Schätzung des Hazard-Ratios in zweiarmigen Überlebenszeitstudien

Dissertation
zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften

Der Fakultät Statistik
der Technischen Universität Dortmund

vorgelegt von
Sandra Ligges

Gutachter:

Prof. Dr. Christine Müller
Prof. Dr. Jörg Rahnenführer

Tag der mündlichen Prüfung:
19.12.2012

Inhaltsverzeichnis

1 Einleitung 1
2 Grundlagen der Überlebenszeitanalyse 3
2.1 Überlebenszeiten und Zensierungen 3
2.2 Überlebensfunktion, Hazard-Funktion und Hazard-Ratio 7
2.3 Verteilungen von Überlebenszeiten 9
2.4 Logrank-Test 11
3 Schätzung des Hazard-Ratios 17
3.1 Cox-Schätzer 18
3.2 Breslow-Schätzer 21
3.3 Erwartungswert der Logrank-Teststatistik 21
3.4 Wassmer-Schätzer 26
3.5 Modifizierungen des Wassmer-Schätzers 30
3.5.1 Biaskorrektur auf Basis variabler Größen 31
3.5.2 Biaskorrektur auf Basis fester Größen 33
3.6 Ein neuer Schätzer 35
3.7 Intervallschätzung 37
4 Vergleich der Schätzverfahren 41
4.1 Mean Squared Error der Punktschätzer 42
4.2 Durchführung und Auswertung einer Simulationsstudie 45
4.2.1 Versuchsplan 46
4.2.2 Verhalten der Punktschätzer 52
4.2.3 Empfehlungen zur Auswahl eines Punktschätzers 75
4.2.4 Verhalten der Intervallschätzer 87
4.2.5 Empfehlungen zur Auswahl eines Intervallschätzers 97
4.3 Anwendung der verschiedenen Schätzverfahren an einem Beispielda- tensatz 105
5 Zusammenfassung 111
A Approximation des Verhältnisses der Größen der Risikomengen der Logrank-Statistik 115
B Weitere Tabellen 119
C Weitere Abbildungen 153
Literaturverzeichnis 279

1 Einleitung

In vielen statistischen Untersuchungen ist die primäre Zielvariable eine Überlebenszeit. Es wird die Zeit gemessen, die vergeht, bis ein bestimmtes Ereignis eintritt. Für den Vergleich zweier Gruppen hinsichtlich ihrer Überlebenszeiten stellt das HazardRatio als relatives Risiko der Überlebenszeitanalyse ein häufig gewähltes Maß zur Beurteilung des Effekts interessierender Einflussvariablen dar. In dieser Arbeit werden neue Punkt- und Intervallschätzverfahren für das (logarithmierte) Hazard-Ratio in zweiarmigen Studien mit Survival-Endpunkten entwickelt und mit bereits etablierten Schätzverfahren verglichen.

Zwei wohl bekannte Punktschätzer für das Hazard-Ratio bilden der Breslow- und vor allem der Cox-Schätzer. Letzterer wird aus einem Cox-Proportional-Hazards-Modell gewonnen. Wassmer (2006) entwickelte einen neuen Schätzer, der auf dem approximativen Erwartungswert für die Teststatistik des Logrank-Tests nach Schoenfeld (1981) beruht. In vielen Situationen verfügt dieser Schätzer über eine größere Verzerrung, aber eine geringere Varianz als der Cox-Schätzer und kann daher letzteren häufig im Mean Squared Error (MSE) übertreffen. Der Wassmer-Schätzer liefert die Motivation für weitere verbesserte Punktschätzverfahren. Einerseits ist es erstrebenswert, die Verzerrung des Wassmer-Schätzers zu eliminieren oder zu verringern. Dieses gelingt für viele Situationen mit zwei neu konstruierten Schätzern. Andererseits kann nach Vorbild des Wassmer-Schätzers ein neuer Schätzer, der Shortened-Logrank-(SL-)Schätzer, entwickelt werden, der in einem stärkeren Ausmaß Varianz gegen Verzerrung eintauscht und sich in vielen Situationen hinsichtlich des MSEs als am vorteilhaftesten unter allen betrachteten Punktschätzern erweist. Da es zur guten wissenschaftlichen Praxis gehört, Punktschätzer in Begleitung mit korrespondierenden Intervallschätzern anzugeben, werden zusätzlich zwei neue Konfidenzintervalle, eins nach dem Wassmer- und eins nach dem SL-Typ, für das (logarithmierte) Hazard-Ratio konstruiert. Alle neuen Schätzverfahren werden für den Fall ohne und für den Fall mit Bindungen hergeleitet.

Mittels einer umfassenden Simulationsstudie mit vielen für eine Überlebenszeitstudie typischen Szenarien werden alle vorgestellten (bereits etablierte und neue) Schätzverfahren miteinander verglichen. Im Rahmen der Auswertung dieser Simulationsstudie wird ein Faustregelwerk entwickelt, welches dem Anwender ermöglicht, für eine konkrete Studie einen guten Punkt- und Intervallschätzer auszuwählen.

Mit Kapitel 2 wird eine theoretische Einführung in das Gebiet der Überlebenszeitanalyse gegeben. Die Vorstellung und Konstruktion der verschiedenen Punkt- und Intervallschätzverfahren erfolgt in Kapitel 3. In Kapitel 4 wird der Vergleich der Schätzverfahren behandelt. Nach einer Gegenüberstellung der theoretischen MSEs des Cox-, des Wassmer- und des SL-Schätzers werden der Aufbau, die Durchführung und die Ergebnisse der Simulationsstudie ausführlich präsentiert. Die Vorführung aller Schätzverfahren an einem Beispieldatensatz rundet dieses Kapitel ab. Die wesentlichen Ergebnisse dieser Arbeit werden in Kapitel 5 zusammengefasst. Im Anhang findet sich schließlich eine Zusammenstellung vieler verschiedener Abbildungen und Tabellen zur Visualisierung und Aufbereitung der Ergebnisse. Der Programmiercode zur Durchführung der Simulationsstudie und Erstellung der zugehörigen Abbildungen ist auf der beigefügten DVD enthalten bzw. im Internet herunterzuladen.

Überlebenszeiten werden in Studien auf verschiedensten Gebieten erhoben, womit auch die in dieser Arbeit vorzustellenden Schätzverfahren in unterschiedlichsten Arbeitsfeldern und für viele unterschiedliche Fragestellungen angewendet werden können. Es wird jedoch im Rahmen weiterer Forschungsaktivitäten angestrebt, die vorgestellten Schätzverfahren auf Basis dieser Arbeit für die Situation mehrstufiger gruppensequentieller und adaptiver Verfahren zu modifizieren. Das vorrangige Anwendungsgebiet insbesondere adaptiver Verfahren liegt traditionsgemäß in klinischen Studien. Daher werden bestimmte Begriffe und Darstellungen im Folgenden auf den Bereich der Biostatistik bzw. die Kompatibilität mit adaptiven Methoden abgestimmt sein (z.B. werden die Untersuchungsobjekte als Patienten bezeichnet).

2 Grundlagen der Überlebenszeitanalyse

Dieses Kapitel dient der Einführung wesentlicher Begriffe und Methoden der Überlebenszeitanalyse, die in der vorliegenden Arbeit Verwendung finden. In Abschnitt 2.1 erfolgt eine Definition von Überlebenszeiten und die Überlebenszeiten charakterisierenden Zensierungen. Bei der Analyse von Überlebenszeiten werden andere verteilungscharakterisierende Funktionen als bei unmittelbar auftretenden Beobachtungen verwendet. Diese sowie bestimmte typische Verteilungen von Überlebenszeiten werden in Abschnitt 2.2 bzw. Abschnitt 2.3 vorgestellt. Schließlich wird in Abschnitt 2.4 der Logrank-Test eingeführt. Dieser ist ein gängiger Test für das Zweistichprobenproblem der Überlebenszeitanalyse, also zur Untersuchung der Fragestellung, ob die Objekte einer Gruppe länger „leben" als die einer anderen Gruppe, und von zentraler Bedeutung für viele Methoden in dieser Arbeit. Für eine ausführlichere Einführung in all diese Verfahren wird auf Standardwerke der Überlebenszeitanalyse wie Cox und Oakes (1984), Kalbfleisch und Prentice (2002) und Klein und Moeschberger (2003) sowie auf Hollander und Wolfe (1999), Collett (2003) und Andersen und Keiding (2006) verwiesen, an die die folgenden Darstellungen z.T. angelehnt sind (vgl. auch Leissen, 2008).

2.1 Überlebenszeiten und Zensierungen

Als Überlebenszeiten werden Beobachtungen bezeichnet, die die Zeitspanne von einem fest definierten Anfangspunkt bis zum Eintritt eines ebenso fest definierten Ereignisses angeben. Der Eintritt des Ereignisses wird auch Ausfall genannt. Das zu beobachtende Ereignis ist nicht zu verwechseln mit dem Endpunkt, wie auch die Zielvariable in klinischen Studien bezeichnet wird. Häufig werden neben einem
primären Endpunkt ein oder mehrere sekundäre Endpunkte im Studienprotokoll definiert. Klinische Studien (vor allen Dingen der Phase III) bestehen oftmals aus einer Rekrutierungsphase, in der die Patienten schrittweise in die Studie eintreten (staggered entry), und einer Nachbeobachtungsphase, in der die Patienten weiter unter Kontrolle stehen, aber keine weiteren Patienten aufgenommen werden. Dies hat zur Folge, dass neben der Kalenderzeit der Studie (auch Studienzeit genannt) für jeden Patienten eine persönliche Patientenzeit betrachtet wird, deren Beginn (meist) nicht mit dem Beginn der Studie zusammenfällt. Als Anfangspunkt wird hier häufig der Zeitpunkt der Rekrutierung gewählt, welcher oftmals mit dem Zeitpunkt der Diagnosestellung und des Therapiebeginns zusammenfällt. Interessierende primäre Endpunkte in klinischen Überlebenszeitstudien stellen häufig das Überleben, aber auch die Heilung oder der Rückfall (bezüglich bestimmter Krankheiten) dar. Dazu zugehörige Ereignisse bilden das Versterben bzw. das Abklingen oder Wiederauftreten von Krankheitssymptomen. Die genaue Definition des Anfangspunkts, des Endpunkts und des Ereignisses sind ebenso wie die randomisierte Behandlungszuteilung und die Verblindung von Patient und behandelndem Arzt (wenn möglich) wesentlich für die Unverzerrtheit der Ergebnisse einer klinischen Studie. Für Ausführungen zu diesen Aspekten sei auf Schumacher und Schulgen (2002) verwiesen.

Oftmals kann das interessierende Ereignis für einen Patienten nicht genau beobachtet werden, in welchem Fall die zugehörige Überlebenszeit als zensiert bezeichnet wird. Diese Eigenschaft hebt Überlebenszeiten von Beobachtungen anderer statistischer Erhebungen ab und macht die meisten statistischen Standardverfahren für ihre Analyse ungeeignet. Es wird zwischen rechts-, links- und intervallzensierten Beobachtungen unterschieden. Im Rahmen der hier betrachteten klinischen Studien kann eine rechtszensierte Beobachtung entstehen, wenn das Ereignis für einen Patienten bei Studienende noch nicht eingetreten ist (generalized type I censoring) oder wenn ein anderes Ereignis zuerst eintritt, welches die weitere Verfolgung eines Patienten unmöglich macht (competing risk censoring). Letzterer Fall ist z.B. gegeben, wenn ein Patient an einer mit der Zielvariablen nicht in Verbindung stehenden Ursache verstirbt oder aus der Studie frühzeitig aussteigt, was auch als loss to follow up bezeichnet wird. Wichtig für unverzerrte Ergebnisse ist die Unabhängigkeit von den Zensierungs- und den Überlebenszeiten (random censoring). Dies impliziert, dass der Zensierungszeitpunkt nichts über die Überlebenszeit eines Studienteilnehmers aus-
sagt (vgl. Klein und Moeschberger, 2003). In der Praxis kommt es allerdings häufig vor, dass sich die Annahme dieser Unabhängigkeit als verletzt oder gar unplausibel erweist. Verlässt ein Patient z.B. aufgrund seines schlechten Gesundheitszustands kurz vor Eintritt des Ereignisses Tod die Studie, so liegt keine Unabhängigkeit zwischen seiner Überlebens- und Zensierungszeit vor (informative censoring, vgl. Collett, 2003).

Für eine formale Definition sei nun eine zweiarmige Überlebenszeitstudie mit Referenzgruppe (Gruppe 0) und Behandlungsgruppe (Gruppe 1) gegeben. Insgesamt treten $n:=n_{0}+n_{1}$ Patienten schrittweise während der Rekrutierungsphase der Länge a in die Studie ein. Die Patienten verbleiben in der Studie bis zum Eintritt des interessierenden Ereignisses, dem Ende der Studie oder dem Eintritt einer anderen Rechtszensierung, je nach dem was zuerst eintritt. Der Beginn der Studie sei mit t_{0} notiert. Die Nachbeobachtungsphase der Länge f beginnt zum Zeitpunkt t_{a} und endet mit dem Studienende zum Zeitpunkt t_{a+f}. Für jeden Patienten $(i, j), i=0,1, j=1, \ldots, n_{i}$, beschreibe

- $B_{i j}$ mit Realisierung $b_{i j}$ den von t_{0} betrachteten kalendarischen Eintrittszeitpunkt in die Studie,
- $T_{i j}$ mit Realisierung $t_{i j}$ die Überlebenzeit ab Eintritt in die Studie und
- $C_{i j}$ mit Realisierung $c_{i j}$ die Zensierungszeit ab Eintritt in die Studie.

Es gelte, dass $B_{01}, \ldots, B_{0 n_{0}}, B_{11}, \ldots, B_{1 n_{1}}, T_{01}, \ldots, T_{0 n_{0}}, T_{11}, \ldots, T_{1 n_{1}} \quad$ sowie $C_{01}, \ldots, C_{0 n_{0}}, C_{11}, \ldots, C_{1 n_{1}}, T_{01}, \ldots, T_{0 n_{0}}, T_{11}, \ldots, T_{1 n_{1}}$ jeweils gemeinsam stochastisch unabhängig seien. Da die Beobachtungen auch am Studienende zensiert werden, ist die Annahme der stochastischen Unabhängigkeit von $B_{i j}$ und $C_{i j}$ nicht haltbar. Darüber hinaus folgen die $B_{01}, \ldots, B_{0 n_{0}}, B_{11}, \ldots, B_{1 n_{1}}$ sowie die $T_{i 1}, \ldots, T_{i n_{i}}$ für je $i=0,1$ jeweils derselben Verteilung. Von den Zensierungszeiten $C_{i j}, i=0,1, j=1, \ldots, n_{i}$, wird häufig angenommen, dass sie exponentialverteilt sind. Zudem wird je nach Anwendung gefordert, dass die Verteilungen der Zensierungszeiten innerhalb derselben Gruppe oder auch gruppenübergreifend identisch sind (vgl. Abschnitt 4.2.1). Bei schrittweisem Eintreten der Patienten ist für die $B_{01}, \ldots, B_{0 n_{0}}, B_{11}, \ldots, B_{1 n_{1}}$ in vielen Fällen die Annahme einer stetigen

Abbildung 2.1: Lexisdiagramm für vier Patienten einer fiktiven Studie

Gleichverteilung auf dem Intervall $[0, a]$ plausibel. Beobachtet werden kann in der Praxis in der Regel nur $Y_{i j}=\min \left(T_{i j}, C_{i j}\right)$ mit Realsierung $y_{i j}$, wobei dann der Status der Beobachtung bekannt ist: Es sei $\zeta_{i j}=1$, wenn $t_{i j} \leq c_{i j}$ (die Beobachtung ist unzensiert), und $\zeta_{i j}=0$, wenn $t_{i j}>c_{i j}$ (die Beobachtung ist zensiert). Eine unzensierte beobachtete Überlebenszeit wird auch als Ereigniszeit bezeichnet.

Abbildung 2.1 stellt diese Studiensituation für vier fiktive Patienten grafisch in einem Lexis-Diagramm (Keiding, 1990) dar. Je zwei der vier Patienten werden auf die Referenz- bzw. die Behandlungsgruppe während der Rekrutierungsphase von $t_{0}=0$ bis $t_{a}=5$ randomisiert. Wohingegen für die Patienten 1 aus Gruppe 1 und Gruppe 0 nach zwei bzw. fünf Zeiteinheiten das Ereignis eintritt, scheidet Patient 2 aus Gruppe 0 nach drei Zeiteinheiten aus der Studie aus. Seine Beobachtung ist damit zensiert. Patient 2 aus Gruppe 1 verbleibt bis zum kalendarischen Ende $t_{a+f}=10$ ereignisfrei in der Studie, weshalb seine Beobachtung nach einer Patientenzeit von sechs Zeiteinheiten zensiert wird. Die Annahme der Unabhängigkeit zwischen den Eintrittszeitpunkten und den Überlebenszeiten der Studienteilnehmer (s.o.) bedeutet für die Analyse, dass die Eintrittszeitpunkte außen vorgelassen und die Überlebenszeiten direkt miteinander verglichen werden können, wie es in Abbildung 2.2 dargestellt ist.

Bei einer Rechtszensierung sind die unbeobachteten wahren Überlebenszeiten al-

Abbildung 2.2: Vergleichende Darstellung der (zensierten) Überlebenszeiten von vier Patienten einer fiktiven Studie ohne Kennzeichnung der Eintrittszeitpunkte
so größer als die beobachteten zensierten Überlebenszeiten. Bei linkszensierten Beobachtungen verhält es sich genau anders herum. Im Fall von intervallzensierten Beobachtungen ist nur ein Intervall bekannt, in dem die wahren Überlebenzeiten der Patienten liegen. In jedem Fall stellen zensierte Beobachtungen unvollständige Beobachtungen dar. Daher ist in der Überlebenszeitanalyse für inferenzstatistische Größen die Anzahl der Ereignisse, und nicht der Stichprobenumfang (hier die Anzahl rekrutierter Patienten), entscheidend. Die in dieser Arbeit zu untersuchenden Methoden eignen sich ausschließlich für die Analyse rechtszensierter Daten, welche in der Praxis im Übrigen am häufigsten vorkommen. Auf weitere Erläuterungen zu links- und intervallzensierten Überlebenszeiten wird daher an dieser Stelle verzichtet und auf Collett (2003) sowie Klein und Moeschberger (2003) verwiesen.

2.2 Überlebensfunktion, Hazard-Funktion und Hazard-Ratio

Für die Untersuchung der Verteilung der Überlebenszeiten einer Grundgesamtheit sind die Überlebensfunktion und die Hazard-Funktion von zentraler Bedeutung. Na-
turgemäß folgen die Überlebenszeiten $T_{j}, j=1, \ldots, n$, einer Stichprobe einer stetigen Verteilung mit Wahrscheinlichkeitsmasse auf dem Intervall $[0, \infty)$, die meist rechtsschief ist. Seien mit $f(t)$ und $F(t)$ die zu den T_{j} zugehörige Dichte- und Verteilungsfunktion bezeichnet. Die Überlebensfunktion

$$
S(t):=P(T \geq t)=\int_{t}^{\infty} f(u) d u
$$

gibt die Wahrscheinlichkeit wieder, dass ein Studienteilnehmer mindestens bis zum Zeitpunkt t überlebt. Offensichtlich gilt $S(t)=1-F(t)$. Die Hazard-Funktion oder bedingte Ausfallrate

$$
h(t):=\lim _{\varepsilon t \rightarrow 0} \frac{P(t \leq T<t+\varepsilon t \mid T \geq t)}{\varepsilon t}=\frac{f(t)}{S(t)}
$$

ist ein Maß für das unmittelbare Ausfallrisiko eines Patienten.
Wenn verschiedene Gruppen in der Verteilung ihrer Überlebenszeiten hinsichtlich bestimmter prognostischer Faktoren verglichen werden sollen, werden in der Regel die Überlebens- bzw. Hazardfunktionen betrachtet. Der Quotient der Werte der zu vergleichenden Hazard-Funktionen an einer Stelle $t \in[0, \infty)$ wird als Hazard-Ratio an der Stelle t bezeichnet. Manchmal tritt es auf, dass die Hazard-Funktionen der verschiedenen Gruppen proportional zueinander verlaufen, dass also das HazardRatio über die Zeit hinweg konstant bleibt. Lägen nun für Gruppe 0 und Gruppe 1 (vgl. Abschnitt 2.1) die proportionalen Hazard-Funktionen $h_{0}(t)$ bzw. $h_{1}(t)$ sowie die Überlebensfunktionen $S_{0}(t)$ bzw. $S_{1}(t)$ vor. Das konstante Hazard-Ratio von Gruppe 0 zu Gruppe 1 wird als

$$
\begin{equation*}
\omega:=\frac{h_{0}(t)}{h_{1}(t)} \forall t \in[0, \infty) \tag{2.1}
\end{equation*}
$$

definiert. Ist $\omega=1$, so ist das Risiko auszufallen an jedem Zeitpunkt $t \in[0, \infty)$ in beiden Gruppen identisch. Bei $\omega>1$ bzw. $\omega<1$ ist das Risiko für Patienten aus Gruppe 0 stets um den Faktor ω größer bzw. niedriger als für Patienten aus Gruppe 1. Aus (2.1) folgt im Übrigen, dass $S_{0}(t)=\left(S_{1}(t)\right)^{\omega}$, mit der Gleichheit, wenn $\omega=1$ (vgl. Collett, 2003, S. 46/47).

Das Hazard-Ratio gilt als Relatives Risiko der Überlebenszeitanalyse (vgl. Schumacher und Schulgen, 2002, S. 89/90). Es wird daher häufig in klinischen Studien zur Messung des Behandlungseffekts herangezogen.

2.3 Verteilungen von Überlebenszeiten

Zur Modellierung von Überlebenszeiten werden häufig die Exponential-, Weibull-, Gompertz-, Gamma-, Lognormal- oder Inverse-Gauß-Verteilung herangezogen. Sollen für verschiedene Gruppen Verteilungen mit proportionalen Hazard-Funktionen gefunden werden, so bieten sich im Speziellen die drei erstgenannten Verteilungen an. Die Dichte, Überlebens- und Hazard-Funktion der Weibullverteilung mit Formparameter $\gamma>0$ und Skalenparameter $\lambda>0(\operatorname{Weib}(\gamma, \lambda))$ sind definiert als

$$
\begin{aligned}
f_{W}(t) & =\lambda \gamma t^{\gamma-1} \exp \left(-\lambda t^{\gamma}\right) \mathrm{I}_{[0, \infty)}(t) \\
S_{W}(t) & =\exp \left(-\lambda t^{\gamma}\right) \mathrm{I}_{[0, \infty)}(t)+\mathrm{I}_{(-\infty, 0)}(t) \quad \text { bzw. } \\
h_{W}(t) & =\lambda \gamma t^{\gamma-1} \mathrm{I}_{[0, \infty)}(t)
\end{aligned}
$$

Mit der Wahl von $\gamma=1$ entsteht aus der Weibull- eine Exponentialverteilung mit Skalenparameter $\lambda>0(\operatorname{Exp}(\lambda))$, deren Dichte, Überlebens- und Hazard-Funktion durch

$$
\begin{aligned}
f_{E}(t) & =\lambda e^{-\lambda t} \mathrm{I}_{[0, \infty)}(t), \\
S_{E}(t) & =e^{-\lambda t} \mathrm{I}_{[0, \infty)}(t)+\mathrm{I}_{(-\infty, 0)}(t) \quad \text { bzw. } \\
h_{E}(t) & =\lambda \mathrm{I}_{[0, \infty)}(t)
\end{aligned}
$$

gegeben sind. Die zur Gompertz-Verteilung mit Formparameter $\gamma>0$ und Skalenparameter $\lambda>0(\operatorname{Gomp}(\gamma, \lambda))$ zugehörige Dichte, Überlebens- und Hazard-Funktion

Abbildung 2.3: Überlebens- und Hazardfunktionen von Exponential-, Weibull- und Gompertzverteilungen bei Variierung der Skalenparameter
haben die Gestalt

$$
\begin{aligned}
& f_{G}(t)=\lambda e^{\gamma t} \exp \left\{\frac{\lambda}{\gamma}\left(1-e^{\gamma t}\right)\right\} \mathrm{I}_{[0, \infty)}(t), \\
& S_{G}(t)=\exp \left\{\frac{\lambda}{\gamma}\left(1-e^{\gamma t}\right)\right\} \mathrm{I}_{[0, \infty)}(t)+\mathrm{I}_{(-\infty, 0)}(t) \quad \text { bzw. } \\
& h_{G}(t)=\lambda e^{\gamma t} \mathrm{I}_{[0, \infty)}(t) .
\end{aligned}
$$

Die Hazard-Funktionen der Weibull- und der Gompertz-Verteilung sind jeweils entweder monoton fallend oder steigend, die der Exponentialverteilung ist konstant. Es ist leicht zu erkennen, dass die Weibull- und Gompertz-Verteilung bei Festhalten des Formparameters und Variierung des Skalenparameters zu proportionalen Hazard-Funktionen führen. Verschiedene Exponentialverteilungen haben per se proportionale Hazard-Funktionen. Diese drei Verteilungen verfügen damit über die proportional hazards property (vgl. Collett, 2003). Diese Eigenschaft wird in Abbildung 2.3 veranschaulicht, in der die Überlebens- und Hazardfunktionen je zweier porportionaler Exponential-, Weibull- und Gompertzverteilungen gezeichnet sind. Die Formparameter für die beiden Weibull- und Gompertzverteilungen sind jeweils identisch. Die Skalenparameter wurden jeweils so gewählt, dass eine mediane Überlebenszeit von 10 bzw. 12 Zeiteinheiten vorliegt.

2.4 Logrank-Test

Es sei erneut das in Abschnitt 2.1 formal beschriebene und in Abschnitt 2.2 fortgeführte Szenario einer Studie gegeben. Es lägen also die (teils rechtszensierten) stochastisch unabhängigen Überlebenszeiten $Y_{i j}, i=0,1, j=1, \ldots, n_{i}$, einer Referenz(0) und Behandlungsgruppe (1) vor, wobei die zugehörigen unzensierten Überlebenszeiten $T_{i j}$ für je $i=0,1$ alle der gleichen Verteilung mit Überlebensfunktion $S_{i}(t)$ und Hazard-Funktion $h_{i}(t)$ folgen. Die Realisierungen $y_{i j}$ der $Y_{i j}$ sind (in der Theorie) aufgrund der stetigen Verteilungen der Überlebens- und Zensierungszeiten eindeutig. In der Praxis liegen jedoch aufgrund von Rundungen oftmals Bindungen unter den Beobachtungen vor. Im Verlauf dieses Abschnitts sowie in späteren Darstellungen wird zwischen den Fällen ohne und mit Bindungen im Datenmaterial unterschieden.

Von Interesse sei eins der folgenden ein- bzw. zweiseitigen Testprobleme:

$$
\begin{array}{ll}
\mathrm{H}_{0}^{\leq}: & h_{0}(t) \leq h_{1}(t) \forall t \leq \tau \quad \text { vs. } \quad \mathrm{H}_{1}^{>}: h_{0}(t)>h_{1}(t) \text { für mind. ein } t \leq \tau, \\
\mathrm{H}_{0}^{\geq}: & h_{0}(t) \geq h_{1}(t) \forall t \leq \tau \quad \text { vs. } \quad \mathrm{H}_{1}^{<}: h_{0}(t)<h_{1}(t) \text { für mind. ein } t \leq \tau \quad \text { und } \\
\mathrm{H}_{0}^{=}: & h_{0}(t)=h_{1}(t) \forall t \leq \tau \quad \text { vs. } \quad \mathrm{H}_{1}^{\neq}: h_{0}(t) \neq h_{1}(t) \text { für mind. ein } t \leq \tau .
\end{array}
$$

Dabei ist $\tau:=\min \left[\max \left(Y_{0 j}, j=1, \ldots, n_{0}\right), \max \left(Y_{1 j}, j=1, \ldots, n_{1}\right)\right]$ und bezeichnet somit die größte Überlebenszeit, zu der in jeder Gruppe noch mindestens ein Patient unter Risiko steht. Unter der Annahme von proportionalen Hazard-Funktionen mit Hazard-Ratio $\omega=\frac{h_{0}(t)}{h_{1}(t)} \forall t \in[0, \infty)$ zwischen den Gruppen entfällt die Schranke τ. Die zu prüfenden Hypothesenpaare lassen sich in diesem Fall wie folgt formulieren:

$$
\begin{array}{lll}
\mathrm{H}_{0}^{\leq}: & \omega \leq 1 \quad \text { vs. } \mathrm{H}_{1}^{>}: \omega>1 \\
\mathrm{H}_{0}^{\geq}: & \omega \geq 1 \quad \text { vs. } \quad \mathrm{H}_{1}^{<}: \omega<1 \quad \text { und } \\
\mathrm{H}_{0}^{=}: & \omega=1 \quad \text { vs. } \quad \mathrm{H}_{1}^{\neq}: \omega \neq 1 .
\end{array}
$$

Ein für diese Testprobleme geeigneter Test ist der bekannte und in klinischen Studien wohl etablierte Logrank-Test. Für die Berechnung der Teststatistik werden bei
diesem Test die Eintrittszeitpunkte der Patienten außen vorgelassen und die Überlebenszeiten vergleichend gegenübergestellt. Unter der Annahme der Unabhängigkeit von den Überlebenszeiten und den Eintrittszeitpunkten führt dies nicht zu einer Verfälschung der Ergebnisse (vgl. Abschnitt 2.1). Zudem gehen in die Teststatistik nur Informationen ein, die an den Ereigniszeiten beobachtet werden können. Insgesamt erfahren d der $n=n_{0}+n_{1}$ Studienteilnehmer an δ verschiedenen Ereigniszeiten ein Ereignis. Dabei ist $\delta<d$, wenn Bindungen unter den unzensierten Überlebenszeiten vorliegen. Gibt es keine Bindungen, so ist $\delta=d$.

Es wird zunächst der Fall ohne Bindungen unter den Beobachtungen betrachtet. Die Ereigniszeiten werden klassischerweise ihrer Größe nach sortiert. Dies ist im Fall mit Bindungen unabdingbar (vgl. unten). Da es aber im Fall ohne Bindungen nicht erforderlich ist und in späteren Darstellungen von mehrstufigen (adaptiven) Designs sogar „störend" wäre, werden hier die Ereigniszeiten in Reihenfolge des kalendarischen Auftretens der Ereignisse belassen. Es bezeichne im Fall ohne Bindungen y_{l} die nach den kalendarisch aufeinander folgenden Ereigniszeitpunkten $l=1, \ldots, d$ geordnete Folge der in einer Studie aufgetretenen Ereigniszeiten. Diese Folge der Ereigniszeiten kann auch als ihre ungeordnete Folge betrachtet werden. Für eine gegebenen Folge von Ereigniszeiten $y_{l}, l=1, \ldots, d$, gebe

$$
d_{i l}=\left|\left\{y_{i j} \mid y_{i j}=y_{l}, j=1, \ldots, n_{i}\right\}\right|
$$

die Anzahl der Patienten an, die in Gruppe $i=0,1$ zu dieser Zeit ausfällt. Für alle $l=1, \ldots, d$ gilt: $d_{i l} \in\{0,1\}, i=0,1$ mit $d_{l l}:=d_{0 l}+d_{1 l}=1$. Diejenigen Patienten, die bis kurz vor dem Zeitpunkt l der Größe y_{l} noch ereignisfrei und unzensiert sind, stehen an diesem Zeitpunkt unter Risiko. Die Größe der Risikomenge der Patienten aus Gruppe i zu einer Ereigniszeit y_{l} ist gegeben durch

$$
n_{i l}=\left|\left\{y_{i j} \mid y_{i j} \geq y_{l}, j=1, \ldots, n_{i}\right\}\right|
$$

Es sei analog $n_{. l}:=n_{0 l}+n_{1 l}$. Tabelle 2.1 veranschaulicht das für jedes y_{l} beschriebene Szenario. Sind nun d Tafeln durch realisierte y_{l} gegeben und werden die Randsummen in den entsprechenden Tafeln nach Tabelle 2.1 als feste Werte aufgefasst, so ist der Inhalt der Tafeln jeweils allein durch die Angabe von $d_{0 l}$ festgelegt. Seien

Tabelle 2.1: Anzahl der Ereignisse und der Patienten unter Risiko zur Ereigniszeit y_{l} zum Zeitpunkt l

Gruppe	\# der Ereignisse an y_{l}	\# der Patienten, die y_{l} überleben	\# der Patienten unter Risiko an y_{l}
0	$d_{0 l}$	$n_{0 l}-d_{0 l}$	$n_{0 l}$
1	$d_{1 l}$	$n_{1 l}-d_{1 l}$	$n_{1 l}$
Gesamt	1	$n_{. l}-d_{. l}$	$n_{. l}$

nun die zu den Realisierungen $d_{0 l}$ zugehörigen Zufallsvariablen mit $X_{0 l}$ bezeichnet. Bedingt auf die Randsummen der Tafeln sind die $X_{0 l}$ stochastisch unabhängig und folgen je einer Bernoulliverteilung mit Erwartungswert und Varianz

$$
\begin{align*}
\mathrm{E}\left[X_{0 l}\right] & =\frac{n_{0 l} h_{0}\left(y_{l}\right)}{n_{0 l} h_{0}\left(y_{l}\right)+n_{1 l} h_{1}\left(y_{l}\right)}=: p_{0 l} \quad \text { bzw. } \tag{2.2}\\
\operatorname{Var}\left[X_{0 l}\right] & =p_{0 l}\left(1-p_{0 l}\right) \tag{2.3}
\end{align*}
$$

(vgl. Cox, 1972; Schoenfeld, 1981). Liegen den Überlebenszeiten der zwei Gruppen proportionale Hazard-Funktionen zu Grunde, so gilt

$$
\begin{equation*}
p_{0 l}=\frac{n_{0 l} \omega}{n_{0 l} \omega+n_{1 l}} . \tag{2.4}
\end{equation*}
$$

Unter Güligkeit von $\mathrm{H}_{0}^{=}$resultiert zudem

$$
\begin{equation*}
p_{0 l}=\frac{n_{0 l}}{n_{0 l}+n_{1 l}}=: e_{0 l} . \tag{2.5}
\end{equation*}
$$

Liegen Bindungen unter den unzensierten Überlebenszeiten vor, so fallen d der $n \mathrm{~Pa}$ tienten zu $\delta<d$ verschiedenen Ereigniszeiten aus. Es bezeichne $y_{(l)}, l=1, \ldots, \delta$, die der Größe nach geordnete Reihe der unterschiedlichen aufgetretenen Ereigniszeiten über beide Gruppen. Die Anzahlen der Ereignisse in Gruppe i zu den geordneten Ereigniszeiten $y_{(l)}, l=1, \ldots, \delta$, ergeben sich hier zu

$$
d_{i l}^{B}=\left|\left\{y_{i j} \mid\left(y_{i j}=y_{(l)}\right) \wedge\left(\zeta_{i j}=1\right), j=1, \ldots, n_{i}\right\}\right| .
$$

Die Anzahlen der Patienten unter Risiko in Gruppe i zu den geordneten Ereigniszeiten $y_{(l)}, l=1, \ldots, \delta$, berechnen sich analog zu oben durch

$$
n_{i l}^{B}=\left|\left\{y_{i j} \mid y_{i j} \geq y_{(l)}, j=1, \ldots, n_{i}\right\}\right| .
$$

Zu einer Ereigniszeit $y_{(l)}$ erleben damit insgesamt $d_{. l}^{B}=d_{0 l}^{B}+d_{1 l}^{B}$ von insgesamt $n_{l}^{B}=n_{0 l}^{B}+n_{1 l}^{B}$ Patienten unter Risiko ein Ereignis. Für den Fall mit Bindungen kann eine analoge Tafel wie in Tabelle 2.1 erstellt werden. Für die Konstruktion der Teststatistik werden hier analog zu oben die Randsummen der resultierenden δ Tafeln als gegeben aufgefasst. Damit können ebenso analog Zufallsvariablen $X_{0 l}^{B}$ betrachtet werden, deren Realisierungen durch die $d_{0 l}^{B}$ gegeben sind. Bedingt auf die Randsummen sind die $X_{0 l}^{B}$ wie oben stochastisch unabhängig und folgen hier unter $\mathrm{H}_{0}^{=}$einer hypergeometrischen Verteilung mit Parametern $n_{l l}^{B}, n_{0 l}^{B}, d_{l}^{B}$ und Dichtefunktion

$$
\begin{equation*}
f\left(x_{0 l}^{B}\right)=\frac{\binom{n_{0 l}^{B}}{x_{0 l}^{B}}\binom{n_{. l}^{B}-n_{0 l}^{B}}{d_{. l}^{B}-x_{0 l}^{B}}}{\binom{n_{l}^{B}}{d_{. l}^{B}}} . \tag{2.6}
\end{equation*}
$$

Die Zufallsvariable $X_{0 l}^{B}$ kann Werte zwischen 0 und $\min \left(n_{00}^{B}, d_{l l}^{B}\right)$ annehmen. Ist ana$\log \mathrm{zu}$ oben $e_{0 l}^{B}:=\frac{n_{0 l}^{B}}{n_{0 l}^{B}+n_{1 l}^{B}}$, so gilt:

$$
\begin{aligned}
\mathrm{E}\left[X_{0 l}^{B}\right] & =e_{0 l}^{B} d_{. l}^{B} \quad \text { und } \\
\operatorname{Var}\left[X_{0 l}^{B}\right] & =e_{0 l}^{B}\left(1-e_{0 l}^{B}\right) d_{l l}^{B} \frac{\left(n_{l}^{B}-d_{l l}^{B}\right)}{\left(n_{. l}^{B}-1\right)} .
\end{aligned}
$$

Unter H_{1}^{\neq}ist die Verteilung von $X_{0 l}^{B}$ nicht einfach anzugeben.
Die Teststatistik des Logrank-Tests im Fall ohne Bindungen,

$$
\begin{equation*}
L R:=\frac{\sum_{l=1}^{d} X_{0 l}-\sum_{l=1}^{d} \frac{n_{0 l}}{n_{0 l}+n_{1 l}}}{\sqrt{\sum_{l=1}^{d} \frac{n_{0 l} n_{1 l}}{\left(n_{0 l}+n_{1 l}\right)^{2}}}}=\frac{\sum_{l=1}^{d}\left(X_{0 l}-e_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}} \tag{2.7}
\end{equation*}
$$

sowie die im Fall mit Bindungen,

$$
\begin{align*}
L R^{B} & :=\frac{\sum_{l=1}^{\delta} X_{0 l}^{B}-\sum_{l=1}^{\delta} \frac{n_{0 l}^{B}}{n_{0 l}^{B}+n_{1 l}^{B}} d_{. l}^{B}}{\sqrt{\sum_{l=1}^{\delta} \frac{n_{0 l}^{B} n_{1 l}^{B}}{\left(n_{0 l}^{B}+n_{1 l}^{B}\right)^{2}} d_{. l}^{B} \frac{\left(n_{l}^{B}-d_{l .}^{B}\right)}{\left(n_{. l}^{B}-1\right)}}} \\
& =\frac{\sum_{l=1}^{\delta}\left(X_{0 l}^{B}-e_{0 l}^{B} d_{. l}^{B}\right)}{\sqrt{\sum_{l=1}^{\delta} e_{0 l}^{B}\left(1-e_{0 l}^{B}\right) d_{l l}^{B} \frac{\left(n_{l}^{B}-d_{. l}^{B}\right)}{\left(n_{. l}^{B}-1\right)}}} \tag{2.8}
\end{align*}
$$

sind jeweils asymptotisch standardnormalverteilt. Damit ergeben sich sinnvolle Tests für die einseitigen Hypothesenpaare, wenn H_{0}^{\geq}verworfen wird, wenn $L R<u_{\alpha}$ (bzw. wenn $L R^{B}<u_{\alpha}$) und wenn H_{0}^{\leq}verworfen wird, wenn $L R>u_{1-\alpha}$ (bzw. wenn $L R^{B}>u_{1-\alpha}$), wobei u_{α} das α-Quantil der Standardnormalverteilung bezeichnet. Für das zweiseitige Hypothesenpaar wird analog $\mathrm{H}_{0}^{=}$verworfen, wenn $|L R|>u_{1-\frac{\alpha}{2}}$ (bzw. wenn $\left|L R^{B}\right|>u_{1-\frac{\alpha}{2}}$) oder wenn $L R^{2}>\chi_{1,1-\alpha}^{2}$ (bzw. wenn $\left(L R^{B}\right)^{2}>\chi_{1,1-\alpha}^{2}$), wobei $\chi_{1, \alpha}^{2}$ das α-Quantil der χ^{2}-Verteilung mit einem Freiheitsgrad bezeichnet.

Der Logrank-Test ist für alle Situationen geeignet, in denen die Hazard-Funktion einer Gruppe komplett oberhalb oder unterhalb der Hazard-Funktion einer anderen Gruppe verläuft. Allerdings stellt der Logrank-Test nur dann den gleichmäßig besten Test für das gegebene Testproblem dar, wenn proportionale Hazard-Funktionen zwischen den Gruppen vorliegen. Die Statistiken $L R$ bzw. $L R^{B}$ werden im Folgenden auch mit Logrank-Statistik (für den Fall ohne und mit Bindungen) bezeichnet.

3 Schätzung des Hazard-Ratios

Das Hauptaugenmerk der vorliegenden Arbeit liegt auf der Entwicklung und Untersuchung von Punktschätzverfahren für das (logarithmierte) Hazard-Ratio. Andersen (2006) gibt drei verschiedene Punktschätzer für das Hazard-Ratio zweier Verteilungen mit proportionalen Hazard-Funktionen an. Der wohl bekannteste unter diesen kann aus einem Cox-Modell (Cox, 1972) gewonnen werden. Dieser sogenannte CoxSchätzer wird in Abschnitt 3.1 vorgestellt. Crowley et al. (1982) führen eine ganze Klasse von Rang-Statistiken ein. Da die daraus resultierenden Schätzer für jede mögliche Gewichtung weniger effizient als der Cox-Schätzer sind (Andersen, 1983), werden sie hier nicht betrachtet. Für den Fall ohne Bindungen in den Daten liefert nach Andersen (2006) die dritte Möglichkeit zur Schätzung des Hazard-Ratios der Breslow-Schätzer (Breslow, 1975), welcher in Abschnitt 3.2 eingeführt und auf den Fall mit Bindungen erweitert wird.

Schoenfeld (1981) liefert einen unter H_{1}^{\neq}approximativ gültigen Erwartungswert für die Logrank-Statistik im Fall ohne Bindungen und skizziert den zugehörigen Beweis. Da diese Erwartungswertformel und einige der in dem Beweis enthaltenden Ideen für die Herleitungen der weiteren folgenden Punkt-und Intervallschätzer in diesem Kapitel wesentlich sind, wird der Beweis in Abschnitt 3.3 ausführlich aufbereitet. Für den Fall ohne Bindungen schlägt Wassmer (2006) einen Schätzer vor, der auf dem approximativen Erwartungswert für die Logrank-Statistik nach Schoenfeld (1981) basiert. Dieser wird in Abschnitt 3.4 beschrieben und auf den Fall mit Bindungen übertragen.

Da der Wassmer-Schätzer unter H_{1}^{\neq}nicht erwartungstreu ist, werden in Abschnitt 3.5 mittels des biaskorrigierten Wassmer-Schätzers I und II zwei Vorschläge für eine Biaskorrektur des Schätzers gegeben. In Abschnitt 3.6 wird ein neuer Schätzer (SL-Schätzer) präsentiert, welcher insgesamt über eine stärkere Verzerrung, aber eine geringere Varianz als alle anderen Schätzer verfügt. Diese drei
neuen Schätzer werden wie die anderen für den Fall ohne und mit Bindungen bereitgestellt. Für alle vorzustellenden Schätzer gilt, dass sie stets für die Schätzung des logarithmierten Hazard-Ratios formuliert werden. Schätzer für das Hazard-Ratio selbst entstehen durch Exponierung der jeweiligen gegebenen Schätzer.

In der Regel wird in einem Studienprotokoll festgelegt, dass neben der Testentscheidung sowohl eine Punkt- als auch eine Intervallschätzung für den Behandlungseffekt angegeben werden sollen. Daher werden hier auch Konfidenzintervalle für das (logarithmierte) Hazard-Ratio behandelt. In Abschnitt 3.7 werden neben dem zum Cox-Schätzer zugehörigen Konfidenzintervall zwei Vorschläge für neue Konfidenzintervalle gegeben, die sich aus dem Wassmer- bzw. dem SL-Schätzer ableiten.

3.1 Cox-Schätzer

Seien $h_{j}^{*}(t), j=1, \ldots, n$, die Hazard-Funktion von Patient j sowie $\boldsymbol{x}_{\boldsymbol{j}} \in \mathbb{R}^{p}$ der Vektor seiner Kovariablen. Bezeichne ferner $h^{*}(t)$ die sogenannte Baseline-HazardFunktion, die die für einen (fiktiven) Patienten mit Kovariablenvektor $\boldsymbol{x}=(0, \ldots, 0)^{t}$ zugehörige Hazard-Funktion darstellt. Die Gleichung eines Cox-Modells für diese Situation lautet (Cox, 1972):

$$
\begin{equation*}
h_{j}^{*}(t)=\exp \left(\boldsymbol{\beta}^{\boldsymbol{t}} \boldsymbol{x}_{\boldsymbol{j}}\right) h^{*}(t), \tag{3.1}
\end{equation*}
$$

wobei $\boldsymbol{\beta} \in \mathbb{R}^{p}$ den Parametervektor des Modells darstellt. Unter der Annahme, dass nur die Zugehörigkeit zum Studienarm die Gestalt der Hazard-Funktion beeinflusst, wird nur eine Kovariable x_{j} mit Parameter β modelliert, wobei x_{j} wie folgt festgelegt werden kann:

$$
x_{j}= \begin{cases}0, & \text { falls Patient } j \text { zur Behandlungsgruppe gehört }, \\ 1, & \text { falls Patient } j \text { zur Referenzgruppe gehört. }\end{cases}
$$

Damit entspricht $h_{j}^{*}(t)$ entweder $h^{*}(t)$ oder $\exp (\beta) h^{*}(t)$, je nach dem ob Patient j zur Behandlungs- oder zur Referenzgruppe gehört. In Fortführung der Notation von Kapitel 2, dass $h_{0}(t)$ und $h_{1}(t)$ die Hazard-Funktionen der Referenz- bzw. der

Behandlungsgruppe bezeichnen, folgt aus (3.1), dass

$$
\frac{h_{0}(t)}{h_{1}(t)}=\exp (\beta) \quad \Longleftrightarrow \quad \beta=\ln \left(\frac{h_{0}(t)}{h_{1}(t)}\right)
$$

Der Parameter β gibt also das logarithmierte Hazard-Ratio der beiden Studienarme wieder. Eine Schätzung für β wird durch die Bestimmung des Maximums der (logarithmierten) partiellen Likelihood-Funktion nach Cox (1975) für das Modell (3.1) gewonnen, die im Fall ohne Bindungen allgemein folgende Gestalt hat:

$$
\begin{equation*}
\ln (L(\boldsymbol{\beta}))=\sum_{l=1}^{d}\left(\boldsymbol{\beta}^{\boldsymbol{t}} \boldsymbol{x}_{\boldsymbol{l}}-\ln \left(\sum_{\tilde{l}=1}^{n . \boldsymbol{l}} \exp \left(\boldsymbol{\beta}^{\boldsymbol{t}} \boldsymbol{x}_{\tilde{l}}\right)\right)\right) \tag{3.2}
\end{equation*}
$$

Dabei gibt d die Anzahl der Ereignisse und $n_{. l}:=n_{0 l}+n_{1 l}$ die Anzahl der Patienten unter Risiko aus beiden Gruppen zur Ereigniszeit y_{l} an (vgl. Abschnitt 2.4). Im oben beschriebenen Spezialfall verkürzt sich die log-Likelihood zu

$$
\ln (L(\beta))=d_{0 .} \beta-\sum_{l=1}^{d} \ln \left(n_{0 l} \exp (\beta)+n_{1 l}\right),
$$

wobei $d_{0 .}:=\sum_{l=1}^{d} d_{0 l}$ die Gesamtzahl aller Ereignisse in Gruppe 0 kennzeichnet. Mit

$$
\frac{\partial \ln (L(\beta))}{\partial \beta}=d_{0 .}-\sum_{l=1}^{d} \frac{n_{0 l} \exp (\beta)}{n_{0 l} \exp (\beta)+n_{1 l}}
$$

und $\beta=\ln (\omega)$ resultiert eine Schätzung für $\ln (\omega)$ mittels des Cox-Schätzers

$$
\begin{equation*}
S_{C}:=[\widehat{\ln (\omega)}]_{C}:=\ln \left(\omega_{0}\right) \left\lvert\,\left(\sum_{l=1}^{d} X_{0 l}=\sum_{l=1}^{d} \frac{n_{0 l} \exp \left(\ln \left(\omega_{0}\right)\right)}{n_{0 l} \exp \left(\ln \left(\omega_{0}\right)\right)+n_{1 l}}\right)\right. \tag{3.3}
\end{equation*}
$$

wobei $X_{0 l}$ die zu $d_{0 l}$ zugehörige Zufallsvariable darstellt (vgl. Abschnitt 2.4).
Im Fall von Bindungen hat die exakte partielle Likelihood-Funktion des Modells eine sehr komplizierte Gestalt (vgl. Kalbfleisch und Prentice, 2002). Jedoch gibt es Approximationen für diese, z.B. die nach Cox (1972), nach Breslow (1974) und nach

Efron (1977), die eine wesentlich einfachere Form aufweisen und im Fall ohne Bindungen auf die (exponierte) Funktion (3.2) zusammenfallen. Anhand dieser Funktionen lässt sich bei Vorlage von Bindungen in den Daten analog ein Schätzer für das (logarithmierte) Hazard-Ratio bestimmen. In der Simulationsstudie (Abschnitt 4.2) wurde bei Bindungen die Efron-Approximation verwendet. Der Cox-Schätzer wird im Fall von Bindungen im Folgenden mit S_{C}^{B} notiert.

Dass der Cox-Schätzer über die guten Eigenschaften eines ML-Schätzers verfügt (was nicht per se klar ist, da er aus der partiellen Likelihood-Funktion gewonnen wird), konnte in verschiedenen Arbeiten gezeigt werden: Efron (1977) sowie Begun et al. (1983) bestätigen dem Cox-Schätzer asymptotische Effizienz, Tsiatis (1981) asymptotische Normalverteilung und Andersen und Gill (1982) Konsistenz. Damit ist evident, dass der Cox-Schätzer zumindest bei größeren Stichprobenumfängen für die Schätzung des (logarithmierten) Hazard-Ratios optimal ist. Die im Folgenden vorzustellenden Schätzer sind nur unter unter $\mathrm{H}_{0}^{=}$erwartungstreu. Allerdings werden die Ergebnisse der Simulationsstudie (Abschnitte 4.2.2 und 4.2.3) zeigen, dass der Cox-Schätzer insgesamt über eine höhere Varianz als die anderen Schätzer verfügt. Dies hat zur Folge, dass der Cox-Schätzer bei kleineren Stichprobenumfängen und in den Fällen, in denen die Verzerrungen der anderen Schätzer gering sind, von diesen im Mean Squared Error unterboten werden kann (vgl. zu diesen Aspekten auch Abschnitt 4.1, in dem die Varianzen und MSEs für den Cox-, den Wassmerund den SL-Schätzer formal gegenübergestellt werden). Ein weiterer Nachteil von S_{C} bzw. S_{C}^{B} gegenüber den folgenden Schätzern besteht darin, dass sie nicht geschlossen darstellbar sind und mittels nicht-linearer Optimierungsverfahren iterativ bestimmt werden müssen. Ein weiterer Vorteil des Cox-Schätzers ist, dass er im Rahmen eines Modells bestimmt wird, in dem andere Kovariablen mitaufgenommen werden können, deren störende Einflüsse auf die Schätzung des Behandlungseffekts dann durch gleichzeitige Schätzung „ausgeschaltet" oder zumindest gemindert werden. Dies ist bei den folgenden Schätzern nicht möglich. Es ist daher zu erwarten, dass der Cox-Schätzer den anderen Schätzern überlegen sein wird, wenn weitere Kovariablen außer der Behandlung das Hazard-Ratio verschiedener Patientengruppen (stark) beeinflussen.

3.2 Breslow-Schätzer

Im Breslow-Schätzer (Breslow, 1975) für das logarithmierte Hazard-Ratio werden die beobachteten Anzahlen der Ereignisse der beiden Gruppen ins Verhältnis zu den jeweiligen unter $\mathrm{H}_{0}^{=}$erwarteten Anzahlen der Ereignisse gesetzt:

$$
S_{B}:=\ln \left(\frac{\frac{\sum_{l=1}^{d} X_{0 l}}{\sum_{l=1}^{d} e_{0 l}}}{\frac{\sum_{l=1}^{d}\left(1-X_{0 l}\right)}{\sum_{l=1}^{d} e_{1 l}}}\right)=\ln \left(\sum_{l=1}^{d} X_{0 l} \sum_{l=1}^{d} e_{1 l}\right)-\ln \left(\left(d-\sum_{l=1}^{d} X_{0 l}\right) \sum_{l=1}^{d} e_{0 l}\right) .
$$

Für die Situation von Bindungen in den Beobachtungen lässt sich der Schätzer für $\ln (\omega)$ wie folgt anpassen:

$$
S_{B}^{B}:=\ln \left(\sum_{l=1}^{\delta} X_{0 l}^{B} \sum_{l=1}^{\delta} e_{1 l}^{B} d_{. l}^{B}\right)-\ln \left(\left(d-\sum_{l=1}^{\delta} X_{0 l}^{B}\right) \sum_{l=1}^{\delta} e_{0 l}^{B} d_{. l}^{B}\right) .
$$

Analog zu Abschnitt 2.4 ist dabei $e_{1 l}:=\frac{n_{1 l}}{n_{0 l}+n_{1 l}}$ und $e_{1 l}^{B}:=\frac{n_{1 l}^{B}}{n_{0 l}^{B}+n_{1 l}^{B}}$. Der BreslowSchätzer ist nur unter der Nullhypothese $\mathrm{H}_{0}^{=}$konsistent und erwartungstreu. Dabei nimmt die Verzerrung mit Entfernung von $\ln (\omega)=0$ zu. Sein Vorteil liegt in seiner einfacheren Berechenbarkeit. Andersen (2006) nennt ihn in diesem Sinne einen , ad-hoc-Schätzer". Die Ergebnisse der Simulationsstudie werden zeigen, dass S_{B} und S_{B}^{B} über vergleichsweise kleine Varianzen verfügen und in und nahe $\ln (\omega)=0$ sinnvolle Schätzer darstellen.

3.3 Erwartungswert der Logrank-Teststatistik

Schoenfeld (1981) leitet einen unter H_{1}^{\neq}approximativ gültigen Erwartungswert für die Logrank-Statistik im Fall ohne Bindungen her. Diese Herleitung wird im Folgenden ausführlich dargestellt.

Wir blicken erneut auf die in Kapitel 2 beschriebene Situation einer zweiarmigen Überlebenszeitstudie mit n Studienteilnehmern, von denen n_{0} in Gruppe 0 und n_{1} in Gruppe 1 eingeteilt werden. Die Verteilung der Überlebenszeiten der Patienten wird abhängig von der Gruppenzugehörigkeit durch die Dichte, Survival- und Hazardfunktion $f_{i}(t), S_{i}(t)$ und $h_{i}(t)$ für je $i=0,1$ beschrieben. Zudem gibt $G_{i}(t)$ die

Verteilungsfunktion der Zensierungszeiten der Patienten in Gruppe i an. Den Verteilungen der beiden Gruppen lägen proportionale Hazard-Funktionen zugrunde, so dass $\frac{h_{0}(t)}{h_{1}(t)}:=\omega \forall t \in[0, \infty)$. Von Interesse sei das Testproblem $H_{0}^{=}: \omega=1$ vs. $\mathrm{H}_{1}^{\neq}: \omega \neq 1$, welches mit einem Logrank-Test (vgl. Abschnitt 2.4) überprüft werden soll.

Während der Studienzeit erfahren d der $n:=n_{0}+n_{1}$ Patienten ihr Ereignis. Die zugehörigen beobachteten eindeutigen Ereigniszeiten sind durch $y_{l}, l=1, \ldots, d$, gegeben. Die Teststatistik des Logrank-Tests ((2.7) auf Seite 14) hat die Gestalt

$$
L R:=\frac{\sum_{l=1}^{d}\left(X_{0 l}-e_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}} .
$$

Bedingt auf die beobachteten Anzahlen unter Risiko $n_{0 l}, n_{1 l}, l=1, \ldots, d$, folgen die in der Teststatistik enthaltenen Zufallsgrößen $X_{0 l}$ einer Bernoulliverteilung mit dem jeweiligen Erwartungswert

$$
\begin{equation*}
p_{0 l}=\frac{n_{0 l} \omega}{n_{0 l} \omega+n_{1 l}}=\frac{n_{0 l} \exp (\ln (\omega))}{n_{0 l} \exp (\ln (\omega))+n_{1 l}} \tag{3.4}
\end{equation*}
$$

(Cox, 1972). Unter $\mathrm{H}_{0}^{=}$gilt $p_{0 l}=\frac{n_{0 l}}{n_{0 l}+n_{1 l}}=e_{0 l}$. Der Wert $e_{0 l}$ gibt den Anteil der Patienten in Gruppe 0 an allen Patienten an, die zum Zeitpunkt l unter Risiko stehen. Demgegenüber gibt

$$
\varepsilon_{0}(t)=\frac{n_{0} S_{0}(t)\left(1-G_{0}(t)\right)}{n_{0} S_{0}(t)\left(1-G_{0}(t)\right)+n_{1} S_{1}(t)\left(1-G_{1}(t)\right)}
$$

den erwarteten Anteil der Patienten in Gruppe 0 an allen Patienten unter Risiko zum Zeitpunkt t an. Es gilt

$$
\begin{equation*}
e_{0 l}-\varepsilon_{0}\left(y_{l}\right) \xrightarrow{n \rightarrow \infty} 0 . \tag{3.5}
\end{equation*}
$$

Die wesentliche Annahme der folgenden Herleitung für den Erwartungswert von $L R$ unter H_{1}^{\neq}ist, dass

$$
\begin{equation*}
\ln (\omega) O\left(n^{-\frac{1}{2}}\right) \text { ist, } \tag{3.6}
\end{equation*}
$$

dass also $\sqrt{n} \ln (\omega)$ beschränkt ist. Dies bedeutet, dass $\ln (\omega) \rightarrow 0$ für $n \rightarrow \infty$, was äquivalent dazu ist, dass $\omega \rightarrow 1$ für $n \rightarrow \infty$. Dies erscheint widersinning, da $\omega=1$ das Hazard-Ratio unter $\mathrm{H}_{0}^{=}$beschreibt und nach dem Erwartungswert für die Logrank-Statistik unter H_{1}^{\neq}gesucht wird. Jedoch kann über diese Annahme eine gute Näherung an den wahren Erwartungswert in der Nähe von $\omega=1$ erreicht werden, wie an den Ergebnissen der Simulationsstudie in Abschnitt 4.2.2-4.2.5 zu erkennen sein wird. Aus (3.6) folgt, dass

$$
\begin{equation*}
p_{0 l}-e_{0 l} \xrightarrow{n \rightarrow \infty} 0 . \tag{3.7}
\end{equation*}
$$

Außerdem soll gefordert werden, dass die Zensierungsverteilungen in den beiden Gruppen identisch sind, dass also $G_{0}(t)=G_{1}(t)$, womit

$$
\begin{equation*}
\varepsilon_{0}(t)-e_{0} \xrightarrow{n \rightarrow \infty} 0 \forall t \in[0, \infty), \tag{3.8}
\end{equation*}
$$

wobei $e_{i}:=\frac{n_{i}}{n_{0}+n_{1}}$ den Anteil der in Gruppe i eingeteilten Patienten an allen Patienten bezeichnet.

Die Logrank-Statistik lässt sich wie folgt zerlegen:

$$
L R=\frac{\sum_{l=1}^{d}\left(X_{0 l}-p_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}}+\frac{\sum_{l=1}^{d}\left(p_{0 l}-e_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}} .
$$

Für diese Form ist einfach zu erkennen, dass aus (3.7) folgt, dass $L R-U$ mit

$$
\begin{equation*}
U:=\underbrace{\frac{\sum_{l=1}^{d}\left(X_{0 l}-p_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)}}}_{=: U_{1}}+\underbrace{\frac{\sum_{l=1}^{d}\left(p_{0 l}-e_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}}}_{=: U_{2}} \tag{3.9}
\end{equation*}
$$

in Wahrscheinlichkeit gegen Null konvergiert. Für gegebene Anzahlen unter Risiko $n_{0 l}, n_{1 l}, l=1, \ldots, d$, sind die $X_{0 l}$ stochastisch unabhängig sowie bernoulliverteilt mit Erwartungswert $p_{0 l}$ und Varianz $p_{0 l}\left(1-p_{0 l}\right)$. Daher folgt mit dem zentralen Grenzwertsatz, dass U_{1} asymptotisch einer Standardnormalverteilung folgt (vgl. auch Cox, 1975). Der zweite Term U_{2} bestimmt die Lageverschiebung von $L R$ von Null, die
nun im Folgenden approximativ bestimmt werden soll. Dafür wird zunächst der Erwartungswert der Zufallsvariable $X_{0 l}\left(p_{0 l}\right.$, vgl. (3.4)) als eine Funktion von $\ln (\omega)$ aufgefasst und mittels einer Taylorentwicklung ersten Grades um Null angenähert. Für die Funktion $f(x)=\frac{n_{01} \exp (x)}{n_{01} \exp (x)+n_{1 l}}$ folgt

$$
f^{\prime}(x)=\frac{\left(n_{0 l} \exp (x)\right)\left(n_{0 l} \exp (x)+n_{1 l}\right)-\left(n_{0 l} \exp (x)\right)^{2}}{\left(n_{0 l} \exp (x)+n_{1 l}\right)^{2}} .
$$

Damit berechnen sich die beiden Komponenten des ersten Taylorpolynoms um Null zu:

$$
\begin{aligned}
\frac{f^{0}(0)}{0!}(x-0)^{0} & =\frac{n_{0 l}}{n_{0 l}+n_{1 l}} \text { und } \\
\frac{f^{1}(0)}{1!}(x-0)^{1} & =\frac{n_{0 l}\left(n_{0 l}+n_{1 l}\right)-n_{0 l}^{2}}{\left(n_{0 l}+n_{1 l}\right)^{2}} \cdot x \\
& =\frac{n_{0 l}}{n_{0 l}+n_{1 l}}\left(1-\frac{n_{0 l}}{n_{0 l}+n_{1 l}}\right) \cdot x .
\end{aligned}
$$

Wird nun das resultierende erste Taylorpolynom in jeden Erwartungswert $p_{0 l}$ für den Punkt $x=\ln (\omega)$ eingesetzt, so folgt als Annäherung für die Erwartungswerte $p_{0 l}, l=1, \ldots, d$, um $\ln (\omega)=0$:

$$
\begin{align*}
p_{0 l} & \approx \frac{n_{0 l}}{n_{0 l}+n_{1 l}}+\frac{n_{0 l}}{n_{0 l}+n_{1 l}}\left(1-\frac{n_{0 l}}{n_{0 l}+n_{1 l}}\right) \ln (\omega) \\
& =e_{0 l}+e_{0 l}\left(1-e_{0 l}\right) \ln (\omega) \tag{3.10}
\end{align*}
$$

Damit folgt als Annäherung für den Term U_{2} in (3.9):

$$
U_{2} \approx \frac{\sum_{l=1}^{d} \ln (\omega) e_{0 l}\left(1-e_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}}=\frac{\frac{1}{n} \sum_{l=1}^{d} \ln (\omega) e_{0 l}\left(1-e_{0 l}\right)}{\frac{1}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}} .
$$

Aufgrund von (3.5) folgt nun, dass

$$
U_{2}-\frac{\sqrt{n} \frac{1}{n} \sum_{l=1}^{d} \ln (\omega) \varepsilon_{0}\left(y_{l}\right)\left(1-\varepsilon_{0}\left(y_{l}\right)\right)}{\sqrt{\frac{1}{n} \sum_{l=1}^{d} \varepsilon_{0}\left(y_{l}\right)\left(1-\varepsilon_{0}\left(y_{l}\right)\right)}} \xrightarrow{n \rightarrow \infty} 0 .
$$

Es sei

$$
V(t):=e_{0}\left(1-G_{0}(t)\right) f_{0}(t)+e_{1}\left(1-G_{1}(t)\right) f_{1}(t)
$$

die gepoolte unvollständige Dichtefunktion für die Überlebenszeiten mit gepoolter Gesamtausfallwahrscheinlichkeit $v:=\int_{0}^{\infty} V(t) d t$. Damit gilt nun unter Betrachtung des Gesetzes der großen Zahlen

$$
U_{2}-\frac{\sqrt{n} \int_{0}^{\infty} \ln (\omega) \varepsilon_{0}(t)\left(1-\varepsilon_{0}(t)\right) V(t) d t}{\sqrt{\int_{0}^{\infty} \varepsilon_{0}(t)\left(1-\varepsilon_{0}(t)\right) V(t) d t}} \xrightarrow{n \rightarrow \infty} 0 .
$$

Unter Berücksichtigung von (3.8) folgt schließlich, dass

$$
U_{2}-\frac{\sqrt{n} \ln (\omega) e_{0}\left(1-e_{0}\right) \int_{0}^{\infty} V(t) d t}{\sqrt{e_{0}\left(1-e_{0}\right) \int_{0}^{\infty} V(t) d t}}=U_{2}-\ln (\omega) \sqrt{n e_{0}\left(1-e_{0}\right) v} \xrightarrow{n \rightarrow \infty} 0 .
$$

Schätzen wir v durch $\frac{d}{n}$ und definieren $r:=\frac{n_{0}}{n_{1}}$, so erhalten wir:

$$
\sqrt{n e_{0}\left(1-e_{0}\right) v}=\sqrt{d \frac{n_{0}}{n_{0}+n_{1}} \frac{n_{1}}{n_{0}+n_{1}}}=\sqrt{d \frac{\frac{n_{0}}{n_{1}}}{\frac{n_{0}}{n_{1}}+1} \frac{1}{\frac{n_{0}}{n_{1}}+1}}=\frac{\sqrt{d r}}{1+r} .
$$

Insgesamt erhalten wir damit schließlich, dass

$$
U_{2}-\frac{\sqrt{d r}}{1+r} \ln (\omega) \xrightarrow{n \rightarrow \infty} 0 .
$$

Dies bedeutet, dass

$$
\begin{equation*}
E[L R] \approx \frac{\sqrt{d r}}{1+r} \ln (\omega) \tag{3.11}
\end{equation*}
$$

eine Annäherung an den Erwartungswert der Logrank-Statistik $L R$ in der Nähe von $\ln (\omega)=0$ und bei Vorlage gleicher Zensierungsverteilungen darstellt. Aufgrund der Annahme von (3.6), die in fast jedem Schritt verwendet wird, ist zu erwarten, dass die Güte der Approximation schlechter wird, je weiter das wahre $\ln (\omega)$ von Null entfernt liegt.

3.4 Wassmer-Schätzer

Bevor die Vorstellung des Wassmer-Schätzers erfolgt, soll gezeigt werden, dass die Herleitung des approximativen Erwartungswerts der Logrank-Teststatistik unter H_{1}^{\neq} (3.11) sich unter den gleichen Voraussetzungen vereinfacht wie folgt vornehmen lässt.

Im Fall ohne Bindungen ist der Erwartungswert einer auf die beobachteten Risikomengen bedingten Logrank-Statistik durch

$$
\begin{equation*}
\mathrm{E}[L R]=\frac{\sum_{l=1}^{d}\left(p_{0 l}-e_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}} \tag{3.12}
\end{equation*}
$$

mit

$$
\begin{equation*}
p_{0 l}:=\frac{n_{0 l} \exp (\ln (\omega))}{n_{0 l} \exp (\ln (\omega))+n_{1 l}} \tag{3.13}
\end{equation*}
$$

gegeben (vgl. (2.2), (2.4) und (2.7) auf den Seiten 13 bzw. 14). Nach einer Taylorentwicklung vom Grad 1 ergibt sich für die Erwartungswerte der zu betrachtenden Zufallsgrößen $X_{0 l}$ in der Nähe von $\ln (\omega)=0$:

$$
\mathrm{E}\left[X_{0 l}\right]=p_{0 l} \approx e_{0 l}+e_{0 l}\left(1-e_{0 l}\right) \ln (\omega), l=1, \ldots, d,
$$

(vgl. (3.10)). Unter Verwendung von

$$
\begin{align*}
e_{0 l} & =\frac{n_{0 l}}{n_{0 l}+n_{1 l}}=\frac{r_{l} n_{1 l}}{r_{l} n_{1 l}+n_{1 l}}=\frac{r_{l}}{1+r_{l}} \quad \text { und } \tag{3.14}\\
e_{0 l}\left(1-e_{0 l}\right) & =\frac{r_{l}}{1+r_{l}} \frac{1}{1+r_{l}}=\frac{r_{l}}{\left(1+r_{l}\right)^{2}} \tag{3.15}
\end{align*}
$$

folgt damit für $r_{l}:=\frac{n_{0 l}}{n_{1 l}}$

$$
\begin{aligned}
\mathrm{E}[L R] & \approx \frac{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right) \ln (\omega)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}}=\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)} \ln (\omega) \\
& =\sqrt{\sum_{l=1}^{d} \frac{r_{l}}{\left(1+r_{l}\right)^{2}}} \ln (\omega) .
\end{aligned}
$$

Abbildung 3.1: Funktion des Ausgangsstichprobenverhältnisses im Erwartungswert der Logrank-Statistik

In Anhang A wird dargestellt, dass unter $\mathrm{H}_{0}^{=}$und identischen Zensierungsverteilungen in den Gruppen, $r_{l} \forall l=1, \ldots, d$ durch r angenähert werden kann. Insbesondere sind diese Approximationen in den Termen $\frac{r_{l}}{\left(1+r_{l}\right)^{2}}$ gut möglich. Die Funktion $f(r)=\frac{r}{(1+r)^{2}}$ verläuft sehr flach um ihr Maximum $f(1)=\frac{1}{4}$ (vgl. Abbildung 3.1). Damit fallen Abweichungen in r_{l} von r recht wenig ins Gewicht, insbesondere wenn ein gleiches Ausgangsstichprobenverhältnis von $r=1$ vorliegt. Insgesamt ist daher mit

$$
\begin{equation*}
\mathrm{E}[L R] \approx \sqrt{\sum_{l=1}^{d} \frac{r}{(1+r)^{2}}} \ln (\omega)=\frac{\sqrt{d r}}{(1+r)} \ln (\omega) \tag{3.16}
\end{equation*}
$$

ein approximativ gültiger Erwartungswert für die Logrank-Statistik in der Nähe von $\ln (\omega)=0$ für den Fall ohne Bindungen und gleichen Zensierungsverteilungen in den Gruppen gegeben, welcher mit (3.11) übereinstimmt.

Mittels (3.16) lässt sich ein formal einfacher Schätzer für $\ln (\omega)$ wie folgt konstruieren
(Wassmer, 2006):

$$
\begin{align*}
& \Longleftrightarrow \ln (\omega) \approx \frac{1+r}{\sqrt{d r}} \mathrm{E}[L R] \tag{3.16}\\
& \Longrightarrow \quad S_{W}:=[\widehat{\ln (\omega)}]_{W}:=\frac{1+r}{\sqrt{d r}} L R . \tag{3.17}
\end{align*}
$$

Das Ersetzen von $\mathrm{E}[L R]$ durch $L R$ ist sinnvoll, da $L R$ asymptotisch normal verteilt ist. Der Erwartungswert (3.16) ist unter H_{1}^{\neq}nur approximativ gültig, womit der Wassmer-Schätzer S_{W} unter H_{1}^{\neq}nicht erwartungstreu ist. Dabei ist für die Stärke der Verzerrung des Schätzers die Güte der Approximation des Erwartungswerts entscheidend. In der Herleitung der Approximation ist die Nähe zu $\ln (\omega)=0$ eine wesentliche Voraussetzung. Daher ist zu erwarten, dass mit zunehmender Abweichung von $\mathrm{H}_{0}^{=}$die Güte der Approximation zurückgeht. Da auch Zensierungen die Größe der $\frac{r_{l}}{\left(1+r_{l}\right)^{2}}, l=1, \ldots, d$, beeinflussen, ist weiterhin zu erwarten, dass Zensierungen (je nach zugrunde liegender Verteilung) unterschiedliche Effekte auf die Güte der Approximation $\frac{r}{(1+r)^{2}}$ haben. Jenachdem können sie sich vorteilhaft oder nachteilig auswirken. All diese Aspekte werden in der Simulationsstudie untersucht und Bestätigung finden. Die Simulationsergebnisse werden zudem zeigen, dass mit wachsendem Stichprobenumfang die Verzerrung des Schätzers kleiner wird. Daraus zu schließen, dass der Schätzer konsistent ist, wäre allerdings zu voreilig. Da die Geschwindigkeit der Reduktion mit steigendem Stichprobenumfang stark sinkt, ist es möglich, dass die Verzerrung punktweise in ω gegen eine untere Schranke für $d \rightarrow \infty$ konvergiert.

Die Approximation des Erwartungswerts (3.16) gilt für eine Logrank-Statistik im Fall ohne Bindungen. Im Folgenden wird gezeigt, dass sich die approximative Formel auch im Fall mit Bindungen für die Logrank-Statistik $L R^{B}$ heranziehen lässt, insbesondere, wenn die Anzahl der Bindungen eher gering ist. Der Fall von Bindungen birgt insofern eine weitere Schwierigkeit, als dass die Verteilungen der zu betrachtenden Zufallsgrößen $X_{0 l}^{B}$ unter H_{1}^{\neq}nicht einfach anzugeben sind. Ein Ausweg besteht darin, diese Verteilungen durch Binomialverteilungen anzunähern. Unter $\mathrm{H}_{0}^{=}$konvergiert die Hypergeometrische Verteilung einer auf die beobachteten Risikomengen bedingten Zufallsvariablen $X_{0 l}^{B}$ (vgl. (2.6) auf Seite 14) für $n_{0 l}^{B}+n_{1 l}^{B}=n_{. l}^{B} \rightarrow \infty$
gegen eine Binomialverteilung mit Dichte

$$
f(x)=\binom{n_{\text {bino }}}{x} p_{\text {bino }}^{x}\left(1-p_{\text {bino }}\right)^{n_{\text {bino }}-x}
$$

und Parametern $n_{\text {bino }}=d_{l l}^{B}$ und $p_{\text {bino }}=e_{0 l}^{B}=\frac{n_{0 l}^{B}}{n_{0 l}^{B}+n_{1 l}^{B}}$. Unter H_{1}^{\neq}kann nun die Verteilung von $X_{0 l}^{B}$ analog durch eine Binomialverteilung mit Parametern $n_{\text {bino }}=d_{. l}^{B}$ und $p_{\text {bino }}=p_{0 l}^{B}$ angenähert werden, wobei

$$
p_{0 l}^{B}:=\frac{n_{0 l}^{B} \exp (\ln (\omega))}{n_{0 l}^{B} \exp (\ln (\omega))+n_{1 l}^{B}} .
$$

Ein approximativ gültiger Erwartungswert für $X_{0 l}^{B}$ ergibt sich dann durch

$$
\mathrm{E}\left[X_{0 l}^{B}\right] \approx p_{0 l}^{B} d_{l l}^{B}=\frac{n_{0 l}^{B} \exp (\ln (\omega))}{n_{0 l}^{B} \exp (\ln (\omega))+n_{1 l}^{B}} d_{l l}^{B} .
$$

Damit lässt sich der Erwartungswert für eine Logrank-Statistik $L R^{B}$ (vgl. (2.8) auf Seite 15) analog zum Fall ohne Bindungen wie folgt annähern:

$$
\begin{equation*}
\mathrm{E}\left[L R^{B}\right] \approx \frac{\sum_{l=1}^{\delta}\left(p_{0 l}^{B} d_{. l}^{B}-e_{0 l}^{B} d_{l, l}^{B}\right)}{\sqrt{\sum_{l=1}^{\delta} e_{0 l}^{B}\left(1-e_{0 l}^{B}\right) d_{l l}^{B} \frac{n_{B}^{B}-d_{l}^{B}}{n_{l}^{B}-1}}} . \tag{3.18}
\end{equation*}
$$

Bei der Linearisierung von $p_{0 l}^{B}$ mit dem Zentrum $\ln (\omega)=0$ ergibt sich weiterhin analog

$$
p_{0 l}^{B} \approx e_{0 l}^{B}+e_{0 l}^{B}\left(1-e_{0 l}^{B}\right) \ln (\omega) .
$$

Zudem gilt wie im Fall ohne Bindungen, dass unter $\mathrm{H}_{0}^{=}$und identischen Zensierungsverteilungen in beiden Gruppen $r_{l}^{B}:=\frac{n_{l l}^{B}}{n_{1 l}^{B}} \approx r \forall l=1, \ldots, \delta$, womit $e_{0 l}^{B}(1-$ $\left.e_{0 l}^{B}\right)=\frac{r_{l}^{B}}{\left(1+r_{l}^{B}\right)^{2}}$ analog zu oben durch $\frac{r}{(1+r)^{2}}$ angenähert werden kann. Wird schließlich zusätzlich $d_{. l}$ durch $\frac{d}{\delta} \forall l=1, \ldots, \delta$ geschätzt, so lässt sich die Approximation des

Erwartungswerts von $L R^{B}$ wie folgt fortführen:

$$
\begin{aligned}
\mathrm{E}\left[L R^{B}\right] & \approx \frac{\sum_{l=1}^{\delta} d_{l l}^{B} e_{0 l}^{B}\left(1-e_{0 l}^{B}\right) \ln (\omega)}{\sqrt{\sum_{l=1}^{\delta} e_{0 l}^{B}\left(1-e_{0 l}^{B}\right) d_{l l}^{B} \frac{n_{l}^{B}-d_{l}^{B}}{n_{l l}^{B-1}}}} \\
& \approx \frac{\frac{r}{(1+r)^{2}} \ln (\omega) \sum_{l=1}^{\delta} d_{l l}^{B}}{\sqrt{\frac{r}{(1+r)^{2}} \sum_{l=1}^{\delta} d_{l}^{B} \frac{B_{l}^{B}-d_{d}^{B}}{n_{l}^{B}-1}}}=\frac{\frac{d r}{(1+r)^{2}} \ln (\omega)}{\sqrt{\frac{d r}{(1+r)^{2}} \frac{1}{\delta} \sum_{l=1}^{\delta} \frac{n_{l}^{B}-d_{l}^{B}}{n_{l}^{B}-1}}} \\
& =\frac{\frac{\sqrt{d r}}{(1+r)} \ln (\omega)}{\sqrt{\frac{1}{\delta} \sum_{l=1}^{\delta} \frac{n_{l}^{B}-d_{l}^{B}}{n_{l}^{B}-1}}} \approx \frac{\sqrt{d r}}{(1+r)} \ln (\omega) .
\end{aligned}
$$

Der Term $\sqrt{\frac{1}{\delta} \sum_{l=1}^{\delta} \frac{n_{l}^{B}-d_{l}^{B}}{n \cdot l-1}}$ ist stets ≤ 1. Dabei gilt, dass er umso näher an seiner oberen Grenze liegt, je kleiner die Anzahl der Bindungen ist. Daher ist die letzte durchgeführte Approximation umso genauer, je weniger Bindungen in den Daten vorliegen. Für den Erwartungswert der Teststatistik $L R^{B}$ resultiert also die gleiche Approximation wie für den Fall ohne Bindungen (wenn die Anzahl der Bindungen eher gering ist). Damit lässt sich ein Schätzer für $\ln (\omega)$ bei Vorlage von Bindungen analog zu oben durch

$$
S_{W}^{B}:=\frac{1+r}{\sqrt{d r}} L R^{B}
$$

definieren.

3.5 Modifizierungen des Wassmer-Schätzers

Es wurden verschiedene Ansätze verfolgt, um die Verzerrung des Wassmer-Schätzers zu eliminieren bzw. zu verringern. Eine offensichtliche Idee für den Fall ohne Bindungen, einen unverzerrten Schätzer für das (logarithmierte) Hazard-Ratio zu gewinnen, beinhaltet, die Vorgehensweise aus Abschnitt 3.4 von der Herleitung des WassmerSchätzers auf den exakten Erwartungswert einer Logrank-Statistik nach Cox (1972) anzuwenden. Unter Betrachtung der Logrank-Statistik $L R$ ((2.7) auf Seite 14) und
ihres exakten Erwartungswerts (3.12) mit (3.13) auf Seite 26 ist danach das $\ln \left(\omega_{0}\right)$ ein Schätzer für das wahre $\ln (\omega)$, welches die folgende Gleichung löst:

$$
\begin{aligned}
L R & =\mathrm{E}_{\omega_{0}}[L R] \\
\Longleftrightarrow \sum_{l=1}^{d} X_{0 l} & =\sum_{l=1}^{d} \frac{n_{0 l} \exp \left(\ln \left(\omega_{0}\right)\right)}{n_{0 l} \exp \left(\ln \left(\omega_{0}\right)\right)+n_{1 l}} .
\end{aligned}
$$

Es resultiert der Cox-Schätzer (vgl. (3.3) auf Seite 19). Auf diese Weise kann also kein neuer Schätzer generiert werden.

Eine weitere Möglichkeit besteht darin, die Verzerrung des Wassmer-Schätzers zu schätzen und vom Schätzergebnis für das (logarithmierte) Hazard-Ratio abzuziehen. In Abschnitt 3.5.1 und 3.5.2 werden zwei verschiedene Vorgehensweisen dafür präsentiert, womit zwei neue (biaskorrigierte) Schätzer vorgeschlagen werden. Zudem legen die Ergebnisse der Simulationsstudie nahe, dass der Verlauf der Verzerrung des Wassmer-Schätzers über den Alternativraum durch eine kubische Funktion beschrieben werden kann (vgl. Abschnitt 4.2.2 mit Abbildung 4.1 auf Seite 53). Daher wurde als ein weiterer Ansatz eine entsprechende Funktion in Abhängigkeit des geschätzten (logarithmierten) Hazard-Ratios an simulierte Daten bestimmter Szenarien angepasst. Der dadurch biaskorrigierte Schätzer konnte tatsächlich in Probedurchläufen für die Simulationsstudie einen Teil der Verzerrung des Wassmer-Schätzers eliminieren und schnitt im Vergleich zu den anderen betrachteten Schätzern sowohl in seiner Verzerrung als auch im Mean Squared Error in verschiedenen Situationen gut ab. Da die Darstellung seiner Konstruktion jedoch den Rahmen dieser Arbeit sprengen würde und da von einem theoretischen Standpunkt her, formal konstruierte Schätzer erstrebenswerter als aus Daten bestimmter Szenarien geschätzte sind, wird dieser Ansatz hier nicht weiter verfolgt.

3.5.1 Biaskorrektur auf Basis variabler Größen

Für die gegebenen Risikomengen berechnet sich die Verzerrung des WassmerSchätzers auf Basis des exakten Erwartungswerts der Logrank-Statistik (3.12) auf

Seite 26 wie folgt:

$$
\begin{aligned}
\operatorname{Bias}\left[S_{W}\right] & =\mathrm{E}\left[S_{W}\right]-\ln (\omega) \\
& =\frac{1+r}{\sqrt{d r}} \frac{\sum_{l=1}^{d} p_{0 l}-\sum_{l=1}^{d} e_{0 l}}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}}-\ln (\omega) .
\end{aligned}
$$

Wird $\ln (\omega)$ durch S_{W} geschätzt, so ergibt sich als biaskorrigierter Schätzer für das logarithmierte Hazard-Ratio:

$$
\begin{align*}
S_{W}^{B_{1}} & :=S_{W}-\left(\widehat{\mathrm{E}}\left[S_{W}\right]-S_{W}\right) \\
& =2 S_{W}-\frac{1+r}{\sqrt{d r}} \frac{\sum_{l=1}^{d} \frac{n_{0 l} \exp \left(S_{W}\right)}{n_{0 l} \exp \left(S_{W}\right)+n_{1 l}}-\sum_{l=1}^{d} e_{0 l}}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}} \\
& =\frac{1+r}{\sqrt{d r}}\left(\frac{2 \sum_{l=1}^{d} X_{0 l}-\sum_{l=1}^{d} e_{0 l}-\sum_{l=1}^{d} \frac{n_{0 l} \exp \left(S_{W}\right)}{n_{0 l} \exp \left(S_{W}\right)+n_{1 l}}}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}}\right) . \tag{3.19}
\end{align*}
$$

Natürlich können auch andere Schätzer für das logarithmierte Hazard-Ratio $\ln (\omega)$ in (3.19) eingesetzt werden. Allerdings haben Biaskorrekturen auf Grundlage des Cox- oder Breslow-Schätzers bezüglich des MSEs keine besseren Ergebnisse in Probedurchläufen für die durchgeführte Simulationstudie als die hier auf Grundlage des Wassmer-Schätzers präsentierte Korrektur hervorgebracht.

Bei einer Anpassung von $S_{W}^{B_{1}}$ im Fall von Bindungen soll erneut auf die in Abschnitt 3.4 vorgestellten Approximationen der Verteilungen der Zufallsvariablen $X_{0 l}^{B}$ unter H_{1}^{\neq}zurückgegriffen werden. Mit dem daraus resultierenden approximativen Erwartungswert einer Logrank-Statistik $L R^{B}$ (3.18) ergibt sich analog ein biaskorrigierter Schätzer für $\ln (\omega)$ im Fall von Bindungen durch

$$
S_{W}^{B_{1}, B}=\frac{1+r}{\sqrt{d r}}\left(\frac{2 \sum_{l=1}^{\delta} X_{0 l}^{B}-\sum_{l=1}^{\delta} e_{0 l}^{B} d_{. l}^{B}-\sum_{l=1}^{\delta} \frac{n_{01}^{B} \exp \left(S_{W}\right)}{n_{0 l}^{B} \exp \left(S_{W}\right)+n_{1 l}^{B}} d_{l}^{B}}{\sqrt{\sum_{l=1}^{\delta} e_{0 l}^{B}\left(1-e_{0 l}^{B}\right) d_{l}^{B} \frac{\left(n_{l}^{B}-d_{l l}^{B}\right)}{\left(n_{l l}^{B}-1\right)}}}\right) .
$$

Die Schätzer $S_{W}^{B_{1}}$ und $S_{W}^{B_{1}, B}$ werden im Folgenden auch mit Bias-Corrected-Wassmer-Schätzer I (WBC-I-Schätzer) bezeichnet.

3.5.2 Biaskorrektur auf Basis fester Größen

In der Einleitung des Abschnitts 3.5 wird offengelegt, dass der Cox- und der Wassmer-Schätzer nach dem gleichen Konstruktionsprinzip gewonnen werden, jedoch auf unterschiedlichen Formeln für den Erwartungswert einer Logrank-Statistik basieren. Die Ergebnisse der Simulationsstudie werden zeigen (vgl. die Abschnitte 4.2.2 und 4.2.3), dass der Wassmer-Schätzer durch die einfachere approximative Formel für den Erwartungswert unter H_{1}^{\neq}Unverzerrtheit gegen eine geringere Varianz gegenüber dem Cox-Schätzer eintauscht. Wie in den Abschnitten 4.2.2 und 4.2.3 zudem zu erkennen sein wird, reduziert die vorgeschlagene Biaskorrektur nach Abschnitt 3.5.1 tatsächlich einen Teil der Verzerrung des Wassmer-Schätzers. Es liegt nahe, dass der Varianzanstieg in den in dem exakten Erwartungswert enthaltenen Anzahlen an Patienten unter Risiko begründet liegt, die von Studie zu Studie variieren. Dies führt zu der Idee, die variierenden Größen in der Biaskorrektur in $S_{W}^{B_{1}}$ durch feste Werte zu ersetzen. Z.B. kann der Schätzer S_{W} durch eine feste inhaltlich a-priori gewählte Schätzung $\ln \left(\omega_{a}\right)$ für das logarithmierte Hazard-Ratio ersetzt werden. Die Anzahlen der Patienten unter Risiko für Gruppe $i=0,1 \mathrm{zu}$ den geordneten Ereigniszeiten $y_{(l)}, l=1, \ldots, d$, können durch den folgenden Algorithmus geschätzt werden:

$$
\begin{aligned}
& \hat{n}_{i 1}=n_{i} \\
& \hat{n}_{0 l}=\hat{n}_{0 l-1}-\frac{\hat{n}_{0 l-1} \exp \left(\ln \left(\omega_{a}\right)\right)}{\hat{n}_{0 l-1} \exp \left(\ln \left(\omega_{a}\right)\right)+\hat{n}_{1 l-1}}, \quad l=2, \ldots, d, \\
& \hat{n}_{1 l}=\hat{n}_{1 l-1}-\left(1-\frac{\hat{n}_{0 l-1} \exp \left(\ln \left(\omega_{a}\right)\right)}{\hat{n}_{0 l-1} \exp \left(\ln \left(\omega_{a}\right)\right)+\hat{n}_{1 l-1}}\right), \quad l=2, \ldots, d,
\end{aligned}
$$

vgl. (A.1) und (A.2) in Anhang A auf Seite 116). Damit lässt sich die Verzerrung des Schätzers S_{W} wie folgt approximieren:

$$
\begin{aligned}
\widehat{\operatorname{Bias}}\left[S_{W}\right] & =\widehat{\mathrm{E}}\left[S_{W}\right]-\ln \left(\omega_{a}\right) \\
& =\frac{1+r}{\sqrt{d r}} \frac{\sum_{l=1}^{d} \frac{\hat{n}_{0 l} \exp \left(\ln \left(\omega_{a}\right)\right)}{\hat{n}_{0 l} \exp \left(\ln \left(\omega_{a}\right)\right)+\hat{n}_{1 l}}-\sum_{l=1}^{d} \hat{e}_{0 l}}{\sqrt{\sum_{l=1}^{d} \hat{e}_{0 l}\left(1-\hat{e}_{0 l}\right)}}-\ln \left(\omega_{a}\right),
\end{aligned}
$$

wobei $\hat{e}_{0 l}:=\frac{\hat{n}_{0 l}}{\hat{n}_{0 l}+\hat{n}_{1 l}}$. Der daraus resultierende biaskorrigierte Schätzer für $\ln (\omega)$ hat die Gestalt:

$$
\begin{align*}
S_{W}^{B_{2}} & :=S_{W}-\widehat{\operatorname{Bias}}\left[S_{W}\right] \\
& =\frac{1+r}{\sqrt{d r}}\left(L R-\frac{\sum_{l=1}^{d} \frac{\hat{n}_{0 l} \exp \left(\ln \left(\omega_{a}\right)\right)}{\hat{n}_{0 l} \exp \left(\ln \left(\omega_{a}\right)\right)+\hat{n}_{1 l}}-\sum_{l=1}^{d} \hat{e}_{0 l}}{\sqrt{\sum_{l=1}^{d} \hat{e}_{0 l}\left(1-\hat{e}_{0 l}\right)}}\right)+\ln \left(\omega_{a}\right) . \tag{3.20}
\end{align*}
$$

Für den Fall mit Bindungen wird der Schätzer $S_{W}^{B_{2}}$ nach Vorbild von $S_{W}^{B_{1}, B}$ modifiziert. Allerdings müssen hier die Schätzungen für die Größe der Risikomengen zusätzlich entsprechend abgeändert werden. Mittels der Schätzung von $\frac{d}{\delta}$ für $d_{. l}^{B}$ (vgl. Abschnitt 3.4) lautet der Algorithmus nun für die geordneten unterschiedlichen Ereigniszeiten $y_{(l)}, l=1, \ldots, \delta$,

$$
\begin{aligned}
\hat{n}_{i 1}^{B} & =n_{i} \\
\hat{n}_{0 l}^{B} & =\hat{n}_{0 l-1}^{B}-\frac{\hat{n}_{0 l-1}^{B} \exp \left(\ln \left(\omega_{a}\right)\right)}{\hat{n}_{0 l-1}^{B} \exp \left(\ln \left(\omega_{a}\right)\right)+\hat{n}_{1 l-1}^{B}} \frac{d}{\delta}, \quad l=2, \ldots, \delta, \\
\hat{n}_{1 l}^{B} & =\hat{n}_{1 l-1}^{B}-\left(1-\frac{\hat{n}_{0 l-1}^{B} \exp \left(\ln \left(\omega_{a}\right)\right)}{\hat{n}_{0 l-1}^{B} \exp \left(\ln \left(\omega_{a}\right)\right)+\hat{n}_{1 l-1}^{B}}\right) \frac{d}{\delta}, \quad l=2, \ldots, \delta .
\end{aligned}
$$

Damit ergibt sich der biaskorrigierte Schätzer für $\ln (\omega)$ im Fall von Bindungen durch

$$
S_{W}^{B_{2}, B}:=\frac{1+r}{\sqrt{d r}}\left(L R^{B}-\frac{\sum_{l=1}^{\delta} \frac{\hat{n}_{0 l}^{B} \exp \left(\ln \left(\omega_{a}\right)\right)}{\hat{n}_{01}^{B} \exp \left(\ln \left(\omega_{a}\right)\right)+\hat{n}_{1 l}^{B}} \frac{d}{\delta}-\sum_{l=1}^{\delta} \hat{e}_{0 l}^{B} \frac{d}{\delta}}{\sqrt{\sum_{l=1}^{\delta} \hat{e}_{0 l}^{B}\left(1-\hat{e}_{0 l}^{B}\right) \frac{d}{\delta} \frac{\left(\hat{n}_{l}^{B}-\frac{d}{\delta}\right)}{\left(\hat{n}_{l}^{B}-1\right)}}}\right)+\ln \left(\omega_{a}\right),
$$

wobei $\hat{n}_{. l}^{B}=\hat{n}_{0 l}^{B}+\hat{n}_{1 l}^{B}$.
Wie in Abschnitt 3.4 bereits angeführt, können Zensierungen die tatsächlich auftretenden Größen der Risikomengen so beeinflussen, dass diese entweder näher an oder weiter entfernt von den erwarteten Größen liegen, und sich somit positiv oder negativ auf die Approximationen auswirken. Die Schätzer $S_{W}^{B_{2}}$ und $S_{W}^{B_{2}, B}$ werden im Folgenden auch mit Bias-Corrected-Wassmer-Schätzer II (WBC-II-Schätzer) bezeichnet.

Da hier keine inhaltlich motivierte sinnvolle Schätzung für das wahre Hazard-Ratio vorliegt, wurde in der Simulationsstudie in $S_{W}^{B_{2}}$ und $S_{W}^{B_{2}, B}$ als a-priori-Schätzung $\omega_{a}=0.5$ gewählt, wenn die beobachtete Logrank-Statistik kleiner, und $\omega_{a}=2$ gewählt, wenn die beobachtete Logrank-Statistik größer als Null war.

3.6 Ein neuer Schätzer

In Abschnitt 3.4 wird der approximative Erwartungswert der gesamten LogrankStatistik zur Konstruktion des Wassmer-Schätzers betrachtet. Nach der gleichen Vorgehensweise wie in Abschnitt 3.4 kann jedoch bereits bei Betrachtung des Zählers der Logrank-Statistik allein ein Schätzer für das (logarithmierte) Hazard-Ratio gewonnen werden. In der Nähe von $\omega=1$ und bei gleichen Zensierungsverteilungen in den Gruppen ergibt sich nämlich unter Verwendung der Linearisierung von $p_{0 l}$ im Punkt $\ln (\omega)=0\left(\mathrm{vgl}\right.$. (3.10) auf Seite 24) und der Approximation von r_{l} durch $r \forall l=1, \ldots, d(\mathrm{vgl}$. Anhang A) ein weiterer Schätzer für $\ln (\omega)$ wie folgt:

$$
\begin{align*}
\mathrm{E}\left[\sum_{l=1}^{d}\left(X_{0 l}-e_{0 l}\right)\right] & =\sum_{l=1}^{d}\left(p_{0 l}-e_{0 l}\right) \approx \sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right) \ln (\omega) \\
& \approx \sum_{l=1}^{d} \frac{r}{(1+r)^{2}} \ln (\omega)=\frac{d r}{(1+r)^{2}} \ln (\omega) \\
\Longleftrightarrow \ln (\omega) & \approx \mathrm{E}\left[\sum_{l=1}^{d}\left(X_{0 l}-e_{0 l}\right)\right] \frac{(1+r)^{2}}{d r} \\
\Longrightarrow S_{L} & :=[\widehat{\ln (\omega)}]_{L}:=\frac{(1+r)^{2}}{d r} \sum_{l=1}^{d}\left(X_{0 l}-e_{0 l}\right) \tag{3.21}
\end{align*}
$$

(vgl. auch (3.14) und (3.15) auf Seite 26). In Anlehnung an seine Konstruktion wird dieser Schätzer Shortened-Logrank-(SL)-Schätzer genannt.

Die offensichtliche Ähnlichkeit zwischen diesem neuen und dem Wassmer-Schätzer soll im Folgenden genauer beleuchtet werden. Unter $\mathrm{H}_{0}^{=}$und bei gleichen Zensierungsverteilungen in den beiden Gruppen kann der Varianzterm in der auf die ge-
gebenen Risikomengen bedingten Logrank-Statistik wie folgt approximiert werden:

$$
\begin{align*}
\operatorname{Var}_{\mathrm{H}_{\overline{0}}}\left[\sum_{l=1}^{d} X_{0 l}\right] & =\sum_{l=1}^{d} \operatorname{Var}_{\mathrm{H}_{\overline{0}}}\left(X_{0 l}\right)=\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right) \\
& \approx \sum_{l=1}^{d} \frac{r}{(1+r)^{2}}=\frac{d r}{(1+r)^{2}}=\widehat{\operatorname{Var}}_{\mathrm{H}_{\overline{0}}}\left[\sum_{l=1}^{d} X_{0 l}\right] \tag{3.22}
\end{align*}
$$

(vgl. (2.3) und (2.5) auf Seite 13 sowie weiterhin (3.14) und (3.15) auf Seite 26). Damit lassen sich der Wassmer- und der neue Schätzer wie folgt darstellen:

$$
\begin{align*}
S_{W} & =\frac{1}{\sqrt{\widehat{\operatorname{Var}}_{\mathrm{H}_{\overline{0}}}\left[\sum_{l=1}^{d} X_{0 l}\right]}} \frac{\sum_{l=1}^{d}\left(X_{0 l}-e_{0 l}\right)}{\sqrt{\operatorname{Var}_{\mathrm{H}_{\overline{0}}}\left[\sum_{l=1}^{d} X_{0 l}\right]}} \\
S_{L} & =\frac{1}{\widehat{\operatorname{Var}}_{\mathrm{H}_{\overline{0}}}\left[\sum_{l=1}^{d} X_{0 l}\right]} \sum_{l=1}^{d}\left(X_{0 l}-e_{0 l}\right) . \tag{3.23}
\end{align*}
$$

Es zeigt sich, dass beide Schätzer aus dem Zähler der Logrank-Statistik multipliziert mit der reziproken Varianz der Gesamtanzahl der Ereignisse in Gruppe 0 unter $\mathrm{H}_{0}^{=}$ bestehen. Sie unterscheiden sich lediglich in der Verwendung der in (3.22) gegebenen approximativen Varianz. Im Wassmer-Schätzer wird nur ein Teil der echten Varianz durch die Approximation ersetzt, im neuen Schätzer die ganze Varianz.

Durch die "volle" anstatt der „halben" Verwendung des approximativen Varianzterms ist zu erwarten, dass die Verzerrung im SL-Schätzer gegenüber dem WassmerSchätzer zunimmt. Allerdings ist durch die Ersetzung der von Studie zu Studie stark variierenden wahren Standardabweichung (mit den variierenden Anzahlen der Patienten unter Risiko) durch den schwächer variierenden approximativen Term der Standardabweichung $\frac{\sqrt{d r}}{1+r}$ auch zu erwarten, dass die Varianz des SL-Schätzers geringer als die des Wassmer-Schätzers ist. Des Weiteren legt diese Darstellung des SL-Schätzers offen, dass auch dieser Schätzer zumindest in der Nähe von $\mathrm{H}_{0}^{=}$approximativ einer Normalverteilung folgen sollte. Diese Aspekte werden durch die Ergebnisse der durchgeführten Simulationsstudie in Abschnitt 4.2.2-4.2.5 bestätigt.

Schließlich bietet es sich auf Grundlage von (3.23) als Idee für einen weiteren Schätzer an, anders herum die approximative Standardabweichung im WassmerSchätzer durch die exakte zu ersetzen. Wie zu erwarten haben Probedurchläufe für
die Simulationsstudie gezeigt, dass bei dem resultierenden Schätzer gegenüber dem Wassmer-Schätzer die Verzerrung abnimmt während die Varianz zunimmt. Da dieser Schätzer insgesamt hinsichtlich des MSEs schlechter als der Wassmer- und der SL-Schätzer abschneidet, wird er hier nicht betrachtet.

Mittels der gleichen Vorgehensweise wie oben resultiert im Fall von Bindungen ein zu (3.21) analoger Schätzer für $\ln (\omega)$:

$$
\begin{aligned}
\mathrm{E}\left[\sum_{l=1}^{\delta}\left(X_{0 l}^{B}-e_{0 l}^{B} d_{l l}^{B}\right)\right] & \approx \sum_{l=1}^{\delta}\left(p_{0 l}^{B} d_{l l}^{B}-e_{0 l}^{B} d_{. l}^{B}\right) \approx \sum_{l=1}^{\delta} e_{0 l}^{B}\left(1-e_{0 l}^{B}\right) d_{l l}^{B} \ln (\omega) \\
& \approx \frac{r}{(1+r)^{2}} \ln (\omega) \sum_{l=1}^{\delta} d_{l l}^{B}=\frac{d r}{(1+r)^{2}} \ln (\omega) \\
\Longleftrightarrow \ln (\omega) & \approx \mathrm{E}\left[\sum_{l=1}^{\delta}\left(X_{0 l}^{B}-e_{0 l}^{B} d_{l l}^{B}\right)\right] \frac{(1+r)^{2}}{d r} \\
\Rightarrow \quad S_{L}^{B} & :=\frac{(1+r)^{2}}{d r} \sum_{l=1}^{\delta}\left(X_{0 l}^{B}-e_{0 l}^{B} d_{l l}^{B}\right)
\end{aligned}
$$

Hier wird erneut auf die in Abschnitt 3.4 beschriebene Approximation der Verteilung von $X_{0 l}^{B}$ unter H_{1}^{\neq}sowie die Linearisierung von $p_{0 l}^{B}$ im Punkt $\ln (\omega)=0$ zurückgegriffen.

3.7 Intervallschätzung

Für einen normalverteilten erwartungstreuen Schätzer $\hat{\theta}$ für einen Parameter θ resultiert die Betrachtung von

$$
\mathrm{P}_{\mathrm{H}_{1}}\left(u_{\frac{\alpha}{2}}<\frac{\hat{\theta}-\theta}{\sqrt{\operatorname{Var}(\hat{\theta})}}<u_{1-\frac{\alpha}{2}}\right)=1-\alpha
$$

in einem zweiseitigen $(1-\alpha)$-Konfidenzintervall der Gestalt

$$
\begin{equation*}
K I_{\hat{\theta}}:=\left[\hat{\theta} \mp u_{1-\frac{\alpha}{2}} \sqrt{\operatorname{Var}(\hat{\theta})}\right] . \tag{3.24}
\end{equation*}
$$

Analog ergeben sich einseitige Intervalle zum Konfidenzniveau ($1-\alpha$) durch

$$
\begin{align*}
K I_{\hat{\theta}}^{u} & :=\left[-\infty, \hat{\theta}+u_{1-\alpha} \sqrt{\operatorname{Var}(\hat{\theta})}\right] \text { und } \\
K I_{\hat{\theta}}^{o} & :=\left[\hat{\theta}-u_{1-\alpha} \sqrt{\operatorname{Var}(\hat{\theta})}, \infty\right] \tag{3.25}
\end{align*}
$$

Der Cox-Schätzer S_{C} folgt asymptotisch einer Normalverteilung mit Erwartungswert $\ln (\omega)=\beta$ und approximativer Varianz $(i(\beta))^{-1}($ vgl. Abschnitt 3.1), wobei

$$
\begin{align*}
i(\beta) & =-\left(\frac{\partial^{2} \ln (L(\beta))}{\partial \beta^{2}}\right) \\
& =-\left(-\sum_{l=1}^{d} \frac{n_{0 l} \exp (\beta)\left(n_{0 l} \exp (\beta)+n_{1 l}\right)-\left(n_{0 l} \exp (\beta)\right)^{2}}{\left(n_{0 l} \exp (\beta)+n_{1 l}\right)^{2}}\right) \\
& =\sum_{l=1}^{d} \frac{n_{0 l} n_{1 l} \exp (\beta)}{\left(n_{0 l} \exp (\beta)+n_{1 l}\right)^{2}}=\sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right) . \tag{3.26}
\end{align*}
$$

Wird $p_{0 l}, l=1, \ldots, d$, durch

$$
\hat{p}_{0 l}^{C}:=\frac{n_{0 l} \exp \left(S_{C}\right)}{n_{0 l} \exp \left(S_{C}\right)+n_{1 l}}
$$

geschätzt, ergibt sich analog zu (3.24) mit

$$
K I_{C}:=\left[S_{C} \mp \frac{u_{1-\frac{\alpha}{2}}}{\sqrt{\sum_{l=1}^{d} \hat{p}_{0 l}^{C}\left(1-\hat{p}_{0 l}^{C}\right)}}\right]
$$

ein zweiseitiges Konfidenzintervall mit approximativer Überdeckungswahrscheinlichkeit $(1-\alpha)$ für $\ln (\omega)=\beta$.

Basierend auf der approximativen Erwartungswert-Formel nach Schoenfeld (1981) für die Logrank-Teststatistik folgt der Wassmer-Schätzer nach Konstruktion approximativ einer Normalverteilung mit Erwartungswert $\ln (\omega)$ (vgl. (3.11) und (3.17) auf Seite 25 bzw. 28). Seine Varianz hat die Gestalt

$$
\operatorname{Var}\left[S_{W}\right]=\frac{(1+r)^{2}}{d r} \frac{\sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)}{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}
$$

Damit ergibt auf Basis des Wassmer-Schätzers

$$
\begin{equation*}
K I_{W}:=\left[S_{W} \mp u_{1-\frac{\alpha}{2}} \frac{(1+r)}{\sqrt{d r}} \sqrt{\frac{\sum_{l=1}^{d} \hat{p}_{0 l}^{W}\left(1-\hat{p}_{0 l}^{W}\right)}{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}}\right] \tag{3.27}
\end{equation*}
$$

analog zu oben ein approximatives zweiseitiges $(1-\alpha)$-Konfidenzintervall für $\ln (\omega)$, wobei hier $p_{0 l}$ durch

$$
\hat{p}_{0 l}^{W}:=\frac{n_{0 l} \exp \left(S_{W}\right)}{n_{0 l} \exp \left(S_{W}\right)+n_{1 l}}
$$

geschätzt wird.
Die Ergebnisse der Simulationsstudie werden zeigen, dass auch der SL-Schätzer in der Nähe von $\ln (\omega)=0$ approximativ einer Normalverteilung folgt (vgl. Abschnitt 4.2.2). Zudem gilt auch für den SL-Schätzer nach seiner Konstruktion, dass auf Basis der Linearisierung von $p_{0 l}$ sein Erwartungswert approximativ $\ln (\omega)$ entspricht (vgl. (3.21) auf Seite 35). Seine Varianz ergibt sich zu:

$$
\operatorname{Var}\left[S_{L}\right]=\frac{(1+r)^{4}}{(d r)^{2}} \sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)
$$

Wird hier $p_{0 l}$ durch

$$
\hat{p}_{0 l}^{L}:=\frac{n_{0 l} \exp \left(S_{L}\right)}{n_{0 l} \exp \left(S_{L}\right)+n_{1 l}}
$$

geschätzt, so resultiert auf Basis des SL-Schätzers mit

$$
\begin{equation*}
K I_{L}:=\left[S_{L} \mp u_{1-\frac{\alpha}{2}} \frac{(1+r)^{2}}{d r} \sqrt{\sum_{l=1}^{d} \hat{p}_{0 l}^{L}\left(1-\hat{p}_{0 l}^{L}\right)}\right] \tag{3.28}
\end{equation*}
$$

ein zweiseitiges Konfidenzintervall mit approximativer Überdeckungswahrscheinlichkeit $(1-\alpha)$ für $\ln (\omega)$.

Im Fall von Bindungen sind die Schätzer S_{C}, S_{W} und S_{L} durch ihre Analoga S_{C}^{B}, S_{W}^{B} und S_{L}^{B} zu ersetzen. Damit müssen weiterhin die jeweiligen Varianzen der Schätzer
S_{C}^{B}, S_{W}^{B} und S_{L}^{B} in den Konfidenzintervallen eingesetzt werden. Die approximative Varianzformel des Cox-Schätzers im Fall von Bindungen ergibt sich aus der FisherInformation der herangezogenen Approximation für die exakte partielle LikelihoodFunktion. In den im Rahmen dieser Arbeit durchgeführten Berechnungen wurde stets die Approximation nach Efron (1977) verwendet. Das resultierende Konfidenzintervall $K I_{C}^{B}$ wird aufgrund seiner Komplexität hier nicht aufgeführt. Für die Herleitung der Varianzen der Schätzer S_{W}^{B} und S_{L}^{B} ist zu beachten, dass die Verteilungen der zentralen Statistiken $X_{0 l}^{B}, l=1, \ldots, \delta$, unter H_{1}^{\neq}nicht einfach anzugeben sind. Wie jedoch in Abschnitt 3.4 beschrieben, können die Verteilungen der $X_{0 l}^{B}$ unter H_{1}^{\neq}durch Binomialverteilungen mit den Parametern $n_{\text {bino }}=d_{. l}^{B}$ und $p_{\text {bino }}=p_{0 l}^{B}$ angenähert werden. Damit ergeben sich als approximative zweiseitige $(1-\alpha)$-Konfidenzintervalle auf Basis von S_{W}^{B} bzw. S_{L}^{B} die Intervalle

$$
\begin{aligned}
K I_{W}^{B} & :=\left[S_{W}^{B} \mp u_{1-\frac{\alpha}{2}} \frac{(1+r)}{\sqrt{d r}} \sqrt{\frac{\sum_{l=1}^{\delta} d_{l}^{B} \hat{p}_{0 l}^{W, B}\left(1-\hat{p}_{0 l}^{W, B}\right)}{\sum_{l=1}^{\delta} e_{0 l}^{B}\left(1-e_{0 l}^{B}\right) d_{l l}^{B} \frac{\left(n_{l}^{B}-d_{l}^{B}\right)}{\left(n_{l}^{B}-1\right)}}}\right] \text { und } \\
K I_{L}^{B} & :=\left[S_{L}^{B} \mp u_{1-\frac{\alpha}{2}} \frac{(1+r)^{2}}{d r} \sqrt{\sum_{l=1}^{\delta} d_{l}^{B} \hat{p}_{0 l}^{L, B}\left(1-\hat{p}_{0 l}^{L, B}\right)}\right]
\end{aligned}
$$

wobei

$$
\hat{p}_{0 l}^{W, B}:=\frac{n_{0 l}^{B} \exp \left(S_{W}^{B}\right)}{n_{0 l}^{B} \exp \left(S_{W}^{B}\right)+n_{1 l}^{B}} \quad \text { und } \quad \hat{p}_{0 l}^{L, B}:=\frac{n_{0 l}^{B} \exp \left(S_{L}^{B}\right)}{n_{0 l}^{B} \exp \left(S_{L}^{B}\right)+n_{1 l}^{B}} .
$$

Einseitige Konfidenzintervalle können jeweils auf Basis der hier gegebenen zweiseitigen Konfidenzintervalle analog zu (3.25) erstellt werden. Konfidenzintervalle für das Hazard-Ratio selbst ergeben sich durch Exponierung der Intervallgrenzen der entsprechenden Intervalle für das logarithmierte Hazard-Ratio (vgl. Collett, 2003, S. 70/71).

Im Folgenden werden $K I_{C}$ bzw. $K I_{C}^{B}$ als Cox-Konfidenzintervall (Cox-KI), $K I_{W}$ bzw. $K I_{W}^{B}$ als Wassmer-Konfidenzintervall (Wassmer-KI) und $K I_{L}$ bzw. $K I_{L}^{B}$ als Shortened-Logrank-Konfidenzintervall (SL-KI) bezeichnet.

4 Vergleich der Schätzverfahren

Die in den vorangegangenen Abschnitten vorgestellten Punktschätzer S_{C}, S_{B}, S_{W}, $S_{W}^{B_{1}}, S_{W}^{B_{2}}$ und S_{L} sowie Konfidenzintervalle $K I_{C}, K I_{W}$ und $K I_{L}$ (bzw. im Fall von Bindungen $S_{C}^{B}, S_{B}^{B}, S_{W}^{B}, S_{W}^{B_{1}, B}, S_{W}^{B_{2}, B}$ und S_{L}^{B} sowie $K I_{C}^{B}, K I_{W}^{B}$ und $K I_{L}^{B}$) sollen nun bezüglich ihrer Eignung zur Schätzung des (logarithmierten) Hazard-Ratios in zweiarmigen klinischen Überlebenszeitstudien verglichen werden. Insbesondere ist von Interesse, wie die neuen Schätzer, die unter H_{1}^{\neq}verzerrt sind, im Vergleich zum approximativ erwartungstreuen Cox-Schätzer abschneiden und ob die Verzerrung im Wassmer-Schätzer durch die zwei Biaskorrekturen eliminiert bzw. vermindert werden kann.

Als Vergleichsgrundlage für die Punktschätzer soll dabei der Mean Squared Error (MSE) herangezogen werden. Da der MSE neben der Varianz eines Schätzers auch die Abweichung vom Erwartungswert eines Schätzers zum wahren Parameter einbezieht, stellt er ein geeignetes Maß dar, um erwartungstreue und verzerrte Schätzer zu vergleichen. In Abschnitt 4.1 werden die (theoretischen) MSEs für den Cox-, Wassmer- und SL-Schätzer im Fall ohne Bindungen aufgestellt. Dabei wird sich zeigen, dass die MSEs der Schätzer stark in Abhängigkeit der zugrundeliegenden Risikomengen stehen. Da diese Risikomengen selbst für gegebenen Stichprobenumfang mit jeder Anwendung variieren, sind allgemeingültige Aussagen schwierig.

Daher wurden die MSEs der Schätzer mittels einer umfassenden Simulationsstudie für viele verschiedene Szenarien geschätzt und verglichen. Im Rahmen dieser Simulationsstudie wurden zudem die Überdeckungswahrscheinlichkeiten und erwarteten Breiten der oben genannten Konfidenzintervalle geschätzt. Der Versuchsplan und die Durchführung der Simulationsstudie sowie die Ergebnisse bezüglich aller Punktund Intervallschätzer werden ausführlich in Abschnitt 4.2 beschrieben.

Abschließend werden in Abschnitt 4.3 alle vorgestellten Punkt- und Intervallschätzer für einen Beispieldatensatz vergleichend berechnet.

4.1 Mean Squared Error der Punktschätzer

Der Mean Squared Error (MSE) eines Schätzers $\hat{\theta}$ für einen Parameter θ ist definiert als

$$
\operatorname{MSE}[\hat{\theta}]=\operatorname{Var}[\hat{\theta}]+(\operatorname{Bias}[\hat{\theta}])^{2}=\operatorname{Var}[\hat{\theta}]+(\mathrm{E}[\hat{\theta}]-\theta)^{2} .
$$

Im Folgenden werden die MSEs für die Schätzer S_{C}, S_{W} und S_{L} in Abhängigkeit des logarithmierten Hazard-Ratios $\ln (\omega)$ berechnet und vergleichend gegenübergestellt. Dabei werden die beiden darin enthaltenen Komponenten, die Varianz und die Verzerrung, bedingt auf beliebige, aber fest gegebene Risikomengen erstellt.

Der Cox-Schätzer S_{C} folgt asymptotisch einer Normalverteilung mit Erwartungswert $\ln (\omega)=\beta$ und approximativer Varianz $(i(\beta))^{-1}($ vgl. Abschnitt 3.1 und (3.26) auf Seite 38). Mit

$$
i(\beta)=\sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)
$$

berechnet sich der approximative MSE des Cox-Schätzers wie folgt:

$$
\operatorname{MSE}\left[S_{C}\right] \approx \operatorname{Var}\left[S_{C}\right] \approx \frac{1}{i(\beta)}=\frac{1}{\sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)}
$$

Auf Basis des exakten Erwartungswerts und der exakten Varianz der in der LogrankStatistik $L R$ zu betrachtenden Zufallsgrößen $X_{0 l}, l=1, \ldots, d$ (vgl. (2.2)-(2.4) auf Seite 13 und (2.7) auf Seite 14), ergibt sich der MSE des Wassmer-Schätzers zu

$$
\begin{aligned}
\operatorname{MSE}\left[S_{W}\right] & =\operatorname{Var}\left[S_{W}\right]+\left(\mathrm{E}\left[S_{W}\right]-\ln (\omega)\right)^{2} \\
& =\frac{(1+r)^{2}}{d r} \frac{\sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)}{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}+\left(\frac{(1+r)}{\sqrt{d r}} \frac{\sum_{l=1}^{d}\left(p_{0 l}-e_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}}-\ln (\omega)\right)^{2} .
\end{aligned}
$$

Analog berechnet sich der MSE des SL-Schätzers zu:

$$
\begin{aligned}
\operatorname{MSE}\left[S_{L}\right] & =\operatorname{Var}\left[S_{L}\right]+\left(\mathrm{E}\left[S_{L}\right]-\ln (\omega)\right)^{2} \\
& =\left(\frac{(1+r)^{2}}{d r}\right)^{2} \sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)+\left(\frac{(1+r)^{2}}{d r} \sum_{l=1}^{d}\left(p_{0 l}-e_{0 l}\right)-\ln (\omega)\right)^{2} .
\end{aligned}
$$

Unter $\mathrm{H}_{0}^{=}$gilt $p_{0 l}=e_{0 l}$, in welchem Fall die Schätzer S_{W} und S_{L} unverzerrt sind. Weiterhin gilt unter $\mathrm{H}_{0}^{=}$und gruppenübergreifend gleichen Zensierungsverteilungen, dass $r_{l}=\frac{n_{0 l}}{n_{1 l}} \approx r \forall l=1, \ldots, d$ (vgl. Anhang A). Daraus resultiert, dass die drei Schätzer unter $\mathrm{H}_{0}^{=}$und bei gleichen Zensierungsverteilungen in den beiden Gruppen approximativ über die gleiche Varianz verfügen:

$$
\begin{aligned}
& \operatorname{Var}\left[S_{C}\right] \approx \frac{1}{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)} \approx \frac{(1+r)^{2}}{d r} \\
& \operatorname{Var}\left[S_{W}\right]=\frac{(1+r)^{2}}{d r} \\
& \operatorname{Var}\left[S_{L}\right]=\left(\frac{(1+r)^{2}}{d r}\right)^{2} \sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right) \approx\left(\frac{(1+r)^{2}}{d r}\right)^{2} \frac{d r}{(1+r)^{2}}=\frac{(1+r)^{2}}{d r}
\end{aligned}
$$

(vgl. (3.14) und (3.15) auf Seite 26). Insgesamt bedeutet dies, dass unter $\mathrm{H}_{0}^{=}$und gleichen Zensierungsverteilungen alle drei Schätzer approximativ gleich effizient sind.

Allerdings wird sich in der Simulationsstudie zeigen, dass der S_{L} insgesamt im ganzen Parameterraum über die kleinste und der Cox-Schätzer über die größte Varianz verfügt. Im Fall von einem balancierten Rekrutierungsverhältnis von $n_{0}=n_{1}$, womit $r=\frac{n_{0}}{n_{1}}=1$, ist dies zum Teil leicht an den gegebenen Formeln für die Varianzen zu erkennen. Die Funktion $f(r)=\frac{r}{(1+r)^{2}}$ hat im Punkt $r=1$ ihr Maximum mit dem Wert $\frac{1}{4}$ (vgl. Abbildung 3.1 auf Seite 27). Damit ist für $r=1$ der exakte Varianzterm der Logrank-Statistik $\forall \omega \in(0, \infty)$ (also unter $\mathrm{H}_{0}^{=}$wie unter H_{1}^{\neq}) stets kleiner (oder gleich) als der approximative:

$$
\operatorname{Var}\left[\sum_{l=1}^{d} X_{0 l}\right]=\sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)=\sum_{l=1}^{d} \frac{r_{l} \omega}{\left(1+r_{l} \omega\right)^{2}} \leq \frac{d r}{(1+r)^{2}}=\frac{d}{4}=\widehat{\operatorname{Var}}\left[\sum_{l=1}^{d} X_{0 l}\right]
$$

(vgl. (3.13), (3.14) und (3.15) auf Seite 26 sowie (3.22) auf Seite 36). In $\omega=1$ ergibt sich dabei

$$
\operatorname{Var}_{\mathrm{H}_{\overline{0}}}\left[\sum_{l=1}^{d} X_{0 l}\right]=\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)=\sum_{l=1}^{d} \frac{r_{l}}{\left(1+r_{l}\right)^{2}} \leq \frac{d r}{(1+r)^{2}}=\frac{d}{4}
$$

Damit gilt für $r=1$ und $\omega \in(0, \infty)$ beliebig:

$$
\begin{aligned}
\operatorname{Var}\left[S_{L}\right] & =\left(\frac{4}{d}\right)^{2} \sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right) \\
& \leq \frac{4}{d} \frac{\sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)}{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}=\operatorname{Var}\left[S_{W}\right] \\
\operatorname{Var}\left[S_{L}\right] & =\left(\frac{4}{d}\right)^{2} \sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right) \\
& \leq \frac{1}{\left(\sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right)\right)^{2}} \sum_{l=1}^{d} p_{0 l}\left(1-p_{0 l}\right) \approx \operatorname{Var}\left[S_{C}\right] .
\end{aligned}
$$

Für $\omega=1$ gilt

$$
\operatorname{Var}\left[S_{W}\right]=\frac{4}{d} \leq \frac{1}{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)} \approx \operatorname{Var}\left[S_{C}\right]
$$

Unter H_{1}^{\neq}lässt sich die Varianz von S_{C} und S_{W} nicht so einfach vergleichen. Ist das Rekrutierungsverhältnis $r \neq 1$, so lassen sich ebenso wenig einfache allgemeingültige Ungleichungen finden. Auch die Stärke der Verzerrung von S_{W} und die der Verzerrung von S_{L} können nicht einfach pauschal abgeschätzt werden. Selbst bedingt auf beliebige, aber fest gegebene Risikomengen ist es also schwierig, allgemeingültige Aussagen über die Größe der Varianzen und der MSEs der Schätzer zu machen. In der Praxis variieren die Größen der Risikomengen (auch für gegebenen festen Stichprobenumfang), welcher Umstand formale allgemeine Aussagen weiter erschwert. Daher wurde eine umfassende Simulastionsstudie durchgeführt, in der die MSEs von allen vorgestellten Schätzern in vielen verschiedenen Situationen untersucht werden. Es folgt die Darstellung des Aufbaus und die Auswertung dieser Simulationsstudie.

4.2 Durchführung und Auswertung einer Simulationsstudie

Um einen möglichst umfassenden Vergleich der verschiedenen Punkt- und Intervallschätzer vorzunehmen, wurden in der Simulationsstudie viele Szenarien mit verschiedenen, eine Studie charakterisierenden Eigenschaften betrachtet. Dazu zählen die Verteilung der Überlebenszeiten, die Stichprobenumfänge der beiden Gruppen sowie der Zensierungs- und der Bindungsgrad in den Beobachtungen. Zensierungen können, jenachdem welcher Verteilung sie folgen, sich unterschiedlich auf die Güte der Approximationen, auf denen der Wassmer-, der WBC-I-, der WBC-II- und der SL-Schätzer basieren, auswirken (vgl. die Ausführungen diesbezüglich in den Abschnitten 3.4 und 3.5.2). Dieser Aspekt soll untersucht werden, indem Zensierungen einmal nach gruppenübergreifend identischen und einmal nach gruppenübergreifend unterschiedlichen Verteilungen gezogen werden. Weiterhin können nur bei Verwendung des Cox-Schätzers die Einflüsse anderer Kovariablen als dem Behandlungseffekt durch die gleichzeitige Schätzung im Cox-Modell „ausgeschaltet" werden. Dies erscheint als ein großer Vorteil, wenn andere Kovariablen das Hazard-Ratio verschiedener Patientengruppen (stark) beeinflussen. Daher werden auch Szenarien mit einer Störgröße betrachtet. Der verwendete Versuchsplan sowie die Durchführung der Simulationsstudie werden in Abschnitt 4.2.1 ausführlich beschrieben.

Die Darstellung der Ergebnisse der Punktschätzung umfasst zunächst eine Beschreibung des Verhaltens der Schätzer für die verschiedenen Szenarien in Abschnitt 4.2.2. Im Anschluß wird in Abschnitt 4.2.3 aus den Ergebnissen für die geschätzten MSEs der Schätzer ein Faustregelwerk abgeleitet, anhand dem der Anwender für eine konkrete Studie entlang bestimmter Eigenschaften einen Schätzer auswählen kann.

Analog beginnt die Darstellung der Ergebnisse für die Intervallschätzung mit einer Analyse der Entwicklung der geschätzten Überdeckungswahrscheinlichkeiten und erwarteten Breiten in Abhängigkeit der betrachteten Eigenschaften der Szenarien (Abschnitt 4.2.4). Bei gleichzeitiger Angabe sollten Punkt- und Intervallschätzer vom gleichen Typ sein. Daher wird in Abschnitt 4.2.5 untersucht, ob sich für die Konfidenzintervalle die gleichen Empfehlungen für die Anwendung wie für die Punktschätzer ableiten lassen.

4.2.1 Versuchsplan

Wie in den Abschnitten 3.4-3.6 geschildert, wird für den Wassmer-, den WBC-Iund WBC-II- sowie für den SL-Schätzer erwartet, dass ihre Verzerrungen in der Nähe eines (logarithmierten) Hazard-Ratios von $\omega=1$ (bzw. $\ln (\omega)=0$) gering sind und mit zunehmender Entfernung zu diesem Wert zunehmen. Um diese Entwicklung zu untersuchen, wurden für jedes Szenario Simulationen für ein zugrundeliegendes Hazard-Ratio von jeweils $\omega=\frac{h_{0}(.)}{h_{1}(.)}=\frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1, \frac{6}{5}, \frac{3}{2}, 2,3$ zwischen den Gruppen durchgeführt. Im Folgenden wird die Auswahl der Szenarien genauer beschrieben.

Verteilungen

Es wurden die drei in Abbildung 2.3 auf Seite 10 dargestellten Verteilungen $\operatorname{Exp}(0.0693)$, $\operatorname{Weib}(0.5,0.2192)$ und $\operatorname{Gomp}(0.3,0.0109)$ herangezogen, da diese eine recht unterschiedliche Gestalt haben und somit jeder der in Abschnitt 2.3 beschriebenen Verteilungstypen vertreten ist. Alle drei Verteilungen verfügen über eine mediane Überlebenszeit von 10 und bilden jeweils die Baseline-Verteilung für den entsprechenden Verteilungstyp. Das bedeutet, dass unter $\omega=1$ für beide Gruppen die Zufallszahlen gemäß dieser Verteilungen je nach vorgesehenem Verteilungstyp gezogen wurden. Unter $\omega \neq 1$ wurde für Gruppe 0 der entsprechende Skalenparameter mit dem jeweils geforderten Hazard-Ratio multipliziert. Für Gruppe 1 wurde der Skalenparameter konstant bei dem der entsprechenden Baseline-Verteilung gehalten.

Stichprobenumfänge

Um die Entwicklung des Verhaltens der Schätzer für wachsenden Stichprobenumfang zu untersuchen, wurden ein kleiner Stichprobenumfang von 20 Patienten pro Gruppe, ein mittlerer Stichprobenumfang von 100 Patienten pro Gruppe und ein großer Stichprobenumfang von 500 Patienten pro Gruppe betrachtet. Zusätzlich wurde eine unbalancierte Aufteilung von 50 Patienten in der Referenzgruppe 0 und 100 Patienten in der Behandlungsgruppe 1 ausgewählt.

Zensierungen

In klinischen Studien mit Überlebenszeiten kommt es äußerst selten vor, dass das interessierende Ereignis für alle Studienteilnehmer beobachtet werden kann. Meist ist ein gewisser Teil der Beobachtungen zensiert. Es ist sinnvoll, Zensierungszeiten
mit Zufallszahlen einer Exponentialverteilung zu simulieren. Damit besteht für jeden fiktiven Patienten ein über die Zeit konstantes Risiko, zensiert zu werden, welches sich als eine Mischung eines Risikos aus competitive risk und generalized type I censoring zusammenfassen lässt. Bei exponentialverteilten Zensierungszeiten beläuft sich die Wahrscheinlichkeit, dass eine zufällig ausgewählte Beobachtung $j=1, \ldots, n_{i}$ aus Gruppe $i=0,1$ vor Eintreten des Ereignisses zensiert wird, auf

$$
\begin{align*}
p_{\lambda_{i}} & =P\left(C_{i j}<T_{i j}\right)=\int_{0}^{\infty} f_{i}\left(t_{i j}\right) P\left(C_{i j}<t_{i j}\right) d t_{i j} \\
& =\int_{0}^{\infty} f_{i}\left(t_{i j}\right)\left(1-e^{-\lambda_{i} t_{i j}}\right) d t_{i j} \tag{4.1}
\end{align*}
$$

Dabei bezeichnen $T_{i j}$ und $C_{i j}$ die wahre Überlebenszeit bzw. Zensierungszeit von Patient $(i, j), i=0,1, j=1, \ldots, n_{i}$, sowie $f_{i}(\cdot)$ die zu den Überlebenszeiten von Gruppe i zugehörige Dichte.

Wurden in einem Szenario gruppenübergreifend identische Zensierungsverteilungen gefordert, so musste $\lambda_{0}=\lambda_{1}=: \lambda$ gelten. Um unter dieser Bedingung für ein gegebenes Szenario und Hazard-Ratio einen festen Zensierungsanteil von etwa p_{λ} in den Daten zu erhalten, wurde folgende Gleichung numerisch nach λ gelöst:

$$
p_{\lambda}=\frac{n_{0}}{n}\left(\int_{0}^{\infty} f_{0}\left(t_{0 j}\right)\left(1-e^{-\lambda t_{0 j}}\right) d t_{0 j}\right)+\frac{n_{1}}{n}\left(\int_{0}^{\infty} f_{1}\left(t_{1 j}\right)\left(1-e^{-\lambda t_{1 j}}\right) d t_{1 j}\right) .
$$

Damit liegen unter $\mathrm{H}_{0}^{=}$, in welchem Fall die Verteilungen der Überlebenszeiten der beiden Gruppen identisch sind, etwa gleiche Zensierungsanteile von p_{λ} pro Gruppe vor. Nach Wahl der Skalenparameter (vgl. den Abschnitt zu Verteilungen) wächst für $\omega \rightarrow 0$ die Zensierungswahrscheinlichkeit für die Patienten aus Gruppe 0 , während die für die Patienten aus Gruppe 1 gleichbleibt. Dadurch fällt für $\omega<1$ der Zensierungsanteil in Gruppe 0 größer als der in Gruppe 1 aus. Für $\omega \rightarrow \infty$ bzw. $\omega>1$ verhält es sich genau anders herum. Unter H_{1}^{\neq}sind die Zensierungsanteile der Gruppen also unterschiedlich. Das optimale und in ω monotone λ gewährleistet jedoch für jedes $\omega \in[0, \infty]$, dass insgesamt über alle Beobachtungen der Zensierungsanteil bei etwa p_{λ} liegt.

Um hingegen einen bestimmten Anteil in den Daten zu zensieren, während gruppenweise verschiedene Zensierungsverteilungen vorliegen, wurde in der Simulationsstudie $p_{\lambda_{0}}=p_{\lambda_{1}}=p^{*}$ gesetzt und λ_{0} und λ_{1} mittels (4.1) entsprechend numerisch bestimmt. Unter $\mathrm{H}_{0}^{=}$bei gruppenübergreifend identischen Verteilungen der Überlebenszeiten resultiert dann zwar (wie oben) ein $\lambda_{0}=\lambda_{1}$, womit auch die Zensierungen in beiden Gruppen der gleichen Verteilung folgen. Jedoch werden die Zensierungsverteilungen der beiden Gruppen mit Entfernung von $\omega=1$ immer unterschiedlicher. Der Zensierungsanteil pro Gruppe und damit auch der gruppenübergreifende Zensierungsanteil liegen hierbei in jedem Szenario für jedes Hazard-Ratio bei etwa p^{*}.

In der Simulationsstudie wurde stets ein Zensierungsanteil von $p_{\lambda}=0.4 \mathrm{bzw}$. $p^{*}=0.4$ gefordert, je nach dem ob gleiche oder ungleiche Zensierungsverteilungen betrachtet wurden. In den folgenden Abbildungen zu den verschiedenen Szenarien ist jeweils für die einzelnen Hazard-Ratios und pro Gruppe vermerkt, wie hoch der Zensierungsgrad unter den Beobachtungen im arithmetischen Mittel über alle Durchläufe ist, falls Zensierungen im entsprechenden Szenario erzeugt wurden.

Bindungen

Die Entstehung von Bindungen in der Praxis kann in Simulationen durch künstliches Runden der gezogenen Zufallszahlen nachgeahmt werden. Dabei hängt bei gegebener Rundungsstärke der resultierende Bindungsanteil in den Daten stark von der Verteilung und dem Stichprobenumfang, die zugrundeliegen, ab. Diese Eigenschaft kann umgangen werden, indem abhängig von der gegebenen Datensituation dem gewünschten Bindungsanteil entsprechend (äquidistante) Klassen gebildet werden, in denen die künstlichen Beobachtungen jeweils auf einen bestimmten Wert gerundet werden. Dies ist allerdings zum einen sehr aufwendig. Des Weiteren entstehen somit unterschiedliche Bedingungen für die Erzeugung von Bindungen für die verschiedenen Szenarien einer Simulationsstudie, die nicht zur Realität passen. Denn beispielsweise ist es nur natürlich, dass bei einer gegebenen Anwendung, in der die Überlebenszeiten recht grob gemessen werden (z.B. in Monaten), die Anzahl der Bindungen mit Anstieg des Stichprobenumfangs steigt. Daher wurde hier die Variante bevorzugt, alle Beobachtungen auf die gleiche Weise zu runden, womit die Bindungsanteile in den Simulationen für die verschiedenen Verteilungstypen, Stichprobenumfänge und Hazard Ratios der einzelnen Szenarien schwanken.

Um bereits einen größeren Anteil an Bindungen unter den Beobachtungen bei kleinen Stichprobenumfängen zu erhalten, wurden alle gezogenen Zufallszahlen auf die nächst kleinere Zahl, die durch 0.5 ganzzahlig teilbar ist, gerundet. So liegt in den erzeugten Datensätzen durchschnittlich ein Bindungsgrad von rund $16-60 \%$ bei den Szenarien mit 20 Beobachtungen pro Gruppe, von rund 49-84\% bei den Szenarien mit 100 Beobachtungen pro Gruppe, von rund $58-97 \%$ bei den Szenarien mit 500 Beobachtungen pro Gruppe und von rund $36-80 \%$ bei den unbalancierten Designs mit 50 und 100 Beobachtungen in Gruppe 0 bzw. 1 vor. Zum Beispiel bedeutet dies für den minimalen Bindungsanteil von rund 16% und den maximalen Bindungsanteil von rund 97%, dass sich bei 40 Beobachtungen maximal durchschnittlich etwa 33.6 unterschiedliche Werte bzw. bei 1000 Beobachtungen minimal durchschnittlich 30 unterschiedliche Werte ergaben.

Wenn Bindungen in einem Szenario erzeugt wurden, ist in den Abbildungen zu den einzelnen Szenarien zu jedem Hazard-Ratio vermerkt, wie groß der aufgetretene gruppenübergreifende Bindungsanteil im arithmetischen Mittel über alle zugehörigen simulierten Datensätze ist. Der Bindungsanteil wurde stets durch den Anteil „doppelter" Beobachtungen (von m identischen Beobachtungen werden $m-1$ als Bindungen klassifiziert) unter allen unzensierten Beobachtungen berechnet.

Störgrößen

Eine Störgröße wurde in der Simulationsstudie modelliert, indem gruppenübergreifend für jeden fiktiven Patienten eine bernoulliverteilte Zufallszahl mit Wahrscheinlichkeit $\frac{1}{2}$ gezogen wurde. Im Falle einer positiven Beobachtung (1) wurde der Skalenparameter in der Verteilung der Überlebenszeit des zugehörigen Patienten mit 2 oder 4 multipliziert. Damit erhöht sich das Hazard-Ratio eines Patienten mit positiver Beobachtung zu einem Patienten, der nicht dieser künstlich erzeugten Gruppe angehört, um den Faktor 2 bzw. 4. Dies wird im Vergleich zu den erzeugten Hazard-Ratios als mittlere bis starke Störung bewertet. Bei der Berechnung des Cox-Schätzers wurde dann diese fiktiv erzeugte Variable neben der Behandlungszugehörigkeit dem aufzustellenden Cox-Modell übergeben. Bei den anderen Schätzern ist es nicht möglich, die Störgröße durch parallele Schätzung „rauszurechnen".

Ausführung der Simulationsstudie

Alle genannten Einstellungen der Eigenschaften Verteilungstyp, Stichprobenumfänge, Zensierungsgrad und Bindungsgrad wurden vollfaktoriell kombiniert, wobei in einem ersten Durchlauf nur gleiche Zensierungsverteilungen betrachtet wurden. Eine Störgröße wurde in zwei zusätzlichen Szenarien betrachtet, in denen der Verteilungstyp der Weibull-Verteilung mit Formparameter 0.5 entspricht, die Stichprobenumfänge 100 Beobachtungen pro Gruppe umfassen und weder zensierte noch gebundene Beobachtungen vorliegen. Dabei wurde einmal das Hazard-Ratio zwischen den Behandlungsgruppen um den Faktor 2 und einmal um den Faktor 4 „gestört". Die Eigenschaften aller 50 resultierenden Szenarien sind in Tabelle 4.1 zusammengefasst. Zur Untersuchung des Aspekts der ungleichen Zensierungsverteilungen wurden für die 24 von den 50 Szenarien mit Zensierungen (Nr. 1-6, 13-18, 25-30, 37-42) erneut Simulationen durchgeführt. Dabei wurden die gleichen Zufallszahlen für die Überlebenszeiten betrachtet. Die Zensierungszeiten wurden jedoch nach gruppenübergreifend verschiedenen Verteilungen neu gezogen. Die entsprechenden Szenarien werden im Folgenden mit 1B-6B, 13B-18B, 25B-30B und 37B-42B bezeichnet.

Bei Szenarien ohne Bindungen wurden in allen Durchläufen die Punktschätzer S_{C}, $S_{B}, S_{W}, S_{W}^{B_{1}}, S_{W}^{B_{2}}$ und S_{L} sowie die zweiseitigen Konfidenzintervalle $K I_{C}, K I_{W}$ und $K I_{L}$ berechnet. Im Fall von Bindungen wurden stets die jeweiligen Analoga S_{C}^{B}, S_{B}^{B}, $S_{W}^{B}, S_{W}^{B_{1}, B}, S_{W}^{B_{2}, B}$ und S_{L}^{B} bzw. $K I_{C}^{B}, K I_{W}^{B}$ und $K I_{L}^{B}$ verwendet. Das Niveau für die Konfidenzintervalle beträgt durchgehend $1-\alpha=0.95$.

Die MSEs der Schätzer wurden jeweils mittels $(\bar{x}-\theta)^{2}+s_{x}^{2}$ geschätzt, wobei \bar{x} das arithmetische Mittel und s_{x}^{2} die empirische Varianz der Schätzwerte x_{1}, \ldots, x_{n} der n Durchläufe und $\theta=\omega$ bzw. $\theta=\ln (\omega)$ das zugrundeliegende (logarithmierte) Hazard-Ratio eines Szenarios bezeichnen. Die Schätzungen der Überdeckungswahrscheinlichkeiten der Konfidenzintervalle erfolgten jeweils über die beobachtete Überdeckungsrate \bar{u} mit $u_{i}=1, i=1, \ldots, n$, wenn das zugehörige Konfindenzintervall den wahren Parameter beinhaltet, und $u_{i}=0$, wenn dies nicht erfüllt ist. Analog wurden die erwarteten Breiten der Konfidenzintervalle durch $\bar{k}^{o}-\bar{k}^{u}$ geschätzt, wobei k_{i}^{o} und k_{i}^{u} die beobachtete obere bzw. unter Grenze eines Konfidenzintervalls im Durchlauf $i=1, \ldots, n$ bezeichnen.

Tabelle 4.1: Eigenschaften der 50 Szenarien der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios in einer zweiarmigen Studie

$\begin{gathered} \text { Sze- } \\ \text { nario } \end{gathered}$	Stichprobenumfang (G0/G1)	Zensierungen	Bindungen	BaselineVerteilung	Störeffekt
1	20/20	40\%	keine	Exp(.0693)	keiner
2	$20 / 20$	40\%	keine	Weib(.5, .2192)	keiner
3	$20 / 20$	40\%	keine	Gomp(.3, .0109)	keiner
4	$20 / 20$	40\%	Rdg. auf $0,0.5,1, \ldots$	$\operatorname{Exp}(.0693)$	keiner
5	20/20	40\%	Rdg. auf $0,0.5,1$,	Weib(.5, .2192)	keiner
6	$20 / 20$	40\%	Rdg. auf $0,0.5,1, \ldots$	Gomp(.3, .0109)	keiner
7	20/20	keine	keine	$\operatorname{Exp}(.0693)$	keiner
8	20/20	keine	keine	Weib(.5, .2192)	keiner
9	$20 / 20$	keine	keine	Gomp(.3, .0109)	keiner
10	$20 / 20$	keine	Rdg. auf $0,0.5,1, \ldots$	$\operatorname{Exp}(.0693)$	keiner
11	20/20	keine	Rdg. auf $0,0.5,1$,	Weib(.5, .2192)	keiner
12	$20 / 20$	keine	Rdg. auf $0,0.5,1, \ldots$	Gomp(.3, .0109)	keiner
13	100 / 100	40\%	keine	Exp(.0693)	keiner
14	100 / 100	40\%	keine	Weib(.5, .2192)	keiner
15	$100 / 100$	40\%	keine	Gomp(.3, .0109)	keiner
16	100 / 100	40\%	Rdg. auf 0, 0.5, 1 , .	$\operatorname{Exp}(.0693)$	keiner
17	100 / 100	40\%	Rdg. auf $0,0.5,1$,	Weib(.5, .2192)	keiner
18	$100 / 100$	40\%	Rdg. auf $0,0.5,1, \ldots$	Gomp(.3, .0109)	keiner
19	$100 / 100$	keine	keine	$\operatorname{Exp}(.0693)$	keiner
20	100 / 100	keine	keine	Weib(.5, .2192)	keiner
21	$100 / 100$	keine	keine	Gomp(.3, .0109)	keiner
22	100 / 100	keine	Rdg. auf 0, 0.5, 1 ,	$\operatorname{Exp}(.0693)$	keiner
23	100 / 100	keine	Rdg. auf $0,0.5,1$,	Weib(.5, .2192)	keiner
24	$100 / 100$	keine	Rdg. auf $0,0.5,1, \ldots$	Gomp(.3, .0109)	keiner
25	$500 / 500$	40\%	keine	$\operatorname{Exp}(.0693)$	keiner
26	$500 / 500$	40\%	keine	Weib(.5, .2192)	keiner
27	$500 / 500$	40\%	keine	Gomp(.3, .0109)	keiner
28	$500 / 500$	40\%	Rdg. auf 0, 0.5, 1 ,	$\operatorname{Exp}(.0693)$	keiner
29	$500 / 500$	40\%	Rdg. auf $0,0.5,1$,	Weib(.5, .2192)	keiner
30	$500 / 500$	40\%	Rdg. auf $0,0.5,1, \ldots$	Gomp(.3, .0109)	keiner
31	$500 / 500$	keine	keine	$\operatorname{Exp}(.0693)$	keiner
32	$500 / 500$	keine	keine	Weib(.5, .2192)	keiner
33	$500 / 500$	keine	keine	Gomp(.3, .0109)	keiner
34	$500 / 500$	keine	Rdg. auf 0, 0.5, $1,$.	$\operatorname{Exp}(.0693)$	keiner
35	$500 / 500$	keine	Rdg. auf $0,0.5,1$,	Weib(.5, .2192)	keiner
36	$500 / 500$	keine	Rdg. auf $0,0.5,1, \ldots$	Gomp(.3, .0109)	keiner
37	$50 / 100$	40\%	keine	$\operatorname{Exp}(.0693)$	keiner
38	$50 / 100$	40\%	keine	Weib(.5, .2192)	keiner
39	$50 / 100$	40\%	keine	Gomp(.3, .0109)	keiner
40	$50 / 100$	40\%	Rdg. auf $0,0.5,1, \ldots$	$\operatorname{Exp}(.0693)$	keiner
41	$50 / 100$	40\%	Rdg. auf $0,0.5,1, \ldots$	Weib(.5, .2192)	keiner
42	$50 / 100$	40\%	Rdg. auf 0, 0.5, $1, \ldots$	Gomp(.3, .0109)	keiner
43	50/100	keine	keine	$\operatorname{Exp}(.0693)$	keiner
44	$50 / 100$	keine	keine	Weib(.5, .2192)	keiner
45	$50 / 100$	keine	keine	Gomp(.3, .0109)	keiner
46	$50 / 100$	keine	Rdg. auf $0,0.5,1, \ldots$	$\operatorname{Exp}(.0693)$	keiner
47	$50 / 100$	keine	Rdg. auf $0,0.5,1, \ldots$	Weib(.5, .2192)	keiner
48	$50 / 100$	keine	Rdg. auf $0,0.5,1, \ldots$	Gomp(.3, .0109)	keiner
49	100 / 100	keine	keine	Weib(.5, .2192)	2
50	100 / 100	keine	keine	Weib (.5, .2192)	4

Die Simulationen sowie auch alle Abbildungen in der gesamten Arbeit wurden mittels der Open Source Software R (R Development Core Team, 2012) in der Version 2.14.2 durchgeführt bzw. erstellt. Für das Erzeugen von gompertzverteilten Zufallszahlen wurde zusätzlich das R-Paket reliaR (Kumar und Ligges, 2011) und für die Berechnung der Ergebnisse des Cox-Schätzers das R-Paket survival (Therneau, 2012) verwendet. Für alle Szenarien und pro betrachtetes Hazard-Ratio wurden jeweils 10000 Durchläufe generiert. Die Ergebnisse sind reproduzierbar. Der R-Code zur Durchführung der gesamten Simulationsstudie kann der beigefügten DVD entnommen bzw. im Internet heruntergeladen werden. Die veröffentlichten Dateien beinhalten auch den R-Code zur Darstellung der parallelen Boxplots und Balkendiagramme für die Ergebnisse der Punktschätzverfahren sowie die Verlaufsdiagramme für die Ergebnisse der Intervallschätzverfahren, die im Folgenden präsentiert werden. Zudem kapselt die Datei Simulationsstudie_Aufruf.R den Ablauf der Simulationsstudie von der Erstellung des Versuchsplans über die Durchführung der Simulationen bis zur Zeichnung der Abbildungen, so dass der Leser die gesamte Simulationsstudie reproduzieren kann.

4.2.2 Verhalten der Punktschätzer

Für die Auswertung der Simulationsergebnisse bezüglich der Punktschätzer wurden zum einen für jedes Szenario parallele Boxplots von den Schätzwerten für die einzelnen (logarithmierten) Hazard-Ratios und Schätzer gezeichnet. Für den ersten Durchlauf aller 50 Szenarien (mit gleichen Zensierungsverteilungen) finden sich die entsprechenden Grafiken in den Abbildungen C.1-C. 50 auf den Seiten 154-203. Die Grafiken der wiederholten 24 Szenarien mit Zensierungen unter ungleichen Verteilungen werden in den Abbildungen C.51-C. 74 auf den Seiten 204-227 bereitgestellt. Zur Veranschaulichung in diesem Abschnitt ist die Grafik des Szenarios 7 zusätzlich in Abbildung 4.1 abgedruckt.

Jede dieser 74 Abbildungen besteht aus zwei Grafiken: Die obere zeigt die Schätzungen für das logarithmierte Hazard-Ratio, die untere für das Hazard-Ratio selbst. Einer besseren Darstellung halber ist die Abszisse der unteren Grafik nicht metrisch genau, sondern zeigt äquidistante Abstände zwischen den einzelnen wahren Parametern. Wenn ein Szenario Zensierungen oder Bindungen umfasst, tragen die oberen

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 20/20 Beobachtungen
Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung 4.1: Ergebnisse der Punktschätzer zu Szenario 7 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Grafiken die gruppenweisen Angaben zu dem durchschnittlichen Anteil zensierter Beobachtungen bzw. den durchschnittlichen gruppenübergreifenden Anteil an Bindungen unter den unzensierten Beobachtungen zu den einzelnen Hazard-Ratios, wie in Abschnitt 4.2.1 beschrieben. Da diese Informationen jeweils für beide Grafiken übereinstimmen, sind sie nur einmal vermerkt. Weiterhin sind in beiden Grafiken für jedes (logarithmierte) Hazard-Ratio die MSEs der einzelnen Schätzer angegeben, die aus den jeweils 10000 Durchläufen geschätzt wurden. Dabei ist der für ein gegebenes (logartihmiertes) Hazard-Ratio kleinste MSE rot markiert.

Die Darstellungen der parallelen Boxplots dienen dazu, die Verteilungen der Schätzer über den Parameterraum vergleichend analysieren zu können. Ergänzt werden diese Darstellungen durch die Tabellen B.1-B. 24 auf den Seiten 120-143, die die geschätzten Verzerrungen bzw. Varianzen der Schätzer für alle 74 Szenarien und logarithmierten Hazard-Ratios angeben. Die Größe und Rangfolge der geschätzten MSEs der Schätzer in den einzelnen logarithmierten Hazard-Ratios wurden zusätzlich für jedes Szenario in Form von Balkendiagrammen vergleichend gegenüber gestellt, siehe Abbildungen C.75-C. 91 auf den Seiten 228-244 für die Szenarien 1-50 sowie Abbildungen C.92-C. 99 auf den Seiten 245-252 für die Szenarien 1B-6B, 13B-18B, 25B-30B und 37B-42B. Diese Abbildungen umfassen jeweils 2-3 Szenarien gleichzeitig. Analog zu oben werden in diesem Abschnitt die Grafiken zu den Szenarien 7-9 in der Abbildung 4.2 wiederholt dargestellt.

Vorsicht ist geboten bei der Interpretation der Abbildungen: Einer besseren Darstellung halber sind die Ordinaten der Balkendiagramme nicht gleich skaliert worden. Bei den parallelen Boxplots verfügen nur die Abbildungen zu Szenarien der gleichen Stichprobengröße über gleich skalierte Ordinaten.

Verteilung der Schätzer

Die oberen Grafiken in den Abbildungen C.1-C.74 zeigen, dass die Verteilungen der Schätzer für die logarithmierten Hazard-Ratios in der Regel symmetrisch sind. Dass die Schätzwerte sogar approximativ einer Normalverteilung folgen, wird für drei Fälle in den Abbildungen 4.3-4.5 veranschaulicht. Hier sind für $\ln (\omega)=3$ in Szenario $7, \ln (\omega)=0$ in Szenario 36 und $\ln (\omega)=\ln \left(\frac{2}{3}\right)$ in Szenario 38 die Schätzwerte aller sechs Schätzer mittels Histogramme dargestellt. Zusätzlich wurden die aus den Daten mittels arithmetischen Mittel und empirischer Varianz geschätzten Normal-

Abbildung 4.2: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 7-9 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung 4.3: Häufigkeitsverteilungen der Schätzer in $\ln (\omega)=\ln (3)$ in Szenario 7 (Baseline-Verteilung: $\operatorname{Exp}(0.0693)$, 20 Beob. pro Gruppe, keine Zensierungen/Bindungen/Störgröße)

Abbildung 4.4: Häufigkeitsverteilungen der Schätzer in $\ln (\omega)=0$ in Szenario 36 (Baseline-Verteilung: Gomp(0.3, 0.0109), 500 Beob. pro Gruppe, keine Zensierungen/Störgröße, Bindungsanteil rund 97\%)

Abbildung 4.5: Häufigkeitsverteilungen der Schätzer in $\ln (\omega)=\ln \left(\frac{2}{3}\right)$ in Szenario 38 (Baseline-Verteilung: $\operatorname{Weib}(0.5,0.2192), 50 / 100$ Beob. in Gruppe 0/1, Zensierungsanteil: rund 49% in Gruppe 0, 36% in Gruppe 1, keine Bindungen/Störgröße)
verteilungsdichten eingezeichnet. Dabei zeigt sich, dass sich auch für extreme logarithmierte Hazard-Ratios (Abbildung 4.3), bei extremen Stichprobengrößen und Bindungsanteilen (Abbildung 4.4) sowie in unbalancierten Designs und bei Zensierungen (Abbildung 4.5) die Verteilungen der Schätzer durch eine Normalverteilung approximieren lassen. Jedoch zeigt Abbildung 4.3 im Vergleich zu den Abbildungen 4.4 und 4.5, dass sich die Approximationen an Normalverteilungen mit extremer werdendem logarithmierten Hazard-Ratio verschlechtern, wobei die Güte der Approximationen am schnellsten beim Breslow- und beim SL-Schätzer zurückgeht.

Der WBC-II-Schätzer verhält sich in einigen wenigen Fällen geradezu „absonderlich": Während auch für diesen Schätzer in den Abbildungen 4.3-4.5 eine Normalverteilung zu erkennen ist, folgen seine Werte unter $\ln (\omega)=0$ in den Szenarien 19 und 31 keiner Normalverteilung (vgl. Abbildung 4.6 sowie auch die unsymmetrischen Boxplots des WBC-II-Schätzers in $\ln (\omega)=0$ in den Abbildungen C. 19 und C.31). Unter $\mathrm{H}_{0}^{=}$scheint der WBC-II-Schätzer mit wachsendem Stichprobenumfang seine Normalverteilung zu verlieren, in der Mitte seiner Verteilung entsteht eine Lücke. Dies lässt sich dadurch erklären, dass für negative bzw. positive Werte der LogrankStatistik (die unter $\mathrm{H}_{0}^{=}$bei großen Stichprobenumfängen etwa gleich oft vorkommen) die relativ große a-priori-Schätzung von $\omega_{a}=\frac{1}{2}$ bzw. $\omega_{a}=2$ den Schätzwert des

Abbildung 4.6: Häufigkeitsverteilungen des WBC-II-Schätzers in $\ln (\omega)=0$ in den Szenarien 19 und 31 (Baseline-Verteilung: $\operatorname{Exp}(0.0693)$, 100 bzw. 500 Beob. pro Gruppe, keine Zensierungen/Bindungen/Störgröße)

WBC-II-Schätzers deutlich auf die eine oder andere Seite von $\ln (\omega)=0$ schiebt.

Bei der Schätzung von ω sind die Verteilungen der Schätzer leicht schief mit einer (je nach dem starken) Neigung zu Ausreißern in Richtung $+\infty$, wobei die Schiefen mit steigendem Stichprobenumfang aufgrund der sich verringernden Varianzenen der Verteilungen zurückgehen. Dies wird in den Abbildungen 4.7 und 4.8 verdeutlicht, in denen die Häufigkeitsverteilungen der Schätzer in $\omega=1.5$ in Szenario 8 bzw. 20 dargestellt sind.

Weiterhin bescheinigen die Abbildungen C.1-C. 74 und Tabellen B.1-B. 24 den Schätzern Erwartungstreue unter $\mathrm{H}_{0}^{=}$. Der SL-Schätzer verfügt in $\ln (\omega)=0$ stets über die kleinste, der Cox- oder der WBC-II-Schätzer über die größte Varianz. Die Abbildungen C.75-C. 99 zeigen zudem, dass in allen 14 betrachteten Szenarien ohne Zensierungen und Bindungen in $\ln (\omega)=0$ die Reihenfolge SL-, Breslow-, Wassmer-, WBC-I-, Cox-, WBC-II-Schätzer vom kleinsten bis größten MSE besteht. Auch unter Zensierungen und/oder Bindungen schneidet in $\ln (\omega)=0$ der SL-Schätzer am besten und der Breslow-Schätzer bis auf Szenario 36 (vgl. die Abbildungen C. 36 und C.86) am zweibesten ab. Der maximale Unterschied im MSE in $\ln (\omega)=0$ besteht in Szenario 3 zwischen dem SL-Schätzer (MSE etwa 0.1522) und dem CoxSchätzer (MSE etwa 0.2268), vgl. die Abbildungen C. 3 und C.75. Damit ist hier der MSE des Cox-Schätzers um fast 50% größer als der des SL-Schätzers. Mit zunehmender Entfernung von $\omega=1$ bzw. $\ln (\omega)=0$ (und unter Variierung der Eigenschaften der Szenarien) entstehen bei manchen Schätzern Verzerrungen in den Verteilungen, die Verhältnisse paarweiser Varianzen werden extremer. Damit werden das Verhalten der Schätzer und ihre Eignung zur Schätzung des (logarithmierten) Hazard-Ratios immer unterschiedlicher. Auch die Unterschiede in den MSEs fallen je nach Szenario und (logarithmiertes) Hazard-Ratio noch extremer aus. Im Folgenden werden die Entwicklungen der Verteilungen und MSEs der einzelnen Schätzer in allen betrachteten Szenarien und logarithmierten Hazard-Ratios (anhand der Abbildungen C.1-C. 99 sowie der Tabellen B.1-B.24) beschrieben.

Da die Verteilungen der Schätzer für das Hazard-Ratio selbst schief sind und (teilweise erheblich) zu Ausreißern neigen, stellen die arithmetischen Mittel sowie die Varianzen der Schätzwerte und damit auch die darauf basierenden geschätzten Verzerrungen und MSEs keine geeigneten Maßzahlen dar, um verschiedene Schätzer

Abbildung 4.7: Häufigkeitsverteilungen der Schätzer in $\omega=1.5$ in Szenario 8 (Baseline-Verteilung: Weib(0.5, 0.2192), 20 Beob. pro Gruppe, keine Zensierungen/Bindungen/Störgröße)

Abbildung 4.8: Häufigkeitsverteilungen der Schätzer in $\omega=1.5$ in Szenario 20 (Baseline-Verteilung: Weib(0.5, 0.2192), 100 Beob. pro Gruppe, keine Zensierungen/Bindungen/Störgröße)
miteinander zu vergleichen. Daher stützen sich die folgenden Analysen der Verzerrungen, Varianzen und Rangfolgen unter den MSEs nur auf die Ergebnisse für das logarithmierte Hazard-Ratio. Zudem wurden die Abbildungen C.75-C. 99 sowie die Tabellen B.1-B. 24 nur für das logarithmierte Hazard-Ratio erstellt. Die MSESchätzungen in den Grafiken zum Hazard-Ratio selbst in den Abbildungen C.1-C.74 sind nur der Vollständigkeit halber aufgeführt. Einer besseren Lesbarkeit halber wird jedoch im Folgenden der Logarithmus in der Formelschreibweise weggelassen (anstatt z.B. $\ln (\omega)=\ln (2)$ wird vereinfacht $\omega=2$ verwendet).

Balancierte Szenarien ohne Zensierungen und Bindungen

Die Aussagen in diesem Abschnitt werden aus den Ergebnissen zu den Szenarien 7-9, 19-21, 31-33, 49 und 50 abgeleitet, die in den Abbildungen C. 7 (bzw. 4.1), C.8, C.9, C.19-C.21, C.31-C.33, C.49, C.50, C. 77 (bzw. 4.2), C.81, C. 85 und C. 91 sowie den entsprechenden Zeilen in den Tabellen B.1-B. 6 und B.13-B. 18 dargestellt sind.

Wie zu erwarten, zeigt sich bei den balancierten Szenarien für alle Schätzer ein symmetrisches Bild auf beiden Seiten des Alternativraums bezüglich der Entwicklung von Varianzen, Verzerrungen und Rangfolgen im MSE. Insgesamt lässt sich feststellen, dass der Breslow-, Wassmer-, und SL-Schätzer auf der einen Seite und der Coxund der WBC-I-Schätzer auf der anderen Seite sich jeweils recht ähnlich verhalten, wenn auch das Ausmaß bestimmter Eigenschaften unterschiedlich stark ausfällt.

So sinken die Varianzen des Breslow-, Wassmer- und SL-Schätzers mit Entfernung von $\mathrm{H}_{0}^{=}$, während Verzerrungen bei diesen Schätzern entstehen und anwachsen. Dabei überschätzen die Schätzer den wahren Parameter für $\omega<1$ und unterschätzen ihn für $\omega>1$. Insgesamt unterschätzen sie damit den Behandlungseffekt zwischen den beiden Gruppen. Dieses gesamte Muster zeigt sich am stärksten beim SLund am schwächsten beim Wassmer-Schätzer. Während die Verzerrungen für den Breslow- und SL-Schätzer für extreme logarithmierte Hazard-Ratios regelrecht ausufern, zeigt der Wassmer-Schätzer sich diesbezüglich wesentlich stabiler. Für den Wassmer- und SL-Schätzer liegt die Ursache der Verzerrungen in den in ihrer Konstruktion verwendeten Approximationen begründet, die eine Nähe zu $\omega=1$ voraussetzen (vgl. die Abschnitte 3.4 und 3.6). Der SL-Schätzer ist stärker als der Wassmer-Schätzer von der Entwicklung einer Verzerrung betroffen, da die Approximation des Varianzterms der Logrank-Statistik in den SL-Schätzer „voll" und in
den Wassmer-Schätzer nur „halb" eingeht (vgl. (3.23) auf Seite 36). Mit steigendem Stichprobenumfang gehen die Verzerrungen der drei Schätzer zurück, jedoch nur sehr langsam.

Beim Cox- und WBC-I-Schätzer wachsen die Varianzen mit Entfernung von $\mathrm{H}_{0}^{=}$, jedoch sind diese beiden Schätzer approximativ unverzerrt in allen hier betrachteten Situationen (außer der WBC-I-Schätzer in den zwei Szenarien mit Störgröße). Nur sehr langsam wachsen bei ihnen Verzerrungen auf beiden Seiten des Alternativraums heran. Dabei tendieren die beiden Schätzer dazu, den wahren Parameter für $\omega<1$ zu unterschätzen und für $\omega>1$ zu überschätzen.

Da in die Konstruktion des WBC-II-Schätzers die a-priori-Schätzung von $\omega_{a}=\frac{1}{2}$ bzw. $\omega_{a}=2$ eingeht, ist es nicht erstaunlich, dass dieser Schätzer in diesen Punkten über die kleinsten Verzerrungen im Alternativraum verfügt. Die Entwicklung der Verzerrung dieses Schätzers verläuft insgesamt „schlangenförmig": In $\omega<\frac{1}{2}$ überschätzt er das logarithmierte Hazard-Ratio, in $\omega \in\left(\frac{1}{2}, 0\right)$ unterschätzt er es. Auf der anderen Seite verhält es sich mit einer Überschätzung in $\omega \in(0,2)$ und einer Unterschätzung in $\omega>2$ genau entgegengesetzt. Die Varianz des WBC-IISchätzers sinkt langsam mit Entfernung von $\mathrm{H}_{0}^{=}$.

Wie zu erwarten, verstärkt das Vorhandensein einer Störgröße punktweise die bereits bestehenden Verzerrungen, für den Cox-Schätzer als einzigen jedoch nur geringfügig, für die anderen teilweise erheblich. Der Verteilungstyp scheint weder auf die Varianzen noch auf die Verzerrungen der Schätzer Einfluss zu nehmen.

Bei einem Vergleich aller Schätzer miteinander kann festgehalten werden, dass unter und auch nahe $\mathrm{H}_{0}^{=}$insgesamt der Breslow-, der Wassmer- und der SL-Schätzer über die kleinsten Verzerrungen verfügen, unter H_{0}^{\neq}häufig der WBC-I-Schätzer, außer in den Punkten $\omega=\frac{1}{2}$ bzw. $\omega=2$, wo der WBC-II-Schätzer die Verzerrungen minimiert. Dieses Resultat ist sehr interessant. Der WBC-I- und der WBC-II-Schätzer wurden mit dem Ziel konstruiert, die Verzerrung des Wassmer-Schätzer zu eliminieren bzw. zu verringern. In den Bereichen, in denen der Wassmer-Schätzer zu Verzerrungen neigt, ist dies demnach, insbesondere für den WBC-I-Schätzer, geglückt.

Der Nachteil der Verzerrungen im Breslow-, Wassmer- und SL-Schätzer kommt mit dem Gewinn kleiner Varianzen. Der SL-Schätzer verfügt in allen hier betrachten

Situationen über die geringste Varianz, der Breslow-Schätzer über die zweigeringste und der Wassmer-Schätzer (außer in $\omega=\frac{3}{2}$ und $\omega=1.5$ in Szenario 32, vgl. die Tabellen B.13-B.18) über die drittgeringste. Außer unter und nahe $\mathrm{H}_{0}^{=}$, wo der WBC-II-Schätzer häufig die größte Varianz verbucht, maximiert häufig der CoxSchätzer die Varianzen.

Diese Resultate haben zur Folge, dass in und nahe $\omega=1$ der SL-Schätzer bezüglich des MSEs am besten abschneidet, gefolgt vom Breslow- und Wassmer-Schätzer. Bei extremen Hazard-Ratios ändert sich die Reihenfolge unter diesen drei Schätzern und geht letztlich in die inverse Reihenfolge S_{W}, S_{B}, S_{L} (bzw. $S_{W}^{B}, S_{B}^{B}, S_{L}^{B}$) über. Da die Verzerrungen dieser drei Schätzer schneller anwachsen, als durch die gleichzeitigen Veränderungen in den Varianzen aller Schätzer kompensiert wird, werden sie in extremen Hazard-Ratios von anderen Schätzer im MSE übertroffen und nehmen schließlich die letzten Plätze ein. Mit wachsendem Stichprobenumumfang verstärkt sich diese Entwicklung, vor allem weil die Verzerrung und die Varianz des Cox- und die des WBC-I-Schätzers schneller mit dem Stichprobenumfang als die der anderen Schätzern sinken. Bei 100 und 500 Beobachtungen zeigen der Breslow- und SLSchätzer in den extremen Punkten $\omega=\frac{1}{3}$ und $\omega=3$ einen wesentlich größeren MSE als alle anderen Schätzer. Der WBC-II-Schätzer minimiert oft den MSE in den für ihn optimalen Punkten $\omega=\frac{1}{2}$ und $\omega=2$ sowie auch in $\omega=\frac{1}{3}$ und $\omega=3$. In allen betrachteten Szenarien ohne Störgröße ist der WBC-I-Schätzer im MSE besser als der Cox-Schätzer und minimiert so bei 500 Beobachtungen pro Gruppe für die extremsten Punkte $\omega=\frac{1}{3}$ und $\omega=3$ den MSE. In den Bereichen, wo der Breslow-, der Wassmer- und der SL-Schätzer hinsichtlich des MSEs gut abschneiden, teilen sich somit der Cox- und der WBC-II-Schätzer den schlechtesten Platz. Mit wachsender Einwirkung einer Störgröße weichen der Breslow-, Wassmer- und SLSchätzer schneller von ihren MSE optimierenden Positionen und machen dem CoxSchätzer Platz, der bei einer Störgröße von 2 in den beiden äußersten Punkten und bei einer Störgröße von 4 in den sechs äußersten Punkten über den (teils deutlich) kleinsten MSE verfügt.

Um das Ausmaß der Unterschiede in den MSEs zu beziffern, wird ein Beispiel gegeben. Der maximale Unterschied in den Punkten $\omega=\frac{2}{3}$ und $\omega=1.5$ in allen hier betrachteten Szenarien ohne Störgröße liegt zwischen dem Cox- und dem SL-

Schätzer mit einem MSE von etwa 0.1265 bzw. 0.083 (Szenario 7, $\omega=1.5$, vgl. Abbildung 4.1). In Szenario 31 betragen die geschätzten MSEs der beiden Schätzer in $\omega=1.5$ etwa 0.0043 (Cox) bzw. 0.0037 (SL), vgl. Abbildung C.31. Beim kleinen Stichprobenumfang von 20 Beobachtungen pro Gruppe ist der MSE des CoxSchätzers damit um etwa 52.5% größer als der des SL-Schätzers. Mit wachsendem Stichprobenumfang verringert sich der Vorteil des letzteren Schätzers. Im gleichen Szenario mit 500 Beobachtungen pro Gruppe übersteigt der MSE des Cox-Schätzers den des SL-Schätzers nur noch um etwa 17.5%.

Balancierte Szenarien mit Zensierungen und Bindungen

Um den Einfluss von Bindungen zu beurteilen, werden die Szenarien 10-12, 22-24 und 34-36 (vgl. die Abbildungen C.10-C.12, C.22-C.24, C.34-C.36, C.78, C. 82 und C. 86 sowie die entsprechenden Zeilen in den Tabellen B.1-B. 6 und B.13-B.18) auf Veränderungen gegenüber den zuvor betrachteten Szenarien untersucht.

Der Cox-Schätzer zeigt keinerlei Änderungen bezüglich Verzerrung und Varianz unter Bindungen im Vergleich zu den entsprechenden logarithmierten Hazard-Ratios und Szenarien ohne Bindungen. Beim Breslow-, Wassmer- und SL-Schätzer hingegen verschärft sich jeweils die gleichzeitige Vergrößerung der Verzerrung und Verringerung der Varianz mit Entfernung von $\mathrm{H}_{0}^{=}$, und zwar umso mehr, je höher der Bindungsanteil ist. Hiervon ist wiederum der Wassmer-Schätzer in wesentlich schwächerem Ausmaß als die anderen beiden Schätzer betroffen. Der WBC-II-Schätzer zeigt ebenso nur eine leichte Vergrößerung in seiner Verzerrung und Verringerung in seiner Varianz. Hingegen ist beim WBC-I-Schätzer neben einer kleinen Verringerung seiner Varianz ein vergleichsweise stärkerer Anstieg in seiner Verzerrung zu beobachten. Auffälligerweise kehrt sich dabei insgesamt das Vorzeichen um, so dass der WBC-I-Schätzer unter Bindungen wie der Breslow-, der Wassmer- und der SL-Schätzer auf der linken Seite des Alternativraums zur Überschätzung und auf der rechten zur Unterschätzung neigt.

Der Einfluss von Bindungen auf das Verhalten der Schätzer lässt sich vor allem dann deutlich ablesen, wenn die Bindungsanteile auf den beiden Seiten des Alternativraums stark unterschiedlich sind, wie es hier vor allem bei der Weibull-Verteilung der Fall ist. Als Beispiel wird Szenario 35 (Abbildung C.35) betrachtet, in dem die Bindungsanteile von $\omega=\frac{1}{3}$ bis $\omega=3$ zwischen rund 58% und 82% schwanken. Es
zeigt sich ein asymmetrisches Bild an den beiden äußeren Rändern des betrachteten Alternativraums. Z.B. ist der WBC-I-Schätzer unter einem Bindungsanteil von rund 58% noch kaum, aber unter einem Bindungsanteil von rund 82% stark verzerrt. In Szenario 36 (Abbildung C.36) hingegen, bei dem die Bindungsanteile mit Schwankungen zwischen rund 96% und 97% noch größer, aber auf beiden Seiten von $\omega=1$ ähnlich sind, zeigt der WBC-I-Schätzer auf beiden Seiten eine ähnlich starke Verzerrung.

Diese Entwicklungen resultieren darin, dass die Überlegenheit des Breslow-, Wassmer- und SL-Schätzers unter Bindungen stärker eingegrenzt wird. So zeigt sich bei 20 und 100 Beobachtungen pro Gruppe bei Bindungsanteilen zwischen rund 16% und 84% als auffälligste Veränderung, dass unter und nahe $\mathrm{H}_{0}^{=}$der Wassmer-Schätzer seinen dritten gegen den vierten Platz hinsichtlich des MSEs mit dem WBC-ISchätzer eintauscht. Bei 500 Beobachtungen pro Gruppe verliert der SL-Schätzer bei Bindungsanteilen von mindestens rund 79% seine durchgängige Optimalität in $\omega=\frac{2}{3}$ und $\omega=1.5$.

In den Szenarien 1-3, 13-15 und 25-27 sowie 1B-3B, 13B-15B und 25B-27B wurden Zensierungen (aber keine Bindungen) erzeugt. Die Ergebnisse der Durchläufe unter gleichen Zensierungsverteilungen finden sich in den Abbildungen C.1-C.3, C.13C.15, C.25-C.27, C.75, C. 79 und C. 83 sowie in den entsprechenden Zeilen in den Tabellen B.1-B. 6 und B.13-B.18, die der Durchläufe unter ungleichen Zensierungsverteilungen in den Abbildungen C.51-C.53, C.57-C.59, C.63-C.65, C.92, C. 94 und C. 96 sowie in den entsprechenden Zeilen in den Tabellen B.7-B. 12 und B.19-B.24. Es ist schnell ersichtlich, dass es bei beiden Zensierungsarten zur Erhöhung der Varianz bei allen Schätzern im Vergleich zu den entsprechenden Szenarien ohne Zensierungen (und Bindungen) kommt. Dies lässt sich einfach dadurch erklären, dass bei Zensierungen die Anzahl der Ereigniszeiten kleiner ist. Auf die Verzerrungen haben die beiden verschiedenen Zensierungsarten jedoch unterschiedliche Effekte.

Bei gleichen Zensierungsverteilungen sinken die Verzerrungen des Wassmer- und vor allem des Breslow- und des SL-Schätzers, jedoch je nach Verteilungstyp unterschiedlich viel. Die größte Verringerung zeigt sich bei den Szenarien mit der Weibullverteilung (Nr. 2, 14, 26), die geringste bei denen mit der Gompertzverteilung (Nr. 3, 15, 27). Als Beispiel werden die Szenarien 14 und 15 im Vergleich zu den ensprechen-
den Szenarien ohne Zensierungen, 20 und 21, betrachtet. In Abbildung C. 14 zeigt sich eine wesentlich stärkere punktweise Reduzierung der Verzerrungen des Breslow-, Wassmer- und SL-Schätzers gegenüber Abbildung C. 20 als in Abbildung C. 15 gegenüber Abbildung C.21. Die Ursache sollte aber nicht dem zugrundeliegenden Verteilungstyp zugeschrieben werden, sondern dem resultierenden Unterschied in den Zensierungsanteilen der beiden Gruppen. In Szenario 14 liegen z.B. in den äußersten betrachteten Punkten des Parameterraums die Zensierungsanteile bei $57 \% / 23 \%$ bzw. bei $23 \% / 57 \%$ (Gruppe 0/Gruppe 1), in Szenario 15 bei $45 \% / 35 \%$ bzw. bei $34 \% / 47 \%$. Es sei daran erinnert, dass die Verzerrungen des Wassmer- und des SL-Schätzers mit zunehmender Entfernung von $\mathrm{H}_{0}^{=}$dadurch zustande kommen, dass die Approximationen, auf denen sie beruhen, sich zunehmend verschlechtern. In der Konstruktion der Schätzer wird verwendet, dass das Verhältnis der Größen der Risikomengen an den einzelnen Ereigniszeitpunkten etwa dem Stichprobenverhältnis entspricht, was mit zunehmender Entfernung von $\omega=1$ immer weniger zutrifft. Die „ungleicheren" Zensierungsanteile, wie sie hier bei der Weibull-Verteilung auftreten, zeigen sich auf dieser Grundlage als vorteilhafter für den Wassmer- und den SL-Schätzer. Denn sie führen dazu, dass in der jeweiligen Gruppe, in der die Überlebenszeiten tendenziell größer sind, mehr Beobachtungen zensiert werden, womit die Verhältnisse der Größen der Risikomengen näher an das Stichprobenverhältnis rücken.

Auch der WBC-II-Schätzer zeigt ein unterschiedliches Verhalten je nach Unterschied in den Zensierungsanteilen. Insgesamt wächst seine Verzerrung unter Zensierungen bei der Gompertz-Verteilung, bei den anderen beiden Verteilungen hingegen wird sie kleiner. Für den Cox- und den WBC-I-Schätzer lassen sich keine eindeutigen Veränderungen unter Zensierungen feststellen. Sie bleiben approximativ unverzerrt.

Bei ungleichen Zensierungsverteilungen zeigt sich bei allen bis auf den WBC-IISchätzer, dass bei kleineren Stichprobenumfängen die Verzerrungen zunehmen, wohingegen sie bei größeren Stichprobenumfängen insgesamt ähnlich bleiben bzw. manchmal etwas sinken. Die Verzerrung des WBC-II-Schätzers legt generell zu.

Dass von Zensierungen unter gleichen Zensierungsverteilungen der Breslow- und SLSchätzer am stärksten profitieren, zeigt sich auch in den Rangfolgen der MSEs. In den Szenarien 1 und 2 liegen nun der SL- und der Breslow-Schätzer in allen logarithmierten Hazard-Ratios vorne (Abbildung C.75), wohingegen sie in Szenario

7-9 durchgehend in den beiden äußersten logarithmierten Hazard-Ratios $\left(\omega=\frac{1}{3}\right.$ bzw. $\omega=3$) vom WBC-II-Schätzer übertroffen werden (Abbildung C.77). Genauso zeigt sich in den Szenarien 13-15 gegenüber den Szenarien 19-21 sowie in den Szenarien 25-27 gegenüber den Szenarien 31-33, dass der Breslow- und SL-Schätzer ihre Überlegenheit ausweiten (Abbildungen C.79, C.81, C. 83 und C.85). Bei dem Vergleich dieser Abbildungen ist weiterhin zu erkennen, dass sich die vergleichsweisen großen MSEs des Breslow- und SL-Schätzers in den äußersten logarithmierten Hazard-Ratios in den Szenarien mit Zensierungen in einen zu den anderen Schätzern vergleichbaren Rahmen reduzieren. Der WBC-II-Schätzer gibt die bezüglich des MSEs schlechteste Position unter oder nahe $\mathrm{H}_{0}^{=}$bei Zensierungen oftmals an den Cox-Schätzer ab.

Die letzten beiden Resultate zeigen sich auch bei ungleichen Zensierungsverteilungen (Abbildungen C.92, C. 94 und C.96). Insgesamt zeigen sich hier aber weniger Veränderungen in den Rangfolgen der MSEs gegenüber den entsprechenden Szenarien ohne Zensierungen, weil alle Schätzer sich insgesamt in ähnlicher Weise bei ungleichen Zensierungsverteilungen verändern.

Schließlich werden die balancierten Szenarien 4-6, 16-18 und 28-30 sowie 4B-6B, 16B-18B und 28B-30B untersucht, in denen Zensierungen und Bindungen erzeugt wurden, vgl. die Abbildungen C.4-C.6, C.16-C.18, C.28-C.30, C.76, C. 80 und C. 84 sowie die entsprechenden Zeilen in den Tabellen B.1-B. 6 und B.13-B. 18 für die Ergebnisse bei gleichen Zensierungsverteilungen und die Abbildungen C.54-C.56, C.60-C.62, C.66-C.68, C.93, C. 95 und C. 97 sowie die entsprechenden Zeilen in den Tabellen B.7-B. 12 und B.19-B. 24 für die Ergebnisse bei ungleichen Zensierungsverteilungen.

Wie in den Szenarien ohne Zensierungen haben Bindungen auch in den Szenarien mit Zensierungen keinen erkennbaren Effekt auf die Verteilung des Cox-Schätzers. Bei allen anderen Schätzern werden die Verzerrungen unter Zensierungen größer, vor allem bei großen Bindungsanteilen, während die Varianzen sich leicht verkleinern. Dabei spielt es keine Rolle, ob die Zensierungen unter gleichen oder ungleichen Verteilungen gezogen wurden.

In den Rangfolgen der MSEs der Schätzer in den Szenarien mit Bindungen und Zensierungen gegenüber denen, bei denen Zensierungen ohne Bindungen vorliegen,
zeigen sich ähnliche Veränderungen wie in den Szenarien mit Bindungen und ohne Zensierungen gegenüber denen ohne Bindungen und ohne Zensierungen: Die guten Ergebnisse des Breslow- und des SL-Schätzers werden in den extremeren logarithmierten Hazard-Ratios weiter eingeschränkt und Richtung $\mathrm{H}_{0}^{=}$zurückgedrängt. Der WBC-I-Schätzer kann in und nahe $\mathrm{H}_{0}^{=}$Plätze gut machen. Insbesondere bei großen Stichprobenumfängen, was hier mit großen Bindungsanteilen einhergeht, zeigt sich jedoch, dass der WBC-I-Schätzer insgesamt vergleichsweise schlechter und der CoxSchätzer vergleichsweise besser abschneidet. Als Beispiel werden die Szenarien 25B30B betrachtet (Abbildungen C. 96 und C.97). Während in den Szenarien 25B-27B der WBC-I-Schätzer immer in $\omega=\frac{1}{3}$ und $\omega=3$ den MSE minimiert und den Cox-Schätzer auf den zweiten Platz verweist, tauschen diesen beiden Schätzer in den Szenarien 28B-30B in diesen Punkten (außer in $\omega=\frac{1}{3}$ in Szenario 28B) ihre Positionen.

Abschließend soll das Zahlenbeispiel aus dem letzten Abschnitt über die MSEs des Cox- und SL-Schätzers in $\omega=1.5$ in Szenario 7 und 31 fortgeführt werden, in denen der MSE des Cox-Schätzers den des SL-Schätzers um etwa 52.5% bzw. 17.5% übersteigt. In Szenario 1 und 25, den gleichen Szenarien unter Zensierungen, liegen die MSEs des Cox-Schätzers bei rund 0.2066 bzw. 0.0069, die des SL-Schätzers bei rund 0.1509 bzw. 0.0063 (vgl. die Abbildungen C. 1 und C.25). Für die gleichen Szenarien unter Bindungen (Szenarien 10 und 34, vgl. die Abbildungen C. 10 und C.34) verbucht der Cox-Schätzer MSEs von rund 0.1234 bzw. 0.0043 , der SL-Schätzer von rund 0.0811 bzw. 0.0039. Der Cox-Schätzer liefert damit unter Zensierungen einen um etwa 36.9% bzw. 10%, unter Bindungen einen um etwa 52.3% bzw. 9.5% höheren MSE als der SL-Schätzer. Damit bleibt auch unter Zensierungen und Bindungen der SL-Schätzer dem Cox-Schätzer in diesem Zahlenbeispiel im MSE überlegen, wobei das Ausmaß der Überlegenheit jedoch insgesamt etwas schwächer ausfällt.

Unbalancierte Designs

Die Ergebnisse aller Szenarien mit dem unbalancierten Stichprobenumfang von 50 bzw. 100 Beobachtungen in Gruppe 0 und 1 (Nr. 37-48) sind in den Abbildungen C.37-C.48, C.69-C.74, C.87-C.90, C. 98 und C. 99 sowie in den ensprechenden Zeilen der Tabellen B.1-B. 24 dargestellt.

Bei einer Auswertung der Darstellungen der Szenarien ohne Zensierungen und Bin-
dungen kann festgestellt werden, dass einige der Muster, die sich bei ausgewogenen Stichprobenumfängen zeigen, auch hier auftreten, bestimmte andere Muster sich jedoch nicht wiederholen. Nach wie vor können nur der Cox- und der WBC-I-Schätzer für alle betrachteten logarithmierten Hazard-Ratios als approximativ unverzerrt angesehen werden, wobei der WBC-I-Schätzer hier nun auf beiden Seiten des betrachteten Alternativraums zur Überschätzung tendiert.

Wie in den balancierten Designs entwickeln der Breslow-, der Wassmer- und der SL-Schätzer unter H_{1}^{\neq}Verzerrungen, die mit extremer werdenden logarithmierten Hazard-Ratio zunehmen und für $\omega<1$ positiv und für $\omega>1$ negativ sind. Beim SL-Schätzer ist diese Entwicklung am stärksten, beim Wassmer-Schätzer am schwächsten ausgeprägt. Eine Veränderung gegenüber den balancierten Designs besteht darin, dass die Zunahmen der Verzerrungen der Schätzer auf beiden Seiten des Alternativraums unterschiedlich ausfallen. Für den Breslow- und den WassmerSchätzer nehmen die Verzerrungen auf der linken Seite schneller als auf der rechten Seite zu. Beim SL-Schätzer verhält es sich genau entgegengesetzt. Dies hat zur Folge, dass das Verhalten der Schätzer nicht mehr symmetrisch um $\omega=1$ verläuft. So wird für Werte von $\omega>1$ der Unterschied in der Verzerrung zwischen dem SLund Breslow-Schätzer einerseits und dem SL- und Wassmer-Schätzer andererseits größer (im Vergleich zu balancierten Designs), während für Werte von $\omega<1$ die Verzerrung des SL-Schätzers nun kleiner als die des Breslow- und bis auf den Punkt $\omega=\frac{1}{3}$ sogar auch kleiner als die des Wassmer-Schätzers ist.

Der WBC-II-Schätzer zeigt weiterhin den oben beschriebenen schlangenförmigen Verlauf in der Verzerrung über den Parameterraum, wobei die Verzerrungen bei $\omega=\frac{1}{3}$ und $\omega=\frac{1}{2}$ stärker als bei $\omega=3$ und $\omega=2$ und bei $\omega=\frac{2}{3}$ und $\omega=\frac{5}{6}$ schwächer als bei $\omega=1.5$ und $\omega=1.2$ ausfallen.

Auch die Varianzen der Schätzer zeigen beim unbalancierten Design ein asymmetrisches Bild. Beim Cox- und SL-Schätzer sind sie auf der linken Seite des Alternativraums kleiner als auf der rechten. Bei den anderen Schätzern verhält es sich genau umgekehrt. Wie auch bei den balancierten Szenarien ist für den Verteilungstyp der Überlebenszeiten kein Effekt auf die Verteilungen der Schätzer erkennbar.

Kommen Zensierungen hinzu (egal welcher Art), so werden die Varianzen aller Schätzer kleiner. In den Verzerrungen finden sich beim Cox- und beim WBC-I-

Schätzer unter Zensierungen generell und bei den anderen Schätzern bei ungleichen Zensierungsverteilungen keine großen Veränderungen gegenüber den Szenarien ohne Zensierungen. Dies korrespondiert zu den Ergebnissen für die Szenarien mit ausgewogenen Stichprobenumfängen.

Bei gleichen Zensierungsverteilungen zeigen sich jedoch für den Breslow-, Wassmer, WBC-II- und SL-Schätzer etwas andere Entwicklungen beim unbalancierten als bei den balancierten Designs. Diese sind jedoch so komplexer Natur, dass sie hier nicht umfassend beschrieben werden können. Auffällig ist jedoch, dass die Schätzung des Wassmer-Schätzers für alle logarithmierten Hazard-Ratios insgesamt größer wird, so dass dieser Schätzer hier nun (außer bei der Gompertz-Verteilung) dazu tendiert, auf der rechten Seite des Alternativraums den wahren Parameter zu überschätzen. Der Breslow-Schätzer reduziert seine Verzerrung auf der linken Seite des Alternativraums (außer bei der Gompertz-Verteilung) deutlich. Diese beiden Entwicklungen finden sich auch unter Zensierungen und Bindungen.

Wie in den balancierten Designs üben Bindungen (mit oder ohne Zensierungen) auf die Verzerrung und Varianz des Cox-Schätzers keinen erkennbaren Einfluss aus. Für alle anderen Schätzer zeigt sich ebenso analog, dass sich ihre Verzerrungen leicht verstärken während ihre Varianzen sich leicht verringern, sobald Bindungen in einem Szenario hinzukommen. Dabei wächst die Intensität der Veränderung mit dem Bindungsanteil. Diese Entwicklung ist wiederum beim Wassmer-Schätzer am schwächsten ausgeprägt. Der WBC-I-Schätzer tendiert wie bei balancierten Designs mit Bindungen zum typischen Muster einer Überschätzung auf der linken und einer Unterschätzung auf der rechten Seite des Alternativraums.

Die veränderten Muster in dem Verhalten der Schätzer im unbalancierten Design spiegeln sich auch in den Rangfolgen der MSEs wider. Es zeigen sich zwar einige Parallelen zwischen dem unbalancierten und den balancierten Designs, jedoch ergeben sich auch einige Änderungen in den Rangfolgen der MSEs der Schätzer, die zu insgesamt recht assymmetrischen Bildern um $\omega=1$ führen, welche aufgrund ihrer Komplexität hier nicht vollständig beschrieben werden können. Als eine wesentliche Veränderung sei genannt, dass der SL-Schätzer im unbalancierten Design seine Optimalität auf einem (jenachdem großen) Bereich rund um $\omega=1$ nicht aufrechterhalten kann. In den Szenarien ohne Zensierungen und Bindungen (Nr. 43-45, vgl.

Abbildung C.89) minimiert der SL-Schätzer den MSE in $\omega=\frac{1}{2}, \omega=1, \omega=1.2$ und $\omega=1.5$. In den gespiegelten Punkten $\omega=2, \omega=\frac{6}{5}$ und $\omega=\frac{3}{2}$ geht hier stets der Breslow-Schätzer, in den extremsten betrachteten Punkten $\omega=\frac{1}{3}$ und $\omega=3$ der WBC-II-Schätzer hinsichtlich des MSEs als bester hervor. Der WBC-I-Schätzer schneidet hier auf der rechten Seite des Alternativraums stets schlechter als der Cox-Schätzer ab.

Bei Bindungen und/oder Zensierungen unter ungleichen Verteilungen verändern sich die Rangfolgen in den MSEs der Schätzer im Vergleich zu den Szenarien ohne Bindungen und Zensierungen insgesamt recht wenig. Bei Zensierungen unter gleichen Verteilungen schneiden der Wassmer- und der WBC-II-Schätzer für Werte von $\omega<1$ vergleichsweise gut und für Werte von $\omega>1$ vergleichsweise schlecht ab, weshalb sie den Breslow-Schätzer auf der linken Seite des Alternativraums in manchen Fällen von seiner besten Position drängen können. Diese Entwicklung findet in Tendenzen auch bei ungleichen Zensierungsverteilungen statt. Der WBC-I-Schätzer ist bei Bindungen und/oder Zensierungen im unbalancierten Design im ganzen Paramterraum insgesamt vorwiegend gegenüber dem Cox-Schätzer im Vorteil.

In einer Fortsetzung des Zahlenbeispiels der vergangenen zwei Abschnitte wird festgestellt, dass in Szenario 43 (dem entsprechendem Szenario mit unbalancierten Stichprobengrößen, vgl. Abbildung C.43) in $\omega=1.5$ der MSE des Cox-Schätzers von etwa 0.0327 den des SL-Schätzers von etwa 0.0217 um rund 50.6% übersteigt. Damit besteht ein ähnliches Ausmaß im Unterschied in den MSEs der beiden Schätzer wie in Szenario 7 bei gleichen Stichprobengrößen von 20 Beobachtungen pro Gruppe.

Numerische Schwierigkeiten bei der Berechnung der Schätzer

Ein Nachteil bei der Anwendung des Cox-Schätzers besteht darin, dass es bei seiner Berechnung aufgrund von numerischen Schwierigkeiten bei der Maximierung der Likelihood des zugrundeliegenden Cox-Modells zu Ausreißern bzw. unsinnigen Schätzergebnissen kommen kann. In sehr extremen Konstellationen kann eine Schätzung gar unmöglich sein.

Die Abbildungen C.1-C. 74 belegen, dass inbesondere für den Cox-Schätzer viele (teils auch extreme) Ausreißer in den Simulationen aufgetreten sind. Dabei wurden einer guten Anschaulichkeit halber nicht alle extremen Ausreißer eingezeichnet.

Die Anzahl der Werte, die außerhalb der Plotbegrenzungen liegen, sind für $\ln (\omega)$ bzw. ω nach Szenario und Hazard-Ratio sortiert in den Tabellen B. 25 und B. 26 (gleiche Zensierungsverteilungen) bzw. in den Tabellen B. 27 und B. 28 (ungleiche Zensierungsverteilungen) auf den Seiten 144-148 dokumentiert.

Sowohl in den genannten Abbildungen als auch Tabellen zeigt sich, dass insgesamt umso mehr Ausreißer in den Verteilungen der Schätzer auftreten, je extremer das (logarithmierte) Hazard-Ratio und je kleiner die Anzahl der Ereigniszeiten ist. In diesem Sinne tun sich vor allem die Szenarien 1-6 bzw. 1B-6B hervor. Unter den Schätzwerten für das Hazard-Ratio selbst befinden sich naturgemäß mehr Ausreißer als unter den Schätzwerten für das logarithmierte Hazard-Ratio. So wurden in den Grafiken für das logarithmierte Hazard-Ratio ausschließlich Schätzwerte des CoxSchätzers nicht eingezeichnet (Tabellen B. 25 und B.27). In den Grafiken für das Hazard-Ratio selbst verfügt nach dem Cox-Schätzer der WBC-I-Schätzer über die meisten nicht-einzeichneten Ausreißer (Tabellen B. 26 und B.28). Die anderen vier Schätzer verfügen über wesentlich weniger Ausreißer, vor allem bei ungleichen Zensierungsverteilungen. Für den SL-Schätzer wurden z.B. insgesamt nur zwei Punkte von der Schätzung von ω nicht gezeichnet.

Weiterhin beinhalten die Tabellen B. 29 und B. 30 auf den Seiten 149 und 150 die Anzahl der Fälle nach Szenario und Hazard-Ratio, in denen gar kein Schätzergebnis von der Software zurückgegeben werden konnte. Dies betrifft fast ausschließlich den Cox-Schätzer und wiederum besteht das Problem hauptsächlich in den extremeren Hazard-Ratios bei den Szenarien mit 20 Beobachtungen pro Gruppe und Zensierungen (Nr. 1-6 bzw. 1B-6B). In diesen Szenarien kommt es hin und wieder zu sehr extremen Konstellationen mit wenigen (oder gar keinen) Ereignissen in der ein oder anderen Gruppe. In solchen Situationen können durch die eingangs angesprochenen numerischen Schwierigkeiten bei der Cox-Modell-Schätzung unsinnig extreme oder gar keinen Schätzwerte resultieren. In zwei Fällen bei gleichen Zensierungsverteilungen konnte auch der Breslow-Schätzer nicht berechnet werden. Hier lassen sich ähnliche Ursachen ableiten. Wenn in einer Gruppe keine Ereignisse auftreten, dann steht im Breslow-Schätzer $\ln (0)$, was nicht definiert ist. Bei allen anderen betrachteten Schätzern traten in der gesamten Simulationsstudie nie Konstellationen auf, in denen eine Schätzung nicht berechnet werden konnte.

4.2.3 Empfehlungen zur Auswahl eines Punktschätzers

Im vorangegangenen Abschnitt wurde das Verhalten der Punktschätzer in vielen verschiedenen Situationen analysiert. Nun sollen Empfehlungen über die geeignete Wahl eines Schätzers für das (logarithmierte) Hazard-Ratio in Abhängigkeit bestimmter Eigenschaften eines Designs bzw. Datensatzes abgeleitet und in einer Art Faustregelwerk dem Anwender bereitgestellt werden.

Der MSE stellt ein adäquates $\mathrm{Maß}$ dar, um Erwartungstreue und Varianz von Schätzern abzuwägen, vor allem bei normalverteilten Schätzern. Daher basieren die folgenden Empfehlungen auf den geschätzten MSEs für die logarithmierten Hazard-Ratios. Aufgrund der in Abschnitt 4.2.2 festgestellten Schiefe und Ausreißer in den Verteilungen der Schätzer für das Hazard-Ratio selbst, wurden die zugehörigen MSE-Schätzungen in die folgende Analyse nicht miteinbezogen. Nichtsdestotrotz gelten die abgeleiteten Empfehlungen auch bei Schätzung des HazardRatios selbst. Ohnehin kann den Abbildungen C.1-C. 74 entnommen werden, dass die Rangordnungen der Schätzer bezüglich des MSEs bei der Schätzung des logarithmierten und nicht-logarithmierten Hazard-Ratios oftmals gleich oder ähnlich sind. Der WBC-II-Schätzer wurde aufgestellt und in die Simulationsstudie aufgenommen, um zu untersuchen, ob eine a-priori-Schätzung des wahren (logarithmierten) HazardRatios die Schätzung verbessern kann. Da er jedoch durch die erforderliche a-prioriSchätzung nicht eindeutig ist, wurden seine Ergebnisse bei der MSE-Analyse nicht berücksichtigt.

Die Tabellen 4.2 und 4.3 geben für alle betrachteten Szenarien und logarithmierten Hazard-Ratios den MSE-minimierenden Schätzer unter dem Cox-, Breslow-, Wassmer-, WBC-I- und SL-Schätzer an. Die Reihenfolge der Szenarien wurde auf diese Analyse abgestimmt, so dass hier bezüglich der MSE-Optimalität ähnliche Szenarien untereinander stehen, womit die Effekte der einzelnen Eigenschaften der Szenarien besser überblickt werden können. Unter und in der Nähe von $\omega=1$ verfügt der SL-Schätzer über keine bzw. eine nur geringe Verzerrung bei einer geringen Varianz im Vergleich zum Cox-, Breslow-, Wassmer- und WBC-I-Schätzer. Dies verschafft ihm in und nahe $\mathrm{H}_{0}^{=}$in vielen Szenarien eine (häufig deutliche) Überlegenheit hinsichtlich des MSEs gegenüber den anderen Schätzern. Dabei gilt, dass der SLSchätzer umso besser im Vergleich zu diesen vier Schätzern abschneidet, je kleiner

Tabelle 4.2: MSE-minimierende Schätzer nach logarithm. Hazard-Ratio und Szenario (gleiche Zensierungsverteilungen), ohne Berücksichtigung des WBC-II-Schätzers

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$										
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$		
20/20	\checkmark	x	Exp	1	SL										
			Weib	2	SL										
			Gomp	3	Bre	SL	Bre								
	\checkmark	\checkmark	Exp	4	SL										
			Weib	5	SL										
			Gomp	6	Bre	SL	Bre								
	x	x	Exp	7	Was	SL	Was								
			Weib	8	Was	SL	Was								
			Gomp	9	Was	SL	Was								
	x	\checkmark	Exp	10	Was	SL	Was								
			Weib	11	Was	SL	Was								
			Gomp	12	Was	SL	Was								
100/100	\checkmark	x	Exp	13	Was	SL	Was								
			Weib	14	SL										
			Gomp	15	Was	SL	Was								
	\checkmark	\checkmark	Exp	16	Was	SL	Was								
			Weib	17	SL	Was									
			Gomp	18	Was	Bre	SL	SL	SL	SL	SL	Bre	Was		
	x	x	Exp	19	Was	Bre	SL	SL	SL	SL	SL	Bre	Was		
			Weib	20	Was	Bre	SL	SL	SL	SL	SL	Bre	Was		
			Gomp	21	Was	Bre	SL	SL	SL	SL	SL	Bre	Was		
	x	\checkmark	Exp	22	Was	Bre	SL	SL	SL	SL	SL	Was	Was		
			Weib	23	Was	Bre	SL	SL	SL	SL	SL	Was	Was		
			Gomp	24	Cox	Was	SL	SL	SL	SL	SL	Was	Was		
500/500	\checkmark	x	Exp	25	Was	Bre	SL	SL	SL	SL	SL	Bre	WBI		
			Weib	26	Was	SL	Was								
			Gomp	27	WBI	Was	SL	SL	SL	SL	SL	Was	WBI		
	\checkmark	\checkmark	Exp	28	Was	Was	SL	SL	SL	SL	SL	Was	Cox		
			Weib	29	Was	Was	SL	SL	SL	SL	SL	Was	Was		
			Gomp	30	Cox	Was	Was	SL	SL	SL	Was	Was	Cox		
	x	x	Exp	31	WBI	Was	SL	SL	SL	SL	SL	Was	WBI		
			Weib	32	WBI	Was	SL	SL	SL	SL	SL	Was	WBI		
			Gomp	33	WBI	Was	SL	SL	SL	SL	SL	Was	WBI		
	x	\checkmark	Exp	34	WBI	Was	SL	SL	SL	SL	Bre	Was	Cox		
			Weib	35	WBI	Was	SL	SL	SL	SL	Was	Was	Cox		
				36	Cox	Cox	Was	SL	SL	SL	Was	Cox	Cox		
50/100	\checkmark	x	Exp	37	SL	Was	Was	Was	SL	SL	SL	SL	Bre		
			Weib	38	SL	Was	Was	Was	SL	SL	SL	SL	Bre		
			Gomp	39	SL	Bre	Bre	Bre	SL	SL	SL	SL	Bre		
	\checkmark	\checkmark	Exp	40	SL	Was	Was	SL	SL	SL	SL	SL	Bre		
			Weib	41	SL	Was	Was	SL	SL	Bre	Bre	SL	Cox		
				42	Was	Bre	Bre	Bre	SL	SL	SL	Bre	Was		
	x	x	Exp	43	Was	SL	Bre	Bre	SL	SL	SL	Bre	Was		
			Weib	44	Was	SL	Bre	Bre	SL	SL	SL	Bre	Was		
			Gomp	45	Was	SL	Bre	Bre	SL	SL	SL	Bre	Was		
	x	\checkmark	Exp	46	Was	SL	Bre	Bre	SL	SL	SL	Bre	Was		
			Weib	47	Was	SL	Bre	Bre	SL	SL	SL	Bre	Was		
			Gomp	48	Was	SL	Bre	Bre	SL	SL	SL	Was	Was		
100/100	x	x	Weib	49	Cox	Cox	SL	SL	SL	SL	SL	Cox	Cox		
				50	Cox	Cox	Cox	SL	SL	SL	Cox	Cox	Cox		
Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen: $\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe 0/Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp $\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden, Was $\hat{=}$ Wassmer, Bre $\hat{=}$ Breslow, WBI $\hat{=}$ WBC-I															

Tabelle 4.3: MSE-minimierende Schätzer nach logarithm. Hazard-Ratio und Szenario (ungleiche Zensierungsvertlg.), ohne Berücksichtigung des WBC-II-Schätzers

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr .	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	Bre	SL	Bre						
			Weib	2B	Bre	SL	Bre						
			Gomp	3B	Bre	SL	Bre						
	\checkmark	\checkmark	Exp	4B	Bre	SL	Bre						
			Weib	5B	Bre	SL	Was						
			Gomp	6B	Bre	SL	Bre						
100/100	\checkmark	x	Exp	13B	Was	Bre	SL	SL	SL	SL	SL	Bre	Was
			Weib	14B	WBI	Bre	SL	SL	SL	SL	SL	Bre	WBI
			Gomp	15B	Was	Bre	SL	SL	SL	SL	SL	Bre	Was
	\checkmark	\checkmark	Exp	16B	Was	Bre	SL	SL	SL	SL	SL	Bre	WBI
			Weib	17B	WBI	Was	SL	SL	SL	SL	SL	Was	Cox
			Gomp	18B	Was	Bre	SL	SL	SL	SL	SL	Bre	Was
500/500	\checkmark	x	Exp	25B	WBI	Was	SL	SL	SL	SL	SL	Was	WBI
			Weib	26B	WBI	WBI	Bre	SL	SL	SL	Bre	WBI	WBI
			Gomp	27B	WBI	Was	SL	SL	SL	SL	SL	Was	WBI
	\checkmark	\checkmark	Exp	28B	WBI	Was	Bre	SL	SL	SL	Bre	Cox	Cox
			Weib	29B	Cox	Cox	Bre	SL	SL	SL	Was	Cox	Cox
			Gomp	30B	Cox	Was	Was	SL	SL	SL	Was	Was	Cox
50/100	\checkmark	x	Exp	37B	Was	SL	Bre	Bre	SL	SL	SL	Bre	Bre
			Weib	38B	WBI	SL	Bre	Bre	SL	SL	SL	Bre	Was
			Gomp	39B	SL	Bre	Bre	Bre	SL	SL	SL	Bre	Bre
	\checkmark	\checkmark	Exp	40B	Was	SL	Bre	Bre	SL	SL	SL	Bre	WBI
			Weib	41B	WBI	SL	Bre	Bre	SL	SL	SL	Bre	Cox
			Gomp	42B	Was	SL	Bre	Bre	SL	SL	SL	Bre	Was

Bedeutung der Abkürzungen:
$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp
$\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden, Was $\widehat{=}$ Wassmer, Bre $\widehat{=}$ Breslow, WBI $\widehat{=}$ WBC-I
der Stichprobenumfang und der Bindungsanteil und je weniger extrem das HazardRatio ist. Auch Zensierungen können sich vorteilhaft für ihn auswirken. So nimmt in Tabelle 4.2 und 4.3 in den drei ersten durch doppelte Linien getrennten Blöcken der balancierten Stichprobenumfänge der Bereich, in dem der SL-Schätzer den MSE minimiert, die Form eines spitzen nach unten gerichteten Dreiecks symmetrisch um $\omega=1$ an.

Insbesondere ist festzustellen, dass der SL-Schätzer ausnahmenslos für alle betrachteten logarithmierten Hazard-Ratios auf einem Intervall von $\omega \in\left[\frac{1}{2}, 2\right]$ in allen Szenarien mit 20 Beobachtungen pro Gruppe und auf einem Intervall von $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ in allen Szenarien mit 100 Beobachtungen pro Gruppe den MSE minimiert. Dabei liegt der maximal aufgetretene Bindungsanteil in den Szenarien ohne Zensie-
rungen mit 20 Beobachtungen pro Gruppe in den äußeren Punkten des Intervalls $\omega \in\left[\frac{1}{2}, 2\right]$ bei rund 48% (Sz. 12, $\omega=2$, vgl. Abbildung C.12) und mit 100 Beobachtungen pro Gruppe in den äußeren Punkten des Intervalls $\omega \in\left[\frac{2}{3}, 1.5\right]$ bei rund 84% (Sz. 24, $\omega=1.5$, vgl. Abbildung C.24). Da letzterer Bindungsanteil bereits einem sehr hohen Bindungsgrad entspricht, kann die Verwendung des SL-Schätzers für die Schätzung des (logarithmierten) Hazard-Ratios in balancierten Designs mit bis zu 100 Beobachtungen pro Gruppe bei beliebigem Bindungsanteil in den Daten auf dem Intervall $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ empfohlen werden. Bei bis zu 20 Beobachtungen pro Gruppe kann aufgrund der vorliegenden Ergebnisse bei Bindungsanteilen bis etwa 50% das empfohlene Interval auf $\omega \in\left[\frac{1}{2}, 2\right]$ erweitert werden.

Der Stichprobenumfang kann dabei beliebig klein sein. Solange ausreichend Beobachtungen für die Berechnung der Schätzer vorhanden sind, behält der SL-Schätzer seine Überlegenheit. Dies wird in Abbildung 4.9 anhand eines Beispiels untermauert. Hier sind die Verteilungen des Cox- und SL-Schätzers für die Schätzung von $\ln (1.5)$ bei nur drei Beobachtungen pro Gruppe auf Grundlage von 10000 Durchläufen eines Szenarios mit weibullverteilten Daten gegenübergestellt. Bei einem derartig kleinen Stichprobenumfang entstehen häufig Konstellationen im Cox-Modell, in denen der Algorithmus kein Minimum in der Likelihood finden kann. Auf Basis der hier gezogenen Zufallszahlen konnte in 11.7% der Durchläufe kein Schätzwert für den CoxSchätzer von der Software zurückgegeben werden. Die Verteilung des SL-Schätzers wurde einmal mit und einmal ohne diese „Extremwerte" gezeichnet. Es zeigt sich, dass der SL-Schätzer unter Verwendung aller Datensätze über eine wesentlich geringere Varianz als der Cox-Schätzer verfügt. Der MSE des letzteren Schätzers ist um etwa um 84% größer als der des SL-Schätzers. Es ist plausibel, dass die Datensätze, für die der Cox-Schätzer nicht berechnet werden kann, zu extremen Schätzwerten beim SL-Schätzer führen. Werden diese Datensätze auch beim SL-Schätzer weggelassen, so nimmt dessen Verzerrung zwar zu, jedoch wird dessen MSE weiter verringert: Der MSE des Cox-Schätzers ist nun um rund 122.6% größer als der des SL-Schätzers.

Auch in allen Szenarien mit 500 Beobachtungen pro Gruppe und ohne Bindungen schneidet der SL-Schätzer für alle logarithmierten Hazard-Ratios auf dem Intervall $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ hinsichtlich des MSEs als bester ab (Tabellen 4.2 und 4.3). Eine Ausnahme besteht hier lediglich in Szenario 26B (vgl. Abbildung C.64), bei dem in $\omega=\frac{2}{3}$

Gruppe 0: Weib(0.5, 1.5 * 0.2192) / Gruppe 1: Weib(0.5, 0.2192), je 3 Beobachtungen, keine Zensierungen/Bindungen/Störeffekte, 10000 Durchläufe

Abbildung 4.9: Vergleich der Verteilungen des Cox- und SL-Schätzers bei Schätzung eines Hazard-Ratios von $\ln (1.5)$ auf Basis von 3 Beobachtungen pro Gruppe und 10000 Durchläufen weibullverteilter Zufallszahlen (vgl. Überschrift), o.: Cox-Schätzer ohne Extremwerte, m.: SL-Schätzer mit Extremwerten, u.: SLSchätzer ohne Extremwerte
und $\omega=1.5$ der Breslow-Schätzer als einziger den SL-Schätzer mit etwa 0.0066 zu etwa 0.00661 bzw. etwa 0.00653 zu etwa 0.00654 minimal im MSE übertrifft. Liegen jedoch Bindungen in diesen Szenarien dieser Stichprobengröße vor, so erstreckt sich die durchgehende Überlegenheit des SL-Schätzers nur noch auf einem Intervall von $\omega \in\left[\frac{5}{6}, \frac{6}{5}\right]$. Die Bindungsanteile in den Szenarien mit 500 Beobachtungen pro Gruppe sind recht hoch. Der maximale Bindungsanteil in den Punkten $\omega=\frac{2}{3}$ bzw. $\omega=1.5$, bei dem der SL-Schätzer bei 500 Beobachtungen pro Gruppe und ohne Zensierungen als bester hervorgeht, liegt bei rund 86% (Sz. 34, $\omega=\frac{2}{3}$, vgl. Abbildung C.34). Hingegen liegt der minimale Bindungsanteil in den Punkten $\omega=\frac{2}{3}$ bzw. $\omega=1.5$, bei dem der SL-Schätzer bei 500 Beobachtungen pro Gruppe und ohne Zensierungen nicht als bester hervorgeht, bei rund 79% (Sz. 35, $\omega=1.5$, vgl. Abbildung C.35). Dies ist kein Widerspruch, sondern liegt in den zufälligen Schwankungen der Simulationen begründet. Insgesamt erscheint es daher als sinnvoll, die Verwen-
dung des SL-Schätzers für die Schätzung des (logarithmierten) Hazard-Ratios bei Stichprobenumfängen zwischen 100 und 500 Beobachtungen pro Gruppe und einem Bindungsanteil bis zu 80% in den Daten für das Intervall $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ zu empfehlen und diese Empfehlung bei größeren Bindungsanteilen auf das Intervall $\omega \in\left[\frac{5}{6}, \frac{6}{5}\right]$ einzugrenzen.

Die Tabelle 4.2 und 4.3 zeigen zudem, dass in den balancierten Designs der SLSchätzer an den Grenzen seines MSE-optimierenden Bereichs, die Überlegenheit häufig an den Wassmer-Schätzer abgibt. Oftmals „rutscht" jedoch auch der BreslowSchätzer dazwischen, vor allem bei den Szenarien mit ungleichen Zensierungsverteilungen. Diese Entwicklung liegt darin begründet, dass mit Entfernung von $\mathrm{H}_{0}^{=}$ unter diesen drei Schätzern die Verzerrung des SL-Schätzers am schnellsten und die des Wassmer-Schätzers am langsamsten voranschreitet. Bei weiterer Entfernung von den Grenzen des „Überlegenheitsbereichs" des SL-Schätzers verliert auch der Wassmer- bzw. der Breslow-Schätzer seine Optimalität. Hier tun sich die unverzerrten Schätzer, Cox- und WBC-I-Schätzer, als beste Wahl hervor.

Der Wassmer-Schätzer ist außerhalb der für den SL-Schätzer empfohlenen Bereiche in allen balancierten Szenarien bei bis zu 100 Beobachtungen pro Gruppe auf dem Intervall $\omega \in\left[\frac{1}{3}, 3\right]$ und bei 500 Beobachtungen pro Gruppe auf dem Intervall $\omega \in\left[\frac{1}{2}, 2\right]$ meist besser im MSE als der Cox- und der WBC-I-Schätzer. Die einzigen Ausnahmen bestehen in drei Situationen ohne Zensierungen (Sz. 24 in $\omega=\frac{1}{3}$ sowie Sz. 36 in $\omega=\frac{1}{2}$ und $\omega=2$), in welchen Fällen der Wassmer-Schätzer bei sehr hohen Bindungsanteilen von $82 \%, 96 \%$ bzw. 97% jeweils dem Cox-Schätzer nur sehr knapp unterlegen ist, vgl. die Abbildungen C. 24 bzw. C.36. Insgesamt soll daher der Wassmer-Schätzer in Szenarien bis 100 Beobachtungen pro Gruppe auf dem Intervall $\omega \in\left[\frac{1}{3}, 3\right]$ und zwischen 100 und 500 Beobachtungen pro Gruppe auf dem Intervall $\omega \in\left[\frac{1}{2}, 2\right]$ außerhalb der für den SL-Schätzer empfohlenen Bereiche für die Schätzung des (logarithmierten) Hazard-Ratios empfohlen werden. Bei Bindungsanteilen von über 80% und Stichprobenumfängen zwischen 20 und 100 Beobachtungen pro Gruppe soll das empfohlene Intervall auf $\omega \in\left[\frac{1}{2}, 2\right]$ und bei Bindungsanteilen von über 90% und Stichprobenumfängen zwischen 100 und 500 Beobachtungen pro Gruppe auf $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ eingeschränkt werden. In den Übergängen der Bereiche, für die der SL- bzw. der Wassmer-Schätzer empfohlen werden, bildet der Breslow-Schätzer eine
gute Alternative. Dieser kann hier den MSE des Wassmer-Schätzers häufig (auch teils deutlich) unterbieten. Allerdings ist bei seiner Verwendung Vorsicht geboten, da sein MSE aufgrund seiner wesentlich weniger stabilen Verzerrung schnell innerhalb des für den Wassmer-Schätzer empfohlenen Bereichs stark anwächst, so dass er an den äußeren Grenzen dieses Bereichs recht schlecht im Vergleich zum Cox-, Wassmer- und WBC-I-Schätzer abschneidet.

In den äußersten Punkten des betrachteten Parameterraums $\omega=\frac{1}{3}$ und $\omega=3$ bei 500 Beobachtungen pro Gruppe minimert der WBC-I-Schätzer am häufigsten den MSE (vgl. die Tabellen 4.2 und 4.3). Liegen Bindungen bei dieser Stichprobengröße vor, so zeigt sich der Cox-Schätzer in diesen Punkten insgesamt am stärksten. In den Szenarien ohne Zensierungen liegt der höchste Bindungsanteil, bei dem der WBC-I-Schätzer dem Cox-Schätzer in diesen Punkten im MSE überlegen ist bei 79% (Sz. 34, $\omega=\frac{1}{3}$, vgl. Abbildung C.34). Daher soll der WBC-I-Schätzer für 100 bis 500 Beobachtungen pro Gruppe auf dem Intervall $\omega \in\left[\frac{1}{3}, \frac{1}{2}\right) \cap(2,3]$ bei einem Bindungsanteil von bis zu 80% für die Schätzung des (logarithmierten) HazardRatios empfohlen werden. Da der Cox-Schätzer sich bei extremen logarithmierten Hazard-Ratios, großen Stichprobenumfängen und hohen Bindungsanteilen als am vorteilhaftesten zeigt, soll dieser in balancierten Designs auf dem Intervall $\omega \in\left[\frac{1}{3}, 3\right]$ außerhalb der für den SL-, den Wassmer- und den WBC-I-Schätzer vorgeschlagenen Bereiche zur Anwendung empfohlen werden.

Wie in Abschnitt 4.2.2 diskutiert, führen die hier betrachteten gleichen Zensierungsverteilungen zu einer Verbesserung der im SL- und Wassmer-Schätzer enthaltenen Approximationen. Dies zeigt sich auch in den Rangfolgen im MSE: Der SL-Schätzer dehnt seine Optimalität unter gleichen Zensierungsverteilungen etwas aus. Damit einhergehend wird auch die Optimalität des Wassmer-Schätzers im betrachteten Alternativraum weiter nach außen gedrängt. Dies wird vor allem in den Szenarien mit 500 Beobachtungen pro Gruppe deutlich, in denen der Wassmer-Schätzer nun häufig in den Punkten $\omega=\frac{1}{3}$ und $\omega=3$ der beste Schätzer ist, während er in ein paar Situationen seine Optimalität in $\omega=\frac{1}{2}$ und $\omega=2$ verliert. Bei Zensierungen unter ungleichen Verteilungen zeigen sich für den SL-Schätzer keine Veränderungen bei den balancierten Szenarien mit bis zu 100 Beobachtungen pro Gruppe gegenüber den Szenarien ohne Zensierungen. Bei den Designs mit 500 Beobachtungen pro Grup-
pe wird die Überlegenheit des SL-Schätzers nur sehr geringfügig eingeschränkt. Der Wassmer-Schätzer büßt stärker an Optimalität in den für ihn empfohlenen Bereichen ein. Der WBC-I- und Cox-Schätzer scheinen insgesamt etwas zu profitieren. Insgesamt ist jedoch festzustellen, dass die Schätzer, die unter Zensierungen Optimalität innerhalb der für sie empfohlenen Bereiche einbüßen, den nun optimalen Schätzern nur leicht im MSE unterliegen. Da zudem in der Praxis oftmals schwer zu beurteilen ist, nach welchen Verteilungen Zensierungen entstanden sind bzw. dies nicht untersucht wird, sollen die herausgearbeiteten Empfehlungen zur Anwendung der verschiedenen Schätzer auch unter Zensierungen aufrechterhalten werden.

Da in der Simulationsstudie keine Stichprobenumfänge größer als 500 Beobachtungen pro Gruppe und keine (logarithmierten) Hazard-Ratios außerhalb von $\omega \in\left[\frac{1}{3}, 3\right]$ betrachtet wurden, sind Empfehlungen für diese Bereiche schwierig. Es ist jedoch zu erkennen, dass der Breslow-, Wassmer-, WBC-I- und SL-Schätzer alle in gewissen Situationen den Cox-Schätzer bezüglich des MSEs schlagen, diese Überlegenheiten aber mit wachsendem Stichprobenumfang und extremer werdendem logarithmierten Hazard-Ratio zurück- bzw. verloren gehen. So wird der Cox-Schätzer in den Szenarien mit 500 Beobachtungen pro Gruppe und ohne Zensierungen und Bindungen (Nr. 31-33) insbesondere in den extremen logarithmierten Hazard-Ratios nur noch in geringem Ausmaß von den jeweils optimierenden Schätzern im MSE übertroffen. Dies liegt darin begründet, dass die Verzerrung und Varianz des Cox-Schätzers mit wachsendem Stichprobenumfang schneller kleiner werden und die Verzerrung des Cox-Schätzers mit extremer werdendem logarithmierten Hazard-Ratio wesentlich langsamer zunimmt als die der anderen Schätzer. Daher erscheint es als plausibel, den Cox-Schätzer als generelle Empfehlung in balancierten Designs mit mehr als 500 Beobachtungen pro Gruppe oder (logarithmierten) Hazard-Ratios außerhalb von $\omega \in\left[\frac{1}{3}, 3\right]$ als Schätzer zu empfehlen. Lediglich bei kleineren Stichprobenumfängen und geringen Bindungsanteilen könnte der WBC-I-Schätzer auch noch für wesentlich extremere als die hier betrachten (logarithmierten) Hazard-Ratios gegenüber dem Cox-Schätzer im Vorteil bleiben, da der Cox-Schätzer dort stärker als der WBC-I-Schätzer zu recht großen Varianzen und Ausreißern neigt. Allerdings sind in der Praxis, vor allem im Rahmen klinischer Studien, solch extremen (logarithmierten) Hazard-Ratios bzw. großen Stichprobenumfänge nur selten anzutreffen. Diese Empfehlungen werden unter Vorbehalt gegeben. Für genauere Aussagen müssten wei-

Tabelle 4.4: Empfehlungen zur Auswahl eines Schätzers für die Schätzung des (logarithmierten) Hazard-Ratios in balancierten Designs ohne Modellierung von Störgrößen

Anzahl Beob. pro Gruppe (unabh. von Zensierungen)	ω	Bindungsanteil	Empfohlener Schätzer
≤ 20	$\left[\frac{2}{3}, \frac{3}{2}\right]$	beliebig	SL
	$\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$	$\leq 50 \%$ $>50 \%$	SL Wassmer (Breslow)
	$\left[\frac{1}{3}, \frac{1}{2}\right) \cup(2,3]$	beliebig	Wassmer (Breslow)
	$\left(0, \frac{1}{3}\right) \cup(3, \infty)$	beliebig	Cox (WBC-I)
$21-100$	$\left[\frac{2}{3}, \frac{3}{2}\right]$	beliebig	SL
	$\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$	beliebig	Wassmer (Breslow)
	$\left[\frac{1}{3}, \frac{1}{2}\right) \cup(2,3]$	$\leq 80 \%$ $>80 \%$	Wassmer Cox
	$\left(0, \frac{1}{3}\right) \cup(3, \infty)$	beliebig	Cox (WBC-I)
$101-500$	$\left[\frac{5}{6}, \frac{6}{5}\right]$	beliebig	SL
	$\left[\frac{2}{3}, \frac{5}{6}\right) \cup\left(\frac{6}{5}, \frac{3}{2}\right]$	$\leq 80 \%$	SL
	$\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$	$\leq 90 \%$	Wassmer (Breslow)
	$\left[\frac{1}{3}, \frac{1}{2}\right) \cup(2,3]$	$\leq 80 \%$	Wassmer
	$\left(0, \frac{1}{3}\right) \cup(30 \%$	Cox	
	beliebig	beliebig	beliebig
		CBC-I	
500		Cox	

tere Simulationen für größere Stichprobenumfänge und extremere (logarithmierte) Hazard-Ratios durchgeführt werden.

Die Ergebnisse dieser MSE-Analyse für balancierte Designs ohne Störgrößen sind in Tabelle 4.4 zusammengefasst.

Die bisherigen Erkenntnisse resultieren aus Szenarien, in denen keine anderen störenden Einflüsse als der Behandlungseffekt die Überlebenszeit der Patienten beeinflussen, was zweifelsohne unrealistisch ist. Allerdings sind die Ergebnisse übertragbar auf Situationen in klinischen Studien, in denen vorhandene Störgrößen
nicht gemessen wurden bzw. werden konnten oder gar durch Schichtung ,ausgeschaltet" werden. In diesen Fällen ist eine Adjustierung der Ergebnisse bezüglich Störgrößen nicht möglich oder notwendig. Damit können die hier gemachten Empfehlungen durchaus in vielen Anwendungen Verwendung finden.

Liegen jedoch messbare Störgrößen vor, die Gruppen unter den Patienten in Form von proportionalen Hazards beeinflussen, so erhält der Cox-Schätzer einen natürlichen Vorteil gegenüber den anderen Schätzern. Dieser wird im Rahmen eines Cox-Modells berechnet, in welchem derartige Effekte von Störgrößen gleichzeitig geschätzt werden können. Umso erstaunlicher ist es, dass der SL-Schätzer auch bei einem Störeffekt eines zusätzlichen Hazard-Ratios von 2 zwischen zwei zusätzlich künstlich erzeugten Gruppen der Patienten (Sz. 49) nach wie vor auf dem für ihn bei einem Stichprobenumfang von 100 Beobachtungen pro Gruppe empfohlenen Bereich von $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ als bester Schätzer bestehen bleibt. Liegt sogar ein vergleichsweise recht erheblicher Störeffekt eines zusätzlichen Hazard-Ratios von 4 vor (Sz. $50)$, so ist er immerhin noch der beste Schätzer auf dem Intervall $\omega \in\left[\frac{5}{6}, \frac{6}{5}\right]$ (vgl. die Abbildungen C. 49 und C. 50 sowie Tabelle 4.2). Zudem liegen die hier erzeugten Störgrößen in einer für den Cox-Schätzer idealen Situation vor. Es ist zu erwarten, dass das verbesserte Abschneiden des Cox-Schätzers wieder zurückgeht, sobald Störgrößen vorhanden sind, die nicht perfekt in einem Cox-Modell modelliert werden können. Insgesamt kann daher die Schlussfolgerung gezogen werden, dass zumindestens der SL-Schätzer in den für ihn empfohlenen Bereichen nach Tabelle 4.4 weiterhin für die Schätzung des (logarithmierten) Hazard-Ratios geeignet ist, sogar wenn geringe messbare Störeffekte bestehen, die in Form von proportionalen Hazards bestimmte Patientengruppen in ihrer Überlebenszeit beeinflussen, oder wenn messbare Störeffekt bestehen, die nicht gut in einem Cox-Modell modelliert werden können. Anderfalls ist der Cox-Schätzer vorzuziehen.

Da nur ein spezielles unbalanciertes Design von 50 und 100 Beobachtungen in Gruppe 0 bzw. 1 betrachtet wurde, sind Empfehlungen für allgemeine unbalancierte Designs aus der durchgeführten Simulationsstudie nur schwer abzuleiten. Gewisse Anhaltspunkte liefert jedoch ein Vergleich der Ergebnisse für das untersuchte unbalancierte Design mit denen des untersuchten balancierten Designs mit 100 Beobachtungen pro Gruppe, da diese beiden Designs über einen recht ähnlichen Gesamtstich-
probenumfang verfügen. Dabei zeigt sich hinsichtlich des MSEs in den Tabellen 4.2 und 4.3, dass für $\omega \in[1,1.5]$ (also wenn bezüglich der Überlebenszeit die kleinere zur größeren Gruppe äquivalent ist bzw. die kleinere der größeren Gruppe unterlegen ist) der SL-Schätzer auch hier insgesamt als bester heraussticht, unabhängig davon ob Zensierungen vorliegen oder nicht. Bei den entsprechenden Werten auf der anderen Seite von $\mathrm{H}_{0}^{=}\left(\omega=\frac{2}{3}\right.$ und $\left.\omega=\frac{5}{6}\right)$ wird der SL- meist vom Breslow- und bei Vorlage von Zensierungen mit gleicher Verteilung manchmal auch vom Wassmer-Schätzer geschlagen. In $\omega=\frac{1}{3}$ und $\omega=\frac{1}{2}$ zeigen sich der Wassmer- und SL-Schätzer und in $\omega=2$ und $\omega=3$ der Wassmer- und Breslow-Schätzer am vorteilhaftesten. Bei Betrachtung der Abbildungen zu den Szenarien mit unbalancierten Designs (C.37C.48, C.69-C.74, C.87-C.90, C. 98 und C.99) kann allerdings festgestellt werden, dass der SL-Schätzer insgesamt auf dem für ihn bei bis zu 100 Beobachtungen pro Gruppe empfohlenen Bereich von $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ im Vergleich zu allen Schätzern im MSE recht gut abschneidet, auch wenn er nicht immer der beste ist. Der WassmerSchätzer zeigt sich auch auf dem für ihn empfohlenen Bereich $\omega \in\left[\frac{1}{3}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 3\right]$ als vergleichsweise guter Schätzer hinsichtlich des MSEs. Ausnahmen diesbezüglich zeigen sich häufig in den Punkten $\omega=2$ und $\omega=3$ in Szenarien mit Zensierungen, wo der Breslow- oft wesentlich besser als der Wassmer-Schätzer im MSE abschneidet. Da in keinem betrachteten Punkt in den Szenarien mit unbalancierten Stichprobenumfängen Bindungsanteile von über 80% auftreten, kann zu diesem Trennpunkt bei 20 bis 100 Beobachtungen (vgl. Tabelle 4.4) keine Aussage getroffen werden. Insgesamt wird der Eindruck gewonnen, dass bei unbalancierten Designs die Empfehlungen aus Tabelle 4.4 für Designs mit dem gleichen Gesamtstichprobenumfang herangezogen werden können. Bei erwarteten Hazard-Ratios, die eine Überlegenheit der kleineren Gruppe bedeuten bzw. in Szenarien mit Zensierungen und bei erwarteten Hazard-Ratios, die eine Unterlegenheit der kleineren Gruppe bedeuten, kann jedoch der Breslow-Schätzer als eine Alternative zum SL- bzw. Wassmer-Schätzer in Betracht gezogen werden.

Als Abschluß zur Thematik der Punktschätzung sollen ein paar wesentliche Ergebnisse hervorgehoben werden. Die hier durchgeführten Untersuchungen bieten viele interessante Erkenntnisse bezüglich der Verteilungen bereits bekannter und neuer Schätzer für das (logarithmierte) Hazard-Ratio im Zweigruppenvergleich bei proportionalen Hazard-Funktionen. Weiterhin wurde ein Regelwerk hinsichtlich der

Optimalität der Schätzer im MSE herausgearbeitet. Zwar zeigen die Simulationsergebnisse, dass in durch Tabelle 4.4 definierten Situationen je nach dem ein anderer als der angegebene Schätzer optimal sein kann. Zudem können Situationen vorliegen, in denen die zur Auswahl eines Schätzers benötigten Spezifizierungen in Tabelle 4.4 nicht getroffen werden können. Z.B. kann es vorkommen, dass bei einer erforderlichen Festlegung des zu verwendenden Schätzers im Studienprotokoll der Effekt einer ganz neuartigen Behandlung vor Beginn der Studie kaum einzuschätzen ist. Jedoch bietet Tabelle 4.4 eine Zusammenstellung von groben Faustregeln, die dem Anwender für eine konkrete Studie mit einem bestimmten Design die Auswahl eines guten Schätzers ermöglicht und die in vielen Anwendungen Verwendung finden kann.

Insbesondere sind die Ergebnisse hinsichtlich des Cox- und SL-Schätzers von Bedeutung. Der Cox-Schätzer ist approximativ unverzerrt in jeglicher Situation. Stehen geradezu keine Informationen über das Design und andere Komponenten einer Studie zur Verfügung, so bietet er immer eine adäquate Wahl. Allerdings schneidet der wohl-etablierte Schätzer in der vorliegenden Simulationsstudie in vielen Situationen im Vergleich zu allen anderen betrachteten Schätzern schlecht ab. Sind bestimmte Komponenten einer Studie a-priori bekannt oder lassen sie sich eingrenzen, so kann eine bessere Wahl als der Cox-Schätzer getroffen werden. Der Einsatz des SL-Schätzers ist zwar auf den Bereich von kleinen Behandlungseffekten begrenzt (abhängig vom Stichprobenumfang, Bindungsanteil und auch Art der Zensierung). Dieser Schätzer bietet dort jedoch eine auffällig bessere Alternative zum Cox- und auch allen anderen betrachteten Schätzern. Da in klinischen Studien häufig kleine Behandlungseffekte und auch geringe Bindungsanteile anzutreffen sind, kann der SL-Schätzer in vielen Fragestellungen Anwendung finden.

Interessant sind auch die Ergebnisse bezüglich des WBC-I-Schätzers, der sich in vielen Szenarien als approximativ unverzerrt zeigt und in einer großen Überzahl der hier betrachteten Szenarien und logarithmierten Hazard-Ratios den Cox-Schätzer in der Varianz und im MSE unterbietet. Insbesondere zeigt sich, dass der WBC-I-Schätzer nicht nur in allen logarithmierten Hazard-Ratios in allen betrachteten balancierten Szenarien ohne Bindungen und Störgröße über die kleinere Varianz und den kleineren MSE als der Cox-Schätzer verfügt, sondern auch in 85.6% dieser Konstellationen eine kleinere Verzerrung als der Cox-Schätzer aufweist (vgl. Abbildung B. 31
auf Seite 151). Wird explizit die Verwendung eines (approximativ) erwartungstreuen Schätzers gefordert, so kann der WBC-I-Schätzer in balancierten Designs mit keinem oder geringem Bindungsanteil (z.B. bis etwa 20\%) für den maximal betrachteten Stichprobenumfang von 500 Beobachtungen pro Gruppe sowie den gesamten betrachteten Parameterraum (und darüber hinaus, vgl. Tabelle 4.4) als Alternative zum Cox-Schätzer empfohlen werden. In unbalancierten Designs sollte die Empfehlung für diesen Schätzer auf Hazard-Ratios, die eine Überlegenheit der kleineren Gruppe hinsichtlich der Überlebenszeit bedeuten, eingeschränkt werden. Im Fall von stärkeren Bindungsanteilen in den Daten können für den WBC-I-Schätzer die in Tabelle 4.4 angegebenen Faustregeln für den SL-Schätzer herangezogen werden.

Für den WBC-II-Schätzer hat sich gezeigt, dass er für zu schätzende Parameter der (bzw. in der Nähe der) im Schätzer enthaltenen a-priori-Schätzung im Vergleich zu den anderen Schätzern im MSE gut abschneidet. In einigen Szenarien minimiert er sogar in diesem Bereich den MSE unter allen betrachteten sechs Schätzern. Damit kann der WBC-II-Schätzer für die Schätzung des (logarithmierten) HazardRatios empfohlen werden, wenn dieses a-priori recht gut eingegrenzt werden kann. Allerdings liegen solche Situationen nur selten vor, bzw. die Notwendigkeit einer Schätzung ist dann oft nicht gegeben.

4.2.4 Verhalten der Intervallschätzer

In Übereinstimmung mit der Auswertung für die Punktschätzung soll zunächst das Verhalten der untersuchten Intervallschätzer über die einzelnen logarithmierten Hazard-Ratios und Szenarien der Simulationsstudie beschrieben werden. Im folgenden Abschnitt 4.2.5 werden dann analog Regeln aufgestellt, um eine situationsabhängige Wahl eines Konfidenzintervalls in Überlebenszeitstudien treffen zu können. Die hieraus gewonnenen Erkenntnisse gelten auch bei der Intervallschätzung des Hazard-Ratios selbst. Zur Vereinfachung der Notation wird im Folgenden wie in den zwei vorangegangenen Abschnitten der Logarithmus in der Formelschreibweise ausgespart.

Die wesentlichen Eigenschaften eines Konfidenzintervalls bilden die Überdeckungswahrscheinlichkeit für den zu schätzenden Parameter und die erwartete Breite. Diese
beiden Größen werden hier für jedes logarithmierte Hazard-Ratio in jedem Szenario durch die in den Simulationen jeweils aufgetretene Überdeckungsrate (Anteil aller Intervalle, die das zugrunde liegende logarithmierte Hazard-Ratio beinhalten) bzw. im arithmetischen Mittel beobachtete Breite geschätzt, vgl. Abschnitt 4.2.1. Die Entwicklungen dieser Maßzahlen über den betrachteten Parameterraum sind in den Abbildungen C.100-C. 116 auf den Seiten 253-269 für die ersten Durchläufe (unter gleichen Zensierungsverteilungen) und in den Abbildungen C.117-C. 124 auf den Seiten 270-277 für die 24 wiederholten Szenarien mit Zensierungen (unter ungleichen Zensierungsverteilungen) dargestellt. Wie in den Abbildungen zu den MSERangfolgen der Punktschätzer (Abbildungen C.75-C.99) sind jeweils die drei Grafiken der Szenarien, die sich nur im Verteilungstyp unterscheiden, bzw. die beiden der Szenarien, die eine Störgröße umfassen, in einer Abbildung zusammengefasst. Zur Veranschaulichung in diesem Abschnitt sind die Grafiken für die Szenarien 7-9 zusätzlich in Abbildung 4.10 abgedruckt.

Einer besseren Darstellung halber wurden in den Grafiken zu den Überdeckungsraten (links) die Ordinaten nur bis minimal 0.85 gezeichnet. Überdeckungsraten unterhalb dieser Grenze wurden an den Stellen der entsprechenden logarithmierten Hazard-Ratios auf der Abszisse als Text am unteren Rand eingetragen (vgl. Abbildung C.105). Zudem sind in den Grafiken zu den Überdeckungsraten zwei horizontale Hilfslinien eingezeichnet. Die durchgezogene Linie zeigt das gewählte Konfidenzniveau der Simulationsstudie $1-\alpha=0.95$. Die andere gepunktete Linie stellt eine untere Schranke für die Einhaltung dieses Niveaus der Intervalle dar. Im Folgenden wird genauer beschrieben, wobei es sich bei dieser Schranke handelt und wie sie bestimmt wurde.

Für ein Konfidenzintervall ist wesentlich, dass es das geforderte Konfidenzniveau einhält. Da es bei Simulationen vorkommen kann, dass das geschätzte Überdeckungsniveau zufällig unterhalb des geforderten Niveaus liegt, obwohl das wahre Niveau letzterem entspricht oder es gar übersteigt, sollen Intervallschätzer mit Überdeckungsraten, die nur „unwesentlich" kleiner als 0.95 sind, als solche gewertet werden, die das Niveau einhalten. Es wird also nach einer sinnvollen einheitlichen unteren Schranke für alle Konstellationen und Konfidenzintervalle gesucht, ab der ein Konfidenzintervall als nicht-liberal eingestuft wird.

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung 4.10: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 7-9 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Seien dafür n Messwiederholungen (hier die jeweilige Anzahl an Durchläufen in der Simulationsstudie) für ein beliebiges Konfidenzintervall zum Niveau $1-\alpha$ gegeben. Das Ereignis, dass das Konfidenzintervall den wahren Parameter überdeckt, ist bernoulliverteilt mit Erwartungswert $1-\alpha$ und Varianz $\alpha(1-\alpha)$. Sei mit R die aus den n Wiederholungen resultierende Überdeckungsrate bezeichnet. Dieses ist ein Schätzer für $1-\alpha$ und nach dem zentralen Grenzwertsatz asymptotisch normalverteilt mit Erwartungswert $\mathrm{E}[R]=1-\alpha$ und $\operatorname{Varianz} \operatorname{Var}[R]=\frac{\alpha(1-\alpha)}{n}$. Damit gilt

$$
\mathrm{P}\left(\frac{(R-(1-\alpha)) \sqrt{n}}{\sqrt{\alpha(1-\alpha)}} \geq u_{\alpha^{*}}\right)=\mathrm{P}\left(R \geq u_{\alpha^{*}} \sqrt{\frac{\alpha(1-\alpha)}{n}}+(1-\alpha)\right)=1-\alpha^{*}
$$

wobei $u_{\alpha^{*}}$ das α^{*}-Quantil der Standardnormalverteilung bezeichnet. Nun ist für $n=$ 10000 (gewählte Anzahl an Durchläufen), gewünschtes Konfidenzniveau $1-\alpha=0.95$ sowie Fehlerwahrscheinlichkeit $\alpha^{*}=0.05$

$$
\begin{equation*}
u_{\alpha^{*}} \sqrt{\frac{\alpha(1-\alpha)}{n}}+(1-\alpha) \approx 0.946415 \tag{4.2}
\end{equation*}
$$

Nur, wenn eine beobachtete Überdeckungsrate unterhalb dieser Grenze liegt, wollen wir akzeptieren, dass das Konfidenzintervall nicht per Zufall das Niveau nicht einhält, sondern sein tatsächliches Niveau kleiner als $1-\alpha=0.95$ ist. Im Folgenden wird die Schranke (4.2) als Überdeckungserfolgsgrenze bezeichnet.

Um schließlich die Güte der drei Intervallschätzer miteinander vergleichen zu können, bedarf es (wie bei den Punktschätzern mittels des MSEs) eines Kriteriums, anhand der die verschiedenen Konfidenzintervalle für die einzelnen Szenarien und logarithmierten Hazard-Ratios in eine Rangfolge gebracht werden können. Dass ein Konfidenzintervall das geforderte Konfidenzniveau einhält, ist eine unerlässliche Voraussetzung. Unter den Intervallen, die dies erfüllen, ist die erwartete Breite ein sinnvolles Maß zur Bewertung ihrer Güte. Daher soll für eine gegebene Konstellation das Konfidenzintervall als "das beste" deklariert werden, welches unter allen, die das geforderte Konfidenzniveau von $1-\alpha=0.95$ einhalten, über die minimale Breite verfügt. Sind alle Konfidenzintervalle liberal für eine Konstellation, so soll das Konfidenzintervall das beste sein, welches über das höchste Konfidenzniveau verfügt. Dabei soll die Einhaltung des Niveaus für ein Konfidenzintervall in einer beliebigen Situation dann gewährleistet sein, wenn die entsprechende beobachtete Überdeckungsrate mindestens so groß wie die Überdeckungserfolgsgrenze (4.2) ist.

Balancierte Szenarien ohne Zensierungen und Bindungen

In den Abbildungen C. 102 (bzw. 4.10), C.106, C. 110 und C. 116 zu den elf Szenarien mit balancierten Stichprobenumfängen und ohne Zensierungen und Bindungen zeigt sich, wie entsprechend bei der Punktschätzung, ein um $\omega=1$ symmetrisches Bild für die Überdeckungsraten und durchschnittlichen Breiten der Konfidenzintervalle.

Die durchschnittliche Breite des SL-KIs sinkt mit Entfernung von $\omega=1$, während die des Cox- und Wassmer-KIs zunehmen. Dabei sind die Schwankungen des Coxund SL-KIs insgesamt relativ stark und die des Wassmer-KIs relativ schwach ausgeprägt. Das SL-KI verfügt stets über die geringste, das Cox-KI über die größte durchschnittliche Breite. Aufgrund der gegenläufigen Entwicklung sind die Unterschiede in den durchschnittlichen Breiten für diese beiden Intervalltypen in jedem Szenario in den extremsten Hazard-Ratios am größten und zum Teil dort immens. Der minimale Unterschied in diesen Punkten in den Szenarien mit 20 Beobachtungen pro Gruppe besteht in Szenario 7 in $\omega=\frac{1}{3}$. Hier ist die durchschnittliche Breite des Cox-KIs mit rund 1.4633 um 34.9% größer als die des SL-KIs mit rund 1.0846. Mit wachsendem Stichprobenumfang rücken die durchschnittlichen Breiten punktweise näher zusammen, so dass diese bei 500 Beobachtungen pro Gruppe unter $\mathrm{H}_{0}^{=}$ bei allen drei Intervalltypen fast identisch sind. Bei diesem Stichprobenumfang in Szenario 31 in $\omega=\frac{1}{3}$ (der zu oben entsprechenden Konstellation) findet sich eine um 25.9% höhere Breite beim Cox-KI (etwa 0.2794) gegenüber dem SL-KI (etwa 0.2219). In dem Sinne, dass die durchschnittlichen Breiten der Konfidenzintervalle zu den Varianzen der entsprechenden Schätzer korrespondieren, passen diese Ergebnisse zu denen der Punktschätzer. Eine Ausnahme besteht darin, dass die Varianz des Wassmer-Schätzers langsam mit Entfernung von $\mathrm{H}_{0}^{=}$sinkt, während die durchschnittliche Breite des Wassmer-KIs langsam zunimmt.

Die Überdeckungsraten der verschiedenen Intervalle sind unter $\mathrm{H}_{0}^{=}$stets sehr ähnlich. Bei 20 Beobachtungen pro Gruppe liegen sie bei allen Intervalltypen leicht unterhalb der konstruierten Überdeckungserfolgsgrenze, bei 100 und 500 Beobachtungen darüber (außer beim Cox-KI in Sz. 20). Das SL-KI zeigt zunächst mit Entfernung von $\omega=1$ einen starken Anstieg in der Überdeckungsrate (Maximum: 96.88% in $\omega=\frac{1}{2}$, Sz. 7) bis es dann am äußeren Rand des Parameterraums stark abfällt. Mit Steigerung des Stichprobenumfangs rückt das Maximum der Überdeckungsrate des

SL-KIs in Richtung $\omega=1$, der Abfall wird extremer. So liegen bei 20 Beobachtungen pro Gruppe die Überdeckungsraten in den extremsten Hazard-Ratios noch bei mindestens 92.86% (Sz. 7, $\omega=\frac{1}{3}$). Bei 500 Beobachtungen pro Gruppe rutscht das SL-KI von der Einhaltung des Niveaus auf dem Intervall $\omega \in\left[\frac{2}{3}, 1.5\right]$ auf Überdeckungsraten von $78.11-79.49 \%$ in $\omega=\frac{1}{2}$ und $\omega=2$ und von rund 0% in den äußersten Punkten $\omega=\frac{1}{3}$ und $\omega=3$. Das Wassmer-KI zeigt ingesamt das gleiche Verhalten, jedoch verläuft bei ihm diese Entwicklung über den Alternativraum und mit wachsendem Stichprobenumfang wesentlich langsamer. Bei 20 Beobachtungen pro Gruppe hält es außer auf dem Intervall $\omega \in\left[\frac{5}{6}, 1.2\right]$ das geforderte Konfidenzniveau durchgehend ein, bei 500 Beobachtungen pro Gruppe liegen seine Überdeckungsraten auf den zwei äußersten Punkten bei noch mindestens 78.12% (Sz. 33, $\omega=3$). Das Cox-KI zeigt ein weniger schwankendes Bild über die verschiedenen logarithmierten Hazard-Ratios. Vor allem in den Szenarien mit 20, aber auch in den Szenarien mit 100 Beobachtungen pro Gruppe unterschreitet es in mehreren Punkten die untere Überdeckungserfolgsgrenze, jedoch nie in einem starken Ausmaß. Unter Betrachtung der Entwicklung der Verzerrungen im SL- und Wassmer-Schätzer sowie der durchgängigen approximativen Erwartungstreue des Cox-Schätzers korrespondieren auch diese Ergebnisse zu jenen der Punktschätzer.

So findet sich auch ebenso wie bei der Punktschätzung, dass das SL-KI in und nahe $\omega=1$ unter den drei betrachteten Intervalltypen am besten abschneidet. In den extremeren logarithmierten Hazard-Ratios wird es in der Regel zunächst vom Wassmer-KI abgelöst. Bei größeren Stichprobenumfängen bietet das Cox-KI am Rand des betrachteten Parameterraums das einzig adäquate Konfidenzintervall, weil die anderen beiden das Konfidenzniveau zu sehr unterschreiten.

Der zugrundeliegende Verteilungstyp zeigt wie bei den Punktschätzern wenig Einfluss auf das Verhalten der Intervallschätzer. Auch hier verstärkt die Anwesenheit von Störgrößen die Entwicklungen im SL- und Wassmer-KI bezüglich der Überdeckungsraten, so dass diese beiden Konfidenzintervalle im extremen Szenario 50 mit einem zusätzlichen Hazard-Ratio der Größe 4 nur noch unter $\mathrm{H}_{0}^{=}$das geforderte Konfidenzniveau von 0.95 einhalten.

Balancierte Szenarien mit Zensierungen und Bindungen

Die Abbildungen zu den balancierten Szenarien mit Bindungen (aber ohne Zensierungen) C.103, C. 107 und C. 111 zeigen im Vergleich zu den entsprechenden Abbildungen zu den Szenarien ohne Bindungen und Zensierungen, dass die Überdeckungsraten und durchschnittlichen Breiten des Cox-KIs gleich bleiben. Beim WassmerKI nimmt die durchschnittliche Breite punktweise relativ stark zu, so dass in und ausgehend von $\omega=1$ seine durchschnittliche Breite nun häufig größer als beim Cox-Schätzer ist. Diese Entwicklung verstärkt sich mit wachsendem Bindungsanteil in den Daten: Denn die größten Anhebungen in den durchschnittlichen Breiten des Wassmer-KIs sind bei den Szenarien mit der Gompertz-Verteilung zu beobachten, bei denen für jeden Stichprobenumfang die Bindungsanteile in den Daten (gleichmäßig über den Parameterraum) recht hoch sind. Bei den Szenarien mit der Exponential- und Weibullverteilung ist die rechte Seite des Alternativraums stärker als die linke Seite betroffen, da dort die Bindungsanteile höher sind. Die durchschnittlichen Breiten des SL-KIs nehmen nur leicht zu, so dass dieser Intervalltyp weiterhin über die durchgehend (in den extremeren logarithmierten Hazard-Ratios deutlich) kleinste Breite verfügt. Die im letzten Abschnitt beschriebenen Entwicklungen der Überdeckungsraten des Wassmer- und SL-KIs über den Parameterraum verschärfen sich unter Bindungen: Insgesamt werden die Konfidenzintervalle konservativer bzw. liberaler in den Punkten, in denen in Szenarien ohne Bindungen das Niveau eingehalten bzw. nicht eingehalten wird, Daraus resultiert, dass das SL-KI unter Bindungen, wie entsprechend bei der Punktschätzung, an den Rändern seiner Überlegenheit an Optimalität einbüßt.

Als nächstes werden die Ergebnisse zu den balancierten Szenarien mit Zensierungen (aber ohne Bindungen), die in den Abbildungen C.100, C. 104 und C. 108 für gleiche Zensierungsverteilungen sowie in den Abbildungen C.117, C. 119 und C. 121 für ungleiche Zensierungsverteilungen dargestellt sind, mit denen zu den Szenarien ohne Zensierungen und ohne Bindungen verglichen. Dabei ist festzustellen, dass unter Zensierungen generell das im vorangegangenen Abschnitt beschriebene Bild bezüglich der durchschnittlichen Breiten aller drei Konfidenzintervalle über den Parameterraum insgesamt erhalten bleibt. Wie bei den Punktschätzern die Varianzen punktweise zunehmen, werden hier die Intervalle punktweise breiter. Bezüglich der Überdeckungsrate zeigen sich beim Cox-Schätzer keine Veränderungen unter Zensie-
rungen. Die Verläufe der Überdeckungsraten des Wassmer- und der des SL-KIs sind in den Bereichen, in denen das Konfidenzniveau in Szenarien ohne Zensierungen eingehalten wird, nun gleichmäßiger. Insbesondere werden die „Spitzen" abgeschwächt, in denen die Konfidenzintervalle dort recht konservativ sind. An den Rändern des betrachteten Parameterraums proftieren diese beide Intervalltypen zum Teil recht stark von den Zensierungen, vor allem bei gleichen Zensierungsverteilungen. So verbessern sich z.B. bei gleichen Zensierungsverteilungen die Überdeckungsraten des SL- und Wassmer-KIs in $\omega=\frac{1}{3}$ und $\omega=3$ von rund 0% bzw. von $78.12-79.28 \%$ in den Szenarien 31-33 auf 15.19-86.64\% bzw. auf 88.62-93.95\% in den Szenarien 25-27. Korrespondierend zu den Ergebnissen der Punktschätzer ziehen die Veränderungen unter Zensierungen insgesamt unter gleichen Verteilungen eine Ausdehnung und unter ungleichen Verteilungen Beständigkeit bzw. in einigen Szenarien auch eine Einschränkung in der Optimalität des SL-KIs nach sich. Eine Besonderheit zeigt sich bei Zensierungen in und nahe $\omega=1$ in den Szenarien mit 20 Beobachtungen pro Gruppe. Hier halten das Wassmer- und SL-KI häufig das Konfidenzniveau nicht ein, womit das Cox-KI in diesen Fällen meist als einzig valides Konfidenzintervall hervorgeht. Auf diesen Aspekt wird in Abschnitt 4.2.5 weiter eingegangen.

Werden neben Zensierungen auch Bindungen erzeugt (Abbildungen C.101, C. 105 und C. 109 bei gleichen sowie Abbildungen C.118, C. 120 und C. 122 bei ungleichen Zensierungsverteilungen), so zeigen sich die gleichen Veränderungen, wie wenn Bindungen bei rein unzensierten Daten hinzukommen. Unabhängig von der Art der Zensierungen bleiben die durchschnittlichen Breiten und Überdeckungsraten des Cox-KIs wie zuvor unter Bindungen (gegenüber keinen Bindungen) unverändert. Die durchschnittlichen Breiten des SL-KIs erhöhen sich vergleichsweise leicht, die des Wassmer-KIs vergleichsweise stark. Die Überdeckungsraten dieser beiden Konfidenzintervalltypen steigen in den Punkten, in denen das Niveau in den entsprechenden Szenarien ohne Bindungen eingehalten oder zumindestens knapp erreicht wird. An den Rändern des betrachteten Parameterraums (vor allem bei größeren Stichprobenumfängen, bei denen die Bindungsanteile am größten sind) verschärft sich die Liberalität der Konfidenzintervalle. Dies hat insgesamt zur Folge, dass bei 20 und 100 Beobachtungen pro Gruppe sich wenig bezüglich der Optimalität unter den Konfidenzintervallen ändert. Bei 500 Beobachtungen zieht sich die Optimalität des Wassmer- und SI-KIs insgesamt in Richtung $\omega=1$ zurück.

Unbalancierte Designs

Die Ergebnisse zu den Szenarien mit unbalancierten Stichprobenumfang von 50 und 100 Beobachtungen in Gruppe 0 bzw. 1 sind in den Abbildungen C.112-C.115, C. 123 und C. 124 dargestellt. Zunächst werden die Ergebnisse zu den Szenarien 43-45 (Abbildung C.114) ohne Zensierungen und Bindungen mit den entsprechenden Szenarien mit balancierten Stichprobengrößen verglichen. Wie bei der Punktschätzung zeigen sich auch bei den Konfidenzintervallen einige Veränderungen bei den unbalancierten gegenüber den balancierten Szenarien.

Die Überdeckungsraten des Cox-KIs verlaufen gleichmäßig entlang des geforderten Konfidenzniveaus und der Überdeckungserfolgsgrenze. In ein paar Punkten verfehlt dieses KI jedoch knapp das Konfidenzniveau. Die Verläufe der Überdeckungsraten des Wassmer- und SL-KIs über den Parameterraum sind dahingegen sehr asymmetrisch und starken Schwankungen unterworfen. Das SL-KI hält auf dem Intervall $\omega \in[1,2]$ sowie im Punkt $\omega=\frac{1}{2}$ das Konfidenzniveau ein, ist allerdings in $\omega=1.2$ und $\omega=1.5$ recht konservativ (Maximum bei 97.26% in $\omega=1.5$, Sz. 45). In $\omega=\frac{1}{3}$ unterschreitet das SL-KI das Konfidenzniveau mit Raten von rund 91% mäßig und in $\omega=3$ mit Raten von rund 35-36\% stark. Die Überdeckungsrate des Wassmer-KIs steigt über den Parameterraum: Für Werte von $\omega<1$ ist es liberal mit minimalen Raten von rund 91% in $\omega=\frac{1}{3}$, für Werte von $\omega \geq 1$ hält es das Konfidenzniveau ein, jedoch wird es hier mit Entfernung von $\omega=1$ konservativer mit maximalen Werten von knapp 98% in $\omega=3$. Auch die durchschnittliche Breite des WassmerKIs steigt über den Parameterraum. Die durchschnittlichen Breiten des Cox- und SL-KIs hingegen steigen bzw. fallen mit Entfernung von $\mathrm{H}_{0}^{=}$wie in den entsprechenden balancierten Szenarien, jedoch hier asymmetrisch um $\omega=1$. Das SL-KI verfügt nach wie vor über die geringste durchschnittliche Breite, außer auf dem Intervall $\omega \in\left[\frac{1}{2}, \frac{5}{6}\right]$, in dem es vom Wassmer-KI unterschritten wird. Diese Entwicklungen haben zur Folge, dass das SL-KI auf dem Intervall $\omega \in[1,2]$ sowie in $\omega=\frac{1}{2}$ optimal ist. In den anderen untersuchten Punkten bietet das Cox-KI die beste Wahl.

Kommen Zensierungen hinzu (Abbildungen C. 112 und C.123), so werden wie bei den balancierten Szenarien die durchschnittlichen Breiten aller Konfidenzintervalle größer. Bei ungleichen Zensierungsverteilungen entwickelt sich die Zunahme in den Breiten punktweise recht gleichmäßig, so dass das gerade beschriebene Bild der

Szenarien ohne Zensierungen bestehen bleibt. Bei gleichen Zensierungsverteilungen vergrößern sich die Breiten des Wassmer- und SL-KI in Werten von $\omega>1$ stärker als in Werten von $\omega<1$. Beim Cox-KI verhält es sich genau entgegengesetzt, womit die Unterschiede in den Breiten des Cox- und SL-KIs auf der linken Seite des Alternativraums nun noch ausgeprägter und auf der rechten Seite geringer sind. In den Szenarien 37 und 38 sind die durchschnittlichen Breiten des SL-KIs auf dem Intevall $\omega \in[1.2,2]$ nur noch knapp kleiner bzw. sogar größer als die des Cox-KIs. Wie bei den balancierten Designs sind unter Zensierungen keine Veränderungen in den Überdeckungsraten des Cox-KIs zu erkennen. Die Überdeckungsraten des WassmerKIs werden unter gleichen Zensierungsverteilungen insgesamt kleiner. Bei ungleichen Zensierungsverteilungen wird das Wassmer-KI in Werten von $\omega<1$ weniger liberal, in Werten von $\omega>1$ weniger konservativ. Die Überdeckungsraten des SL-KIs verändern sich punktweise und für die zwei verschiedenen Zensierungstypen in den unbalancierten Designs recht unregelmäßig. Auffällig ist jedoch, dass die Rate des SL-KIs bei gleichen Zensierungsverteilungen in $\omega=3$ steigt, so dass das Intervall in den Szenarien 37 und 38 sogar das Konfidenzniveau einhält. Der Bereich der Optimalität des SL-KIs wird in dem betrachteten unbalancierten Design unter Zensierungen insgesamt kleiner. Besonders deutlich ist dies in Szenario 38 zu beobachten, in dem das SL-KI nur noch in $\omega=1$ und sonst das Cox-KI als beste Wahl hervorgeht.

Bindungen scheinen insgesamt einen ähnlichen Effekt auf die Überdeckungsraten und durchschnittlichen Breiten der Konfidenzintervalle in unbalancierten wie in balancierten Designs auszuüben und das sowohl bei unzensierten als auch bei zensierten Daten und unabhängig von der Art der Zensierung. Die zugehörigen Abbildungen C.113, C. 115 und C. 124 zeigen im Vergleich zu den Abbildungen der jeweiligen Szenarien ohne Bindungen, dass sich die Überdeckungsraten und durchschnittlichen Breiten des Cox-KIs unter Bindungen nicht verändern. Die durchschnittlichen Breiten des Wassmer- und SL-KIs werden unter Bindungen hingegen größer, wobei das Wassmer-KI davon stärker betroffen ist. Die Überdeckungsraten des Wassmer-KIs werden ingesamt größer, wodurch dieser Konfidenzintervalltyp auf dem Intervall $\omega \in\left[\frac{1}{2}, \frac{5}{6}\right]$ nun in einigen Fällen das Konfidenzniveau einhält und für Werte von $\omega>1$ insgesamt konservativer wird. Seine maximale Rate der gesamten Simulationsstudie erreicht dieses Konfidenzintervall hier mit 98.51% in $\omega=3$ in Szenario 47. Für das SL-KI zeigt sich auf dem Intervall $\left[\frac{2}{3}, \frac{3}{2}\right]$ insgesamt auch eine leichte

Anhebung in den Überdeckungsraten (maximale Rate der gesamten Simulationsstudie mit 97.42% in Sz .47 in $\omega=1.5$). In allen anderen Punkten verschlechtern sich hingegen die Überdeckungsraten des SL-KIs leicht. Wie bisher für den Schätzer und das Konfidenzintervall vom SL-Typ resultieren die Entwicklungen unter Bindungen darin, dass das SL-KI in einigen Szenarien am Rand seines Optimalitätsbereiches die beste Position an das Cox-KI weitergibt. Allerdings kann sich das SL-KI nun häufig in den für ihn ungünstigen Punkten $\omega=\frac{2}{3}$ und $\omega=\frac{5}{6}$ in dem betrachteten unbalancierten Design als bestes Konfidenzinvertall durchsetzen, womit es hier von Bindungen insgesamt mehr zu profitieren scheint, als dass es verliert.

4.2.5 Empfehlungen zur Auswahl eines Intervallschätzers

Mit Tabelle 4.4 auf Seite 83 ist ein Faustregelwerk gegeben, das zur Auswahl eines guten Punktschätzers für das (logarithmierte) Hazard-Ratio in zweiarmigen Überlebenszeitstudien dient. Da es jedoch meist wünschenswert ist, einen Punktschätzer zusammen mit einem zugehörigen Konfidenzintervall anzugeben, wird in diesem Abschnitt auf Basis der Simulationsergebnisse ein entsprechendes Regelwerk für die Intervallschätzung konstruiert. Dabei ist es besonders von Interesse zu untersuchen, inwiefern dieses Regelwerk mit dem für die Punktschätzung korrespondiert. Zwar basiert das Regelwerk aus Abschnitt 4.2.3 auf fünf Schätzern, unter denen nur für drei zugehörige Konfidenzintervalle (das Cox-, Wassmer und SL-KI) abgeleitet wurden. Allerdings stellen gerade der Cox-, Wassmer und SL-Schätzer die dominierenden Schätzer in dem Regelwerk in Tabelle 4.4 dar, so dass eine weitesgehende Übereinstimmung der Faustregeln für Punkt- und Intervallschätzung möglich ist.

Die nach dem in vorangegangenen Abschnitt auf Seite 90 vorgestellten Algorithmus optimalen Konfidenzintervalle für die einzelnen logarithmiertem Hazard-Ratios und Szenarien sind analog zu den Tabellen 4.2 und 4.3 auf den Seiten 76 und 77 in den Tabellen 4.5 und 4.6 aufgelistet. Korrespondierend zu den Ergebnissen in Abschnitt 4.2.3 zeigt sich hier das SL-KI auf einem um $\omega=1$ symmetrischen Bereich von der Form eines spitzen nach unten gerichteten Dreiecks für die Szenarien mit balanciertem Stichprobenumfang und ohne Störgrößen als beste Wahl. Insgesamt gilt auch hier, je geringer der Stichprobenumfang und je geringer der Bindungsanteil ist, umso größer ist das Intervall um $\omega=1$, auf dem das SL-KI am besten abschneidet.

Tabelle 4.5: Optimale Konfidenzintervalle für die einzelnen logarithmierten Hazard-Ratios und Szenarien mit gleichen Zensierungsverteilungen

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1	SL	SL	Cox	Cox	Cox	Cox	SL	SL	SL
			Weib	2	SL	SL	SL	Cox	Cox	Cox	SL	SL	SL
			Gomp	3	Was	SL	SL	Cox	Cox	SL	SL	SL	Was
	\checkmark	\checkmark	Exp	4	SL	SL	SL	Cox	Cox	SL	SL	SL	SL
			Weib	5	SL	SL	SL	Cox	SL	SL	SL	SL	SL
			Gomp	6	SL								
	x	x	Exp	7	Was	SL	Was						
			Weib	8	Was	SL	Was						
			Gomp	9	Was	SL	Was						
	x	\checkmark	Exp	10	Was	SL	Was						
			Weib	11	Was	SL	Was						
			Gomp	12	Was	SL	Was						
100/100	\checkmark	x	Exp	13	Was	SL	Was						
			Weib	14	Was	SL	Cox						
			Gomp	15	Was	SL	Was						
	\checkmark	\checkmark	Exp	16	Was	SL	Was						
			Weib	17	Cox	SL	Was						
			Gomp	18	Was	SL	Was						
	x	x	Exp	19	Cox	SL	Cox						
			Weib	20	Cox	Was	SL	SL	SL	SL	SL	SL	Cox
			Gomp	21	Cox	SL	Cox						
	x	\checkmark	Exp	22	Cox	Was	SL	SL	SL	SL	SL	Was	Was
			Weib	23	Cox	SL	SL	SL	SL	SL	SL	Cox	Was
			Gomp	24	Cox	Cox	SL	SL	SL	SL	SL	Cox	Cox
500/500	\checkmark	x	Exp	25	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
			Weib	26	Cox	SL	Cox						
			Gomp	27	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
	\checkmark	\checkmark	Exp	28	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
			Weib	29	Cox	Was	SL	SL	SL	SL	SL	Cox	Was
			Gomp	30	Cox	Cox	SL	SL	SL	SL	SL	Cox	Cox
	x	x	Exp	31	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
			Weib	32	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
			Gomp	33	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
	x	\checkmark	Exp	34	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
			Weib	35	Cox	Was	SL	SL	SL	SL	SL	Cox	Cox
			Gomp	36	Cox	Was	Cox	SL	SL	SL	Cox	Cox	Cox
50/100	\checkmark	x	Exp	37	Cox	Cox	Was	Cox	SL	SL	Cox	SL	SL
			Weib	38	Cox	Cox	Cox	Cox	SL	Cox	Cox	Cox	Cox
			Gomp	39	Cox	Cox	Cox	Cox	Was	SL	SL	SL	Cox
	\checkmark	\checkmark	Exp	40	Cox	Cox	Was	SL	SL	SL	Cox	Cox	Cox
			Weib	41	Cox	Cox	Cox	SL	SL	Cox	Cox	Cox	Cox
			Gomp	42	Cox	SL	Cox						
	x	x	Exp	43	Cox	SL	Cox	Cox	SL	SL	SL	SL	Cox
			Weib	44	Cox	SL	Cox	Cox	SL	SL	SL	SL	Cox
			Gomp	45	Cox	SL	Cox	Cox	SL	SL	SL	SL	Cox
	x	\checkmark	Exp	46	Cox	SL	Was	Was	SL	SL	SL	Cox	Cox
			Weib	47	Cox	SL	Was	SL	SL	SL	SL	Cox	Cox
			Gomp	48	Cox	SL	SL	SL	SL	SL	SL	Cox	Cox
100/100	x	x	Weib	49	Cox	Cox	Cox	SL	SL	SL	Cox	Cox	Cox
			Weib	50	Cox	Cox	Cox	Cox	SL	Cox	Cox	Cox	Cox

Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen:
$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp
$\checkmark \hat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden, Was $\hat{=}$ Wassmer

Tabelle 4.6: Optimale Konfidenzintervalle für die einzelnen logarithmierten Hazard-Ratios und Szenarien mit ungleichen Zensierungsverteilungen

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	Was	SL	SL	Cox	Cox	Cox	SL	SL	Was
			Weib	2B	Was	SL	SL	Cox	Cox	SL	SL	SL	Was
			Gomp	3B	Was	SL	SL	Cox	Cox	SL	SL	SL	Was
	\checkmark	\checkmark	Exp	4B	Was	SL	SL	Cox	Cox	SL	SL	SL	Was
			Weib	5B	Was	SL	SL	Cox	SL	SL	SL	SL	Was
			Gomp	6B	SL	Was							
100/100	\checkmark	x	Exp	13B	Cox	Was	SL	SL	SL	SL	SL	SL	Cox
			Weib	14B	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
			Gomp	15B	Was	SL	Was						
	\checkmark	\checkmark	Exp	16B	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
			Weib	17B	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
			Gomp	18B	Was	SL	SL	SL	SL	SL	SL	Was	Was
500/500	\checkmark	x	Exp	25B	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
			Weib	26B	Cox	Cox	Was	SL	SL	SL	SL	Cox	Cox
			Gomp	27B	Cox	Was	SL	SL	SL	SL	SL	Was	Cox
	\checkmark	\checkmark	Exp	28B	Cox	Was	SL	SL	SL	SL	SL	Cox	Cox
			Weib	29B	Cox	Cox	Cox	SL	SL	SL	Cox	Cox	Cox
			Gomp	30B	Cox	Cox	SL	SL	SL	SL	Cox	Cox	Cox
50/100		x	Exp	37B	Cox	SL	Was	Cox	SL	SL	SL	Cox	Cox
	\checkmark		Weib	38B	Cox	SL	Cox	Cox	SL	SL	SL	Cox	Cox
			Gomp	39B	Cox	SL	Cox	Cox	Was	SL	SL	SL	Cox
	\checkmark	\checkmark	Exp	40B	Cox	SL	Was	SL	SL	SL	SL	Cox	Cox
			Weib	41B	Cox	SL	SL	SL	SL	SL	SL	Cox	Cox
			Gomp	42B	Cox	SL	SL	SL	SL	SL	SL	Cox	Cox
Bedeutung der Abkürzungen:													
$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp $\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \widehat{=}$ nicht vorhanden, Was $\widehat{=}$ Wassmer													

Wie bei der Punktschätzung zeigt sich das Konfidenzintervall vom SL-Typ insgesamt auf dem Intervall $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ als optimal bei Stichprobengrößen von bis zu gruppenweise 100 Beobachtungen unabhängig von Bindungen sowie Zensierungen und Art der Zensierungen. Daher soll dieses für diesen Bereich für die Intervallschätzung des (logarithmierten) Hazard-Ratios empfohlen werden - bis auf eine Einschränkung. Denn eine Ausnahme, die bei der Punktschätzung nicht besteht, bildet der Bereich $\omega \in\left[\frac{5}{6}, \frac{6}{5}\right]$ bei 20 Beobachtungen pro Gruppe und Zensierungen (Sz. 1-6 und 1B-6B). Hier hält das SL-KI, welches in diesem Bereich stets über die geringste durchschnittliche Breite verfügt, in manchen Fällen das Konfidenzniveau nicht ein. Seine minimale Überdeckungsrate in diesem Bereich liegt bei $94.04 \% ~\left(~ \omega=\frac{5}{6}\right.$, Sz. 2). Da das Cox-KI das Konfidenzniveau außer in $\omega=1$ in den Szenarien 3 und 3B mit Überdeckungsraten von 94.51% bzw. 94.53% durchgehend einhält und in
den für das SL-KI kritischen Situationen das beste Intervall darstellt, soll dieses für diesen Bereich empfohlen werden. Eine weiterhin auffällige Konstellation besteht in $\omega=\frac{2}{3}$ in Szenario 1. Hier unterschreitet das SL-KI die Überdeckungserfolgsgrenze mit 0.9464 nur sehr knapp, weshalb auf Grundlage dieses Falls keine Änderung in den Empfehlungen vollzogen werden sollte.

In allen Szenarien mit 20 Beobachtungen pro Gruppe und in allen mit 100 Beobachtungen pro Gruppe bei gleichen Zensierungsverteilungen oder ohne Zensierungen und ohne Bindungen stellt das SL-KI zusätzlich in $\omega=\frac{1}{2}$ und $\omega=2$ das optimale Intervall dar. Eine einzige Ausnahme besteht in $\omega=\frac{1}{2}$ in Szenario 20, in welchem Fall das SL-KI mit einer Überdeckungsrate von 94.54% knapp unterhalb der Überdeckungserfolgsgrenze liegt. Unter ungleichen Zensierungsverteilungen und/oder Bindungen wird das Konfidenzniveau in $\omega=\frac{1}{2}$ und $\omega=2$ in den Szenarien mit 100 Beobachtungen pro Gruppe vom SL-KI stärker unterschritten. Die minimale Überdeckungsrate des SL-KIs in den entsprechenden Fällen liegt bei $89.47 \% ~(~ \omega=2$, Sz. 17B). Liegen keine Zensierungen vor, so hält das SL-KI bei dem in den Szenarien $22-24$ in $\omega=\frac{1}{2}$ und $\omega=2$ minimal aufgetretenem Bindungsanteil von rund 41% (Sz. 23, $\omega=\frac{1}{2}$) das Konfidenzniveau noch ein. Da es nicht praxisorientiert erscheint, unterschiedliche Empfehlungen für verschiedene Arten von Zensierungen auszusprechen, soll die Empfehlung für die Verwendung des SL-KIs zwischen 20 und 100 Beobachtungen pro Gruppe auf das Intervall $\omega \in\left[\frac{1}{2}, 2\right]$ ausgedehnt werden, solange keine bzw. nur wenige Bindungen und keine bzw. nur wenige Zensierungen (egal welcher Art) in den Daten vorliegen. Für Stichprobengrößen bis zu 20 Beobachtungen pro Gruppe können die Empfehlungen bezüglich des SL-KIs bei beliebiger Anzahl an Zensierungen und einem Bindungsanteil von bis zu 50% bis zu $\omega=\frac{1}{2}$ und $\omega=2$ ausgeweitet werden. Die Grenze von 50% rechtfertigt sich dabei durch den maximal aufgetretenen Bindungsanteil auf dem Intervall $\omega \in\left[\frac{1}{2}, 2\right]$ in den Szenarien mit 20 Beobachtungen pro Gruppe ohne Zensierungen (vgl. Seite 77).

Außer in $\omega=\frac{2}{3}$ in Szenario 26B, in dem das SL-KI mit 94.38% wiederum nur knapp unterhalb der Überdeckungserfolgsgrenze liegt, sowie in ein paar Szenarien mit hohen Bindungsanteilen geht das SL-KI auch bei 500 Beobachtungen auf dem Intervall von $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ als optimales Konfidenzintervall hervor. Der minimale Bindungsanteil in den Szenarien mit 500 Beobachtungen pro Gruppe, in denen der SL-Schätzer auf den
äußeren Punkten des Intervalls $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ nicht als optimal hervorgeht, beträgt rund 82% (Sz. 29B, $\omega=\frac{2}{3}$). Daher soll das SL-KI bei Stichprobengrößen zwischen 100 und 500 Beobachtungen pro Gruppe bei einem Bindungsanteil von bis zu 80% auf einem Intervall von $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ empfohlen werden. Liegt ein stärkerer Bindungsgrad vor, so soll das empfohlene Intervall auf $\omega \in\left[\frac{5}{6}, \frac{6}{5}\right]$ eingeschränkt werden.

Korrespondierend mit der Punktschätzung wird auch bei der Intervallschätzung das SL-KI am Rand seines Überlegenheitsbereichs häufig vom Wassmer-KI abgelöst. In extremen logarithmierten Hazard-Ratios (abhängig vom Stichprobenumfang, Bindungsgrad und Zensierungsart) zeigt sich das Cox-KI als optimal. Bei 100 Beobachtungen pro Gruppe ist zu beobachten, dass das Wassmer-KI in $\omega=\frac{1}{2}$ und $\omega=2$ bei Vorlage von Bindungen und/oder Zensierungen aus ungleichen Verteilungen insgesamt als bestes Konfidenzintervall hervorgeht. Dem Cox-KI ist es nur in Szenarien mit recht hohen Bindungsanteilen (Sz. 23, $\omega=2$, Bindungsanteil rund 61%; Sz. 24, $\omega=\frac{1}{2}$ und $\omega=2$, Bindungsanteile rund 83% bzw. 84%) unterlegen. Wie in Abschnitt 4.2.4 beschrieben, neigt das Wassmer-KI bei hohem Bindungsgrad zur Konservativität mit erhöhter Breite. Daher ist es plausibel, das Wassmer-KI auf $\omega \in\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$ bei einem Stichprobenumfang zwischen 20 und 100 Beobachtungen pro Gruppe und einem Bindungsanteil von bis zu 60% außerhalb des für das SL-KI empfohlenen Bereichs für die Intervallschätzung des (logarithmierten) Hazard-Ratio vorzuschlagen. Bei größeren Bindungsanteilen sollte dem Cox-KI Vorzug gegeben werden. Da sich in $\omega=\frac{1}{3}$ und $\omega=3$ bei der gruppenweisen Stichprobengröße von 100 Beobachtungen außer bei gleichen Zensierungsverteilungen das Cox-KI als das vorteilhafteste zeigt, soll dieses auch für das Intervall $\omega \in\left[\frac{1}{3}, \frac{1}{2}\right) \cup(2,3]$ bei gruppenweisen Stichprobenumfängen zwischen 20 und 100 Beobachtungen unabhängig vom Bindungs- und Zensierungsgrad empfohlen werden.

Aus diesen Ergebnissen leiten sich auch die Grenzen für das Wassmer- und CoxKI bei einer Stichprobengröße von bis zu 20 Beobachtungen pro Gruppe ab. Das Wassmer-KI zeigt sich hier in $\omega=\frac{1}{3}$ und $\omega=3$ außer in den Szenarien mit gleichen Zensierungsverteilungen, in welchen Fällen das SL-KI als bestes Intervall heraussticht, als optimale Wahl. Da es aber in den Szenarien mit 100 Beobachtungen pro Gruppe in diesen Punkten nicht als bestes abschneidet, soll es bei bis zu 20 Beobachtungen pro Gruppe auf dem Intervall von $\omega \in\left[\frac{1}{3}, \frac{1}{2}\right) \cup(2,3]$ nur bis zu dem
maximal beobachteten Bindungsanteil in den entsprechenden Szenarien ohne Zensierungen auf diesem Intervall empfohlen werden. Dieser liegt bei rund 47% (Sz. 12, $\omega=3$), womit die Grenze bei 50% angesetzt wird. Bei größeren Bindungsanteilen wird wiederum das Cox-Intervall als Empfehlung ausgesprochen. Für das Intervall $\omega \in\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$ kann das Wassmer-KI oberhalb des für das SL-KI empfohlenen Bindungsanteils von 50% empfohlen werden.

Bei 500 Beobachtungen pro Gruppe schneidet das Wassmer-KI in $\omega=\frac{1}{2}$ und $\omega=2$ insgesamt recht gut ab. Liegen keine Zensierungen vor, so liegt der minimale Bindungsanteil, bei dem das Wassmer-KI in diesen Punkten nicht optimal ist, bei rund 80% (Sz. 35, w $=2$). Unter Zensierungen zeigt sich das Wassmer-KI hier jedoch insgesamt nur als vorteilhaft, solange zusätzlich keine Bindungen vorliegen. In den Szenarien mit Zensierungen und Bindungen bei dieser Stichprobengröße hält das Wassmer-KI in $\omega=\frac{1}{2}$ und $\omega=2$ häufig das Konfidenzniveau nicht ein. Z.B. liegt in Szenario 29B in $\omega=\frac{1}{2}$, in welchem Punkt mit rund 77% der minimale Bindunganteil in $\omega=\frac{1}{2}$ und $\omega=2$ in den Szenarien mit 500 Beobachtungen pro Gruppe, Zensierungen und Bindungen auftritt, die Überdeckungsrate des Wassmer-KIs bei nur 93.19%. Daher ist es sinnvoll, die Verwendung des Wassmer-KIs für die Intervallschätzung des (logarithmierten) Hazard-Ratios auf dem Intervall $\omega \in\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$ bei gruppenweisen Stichprobengrößen von 100 bis 500 Beobachtungen, keinen oder wenigen Zensierungen und einem Bindungsanteil von bis zu 80% zu empfehlen. Liegen Zensierungen vor, so wird diese Empfehlung auf Datensätze mit keinen oder geringen Bindungsanteilen eingeschränkt. Bei 100 bis 500 Beobachtungen pro Gruppe auf dem Intervall $\omega \in\left[\frac{1}{3}, \frac{1}{2}\right) \cup(2,3]$ sowie außerhalb der für das Wassmer- und SL-KI empfohlenen Bereiche wird das Cox-KI als die optimale Wahl für die Intervallschätzung des (logarithmierten) Hazard-Ratios angegeben.

In Übereinstimmung mit den Ergebnissen der geschätzten MSEs bei der Punktschätzung zeigt sich bei der Intervallschätzung, dass die Überdeckungsraten des Wassmer- und des SL-KIs (abhängig vom Stichprobenumfang, Bindungsgrad und Zensierungsart) mit steigendem logarithmierten Hazard-Ratio drastisch einbrechen. Mit $\omega \in\left[\frac{1}{3}, 3\right]$ scheint der Bereich, in dem diese beiden Konfidenzintervalle annehmbare Überdeckungsraten liefern, ausgereizt. Mit wachsendem Stichprobenumfang geht selbst in und nahe $\mathrm{H}_{0}^{=}$die Überlegenheit des Wassmer- und SL-KIs gegenüber
dem Cox-KI zurück. Daher soll generell für Hazard-Ratios außerhalb von $\left[\frac{1}{3}, 3\right]$ sowie für balancierte Stichprobenumfänge von mehr als 500 Beobachtungen pro Gruppe das Cox-KI für die Intervallschätzung des (logarithmierten) Hazard-Ratios empfohlen werden. Diese Empfehlung wird allerdings unter Vorbehalt gegeben. Für zuverlässigere Aussagen müssten weitere Simulationen für entsprechende Szenarien durchgeführt werden.

In Tabelle 4.7 werden die beschriebenen Empfehlungen für die Intervallschätzer für balancierte Szenarien ohne Störgrößen bzw. die Möglichkeit der Modellierung von Störgrößen zusammengefasst. In der Regel sollen der Punktschätzer und das Konfidenzintervall bei gleichzeitiger Verwendung vom selben Typ sein. Daher sind in Tabelle 4.7 die Empfehlungen aus Tabelle 4.4 bezüglich der Punktschätzer zusätzlich wiederholt eingetragen. Somit kann für ein bestimmtes Szenario gleichzeitig ein Punkt- und Intervallschätzer ausgesucht werden. Es ist zu erkennen, dass häufig übereinstimmende Empfehlungen bzgl. der Punkt- und Intervallschätzer aus der Simulationsstudie abgeleitet werden konnten. Im Fall von differierenden Empfehlungen wird angeraten, sich am vorgeschlagenen KI-Typ zu orientieren. Denn bei der Ableitung der Regeln für die Konfidenzintervalle wurde darauf geachtet, dass die zu empfehlenden Intervalle das Konfidenzniveau einhalten. Diese Eigenschaft sollte in der Praxis als prioritär behandelt werden.

Korrespondierend dazu, dass die Verzerrungen aller Schätzer außer dem Cox-Schätzer zunehmen, gehen auch die Überdeckungsraten des Wassmer- und SL-KIs zurück, wenn Störgrößen vorliegen. Auch wenn diese beiden Konfidenzintervalle weiterhin bezüglich der Breite gegenüber dem Cox-KI deutlich im Vorteil sind, halten sie in dem hier betrachteten Szenario mit einem zusätzlichen Hazard-Ratio von 2 das Konfidenzniveau nur noch auf $\omega \in\left[\frac{5}{6}, \frac{6}{5}\right]$, bei einem zusätzlichen Hazard-Ratio von 4 nur noch unter H_{0}^{-}ein. Das Cox-KI, welches aus einem Modell hervorgeht, welches die Störeinflüsse perfekt modellieren kann, erfüllt nach wie vor (approximativ) das Konfidenzniveau. Die minimale Überdeckungsrate in den Szenarien mit Störeinflüssen findet sich bei diesem Intervalltyp in $\omega=1.2$ in Szenario 49 mit 94.24%. Bei geringen zu schätzenden Effekten und nur geringen Störeinflüssen oder wenn (nicht-proportionale) Störeinflüsse vorliegen, die nicht gut mittels eines CoxModells modelliert werden können, kann die Empfehlung für die Verwendung des

Tabelle 4.7: Empfehlungen zur Auswahl eines Punkt- und Intervallschätzers für die Schätzung des (logarithmierten) Hazard-Ratios in balancierten Designs ohne Modellierung von Störgrößen

Anzahl Beob. pro Gruppe	ω	Bindungsanteil	Zensierungsanteil	Empfohlener/s	
				Schätzer	KI
≤ 20	$\left[\frac{5}{6}, \frac{6}{5}\right]$	beliebig	0\%/gering mäßig - groß	$\begin{aligned} & \mathrm{SL} \\ & \mathrm{SL} \end{aligned}$	SL Cox
	$\left[\frac{2}{3}, \frac{5}{6}\right) \cup\left(\frac{6}{5}, \frac{3}{2}\right]$	beliebig	beliebig	SL	SL
	$\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$	$\begin{aligned} & \leq 50 \% \\ & >50 \% \end{aligned}$	beliebig	SL Was (Bre)	SL Was
	$\left[\frac{1}{3}, \frac{1}{2}\right) \cup(2,3]$	$\begin{aligned} & \leq 50 \% \\ & >50 \% \end{aligned}$	beliebig	Was (Bre) Was (Bre)	Was Cox
	$\left(0, \frac{1}{3}\right) \cup(3, \infty)$	beliebig	beliebig	Cox (WBI)	Cox
21-100	$\left[\frac{2}{3}, \frac{3}{2}\right]$	beliebig	beliebig	SL	SL
	$\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$	0\%/gering	0\%/gering	Was (Bre)	SL
	$\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$	$\begin{aligned} & \leq 60 \% \\ & >60 \% \end{aligned}$	mäßig - groß	Was (Bre) Was (Bre)	Was Cox
	$\left[\frac{1}{3}, \frac{1}{2}\right) \cup(2,3]$	$\begin{aligned} & \leq 80 \% \\ & >80 \% \end{aligned}$	beliebig	Was Cox	Cox Cox
	$\left(0, \frac{1}{3}\right) \cup(3, \infty)$	beliebig	beliebig	Cox (WBI)	Cox
101-500	$\left[\frac{5}{6}, \frac{6}{5}\right]$	beliebig	beliebig	SL	SL
	$\left[\frac{2}{3}, \frac{5}{6}\right) \cup\left(\frac{6}{5}, \frac{3}{2}\right]$	$\begin{aligned} & \leq 80 \% \\ & >80 \% \end{aligned}$	beliebig	$\begin{aligned} & \text { SL } \\ & \text { Was (Bre) } \end{aligned}$	$\begin{aligned} & \mathrm{SL} \\ & \mathrm{Cox} \end{aligned}$
	$\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$	$\begin{aligned} & \leq 80 \% \\ & (80,90] \\ & >90 \% \end{aligned}$	0\%/gering	Was Was Cox	Was Cox Cox
	$\left[\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{3}{2}, 2\right]$	$\begin{aligned} & 0 \% / \text { gering } \\ & \leq 90 \% \\ & >90 \% \end{aligned}$	mäßig - groß	Was Was Cox	Was Cox Cox
	$\left[\frac{1}{3}, \frac{1}{2}\right) \cup(2,3]$	$\begin{aligned} & \leq 80 \% \\ & >80 \% \end{aligned}$	beliebig	WBI Cox	Cox Cox
	$\left(0, \frac{1}{3}\right) \cup(3, \infty)$	beliebig	beliebig	Cox	Cox
> 500	beliebig	beliebig	beliebig	Cox	Cox

Bedeutung der Abkürzungen: Was $\widehat{=}$ Wassmer, Bre $\widehat{=}$ Breslow, WBI $\widehat{=}$ WBC-I

SL-KIs aufrecht erhalten werden. In allen anderen Fällen sollte dem Cox-KI Vorrang gewährt werden.

Um Empfehlungen für unbalancierte Designs ableiten zu können, werden wie in Abschnitt 4.2.3 die Ergebnisse der Szenarien mit 50 und 100 Beobachtungen in Gruppe 0 bzw. 1 mit denen der Szenarien mit gruppenweise 100 Beobachtungen verglichen. Wie bei der Punktschätzung hält das SL-KI seine Überlegenheit auf $\omega \in[1,1.5]$ in den Szenarien mit dem unbalancierten Design insgesamt aufrecht. In nur wenigen Fällen unterliegt das SL- dem Cox-KI in $\omega=1.2$ bzw. $\omega=1.5$, was darin begründet liegt, dass es hier recht konservativ und minimal breiter als das Cox-KI ist. In den beiden Ausnahmen in $\mathrm{H}_{0}^{=}$(Sz. 39 und 39B) liegen die Überdeckungsraten des SL-KIs mit jeweils 94.53% nur knapp unter der Überdeckungserfolgsgrenze. Liegen keine Zensierungen und Bindungen vor, so ist das SL-KI auch in $\omega=2$ durchgehend optimal, liegen keine Zensierungen gleicher Verteilungen vor, so zeigt es in $\omega=\frac{1}{2}$ durchgängig Optimalität. In den Punkten $\omega=\frac{2}{3}$ und $\omega=\frac{5}{6}$, für die bei 100 Beobachtungen pro Gruppe das SL-KI empfohlen wird, tendiert dieses Konfidenzintervall jedoch dazu, das Konfidenzniveau zu unterschreiten, womit es die Optimalität häufig abgibt, meist an das Cox- und selten an das Wassmer-KI. Das Wassmer-KI schneidet in den unbalancierten Szenarien schlecht ab, da es für Werte von $\omega<1$ häufig das Konfidenzniveau nicht einhält und für Werte von $\omega>1$ zu recht breiten Intervallen mit einhergehender starker Konservativität neigt. Insgesamt ist es damit sinnvoll, die Empfehlungen aus Tabelle 4.7 bezüglich des SL-KIs auch für unbalancierte Designs mit entsprechendem Gesamtstichprobenumfang, außer wenn das zu erwartende Hazard-Ratio eine Überlegenheit der kleineren Gruppe bedeutet, beizubehalten. In diesen und in allen anderen Fällen sollte das Cox-KI verwendet werden.

4.3 Anwendung der verschiedenen Schätzverfahren an einem Beispieldatensatz

Cook et al. (1971) und Kirk et al. (1980) beschreiben die Ergebnisse einer kontrollierten klinischen Studie zur Behandlung von chronischer Hepatitis. Das Patientenkollektiv dieser Studie bestand aus 44 Patienten, die in den Jahren 1963-1967 nach Diagnosestellung ins Royal Free Hospital (London) eingewiesen wurden. Die Patienten wurden balanciert auf zwei Behandlungsgruppen randomisiert und zwi-

Tabelle 4.8: Überlebenszeiten der 44 Patienten einer klinischen Studie zur Behandlung von chronischer Hepatitis (getrennt nach Behandlungsgruppe)

keine Behandlung				Prednisolone			
2	28	54	140^{*}	2	89	140^{*}	148^{*}
3	29	61	146^{*}	6	96	141^{*}	162^{*}
4	32	63	158^{*}	12	96	143	168
7	37	71	167^{*}	54	125^{*}	145^{*}	173^{*}
10	40	127^{*}	182^{*}	56^{*}	128^{*}	146	181^{*}
22	41			68	131^{*}		

* $\widehat{=}$ zensierte Beobachtung
schen 10 und 15 Jahren bis zum Ereignis Tod nachbeobachtet. Die Patienten der experimentellen Behandlungsgruppe erhielten das zu untersuchende Corticosteroid Prednisolone, die Patienten der Kontrollgruppe gar keine Behandlung (auch kein Placebo). Die (zensierten) Überlebenszeiten in Monaten ab Hospitalisierung der 44 Patienten, die auch in Pocock (1983) und Collett (2003) zu finden sind, sind in Tabelle 4.8 aufgelistet.

Abbildung 4.11 zeigt die mittels des Kaplan-Meier-Verfahrens geschätzten Überlebensfunktionen der beiden Behandlungsgruppen, welche unter Verwendung des RPakets survival (Therneau, 2012) erstellt wurden. Es ist eine deutliche Überlegenheit hinsichtlich des Überlebens für die experimentelle Gruppe erkennbar. Die mediane Überlebenszeit in der Kontrollgruppe liegt bei 3.4 und in der experimentellen Gruppe bei 12.2 Jahren. Der Logrank-Test liefert eine Teststatistik von 2.1587 mit einem zweiseitigen p-Wert von 0.0309 für die Nullhypothese von gleichen Überlebensfunktionen in den beiden Gruppen (vgl. Tabelle 4.9 auf Seite 109). Zu einem Signifikanzniveau von 0.05 ist dieses Testergebnis signifikant. Insbesondere überschneiden sich die beiden Überlebensfunktionen nicht, was eine notwendige Bedingung für proportionale Hazard-Funktionen ist (Collett, 2003, S. 47).

In Abbildung 4.12 sind die geschätzten Hazard-Funktionen der beiden Behandlungsgruppen auf dem Intervall $[0,70]$ abgetragen. Diese Kurven wurden mittels des

Abbildung 4.11: Kaplan-Meier-Kurven für die beiden Behandlungsgruppen einer klinischen Studie zur Behandlung von chronischer Hepatitis
kernel-basieren Glättungsverfahrens nach Müller und Wang (1994) unter Verwendung des R-Pakets muhaz (Hess und Gentleman, 2010) erstellt. Die Einschränkung auf das Intervall $[0,70]$ liegt darin begründet, dass in der Kontrollgruppe die größte Ereigniszeit bei 71 Monaten liegt und damit ab diesem Zeitpunkt keine sinnvollen Schätzungen für die Werte der Hazard-Funktion dieser Gruppe berechnet werden können. Die Annahme proportionaler Hazard-Funktionen in den beiden Behandlungsgruppen kann auf Grundlage von Abbildung 4.12 als gerechtfertigt angesehen werden.

Für dieses Datenmaterial wurden alle in dieser Arbeit vorgestellten und untersuchten Punkt- und Intervallschätzer berechnet. Dabei wurden passend zum zweiseitigen Testergebnis des Logrank-Tests zweiseitige Konfidenzintervalle zum Konfidenzniveau von 0.95 erstellt. Die Ergebnisse sind in Tabelle 4.9 zusammengetragen. Bei diesem Beispiel bewegen sich die Ergebnisse der Punktschätzer zwischen 0.7974 (SL-Schätzer) und 0.8341 (WBC-II-Schätzer) für das logarithmierte HazardRatio bzw. zwischen 2.2199 und 2.3028 für das Hazard-Ratio selbst von keiner Behandlung gegenüber einer Behandlung mit Prednisolone. Damit sprechen auch

Abbildung 4.12: Geschätzte Hazard-Funktionen für die beiden Behandlungsgruppen einer klinischen Studie zur Behandlung von chronischer Hepatitis
die Schätzergebnisse für eine deutliche Verringerung des Risikos, unter Behandlung mit dem Corticosteroid an chronischer Hepatits zu versterben. Insgesamt zeigen die Punktschätzer gewisse Unterschiede, die jedoch nicht frappierend sind. Auffällig ist, dass für den Breslow- und SL-Schätzer auf der einen und für die vier anderen Punktschätzer auf der anderen Seite jeweils sehr ähnliche Ergebnisse resultieren (die Schätzwerte des Cox- und Wassmer-Schätzers sind sogar fast identisch). Dabei fallen die Schätzungen der beiden erst genannten Schätzer kleiner als die der anderen aus. Dies korrespondiert zu den Ergebnissen der Simulationsstudie. Hier hat sich gezeigt, dass für (logarithmierte) Hazard-Ratios größer als $\omega=1$ (bzw. $\ln (\omega)=0$) die Lage der Verteilung des Breslow- und die des SL-Schätzers insgesamt geringer als die der Verteilungen der anderen Schätzer sind. Die Unterschiede in den Konfidenzintervallen sind ebenfalls geringerer Natur. Das schmalste Konfidenzintervall der Breite 3.5526 ([1.0668, 4.6194]) für das Hazard-Ratio liefert das SL-KI, das breiteste der Breite 3.9461 ([1.0533, 4.9994]) das Cox-KI. Auch diese Ergebnisse decken sich mit den Ergebnissen der Simulationsstudie, in der das SL-KI in den meisten Fällen über die durchschnittlich kleinste Breite und das Cox-KI häufig über die durchschnittlich größte Breite unter den drei betrachteten Konfidenzintervallen verfügen. Alle

Tabelle 4.9: Übersicht der Punkt- und Intervallschätzungen für die Beispieldaten einer klinischen Studie zur Behandlung von chronischer Hepatitis

	Punktschätzung		zweiseitiges (0.95)-Konfidenzintervall	
Verfahren	$\widehat{\ln (\omega)}$	$\hat{\omega}$	$\hat{\ln (\omega)}$	$\hat{\omega}$
Cox	0.8306	2.2947	$[0.0519,1.6093]$	$[1.0533,4.9994]$
Breslow	0.8084	2.2444	-	-
Wassmer	0.8309	2.2953	$[0.0695,1.5923]$	$[1.0719,4.9149]$
WBC-I	0.8323	2.2987	-	-
WBC-II	0.8341	2.3028	-	-
SL	0.7974	2.2199	$[0.0646,1.5303]$	$[1.06684 .6194]$
Logrank-Test				
Teststatistik: 2.1587, zweiseitiger p-Wert: 0.0309				

Intervalle liegen oberhalb von Null für das logarithmierte Hazard-Ratio bzw. oberhalb von 1 für das Hazard-Ratio selbst, womit über sie formulierte Signifikanztests zum Niveau 0.05 jeweils wie der Logrank-Test in einem signifikanten Testergebnis resultierten.

5 Zusammenfassung

In der vorliegenden Arbeit wurden neue Punkt- und Intervallschätzverfahren für das (logarithmierte) Hazard-Ratio in zweiarmigen Überlebenszeitstudien konstruiert und mit bereits etablierten Schätzverfahren im Rahmen einer vielseitigen Simulationsstudie verglichen. Schließlich wurde anhand der Simulationsergebnisse ein Faustregelwerk entwickelt, welches dem Anwender für eine konkrete Studie entlang bestimmter Eigenschaften erlaubt, einen guten Punkt- und Intervallschätzer auszuwählen (vgl. Tabelle 4.7 auf Seite 104).

Mit der Anpassung eines Cox-Modells werden ein wohl bekannter Punkt- und Intervallschätzer für das (logarithmierte) Hazard-Ratio gewonnen, die über gute Eigenschaften verfügen: Liegen keine unbekannten Störgrößen vor, so ist der Cox-Schätzer approximativ unverzerrt, das Cox-Konfidenzintervall(-KI) hält approximativ das vorgegebene Konfidenzniveau ein. Weiterhin können bei diesen Schätzverfahren negative Auswirkungen von Störgrößen auf die Effektschätzung, wie die Erzeugung einer Verzerrung, unterbunden bzw. zumindest gemindert werden, wenn diese Störgrößen sich im Cox-Modell modellieren lassen. Allerdings kommen diese beiden Schätzverfahren mit dem Nachteil, dass in extremen Konstellationen (wenig unzensierte Beobachtungen in der ein oder anderen Gruppe) numerische Schwierigkeiten bei der Berechnung des Modells und somit der Schätzer entstehen, woraus je nach dem ein unsinnig extremer oder sogar gar kein Schätzwert resultieren kann.

Wassmer (2006) entwickelte einen neuen Punktschätzer, der geschlossen darstellbar ist und in (fast) jeglicher Situation berechnet werden kann. Dieser beruht auf dem approximativen Erwartungswert für die Logrank-Statistik nach Schoenfeld (1981). Für ein Hazard-Ratio von $\omega \neq 1$ ist der Wassmer-Schätzer verzerrt, und zwar umso stärker, je extremer das Hazard-Ratio ist. Jedoch verfügt er auch über eine geringere Varianz als der Cox-Schätzer und kann letzteren in und nahe $\omega=1 \mathrm{im}$ Mean Squared Error (MSE) häufig unterbieten.

Durch die Herleitung von Biaskorrekturen wurden zwei neue Punktschätzer konstruiert, mittels denen das Ziel, die Verzerrung des Wassmer-Schätzer zu eliminieren oder zumindest zu verringern, in vielen Situationen erreicht werden konnte (vgl. (3.19) und (3.20) auf den Seiten 32 bzw. 34). Zudem wurde nach Vorbild des WassmerSchätzers ein neuer Schätzer, der Shortened-Logrank-(SL-)Schätzer, entwickelt, welcher wie der Wassmer-Schätzer leicht zu berechnen ist (vgl. (3.21) auf Seite 35). Dieser Schätzer tauscht in höherem Ausmaß Varianz gegen Verzerrung ein und zeigt sich in vielen Situationen unter allen betrachteten Punktschätzern hinsichtlich des MSEs am vorteilhaftesten. Zusätzlich wurden zwei neue Intervallschätzer, eins nach dem Wassmer- und eins nach dem SL-Typ, konstruiert (vgl. (3.27) und (3.28) auf Seite 39). Dabei wurden alle Punkt- und Intervallschätzverfahren jeweils in zwei Versionen hergeleitet, in einer für den Fall ohne und einer für den Fall mit Bindungen.

Abhängig vom Stichprobenumfang, Bindungs- und Zensierungsgrad sowie Art der Zensierungen minimiert der SL-Schätzer bei der Schätzung des logarithmierten Hazard-Ratios in und auf einem bestimmten Bereich um $\omega=1$ den MSE (vgl. erneut Tabelle 4.7). In denselben Situationen zeigt sich meist korrespondierend dazu das SL-KI hinsichtlich Überdeckungswahrscheinlichkeit und erwartete Breite als beste Wahl. Zum Beispiel schneidet in der durchgeführten Simulationsstudie bei bis zu 100 Beobachtungen pro Gruppe sowie beliebigen Bindungs- und Zensierungsanteilen in den Daten unter allen betrachteten Schätzern der SL-Schätzer auf dem Intervall $\omega \in\left[\frac{2}{3}, \frac{3}{2}\right]$ am besten ab. Bis auf Szenarien mit zugleich sehr kleinem Stichprobenumfang und Zensierungen und einem Hazard-Ratio von oder nahe $\omega=1$, liefert das SL-KI dazu übereinstimmende Ergebnisse. In den Bereichen, in denen der SLSchätzer und das SL-KI ihre Überlegenheit verlieren, zeigen sich der bereits etablierte Breslow- und der Wassmer-Schätzer bzw. das Wassmer-KI vorteilhaft. In extremen (logarithmierten) Hazard-Ratios, abhängig von den Eigenschaften des Designs, stellen der Cox-Schätzer und das Cox-KI die einzigen adäquaten Schätzverfahren dar. Die anderen Schätzverfahren verfügen über eine zu große Verzerrung bzw. unterschreiten das Konfidenzniveau deutlich. Eine Ausnahme bildet der neu konstruierte Bias-Corrected-Wassmer-Schätzer I, welcher sich in allen betrachteten Szenarien, außer in solchen mit hohen Bindungsanteilen, approximativ unverzerrt zeigt und den Cox-Schätzer meist im MSE schlägt. Da neue Behandlungsmethoden heutzutage in der Regel kleine Effekte herbeiführen, können die SL-Schätzverfahren insbesondere
im Rahmen klinischer Studien Anwendung finden.

Nur zwei der 50 betrachteten Szenarien der Simulationsstudie umfassen eine Störgröße. Diese Störgröße ist dabei so konzipiert, dass sie das Hazard-Ratio bestimmter Patientengruppen um den Faktor 2 bzw. 4 vergrößert. Da dem Cox-Modell die entsprechenden Gruppenzugehörigkeiten bezüglich dieser Störgröße übergeben wird, stellt diese eine perfekt messbare und zu modellierende Störgröße für das Modell dar. Es ist daher nicht erstaunlich, dass die Cox-Schätzverfahren ihre Bilanz gegenüber den anderen Schätzverfahren in diesen beiden Szenarien verbessern können. Allerdings sind beide betrachteten Situationen, die keiner sowie die von perfekt messbaren und perfekt zu modellierenden Störeinflüssen, unrealistisch. Eine Ausweitung des Vergleichs der Schätzverfahren auf Situationen mit Störgrößen unterschiedlichster Art würde daher eine aufschlußreiche Ergänzung zu den Ergebnissen dieser Arbeit bieten.

Im Rahmen weiterer Forschungsaktivitäten ist geplant, die konstruierten Schätzverfahren für die Anwendung in adaptiven Designs zu modifizieren und in diesem Gebiet zu erproben. In mehrstufigen adaptiven Designs bedeuten einerseits die Zwischenauswertungen mit den frühzeitigen datenabhängigen Entscheidungen über Abbruch bzw. Fortführung der Studie sowie die Adaptionen selbst (wie z.B. Veränderung des Stichprobenumfangs für weitere Stufen) eine Quelle für Verzerrung und Verfälschung des Konfidenzniveaus in Punkt- bzw. Intervallschätzverfahren. Brannath et al. (2006) schlagen für die Schätzung des Erwartungswerts bei normalverteilten Zielvariablen in adaptiven Designs die Betrachtung von gewichteten Mitteln stufenweiser unabhängiger Schätzer vor. Dies ermöglicht eine Abschätzung von Verzerrungen oder gar die Konstruktion unverzerrter Schätzer. Klassischerweise werden in adaptiven Designs stufenweise unabhängige Teststatistiken und Schätzer über die Betrachtung stufenweise unterschiedlicher Patientenkollektiva gewonnen. In Studien mit Survival-Endpunkten, in denen Patienten Informationen zu mehreren Stufen beitragen können, müssen die Statistiken oder das Datenmaterial modifiziert werden. In der Literatur wurden für Testverfahren bisher zwei Strategien verfolgt: Zum einen werden (asymptotisch) unabhängige Zuwachsstatistiken von geeigneten Pivot-Statistiken konstruiert, wie z.B. von Logrank-Teststatistiken (Müller und Schäfer, 2001; Shen und Cai, 2003; Wassmer, 2006) oder Score-Teststatistiken
(Jahn-Eimermacher und Ingel, 2009). Eine andere Möglichkeit bietet die Betrachtung der ursprünglichen Teststatistiken auf Basis des zu den Zeitpunkten der Zwischenauswertungen künstlich rechtszensierten und linkstrunkierten Datenmaterials (Keiding et al., 1987; Parner und Keiding, 2001; Jahn-Eimermacher und Ingel, 2009). Es wird angestrebt, Punkt- und Intervallschätzverfahren für das (logarithmierte) Hazard-Ratio in adaptiven Überlebenszeitstudien zu entwickeln, indem die Ideen der genannten Arbeiten für die Schätzung in adaptiven Designs einerseits und die Erzeugung asymptotisch unabhängiger Statistiken andererseits unter Betrachtung der hier neu konstruierten Schätzverfahren zusammengeführt werden.

A Approximation des Verhältnisses der Größen der Risikomengen der Logrank-Statistik

In diesem Kapitel wird motiviert, dass die Risikomengen der Patienten in einer Logrank-Statistik unter $\mathrm{H}_{0}^{=}$und gleichen Zensierungsverteilungen etwa dem Stichprobenverhältnis der gesamten Studie entsprechen. Sei die in Abschnitt 2.4 beschriebene Situation gegeben, wobei keine Bindungen unter den Ereigniszeiten vorliegen. Für die folgenden Ausführungen ist es einfacher, die Ereigniszeiten entgegen den Darstellungen in Abschnitt 2.4 ihrer Größe nach anzuordnen. Für die Folge der geordneten Ereigniszeiten $y_{(l)}, l=1, \ldots, d$, ist die Logrank-Teststatistik im Fall ohne Bindungen durch

$$
L R=\frac{\sum_{l=1}^{d}\left(X_{0 l}-e_{0 l}\right)}{\sqrt{\sum_{l=1}^{d} e_{0 l}\left(1-e_{0 l}\right)}}=\frac{\sum_{l=1}^{d} X_{0 l}-\sum_{l=1}^{d} \frac{n_{0 l}}{n_{0 l}+n_{1 l}}}{\sqrt{\sum_{l=1}^{d} \frac{n_{0 l} n_{1 l}}{\left(n_{0 l}+n_{1 l}\right)^{2}}}}
$$

gegeben, wobei die einzelnen Größen der Teststatistik, wie in Abschnitt 2.4 für den Fall von geordneten Ereigniszeiten beschrieben, berechnet werden müssen. Sei $r_{l}:=\frac{n_{0 l}}{n_{1 l}}$ das Verhältnis der Anzahl der Patienten unter Risiko in Gruppe 0 und Gruppe 1 zum Zeitpunkt $y_{(l)}$. Damit gilt für den Erwartungswert und die Varianz
von $X_{0 l}$:

$$
\begin{aligned}
\mathrm{E}\left[X_{0 l}\right] & =p_{0 l}:=\frac{n_{0 l} h_{0}\left(y_{(l)}\right)}{n_{0 l} h_{0}\left(y_{(l)}\right)+n_{1 l} h_{1}\left(y_{(l)}\right)} \\
& \stackrel{\mathrm{H}_{\overline{\overline{0}}}}{=} \frac{n_{0 l}}{n_{0 l}+n_{1 l}}=: e_{0 l}=\frac{r_{l} n_{1 l}}{r_{l} n_{1 l}+n_{1 l}}=\frac{r_{l}}{1+r_{l}} \\
\operatorname{Var}\left[X_{0 l}\right] & =p_{0 l}\left(1-p_{0 l}\right) \\
& \stackrel{\mathrm{H}_{\overline{0}}=}{=} \frac{n_{0 l} n_{1 l}}{\left(n_{0 l}+n_{1 l}\right)^{2}}=e_{0 l}\left(1-e_{0 l}\right)=\frac{r_{l}}{\left(1+r_{l}\right)^{2}} .
\end{aligned}
$$

Zwar werden für die Bestimmung der Verteilung der Logrank-Teststatistik die $n_{i l}, i=0,1, l=1, \ldots, d$, festgehalten, dennoch sind sie Zufallsvariablen. Der Erwartungswert der $n_{i l}$ für $i=0,1, l=2, \ldots, d$, berechnet sich wie folgt:

$$
\begin{align*}
& \mathrm{E}\left[n_{0 l}\right]=n_{01}-\sum_{\tilde{l}=1}^{l-1} \mathrm{E}\left[X_{0 \tilde{l}} \stackrel{\mathrm{H}_{\overline{\overline{0}}}^{=}}{=} n_{01}-\sum_{\tilde{l}=1}^{l-1} \frac{r_{\tilde{l}}}{1+r_{\tilde{l}}}\right. \text { und analog } \tag{A.1}\\
& \mathrm{E}\left[n_{1 l}\right]=n_{11}-\sum_{\tilde{l}=1}^{l-1}\left(1-\mathrm{E}\left[X_{0 \tilde{l}}\right) \stackrel{\mathrm{H}_{\overline{0}}^{\overline{0}}}{=} n_{11}+\sum_{\tilde{l}=1}^{l-1} \frac{r_{\tilde{l}}}{1+r_{\tilde{l}}}-(l-1) .\right. \tag{A.2}
\end{align*}
$$

Für n_{01} und n_{11} (und damit auch für $r_{1}=\frac{n_{01}}{n_{11}}$) gilt, dass sie sich allein durch die Anzahl der Zensierungen vor der kleinsten Ereigniszeit $y_{(1)}$ ergeben. Weiterhin gilt für $r \in \mathbb{Q}^{+}$und $l \in \mathbb{N}^{+}$beliebig:

$$
\frac{n_{01}-l \frac{r}{1+r}}{n_{11}+l \frac{r}{1+r}-l}=\frac{n_{01}(1+r)-l r}{n_{11}(1+r)+l r-l(1+r)}=\frac{r n_{11}(1+r)-l r}{n_{11}(1+r)-l}=r .
$$

Sei nun $n_{i}, i=0,1$, der Stichprobenumfang von Gruppe i, so dass das Gesamtstichprobenverhältnis von Gruppe 0 zu Gruppe 1 durch $r:=\frac{n_{0}}{n_{1}}$ gegeben ist. Mit den gerade gemachten Feststellungen und unter der Annahme, dass Zensierungen der
gleichen Verteilung in beiden Gruppen folgen, gilt:

$$
\begin{aligned}
& r_{1}=\frac{n_{01}}{n_{11}} \approx \frac{n_{0}}{n_{1}}=r \\
& r_{2}=\frac{n_{02}}{n_{12}} \stackrel{\mathrm{H}_{\overline{\overline{0}}}^{\approx}}{\approx} \frac{n_{01}-\frac{r_{1}}{1+r_{1}}}{n_{11}+\frac{r_{1}}{1+r_{1}}-1} \approx \frac{n_{01}-\frac{r}{1+r}}{n_{11}+\frac{r}{1+r}-1}=r \\
& r_{3}=\frac{n_{03}}{n_{13}} \stackrel{\mathrm{H}_{\overline{\overline{0}}}}{\approx} \frac{n_{01}-\frac{r_{1}}{1+r_{1}}-\frac{r_{2}}{1+r_{2}}}{n_{11}+\frac{r_{1}}{1+r_{1}}+\frac{r_{2}}{1+r_{2}}-2} \stackrel{\mathrm{H}_{\overline{0}}}{\approx} \frac{n_{01}-2 \frac{r}{1+r}}{n_{11}+2 \frac{r}{1+r}-2}=r \\
& \vdots \\
& r_{d}=\frac{n_{0 d}}{n_{1 d}} \stackrel{\mathrm{H}_{\overline{\overline{0}}}}{\approx} \frac{n_{01}-\sum_{l=1}^{d-1} \frac{r_{l}}{1+r_{l}}}{n_{11}+\sum_{l=1}^{d-1} \frac{r_{l}}{1+r_{l}}-(d-1)} \stackrel{\mathrm{H}_{\overline{\overline{0}}}}{\approx} \frac{n_{01}-(d-1) \frac{r}{1+r}}{n_{11}+(d-1) \frac{r}{1+r}-(d-1)}=r .
\end{aligned}
$$

Das heißt, dass unter $\mathrm{H}_{0}^{=}$und bei gleichen Zensierungsverteilungen das Verhältnis der Anzahl der Patienten unter Risiko in Gruppe 0 und Gruppe $1\left(r_{l}\right)$ zu jeder Ereigniszeit $y_{(l)}, l=1, \ldots, d$, annähernd dem Ausgangsstichprobenverhältnis r entspricht. Natürlich sind die Approximationen umso besser, je größer die $n_{i l}, i=0,1, l=$ $1, \ldots, d$, sind.

Die eingangs beschriebene Umsortierung der Ereigniszeiten zieht nur eine Umsortierung der Statistiken $X_{0 l}$ nach sich. Insbesondere hat sie keine Auswirkungen auf die zugehörigen Risikomengen und damit das Verhältnis der Größen der Risikomengen r_{l}. Daher gilt auch für Logrank-Statistiken, die auf Basis der nach kalendarischem Eintritt ihrer zugehörigen Ereignisse sortierten Ereigniszeiten berechnet werden (vgl. Abschnitt 2.4), dass sich unter $\mathrm{H}_{0}^{=}$und gruppenübergreifend identischen Zensierungsverteilungen an jedem zu betrachtenden Zeitpunkt das Verhältnis der Größen der Risikomengen durch das Gesamtstichprobenverhältnis annähern lässt.

B Weitere Tabellen

Dieses Kapitel umfasst weitere Tabellen, die im Rahmen der Auswertung der in Abschnitt 4.2 behandelten Simulationsstudie erzeugt wurden. Die Tabellen B.1B. 6 auf den Seiten 120-125 beinhalten die bezüglich der einzelnen Punktschätzer beobachteten Verzerrungen für alle logarithmierten Hazard-Ratios und 50 Szenarien des ersten Durchlaufs (bei gleichen Zensierungsverteilungen). Im Anschluss sind mit den Tabellen B.7-B. 12 auf den Seiten 126-131 die gleichen Ergebnisse für die 24 unter ungleichen Zensierungsverteilungen variierten Szenarien gegeben. Entsprechende Tabellen mit den beobachteten Varianzen der einzelnen Schätzer für alle logarithmierten Hazard-Ratios und die insgesamt 74 Szenarien werden analog in den Tabellen B.13-B. 24 auf den Seiten 132-143 bereitgestellt.

Bei Vorlage bestimmter „extremer" Konstellationen in den Daten kann es möglich sein, dass extreme Schätzwerte resultieren oder die Berechnung einer Schätzung gar nicht möglich ist. In den parallelen Boxplots (Abbildungen C.1-C.74) sind nicht alle extremen Werte abgebildet. Die Anzahl dieser Ausreißer für die einzelnen Schätzer und die Abbildungen C.1-C. 50 bei der Schätzung des logarithmierten Hazard-Ratios bzw. des Hazard-Ratios selbst sind in den Tabellen B. 25 und B. 26 auf den Seiten 144-146 aufgelistet. Entsprechende Übersichten für die Abbildungen C.51-C. 74 liefern die Tabellen B. 27 und B. 28 auf den Seiten 147 und 148. Die Tabellen B. 29 und B. 30 auf den Seiten 149 und 150 geben schließlich bezüglich der einzelnen Schätzer für alle (logarithmierten) Hazard-Ratios in den Szenarien 1-50 (gleiche Zensierungsverteilungen) bzw. in den Szenarien 1B-6B, 13B-18B, 25B-30B und 37B-42B (ungleiche Zensierungsverteilugen) die Anzahl der Durchläufe wieder, in denen kein Schätzergebnis bestimmt werden konnte.

Das Kapitel schließt mit Tabelle B. 31 auf Seite 151, die für alle logarithmierten Hazard-Ratios in allen balancierten Szenarien ohne Bindungen und Störgröße angibt, ob der Cox- oder der WBC-I-Schätzer über die kleinere Verzerrung verfügt.

Tabelle B.1: Verzerrung des Cox-Schätzers für die einzelnen logarithmierten
Hazard-Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1	-. 0417	-. 0345	-. 0151	-. 0077	-. 0003	. 0068	. 0165	. 0301	. 0521
			Weib	2	-. 0441	-. 0295	-. 0142	-. 0081	-. 0050	. 0039	. 0156	. 0238	. 0376
			Gomp	3	-. 0712	-. 0406	-. 0203	-. 0145	-. 0084	. 0149	. 0220	. 0367	. 0662
	\checkmark	\checkmark	Exp	4	-. 0432	-. 0373	-. 0156	-. 0016	-. 0034	. 0061	. 0292	. 0291	. 0584
			Weib	5	-. 0380	-. 0246	-. 0146	-. 0020	. 0009	. 0162	. 0074	. 0278	. 0321
			Gomp	6	-. 0562	-. 0232	-. 0170	-. 0073	-. 0084	. 0050	. 0190	. 0336	. 0566
	x	x	Exp	7	-. 0394	-. 0321	-. 0160	-. 0104	. 0029	. 0074	. 0147	. 0260	. 0478
			Weib	8	-. 0413	-. 0246	-. 0154	-. 0116	-. 0017	. 0088	. 0192	. 0299	. 0430
			Gomp	9	-. 0404	-. 0297	-. 0137	-. 0125	. 0066	. 0080	. 0178	. 0265	. 0476
	x	\checkmark	Exp	10	-. 0386	-. 0233	-. 0136	-. 0068	-. 00008	. 0062	. 0169	. 0259	. 0441
			Weib	11	-. 0448	-. 0255	-. 0235	-. 0053	-. 0026	. 0025	. 0195	. 0251	. 0377
			Gomp	12	-. 0330	-. 0133	-. 0078	-. 0031	-. 0004	. 0121	. 0140	. 0230	. 0284
100/100	\checkmark	x	Exp	13	-. 0093	-. 0035	. 0015	-. 0048	-. 0022	. 0006	. 0024	. 0075	. 0089
			Weib	14	-. 0079	-. 0033	-. 0015	-. 0020	. 0020	-. 0029	-. 0001	. 0025	. 0071
			Gomp	15	-. 0132	-. 0068	-. 0090	-. 0002	. 0025	. 0011	. 0052	. 0088	. 0103
	\checkmark	\checkmark	Exp	16	-. 0088	-. 0036	-. 0039	-. 0032	-. 0017	-. 0019	. 0027	. 0070	. 0065
			Weib	17	-. 0084	-. 0022	-. 0017	-. 0015	-. 0020	. 0014	. 0006	. 0010	. 0032
			Gomp	18	-. 0079	-. 0046	-. 0036	. 0005	-. 0017	-. 0010	. 0018	. 0026	. 0027
	x	x	Exp	19	-. 0081	-. 0062	-. 0025	-. 0028	. 0004	-. 0003	. 0033	. 0059	. 0070
			Weib	20	-. 0090	-. 0055	-. 0017	-. 0051	-. 0010	. 0002	. 0049	. 0053	. 0078
			Gomp	21	-. 0095	-. 0042	-. 0028	. 0017	. 0010	. 0028	. 0049	. 0050	. 0071
	x	\checkmark	Exp	22	-. 0094	-. 0084	-. 0008	. 0004	-. 0016	. 0014	. 0030	. 0053	. 0100
			Weib	23	-. 0071	-. 0042	-. 0028	-. 0016	. 0007	-. 0001	. 0042	. 0035	. 0059
			Gomp	24	-. 0037	-. 0001	-. 0012	-. 0001	-. 0039	. 0027	-. 0004	. 0017	. 0054
500/500	\checkmark	x	Exp	25	-. 0022	-. 0012	-. 0010	-. 0003	. 0002	. 0012	-. 0004	. 0007	. 0010
			Weib	26	-. 0014	-. 0011	-. 0009	. 0002	. 0010	. 0007	. 0009	. 0001	. 0003
			Gomp	27	-. 0023	-. 0014	-. 0021	-. 0011	-. 0004	. 0002	. 0007	. 0006	. 0035
	\checkmark	\checkmark	Exp	28	-. 0032	-. 0023	-. 0017	-. 0001	-. 00007	-. 0010	. 0011	. 0000	-. 0004
			Weib	29	-. 0016	. 0007	. 0000	-. 0016	-. 0005	. 0002	-. 0013	-. 0013	-. 0007
			Gomp	30	. 0014	. 0008	. 0005	. 0017	. 0002	. 0007	-. 0019	-. 0009	-. 0002
	x	x	Exp	31	-. 0017	-. 0010	-. 0010	. 0006	. 0003	. 0019	. 0009	. 0010	. 0015
			Weib	32	-. 0024	-. 0012	-. 0004	. 0000	-. 0002	. 0008	. 0012	. 0009	. 0020
				33	-. 0019	-. 0022	-. 0019	-. 0005	. 0003	. 0009	. 0008	. 0006	. 0011
	x	\checkmark	Exp	34	-. 0017	-. 0011	-. 0004	. 0011	-. 0004	. 0010	. 0008	. 0008	. 0011
			Weib	35	-. 0013	-. 0011	-. 0000	. 0002	-. 0007	-. 0003	. 0006	-. 0001	-. 0003
			Gomp	36	. 0017	. 0013	. 0022	-. 0006	-. 0000	-. 0007	-. 0015	-. 0023	-. 0030
50/100	\checkmark	x	Exp	37	-. 0138	-. 0080	-. 0106	-. 0014	-. 0025	. 0061	. 0009	. 0094	. 0124
			Weib	38	-. 0139	-. 0081	-. 0079	-. 0078	-. 0049	. 0024	. 0070	. 0080	. 0089
			Gomp	39	-. 0175	-. 0064	-. 0030	. 0048	. 0034	. 0063	. 0095	. 0144	. 0136
	\checkmark	\checkmark	Exp	40	-. 0097	-. 0049	-. 0019	. 0007	. 0002	. 0056	. 0068	. 0075	. 0115
			Weib	41	-. 0117	-. 0078	-. 0035	-. 0029	-. 0018	-. 0057	. 0050	. 0018	. 0018
			Gomp	42	-. 0125	-. 0033	. 0011	. 0031	. 0077	. 0062	. 0070	. 0033	. 0105
	x	x	Exp	43	-. 0111	-. 0020	. 0003	. 0046	. 0082	. 0060	. 0086	. 0139	. 0134
			Weib	44	-. 0140	-. 0009	-. 0002	-. 0013	. 0031	. 0089	. 0087	. 0119	. 0142
			Gomp	45	-. 0120	-. 0033	-. 0017	. 0056	. 0064	. 0072	. 0113	. 0073	. 0133
	x	\checkmark	Exp	46	-. 0114	-. 0001	. 0007	. 0025	. 0055	. 0040	. 0062	. 0099	. 0126
			Weib	47	-. 0084	-. 0028	. 0006	. 0068	. 0027	. 0059	. 0095	. 0133	. 0103
			Gomp	48	. 0001	. 0017	. 0021	. 0024	. 0067	. 0058	. 0092	. 0057	. 0112
100/100	x	x	Weib	49	-. 0099	-. 0095	-. 0065	-. 0009	-. 0006	. 0004	. 0045	. 0044	. 0126
			Weib	50	-. 0128	-. 0057	-. 0040	-. 0002	. 0015	. 0003	. 0026	. 0083	. 0106

Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen:
$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp
$\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden

Tabelle B.2: Verzerrung des Breslow-Schätzers für die einzelnen logarithmierten
Hazard-Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1	. 1223	. 0503	. 0272	. 0099	-. 0003	-. 0110	-. 0251	-. 0524	-. 1160
			Weib	2	. 0570	. 0201	. 0109	. 0024	-. 0045	-. 0061	-. 0094	-. 0248	-. 0636
			Gomp	3	. 2056	. 0927	. 0453	. 0142	-. 0073	-. 0134	-. 0433	-. 0934	-. 1931
	\checkmark	\checkmark	Exp	4	. 1104	. 0391	. 0218	. 0136	-. 0032	-. 0094	-. 0135	-. 0525	-. 1153
			Weib	5	. 0660	. 0304	. 0137	. 0107	. 0005	. 0014	-. 0279	-. 0486	-. 1321
			Gomp	6	. 2091	. 1040	. 0472	. 0191	-. 0072	-. 0201	-. 0440	-. 0935	-. 2012
	x	x	Exp	7	. 2101	. 0806	. 0351	. 0101	. 0028	-. 0126	-. 0366	-. 0849	-. 2044
			Weib	8	. 2094	. 0867	. 0352	. 0088	-. 0012	-. 0113	-. 0318	-. 0844	-. 2085
			Gomp	9	. 2095	. 0832	. 0369	. 0082	. 0060	-. 0123	-. 0331	-. 0849	-. 2044
	x	\checkmark	Exp	10	. 2059	. 0829	. 0346	. 0118	-. 0010	-. 0130	-. 0341	-. 0885	-. 2203
			Weib	11	. 2040	. 0820	. 0263	. 0134	-. 0022	-. 0174	-. 0359	-. 1005	-. 2571
			Gomp	12	. 2355	. 1114	. 0518	. 0212	-. 0004	-. 0129	-. 0480	-. 1054	-. 2412
100/100	\checkmark	x	Exp	13	. 0946	. 0346	. 0161	. 0003	-. 0021	-. 0044	-. 0122	-. 0314	-. 0949
			Weib	14	. 0499	. 0174	. 0064	. 0007	. 0020	-. 0055	-. 0079	-. 0177	-. 0507
			Gomp	15	. 1697	. 0618	. 0168	. 0078	. 0023	-. 0069	-. 0198	-. 0581	-. 1637
	\checkmark	\checkmark	Exp	16	. 1012	. 0399	. 0144	. 0037	-. 0016	-. 0091	-. 0181	-. 0442	-. 1231
			Weib	17	. 0629	. 0287	. 0137	. 0053	-. 0018	-. 0069	-. 0223	-. 0532	-. 1327
			Gomp	18	. 2034	. 0870	. 0367	. 0157	-. 0016	-. 0162	-. 0382	-. 0868	-. 1995
	x	x	Exp	19	. 1867	. 0642	. 0202	. 0035	. 0004	-. 0064	-. 0197	-. 0641	-. 1868
			Weib	20	. 1856	. 0645	. 0209	. 0014	-. 0010	-. 0059	-. 0181	-. 0646	-. 1866
			Gomp	21	. 1855	. 0656	. 0199	. 0079	. 0010	-. 0034	-. 0181	-. 0650	-. 1876
	x	\checkmark	Exp	22	. 1925	. 0680	. 0256	. 0085	-. 0015	-. 0073	-. 0262	-. 0780	-. 2116
			Weib	23	. 1949	. 0715	. 0242	. 0068	. 0007	-. 0096	-. 0284	-. 0896	-. 2473
			Gomp	24	. 2287	. 1003	. 0427	. 0161	-. 0037	-. 0139	-. 0444	-. 1006	-. 2300
500/500	\checkmark	x	Exp	25	. 0892	. 0272	. 0068	. 0014	. 0002	-. 0005	-. 0082	-. 0278	-. 0897
			Weib	26	. 0474	. 0130	. 0029	. 0010	. 0010	-. 0001	-. 0029	-. 0139	-. 0484
			Gomp	27	. 1630	. 0535	. 0131	. 0019	-. 0004	-. 0027	-. 0141	-. 0522	-. 1543
	\checkmark	\checkmark	Exp	28	. 0981	. 0341	. 0113	. 0042	-. 00007	-. 0058	-. 0146	-. 0439	-. 1212
			Weib	29	. 0617	. 0264	. 0121	. 0037	-. 0005	-. 0066	-. 0209	-. 0506	-. 1301
			Gomp	30	. 2018	. 0847	. 0354	. 0141	. 0003	-. 0120	-. 0364	-. 0832	-. 1948
	x	x	Exp	31	. 1819	. 0603	. 0152	. 0032	. 0003	-. 0008	-. 0152	-. 0602	-. 1818
			Weib	32	. 1813	. 0601	. 0158	. 0027	-. 0002	-. 0018	-. 0150	-. 0603	-. 1816
			Gomp	33	. 1818	. 0593	. 0144	. 0021	. 0003	-. 0018	-. 0154	-. 0606	-. 1821
	x	\checkmark	Exp	34	. 1912	. 0676	. 0209	. 0064	-. 0004	-. 0049	-. 0233	-. 0756	-. 2112
			Weib	35	. 1923	. 0680	. 0215	. 0056	-. 0007	-. 0068	-. 0264	-. 0864	-. 2452
			Gomp	36	. 2266	. 0971	. 0421	. 0138	-. 0001	-. 0151	-. 0418	-. 0990	-. 2304
50/100	\checkmark	x	Exp	37	. 0896	. 0351	. 0082	. 0054	-. 0020	. 0003	-. 0144	-. 0286	-. 0872
			Weib	38	. 0341	. 0128	. 0012	-. 0043	-. 0049	-. 0010	-. 0023	-. 0151	-. 0564
			Gomp	39	. 1954	. 0767	. 0297	. 0159	. 0041	-. 0024	-. 0144	-. 0448	-. 1323
	\checkmark	\checkmark	Exp	40	. 0932	. 0391	. 0177	. 0084	. 0001	-. 0027	-. 0152	-. 0437	-. 1154
			Weib	41	. 0481	. 0223	. 0126	. 0043	-. 0019	-. 0144	-. 0197	-. 0548	-. 1403
			Gomp	42	. 2192	. 0954	. 0445	. 0193	. 0068	-. 0104	-. 0328	-. 0787	-. 1680
	x	x	Exp	43	. 2166	. 0803	. 0288	. 0129	. 0083	-. 0007	-. 0126	-. 0454	-. 1418
			Weib	44	. 2151	. 0815	. 0283	. 0074	. 0034	. 0021	-. 0126	-. 0467	-. 1410
			Gomp	45	. 2161	. 0794	. 0268	. 0137	. 0066	. 0005	-. 0103	-. 0506	-. 1424
	x	\checkmark	Exp	46	. 2181	. 0835	. 0301	. 0117	. 0053	-. 0053	-. 0217	-. 0629	-. 1710
			Weib	47	. 2198	. 0813	. 0307	. 0160	. 0027	-. 0045	-. 0226	-. 0716	-. 2091
			Gomp	48	. 2587	. 1116	. 0488	. 0196	. 0058	-. 0114	-. 0337	-. 0848	-. 1867
100/100	x	x	Weib	49	. 2379	. 1071	. 0495	. 0204	-. 0007	-. 0210	-. 0507	-. 1114	-. 2369
			Weib	50	. 3411	. 1896	. 1021	. 0438	. 0001	-. 0451	-. 1016	-. 1879	-. 3421

[^0]$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp
$\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden

Tabelle B.3: Verzerrung des Wassmer-Schätzers für die einzelnen logarithmierten Hazard-Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1	. 0642	. 0180	. 0104	. 0029	-. 0004	-. 0039	-. 0092	-. 0209	-. 0566
			Weib	2	. 0321	. 0049	. 0022	-. 0013	-. 0047	-. 0024	-. 0011	-. 0102	-. 0383
			Gomp	3	. 1031	. 0402	. 0191	. 0026	-. 0078	-. 0020	-. 0171	-. 0427	-. 0958
	\checkmark	\checkmark	Exp	4	. 0523	. 0065	. 0047	. 0061	-. 0032	-. 0015	. 0073	-. 0136	-. 0399
			Weib	5	. 0321	. 0062	-. 0006	. 0034	. 0006	. 0105	-. 0062	-. 0016	-. 0356
			Gomp	6	. 0932	. 0404	. 0123	. 0039	-. 0078	-. 0055	-. 0094	-. 0296	-. 0890
	x	x	Exp	7	. 1005	. 0272	. 0102	. 0001	. 0029	-. 0027	-. 0116	-. 0323	-. 0937
			Weib	8	. 0996	. 0341	. 0105	-. 0013	-. 0014	-. 0014	-. 0068	-. 0307	-. 0985
			Gomp	9	. 0998	. 0299	. 0122	-. 0021	. 0063	-. 0023	-. 0082	-. 0321	-. 0937
	x	\checkmark	Exp	10	. 0903	. 0268	. 0074	. 0008	-. 0009	-. 0015	-. 0042	-. 0248	-. 0870
			Weib	11	. 0839	. 0236	-. 0026	. 0019	-. 0025	-. 0048	-. 0011	-. 0236	-. 0852
			Gomp	12	. 1011	. 0376	. 0122	. 0042	-. 0005	. 0050	-. 0072	-. 0292	-. 1050
100/100	\checkmark	x	Exp	13	. 0402	. 0136	. 0083	-. 0023	-. 0022	-. 0019	-. 0044	-. 0100	-. 0405
			Weib	14	. 0243	. 0075	. 0026	-. 0006	. 0020	-. 0043	-. 0041	-. 0080	-. 0252
			Gomp	15	. 0780	. 0252	. 0031	. 0037	. 0024	-. 0028	-. 0066	-. 0224	-. 0760
	\checkmark	\checkmark	Exp	16	. 0392	. 0125	. 0020	-. 0012	-. 0017	-. 0038	-. 0032	-. 0093	-. 0431
			Weib	17	. 0227	. 0076	. 0019	-. 0003	-. 0019	. 0002	-. 0029	-. 0087	-. 0277
			Gomp	18	. 0885	. 0277	. 0067	. 0034	-. 0018	-. 0039	-. 0084	-. 0280	-. 0872
	x	x	Exp	19	. 0879	. 0252	. 0073	-. 0000	. 0004	-. 0030	-. 0066	-. 0252	-. 0881
			Weib	20	. 0867	. 0257	. 0080	-. 0022	-. 0010	-. 0025	-. 0050	-. 0258	-. 0878
			Gomp	21	. 0864	. 0268	. 0070	. 0044	. 0010	. 0001	-. 0050	-. 0262	-. 0889
	x	\checkmark	Exp	22	. 0854	. 0221	. 0081	. 0026	-. 0016	-. 0009	-. 0059	-. 0253	-. 0874
			Weib	23	. 0850	. 0249	. 0060	. 0006	. 0007	-. 0023	-. 0045	-. 0252	-. 0850
			Gomp	24	. 1027	. 0342	. 0088	. 0020	-. 0040	. 0005	-. 0103	-. 0331	-. 1011
500/500	\checkmark	x	Exp	25	. 0359	. 0091	. 0019	. 0005	. 0002	. 0005	-. 0032	-. 0097	-. 0368
			Weib	26	. 0225	. 0050	. 0007	. 0006	. 0010	. 0003	-. 0007	-. 0060	-. 0235
			Gomp	27	. 0736	. 0210	. 0039	. 0002	-. 0004	-. 0010	-. 0051	-. 0207	-. 0684
	\checkmark	\checkmark	Exp	28	. 0356	. 0083	. 0010	. 0006	-. 0007	-. 0017	-. 0017	-. 0108	-. 0410
			Weib	29	. 0217	. 0066	. 0016	-. 0012	-. 0005	-. 0002	-. 0028	-. 0072	-. 0244
			Gomp	30	. 0880	. 0274	. 0073	. 0028	. 0003	-. 0005	-. 0085	-. 0263	-. 0824
	x	x	Exp	31	. 0853	. 0245	. 0053	. 0016	. 0003	. 0008	-. 0053	-. 0245	-. 0852
			Weib	32	. 0846	. 0243	. 0059	. 0011	-. 0002	-. 0002	-. 0050	-. 0245	-. 0850
			Gomp	33	. 0851	. 0234	. 0044	. 0006	. 0003	-. 0002	-. 0055	-. 0248	-. 0856
	x	\checkmark	Exp	34	. 0861	. 0247	. 0058	. 0021	-. 0004	. 0000	-. 0056	-. 0254	-. 0893
			Weib	35	. 0842	. 0238	. 0060	. 0011	-. 0007	-. 0013	-. 0053	-. 0247	-. 0849
			Gomp	36	. 1025	. 0327	. 0099	. 0004	-. 0001	-. 0018	-. 0091	-. 0336	-. 1039
50/100	\checkmark	x	Exp	37	. 1223	. 0490	. 0134	. 0078	. 0011	. 0088	. 0075	. 0267	. 0450
			Weib	38	. 1294	. 0516	. 0172	. 0019	-. 0004	. 0079	. 0212	. 0425	. 0804
			Gomp	39	. 1230	. 0474	. 0188	. 0125	. 0051	. 0042	. 0042	. 0026	-. 0180
	\checkmark	\checkmark	Exp	40	. 1221	. 0492	. 0196	. 0091	. 0037	. 0088	. 0143	. 0245	. 0389
			Weib	41	. 1270	. 0499	. 0197	. 0061	. 0028	-. 0003	. 0187	. 0329	. 0590
			Gomp	42	. 1238	. 0449	. 0182	. 0086	. 0083	. 0042	. 0019	-. 0103	-. 0297
	x	x	Exp	43	. 1053	. 0357	. 0130	. 0083	. 0083	. 0031	-. 0002	-. 0105	-. 0541
			Weib	44	. 1032	. 0369	. 0124	. 0026	. 0032	. 0060	-. 0001	-. 0121	-. 0532
			Gomp	45	. 1045	. 0347	. 0109	. 0092	. 0065	. 0043	. 0023	-. 0164	-. 0546
	x	\checkmark	Exp	46	. 1012	. 0348	. 0113	. 0054	. 0055	. 0017	-. 0019	-. 0147	-. 0605
			Weib	47	. 1011	. 0314	. 0113	. 0097	. 0030	. 0036	. 0014	-. 0112	-. 0643
			Gomp	48	. 1179	. 0379	. 0118	. 0044	. 0059	. 0026	-. 0012	-. 0242	-. 0717
100/100	x	x	Weib	49	. 1556	. 0756	. 0388	. 0173	-. 0007	-. 0180	-. 0401	-. 0804	-. 1543
			Weib	50	. 2840	. 1679	. 0942	. 0413	. 0000	-. 0427	-. 0937	-. 1661	-. 2851

[^1]$\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden

Tabelle B.4: Verzerrung des WBC-I-Schätzers für die einzelnen logarithmierten
Hazard-Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$										
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$		
20/20	\checkmark	x	Exp	1	-. 0151	-. 0245	-. 0112	-. 0063	-. 0004	. 0054	. 0125	. 0207	. 0243		
			Weib	2	-. 0260	-. 0236	-. 0120	-. 0073	-. 0050	. 0032	. 0134	. 0180	. 0192		
			Gomp	3	-. 0230	-. 0242	-. 0136	-. 0118	-. 0084	. 0123	. 0155	. 0198	. 0231		
	\checkmark	\checkmark	Exp	4	-. 0107	-. 0223	-. 0078	. 0017	-. 0033	. 0022	. 0184	. 0071	. 0075		
			Weib	5	-. 0107	-. 0093	-. 0052	. 0025	. 0009	. 0098	-. 0087	-. 0085	-. 0480		
			Gomp	6	. 0182	. 0148	. 0037	. 0015	-. 0079	-. 0034	-. 0016	-. 0048	-. 0182		
	x	x	Exp	7	-. 0134	-. 0247	-. 0135	-. 0095	. 0029	. 0066	. 0122	. 0188	. 0213		
			Weib	8	-. 0149	-. 0172	-. 0130	-. 0108	-. 0016	. 0079	. 0168	. 0221	. 0163		
			Gomp	9	-. 0144	-. 0222	-. 0112	-. 0117	. 0066	. 0072	. 0154	. 0193	. 0215		
	x	\checkmark	Exp	10	-. 0059	-. 0099	-. 0064	-. 0037	-. 0008	. 0023	. 0069	. 0048	-. 0071		
			Weib	11	-. 0130	-. 0127	-. 0162	-. 0020	-. 0026	-. 0020	. 0071	-. 0038	-. 0339		
			Gomp	12	. 0382	. 0281	. 0164	. 0082	-. 0005	. 0008	-. 0113	-. 0202	-. 0453		
100/100	\checkmark	x	Exp	13	-. 0037	-. 0025	. 0018	-. 0048	-. 0022	. 0005	. 0021	. 0064	. 0033		
			Weib	14	-. 0044	-. 0026	-. 00013	-. 0020	. 0020	-. 0029	-. 0003	. 0019	. 0035		
			Gomp	15	-. 0021	-. 0047	-. 0085	-. 0001	. 0025	. 0010	. 0047	. 0067	-. 0002		
	\checkmark	\checkmark	Exp	16	. 0065	. 0054	. 0018	-. 0004	-. 0017	-. 0052	-. 0057	-. 0099	-. 0285		
			Weib	17	. 0068	. 0091	. 0066	. 0030	-. 0018	-. 0046	-. 0154	-. 0333	-. 0713		
			Gomp	18	. 0500	. 0317	. 0181	. 0104	-. 0017	-. 0109	-. 0201	-. 0334	-. 0555		
	x	x	Exp	19	. 0006	-. 0049	-. 0023	-. 0028	. 0004	-. 0003	. 0031	. 0046	-. 0016		
			Weib	20	-. 0003	-. 0041	-. 0015	-. 0050	-. 0010	. 0002	. 0047	. 0040	-. 0009		
			Gomp	21	-. 0008	-. 0029	-. 0025	. 0017	. 0010	. 0028	. 0047	. 0037	-. 0017		
	x	\checkmark	Exp	22	. 0091	. 0010	. 0050	. 0032	-. 0016	-. 0020	-. 0056	-. 0121	-. 0285		
			Weib	23	. 0093	. 0044	. 0030	. 0014	. 0007	-. 0042	-. 0071	-. 0216	-. 0547		
			Gomp	24	. 0620	. 0431	. 0258	. 0124	-. 0037	-. 0101	-. 0277	-. 0430	-. 0633		
500/500	\checkmark	x	Exp	25	. 0008	-. 0009	-. 00009	-. 0003	. 0002	. 0012	-. 0004	. 0004	-. 0020		
			Weib	26	. 0006	-. 0009	-. 0009	. 0002	. 0010	. 0007	. 0009	-. 0001	-. 0017		
			Gomp	27	. 0040	-. 0006	-. 0020	-. 0011	-. 0004	. 0002	. 0006	-. 0001	-. 0027		
	\checkmark	\checkmark	Exp	28	. 0102	. 0063	. 0040	. 0028	-. 0007	-. 0044	-. 0074	-. 0167	-. 0341		
			Weib	29	. 0123	. 0119	. 0084	. 0030	-. 0005	-. 0060	-. 0175	-. 0359	-. 0751		
			Gomp	30	. 0585	. 0385	. 0239	. 0125	. 0003	-. 0103	-. 0253	-. 0387	-. 0582		
	x	x	Exp	31	. 0043	-. 0004	-. 0000	. 0006	. 0003	. 0019	. 0009	. 0004	-. 0044		
			Weib	32	. 0035	-. 0007	-. 0003	. 0000	-. 0002	. 0008	. 0012	. 0003	-. 0040		
			Gomp	33	. 0041	-. 0016	-. 0019	-. 0005	. 0003	. 0009	. 0007	. 0000	-. 0048		
	x	\checkmark	Exp	34	. 0144	. 0077	. 0053	. 0040	-. 0004	-. 0025	-. 0078	-. 0163	-. 0354		
			Weib	35	. 0128	. 0070	. 0057	. 0032	-. 0007	-. 0044	-. 0106	-. 0249	-. 0591		
			Gomp	36	. 0668	. 0456	. 0302	. 0127	-. 0001	-. 0140	-. 0299	-. 0479	-. 0712		
50/100	\checkmark	x	Exp	37	. 0276	. 0047	-. 0066	-. 0002	-. 0022	. 0059	. 0001	. 0068	. 0064		
			Weib	38	. 0325	. 0058	-. 0035	-. 0066	-. 0047	. 0019	. 0052	. 0025	-. 0047		
			Gomp	39	. 0227	. 0047	. 0005	. 0058	. 0038	. 0063	. 0096	. 0148	. 0150		
	\checkmark	\checkmark	Exp	40	. 0376	. 0134	. 0061	. 0040	. 0000	. 0014	-. 0039	-. 0148	-. 0333		
			Weib	41	. 0415	. 0142	. 0072	. 0019	-. 0023	-. 0131	-. 0159	-. 0453	-. 1047		
			Gomp	42	. 0650	. 0360	. 0226	. 0123	. 0065	-. 0049	-. 0163	-. 0341	-. 0439		
	x	x	Exp	43	. 0159	. 0039	. 0017	. 0049	. 0083	. 0061	. 0091	. 0157	. 0183		
			Weib	44	. 0133	. 0050	. 0012	-. 0010	. 0031	. 0091	. 0092	. 0137	. 0191		
			Gomp	45	. 0149	. 0026	-. 0003	. 0059	. 0065	. 0073	. 0118	. 0091	. 0182		
	x	\checkmark	Exp	46	. 0228	. 0123	. 0069	. 0052	. 0053	. 0004	-. 0025	-. 0068	-. 0181		
			Weib	47	. 0229	. 0086	. 0066	. 0096	. 0026	. 0014	-. 0029	-. 0140	-. 0523		
			Gomp	48	. 0779	. 0463	. 0282	. 0141	. 0057	-. 0074	-. 0186	-. 0377	-. 0482		
100/100	x	x	Weib	49	. 0894	. 0531	. 0311	. 0150	-. 0007	-. 0157	-. 0324	-. 0582	-. 0874		
			Weib	50	. 2416	. 1525	. 0885	. 0393	. 0000	-. 0408	-. 0880	-. 1506	-. 2428		
Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen: $\mathrm{S} \widehat{=}$ Stichprobenumfang Gruppe 0/Gruppe $1, \mathrm{Z} \widehat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \widehat{=}$ Verteilungstyp $\checkmark \hat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden															

Tabelle B.5: Verzerrung des WBC-II-Schätzers für die einzelnen logarithmierten Hazard-Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1	. 0588	. 0132	. 0068	. 0011	-. 0004	-. 0021	-. 0056	-. 0161	-. 0512
			Weib	2	. 0267	-. 0001	-. 0014	-. 0032	-. 0048	-. 0006	. 0026	-. 0052	-. 0330
			Gomp	3	. 0977	. 0355	. 0156	. 0008	-. 0079	-. 0003	-. 0136	-. 0380	-. 0904
	\checkmark	\checkmark	Exp	4	. 0496	. 0044	. 0034	. 0057	-. 0032	-. 0012	. 0072	-. 0147	-. 0431
			Weib	5	. 0309	. 0061	-. 0002	. 0040	. 0006	. 0091	-. 0101	-. 0098	-. 0508
			Gomp	6	. 0929	. 0406	. 0125	. 0041	-. 0080	-. 0058	-. 0099	-. 0302	-. 0897
	x	x	Exp	7	. 0744	. 0019	-. 0102	-. 0112	. 0032	. 0081	. 0087	-. 0071	-. 0675
			Weib	8	. 0735	. 0089	-. 0101	-. 0127	-. 0012	. 0096	. 0139	-. 0055	-. 0724
			Gomp	9	. 0737	. 0047	-. 0081	-. 0132	. 0067	. 0085	. 0124	-. 0069	-. 0675
	x	\checkmark	Exp	10	. 0771	. 0151	-. 0012	-. 0036	-. 0010	. 0022	. 0017	-. 0191	-. 0835
			Weib	11	. 0708	. 0120	-. 0113	-. 0023	-. 0025	-. 0017	. 0035	-. 0204	-. 0863
			Gomp	12	. 1003	. 0385	. 0136	. 0051	-. 0004	. 0041	-. 0091	-. 0315	-. 1066
100/100	\checkmark	x	Exp	13	. 0354	. 0089	. 0037	-. 0056	-. 0022	. 0013	. 0003	-. 0053	-. 0358
			Weib	14	. 0196	. 0027	-. 0020	-. 0039	. 0021	-. 0011	. 0005	-. 0033	-. 0204
			Gomp	15	. 0733	. 0205	-. 0015	. 0005	. 0025	. 0004	-. 0020	-. 0177	-. 0713
	\checkmark	\checkmark	Exp	16	. 0372	. 0110	. 0010	-. 0017	-. 0016	-. 0039	-. 0038	-. 0108	-. 0460
			Weib	17	. 0205	. 0060	. 0009	-. 0006	-. 0019	-. 0004	-. 0049	-. 0124	-. 0349
			Gomp	18	. 0901	. 0298	. 0090	. 0051	-. 0017	-. 0059	-. 0114	-. 0311	-. 0903
	x	x	Exp	19	. 0634	. 0007	-. 0170	-. 0195	. 0005	. 0163	. 0176	-. 0008	-. 0637
			Weib	20	. 0622	. 0012	-. 0163	-. 0217	-. 0011	. 0170	. 0194	-. 0014	-. 0634
			Gomp	21	. 0619	. 0024	-. 0173	-. 0150	. 0012	. 0198	. 0193	-. 0018	-. 0644
	x	\checkmark	Exp	22	. 0669	. 0048	-. 0082	-. 0097	-. 0018	. 0106	. 0075	-. 0126	-. 0757
			Weib	23	. 0647	. 0052	-. 0130	-. 0142	. 0008	. 0115	. 0121	-. 0095	-. 0707
			Gomp	24	. 0985	. 0315	. 0070	. 0011	-. 0040	. 0009	-. 0099	-. 0328	-. 1006
500/500	\checkmark	x	Exp	25	. 0313	. 0046	-. 0027	-. 0040	. 0002	. 0050	. 0014	-. 0051	-. 0322
			Weib	26	. 0179	. 0004	-. 0039	-. 0039	. 0010	. 0048	. 0039	-. 0014	-. 0189
			Gomp	27	. 0690	. 0164	-. 0007	-. 0043	-. 0004	. 0034	-. 0005	-. 0162	-. 0638
	\checkmark	\checkmark	Exp	28	. 0333	. 0065	-. 0004	-. 0006	-. 0007	-. 0011	-. 0015	-. 0111	-. 0422
			Weib	29	. 0186	. 0039	-. 0007	-. 0030	-. 0005	. 0008	-. 0025	-. 0080	-. 0272
			Gomp	30	. 0904	. 0303	. 0106	. 0063	. 0003	-. 0043	-. 0125	-. 0303	-. 0865
	x	x	Exp	31	. 0612	. 0004	-. 0188	-. 0224	. 0006	. 0248	. 0188	-. 0004	-. 0611
			Weib	32	. 0605	. 0002	-. 0182	-. 0229	-. 0001	. 0238	. 0190	-. 0005	-. 0609
			Gomp	33	. 0611	-. 0007	-. 0197	-. 0234	. 0000	. 0238	. 0186	-. 0008	-. 0615
	x	\checkmark	Exp	34	. 0657	. 0053	-. 0127	-. 0157	-. 0006	. 0168	. 0109	-. 0093	-. 0734
			Weib	35	. 0617	. 0016	-. 0158	-. 0203	-. 0010	. 0195	. 0152	-. 0046	-. 0651
			Gomp	36	. 0977	. 0292	. 0074	-. 0013	-. 0001	-. 0008	-. 0083	-. 0329	-. 1032
50/100	\checkmark	x	Exp	37	. 0698	-. 0036	-. 0389	-. 0430	-. 0474	-. 0372	-. 0372	-. 0177	. 0006
			Weib	38	. 0768	-. 0009	-. 0350	-. 0491	-. 0490	-. 0382	-. 0235	-. 0019	. 0359
			Gomp	39	. 0706	-. 0052	-. 0334	-. 0382	-. 0433	-. 0419	-. 0405	-. 0418	-. 0623
	\checkmark	\checkmark	Exp	40	. 0723	-. 0004	-. 0297	-. 0401	-. 0456	-. 0411	-. 0362	-. 0267	-. 0132
			Weib	41	. 0776	. 0008	-. 0290	-. 0426	-. 0465	-. 0508	-. 0332	-. 0206	. 0034
			Gomp	42	. 0764	-. 0020	-. 0287	-. 0393	-. 0415	-. 0476	-. 0511	-. 0635	-. 0828
	x	x	Exp	43	. 0780	. 0084	-. 0137	-. 0121	. 0034	. 0134	. 0159	. 0059	-. 0377
			Weib	44	. 0759	. 0096	-. 0143	-. 0181	-. 0021	. 0164	. 0159	. 0043	-. 0368
			Gomp	45	. 0772	. 0074	-. 0159	-. 0112	. 0015	. 0145	. 0184	-. 0000	-. 0382
	x	\checkmark	Exp	46	. 0831	. 0179	-. 0044	-. 0063	. 0020	. 0055	. 0043	-. 0088	-. 0551
			Weib	47	. 0805	. 0116	-. 0076	-. 0042	-. 0014	. 0091	. 0099	-. 0030	-. 0570
			Gomp	48	. 1179	. 0399	. 0149	. 0070	. 0057	-. 0007	-. 0058	-. 0288	-. 0760
100/100	x	x	Weib	49	. 1312	. 0512	. 0145	-. 0012	-. 0009	. 0004	-. 0158	-. 0560	-. 1299
			Weib	50	. 2596	. 1435	. 0705	. 0249	. 0003	-. 0260	-. 0700	-. 1417	-. 2607

Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen:
$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp
$\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden

Tabelle B.6: Verzerrung des SL-Schätzers für die einzelnen logarithmierten Hazard-
Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1	. 1587	. 0685	. 0361	. 0136	-. 0005	-. 0148	-. 0341	-. 0707	-. 1531
			Weib	2	. 0989	. 0379	. 0189	. 0056	-. 0044	-. 0091	-. 0174	-. 0426	-. 1049
			Gomp	3	. 2586	. 1204	. 0591	. 0204	-. 0070	-. 0193	-. 0571	-. 1194	-. 2407
	\checkmark	\checkmark	Exp	4	. 1470	. 0571	. 0307	. 0169	-. 0032	-. 0128	-. 0224	-. 0699	-. 1520
			Weib	5	. 1082	. 0479	. 0217	. 0137	. 0003	-. 0017	-. 0355	-. 0655	-. 1706
			Gomp	6	. 2534	. 1263	. 0589	. 0240	-. 0072	-. 0249	-. 0554	-. 1155	-. 2417
	x	x	Exp	7	. 2731	. 1081	. 0464	. 0141	. 0028	-. 0167	-. 0479	-. 1120	-. 2683
			Weib	8	. 2723	. 1138	. 0464	. 0129	-. 0011	-. 0153	-. 0432	-. 1121	-. 2717
			Gomp	9	. 2725	. 1106	. 0480	. 0124	. 0059	-. 0164	-. 0443	-. 1123	-. 2681
	x	\checkmark	Exp	10	. 2611	. 1055	. 0439	. 0150	-. 0010	-. 0161	-. 0431	-. 1107	-. 2727
			Weib	11	. 2592	. 1048	. 0356	. 0166	-. 0021	-. 0205	-. 0447	-. 1212	-. 3028
			Gomp	12	. 2869	. 1322	. 0600	. 0242	-. 0004	-. 0160	-. 0565	-. 1267	-. 2917
100/100	\checkmark	x	Exp	13	. 1192	. 0433	. 0190	. 0012	-. 0021	-. 0053	-. 0152	-. 0402	-. 1196
			Weib	14	. 0771	. 0259	. 0090	. 0014	. 0020	-. 0062	-. 0104	-. 0263	-. 0778
			Gomp	15	. 2103	. 0774	. 0224	. 0094	. 0023	-. 0085	-. 0252	-. 0728	-. 1999
	\checkmark	\checkmark	Exp	16	. 1251	. 0483	. 0172	. 0045	-. 0016	-. 0099	-. 0209	-. 0523	-. 1454
			Weib	17	. 0894	. 0369	. 0162	. 0059	-. 0018	-. 0075	-. 0246	-. 0609	-. 1560
			Gomp	18	. 2379	. 1001	. 0412	. 0169	-. 0016	-. 0175	-. 0424	-. 0988	-. 2293
	x	x	Exp	19	. 2468	. 0860	. 0264	. 0049	. 0004	-. 0077	-. 0259	-. 0860	-. 2469
			Weib	20	. 2459	. 0864	. 0271	. 0027	-. 0010	-. 0072	-. 0244	-. 0864	-. 2468
			Gomp	21	. 2458	. 0873	. 0262	. 0091	. 0010	-. 0047	-. 0245	-. 0868	-. 2475
	x	\checkmark	Exp	22	. 2497	. 0887	. 0313	. 0097	-. 0015	-. 0085	-. 0318	-. 0976	-. 2655
			Weib	23	. 2517	. 0918	. 0299	. 0080	. 0007	-. 0107	-. 0339	-. 1081	-. 2950
			Gomp	24	. 2802	. 1182	. 0478	. 0171	-. 0036	-. 0150	-. 0494	-. 1184	-. 2813
500/500	\checkmark	x	Exp	25	. 1118	. 0343	. 0086	. 0017	. 0002	-. 0008	-. 0099	-. 0349	-. 1123
			Weib	26	. 0722	. 0200	. 0045	. 0012	. 0010	-. 0003	-. 0045	-. 0209	-. 0731
				27	. 2014	. 0669	. 0166	. 0025	-. 0004	-. 0033	-. 0174	-. 0645	-. 1883
	\checkmark	\checkmark	Exp	28	. 1200	. 0409	. 0130	. 0045	-. 00007	-. 0061	-. 0162	-. 0504	-. 1413
			Weib	29	. 0857	. 0331	. 0136	. 0039	-. 0005	-. 0068	-. 0224	-. 0567	-. 1511
			Gomp	30	. 2347	. 0958	. 0383	. 0146	. 0003	-. 0125	-. 0391	-. 0934	-. 2236
	x	x	Exp	31	. 2415	. 0810	. 0204	. 0038	. 0003	-. 0015	-. 0204	-. 0809	-. 2414
			Weib	32	. 2410	. 0808	. 0209	. 0033	-. 0002	-. 0025	-. 0202	-. 0810	-. 2412
			Gomp	33	. 2414	. 0801	. 0196	. 0028	. 0003	-. 0024	-. 0206	-. 0812	-. 2416
	x	\checkmark	Exp	34	. 2487	. 0875	. 0258	. 0070	-. 0004	-. 0055	-. 0282	-. 0947	-. 2652
			Weib	35	. 2496	. 0878	. 0264	. 0062	-. 0007	-. 0074	-. 0311	-. 1046	-. 2934
			Gomp	36	. 2781	. 1144	. 0463	. 0144	-. 0001	-. 0157	-. 0460	-. 1161	-. 2813
50/100	\checkmark	x	Exp	37	. 1072	. 0372	. 0071	. 0045	-. 0034	-. 0036	-. 0240	-. 0524	-. 1436
			Weib	38	. 1012	. 0353	. 0094	-. 0018	-. 0042	-. 0012	-. 0035	-. 0205	-. 0775
				39	. 1437	. 0465	. 0155	. 0091	-. 0015	-. 0128	-. 0398	-. 1035	-. 2520
	\checkmark	\checkmark	Exp	40	. 1166	. 0446	. 0183	. 0084	-. 0009	-. 0056	-. 0230	-. 0633	-. 1615
			Weib	41	. 1171	. 0470	. 0210	. 0072	-. 0010	-. 0138	-. 0189	-. 0545	-. 1435
			Gomp	42	. 1757	. 0712	. 0334	. 0145	. 0026	-. 0188	-. 0534	-. 1271	-. 2705
	x	x	Exp	43	. 1374	. 0329	. 0064	. 0046	. 0033	-. 0119	-. 0468	-. 1314	-. 3275
			Weib	44	. 1357	. 0342	. 0058	-. 0013	-. 0016	-. 0094	-. 0467	-. 1323	-. 3270
			Gomp	45	. 1368	. 0319	. 0042	. 0054	. 0016	-. 0109	-. 0449	-. 1351	-. 3277
	x	\checkmark	Exp	46	. 1414	. 0387	. 0092	. 0039	. 0008	-. 0155	-. 0529	-. 1416	-. 3414
			Weib	47	. 1433	. 0363	. 0097	. 0085	-. 0017	-. 0147	-. 0535	-. 1478	-. 3649
			Gomp	48	. 1861	. 0697	. 0294	. 0124	. 0017	-. 0211	-. 0631	-. 1587	-. 3523
100/100	x	x	Weib	49	. 2893	. 1252	. 0547	. 0215	-. 0007	-. 0221	-. 0559	-. 1292	-. 2885
			Weib	50	. 3773	. 2018	. 1057	. 0447	. 0001	-. 0459	-. 1052	-. 2002	-. 3782

[^2]$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp
$\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden

Tabelle B.7: Verzerrung des Cox-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr .	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	-. 0444	-. 0378	-. 0180	-. 0103	-. 0003	. 0073	. 0190	. 0340	. 0583
			Weib	2B	-. 0476	-. 0312	-. 0161	-. 0078	-. 0050	. 0067	. 0162	. 0258	. 0424
			Gomp	3B	-. 0746	-. 0450	-. 0223	-. 0155	-. 0084	. 0166	. 0248	. 0413	. 0666
	\checkmark	\checkmark	Exp	4B	-. 0374	-. 0355	-. 0108	-. 0016	-. 0033	. 0052	. 0234	. 0218	. 0372
			Weib	5B	-. 0355	-. 0226	-. 0124	-. 0010	. 0008	. 0122	. 0023	. 0068	-. 0194
			Gomp	6B	-. 0531	-. 0232	-. 0161	-. 0081	-. 0085	. 0043	. 0169	. 0347	. 0535
100/100	\checkmark	x	Exp	13B	-. 0109	-. 0042	. 0011	-. 0050	-. 0022	. 0011	. 0029	. 0083	. 0097
			Weib	14B	-. 0081	-. 0043	-. 0018	-. 0021	. 0020	-. 0031	. 0009	. 0039	. 0080
			Gomp	15B	-. 0115	-. 0074	-. 0097	-. 0001	. 0025	. 0013	. 0054	. 0092	. 0117
	\checkmark	\checkmark	Exp	16B	-. 0009	. 0024	-. 0007	-. 0017	-. 0017	-. 0038	-. 0021	-. 0040	-. 0158
			Weib	17B	-. 0016	. 0036	. 0014	. 0009	-. 0020	-. 0022	-. 0096	-. 0201	-. 0555
			Gomp	18B	-. 0047	-. 0034	-. 0024	. 0011	-. 0017	-. 0020	. 0000	-. 0004	-. 0040
500/500	\checkmark	x	Exp	25B	-. 0017	-. 0014	-. 0018	-. 0003	. 0002	. 0011	-. 0001	. 0008	. 0015
			Weib	26B	-. 0016	-. 0017	-. 0009	. 0003	. 0010	. 0007	. 0009	. 0006	. 0007
			Gomp	27B	-. 0028	-. 0017	-. 0022	-. 0013	-. 0004	. 0003	. 0007	. 0004	. 0033
	\checkmark	\checkmark	Exp	28B	. 0045	. 0031	. 0023	. 0017	-. 0007	-. 0034	-. 0047	-. 0114	-. 0231
			Weib	29B	. 0052	. 0058	. 0040	. 0006	-. 0005	-. 0029	-. 0111	-. 0233	-. 0598
			Gomp	30B	. 0050	. 0035	. 0021	. 0025	. 0002	. 0000	-. 0041	-. 0048	-. 0074
50/100	\checkmark	x	Exp	37B	-. 0136	-. 0084	-. 0101	-. 0013	-. 0025	. 0066	. 0020	. 0089	. 0118
			Weib	38B	-. 0140	-. 0099	-. 0079	-. 0071	-. 0049	. 0025	. 0067	. 0069	. 0090
			Gomp	39B	-. 0190	-. 0074	-. 0029	. 0045	. 0034	. 0069	. 0098	. 0159	. 0154
	\checkmark	\checkmark	Exp	40B	-. 0024	-. 0013	. 0012	. 0018	. 0003	. 0031	. 0004	-. 0046	-. 0130
			Weib	41B	-. 0056	-. 0034	. 0001	-. 0009	-. 0018	-. 0092	-. 0058	-. 0246	-. 0594
			Gomp	42B	-. 0093	-. 0016	. 0022	. 0035	. 0077	. 0055	. 0041	. 0006	
Bedeutung $\mathrm{S} \hat{=}$ Stich $\checkmark \widehat{=}$ vorh	de	Ab	ürzunge fang Gr nicht		Gruppe	$1, \mathrm{Z} \hat{=}$	ensierun	gen, B	Bindun	$\text { gen, } \mathrm{V} \hat{=}$	Verteilu	ngstyp	

Tabelle B.8: Verzerrung des Breslow-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr .	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 2108	. 0807	. 0356	. 0105	-. 0003	-. 0138	-. 0344	-. 0821	-. 2036
			Weib	2B	. 2323	. 0854	. 0295	. 0083	-. 0045	-. 0087	-. 0296	-. 0897	-. 2365
			Gomp	3B	. 2112	. 0932	. 0448	. 0139	-. 0074	-. 0125	-. 0428	-. 0951	-. 2103
	\checkmark	\checkmark	Exp	4B	. 2113	. 0767	. 0377	. 0169	-. 0031	-. 0135	-. 0305	-. 0940	-. 2301
			Weib	5B	. 2491	. 0998	. 0372	. 0170	. 0004	-. 0079	-. 0541	-. 1339	-. 3493
			Gomp	6B	. 2230	. 1094	. 0501	. 0194	-. 0073	-. 0215	-. 0486	-. 1008	-. 2256
100/100	\checkmark	x	Exp	13B	. 1849	. 0656	. 0239	. 0014	-. 0021	-. 0052	-. 0200	-. 0628	-. 1854
			Weib	14B	. 2234	. 0795	. 0231	. 0030	. 0020	-. 0080	-. 0238	-. 0793	-. 2233
			Gomp	15B	. 1800	. 0652	. 0174	. 0081	. 0023	-. 0070	-. 0210	-. 0634	-. 1804
	\checkmark	\checkmark	Exp	16B	. 1995	. 0771	. 0258	. 0065	-. 0016	-. 0122	-. 0310	-. 0862	-. 2324
			Weib	17B	. 2428	. 0970	. 0338	. 0101	-. 0018	-. 0129	-. 0487	-. 1345	-. 3493
			Gomp	18B	. 2148	. 0917	. 0390	. 0165	-. 0016	-. 0173	-. 0412	-. 0950	-. 2217
500/500	\checkmark	x	Exp	25B	. 1820	. 0599	. 0144	. 0024	. 0002	-. 0016	-. 0163	-. 0606	-. 1819
			Weib	26B	. 2210	$.0762$. 0199	. 0031	. 0010	-. 0021	-. 0199	-. 0771	-. 2220
			Gomp	27B	. 1720	$.0573$. 0142	. 0019	-. 0004	-. 0028	-. 0156	-. 0583	-. 1724
	\checkmark	\checkmark	Exp	28B	. 1970	. 0718	. 0234	. 0069	-. 0007	-. 0090	-. 0285	-. 0865	-. 2308
			Weib	29B	. 2421	. 0950	. 0328	. 0078	-. 0005	-. 0115	-. 0469	-. 1332	-. 3477
			Gomp	30B	. 2130	. 0905	. 0379	. 0150	. 0003	-. 0128	-. 0396	-. 0917	-. 2169
50/100	\checkmark	x	Exp	37B	. 2155	. 0754	. 0194	. 0073	-. 0020	-. 0004	-. 0190	-. 0500	-. 1445
			Weib	38B	. 2587	. 0900	. 0223	-. 0003	-. 0048	-. 0029	-. 0146	-. 0593	-. 1715
			Gomp	39B	. 2093	. 0811	. 0312	. 0159	. 0041	-. 0020	-. 0151	-. 0471	-. 1405
	\checkmark	\checkmark	Exp	40B	. 2245	. 0827	. 0309	. 0112	. 0002	-. 0063	-. 0274	-. 0759	-. 1931
			Weib	41B	. 2746	. 1036	. 0360	. 0091	-. 0019	-. 0199	-. 0428	-. 1235	-. 3085
			Gomp	42B	. 2383	. 1028	. 0472	. 0200	. 0068	-. 0113	-. 0363	-. 0843	-. 1818
Bedeutu $\mathrm{S} \hat{=}$ Stic $\checkmark \widehat{=}$ vorh	d de	Ab	ürzunge fang Gr nicht	ppe 0 orhan	Gruppe	$1, \mathrm{Z} \hat{=}$	Zensieru	gen, B	Bindun	gen, V	Verteil	ngstyp	

Tabelle B.9: Verzerrung des Wassmer-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr .	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 1057	. 0288	. 0114	. 0011	-. 0004	-. 0043	-. 0106	-. 0311	-. 0961
			Weib	2B	. 1227	. 0333	. 0075	. 0003	-. 0047	-. 0010	-. 0075	-. 0384	-. 1272
			Gomp	3B	. 1024	. 0378	. 0174	. 0019	-. 0078	-. 0006	-. 0152	-. 0404	-. 1025
	\checkmark	\checkmark	Exp	4B	. 1015	. 0221	. 0123	. 0067	-. 0032	-. 0029	-. 0016	-. 0342	-. 1047
			Weib	5B	. 1262	. 0375	. 0086	. 0053	. 0005	. 0054	-. 0184	-. 0505	-. 1739
			Gomp	6B	. 0993	. 0422	. 0137	. 0036	-. 0079	-. 0064	-. 0123	-. 0322	-. 1007
100/100	\checkmark	x	Exp	13B	. 0863	. 0272	. 0111	-. 0021	-. 0022	-. 0017	-. 0071	-. 0238	-. 0871
			Weib	14B	. 1200	. 0370	. 0094	. 0000	. 0020	-. 0052	-. 0102	-. 0369	-. 1200
			Gomp	15B	. 0834	. 0263	. 0029	. 0039	. 0024	-. 0027	-. 0069	-. 0244	-. 0835
	\checkmark	\checkmark	Exp	16B	. 0943	. 0327	. 0085	. 0007	-. 0017	-. 0061	-. 0113	-. 0349	-. 1131
			Weib	17B	. 1239	. 0432	. 0120	. 0028	-. 0019	-. 0042	-. 0200	-. 0589	-. 1759
			Gomp	18B	. 0966	. 0310	. 0086	. 0041	-. 0018	-. 0050	-. 0110	-. 0343	-. 1034
500/500	\checkmark	x	Exp	25B	. 0855	. 0242	. 0045	. 0008	. 0002	. 0000	-. 0064	-. 0248	-. 0855
			Weib	26B	. 1192	. 0356	. 0081	. 0014	. 0010	-. 0004	-. 0081	-. 0366	-. 1202
			Gomp	27B	. 0776	. 0225	. 0043	. 0001	-. 0004	-. 0010	-. 0057	-. 0236	-. 0775
	\checkmark	\checkmark	Exp	28B	. 0927	. 0291	. 0085	. 0027	-. 0007	-. 0043	-. 0111	-. 0377	-. 1129
			Weib	29B	. 1246	. 0425	. 0128	. 0017	-. 0005	-. 0040	-. 0198	-. 0592	-. 1749
			Gomp	30B	. 0966	. 0322	. 0095	. 0037	. 0003	-. 0013	-. 0114	-. 0333	-. 0994
50/100	\checkmark	x	Exp	37B	. 1076	. 0339	. 0064	. 0060	. 0011	. 0069	-. 0037	-. 0125	-. 0544
			Weib	38B	. 1462	. 0443	. 0104	. 0002	-. 0004	. 0048	. 0021	-. 0188	-. 0771
			Gomp	39B	. 1025	. 0372	. 0151	. 0114	. 0051	. 0039	-. 0003	-. 0105	-. 0531
	\checkmark	\checkmark	Exp	40B	. 1134	. 0382	. 0156	. 0084	. 0037	. 0040	-. 0047	-. 0264	-. 0843
			Weib	41B	. 1478	. 0478	. 0166	. 0058	. 0028	-. 0068	-. 0106	-. 0525	-. 1549
			Gomp	42B	. 1094	. 0383	. 0159	. 0083	. 0083	. 0026	-. 0059	-. 0279	-. 0729
Bedeutung der Abkürzungen:													
$\begin{aligned} & \mathrm{S} \hat{=} \text { Stichprobenumfang Gruppe } 0 / \text { Gruppe } 1, \mathrm{Z} \widehat{=} \text { Zensierungen, } \mathrm{B} \hat{=} \text { Bindungen, } \mathrm{V} \hat{=} \text { Verteilungstyp } \\ & \checkmark \widehat{=} \text { vorhanden, } \mathrm{x} \hat{=} \text { nicht vorhanden } \end{aligned}$													

Tabelle B.10: Verzerrung des WBC-I-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr .	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	-. 0103	-. 0264	-. 0139	-. 0089	-. 0003	. 0059	. 0147	. 0230	. 0231
			Weib	2B	-. 0067	-. 0209	-. 0133	-. 0069	-. 0050	. 0060	. 0135	. 0153	. 0011
			Gomp	3B	-. 0301	-. 0292	-. 0160	-. 0128	-. 0084	. 0140	. 0185	. 0254	. 0263
	\checkmark	\checkmark	Exp	4B	. 0021	-. 0189	-. 0030	. 0017	-. 0033	. 0013	. 0125	-. 0013	-. 0197
			Weib	5B	. 0138	-. 0030	-. 0024	. 0035	. 0009	. 0058	-. 0143	-. 0323	-. 1168
			Gomp	6B	. 0177	. 0141	. 0042	. 0010	-. 0080	-. 0041	-. 0036	-. 0037	-. 0192
100/100	\checkmark	x	Exp	13B	-. 0015	-. 0027	. 0014	-. 0050	-. 0022	. 0010	. 0026	. 0067	. 0004
			Weib	14B	. 0099	-. 0016	-. 0014	-. 0021	. 0020	-. 0031	. 0006	. 0013	-. 0100
			Gomp	15B	-. 0022	-. 0056	-. 0092	. 0000	. 0025	. 0012	. 0050	. 0074	. 0024
	\checkmark	\checkmark	Exp	16B	. 0178	. 0117	. 0050	. 0012	-. 0017	-. 0071	-. 0104	-. 0210	-. 0533
			Weib	17B	. 0278	. 0170	. 0099	. 0053	-. 0018	-. 0082	-. 0256	-. 0556	-. 1395
			Gomp	18B	. 0512	. 0324	. 0193	. 0110	-. 0017	-. 0119	-. 0218	-. 0359	-. 0601
500/500	\checkmark	x	Exp	25B	. 0043	-. 0008	-. 0017	-. 0003	. 0002	. 0011	-. 0001	. 0002	-. 0045
			Weib	26B	. 0132	. 0001	-. 00008	. 0003	. 0010	. 0007	. 0008	-. 0012	-. 0141
			Gomp	27B	. 0021	-. 0011	-. 0021	-. 0013	-. 0004	. 0003	. 0006	-. 0002	-. 0016
	\checkmark	\checkmark	Exp	28B	. 0207	. 0118	. 0080	. 0046	-. 0007	-. 0067	-. 0131	-. 0279	-. 0583
			Weib	29B	. 0319	. 0187	. 0125	. 0051	-. 0005	-. 0090	-. 0271	-. 0587	-. 1425
			Gomp	30B	. 0600	. 0405	. 0253	. 0132	. 0003	-. 0109	-. 0272	-. 0418	-. 0629
50/100		x	Exp	37B	. 0163	-. 0007	-. 0078	-. 0004	-. 0022	. 0066	. 0020	. 0098	0154
	\checkmark		Weib	38B	. 0314	. 0005	-. 0052	-. 0063	-. 0047	. 0024	. 0067	. 0079	. 0108
			Gomp	39B	. 0120	. 0010	-. 0002	. 0054	. 0037	. 0070	. 0101	. 0172	. 0192
	\checkmark	\checkmark	Exp	40B	. 0341	. 0127	. 0080	. 0049	. 0000	-. 0008	-. 0088	-. 0214	-. 0433
			Weib	41B	. 0464	. 0153	. 0094	. 0034	-. 0023	-. 0162	-. 0243	-. 0631	-. 1432
			Gomp	42B	. 0616	. 0365	. 0236	. 0127	. 0065	-. 0054	-. 0181	-. 0340	-. 0436
Bedeutung der Abkürzungen:													
$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp $\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden													

Tabelle B.11: Verzerrung des WBC-II-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 1003	. 0240	. 0080	-. 0007	-. 0004	-. 0025	-. 0070	-. 0263	-. 0907
			Weib	2B	. 1173	. 0285	. 0040	-. 0016	-. 0048	. 0008	-. 0040	-. 0336	-. 1219
			Gomp	3B	. 0970	. 0330	. 0139	. 0001	-. 0080	. 0011	-. 0117	-. 0356	-. 0972
	\checkmark	\checkmark	Exp	4B	. 0984	. 0198	. 0111	. 0063	-. 0032	-. 0027	-. 0017	-. 0350	-. 1069
			Weib	5B	. 1247	. 0372	. 0091	. 0060	. 0005	. 0040	-. 0221	-. 0576	-. 1855
			Gomp	6B	. 0990	. 0424	. 0140	. 0039	-. 0080	-. 0067	-. 0128	-. 0328	-. 1012
100/100	\checkmark	x	Exp	13B	. 0816	. 0225	. 0065	-. 0053	-. 0022	. 0014	-. 0025	-. 0191	-. 0823
			Weib	14B	. 1153	. 0322	. 0049	-. 0032	. 0021	-. 0020	-. 0056	-. 0322	-. 1153
			Gomp	15B	. 0786	. 0216	-. 0017	. 0007	. 0025	. 0005	-. 0023	-. 0197	-. 0787
	\checkmark	\checkmark	Exp	16B	. 0919	. 0310	. 0073	. 0003	-. 0016	-. 0061	-. 0117	-. 0359	-. 1147
			Weib	17B	. 1214	. 0414	. 0110	. 0026	-. 0019	-. 0048	-. 0217	-. 0616	-. 1794
			Gomp	18B	. 0982	. 0330	. 0109	. 0059	-. 0017	-. 0070	-. 0139	-. 0372	-. 1063
500/500	\checkmark	x	Exp	25B	. 0809	. 0196	-. 0001	-. 0037	. 0002	. 0045	-. 0018	-. 0202	-. 0809
			Weib	26B	. 1146	. 0310	. 0035	-. 0030	. 0010	. 0041	-. 0036	-. 0320	-. 1156
			Gomp	27B	. 0730	. 0179	-. 0003	-. 0044	-. 0004	. 0035	-. 0012	-. 0191	-. 0729
	\checkmark	\checkmark	Exp	28B	. 0900	. 0270	. 0069	. 0016	-. 0007	-. 0037	-. 0107	-. 0375	-. 1129
			Weib	29B	. 1211	. 0396	. 0104	-. 0001	-. 0005	-. 0030	-. 0191	-. 0588	-. 1747
			Gomp	30B	. 0990	. 0351	. 0128	. 0071	. 0003	-. 0051	-. 0153	-. 0373	-. 1034
50/100	\checkmark	x	Exp	37B	. 0551	-. 0186	-. 0458	-. 0448	-. 0474	-. 0392	-. 0484	-. 0569	-. 0989
			Weib	38B	. 0936	-. 0082	-. 0418	-. 0507	-. 0490	-. 0413	-. 0426	-. 0632	-. 1215
			Gomp	39B	. 0500	-. 0154	-. 0371	-. 0393	-. 0433	-. 0422	-. 0450	-. 0549	-. 0975
	\checkmark	\checkmark	Exp	40B	. 0632	-. 0116	-. 0338	-. 0408	-. 0456	-. 0459	-. 0551	-. 0773	-. 1355
			Weib	41B	. 0980	-. 0015	-. 0322	-. 0429	-. 0465	-. 0572	-. 0623	-. 1051	-. 2081
			Gomp	42B	. 0619	-. 0087	-. 0310	-. 0396	-. 0415	-. 0492	-. 0589	-. 0810	-. 1259
Bedeutung der Abkürzungen:													
$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp $\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden													

Tabelle B.12: Verzerrung des SL-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 2756	. 1096	. 0476	. 0148	-. 0005	-. 0181	-. 0461	-. 1107	-. 2700
			Weib	2B	. 2894	. 1096	. 0385	. 0111	-. 0044	-. 0115	-. 0385	-. 1139	-. 2935
			Gomp	3B	. 2860	. 1292	. 0614	. 0209	-. 0071	-. 0193	-. 0596	-. 1300	-. 2830
	\checkmark	\checkmark	Exp	4B	. 2684	. 1017	. 0478	. 0202	-. 0031	-. 0169	-. 0406	-. 1171	-. 2830
			Weib	5B	. 2996	. 1208	. 0450	. 0193	. 0002	-. 0103	-. 0611	-. 1515	-. 3852
			Gomp	6B	. 2837	. 1373	. 0636	. 0247	-. 0072	-. 0267	-. 0617	-. 1292	-. 2842
$100 / 100$	\checkmark	x	Exp	13B	. 2456	. 0875	. 0301	. 0028	-. 0021	-. 0065	-. 0264	-. 0849	-. 2460
			Weib	14B	. 2766	. 0994	. 0287	. 0040	. 0020	-. 0090	-. 0294	-. 0992	-. 2766
			Gomp	15B	. 2437	. 0888	. 0252	. 0100	. 0023	-. 0089	-. 0286	-. 0870	-. 2440
	\checkmark	\checkmark	Exp	16B	. 2559	. 0971	. 0315	. 0077	-. 0016	-. 0133	-. 0364	-. 1050	-. 2832
			Weib	17B	. 2920	. 1149	. 0387	. 0109	-. 0018	-. 0137	-. 0531	-. 1494	-. 3831
			Gomp	18B	. 2699	. 1116	. 0452	. 0180	-. 0016	-. 0189	-. 0473	-. 1146	-. 2749
500/500	\checkmark	x	Exp	25B	. 2418	. 0807	. 0196	. 0031	. 0002	-. 0023	-. 0215	-. 0813	-. 2414
			Weib	26B	. 2736	. 0952	. 0248	. 0037	. 0010	-. 0027	-. 0248	-. 0960	-. 2745
			Gomp	27B	. 2339	. 0787	. 0197	. 0027	-. 0004	-. 0036	-. 0210	-. 0796	-. 2341
	\checkmark	\checkmark	Exp	28B	. 2536	. 0912	. 0282	. 0075	-. 0007	-. 0096	-. 0331	-. 1047	-. 2815
			Weib	29B	. 2908	. 1124	. 0372	. 0083	-. 0005	-. 0120	-. 0508	-. 1475	-. 3812
			Gomp	30B	. 2670	. 1086	. 0424	. 0156	. 0003	-. 0134	-. 0441	-. 1097	-. 2702
50/100	\checkmark	x	Exp	37B	. 1398	. 0313	-. 0003	. 0022	-. 0034	-. 0086	-. 0496	-. 1322	-. 3280
			Weib	38B	. 1882	. 0477	. 0043	-. 0040	-. 0042	-. 0085	-. 0431	-. 1370	-. 3422
			Gomp	39B	. 1343	. 0370	. 0109	. 0078	-. 0015	-. 0145	-. 0503	-. 1346	-. 3292
	\checkmark	\checkmark	Exp	40B	. 1524	. 0421	. 0137	. 0072	-. 0009	-. 0131	-. 0548	-. 1492	-. 3540
			Weib	41B	. 2072	. 0645	. 0196	. 0064	-. 0010	-. 0239	-. 0659	-. 1847	-. 4296
			Gomp	42B	. 1693	. 0644	. 0300	. 0139	. 0026	-. 0214	-. 0658	-. 1591	-. 3484
Bedeutung der Abkürzungen:													
$\begin{aligned} & \mathrm{S} \hat{=} \text { Stichprobenumfang Gruppe } 0 / \text { Gruppe } 1, \mathrm{Z} \hat{=} \text { Zensierungen, } \mathrm{B} \hat{=} \text { Bindungen, } \mathrm{V} \hat{=} \text { Verteilungstyp } \\ & \checkmark \widehat{=} \text { vorhanden, } \mathrm{x} \hat{=} \text { nicht vorhanden } \end{aligned}$													

Tabelle B.13: Varianz des Cox-Schätzers für die einzelnen logarithmierten Hazard-
Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1	. 2423	. 2232	. 2063	. 2028	. 1989	. 2006	. 2063	. 2143	. 2500
			Weib	2	2249	. 2041	. 1886	. 1922	. 1904	. 1839	. 1912	. 2015	. 2324
			Gomp	3	2961	. 2487	. 2242	. 2263	2267	. 2193	. 2286	. 2437	. 2742
	\checkmark	\checkmark	Exp	4	. 2435	. 2147	. 2099	. 2009	2031	. 1983	. 2108	. 2166	. 2479
			Weib	5	. 2256	. 2099	. 1921	. 1922	. 1869	. 1880	. 1969	. 2038	. 2272
			Gomp	6	. 2726	. 2360	. 2210	. 2092	. 2150	. 2103	. 2274	. 2346	. 2831
	x	x	Exp	7	. 1516	. 1287	. 1235	. 1192	. 1205	. 1213	. 1263	. 1273	. 1513
			Weib	8	. 1501	. 1323	. 1226	. 1187	. 1198	. 1203	. 1218	. 1398	. 1516
			Gomp	9	. 1500	. 1325	. 1231	. 1216	. 1202	. 1229	. 1217	. 1314	. 1467
	x	\checkmark	Exp	10	. 1552	. 1264	. 1250	. 1192	. 1193	. 1189	. 1231	. 1305	. 1523
			Weib	11	. 1570	. 1277	. 1209	. 1208	. 1202	. 1203	. 1243	. 1317	. 1489
			Gomp	12	. 1471	. 1286	. 1170	. 1154	. 1154	. 1148	. 1225	. 1294	. 1505
100/100	\checkmark	x	Exp	13	. 0403	. 0368	. 0355	. 0346	. 0348	. 0349	. 0357	. 0369	. 0406
			Weib	14	. 0386	. 0365	. 0347	. 0341	. 0342	. 0337	. 0347	. 0367	. 0390
			Gomp	15	. 0444	. 0390	. 0371	. 0355	. 0358	. 0356	. 0367	. 0386	. 0439
	\checkmark	\checkmark	Exp	16	. 0400	. 0367	. 0347	. 0348	. 0350	. 0343	. 0359	. 0371	. 0416
			Weib	17	. 0397	. 0348	. 0358	. 0343	. 0339	. 0349	. 0341	. 0363	. 0393
			Gomp	18	. 0431	. 0388	. 0357	. 0350	. 0348	. 0354	. 0352	. 0394	. 0428
	x	x	Exp	19	. 0258	. 0230	. 0212	. 0212	. 0206	. 0210	. 0216	. 0228	. 0260
			Weib	20	. 0262	. 0231	. 0214	. 0214	. 0211	. 0211	. 0215	. 0230	. 0263
			Gomp	21	. 0263	. 0231	. 0213	. 0209	. 0208	. 0203	. 0218	. 0228	. 0260
	x	\checkmark	Exp	22	. 0260	. 0241	. 0219	. 0213	. 0209	. 0210	. 0219	. 0231	. 0267
			Weib	23	. 0261	. 0231	. 0216	. 0212	. 0203	. 0208	. 0215	. 0226	. 0260
			Gomp	24	. 0260	. 0228	. 0216	. 0206	. 0202	. 0213	. 0212	. 0229	. 0265
500/500	\checkmark	x	Exp	25	. 0079	. 0070	. 0069	. 0067	. 0066	. 0067	. 0069	. 0073	. 0076
			Weib	26	. 0077	. 0070	. 0070	. 0067	. 0065	. 0066	. 0070	. 0070	. 0076
			Gomp	27	. 0082	. 0074	. 0069	. 0069	. 0066	. 0070	. 0069	. 0074	. 0082
	\checkmark	\checkmark	Exp	28	. 0078	. 0073	. 0069	. 0068	. 0068	. 0067	. 0068	. 0072	. 0079
			Weib	29	. 0076	. 0071	. 0069	. 0069	. 0067	. 0065	. 0069	. 0070	. 0076
			Gomp	30	. 0081	. 0074	. 0070	. 0066	. 0065	. 0068	. 0069	. 0074	. 0082
	x	x	Exp	31	. 0052	. 0045	. 0043	. 0039	. 0040	. 0041	. 0043	. 0045	. 0052
			Weib	32	. 0051	. 0045	. 0041	. 0041	. 0041	. 0041	. 0041	. 0044	. 0050
			Gomp	33	. 0051	. 0044	. 0042	. 0040	. 0040	. 0041	. 0043	. 0044	. 0052
	x	\checkmark	Exp	34	. 0049	. 0044	. 0042	. 0041	. 0041	. 0042	. 0043	. 0046	. 0051
			Weib	35	. 0050	. 0044	. 0042	. 0040	. 0039	. 0041	. 0042	. 0045	. 0051
			Gomp	36	. 0051	. 0046	. 0042	. 0039	. 0040	. 0040	. 0042	. 0044	. 0052
50/100	\checkmark	x	Exp	37	. 0719	. 0625	. 0568	. 0549	. 0518	. 0521	. 0511	. 0507	. 0545
			Weib	38	. 0752	. 0625	. 0573	. 0534	. 0519	. 0502	. 0483	. 0478	. 0497
			Gomp	39	. 0738	. 0628	. 0585	. 0573	. 0557	. 0532	. 0515	. 0556	. 0599
	\checkmark	\checkmark	Exp	40	. 0736	. 0655	. 0558	. 0539	. 0536	. 0514	. 0507	. 0508	. 0530
			Weib	41	. 0737	. 0625	. 0570	. 0526	. 0526	. 0498	. 0500	. 0482	. 0483
			Gomp	42	. 0731	. 0615	. 0564	. 0540	. 0537	. 0532	. 0534	. 0554	. 0587
	x	x	Exp	43	. 0405	. 0350	. 0332	. 0320	. 0327	. 0315	. 0326	. 0351	. 0379
			Weib	44	. 0412	. 0366	. 0337	. 0324	. 0321	. 0316	. 0323	. 0343	. 0373
			Gomp	45	. 0405	. 0347	. 0326	. 0317	. 0319	. 0317	. 0333	. 0338	. 0376
	x	\checkmark	Exp	46	. 0407	. 0351	. 0325	. 0323	. 0316	. 0314	. 0324	. 0346	. 0377
			Weib	47	. 0412	. 0355	. 0329	. 0317	. 0317	. 0317	. 0324	. 0342	. 0369
			Gomp	48	. 0405	. 0340	. 0325	. 0313	. 0315	. 0320	. 0321	. 0338	. 0381
100/100	x	x	Weib	49	. 0264	. 0229		. 0213	. 0210	. 0216	. 0219	. 0232	. 0268
			Weib	50	. 0261	. 0232	. 0218	. 0213	. 0210	. 0212	. 0213	. 0234	. 0263
$\begin{aligned} & \text { Zusatz: Szenario } 49 \text { und } 50 \text { mit Störgröße, Bedeutung der Abkürzungen: } \\ & \mathrm{S} \hat{=} \text { Stichprobenumfang Gruppe } 0 / \text { Gruppe } 1, \mathrm{Z} \hat{=} \text { Zensierungen, } \mathrm{B} \hat{=} \text { Bindungen, } \mathrm{V} \hat{=} \text { Verteilungstyp } \\ & \checkmark \hat{=} \text { vorhanden, } \mathrm{x} \hat{=} \text { nicht vorhanden } \end{aligned}$													

Tabelle B.14: Varianz des Breslow-Schätzers für die einzelnen logarithmierten
Hazard-Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$										
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$		
20/20	\checkmark	x	Exp	1	. 1336	. 1518	. 1582	. 1634	. 1620	. 1613	. 1591	. 1465	. 1355		
			Weib	2	. 1580	. 1632	. 1617	. 1695	. 1686	. 1626	. 1635	. 1616	. 1612		
			Gomp	3	. 1050	. 1345	. 1457	. 1601	. 1639	. 1568	. 1501	. 1312	. 1041		
	\checkmark	\checkmark	Exp	4	. 1384	. 1506	. 1655	. 1662	. 1685	. 1643	. 1617	. 1501	. 1357		
			Weib	5	. 1576	. 1649	. 1629	. 1652	. 1608	. 1595	. 1604	. 1519	. 1447		
			Gomp	6	. 1025	. 1290	. 1452	. 1510	. 1574	. 1538	. 1520	. 1300	. 1099		
	x	x	Exp	7	. 0533	. 0711	. 0864	. 0930	. 0965	. 0946	. 0887	. 0708	. 0524		
			Weib	8	. 0519	. 0730	. 0862	. 0928	. 0965	. 0939	. 0859	. 0762	. 0518		
			Gomp	9	. 0524	. 0732	. 0865	. 0949	. 0964	. 0959	. 0859	. 0732	. 0510		
	x	\checkmark	Exp	10	. 0541	. 0700	. 0887	. 0943	. 0970	. 0938	. 0857	. 0705	. 0509		
			Weib	11	. 0526	. 0708	. 0850	. 0958	. 0968	. 0933	. 0845	. 0675	. 0446		
			Gomp	12	. 0508	. 0680	. 0784	. 0853	. 0878	. 0848	. 0807	. 0680	. 0510		
100/100	\checkmark	x	Exp	13	. 0253	. 0291	. 0316	. 0323	. 0330	. 0327	. 0317	. 0289	. 0254		
			Weib	14	. 0298	. 0322	. 0326	. 0330	. 0333	. 0326	. 0326	. 0324	. 0301		
			Gomp	15	. 0188	. 0252	. 0297	. 0318	. 0330	. 0320	. 0297	. 0251	. 0198		
	\checkmark	\checkmark	Exp	16	. 0247	. 0286	. 0303	. 0319	. 0324	. 0312	. 0309	. 0282	. 0249		
			Weib	17	. 0298	. 0297	. 0324	. 0317	. 0313	. 0317	. 0297	. 0290	. 0265		
			Gomp	18	. 0180	. 0238	. 0267	. 0289	. 0294	. 0293	. 0266	. 0245	. 0188		
	x	x	Exp	19	. 0100	. 0140	. 0169	. 0193	. 0195	. 0191	. 0172	. 0139	. 0102		
			Weib	20	. 0102	. 0142	. 0171	. 0194	. 0199	. 0193	. 0171	. 0141	. 0103		
			Gomp	21	. 0103	. 0141	. 0170	. 0190	. 0196	. 0185	. 0173	. 0139	. 0102		
	x	\checkmark	Exp	22	. 0098	. 0144	. 0171	. 0189	. 0192	. 0186	. 0168	. 0135	. 0096		
			Weib	23	. 0099	. 0137	. 0168	. 0188	. 0186	. 0182	. 0161	. 0126	. 0083		
			Gomp	24	. 0098	. 0130	. 0156	. 0168	. 0170	. 0173	. 0152	. 0130	. 0098		
500/500	\checkmark	x	Exp	25	. 0050	. 0056	. 0063	. 0065	. 0065	. 0065	. 0063	. 0059	. 0049		
			Weib	26	. 0061	. 0063	. 0067	. 0066	. 0065	. 0065	. 0067	. 0063	. 0060		
			Gomp	27	. 0037	. 0049	. 0058	. 0065	. 0065	. 0066	. 0058	. 0050	. 0039		
	\checkmark	\checkmark	Exp	28	. 0049	. 0058	. 0062	. 0065	. 0065	. 0062	. 0060	. 0056	. 0048		
			Weib	29	. 0058	. 0062	. 0063	. 0065	. 0063	. 0060	. 0061	. 0057	. 0051		
			Gomp	30	. 0035	. 0046	. 0053	. 0057	. 0057	. 0058	. 0054	. 0047	. 0037		
	x	x	Exp	31	. 0021	. 0028	. 0035	. 0037	. 0039	. 0039	. 0035	. 0028	. 0021		
			Weib	32	. 0020	. 0028	. 0034	. 0039	. 0040	. 0039	. 0034	. 0028	. 0020		
			Gomp	33	. 0021	. 0028	. 0034	. 0038	. 0039	. 0039	. 0035	. 0027	. 0020		
	x	\checkmark	Exp	34	. 0019	. 0027	. 0033	. 0037	. 0039	. 0038	. 0033	. 0027	. 0019		
			Weib	35	. 0019	. 0026	. 0033	. 0037	. 0037	. 0037	. 0032	. 0025	. 0017		
			Gomp	36	. 0020	. 0026	. 0031	. 0033	. 0034	. 0033	. 0030	. 0025	. 0020		
50/100	\checkmark	x	Exp	37	. 0481	. 0489	. 0496	. 0506	. 0486	. 0483	. 0454	. 0405	. 0346		
			Weib	38	. 0631	. 0560	. 0537	. 0512	. 0502	. 0480	. 0451	. 0416	. 0363		
			Gomp	39	. 0281	. 0380	. 0451	. 0497	. 0500	. 0474	. 0429	. 0391	. 0314		
	\checkmark	\checkmark	Exp	40	. 0494	. 0521	. 0488	. 0489	. 0492	. 0465	. 0436	. 0388	. 0318		
			Weib	41	. 0606	. 0551	. 0518	. 0484	. 0482	. 0448	. 0428	. 0372	. 0295		
			Gomp	42	. 0278	. 0362	. 0415	. 0438	. 0449	. 0438	. 0412	. 0372	. 0295		
	x	x	Exp	43	. 0133	. 0198	. 0254	. 0284	. 0304	. 0286	. 0270	. 0239	. 0186		
			Weib	44	. 0134	. 0208	. 0259	. 0288	. 0299	. 0288	. 0268	. 0236	. 0184		
			Gomp	45	. 0133	. 0197	. 0250	. 0283	. 0297	. 0289	. 0275	. 0231	. 0184		
	x	\checkmark	Exp	46	. 0132	. 0197	. 0249	. 0283	. 0288	. 0278	. 0258	. 0224	. 0170		
			Weib	47	. 0132	. 0199	. 0252	. 0279	. 0288	. 0277	. 0250	. 0206	. 0142		
			Gomp	48	. 0128	. 0181	. 0229	. 0250	. 0262	. 0261	. 0241	. 0215	. 0177		
100/100	x	x	Weib	49	. 0113	. 0148	. 0178	. 0193	. 0196	. 0193	. 0177	. 0149	. 0113		
			Weib	50	. 0126	. 0157	. 0180	. 0195	. 0197	. 0192	. 0177	. 0155	. 0125		
$\begin{aligned} & \hline \hline \text { Zusatz: Szenario } 49 \text { und } 50 \text { mit Störgröße, Bedeutung der Abkürzungen: } \\ & \mathrm{S} \hat{=} \text { Stichprobenumfang Gruppe 0/Gruppe } 1, \mathrm{Z} \hat{=} \text { Zensierungen, } \mathrm{B} \hat{=} \text { Bindungen, } \mathrm{V} \hat{=} \text { Verteilungstyp } \\ & \checkmark \hat{=} \text { vorhanden, } \mathrm{x} \hat{=} \text { nicht vorhanden } \end{aligned}$															

Tabelle B.15: Varianz des Wassmer-Schätzers für die einzelnen logarithmierten Hazard-Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$										
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$		
20/20	\checkmark	x	Exp	1	. 1577	. 1733	. 1751	. 1780	. 1760	. 1758	. 1748	. 1673	. 1605		
			Weib	2	. 1624	. 1715	. 1694	. 1770	. 1763	. 1700	. 1712	. 1692	. 1668		
			Gomp	3	. 1527	. 1708	. 1729	. 1842	. 1869	. 1798	. 1779	. 1660	. 1470		
	\checkmark	\checkmark	Exp	4	. 1624	. 1712	. 1827	. 1814	. 1846	. 1801	. 1819	. 1736	. 1617		
			Weib	5	. 1637	. 1778	. 1749	. 1795	. 1756	. 1757	. 1793	. 1738	. 1654		
			Gomp	6	. 1472	. 1676	. 1790	. 1813	. 1880	. 1838	. 1860	. 1680	. 1540		
	x	x	Exp	7	. 0835	. 0939	. 1028	. 1052	. 1078	. 1071	. 1054	. 0933	. 0825		
			Weib	8	. 0816	. 0963	. 1024	. 1050	. 1077	. 1063	. 1020	. 1009	. 0820		
			Gomp	9	. 0824	. 0965	. 1026	. 1075	. 1077	. 1086	. 1019	. 0965	. 0804		
	x	\checkmark	Exp	10	. 0865	. 0941	. 1069	. 1082	. 1100	. 1081	. 1048	. 0968	. 0844		
			Weib	11	. 0867	. 0962	. 1036	. 1105	. 1110	. 1095	. 1066	. 0984	. 0840		
			Gomp	12	. 0808	. 0940	. 1001	. 1051	. 1072	. 1047	. 1036	. 0946	. 0816		
100/100	\checkmark	x	Exp	13	. 0315	. 0331	. 0337	. 0335	. 0339	. 0338	. 0339	. 0331	. 0318		
			Weib	14	. 0325	. 0340	. 0336	. 0335	. 0337	. 0331	. 0337	. 0343	. 0327		
			Gomp	15	. 0286	. 0319	. 0336	. 0337	. 0344	. 0339	. 0334	. 0317	. 0293		
	\checkmark	\checkmark	Exp	16	. 0311	. 0330	. 0331	. 0339	. 0343	. 0334	. 0341	. 0332	. 0322		
			Weib	17	. 0335	. 0326	. 0347	. 0338	. 0335	. 0344	. 0332	. 0340	. 0332		
			Gomp	18	. 0272	. 0314	. 0323	. 0336	. 0338	. 0340	. 0321	. 0320	. 0278		
	x	x	Exp	19	. 0161	. 0184	. 0193	. 0204	. 0201	. 0202	. 0196	. 0183	. 0163		
			Weib	20	. 0163	. 0186	. 0195	. 0205	. 0206	. 0203	. 0195	. 0185	. 0164		
			Gomp	21	. 0164	. 0186	. 0194	. 0201	. 0203	. 0195	. 0198	. 0183	. 0162		
	x	\checkmark	Exp	22	. 0161	. 0193	. 0200	. 0205	. 0204	. 0203	. 0199	. 0185	. 0163		
			Weib	23	. 0164	. 0186	. 0198	. 0205	. 0199	. 0201	. 0196	. 0184	. 0162		
			Gomp	24	. 0156	. 0178	. 0194	. 0199	. 0199	. 0206	. 0190	. 0178	. 0158		
500/500	\checkmark	x	Exp	25	. 0063	. 0064	. 0067	. 0066	. 0065	. 0066	. 0067	. 0067	. 0061		
			Weib	26	. 0067	. 0067	. 0069	. 0066	. 0065	. 0066	. 0068	. 0067	. 0066		
			Gomp	27	. 0056	. 0063	. 0065	. 0067	. 0066	. 0069	. 0065	. 0063	. 0057		
	\checkmark	\checkmark	Exp	28	. 0062	. 0067	. 0067	. 0068	. 0067	. 0066	. 0066	. 0066	. 0063		
			Weib	29	. 0066	. 0068	. 0068	. 0068	. 0067	. 0065	. 0068	. 0067	. 0065		
			Gomp	30	. 0054	. 0061	. 0064	. 0065	. 0065	. 0067	. 0064	. 0061	. 0055		
	x	x	Exp	31	. 0033	. 0037	. 0039	. 0038	. 0039	. 0041	. 0040	. 0037	. 0033		
			Weib	32	. 0033	. 0036	. 0038	. 0040	. 0040	. 0040	. 0038	. 0036	. 0032		
			Gomp	33	. 0033	. 0036	. 0039	. 0040	. 0039	. 0040	. 0040	. 0036	. 0033		
	x	\checkmark	Exp	34	. 0031	. 0036	. 0039	. 0040	. 0041	. 0041	. 0039	. 0037	. 0032		
			Weib	35	. 0032	. 0036	. 0039	. 0039	. 0039	. 0041	. 0039	. 0037	. 0033		
			Gomp	36	. 0031	. 0036	. 0038	. 0038	. 0040	. 0039	. 0038	. 0035	. 0031		
50/100	\checkmark	x	Exp	37	. 0408	. 0451	. 0475	. 0501	. 0501	. 0526	. 0537	. 0548	. 0575		
			Weib	38	. 0414	. 0445	. 0472	. 0487	. 0508	. 0523	. 0537	. 0562	. 0595		
			Gomp	39	. 0392	. 0459	. 0495	. 0525	. 0527	. 0514	. 0497	. 0520	. 0512		
	\checkmark	\checkmark	Exp	40	. 0416	. 0480	. 0473	. 0495	. 0521	. 0522	. 0536	. 0546	. 0549		
			Weib	41	. 0410	. 0447	. 0475	. 0483	. 0517	. 0518	. 0552	. 0555	. 0549		
			Gomp	42	. 0386	. 0451	. 0486	. 0502	. 0518	. 0518	. 0514	. 0512	. 0486		
	x	x	Exp	43	. 0227	. 0270	. 0295	. 0304	. 0316	. 0303	. 0303	. 0301	. 0278		
			Weib	44	. 0230	. 0282	. 0301	. 0308	. 0311	. 0304	. 0300	. 0296	. 0274		
			Gomp	45	. 0228	. 0267	. 0291	. 0302	. 0309	. 0305	. 0309	. 0290	. 0274		
	x	\checkmark	Exp	46	. 0230	. 0271	. 0293	. 0309	. 0309	. 0304	. 0301	. 0293	. 0266		
			Weib	47	. 0234	. 0277	. 0297	. 0305	. 0310	. 0307	. 0301	. 0289	. 0254		
			Gomp	48	. 0221	. 0259	. 0293	. 0301	. 0308	. 0308	. 0292	. 0280	. 0265		
100/100	x	x	Weib	49	. 0174	. 0188	. 0199	. 0203	. 0203	. 0203	. 0198	. 0189	. 0174		
			Weib	50	. 0178	. 0188	. 0197	. 0204	. 0203	. 0200	. 0194	. 0187	. 0177		
Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen: $\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp $\checkmark \hat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden															

Tabelle B.16: Varianz des WBC-I-Schätzers für die einzelnen logarithmierten
Hazard-Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$										
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$		
20/20	\checkmark	x	Exp	1	. 2066	2078	. 1997	. 1986	. 1957	. 1968	. 1994	. 2005	. 2112		
			Weib	2	. 2004	. 1951	. 1851	. 1901	. 1887	. 1822	. 1873	. 1925	. 2062		
			Gomp	3	. 2292	. 2236	. 2116	. 2180	. 2192	. 2121	. 2168	. 2165	. 2164		
	\checkmark	\checkmark	Exp	4	. 2082	. 1992	. 1997	. 1928	. 1947	. 1896	. 1978	. 1975	. 2056		
			Weib	5	. 2000	. 1969	. 1829	. 1827	. 1763	. 1763	. 1819	. 1826	. 1931		
			Gomp	6	. 2093	. 2012	. 1955	. 1888	. 1941	. 1904	. 2023	. 2009	. 2157		
	x	x	Exp	7	. 1287	. 1218	. 1206	. 1178	. 1193	. 1199	. 1236	. 1204	. 1279		
			Weib	8	. 1266	. 1247	. 1199	. 1174	. 1189	. 1190	. 1192	. 1314	. 1278		
			Gomp	9	. 1272	. 1252	. 1203	. 1203	. 1192	. 1215	. 1192	. 1246	. 1247		
	x	\checkmark	Exp	10	. 1307	. 1179	. 1198	. 1150	. 1150	. 1139	. 1161	. 1192	. 1255		
			Weib	11	. 1322	. 1198	. 1160	. 1165	. 1153	. 1145	. 1165	. 1184	. 1216		
			Gomp	12	. 1196	. 1116	. 1034	. 1018	. 1017	. 1013	. 1076	. 1124	. 1207		
100/100	\checkmark	x	Exp	13	. 0385	. 0364	. 0354	. 0345	. 0348	. 0349	. 0356	. 0365	. 0389		
			Weib	14	. 0375	. 0363	. 0347	. 0341	. 0342	. 0337	. 0347	. 0365	. 0378		
			Gomp	15	. 0408	. 0382	. 0369	. 0354	. 0358	. 0356	. 0365	. 0378	. 0406		
	\checkmark	\checkmark	Exp	16	. 0377	. 0356	. 0338	. 0337	. 0338	. 0330	. 0344	. 0352	. 0382		
			Weib	17	. 0381	. 0338	. 0344	. 0327	. 0321	. 0328	. 0317	. 0334	. 0357		
			Gomp	18	. 0372	. 0350	. 0320	. 0313	. 0310	. 0317	. 0317	. 0353	. 0370		
	x	x	Exp	19	. 0240	. 0226	. 0211	. 0212	. 0206	. 0210	. 0215	. 0224	. 0242		
			Weib	20	. 0244	. 0228	. 0213	. 0214	. 0211	. 0211	. 0214	. 0226	. 0245		
			Gomp	21	. 0245	. 0227	. 0212	. 0209	. 0208	. 0203	. 0217	. 0225	. 0242		
	x	\checkmark	Exp	22	. 0238	. 0232	. 0213	. 0206	. 0202	. 0202	. 0209	. 0219	. 0238		
			Weib	23	. 0242	. 0223	. 0210	. 0205	. 0195	. 0199	. 0203	. 0211	. 0230		
			Gomp	24	. 0225	. 0202	. 0190	. 0179	. 0175	. 0185	. 0185	. 0202	. 0228		
500/500	\checkmark	x	Exp	25	. 0076	. 0069	. 0069	. 0067	. 0066	. 0067	. 0069	. 0072	. 0074		
			Weib	26	. 0076	. 0070	. 0070	. 0067	. 0065	. 0066	. 0070	. 0070	. 0075		
			Gomp	27	. 0077	. 0074	. 0069	. 0069	. 0066	. 0070	. 0069	. 0074	. 0078		
	\checkmark	\checkmark	Exp	28	. 0074	. 0071	. 0067	. 0066	. 0065	. 0064	. 0065	. 0069	. 0073		
			Weib	29	. 0074	. 0069	. 0066	. 0066	. 0063	. 0061	. 0064	. 0064	. 0069		
			Gomp	30	. 0072	. 0067	. 0062	. 0059	. 0058	. 0060	. 0062	. 0067	. 0072		
	x	x	Exp	31	. 0049	. 0045	. 0043	. 0039	. 0040	. 0041	. 0043	. 0044	. 0049		
			Weib	32	. 0048	. 0044	. 0041	. 0041	. 0041	. 0041	. 0041	. 0044	. 0048		
			Gomp	33	. 0049	. 0044	. 0042	. 0040	. 0040	. 0041	. 0043	. 0044	. 0049		
	x	\checkmark	Exp	34	. 0046	. 0043	. 0041	. 0039	. 0040	. 0040	. 0041	. 0044	. 0046		
			Weib	35	. 0047	. 0043	. 0041	. 0039	. 0038	. 0040	. 0039	. 0042	. 0046		
			Gomp	36	. 0044	. 0041	. 0037	. 0034	. 0034	. 0035	. 0036	. 0039	. 0045		
50/100	\checkmark	x	Exp	37	. 0574	. 0567	. 0547	. 0541	. 0515	. 0518	. 0507	. 0499	. 0539		
			Weib	38	. 0584	. 0563	. 0549	. 0525	. 0516	. 0498	. 0475	. 0462	. 0479		
			Gomp	39	. 0583	. 0577	. 0566	. 0566	. 0554	. 0531	. 0516	. 0559	. 0602		
	\checkmark	\checkmark	Exp	40	. 0583	. 0590	. 0529	. 0517	. 0515	. 0490	. 0478	. 0470	. 0487		
			Weib	41	. 0575	. 0557	. 0533	. 0497	. 0493	. 0457	. 0443	. 0405	. 0394		
			Gomp	42	. 0554	. 0529	. 0501	. 0482	. 0480	. 0475	. 0479	. 0502	. 0543		
	x	x	Exp	43	. 0340	. 0332	. 0326	. 0318	. 0327	. 0315	. 0328	. 0356	. 0384		
			Weib	44	. 0345	. 0347	. 0332	. 0323	. 0321	. 0317	. 0325	. 0348	. 0378		
			Gomp	45	. 0340	. 0329	. 0321	. 0316	. 0319	. 0318	. 0335	. 0342	. 0381		
	x	\checkmark	Exp	46	. 0340	. 0328	. 0313	. 0312	. 0305	. 0302	. 0310	. 0330	. 0356		
			Weib	47	. 0347	. 0335	. 0319	. 0307	. 0305	. 0302	. 0304	. 0314	. 0328		
			Gomp	48	. 0319	. 0293	. 0285	. 0272	. 0274	. 0279	. 0283	. 0305	. 0353		
100/100	x	x	Weib	49	. 0245	. 0222	. 0216	. 0210	. 0208	. 0210	. 0214	. 0223	. 0249		
			Weib	50	. 0228	. 0213	. 0210	. 0211	. 0208	. 0207	. 0206	. 0212	. 0227		
$\begin{aligned} & \hline \hline \text { Zusatz: Szenario } 49 \text { und } 50 \text { mit Störgröße, Bedeutung der Abkürzungen: } \\ & \mathrm{S} \hat{=} \text { Stichprobenumfang Gruppe 0/Gruppe } 1, \mathrm{Z} \hat{=} \text { Zensierungen, } \mathrm{B} \hat{=} \text { Bindungen, } \mathrm{V} \hat{=} \text { Verteilungstyp } \\ & \checkmark \hat{=} \text { vorhanden, } \mathrm{x} \hat{=} \text { nicht vorhanden } \end{aligned}$															

Tabelle B.17: Varianz des WBC-II-Schätzers für die einzelnen logarithmierten Hazard-Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$										
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$		
20/20	\checkmark	x	Exp	1	. 1582	. 1745	. 1776	. 1815	. 1798	. 1792	. 1773	. 1684	. 1609		
			Weib	2	. 1629	. 1726	. 1717	. 1804	. 1801	. 1733	. 1735	. 1703	. 1674		
			Gomp	3	. 1530	. 1720	. 1753	. 1878	. 1908	. 1833	. 1804	. 1671	. 1473		
	\checkmark	\checkmark	Exp	4	. 1629	. 1719	. 1837	. 1825	. 1855	. 1807	. 1822	. 1737	. 1622		
			Weib	5	. 1641	. 1781	. 1747	. 1785	. 1739	. 1737	. 1771	. 1725	. 1660		
			Gomp	6	. 1475	. 1678	. 1790	. 1811	. 1877	. 1836	. 1860	. 1682	. 1544		
	x	x	Exp	7	. 0836	. 0952	. 1093	. 1172	. 1221	. 1194	. 1122	. 0946	. 0826		
			Weib	8	. 0817	. 0978	. 1089	. 1169	. 1220	. 1184	. 1083	. 1025	. 0820		
			Gomp	9	. 0824	. 0981	. 1093	. 1197	. 1220	. 1210	. 1084	. 0980	. 0804		
	x	\checkmark	Exp	10	. 0866	. 0949	. 1098	. 1128	. 1151	. 1121	. 1067	. 0973	. 0848		
			Weib	11	. 0868	. 0970	. 1063	. 1151	. 1157	. 1131	. 1081	. 0989	. 0846		
			Gomp	12	. 0812	. 0942	. 0998	. 1042	. 1059	. 1035	. 1030	. 0948	. 0820		
100/100	\checkmark	x	Exp	13	. 0315	. 0331	. 0339	. 0343	. 0353	. 0347	. 0340	. 0331	. 0318		
			Weib	14	. 0326	. 0341	. 0338	. 0344	. 0351	. 0340	. 0338	. 0343	. 0328		
			Gomp	15	. 0287	. 0319	. 0337	. 0346	. 0358	. 0347	. 0335	. 0317	. 0293		
	\checkmark	\checkmark	Exp	16	. 0312	. 0331	. 0331	. 0340	. 0344	. 0334	. 0342	. 0333	. 0323		
			Weib	17	. 0336	. 0326	. 0348	. 0339	. 0335	. 0343	. 0331	. 0341	. 0333		
			Gomp	18	. 0273	. 0314	. 0323	. 0331	. 0330	. 0335	. 0321	. 0321	. 0279		
	x	x	Exp	19	. 0161	. 0184	. 0194	. 0230	. 0262	. 0229	. 0198	. 0183	. 0163		
			Weib	20	. 0163	. 0186	. 0196	. 0232	. 0268	. 0231	. 0196	. 0185	. 0164		
			Gomp	21	. 0164	. 0186	. 0195	. 0227	. 0264	. 0220	. 0199	. 0183	. 0162		
	x	\checkmark	Exp	22	. 0161	. 0193	. 0201	. 0222	. 0241	. 0218	. 0200	. 0186	. 0164		
			Weib	23	. 0164	. 0186	. 0199	. 0225	. 0242	. 0220	. 0197	. 0184	. 0163		
			Gomp	24	. 0157	. 0179	. 0194	. 0201	. 0201	. 0207	. 0191	. 0179	. 0159		
500/500	\checkmark	x	Exp	25	. 0063	. 0064	. 0067	. 0067	. 0072	. 0067	. 0067	. 0067	. 0061		
			Weib	26	. 0067	. 0067	. 0069	. 0067	. 0071	. 0066	. 0068	. 0067	. 0066		
			Gomp	27	. 0056	. 0063	. 0065	. 0068	. 0072	. 0069	. 0065	. 0063	. 0057		
	\checkmark	\checkmark	Exp	28	. 0063	. 0067	. 0067	. 0068	. 0069	. 0066	. 0066	. 0066	. 0063		
			Weib	29	. 0066	. 0068	. 0068	. 0069	. 0069	. 0065	. 0068	. 0067	. 0066		
			Gomp	30	. 0054	. 0061	. 0065	. 0065	. 0060	. 0066	. 0065	. 0061	. 0055		
	x	x	Exp	31	. 0033	. 0037	. 0039	. 0039	. 0069	. 0041	. 0040	. 0037	. 0033		
			Weib	32	. 0033	. 0036	. 0038	. 0041	. 0070	. 0041	. 0038	. 0036	. 0032		
			Gomp	33	. 0033	. 0036	. 0039	. 0040	. 0069	. 0041	. 0040	. 0036	. 0033		
	x	\checkmark	Exp	34	. 0031	. 0036	. 0039	. 0040	. 0061	. 0041	. 0039	. 0037	. 0032		
			Weib	35	. 0032	. 0036	. 0039	. 0040	. 0065	. 0041	. 0039	. 0037	. 0033		
			Gomp	36	. 0031	. 0036	. 0038	. 0038	. 0041	. 0039	. 0038	. 0035	. 0032		
50/100	\checkmark	x	Exp	37	. 0411	. 0453	. 0480	. 0512	. 0516	. 0536	. 0539	. 0547	. 0572		
			Weib	38	. 0416	. 0447	. 0476	. 0498	. 0523	. 0533	. 0539	. 0561	. 0592		
			Gomp	39	. 0393	. 0460	. 0499	. 0537	. 0542	. 0524	. 0500	. 0520	. 0511		
	\checkmark	\checkmark	Exp	40	. 0418	. 0482	. 0475	. 0495	. 0520	. 0520	. 0535	. 0545	. 0548		
			Weib	41	. 0412	. 0449	. 0476	. 0481	. 0512	. 0513	. 0549	. 0554	. 0548		
			Gomp	42	. 0388	. 0452	. 0485	. 0494	. 0506	. 0509	. 0512	. 0512	. 0486		
	x	x	Exp	43	. 0227	. 0270	. 0301	. 0343	. 0383	. 0338	. 0307	. 0301	. 0278		
			Weib	44	. 0230	. 0282	. 0306	. 0347	. 0377	. 0339	. 0304	. 0296	. 0274		
			Gomp	45	. 0228	. 0267	. 0295	. 0342	. 0375	. 0341	. 0312	. 0290	. 0274		
	x	\checkmark	Exp	46	. 0230	. 0272	. 0296	. 0329	. 0340	. 0320	. 0303	. 0294	. 0267		
			Weib	47	. 0234	. 0277	. 0301	. 0331	. 0351	. 0328	. 0303	. 0289	. 0254		
			Gomp	48	. 0222	. 0261	. 0293	. 0295	. 0296	. 0301	. 0292	. 0281	. 0265		
100/100	x	x	Weib	49	. 0174	. 0188	. 0201	. 0233	. 0264	. 0233	. 0200	. 0189	. 0174		
			Weib	50	. 0178	. 0188	. 0203	. 0242	. 0264	. 0237	. 0199	. 0187	. 0177		
Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen: $\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe 0 /Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp $\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden															

Tabelle B.18: Varianz des SL-Schätzers für die einzelnen logarithmierten Hazard-
Ratios im ersten Durchlauf aller 50 Szenarien (gleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$										
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$		
20/20	\checkmark	x	Exp	1	. 1142	. 1388	. 1490	. 1557	. 1547	. 1537	. 1497	. 1335	. 1157		
			Weib	2	. 1292	. 1478	. 1527	. 1628	. 1628	. 1566	. 1544	. 1460	. 1322		
			Gomp	3	. 0867	. 1182	. 1326	. 1480	. 1521	. 1452	. 1366	. 1161	. 0876		
	\checkmark	\checkmark	Exp	4	. 1183	. 1372	. 1557	. 1586	. 1614	. 1570	. 1523	. 1371	. 1149		
			Weib	5	. 1271	. 1490	. 1534	. 1589	. 1553	. 1534	. 1513	. 1372	. 1166		
			Gomp	6	. 0868	. 1158	. 1342	. 1414	. 1478	. 1444	. 1406	. 1168	. 0945		
	x	x	Exp	7	. 0373	. 0588	. 0785	. 0881	. 0923	. 0895	. 0807	. 0588	. 0364		
			Weib	8	. 0361	. 0606	. 0783	. 0878	. 0923	. 0888	. 0780	. 0631	. 0358		
			Gomp	9	. 0364	. 0607	. 0787	. 0896	. 0922	. 0907	. 0781	. 0607	. 0354		
	x	\checkmark	Exp	10	. 0392	. 0596	. 0820	. 0903	. 0937	. 0898	. 0792	. 0603	. 0373		
			Weib	11	. 0379	. 0604	. 0786	. 0918	. 0935	. 0894	. 0783	. 0582	. 0336		
			Gomp	12	. 0371	. 0582	. 0728	. 0818	. 0849	. 0812	. 0747	. 0583	. 0374		
100/100	\checkmark	x	Exp	13	. 0223	. 0273	. 0307	. 0319	. 0328	. 0323	. 0308	. 0271	. 0224		
			Weib	14	. 0256	. 0301	. 0317	. 0326	. 0331	. 0322	. 0318	. 0304	. 0258		
			Gomp	15	. 0154	. 0225	. 0281	. 0310	. 0325	. 0312	. 0282	. 0226	. 0166		
	\checkmark	\checkmark	Exp	16	. 0217	. 0269	. 0294	. 0315	. 0322	. 0309	. 0301	. 0266	. 0220		
			Weib	17	. 0256	. 0279	. 0315	. 0314	. 0311	. 0314	. 0290	. 0272	. 0228		
			Gomp	18	. 0150	. 0217	. 0255	. 0283	. 0290	. 0287	. 0255	. 0224	. 0161		
	x	x	Exp	19	. 0067	. 0115	. 0156	. 0188	. 0193	. 0187	. 0159	. 0115	. 0068		
			Weib	20	. 0069	. 0117	. 0158	. 0190	. 0197	. 0188	. 0158	. 0116	. 0069		
			Gomp	21	. 0069	. 0116	. 0157	. 0186	. 0194	. 0180	. 0160	. 0115	. 0068		
	x	\checkmark	Exp	22	. 0067	. 0119	. 0159	. 0185	. 0191	. 0182	. 0156	. 0113	. 0067		
			Weib	23	. 0067	. 0114	. 0156	. 0184	. 0184	. 0178	. 0150	. 0106	. 0059		
			Gomp	24	. 0068	. 0110	. 0146	. 0164	. 0168	. 0170	. 0143	. 0110	. 0069		
500/500	\checkmark	x	Exp	25	. 0044	. 0053	. 0062	. 0065	. 0065	. 0065	. 0062	. 0055	. 0043		
			Weib	26	. 0053	. 0059	. 0066	. 0066	. 0065	. 0065	. 0065	. 0060	. 0052		
			Gomp	27	. 0030	. 0044	. 0055	. 0064	. 0065	. 0065	. 0056	. 0045	. 0032		
	\checkmark	\checkmark	Exp	28	. 0043	. 0055	. 0060	. 0064	. 0065	. 0062	. 0058	. 0053	. 0043		
			Weib	29	. 0050	. 0058	. 0062	. 0064	. 0063	. 0060	. 0060	. 0053	. 0045		
			Gomp	30	. 0029	. 0042	. 0051	. 0056	. 0057	. 0057	. 0052	. 0043	. 0031		
	x	x	Exp	31	. 0014	. 0023	. 0032	. 0036	. 0039	. 0038	. 0032	. 0023	. 0014		
			Weib	32	. 0014	. 0023	. 0031	. 0038	. 0040	. 0038	. 0031	. 0023	. 0013		
			Gomp	33	. 0014	. 0023	. 0032	. 0037	. 0039	. 0038	. 0032	. 0022	. 0014		
	x	\checkmark	Exp	34	. 0013	. 0022	. 0031	. 0037	. 0039	. 0038	. 0031	. 0023	. 0013		
			Weib	35	. 0013	. 0022	. 0031	. 0036	. 0037	. 0037	. 0030	. 0021	. 0012		
			Gomp	36	. 0014	. 0022	. 0029	. 0032	. 0034	. 0033	. 0028	. 0021	. 0014		
50/100	\checkmark	x	Exp	37	. 0406	. 0469	. 0494	. 0504	. 0480	. 0464	. 0422	. 0359	. 0291		
			Weib	38	. 0440	. 0479	. 0498	. 0497	. 0495	. 0476	. 0445	. 0403	. 0337		
			Gomp	39	. 0321	. 0437	. 0498	. 0517	. 0488	. 0429	. 0352	. 0285	. 0209		
	\checkmark	\checkmark	Exp	40	. 0405	. 0489	. 0481	. 0485	. 0484	. 0451	. 0412	. 0352	. 0280		
			Weib	41	. 0417	. 0461	. 0478	. 0468	. 0476	. 0449	. 0430	. 0372	. 0296		
			Gomp	42	. 0313	. 0407	. 0449	. 0451	. 0439	. 0402	. 0349	. 0285	. 0208		
	x	x	Exp	43	. 0165	. 0248	. 0301	. 0309	. 0298	. 0248	. 0195	. 0132	. 0070		
			Weib	44	. 0166	. 0259	. 0307	. 0314	. 0295	. 0249	. 0193	. 0130	. 0069		
			Gomp	45	. 0165	. 0246	. 0297	. 0308	. 0291	. 0251	. 0198	. 0128	. 0069		
	x	\checkmark	Exp	46	. 0164	. 0245	. 0293	. 0307	. 0284	. 0244	. 0191	. 0128	. 0067		
			Weib	47	. 0164	. 0248	. 0296	. 0301	. 0284	. 0243	. 0185	. 0119	. 0059		
			Gomp	48	. 0160	. 0224	. 0268	. 0270	. 0257	. 0230	. 0178	. 0125	. 0071		
100/100	x	x	Weib	49	. 0079	. 0124	. 0166	. 0189	. 0195	. 0189	. 0165	. 0126	. 0079		
			Weib	50	. 0095	. 0138	. 0171	. 0192	. 0195	. 0188	. 0168	. 0136	. 0095		
$\begin{aligned} & \text { Zusatz: Szenario } 49 \text { und } 50 \text { mit Störgröße, Bedeutung der Abkürzungen: } \\ & \mathrm{S} \hat{=} \text { Stichprobenumfang Gruppe } 0 / \text { Gruppe } 1, \mathrm{Z} \hat{=} \text { Zensierungen, } \mathrm{B} \hat{=} \text { Bindungen, } \mathrm{V} \hat{=} \text { Verteilungstyp } \\ & \checkmark \hat{=} \text { vorhanden, } \mathrm{x} \hat{=} \text { nicht vorhanden } \end{aligned}$															

Tabelle B.19: Varianz des Cox-Schätzers für die einzelnen logarithmierten HazardRatios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr .	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 2635	. 2298	. 2089	. 2019	. 1989	. 2014	. 2111	. 2230	. 2705
			Weib	2B	2663	. 2207	. 1912	. 1935	. 1904	. 1853	. 1965	. 2185	. 2755
			Gomp	3B	. 2950	. 2496	. 2223	. 2269	. 2266	. 2190	. 2306	. 2451	. 2733
	\checkmark	\checkmark	Exp	4B	. 2623	. 2230	. 2118	. 2006	. 2030	. 1985	. 2112	. 2227	. 2660
			Weib	5B	. 2659	. 2246	. 1984	. 1925	. 1868	. 1897	. 2023	. 2228	. 2662
			Gomp	6B	. 2712	. 2342	. 2207	. 2113	. 2151	. 2108	. 2271	. 2354	. 2817
100/100	\checkmark	x	Exp	13B	. 0440	. 0381	. 0355	. 0347	. 0348	. 0350	. 0360	. 0387	. 0444
			Weib	14B	. 0471	. 0394	. 0362	. 0343	. 0342	. 0340	. 0354	. 0396	. 0460
			Gomp	15B	. 0446	. 0395	. 0373	. 0354	. 0358	. 0356	. 0369	. 0384	. 0440
	\checkmark	\checkmark	Exp	16B	. 0431	. 0382	. 0353	. 0349	. 0350	. 0345	. 0362	. 0384	. 0453
			Weib	17B	. 0473	. 0380	. 0368	. 0342	. 0339	. 0354	. 0353	. 0391	. 0462
			Gomp	18B	. 0438	. 0390	. 0358	. 0350	. 0348	. 0355	. 0351	. 0394	. 0433
500/500	\checkmark	x	Exp	25B	. 0086	. 0074	. 0071	. 0067	. 0066	. 0067	. 0071	. 0076	. 0084
			Weib	26B	. 0092	. 0077	. 0073	. 0068	. 0065	. 0067	. 0072	. 0077	. 0090
			Gomp	27B	. 0083	. 0074	. 0069	. 0069	. 0066	. 0070	. 0070	. 0074	. 0084
	\checkmark	\checkmark	Exp	28B	. 0084	. 0076	. 0069	. 0069	. 0068	. 0067	. 0069	. 0075	. 0085
			Weib	29B	. 0089	. 0077	. 0071	. 0069	. 0067	. 0066	. 0071	. 0076	. 0091
			Gomp	30B	. 0082	. 0075	. 0070	. 0067	. 0065	. 0068	. 0070	. 0075	. 0083
50/100	\checkmark	x	Exp	37B	. 0688	. 0589	. 0542	. 0537	. 0519	. 0534	. 0540	. 0564	. 0650
			Weib	38B	. 0765	. 0606	. 0555	. 0521	. 0519	. 0524	. 0529	. 0563	. 0654
			Gomp	39B	. 0705	. 0610	. 0574	. 0569	. 0557	. 0537	. 0528	. 0587	. 0645
	\checkmark	\checkmark	Exp	40B	. 0698	. 0623	. 0547	. 0529	. 0536	. 0525	. 0539	. 0565	. 0623
			Weib	41B	. 0751	. 0607	. 0546	. 0514	. 0526	. 0517	. 0543	. 0570	. 0643
			Gomp	42B	. 0693	. 0601	. 0554	. 0536	. 0537	. 0536	. 0544	. 0577	. 0634
Bedeutung der Abkürzungen:													
$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp $\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden													

Tabelle B.20: Varianz des Breslow-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 1080	. 1359	. 1514	. 1612	. 1620	. 1602	. 1536	. 1316	. 1088
			Weib	2B	. 1090	. 1358	. 1481	. 1666	. 1686	. 1604	. 1520	. 1346	. 1131
			Gomp	3B	. 1018	. 1317	. 1437	. 1600	. 1639	. 1561	. 1499	. 1291	. 0989
	\checkmark	\checkmark	Exp	4B	. 1109	. 1347	. 1591	. 1645	. 1684	. 1627	. 1534	. 1338	. 1073
			Weib	5B	. 1071	. 1352	. 1510	. 1617	. 1608	. 1572	. 1476	. 1271	. 0947
			Gomp	6B	. 0980	. 1260	. 1440	. 1516	. 1574	. 1539	. 1499	. 1264	. 1018
100/100	\checkmark	x	Exp	13B	. 0210	. 0260	. 0296	. 0319	. 0330	. 0323	. 0301	. 0261	. 0211
			Weib	14B	. 0219	. 0266	. 0302	. 0323	. 0333	. 0320	. 0296	. 0268	. 0213
			Gomp	15B	. 0185	. 0249	. 0296	. 0316	. 0330	. 0319	. 0295	. 0244	. 0188
	\checkmark	\checkmark	Exp	16B	. 0202	. 0257	. 0289	. 0315	. 0324	. 0310	. 0294	. 0251	. 0204
			Weib	17B	. 0213	. 0247	. 0297	. 0308	. 0313	. 0313	. 0274	. 0235	. 0181
			Gomp	18B	. 0178	. 0235	. 0266	. 0287	. 0294	. 0293	. 0262	. 0238	. 0181
500/500	\checkmark	x	Exp	25B	. 0042	. 0051	. 0061	. 0064	. 0065	. 0064	. 0060	. 0053	. 0041
			Weib	26B	. 0044	. 0053	. 0062	. 0065	. 0065	. 0064	. 0061	. 0053	. 0043
			Gomp	27B	. 0036	. 0048	. 0058	. 0065	. 0065	. 0066	. 0058	. 0049	. 0037
	\checkmark	\checkmark	Exp	28B	. 0041	. 0051	. 0058	. 0064	. 0065	. 0062	. 0057	. 0050	. 0040
			Weib	29B	. 0041	. 0051	. 0058	. 0063	. 0063	. 0059	. 0055	. 0046	. 0036
			Gomp	30B	. 0035	. 0046	. 0053	. 0057	. 0057	. 0058	. 0053	. 0046	. 0035
50/100	\checkmark	x	Exp	37B	. 0293	. 0378	. 0438	. 0486	. 0486	. 0491	. 0463	. 0415	. 0363
			Weib	38B	. 0313	. 0382	. 0454	. 0484	. 0502	. 0494	. 0459	. 0417	. 0360
			Gomp	39B	. 0254	. 0358	. 0437	. 0493	. 0500	. 0478	. 0436	. 0407	. 0333
	\checkmark	\checkmark	Exp	40B	. 0300	. 0402	. 0442	. 0472	. 0492	. 0471	. 0446	. 0398	. 0327
			Weib	41B	. 0301	. 0376	. 0432	. 0460	. 0482	. 0457	. 0429	. 0369	. 0291
			Gomp	42B	. 0245	. 0340	. 0402	. 0434	. 0449	. 0441	. 0418	. 0382	. 0315
Bedeutung der Abkürzungen:													
$\begin{aligned} & \mathrm{S} \hat{=} \text { Stichprobenumfang Gruppe 0/Gruppe } 1, \mathrm{Z} \hat{=} \text { Zensierungen, } \mathrm{B} \hat{=} \text { Bindungen, } \mathrm{V} \hat{=} \text { Verteilungstyp } \\ & \checkmark \widehat{=} \text { vorhanden, } \mathrm{x} \hat{=} \text { nicht vorhanden } \end{aligned}$													

Tabelle B.21: Varianz des Wassmer-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr .	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 1550	. 1700	. 1734	. 1768	. 1760	. 1760	. 1755	. 1648	. 1573
			Weib	2B	. 1546	. 1679	. 1657	. 1766	. 1763	. 1698	. 1700	. 1661	. 1601
			Gomp	3B	. 1526	. 1697	. 1715	. 1844	. 1868	. 1794	. 1788	. 1664	. 1467
	\checkmark	\checkmark	Exp	4B	. 1589	. 1692	. 1821	. 1807	. 1845	. 1796	. 1793	. 1706	. 1584
			Weib	5B	. 1565	. 1724	. 1740	. 1783	. 1756	. 1759	. 1773	. 1735	. 1569
			Gomp	6B	. 1470	. 1667	. 1789	. 1824	. 1880	. 1842	. 1853	. 1671	. 1519
100/100	\checkmark	x	Exp	13B	. 0312	. 0325	. 0330	. 0334	. 0339	. 0338	. 0335	. 0329	. 0314
			Weib	14B	. 0318	. 0332	. 0336	. 0334	. 0337	. 0331	. 0329	. 0334	. 0309
			Gomp	15B	. 0288	. 0321	. 0336	. 0336	. 0344	. 0338	. 0334	. 0313	. 0289
	\checkmark	\checkmark	Exp	16B	. 0304	. 0327	. 0329	. 0338	. 0342	. 0334	. 0338	. 0327	. 0316
			Weib	17B	. 0321	. 0321	. 0344	. 0335	. 0335	. 0346	. 0330	. 0330	. 0315
			Gomp	18B	. 0277	. 0313	. 0324	. 0334	. 0338	. 0340	. 0319	. 0318	. 0280
500/500	\checkmark	x	Exp	25B	. 0063	. 0064	. 0067	. 0066	. 0065	. 0066	. 0067	. 0066	. 0062
			Weib	26B	. 0064	. 0066	. 0069	. 0067	. 0065	. 0066	. 0068	. 0066	. 0063
			Gomp	27B	. 0056	. 0062	. 0065	. 0067	. 0066	. 0068	. 0065	. 0063	. 0058
	\checkmark	\checkmark	Exp	28B	. 0061	. 0066	. 0066	. 0068	. 0067	. 0066	. 0066	. 0065	. 0061
			Weib	29B	. 0062	. 0066	. 0067	. 0068	. 0067	. 0065	. 0067	. 0066	. 0063
			Gomp	30B	. 0054	. 0061	. 0065	. 0065	. 0065	. 0066	. 0064	. 0062	. 0055
50/100	\checkmark	x	Exp	37B	. 0392	. 0442	. 0470	. 0500	. 0501	. 0526	. 0535	. 0550	. 0593
			Weib	38B	. 0398	. 0436	. 0474	. 0488	. 0508	. 0526	. 0537	. 0560	. 0593
			Gomp	39B	. 0389	. 0457	. 0494	. 0526	. 0527	. 0513	. 0498	. 0529	. 0526
	\checkmark	\checkmark	Exp	40B	. 0400	. 0472	. 0479	. 0496	. 0521	. 0521	. 0535	. 0546	. 0554
			Weib	41B	. 0397	. 0444	. 0471	. 0484	. 0517	. 0519	. 0545	. 0552	. 0547
			Gomp	42B	. 0378	. 0449	. 0486	. 0503	. 0518	. 0517	. 0512	. 0513	. 0505
Bedeutun $\begin{aligned} & S \hat{=} \text { Stich } \\ & \checkmark \widehat{=} \text { vorh } \end{aligned}$	$\begin{aligned} & 5 \text { de } \\ & \text { prob } \\ & \text { nde } \end{aligned}$	Ab	ürzunge fang Gru nicht	ppe orhan	Gruppe en	$1, \mathrm{z} \widehat{=}$	ensierun	$\text { gen, } \mathrm{B} \hat{=}$	Bindu	gen, V	$\hat{=} \text { Vertei }$	ungsty	

Tabelle B.22: Varianz des WBC-I-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 2182	.2127	. 2013	. 1979	. 1957	. 1976	. 2035	. 2061	. 2229
			Weib	2B	. 2188	. 2070	. 1869	. 1911	. 1887	. 1834	. 1923	. 2046	. 2261
			Gomp	3B	. 2324	. 2244	. 2105	. 2185	. 2191	. 2119	. 2190	. 2194	. 2200
	\checkmark	\checkmark		4B	. 2177	. 2045	. 2016	. 1925	. 1947	. 1897	. 1978	. 2017	. 2149
			Weib	5B	. 2176	. 2064	. 1879	. 1829	. 1763	. 1778	. 1858	. 1963	. 2063
			Gomp	6B	. 2122	. 2017	. 1963	. 1898	. 1941	. 1909	. 2022	. 2022	. 2176
100/100	\checkmark	x	Exp	13B	. 0414	. 0376	. 0354	. 0347	. 0348	. 0350	. 0359	. 0382	. 0418
			Weib	14B	. 0430	. 0387	. 0361	. 0343	. 0342	. 0340	. 0352	. 0389	. 0420
			Gomp	15B	. 0414	. 0388	. 0371	. 0353	. 0358	. 0356	. 0367	. 0377	. 0410
	\checkmark	\checkmark	Exp	16B	. 0399	. 0369	. 0343	. 0338	. 0338	. 0332	. 0347	. 0363	. 0407
			Weib	17B	. 0428	. 0364	. 0354	. 0326	. 0321	. 0332	. 0327	. 0355	. 0392
			Gomp	18B	. 0381	. 0352	. 0322	. 0312	$.0310$. 0318	$.0316$. 0355	$.0377$
500/500	\checkmark	x	Exp	25B	. 0083	. 0073	. 0071	. 0067	. 0066	. 0067	.0070	. 0075	. 0081
			Weib	26B	. 0085	. 0076	. 0073	. 0068	. 0065	. 0067	. 0072	. 0076	. 0084
			Gomp	27B	. 0079	. 0074	. 0069	. 0069	. 0066	. 0070	. 0070	. 0074	. 0080
	\checkmark	\checkmark	Exp	28B	. 0079	. 0073	. 0068	. 0067	. 0065	. 0064	. 0066	. 0071	. 0077
			Weib	29B	. 0082	. 0074	. 0068	. 0066	. 0063	. 0062	. 0066	. 0069	. 0078
			Gomp	30 B	. 0073	. 0068	. 0063	. 0059	. 0058	. 0060	. 0062	. 0068	. 0074
50/100	\checkmark	x	Exp	37B	. 0572	. 0550	. 0528	. 0530	. 0515	. 0532	. 0540	. 0566	. 0655
			Weib	38 B	. 0599	. 0557	. 0539	. 0515	. 0516	. 0521	. 0528	. 0566	. 0658
			Gomp	39B	. 0578	. 0569	. 0558	. 0563	. 0554	. 0537	. 0530	. 0593	. 0650
	\checkmark	\checkmark	Exp	40B	. 0577	. 0575	. 0523	. 0509	. 0515	. 0503	. 0513	. 0535	. 0584
			Weib	41B	. 0591	. 0554	. 0517	. 0488	. 0493	. 0477	. 0489	. 0501	. 0546
			Gomp	42B	. 0542	. 0521	. 0493	. 0479	. 0480	. 0480	. 0491	. 0528	. 0589
Bedeutung der Abkürzungen:													
$\begin{aligned} & \mathrm{S} \widehat{=} \text { Stichprobenumfang Gruppe } 0 / \text { Gruppe } 1, \mathrm{Z} \widehat{=} \text { Zensierungen, } \mathrm{B} \hat{=} \text { Bindungen, } \mathrm{V} \hat{=} \text { Verteilungstyp } \\ & \checkmark \widehat{=} \text { vorhanden, } \mathrm{x} \widehat{=} \text { nicht vorhanden } \end{aligned}$													

Tabelle B.23: Varianz des WBC-II-Schätzers für die einzelnen logarithmierten Hazard-Ratios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr .	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 1552	. 1710	. 1758	. 1803	. 1798	. 1794	. 1780	. 1658	. 1575
			Weib	2B	. 1547	. 1689	. 1681	. 1800	. 1801	. 1731	. 1723	. 1671	. 1603
			Gomp	3B	. 1529	. 1710	. 1739	. 1880	. 1907	. 1829	. 1814	. 1676	. 1469
	\checkmark	\checkmark	Exp	4B	. 1591	. 1698	. 1832	. 1818	. 1854	. 1801	. 1796	. 1707	. 1586
			Weib	5B	. 1566	. 1726	. 1740	. 1774	. 1738	. 1739	. 1751	. 1722	. 1570
			Gomp	6B	. 1472	. 1670	. 1789	. 1822	. 1878	. 1840	. 1852	. 1673	. 1522
100/100	\checkmark	x	Exp	13B	. 0312	. 0325	. 0332	. 0343	. 0353	. 0347	. 0337	. 0329	. 0314
			Weib	14B	. 0318	. 0332	. 0338	. 0343	. 0352	. 0340	. 0330	. 0334	. 0309
			Gomp	15B	. 0288	. 0321	. 0337	. 0345	. 0358	. 0347	. 0335	. 0314	. 0289
	\checkmark	\checkmark	Exp	16B	. 0304	. 0327	. 0330	. 0340	. 0343	. 0334	. 0338	. 0327	. 0317
			Weib	17B	. 0321	. 0321	. 0344	. 0335	. 0335	. 0344	. 0330	. 0330	. 0315
			Gomp	18B	. 0277	. 0313	. 0323	. 0330	. 0330	. 0335	. 0318	. 0318	. 0280
500/500	\checkmark	x	Exp	25B	. 0063	. 0064	. 0067	. 0067	. 0072	. 0066	. 0067	. 0066	. 0062
			Weib	26B	. 0064	. 0066	. 0069	. 0067	. 0071	. 0067	. 0068	. 0066	. 0063
			Gomp	27B	. 0056	. 0062	. 0065	. 0068	. 0072	. 0069	. 0065	. 0063	. 0058
	\checkmark	\checkmark	Exp	28B	. 0061	. 0066	. 0066	. 0068	. 0069	. 0066	. 0066	. 0065	. 0062
			Weib	29B	. 0062	. 0066	. 0067	. 0069	. 0069	. 0066	. 0067	. 0066	. 0063
			Gomp	30 B	. 0054	. 0062	. 0065	. 0065	. 0060	. 0066	. 0064	. 0062	. 0055
50/100	\checkmark	x	Exp	37 B	. 0393	. 0442	. 0473	. 0511	. 0516	. 0536	. 0538	. 0550	. 0593
			Weib	38B	. 0397	. 0436	. 0477	. 0498	. 0523	. 0537	. 0540	. 0561	. 0594
			Gomp	39B	. 0389	. 0458	. 0498	. 0538	. 0542	. 0524	. 0501	. 0529	. 0526
	\checkmark	\checkmark	Exp	40B	. 0401	. 0473	. 0479	. 0495	. 0520	. 0519	. 0535	. 0546	. 0554
			Weib	41B	. 0396	. 0444	. 0470	. 0481	. 0512	. 0514	. 0543	. 0553	. 0548
			Gomp	42B	. 0379	. 0450	. 0484	. 0495	. 0506	. 0508	. 0510	. 0513	. 0505
Bedeutu $\begin{aligned} & \mathrm{S} \hat{=} \text { Sticl } \\ & \checkmark \widehat{=} \text { vorh } \end{aligned}$	de	Ab	irzunge fang Gr nicht	ppe rhan	Gruppe n	$1, \mathrm{Z}$ 人	ensieru	gen, B	Bindu	gen, V	Verteil	ungsty	

Tabelle B.24: Varianz des SL-Schätzers für die einzelnen logarithmierten HazardRatios in den 24 wiederholten Szenarien (ungleiche Zensierungsvertlg.)

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1B	. 0911	. 1209	. 1405	. 1532	. 1547	. 1522	. 1431	. 1169	. 0917
			Weib	2B	. 0950	. 1232	. 1394	. 1599	. 1628	. 1541	. 1431	. 1223	. 0981
			Gomp	3B	. 0791	. 1122	. 1292	. 1474	. 1521	. 1442	. 1348	. 1104	. 0786
	\checkmark	\checkmark	Exp	4B	. 0953	. 1214	. 1489	. 1566	. 1614	. 1552	. 1437	. 1211	. 0932
			Weib	5B	. 0942	. 1238	. 1427	. 1556	. 1552	. 1512	. 1399	. 1177	. 0857
			Gomp	6B	. 0797	. 1107	. 1320	. 1418	. 1478	. 1443	. 1379	. 1109	. 0841
100/100	\checkmark	x	Exp	13B	. 0179	. 0235	. 0283	. 0314	. 0328	. 0318	. 0287	. 0236	. 0178
			Weib	14B	. 0193	. 0246	. 0291	. 0318	. 0331	. 0316	. 0285	. 0248	. 0187
			Gomp	15B	. 0141	. 0214	. 0275	. 0308	. 0325	. 0310	. 0275	. 0210	. 0146
	\checkmark	\checkmark	Exp	16B	. 0173	. 0233	. 0277	. 0310	. 0322	. 0306	. 0282	. 0230	. 0177
			Weib	17B	. 0189	. 0230	. 0287	. 0304	. 0311	. 0309	. 0265	. 0221	. 0167
			Gomp	18B	. 0141	. 0206	. 0251	. 0281	. 0290	. 0286	. 0248	. 0211	. 0146
500/500	\checkmark	x	Exp	25B	. 0036	. 0046	. 0058	. 0064	. 0065	. 0063	. 0058	. 0048	. 0035
			Weib	26B	. 0038	. 0049	. 0060	. 0064	. 0065	. 0064	. 0059	. 0049	. 0038
			Gomp	27B	. 0028	. 0041	. 0054	. 0064	. 0065	. 0065	. 0055	. 0042	. 0029
	\checkmark	\checkmark	Exp	28B	. 0035	. 0047	. 0056	. 0063	. 0065	. 0061	. 0055	. 0046	. 0035
			Weib	29B	. 0036	. 0047	. 0056	. 0063	. 0063	. 0059	. 0054	. 0044	. 0033
			Gomp	30B	. 0027	. 0040	. 0051	. 0056	. 0057	. 0057	. 0051	. 0041	. 0028
50/100		x	Exp	37B	. 0322	. 0422	. 0482	. 0508	. 0480	. 0449	. 0387	. 0311	. 0249
	\checkmark		Weib	38B	. 0336	. 0417	. 0487	. 0502	. 0495	. 0459	. 0396	. 0332	. 0266
			Gomp	39B	. 0295	. 0424	. 0497	. 0521	. 0488	. 0423	. 0339	. 0269	. 0195
	\checkmark	\checkmark	Exp	40B	. 0326	. 0444	. 0480	. 0490	. 0484	. 0436	. 0379	. 0308	. 0238
			Weib	41B	. 0322	. 0407	. 0461	. 0473	. 0476	. 0430	. 0379	. 0308	. 0238
			Gomp	42B	. 0286	. 0397	. 0449	. 0454	. 0439	. 0397	. 0336	. 0266	. 0198
Bedeutung der Abkürzungen:													
$\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe 0 /Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp $\checkmark \widehat{=}$ vorhanden, $\mathrm{x} \hat{=}$ nicht vorhanden													

Tabelle B.25: Anzahl der Schätzwerte (von 10000) des Cox-Schätzers außerhalb der Plotbegrenzungen in den Grafiken für $\ln (\omega)$ der Abbildungen C.1-C. 50 (gleiche Zensierungsverteilungen), nach Szenario und Hazard-Ratio

Szenario	ω	Cox- Schätzer
1	3	5
2	$\frac{1}{3}$	2
	3	1
3	$\frac{1}{3}$	2
	2	2
	3	1
4	$\frac{1}{3}$	1
	3	3
5	$\frac{1}{3}$	1
	2	1
	3	3
6	$\frac{1}{3}$	1
	2	1
	3	3
8	$\frac{1}{3}$	1
10	$\frac{1}{3}$	1
15	$\frac{1}{3}$	2
18	$\frac{1}{3}$	1
	3	1

Tabelle B.26: Anzahl der Schätzwerte (von 10000) der Schätzer außerhalb der Plotbegrenzungen in den Grafiken für ω der Abbildungen C.1-C. 50 (gleiche Zensierungsverteilungen), nach Szenario und Hazard-Ratio

Szenario	ω	Cox- Schätzer	Breslow- Schätzer	WassmerSchätzer	WBC-I- Schätzer	WBC-II- Schätzer	SL- Schätzer
1	1.5	3	0	0	0	0	0
	2	18	1	0	3	0	0
	3	168	5	4	65	4	0
2	1.5	4	0	0	1	0	0
	2	16	1	0	5	0	0
	3	134	21	5	68	5	0
3	5	2	0	0	0	0	0
	6	2	0	0	0	0	0
	1.5	8	0	0	1	0	0
	2	44	0	0	11	0	0
	3	225	0	0	67	0	0
4	5	1	0	0	0	0	0
	1.5	7	0	0	1	0	0
	2	20	0	0	4	0	0
	3	172	5	8	42	8	0
5	5	1	0	0	0	0	0
	1.5	2	0	0	0	0	0
	2	16	3	2	5	2	0
	3	123	12	9	35	8	1
6	5	1	0	0	0	0	0
	1.5	6	0	0	0	0	0
	2	30	0	0	9	0	0
	3	241	0	2	57	2	0
7	2	2	0	0	0	0	0
	3	45	0	0	4	0	0
8	2	6	0	0	0	0	0
	3	49	0	0	3	0	0
9	2	3	0	0	0	0	0
	3	41	0	0	5	0	0
10	2	1	0	0	0	0	0
	3	44	0	0	4	0	0
11	2	4	0	0	2	0	0
	3	47	0	0	3	0	0
12	2	2	0	0	0	0	0
	3	50	0	0	1	0	0

Tabelle B. 26 (Fortsetzung): Anzahl der Schätzwerte (von 10000) der Schätzer außerhalb der Plotbegrenzungen in den Grafiken für ω der Abbildungen C.1-C. 50 (gleiche Zensierungsverteilungen), nach Szenario und Hazard-Ratio

Szenario	ω	Cox- Schätzer	Breslow- Schätzer	WassmerSchätzer	WBC-I- Schätzer	WBC-II- Schätzer	SL- Schätzer
13	3	61	0	6	37	7	0
14	3	57	9	16	45	17	1
15	3	76	0	2	37	2	0
16	3	68	0	4	33	4	0
17	3	42	2	7	11	7	0
18	3	78	0	1	22	2	0
19	3	6	0	0	4	0	0
20	3	12	0	0	5	0	0
21	3	12	0	0	5	0	0
22	3	12	0	0	2	0	0
23	3	10	0	0	0	0	0
24	3	10	0	0	1	0	0
25	3	2	0	0	2	0	0
26	3	1	0	0	1	0	0
27	3	3	0	0	3	0	0
28	3	3	0	0	0	0	0
30	3	5	0	0	0	0	0
32	3	1	0	0	0	0	0
37	3	17	0	22	17	13	0
38	2	1	0	1	1	1	0
	3	8	0	43	7	17	0
39	3	29	0	2	28	2	0
40	3	21	0	22	12	11	0
41	3	6	0	16	2	9	0
42	3	26	0	4	11	3	0
43	3	2	0	0	2	0	0
44	3	4	0	0	3	0	0
45	3	4	0	0	4	0	0
46	3	3	0	0	2	0	0
47	3	4	0	0	1	0	0
48	3	2	0	0	0	0	0
49	3	17	0	0	1	0	0
50	3	8	0	0	0	0	0

Tabelle B.27: Anzahl der Schätzwerte (von 10000) des Cox-Schätzers außerhalb der Plotbegrenzungen in den Grafiken für $\ln (\omega)$ der Abbildungen C.51-C. 74 (ungleiche Zensierungsverteilungen), nach Szenario und Hazard-Ratio

Szenario	ω	Cox- Schätzer
1B	$\frac{1}{3}$	4
	2	1
	3	9
2B	$\frac{1}{3}$	2
	3	3
3B	$\frac{1}{3}$	3
	3	1
4B	$\frac{1}{3}$	5
	$\frac{1}{2}$	1
	3	4
5B	$\frac{1}{3}$	1
	3	2
6B	$\frac{1}{3}$	1
	2	1
	3	2
14B	$\frac{1}{3}$	1
	3	1
16B	$\frac{1}{3}$	1
$18 B$	$\frac{1}{3}$	1
	3	1
		1

Tabelle B.28: Anzahl der Schätzwerte (von 10000) des Cox-, Wassmer-, WBC-I- bzw. WBC-II-Schätzers außerhalb der Plotbegrenzungen in den Grafiken für ω der Abbildungen C.51-C. 74 (ungleiche Zensierungsverteilungen), nach Szenario und Hazard-Ratio

Szenario	ω	Cox- Schätzer	WassmerSchätzer	WBC-I- Schätzer	WBC-II- Schätzer
1B	1.5	5	0	0	0
	2	26	0	5	0
	3	183	4	73	6
2B	1.5	2	0	1	0
	2	20	0	2	0
	3	179	0	52	0
3B	5	2	0	0	0
	6	2	0	0	0
	1.5	8	0	3	0
	2	45	0	11	0
	3	213	0	65	0
4B	5	1	0	0	0
	1.5	5	0	1	0
	2	22	0	5	0
	3	178	1	48	1
5B	5	1	0	0	0
	1.5	2	0	0	0
	2	15	0	7	0
	3	135	1	28	1
6B	5	1	0	0	0
	1.5	6	0	1	0
	2	28	0	7	0
	3	232	0	56	0
13B	3	72	2	45	2
14B	3	87	2	44	3
15B	3	68	1	45	1
16B	3	67	1	29	1
17B	3	29	0	1	0
18B	3	79	1	21	1
25B	3	2	0	1	0
26B	3	3	0	1	0
27B	3	5	0	3	0
28B	3	3	0	0	0
30B	3	4	0	1	0
37B	3	32	5	32	2
38B	3	32	2	32	2
39B	3	36	5	36	1
40B	3	21	2	8	1
41B	3	13	0	1	0
42B	3	34	4	16	2

Tabelle B.29: Anzahl der Fälle (von 10000) im ersten Durchlauf der 50 Szenarien (gleiche Zensierungsverteilungen), in denen aufgrund der Datenlage kein Schätzergebnis für den Cox- bzw. Breslow-Schätzer berechnet werden konnte, nach Szenario und Hazard-Ratio

Szenario	ω	Cox-Schätzer	Breslow-Schätzer
1	$\frac{1}{3}$	1	0
	3	1	0
3	$\frac{1}{3}$	6	0
	$\frac{1}{2}$	3	0
	$\frac{2}{3}$	1	0
	1.5	1	0
	3	10	0
4	$\frac{1}{2}$	1	0
4	3	1	0
5	$\frac{1}{3}$	2	0
5	3	3	2
6	$\frac{1}{3}$	2	0
	$\frac{5}{6}$	1	0
	2	1	0
	3	3	0
9	3	1	0
42	$\frac{2}{3}$	1	0
44	$\frac{2}{3}$	1	0
45	1	1	0

Tabelle B.30: Anzahl der Fälle (von 10000) im wiederholten Durchlauf der 24 Szenarien mit Zensierungen (ungleiche Zensierungsverteilungen), in denen aufgrund der Datenlage kein Schätzergebnis für den Cox-Schätzer berechnet werden konnte, nach Szenario und Hazard-Ratio

Szenario	ω	Cox-Schätzer
1B	3	4
2B	$\frac{1}{3}$	4
	$\frac{1}{2}$	1
	1.5	1
	3	1
3B	$\frac{1}{3}$	6
	$\frac{1}{2}$	2
	$\frac{2}{3}$	1
	1.5	1
	2	1
	3	9
4B	3	2
5B	$\frac{1}{3}$	2
	$\frac{1}{2}$	1
	2	2
	3	2
6B	$\frac{1}{3}$	6
	$\frac{1}{2}$	1
	$\frac{2}{3}$	1
	2	1
	3	6
37B	1.2	1
39B	1.2	1
40B	$\frac{5}{6}$	1
	1.2	1
	1.5	2

Tabelle B.31: Verzerrung-minimierender Schätzer unter Cox- und WBC-I-Schätzer für alle balancierten Szenarien ohne Bindungen und Störgröße nach logarithmierten Hazard-Ratio

Eigenschaften des Szenarios					logarithmiertes Hazard-Ratio $\ln (\omega)$								
S	Z	B	V	Nr.	$\ln \left(\frac{1}{3}\right)$	$\ln \left(\frac{1}{2}\right)$	$\ln \left(\frac{2}{3}\right)$	$\ln \left(\frac{5}{6}\right)$	0	$\ln \left(\frac{6}{5}\right)$	$\ln \left(\frac{3}{2}\right)$	$\ln (2)$	$\ln (3)$
20/20	\checkmark	x	Exp	1	WBI	WBI	WBI	WBI	Cox	WBI	WBI	WBI	WBI
			Weib	2	WBI								
			Gomp	3	WBI	WBI	WBI	WBI	Cox	WBI	WBI	WBI	WBI
	\checkmark	x	Exp	1B	WBI	WBI	WBI	WBI	Cox	WBI	WBI	WBI	WBI
			Weib	2B	WBI								
			Gomp	3B	WBI	WBI	WBI	WBI	Cox	WBI	WBI	WBI	WBI
	x	x	Exp	7	WBI	WBI	WBI	WBI	Cox	WBI	WBI	WBI	WBI
			Weib	8	WBI								
			Gomp	9	WBI								
100/100	\checkmark	x	Exp	13	WBI	WBI	Cox	WBI	WBI	WBI	WBI	WBI	WBI
			Weib	14	WBI	WBI	WBI	WBI	WBI	Cox	Cox	WBI	WBI
			Gomp	15	WBI								
	\checkmark	x	Exp	13B	WBI	WBI	Cox	WBI	WBI	WBI	WBI	WBI	WBI
			Weib	14B	Cox	WBI	WBI	WBI	WBI	Cox	WBI	WBI	Cox
			Gomp	15B	WBI								
	x	x	Exp	19	WBI	WBI	WBI	WBI	WBI	Cox	WBI	WBI	WBI
			Weib	20	WBI	WBI	WBI	WBI	Cox	WBI	WBI	WBI	WBI
			Gomp	21	WBI	WBI	WBI	Cox	WBI	WBI	WBI	WBI	WBI
500/500	\checkmark	x	Exp	25	WBI	WBI	WBI	WBI	WBI	WBI	Cox	WBI	Cox
			Weib	26	WBI	WBI	WBI	Cox	WBI	WBI	WBI	WBI	Cox
				27	Cox	WBI							
	\checkmark	x	Exp	25B	Cox	WBI	WBI	WBI	WBI	WBI	Cox	WBI	Cox
			Weib	26B	Cox	WBI	WBI	Cox	WBI	WBI	WBI	Cox	Cox
				27B	WBI								
	x	x	Exp	31	Cox	WBI	WBI	Cox	WBI	WBI	WBI	WBI	Cox
			Weib	32	Cox	WBI	WBI	Cox	WBI	WBI	WBI	WBI	Cox
			Gomp	33	Cox	WBI	WBI	WBI	WBI	WBI	WBI		
Bedeutu $\mathrm{S} \widehat{=}$ Stic $\checkmark \widehat{=}$ vorh	de	Ab	ürzung fang Gr = nicht		Grupp n, WBI	$\begin{gathered} 1, \mathrm{Z} \hat{=} \\ \mathrm{I} \hat{=} \mathrm{WB} \end{gathered}$	Zensierun C-I	ngen, B	Bindu	gen, V	$\hat{=} \text { Verte }$	lungsty	

C Weitere Abbildungen

Zur Visualisierung der Ergebnisse der Simulationsstudie zum Vergleich der vorgestellten Punkt- und Intervallschätzer für das (logarithmierte) Hazard-Ratio in zweiarmigen Überlebenszeitstudien wurden insgesamt 124 Abbildungen erzeugt. Diese Abbildungen sind in diesem Kapitel zusammengestellt.

In den Abbildungen C.1-C. 50 auf den Seiten 154-203 bzw. in den Abbildungen C.75C. 91 auf den Seiten 228-244 finden sich die Darstellungen der parallelen Boxplots bzw. der Balkendiagramme für die Ergebnisse der Punktschätzer der 50 Szenarien der Simulationsstudie (vgl. Tabelle 4.1 auf Seite 51) unter Verwendung von gleichen Zensierungsverteilungen (in den Szenarien mit Zensierungen).

Die entsprechenden Darstellungen der Ergebnisse der Punktschätzer bezüglich der Variation der 24 Szenarien mit Zensierungen unter ungleichen Verteilungen werden in den Abbildungen C.51-C. 74 auf den Seiten 204-227 (parallele Boxplots) bzw. in den Abbildungen C.92-C. 99 auf den Seiten 245-252 (Balkendiagramme) bereitgestellt.

Schließlich zeigen die Abbildungen C.100-C. 116 auf den Seiten 253-269 bzw. die Abbildungen C.117-C. 124 auf den Seiten 270-277 die geschätzten Überdeckungswahrscheinlichkeiten und Breiten der Konfidenzintervalle für die 50 Szenarien (bei gleichen Zensierungsverteilungen) bzw. der 24 wiederholten Szenarien mit Zensierungen unter ungleichen Verteilungen.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 20/20 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.1: Ergebnisse der Punktschätzer zu Szenario 1 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 20/20 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.2: Ergebnisse der Punktschätzer zu Szenario 2 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 20/20 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.3: Ergebnisse der Punktschätzer zu Szenario 3 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Exp(variierend)/Exp(0.0693), 20/20 Beobachtungen
Zensierungen: 40% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.4: Ergebnisse der Punktschätzer zu Szenario 4 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5 , variierend)/Weib($0.5,0.2192$), 20/20 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.5: Ergebnisse der Punktschätzer zu Szenario 5 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 20/20 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.6: Ergebnisse der Punktschätzer zu Szenario 6 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 20/20 Beobachtungen
Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.7: Ergebnisse der Punktschätzer zu Szenario 7 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 20/20 Beobachtungen
Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.8: Ergebnisse der Punktschätzer zu Szenario 8 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 20/20 Beobachtungen
Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.9: Ergebnisse der Punktschätzer zu Szenario 9 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Exp(variierend)/Exp(0.0693), 20/20 Beobachtungen Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.10: Ergebnisse der Punktschätzer zu Szenario 10 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5 , variierend)/Weib($0.5,0.2192$), 20/20 Beobachtungen Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.11: Ergebnisse der Punktschätzer zu Szenario 11 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 20/20 Beobachtungen
Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.12: Ergebnisse der Punktschätzer zu Szenario 12 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 100/100 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.13: Ergebnisse der Punktschätzer zu Szenario 13 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 100/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.14: Ergebnisse der Punktschätzer zu Szenario 14 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 100/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.15: Ergebnisse der Punktschätzer zu Szenario 15 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 100/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.16: Ergebnisse der Punktschätzer zu Szenario 16 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 100/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.17: Ergebnisse der Punktschätzer zu Szenario 17 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe $0 /$ Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 100/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.18: Ergebnisse der Punktschätzer zu Szenario 18 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 100/100 Beobachtungen Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.19: Ergebnisse der Punktschätzer zu Szenario 19 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 100/100 Beobachtungen Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.20: Ergebnisse der Punktschätzer zu Szenario 20 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Abbildung C.21: Ergebnisse der Punktschätzer zu Szenario 21 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 100/100 Beobachtungen
Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.22: Ergebnisse der Punktschätzer zu Szenario 22 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 100/100 Beobachtungen
Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.23: Ergebnisse der Punktschätzer zu Szenario 23 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 100/100 Beobachtungen Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.24: Ergebnisse der Punktschätzer zu Szenario 24 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 500/500 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.25: Ergebnisse der Punktschätzer zu Szenario 25 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 500/500 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.26: Ergebnisse der Punktschätzer zu Szenario 26 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 500/500 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.27: Ergebnisse der Punktschätzer zu Szenario 27 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 500/500 Beobachtungen
Zensierungen: $\mathbf{4 0 \%}$ (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.28: Ergebnisse der Punktschätzer zu Szenario 28 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 500/500 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.29: Ergebnisse der Punktschätzer zu Szenario 29 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe $0 /$ Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 500/500 Beobachtungen Zensierungen: 40% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.30: Ergebnisse der Punktschätzer zu Szenario 30 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Exp(variierend)/Exp(0.0693), 500/500 Beobachtungen Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.31: Ergebnisse der Punktschätzer zu Szenario 31 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 500/500 Beobachtungen
Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.32: Ergebnisse der Punktschätzer zu Szenario 32 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3 , variierend)/Gomp($0.3,0.0109$), 500/500 Beobachtungen Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.33: Ergebnisse der Punktschätzer zu Szenario 33 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 500/500 Beobachtungen
Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.34: Ergebnisse der Punktschätzer zu Szenario 34 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 500/500 Beobachtungen
Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.35: Ergebnisse der Punktschätzer zu Szenario 35 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 500/500 Beobachtungen
Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.36: Ergebnisse der Punktschätzer zu Szenario 36 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 50/100 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.37: Ergebnisse der Punktschätzer zu Szenario 37 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 50/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.38: Ergebnisse der Punktschätzer zu Szenario 38 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 50/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.39: Ergebnisse der Punktschätzer zu Szenario 39 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 50/100 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.40: Ergebnisse der Punktschätzer zu Szenario 40 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), $50 / 100$ Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.41: Ergebnisse der Punktschätzer zu Szenario 41 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 50/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.42: Ergebnisse der Punktschätzer zu Szenario 42 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 50/100 Beobachtungen
Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.43: Ergebnisse der Punktschätzer zu Szenario 43 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe $0 /$ Gruppe 1: Weib(0.5 , variierend)/Weib(0.5, 0.2192), 50/100 Beobachtungen
Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.44: Ergebnisse der Punktschätzer zu Szenario 44 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp($0.3,0.0109$), 50/100 Beobachtungen Zensierungen: keine, Bindungen: keine, Störeffekt: keiner

Abbildung C.45: Ergebnisse der Punktschätzer zu Szenario 45 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 50/100 Beobachtungen Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.46: Ergebnisse der Punktschätzer zu Szenario 46 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 50/100 Beobachtungen
Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.47: Ergebnisse der Punktschätzer zu Szenario 47 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3 , variierend)/Gomp($0.3,0.0109$), $50 / 100$ Beobachtungen
Zensierungen: keine, Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.48: Ergebnisse der Punktschätzer zu Szenario 48 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 100/100 Beobachtungen
Zensierungen: keine, Bindungen: keine, Störeffekt: 2

Abbildung C.49: Ergebnisse der Punktschätzer zu Szenario 49 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe $0 /$ Gruppe 1: Weib(0.5 , variierend)/Weib($0.5,0.2192$), $100 / 100$ Beobachtungen Zensierungen: keine, Bindungen: keine, Störeffekt: 4

Abbildung C.50: Ergebnisse der Punktschätzer zu Szenario 50 der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei gleichen Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 20/20 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.51: Ergebnisse der Punktschätzer zu Szenario 1B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe $0 /$ Gruppe 1: Weib(0.5 , variierend)/Weib($0.5,0.2192$), 20/20 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.52: Ergebnisse der Punktschätzer zu Szenario 2B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 20/20 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.53: Ergebnisse der Punktschätzer zu Szenario 3B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Exp(variierend)/Exp(0.0693), 20/20 Beobachtungen
Zensierungen: 40% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.54: Ergebnisse der Punktschätzer zu Szenario 4B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 20/20 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.55: Ergebnisse der Punktschätzer zu Szenario 5B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 20/20 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.56: Ergebnisse der Punktschätzer zu Szenario 6B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), $100 / 100$ Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.57: Ergebnisse der Punktschätzer zu Szenario 13B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe $0 /$ Gruppe 1: Weib(0.5 , variierend)/Weib($0.5,0.2192$), $100 / 100$ Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.58: Ergebnisse der Punktschätzer zu Szenario 14B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 100/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.59: Ergebnisse der Punktschätzer zu Szenario 15B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Exp(variierend)/Exp(0.0693), 100/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.60: Ergebnisse der Punktschätzer zu Szenario 16B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 100/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.61: Ergebnisse der Punktschätzer zu Szenario 17B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp($0.3,0.0109$), 100/100 Beobachtungen Zensierungen: 40% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.62: Ergebnisse der Punktschätzer zu Szenario 18B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 500/500 Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.63: Ergebnisse der Punktschätzer zu Szenario 25B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5 , variierend)/Weib($0.5,0.2192$), $500 / 500$ Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.64: Ergebnisse der Punktschätzer zu Szenario 26B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3 , variierend)/Gomp($0.3,0.0109$), 500/500 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.65: Ergebnisse der Punktschätzer zu Szenario 27B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Exp(variierend)/Exp(0.0693), 500/500 Beobachtungen
Zensierungen: $\mathbf{4 0 \%}$ (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.66: Ergebnisse der Punktschätzer zu Szenario 28B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 500/500 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.67: Ergebnisse der Punktschätzer zu Szenario 29B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp($0.3,0.0109$), 500/500 Beobachtungen Zensierungen: 40% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.68: Ergebnisse der Punktschätzer zu Szenario 30B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), $50 / 100$ Beobachtungen
Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.69: Ergebnisse der Punktschätzer zu Szenario 37B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), 50/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.70: Ergebnisse der Punktschätzer zu Szenario 38B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp(0.3, 0.0109), 50/100 Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: keine, Störeffekt: keiner

Abbildung C.71: Ergebnisse der Punktschätzer zu Szenario 39B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: $\operatorname{Exp}($ variierend)/Exp(0.0693), 50/100 Beobachtungen
Zensierungen: $\mathbf{4 0 \%}$ (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.72: Ergebnisse der Punktschätzer zu Szenario 40B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Weib(0.5, variierend)/Weib(0.5, 0.2192), $50 / 100$ Beobachtungen Zensierungen: 40\% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.73: Ergebnisse der Punktschätzer zu Szenario 41B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Gruppe 0/Gruppe 1: Gomp(0.3, variierend)/Gomp($0.3,0.0109$), $50 / 100$ Beobachtungen Zensierungen: 40% (Gruppe 0/Gruppe 1: siehe Grafik), Bindungen: siehe Grafik, Störeffekt: keiner

Abbildung C.74: Ergebnisse der Punktschätzer zu Szenario 42B der Simulationsstudie zur Schätzung des (logarithmierten) Hazard-Ratios bei ungl. Zensierungsvtlg.

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3 , variierend)/Gomp $(0.3,0.0109)$ (Gruppe 0/Gruppe 1)

Abbildung C.75: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 1-3 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.76: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 4-6 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1), Zensierungen: nein, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3 , variierend)/Gomp $(0.3,0.0109)$ (Gruppe 0/Gruppe 1)

Abbildung C.77: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 7-9 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.78: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 10-12 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 100/100 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3 , variierend)/Gomp($0.3,0.0109$) (Gruppe 0/Gruppe 1)

Abbildung C.79: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 13-15 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.80: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 16-18 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 100/100 (Gruppe 0/Gruppe 1), Zensierungen: nein, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3 , variierend)/Gomp($0.3,0.0109$) (Gruppe 0/Gruppe 1)

Abbildung C.81: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 19-21 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.82: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 22-24 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3 , variierend)/Gomp $(0.3,0.0109)$ (Gruppe 0/Gruppe 1)

Abbildung C.83: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 25-27 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.84: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 28-30 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1), Zensierungen: nein, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp($0.3,0.0109$) (Gruppe 0/Gruppe 1)

Abbildung C.85: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 31-33 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.86: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 34-36 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 50/100 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3 , variierend)/Gomp($0.3,0.0109$) (Gruppe 0/Gruppe 1)

Abbildung C.87: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 37-39 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.88: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 40-42 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 50/100 (Gruppe 0/Gruppe 1), Zensierungen: nein, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3 , variierend)/Gomp($0.3,0.0109$) (Gruppe 0/Gruppe 1)

Abbildung C.89: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 43-45 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.90: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 46-48 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 100/100 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: nein

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1), Störeffekt: 4

Abbildung C.91: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 49-50 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.92: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 1B-3B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: ja, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.93: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 4B-6B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.94: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 13B-15B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.95: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 16B-18B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.96: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 25B-27B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: ja, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3 , variierend)/Gomp($0.3,0.0109$) (Gruppe 0/Gruppe 1)

Abbildung C.97: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 28B-30B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 50/100 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.98: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 37B-39B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Abbildung C.99: Geschätzte MSEs der Punktschätzer bzgl. $\ln (\omega)$ in den Szenarien 40B-42B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (Reihenf. der Klötze von unten nach oben: kl. bis gr. MSE)

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.100: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 1-3 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: ja, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.101: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 4-6 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.102: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 7-9 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: ja, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.103: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 10-12 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 100/100 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.104: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 13-15 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 100/100 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: ja, Störeffekt: nein
Exp(variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, varierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.105: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 16-18 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 100/100 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.106: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 19-21 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 100/100 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: ja, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, varierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.107: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 22-24 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Abbildung C.108: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 25-27 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: ja, Störeffekt: nein
Exp(variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, varierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.109: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 28-30 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.110: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 31-33 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: ja, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Abbildung C.111: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 34-36 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 50/100 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.112: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 37-39 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 50/100 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: ja, Störeffekt: nein
Exp(variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.113: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 40-42 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 50/100 (Gruppe 0/Gruppe 1), Zensierungen: nein, Bindungen: nein, Störeffekt: nein

$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.114: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 43-45 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 50/100 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: ja, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, varierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.115: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 46-48 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 100/100 (Gruppe 0/Gruppe 1),
Zensierungen: nein, Bindungen: nein
Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1), Störeffekt: 2

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1), Störeffekt: 4

Abbildung C.116: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 49-50 der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei gleichen Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.117: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 1B-3B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 20/20 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: ja, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp($0.3,0.0109$) (Gruppe 0/Gruppe 1)

Abbildung C.118: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 4B-6B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 100/100 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Abbildung C.119: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 13B-15B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Abbildung C.120: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 16B-18B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
Exp(variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, varierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.121: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 25B-27B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 500/500 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: ja, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Weib(0.5, variierend)/Weib(0.5, 0.2192) (Gruppe 0/Gruppe 1)

Gomp(0.3, variierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.122: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 28B-30B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Stichprobenumfang: 50/100 (Gruppe 0/Gruppe 1),
Zensierungen: ja, Bindungen: nein, Störeffekt: nein
$\operatorname{Exp}($ variierend)/Exp(0.0693) (Gruppe 0/Gruppe 1)

Gomp(0.3, varierend)/Gomp(0.3, 0.0109) (Gruppe 0/Gruppe 1)

Abbildung C.123: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 37B-39B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Abbildung C.124: Ergebnisse der Intervallschätzer bzgl. $\ln (\omega)$ zu den Szenarien 40B-42B der Simulationsstudie zur Schätzung des (log.) Hazard-Ratios bei ungl. Zensierungsvtlg. (l.: geschätzte KI-Niveaus, r.: geschätzte erwartete KI-Breiten)

Literaturverzeichnis

Andersen, P. K. (1983): Comparing Survival Distributions Via Hazard Ratio Estimates. Scandinavian Journal of Statistics, 10, 77-85.

Andersen, P. K. (2006): Hazard Ratio Estimator. In: P. K. Andersen und N. Keiding (Hrsg.) Survival and Event History Analysis, 246-247. Chichester: John Wiley \& Sons.

Andersen, P. K. und Gill, R. D. (1982): Cox's Regression Model for Counting Processes: A Large Sample Study. Annals of Statistics, 10, 1100-1120.

Andersen, P. K. und Keiding, N. (Hrsg.) (2006): Survival and Event History Analysis. Chichester: John Wiley \& Sons.

Begun, J. M., Hall, W. J., Hung, W. und Wellner, J. A. (1983): Information and Asymptotic Efficiency in Parametric - Nonparametric Models. Annals of Statistics, 11, 432-452.

Brannath, W., König, F. und Bauer, P. (2006): Estimation in Flexible Two Stage Designs. Statistics in Medicine, 25, 3366-3381.

Breslow, N. E. (1974): Covariance Analysis of Censored Survival Data. Biometrics, 30, 89-100.

Breslow, N. E. (1975): Analysis of Survival Data under the Proportional Hazards Model. International Statistical Review, 43, 45-58.

Collett, D. (2003): Modelling Survival Data in Medical Research. Boca Raton: Chapman \& Hall / CRC, 2. Auflage.

Cook, G. C., Mulligan, R. und Sherlock, S. (1971): Controlled Trial of Corticosteroid Therapy in Chronic Active Hepatitis. Quarterly Journal of Medicine, 7, 159-185.

Cox, D. R. (1972): Regression Models and Life-Tables (with Discussion). Journal of the Royal Statistical Society B, 32 (2), 187-220.

Cox, D. R. (1975): Partial Likelihood. Biometrika, 62, 269-276.

Cox, D. R. und Oakes, D. (1984): Analysis of Survival Data. London: Chapman \& Hall.

Crowley, J. J., Liu, P. Y. und Voelkel, J. G. (1982): Estimation of the Hazard Ratio Functions. In: J. J. Crowley und R. A. Johnson (Hrsg.) Lecture Notes - Monograph Series 2, Survival Analysis, 56-73. Hayward, CA: Institute of Mathematical Statistics.

Efron, B. (1977): The Efficiency of Cox's Likelihood Function for Censored Data. Journal of the American Statistical Association, 72, 557-565.

Hess, K. und Gentleman, R. (2010): muhaz: Hazard Function Estimation in Survival Analysis. URL http://CRAN.R-project.org/package=muhaz. R package version 1.2.5.

Hollander, M. und Wolfe, D. A. (1999): Nonparametric Statistical Methods. New York: John Wiley and Sons, 2. Auflage.

Jahn-Eimermacher, A. und Ingel, K. (2009): Adaptive Trial Design: A General Methodology for Censored Time to Event Data. Contemporary Clinical Trials, 30, 171-177.

Kalbfleisch, J. D. und Prentice, R. L. (2002): The Statistical Analysis of Failure Time Data. New York: John Wiley and Sons, 2. Auflage.

Keiding, N. (1990): Statistical Inference in the Lexis Diagram. Philosophical Transactions of the Royal Society of London A, 332, 487-509.

Keiding, N., Bayer, T. und Watt-Boolsen, S. (1987): Confirmatory Analysis of Survival Data Using Left Truncation of the Life Times of Primary Survivors. Statistics in Medicine, 6, 939-944.

Kirk, A. P., Jain, S., Pocock, S., Thomas, H. C. und Sherlock, S. (1980): Late Results of the Royal Free Hospital Prospective Controlled Trial of Prednisolone Therapy in Hepatitis B Surface Antigen Negative Chronic Active Hepatitis. Gut, 21, 78-83.

Klein, J. P. und Moeschberger, M. C. (2003): Survival Analysis Techniques for Censored and Truncated Data. New York: Springer, 2. Auflage.

Kumar, V. und Ligges, U. (2011): reliaR: Package for some probability distributions. URL http://CRAN.R-project.org/package=reliaR. R package version 0.01.

Leissen, S. (2008): Analyse von rechtszensierten Überlebenszeiten - Entwicklung und Vergleich verschiedener nichtparametrischer Trendtests. Saarbrücken: VDM.

Müller, H. G. und Wang, J. L. (1994): Hazard Rates Estimation Under Random Censoring with Varying Kernels and Bandwidths. Biometrics, 50, 61-76.

Müller, H.-H. und Schäfer, H. (2001): Adaptive Group Sequential Designs for Clinical Trials: Combining the Advantages of Adaptive and of Classical Group Sequential Approaches. Biometrics, 57, 886-891.

Parner, E. T. und Keiding, N. (2001): Misspecified Proportional Hazard Models and Confimatory Analysis of Survival Data. Biometrika, 88 (2), 459-468.

Pocock, S. J. (1983): Clinical Trials - A Practical Approach. Chichester: John Wiley and Sons.

R Development Core Team (2012): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org. ISBN 3-900051-07-0.

Schoenfeld, D. (1981): The Asymptotic Properties of Nonparametric Tests for Comparing Survival Distributions. Biometrika, 68 (1), 316-319.

Schumacher, M. und Schulgen, G. (2002): Methodik klinischer Studien. Berlin; Heidelberg: Springer.

Shen, Y. und Cai, J. (2003): Sample Size Reestimation for Clinical Trials with Censored Survival Data. Journal of the American Statistical Association, 98, 418-426.

Therneau, T. (2012): A Package for Survival Analysis in S. R package version 2.36-12.

Tsiatis, A. A. (1981): A Large Sample Study of Cox's Regression Model. Annals of Statistics, 9, 93-108.

Wassmer, G. (2006): Planning and Analyzing Adaptive Group Sequential Survival Trials. Biometrical Journal, 48 (4), 714-729.

[^0]: Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen:

[^1]: Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen:
 $\mathrm{S} \hat{=}$ Stichprobenumfang Gruppe $0 /$ Gruppe $1, \mathrm{Z} \hat{=}$ Zensierungen, $\mathrm{B} \hat{=}$ Bindungen, $\mathrm{V} \hat{=}$ Verteilungstyp

[^2]: Zusatz: Szenario 49 und 50 mit Störgröße, Bedeutung der Abkürzungen:

