1 and f(t) ≡ 1
we obtain the location model and the asymptotic optimal density is the uniform density, that
is

p∗(t) =

{
1

2T
, |t| ≤ T,

0, otherwise.
(25)

Similarly, in the linear model through the origin we have p = 1, f(t) ≡ t, and the asymptotic
optimal density is given by

p(t) =


0, |t| ≤

√
τ/µ,(

1−α
1+α

(µ− τ/t2)
)1/α

,
√
τ/µ ≤ |t| ≤ T,

0, otherwise,

where

µ = 2

∫
t2p1+α(t) dt

(1− α)
∫
t2p(t) dt

, τ =

∫
t2p1+α(t) dt,

and α is the parameter of the correlation function. The above formulas are given for 0 <
α < 1. For α = 1 and f(t) = t, the asymptotic optimal density is the uniform density (25).
The optimal densities for the parameters α = 1/4, 1/2, 3/4, 0.95 and T = 1 are displayed in
Figure 2.
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Figure 2: Asymptotic optimal design densities on the interval [−1, 1] for the linear regression
model through the origin.

4.3.1 Linear regression

Consider the case p = 2, f1(t) = 1, f2(t) = t, which corresponds to the linear regression
model. In this case the optimal design for estimating the slope (i.e. the e2-optimal design) has
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the density (24) while the D-optimal designs have to be determined numerically in all cases.
Some D-optimal design densities on the interval [−1, 1] corresponding to the parameters
α = 1/4, 1/2, 3/4, 0.95 are displayed in Figure 3.
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Figure 3: Asymptotic D-optimal design densities for the linear regression model on the in-
terval [−1, 1].

4.4 Optimal designs for OLS

In this section we consider the general model (2) with arbitrary covariance kernel. For an
exact N -point design ξN , the covariance matrix of the least squares estimate θ̃ = θ̃ξN given
in (14) can be written as

Var(θ̃) = σ2D(ξN) = σ2M−1(ξN)B(ξN , ξN)M−1(ξN), (26)

where the matrices M and B are given by

M(ξN) =

∫
X
f(u)fT (u)ξN(du), (27)

B(ξN , ξN) =

∫
X

∫
X
K(u, v)f(u)fT (v)ξN(du)ξN(dv). (28)

The definition of the matrices M(ξ) and B(ξ, ξ) can be extended to an approximate design
ξ, provided that the corresponding integrals exist. The matrix

D(ξ) = M−1(ξ)B(ξ, ξ)M−1(ξ), (29)

is called the covariance matrix for the design ξ if the matrices B(ξ, ξ) and M−1(ξ) are well-
defined. An (approximate) optimal design minimizes a functional of the covariance matrix
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D(ξ) over the set Ξ.

Note that in general the function D(ξ) is not convex (with respect to the Loewner ordering)
on the space of all approximate designs. This implies that even if one determines optimal
designs by minimizing a convex functional, say Φ, of the matrix D(ξ), the corresponding
functional ξ → Φ(D(ξ)) is in general not convex on the space of designs Ξ. Consider for
example the case m = 1 where D(ξ) is given by

D(ξ) =

[∫
X
f 2(u)ξ(du)

]−2∫
X

∫
X
K(u, v)f(u)f(v)ξ(du)ξ(dv) , (30)

then it is obvious that this functional is not necessarily convex. On the other hand, for the
location scale model we have m = 1, f(x) = 1 for all x ∈ X and this expression reduces to

D(ξ) =

∫
X

∫
X
K(u, v)ξ(du)ξ(dv) .

In the case K(u, v) = ρ(u − v), where ρ is a correlation function, this functional is convex
on the set of probability measures on the domain X , see Lemma 1 in Zhigljavsky et al.
(2010) and Lemma 4.3 in Näther (1985a). For this reason (namely the convexity of the
functional D(ξ)) most of the literature on (asymptotic) optimal design problems for least
squares estimation in the presence of correlated observations considers the location scale
model. This corresponds to the estimation of the mean of a stationary process, see for
example Boltze and Näther (1982); Näther (1985a,b).

Consider an optimality criterion Φ on the space of the non-negative definite matrices and
define

ϕ(x, ξ) = fT (x)D(ξ)C(ξ)M−1(ξ)f(x), (31)

b(x, ξ) = tr(C(ξ)M−1(ξ)B(ξ, ξx)M
−1(ξ)), (32)

where

C(ξ) =
∂Φ(D)

∂D

∣∣∣
D=M(ξ)

(here we assume differentiability of the optimality criterion). The following result is a refor-
mulation of necessary condition of design optimality.

Theorem 13 (Dette et al. (2012)) Let ξ∗ be any design minimizing the functional Φ(D(ξ)).
Then the inequality

ϕ(x, ξ∗) ≤ b(x, ξ∗) (33)

holds for all x ∈ X , where the functions ϕ(x, ξ) and b(x, ξ) are defined in (31) and (32),
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respectively. Moreover, there is equality in (33) for ξ∗-almost all x, that is, ξ∗(A) = 0 where

A = A(ξ∗) = {x ∈ X | ϕ(x, ξ∗) < b(x, ξ∗)}

is the set of x ∈ X such that the inequality (33) is strict.

In this section we consider the matrix D(ξ) defined in (29) as the matrix optimality criterion
which we are going to minimize on the set Ξ of all designs, such that the matrices B(ξ, ξ)
and M−1(ξ) (and therefore the matrix D(ξ)) are well-defined. Recall that a design ξ∗ is
universally optimal if

D(ξ∗) ≤ D(ξ)

in the sense of the Loewner ordering for any design ξ ∈ Ξ. Note that a design ξ∗ is universally
optimal if and only if ξ∗ is c-optimal for any vector c ∈ Rm\{0}; that is, cTD(ξ∗)c ≤ cTD(ξ)c
for any ξ ∈ Ξ and any c ∈ Rm.

For a given design ξ ∈ Ξ with non-singular matrix M(ξ), introduce the vector-valued function

g(x) =

∫
K(x, u)f(u)ξ(du)− Λf(x) , x ∈ X , (34)

where Λ = B(ξ, ξ)M−1(ξ). This function satisfies the equality∫
g(x)fT (x)ξ(dx) = 0 . (35)

Additionally, as the vector of regression functions f(·) is continuous on X , the function g(·)
is continuous too.

Theorem 14 (Dette et al. (2012)) Consider the regression model (1) with covariance
kernel K, a design ξ ∈ Ξ and the corresponding vector-function g defined in (34).

(a) If g(x) = 0 for all x ∈ X then the design ξ is universally optimal;

(b) If the design ξ is universally optimal then the function g can be represented in the form
g(x) = γ(x)f(x), where γ(x) is a non-negative function defined on X such that γ(x) = 0 for
all x in the support of the design ξ.

Let us now discuss the case when the regression functions are proportional to eigenfunctions
of the integral operator induced by the covariance kernel. To be precise, let X denote a
compact subset of a metric space and let ν denote a measure on the corresponding Borel
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field with positive density. Consider the integral operator

TK(f)(·) =

∫
X
K(·, u)f(u)ν(du) (36)

on L2(ν). Under certain assumptions on the kernel (for example if K(u, v) is symmetric,
continuous and positive definite) TK defines a symmetric, compact self-adjoint operator. In
this case Mercer’s Theorem [see e.g. Kanwal (1997)] shows that there exist a countable
number of eigenfunctions ϕ1, ϕ2, . . . with positive eigenvalues λ1, λ2, . . . of the operator K,
that is

TK(ϕ`) = λ`ϕ` , ` = 1, 2, . . . (37)

The next statement follows directly from Theorem 14.

Theorem 15 (Dette et al. (2012)) Let X be a compact subset of a metric space and
assume that the covariance kernel K defines an integral operator TK of the form (36),
where the eigenfunctions satisfy (37). Consider the regression model (1) with f(x) =
L(ϕi1(x), . . . , ϕim(x))T and the covariance kernel K, where L ∈ Rm×m is a non-singular
matrix. Then the design ν is universally optimal in the linear regression model (2).

The following two results give optimal design in explicit form for polynomial regression
models with two singular covariance kernels.

Theorem 16 (Dette et al. (2012)) Consider the linear regression model (1) with f(x) =
(1, x, x2, . . . , xm−1)T on the interval X = [−1, 1], and the covariance kernel ρ(t) = − ln(x2).
Then the arcsine design ξa with density

p(x) = 1/(π
√

1− x2), x ∈ (−1, 1)

is the universally optimal design.

Theorem 17 (Dette et al. (2012)) Consider the linear regression model (1) with f(x) =
(1, x, x2, . . . , xm−1)T on the interval X = [−1, 1], and covariance kernel ρ(x) = 1/|x|α. Then
the design with generalized arcsine density

pα(x) =
2−α

B(1+α
2
, 1+α

2
)
(1 + x)

α−1
2 (1− x)

α−1
2 .

is universally optimal.
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5 Appendix

5.1 Proofs

Proof of Lemma 1. Let GN = (gNi,j) = (ΣN )−1 where ΣN = (K(xi, xj))i,j∈N . Also let
GA = (gAi,j)i,j∈A = (ΣA)−1 where ΣA = (K(xi, xj))i,j∈A. Straightforward calculus gives

M(ξN) =
∑
i,j∈N

f(xi)g
N
ij f

T (xj)

=
∑
k,l∈A

∑
i,j∈N

akK(xk, xi)g
N
ijK(xj, xl)a

T
l

=
∑
k,l∈A

akK(xk, xl)a
T
l

=
∑
k,l∈A

f(xk)g
A
klf

T (xl) = M({xi}i∈A)

which completes the proof. �

Proof of Lemma 2. We have

D(αξ2 + (1− α)ξ1) =

=

∫ ∫
K(u, v)[αξ2(du) + (1− α)ξ1(du)][αξ2(dv) + (1− α)ξ1(dv)]

= (1− α)2

∫ ∫
K(u, v)ξ1(du)ξ1(dv) + α2

∫ ∫
K(u, v)ξ2(du)ξ2(dv)

+2α(1− α)

∫ ∫
K(u, v)ξ1(du)ξ2(dv)

= α2D(ξ2) + (1− α)2D(ξ1) + 2α(1− α)

∫ ∫
K(u, v)ξ1(du)ξ2(dv)

= αD(ξ2) + (1− α)D(ξ1)− α(1− α)A ,

where

A =

∫ ∫
K(u, v)[ξ2(du)ξ2(dv) + ξ1(du)ξ1(dv)− 2ξ2(du)ξ1(dv)]

=

∫ ∫
K(u, v)ζ(du)ζ(dv)

and ζ(du) = ξ2(du) − ξ1(du). Since the correlation function K(u, v) is positive definite, it
follows A ≥ 0. If K(u, v) is strictly positive definite, we have A > 0 whenever ζ is not trivial.
Therefore the functional D(·) is strictly convex. �
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Proof of Theorem 5. Denote Kij = K(xi, xj), f(xi) = fi, ai = fiwi, i, j = 1, . . . , n,
a = (a1, . . . , an)T . Then for any signed design ξ = {x1, . . . , xn;w1, . . . , wn} we have

D(ξ) =

∑
i

∑
jKijfifjwiwj

(
∑

i f
2
i wi)

2
=

∑
i

∑
jKijaiaj

(
∑

i fiai)
2

=
aTΣa

(aT f)2
.

Since Σ is symmetric and Σ > 0, there exists Σ−1 and a symmetric matrix Σ1/2 > 0 such
that Σ = Σ1/2Σ1/2. Denote b = Σ1/2a and d = Σ−1/2f . Then we can write D(ξ) as
D(ξ) = bT b/(bTd)2. The Cauchy-Schwartz inequality gives for any two vectors b and d:
(bTd)2 ≤ (bT b)(dTd), that is, bT b/(bTd)2 ≥ 1/(dTd). This inequality with b and d as above is
equivalent to

D(ξ) ≥ 1

f Σ−1f

for all ξ ∈ Ξ(S). The equality in this inequality is attained if the vector b is proportional to
the vector d; that is, if bi = cdi for all i and any c 6= 0. Then the equality bi = cdi can be
rewritten in the form wi = c(Σ−1f)i/f(xi). �

5.2 Common correlation functions

Definition 1 (Stationarity in the wide sense) A random field is a stationary random field
in the wide sense if Eε(u) = const and K(u, v) := cov(ε(u), ε(u)) = ρ(u− v).

The covariance function ρ(x) on Rd is fully separable if ρ(x) = ρ1(x1) · · · ρd(xd). Note
that the product and the sum of two covariance functions are also covariance functions, see
Abrahamsen (1997), Sec 3.1.

Definition 2 A stationary random field is an isotropic random field (in the wide sense) if
the covariance function depends on distance alone, i.e.

K(u, v) = ρ(‖u− v‖)

and ‖x‖ =
√
xTx.

Definition 3 A stationary random field is an anisotropic random field (in the wide sense)
if the covariance function depends on a non-Euclidian norm of the difference of two points,
i.e.

K(u, v) = ρ(‖u− v‖A),

where ‖x‖A =
√
xTAx and A is a positive semi-definite matrix. The function ρ(‖u− v‖A is

called an ellipsoidal correlation function.
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In Table 1 we present correlation functions for one-dimensional case. In the case of d > 1,
most common isotropic correlation functions have the form ρ(‖x‖).

Table 1: Commonly used correlation functions, λ > 0, R > 0.

Name ρ(x)

exponential e−λx

Gaussian e−λx
2

rational quadratic
1

(1 + λx2)ν
, ν > 0

spherical, triangular
(
1− x

R

)
1[0,R](x)

spherical, circular

(
1− 2

π

(
x
R

√
1− x2

R2 + arcsin
(
x
R

)))
1[0,R](x)

spherical
(

1− 3x
R

+ x3

2R3

)
1[0,R](x)

penta-spherical
(

1− 15x
8R

+ 5x3

4R3 − 3x5

R5

)
1[0,R](x)

cubic
(

1− 7x2

R2 + 35x3

4R3 − 7x5

2R5 + 3x7

4R7

)
1[0,R](x)

stable exp (−λxν), 0 < ν ≤ 2

oscillating, damped cosine e−λx cos(ωx), ω > 0

oscillating, hole effect
1

ωx
sin(ωx), ω > 0

oscillating, Bessel Γ(ν + 1)2ν(λx)−νJν(λx), ν ≥ (d+ 1)/2

Poisson
1− β2

1− 2β cos(2πx) + β2
, 0 < β < 1

Cauchy family
1

(1 + |x|β)α/β
, β > 0, 0 < α ≤ 1

Mittag-Leffler family Eν,β(−|x|α), 0 < α ≤ 1, 0 < ν ≤ 1, β ≥ ν

Eν,β(−t) = Γ(β)
∞∑
k=0

(−t)k

Γ(νk + β)

E1,1(−t) = e−t, E1,2(−t) = (1− e−t)/t,
E1,3(−t) = 2(e−t − 1 + t)/t2,

E1/2,1(−t) = et
2
(

1− 2√
π

∫ t
0
e−u

2
du
)

scaling (1− x2)e−x
2/2

singular logarithmic − lnx2

singular rational
1

|x|α
, 0 < α < 1
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Kernel Expansions. In López-Fidalgo, J., Rodŕıguez-Dı́az, J. M., and Torsney, B., editors,
mODa 8 - Advances in Model-Oriented Design, pages 57–66. Physica-Verlag, Heidelberg.

Fedorov, V., Wu, Y., and Zhang, R. (2012). Optimal dose-finding designs with correlated
continuous and discrete responses. Statistics in Medicine, 31:217–234.

Fedorov, V. V. (1996). Design of spatial experiments: model fitting and prediction. In Gosh,
S. and Rao, C. R., editors, Handbook of Statistics, pages 515–553. Elsevier, Amsterdam.

Glatzer, E. and Müller, W. G. (1999). A comparison of optimum design algorithms for
regressions with correlated observations—a computational study. Tatra Mt. Math. Publ.,
17:149–156. PROBASTAT ’98 (Smolenice Castle).

xliv



Hajek, J. (1956). Linear estimation of the mean value of a stationary random process with
convex correlation function. Czechoslovak Mathematical Journal, 6(81):94–117.

Harman, R. and Stulajter, F. (2010). Optimal prediction designs in finite discrete spectrum
linear regression models. Metrika, 72:281–294.

Harman, R. and Stulajter, F. (2011). Optimality of equidistant sampling designs for the
Brownian motion with a quadratic drift. Journal of Statistical Planning and Inference,
141:2750–2758.

Holland-Letz, T., Dette, H., and Pepelyshev, A. (2011). A geometric characterization of
optimal designs for regression models with correlated observations. Journal of the Royal
Statistical Society, Ser. B, 73:239–252.

Holland-Letz, T., Dette, H., and Renard, D. (2012). Efficient algorithms for optimal designs
with correlated observations in pharmacokinetics and dose finding studies. Biometrics,
68:138–145.

Kanwal, R. (1997). Linear Integral Equations. Birkhauser, Boston.

Kiefer, J. and Wynn, H. (1981). Optimum balanced block and latin square designs for
correlated observations. Annals of Statistics, 9:737–757.

Kiefer, J. and Wynn, H. (1984). Optimum and minimax exact treatment designs for one-
dimensional autoregressive error processes. Annals of Statistics, 12:414–450.
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