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Abstract

In state-of-the-art distributed computing infrastructures different kinds of resources are
combined to offer complex services to customers. As of today, service-oriented middle-
ware stacks are the work-horses to connect resources and their users, and to implement
all functions needed to provide those services. Analysing the functionality of prominent
middleware stacks, it becomes evident that common challenges, like scalability, manage-
ability, efficiency, reliability, security, or complexity, exist, and that they constitute major
research areas in information and communication technologies in general and distributed
systems in particular.

One core issue, touching all of the aforementioned challenges, is the question of how
to distribute units of work in a distributed computing infrastructure, a task generally re-
ferred to as scheduling. Integrating a variety of resources and services while being compli-
ant with well-defined business objectives makes the development of scheduling strategies
and services a difficult venture, which, for service-oriented distributed computing infras-
tructures, translates to the assignment of services to activities over time aiming at the
optimisation of multiple, potentially competing, quality-of-service criteria.

Many concepts, methods, and tools for scheduling in distributed computing infrastruc-
tures exist, a majority of which being dedicated to provide algorithmic solutions and sched-
ulers. We approach the problem from another angle and offer a more general answer to
the question of ’how to design an automated scheduling process and an architecture sup-
porting it’. Doing so, we take special care of the service-oriented nature of the systems
we consider and of the integration of our solutions into IT service management processes.

Our answer comprises a number of assets that form a comprehensive scheduling so-
lution for distributed computing infrastructures. Based on a requirement analysis of ap-
plication scenarios we provide a concept consisting of an automated scheduling process
and the respective generic scheduling architecture supporting it. Process and architecture
are based on four core models as there are a model to describe the activities to be exe-
cuted, an information model to capture the capabilities of the infrastructure, a model to
handle the life-cycle of service level agreements, which are the foundation for elaborated
service management solutions, and a specific scheduling model capturing the specifics of
state-of-the-art distributed systems.

We deliver, in addition to concept and models, realisations of our solutions that demon-
strate their applicability in different application scenarios spanning grid-like academic as
well as financial service infrastructures. Last, but not least, we evaluate our scheduling
model through simulations of artificial as well as realistic workload traces thus showing
the feasibility of the approach and the implications of its usage.

The work at hand therefore offers a blueprint for developers of scheduling solutions
for state-of-the-art distributed computing infrastructures. It contributes essential building
blocks to realise such solutions and provides an important step to integrate them into IT
service management solutions.
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Introduction and Problem Space





1. Introduction

With the advent of networked computers evolved the desire to combine the power of
multiple computers into a single, more powerful system: the idea of distributed systems
emerged. Nowadays such systems are commonly used and fulfil a variety of tasks, for
example distributed data storage, distributed information provisioning, or distributed data
collection. However, there is a common characterisation given by Tanenbaum and Van
Steen to describe such systems, which perfectly fits the scope of our work: ‘A distributed
system is a collection of independent computers that appears to its users as a single co-
herent system.’ [131].

In addition to the examples of distributed systems given above, and many more already
used by the Internet society, one specific kind of distributed system has been in the focus
of research for a long time: the distributed computing system. Following Tanenbaum and
Van Steen, the purpose of a distributed computing system is to provide the combined
compute power of multiple computers as a single coherent system with more CPUs or
nodes or Flops, depending on the metric applied. This concept is very often also referred
to as high-performance computing (HPC), with cluster computers and grids as the most
prominent representatives.

But a distributed system does not necessarily have to fulfil the needs of high-performing
applications or have to exclusively provide compute power to qualify as a distributed ‘com-
puting’ system. Current systems, although having the main purpose to supply remote
users with computing power, include access to storage facilities, high-speed networks,
or even remote instruments. Therefore we talk about whole infrastructures, like those
providing the IT facilities for the big e-Science experiments at CERN, which represent the
evolution of distributed computers, and hence are called distributed computing infrastruc-
tures, or in short DCIs.

As it turns out when it comes to DCIs: the whole is not always more than sum of its parts.
Not only is the measured maximum performance of all state-of-the-art high-performance
computers much lower then their theoretical peak performance1, but also scaling a par-
allel application to twice the number of CPUs or cores most likely does not imply half the
runtime. For globally distributed computing infrastructures this comes more than true, as
latency, heterogeneous hardware, or data dis-locality commit their share.

A large variety of projects, products, and initiatives have been created to compensate
the various effects which prevent a distributed computing infrastructure to perform well
and behave like a single coherent system.2 The outcomes of such efforts contribute to
the whole spectrum of hardware, software, algorithms, models, and methods which may
comprise a DCI.

The entirety of software (excluding the operating system) that is used to set up and
manage a distributed computing infrastructure is best known as middleware [80]. It is

1As proven by the current Top 500 list of supercomputers: TOP500 List - November 2010 (1-100), last visited
February 18, 2011: http://www.top500.org/list/2010/11/100.

2A selection of these efforts is presented in Section 2.1.
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1. Introduction

situated between the application and the operating system and fulfils the purpose of com-
bining the different resources, as there are computers, storage, network, and alike, into
one single coherent system. Typical functions of such middleware are independent of the
kind of DCI and include execution and control of computational activities, data transfer,
authentication, authorisation, information provision, or scheduling.

This thesis’ focus is on scheduling. It answers questions like what the purpose of a
scheduling service in a state-of-the-art DCI actually is, what the essential links of a schedul-
ing service to other parts of the middleware are, and how the scheduling process is exe-
cuted. But the main contribution goes beyond this.

Contribution of this Thesis

The process of deciding who is allowed to use which resource when is called scheduling.
Or to quote Pinedo: ‘Scheduling concerns the allocation of limited resources to tasks over
time. It is a decision-making process that has as a goal the optimization of one or more
objectives.’ [111]. Such optimisations are useful not only for DCIs, but are needed in
many other areas as there are production processes, enterprise resource planning, mobile
network routing, university room planning, or staff allocation. Examples from the IT world
are also manifold: it is e.g. neither advisable to direct all Google query requests to one web
service instance, nor does it make sense to start conditional parts of a scientific work-flow
at once [139].

The challenge of scheduling in distributed computing infrastructures remains unsolved.
Existing solutions mainly produce highly-optimised solutions for specific application sce-
narios, but fail to produce significant generic results. This is on the one hand due to the
massive number of application scenarios with a wide range of scheduling requirements, on
the other hand due to the current research either focussing on theoretical algorithmic work
or producing highly-specialised scheduling systems. Extensive research has been done on
scheduling algorithms in general [18,81,111,134] and for distributed computing systems
in particular [20, 28, 62, 92, 98, 101, 119, 142, 144, 146]. Furthermore, various schedulers
have been developed for cluster computers and grids. But neither the algorithms nor the
schedulers exist in isolation, they are part of an infrastructure and only as effective as
the other parts of the infrastructure allow. Especially since DCIs become more and more
service-oriented infrastructures and, with cloud computing being the latest trend, every-
thing can be a service, schedulers become scheduling services that reside within a service
environment and are part of complex service-level management solutions.

The general task of a scheduling service within a DCI is always the same independent
of the underlying execution system: mapping the requirements derived from the activity
description (or task as called by Pinedo) onto the capabilities of the resources that are
controlled by the scheduling service. The result of this scheduling process is called a
schedule, a (potentially ordered) list of alternatives of where (i.e. on which execution
system) and when to execute an activity.

It is the purpose of this thesis to provide a broader view on scheduling in distributed com-
puting infrastructures then most other comparable work. To achieve this, we evaluate hor-
izontal challenges and solve a sub-set of them for state-of-the-art DCIs. As a first step, we
evaluate a number of application scenarios that are related to scheduling and gather com-
mon requirements. Originating from them, we present the concept of a generic scheduling
architecture for distributed computing infrastructures. Its design adheres to the principles
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of service-oriented infrastructures and proposes a set of common services that encapsu-
late particular functions and logic, which are required for scheduling. Furthermore, the
architecture relies on common DCI middleware services, like registries or information sys-
tems. Implementations following our design, consequently, form a scheduling framework
within a DCI, thus fulfilling the requirements of the application scenarios and integrating
with the middleware of an distributed computing infrastructure. In addition to services and
their interrelations, we, too, define a scheduling process for DCIs that takes the common
requirements into account.

Both, the architecture and the scheduling process are based on four models developed
in the course of the thesis: (i) an activity model, (ii) an information model, (iii) a negotiation
model, and (iv) a scheduling model governed by service-level agreements. The first takes
the notion of a unit of work within a DCI to a different level. Not only jobs or work-flows, but
also activities like database requests or web service calls are handled equally with respect
to state tracing, resource monitoring, or even scheduling. In all cases, the activity is core
to processing and monitoring, comprising all information related to it. Hence, with the ac-
tivity model realised, there is no fragmentation and dispersion of information related to an
activity, a situation that makes managerial tasks in current DCIs, like state and exception
handling or real-time assessment, complicated and error-prone operations.

The second model tackles the still omnipresent challenge of modelling the capabilities
of services and resources within a DCI. Historically, almost every DCI middleware features
its own information model. This is one technical reason why especially the grid community
finds themselves in a situation of insufficient interoperability. Through multiple initiatives
and especially the GLUE standardisation effort [5], this problem currently diminishes as
many of the grid middleware distributions adhere to GLUE. But with the focus on cloud
infrastructures and the requirement of service-level management becoming more impor-
tant, it is essential to broaden the view on manageable entities within a DCI. This is why we
propose an information model for distributed infrastructures based on the Common Infor-
mation Model (CIM) standard [83]. It comprises descriptions for a large number concepts
and the respective interrelations, which are needed to describe the capabilities of services,
sites, and whole DCIs. The Common Information Model, furthermore, provides extension
points to create customised, domain-specific, information models. One such model is the
specific contribution of this thesis as it demonstrates how CIM can be applied to capture
the resource model of the UNICORE3 middleware.

The third model addresses multi-phase negotiation in a distributed computing infras-
tructure in which service-level agreements are applied. The development of this model is
a result of scenarios requiring the option to automatically negotiate the quality of service
provision not only in a basic accept/reject fashion, but execute multiple, iterative, steps to
reach an agreement between service consumer and service provider. Following a number
of draft approaches, an Open Grid Forum community effort, to which we contribute, has
released the WS-Agreement Negotiation (WSAGN) proposed recommendation. It fulfils the
requirement of multi-step negotiation and thus allows services within a DCI to automati-
cally negotiate service levels, responsibilities, and constraints.

The fourth model outlines the use of service-level agreements as the foundation for
scheduling. Ever since the transition of DCIs towards service-oriented infrastructures has
been noticeable, it became apparent that service-level management would be an integral

3UNICORE, last visited: January 25, 2013. http://unicore.eu/.

5
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part of modern DCIs. With scheduling being a fundamental part of the management of
DCIs, it was also evident that the scheduling process, now comprising the co-ordination
of services and resources, would be based on quality-of-service constraints. One possibil-
ity which we evaluated was the scheduling of service-level agreements. They comprise
not only the description of an activity, which is common practice for example in grids,
but also capture service-levels, guarantees, and constraints. With such an service-level
agreement being scheduled, one can provision the whole activity-specific set of services
and resources dynamically when needed. SLAs also offer the enforcement of business
objectives, dynamic assessment of quality-of-service parameters, and many more. Our
research resulted in a scheduling model based on WS-Agreement [6], the standard on
which the aforementioned WSAGN is also based upon.

Each of the four models constitutes a specific contribution to the development of a
generic scheduling architecture for DCIs, but the core contribution of this thesis is the inte-
gration of all the models into one consistent design and their application to the scheduling
process. The purpose of the integration will become visible throughout the thesis, never-
theless, by way of illustration, we refer to a few implications here. SLAs, for example,
are not merely used as contracts that govern scheduling, but they are the back-bone
of service-level management within a DCI. It is therefore essential that they are well-
integrated with the information management. In particular, this implies that mechanisms
exist which allow services to effectively exploit information about entities within a DCI
and map this information to service-levels in order to execute managerial tasks like SLA-
compliance assessment, adjustment of service provisioning, or scheduling of activities.
Another example is the integration of activity management into the scheduling process.
Although the introduction of the activity model is an achievement on its own, it is the in-
tegration with the scheduling process that reveals its true value. Having all information
related to an activity in once place, the scheduling service can conveniently harness the
data and can take it into consideration for making scheduling decisions. This provides a
much broader foundation for scheduling and will promote the development of algorithms
that operate on a wider set of parameters and are more suitable for the application to the
generic scheduling process.

As an addition to the models, we also contribute a number of implementations. Although
we do not provide a full implementation of the the whole generic scheduling architecture,
a venture that is almost equivalent to the realisation of a complete distributed comput-
ing infrastructure, a number of prototypical service frameworks have been realised in an
academic context. There, the focus has been on the core functions of the scheduling pro-
cess while ‘auxiliary’ services like security, billing, accounting and alike have not been
considered.

The implementations offer a wide range of possibilities to evaluate the application of
the models to the scheduling process. As we do not target specific algorithms or domain-
specific schedulers, we decided that it would be of benefit to the community if we eval-
uated the delegation of scheduling requests. We therefore simulated a DCI environment
with a number of scheduling services which apply various delegation strategies. It is the
analysis of these strategies which contributes to the discussion of outsourcing activities in
case of overloaded systems, a situation common to distributed computing infrastructures
and of growing importance in cloud-like set ups.

We believe that the entirety of the artefacts, as there are the generic architecture, the
scheduling process, the models, the implementations, and the evaluation of delegation
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strategies, provide a relevant contribution to the area of scheduling in distributed comput-
ing infrastructures. Especially the inclusion of service-level management-related aspects
and the introduction of the activity model are important considerations we have to make
with service-orientation and cloud computing currently changing the whole DCI landscape.

To sum it up, this thesis contributes the following assets to the discussion on scheduling
in DCIs:

• A list of scheduling requirements.

• A generic scheduling architecture for DCIs.

• An automated scheduling process for DCIs.

• A model to describe activities.4

• An information model applicable to DCIs.5

• An SLA negotiation model.6

• A scheduling model for DCIs.

• Implementations of various parts of the architecture and the scheduling process.7

• An evaluation of the scheduling model.

Thesis’ Structure

This thesis comprises 11 chapters which are organised into six logical blocks:

1. Introduction to topic and problem space.

2. Requirements gathering and conception.

3. Core models.

4. Implementation.

5. Evaluation.

6. Conclusion.

Following this chapter, which provides a condensed introduction to the area of DCIs and to
the contributions of this thesis, we show in Chapter 2 ‘Motivation’ the need for a generic
scheduling architecture, based on unsolved challenges and current state-of-the-art. These
two chapters together form the first logical block. Chapter 3 ‘Requirements’ then intro-
duces scheduling scenarios, gathers common requirements, and evaluates them in the

4We developed the initial model together with colleagues from the NextGRID project. Furthermore, we pro-
posed the model to the Open Grid Forum for further uptake.

5Our information model is a domain-specific instantiation of the Common Information Model standard.
6This model has as been specified with our participation through the Open Grid Forum community process.

The resulting WS-Agreement Negotiation specification has been published as GFD.193 [138].
7The implementations result from various projects and research activities realising parts of the ideas con-

tributed by this work.
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1. Introduction

light of service-oriented DCIs. All this is the foundation for the second part of the ‘re-
quirements gathering and conception’ block, which is Chapter 4 ‘Concept’. There, we
present services that fulfil the common requirements and form a generic framework for
scheduling in distributed infrastructures. Furthermore, we show the different steps of the
scheduling process and how they benefit from the generic architecture. The remainder
of this chapter then motivates the following two blocks which provide in-depth descrip-
tions of the ‘core models’ and the ‘implementation’. The former comprises four models as
there are the ‘Activity Model’ (cf. Chapter 5), the ‘Information Model’ (cf. Chapter 6), the
‘Service-Level Agreements Model’ including the specific contribution to the negotiation of
SLAs (cf. Chapter 7), and the model for ‘Scheduling with SLAs’ (cf. Chapter 8). The latter
presents different implementations that realise the models and that are instantiations of
the services that form a scheduling framework within a service-oriented and distributed
infrastructure (cf. Chapter 9 ‘Realisation’). Subsequent to the various implementations, we
revive in Chapter 10 ‘Simulation and Evaluation’ the delegation of scheduling requests, an
application scenario which has been introduced in the ‘Requirements’ section. This case
represents the core characteristics of SLA-governed scheduling within DCIs and we there-
fore use it as the foundation for a simulation scenario and the subsequent evaluation of
various delegation strategies. The final logical block consists of Chapter 11 ‘Conclusion’,
in which we summarise briefly our findings and contributions, describe there effects, and
discuss open issues.
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2. Motivation

This chapter provides an introduction to the problem definition and motivates the work
conducted for this thesis. To lead there, we first briefly describe the history and

characteristics of distributed computing infrastructures. Next, we examine common
challenges that designers, developers, and operators of distributed computing

infrastructures face independent of domain or application. Then, we introduce the
scheduling challenge in general and the DCI-related scheduling problem we aim to solve

in particular, thus scoping the motivation for our work.

2.1. Distributed Computing Infrastructures

The crux of defining what a distributed computing infrastructure actually is appears obvi-
ous when looking into the variety of definitions that are available for distributed comput-
ing systems and its instantiations like grid computing or cloud computing1. The definition
dilemma aggravates by bringing terms like web services, service-oriented architectures
(or likewise service-oriented infrastructures), XaaS2, high-performance computing, or alike
onto the table.

The characterisation of distributed systems as cited in the introduction, though, refers
to the ‘coherent view’ that should be offered to users independent of the number or kind
of underlying services and resources. Approaching DCIs from this angle and putting aside
the technology-, paradigm- or middleware-related definitions, we can focus on common
research challenges of the different disciplines engaged in distributed computing research.

We therefore first examine the two most prominent examples of paradigms that are
used to build distributed computing infrastructures: grid and cloud3. Following that, we
introduce a list of their common challenges later in this section. This list then serves as
the foundation for the introduction of scheduling in such systems (cf. Section 2.2), leading
to the problem definition of this thesis.

1The article ‘Grid computing definition’ (last visited: June 08, 2011. http://www.arjuna.com/node/53) lists and
discusses a number of definitions for what a grid is including the very popular check-list by Ian Foster [47].
As for cloud computing, also various definitions exist, like for example those collected by the Cloud Com-
puting Journal and published int the article ‘Twenty-One Experts Define Cloud Computing’ (last visited: June
08, 2011. http://cloudcomputing.sys-con.com/node/612375).

2Acronym for everything-as-a-service.
3Figure 2.1 shows selected events during the last 15 years that are related to the evolution of grid and cloud

computing.
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Figure 2.1.: Selected events related to the evolution of distributed computing infrastruc-
tures towards clouds

2.1.1. Grid Computing

Although the technological evolution of the previous decades is especially visible in the
area of Information and Communication Technologies, computing power has always been
a limited resource. The apparent reason for this is adaptation. Whenever faster processors
or bigger systems are available, users either create new applications or increase the prob-
lem size respectively. Especially providers of high-performance computers observe this
phenomenon with every new system generation: applications exploit more nodes, more
cores, faster networks, or larger storage systems up to their limits. As of today, this can
only lead to one conclusion: there is still a growing need for more computing power [97].

Besides increasing the performance of processors - and consequently single processor
computer systems, the aggregation of processors to form high-performance computing
systems is a suitable way to achieve better application performance. This makes HPC
systems - not considering special purpose computers - the fastest machines according to
benchmarks such as LINPACK4, which is used as the metric to generate the list of the top
500 computers5. For quite some time now, the building of clusters is an interesting subject
for high-performance computing. Linking single and autonomous computers like worksta-
tions or servers via a communication network to a cluster is a cost-efficient alternative for
some but not all applications.

The evolution of the internet in the past two decades is an another development that
dramatically changed the life of our, now to be called, information society. The ability to
be connected and linked to the internet is omnipresent. The simple connection of our com-
puting resources to the net is yet common standard and practice. The trend of connecting
everything, not just computers but all kinds of wired resources, via a network has already
reached commodity devices, leading to the term internet of things [24].

Combining the need for computing power with the connection of all kind of IT resources
via networks led to advanced concepts that have gained a lot of attention by research in
the past decade.

4The LINPACK benchmark, last visited: January 27, 2011. http://www.top500.org/project/linpack.
5TOP500 Supercomputer Sites, last visited: January 27, 2011. http://www.top500.org/.
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2.1. Distributed Computing Infrastructures

First of all, the term meta-computing was established in 1987 by Smarr and Catlett [125].
Here, the target resources are high performance computers, which are most likely situ-
ated in different locations and operated in different administrative domains. The users
of so called meta-computers then ideally do not have to care about where a computing
task is actually executed, thus implementing the former slogan by Sun Microsystem: "The
network is the computer". The underlying approach of meta-computing has similarities to
cluster computing as different computers are connected via a network. But in comparison,
cluster computing terms an infrastructure where single servers, usually blades stacked in
racks, but also workstations, are interconnected. And, in general, clusters belong to the
same owner or administrative instance.

The term meta-computing was substituted by grid computing or just the grid. While the
scope of meta-computing is limited to compute resources, grid computing takes a broader
approach on the resources that are connected. Here, devices for visualisation as well as
data storage are considered to be part of a grid. Meta-computing – besides several limited
projects – never got common practice, whereas grid computing gained a lot of attention
and evolved to a commonly used platform in scientific communities, mainly for compute
and data-oriented tasks.

The term grid has been coined by Foster et al. [50] and draws an analogy with the elec-
trical power grid, which delivers electrical power just on demand without requiring more
knowledge from users then where to put in the plug. The analogy is to provide compu-
tational power on demand to all users without thorough knowledge about the underlying
resources and how to use them.

Although breaking the promise of delivering a grid of computational and related re-
sources to the non-expert user, grids became a common foundation for e-Science infras-
tructures. As many scientific disciplines need access to computing or data resources while
collaborating with colleagues in their research area, the concept of resource sharing within
virtual organisations [51] has been successful. As a result, many national and international
grid initiatives and specific grid infrastructure for certain user communities emerged and
are still maintained and extended. Well known examples are the European projects PRACE6

and DEISA7, but also grid-based infrastructures like EGEE8, EGI9, FutureGrid10, and Tera-
Grid11. These grid infrastructures are currently in production and serve the computing
demands of researchers around the globe.

2.1.2. Cloud Computing

Contrary to original expectations, grids did not fulfil the objectives set by the naming anal-
ogy: there is very small uptake beyond academic research, thus there is no "computing
on demand" for the general user yet. There are various potential reasons why this uptake
did no take place, but it is not the purpose of this thesis to speculate about them.

However, cloud computing turns out to be the new technological paradigm taking the

6Partnership for Advanced Computing in Europe, last visited: January 27, 2011. http://www.prace-project.eu/.
7Distributed European Infrastructure for Supercomputing Applications, last visited: January 27, 2011.

http://www.deisa.eu/.
8Enabling Grids for E-Science, last visited: January 27, 2011. http://www.eu-egee.org/.
9European Grid Infrastructure, last visited: January 27, 2011. http://www.egi.eu/.

10FutureGrid Portal, last visited: January 27, 2011. https://portal.futuregrid.org/.
11TeraGrid, last visited: January 27, 2011. https://www.teragrid.org/.
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challenge of providing distributed computing power to a broader public. It already has the
buy-in from industry, resulting in terms like scale out, multi tenancy, and pay-as-you-go
become increasingly popular to describe this new approach, showing on the one hand the
business model behind the cloud offerings and on the other hand underlining its commer-
cial character.

In comparison to the popular Application Service Provisioning (ASP), which also offers
a pay-as-you-go model via web interfaces, cloud services are designed to be operated
within a web infrastructure, with AJAX, Adobe AIR, or Microsoft Silverlight on the client side
and multi tenancy service offers on the back-end [16]. According to a popular layering,
we distinguish three different layers when it comes to clouds and their respective ser-
vices: infrastructure-as-a-service, platform-as-a-service, and software-as-a-service, often
subsumed under the term everything-as-a-service. The different layers including some of
their most common characteristics are shown in Figure 2.2.

Software-as-a-Service

Platform-as-a-Service

Infrastructure-as-a-Service
Infrastructure APIs
Compute, Storage, Network services
Backup
Infrastructure Management

Platform APIs
Enterprise portals
Developer environments
Service orchestration

End-user APIs
Applications
"Added-value" service offers

Figure 2.2.: The main XaaS service categories and their characteristics

The growing revenue created by cloud-like service offers, according to the International
Data Corporation increasing from $16.5 billion in 2009 to over $55 billion in 2014 [55],
is already prominently visible looking at the growing number of cloud services and users.
Amazon, for example, is well known for its Amazon Web Service (AWS) suite12, offering
inter alia the Elastic Compute Cloud (EC2) and the Simple Storage Server (S3) on IaaS
level. On platform level, Google’s App Engine13, Microsoft’s Windows Azure14, and Sales-
force’s Force.com15 are just some examples of the broad range of services offered. Last
but not least, there is an rapidly increasing offer of software-as-a-service, ranging from
project management software by Basecamp16, over office solutions to complete customer
relationship management (CRM) solutions like SAP’s CRM OnDemand17.

12Amazon Web Service, last visited: February 17, 2011. http://aws.amazon.com/de/.
13Google app engine, last visited: February 17, 2010. http://appengine.google.com.
14Windows Azure – Microsoft’s Cloud Service Platform, last visited: February 17, 2011.

http://www.microsoft.com/windowsazure/.
15Force.com, last visited: February 17, 2011. http://www.salesforce.com/platform/.
16Projects Manage Themselves with Basecamp, last visited: February 17, 2011. http://basecamphq.com/.
17SAP CRM OnDemand Solution, last visited: February 17, 2011. http://www.sap.com/solutions/business-
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But there is not only buy-in on the commercial side, there are also plenty of research
projects and open source efforts targeting a variety of topics associated with clouds. The
following list provides a few pointers to related efforts:

• SLA@SOI18 is a European project that develops a generic service-level management
solution. An instantiation of this solution provides management functions for IaaS.

• OpenNebula19 is on open source toolkit that can be used to manage a cloud infras-
tructure.

• A similar approach as taken by OpenNebula represents Eucalyptus20.

On the interface between commercial offers and academic research resides the request
for standards; although a standard – in the cloud area as in any other – does not necessarily
imply a global agreement on a certain protocol or interface21. However, interfaces like
libvirt22, Amazon’s EC2/S3, or the Open Grid Forum’s Open Cloud Computing Interface
(OCCI23) show significant uptake and may represent future (de facto) standards.

While there are many differences in Cloud and Grid infrastructures, there are also many
similarities. Both paradigms cater for simplified access to distributed services and re-
sources, which are made available by different providers. Clouds are suitable to create
a layered architecture that separates infrastructure from applications, utilising the same
infrastructure services to run arbitrary applications. Similarly, applications can be de-
composed into several software services (or multiple services orchestrated into an added-
value application), which run on such virtual infrastructures. Grids, however, target a
similar space by combining resources from different providers in a networked infrastruc-
ture. Grids also require substantial middleware efforts to provide the foundation of core
services. These similarities are well described by the common research challenges, which
we outline in the following section.

2.1.3. Common Challenges of Distributed Computing Infrastructure
Research

Common challenges for designing, building, and operating distributed computing infras-
tructures exist independent of any trend or paradigm that is pushing the technology evo-
lution forward. Some, DCI-inherent, challenges remain the same since the days of meta-
computing, as there is for example the omnipresent wish of providers to maximise the load
of their machines (identifying it with minimising down-time and preventing idle resources),
while others, like the demand for energy-efficient operation of resources, focus attention
for a specific period and are often the result of external factors. The following paragraphs

suite/crm/crmondemand/index.epx.
18SLA@SOI, last visited: February 17, 2011. http://sla-at-soi.eu/.
19OpenNebula – The Open Source Toolkit for Cloud Computing, last visited: February 17, 2011.

http://www.opennebula.org/.
20Eucalyptus – The Open Source Cloud Platform, last visited: February 17, 2011. http://open.eucalyptus.com/.
21A comprehensive summary of the ongoing cloud standards development is provided in the Cloud Standards

Wiki, last visited: February 17, 2011. http://cloud-standards.org/wiki/index.php?title=Main_Page.
22libvirt – The virtualization API, last visited: February 17, 2011. http://libvirt.org/.
23OCCI – Open Cloud Computing Interface, last visited: February 17, 2011. http://occi-wg.org/.
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list some of those challenges to set the general scene for distributed computing infras-
tructures, while the specific challenges addressed by this theses are then introduced in
Section 3.

Scalability

Although the efficient usage of large infrastructures with thousands of computing units is
challenging, DCI operators, developers, and users understand well how to gain notable
application performance in many domains. Observing the increase of processing cores
per CPU and the deployment of respective infrastructures, however, we will experience a
significant increase in cores provided by an average HPC system over the next years. This
perspective already results in the evaluation of scalability issues regarding ‘peta-scale’ ap-
plications and the respective programming models [44] and leads to various approaches
to cope with these issues [72]. Similarly, we also face novel challenges concerning fed-
erations of such systems, whether they form large-scale grids like DEISA or cross-cloud
infrastructures. There, problems are not limited to application-programming models, but
also include scalability-related issues concerning infrastructure and service management.
A DCI with millions of cores, in which each may be treated like a separate resource, re-
quires new approaches towards information management, control mechanisms, and mon-
itoring. A multi-layered service-level management system will be most likely the solution
to handle the size of such infrastructures. This then raises the question of whether solu-
tions feasible for large industrial cloud providers can in the same way serve the needs of
private cloud operators, thus introducing not only technical but also economical aspects
to the scalability challenge.

Manageability

The management of DCIs remains a challenge independent of the technology used: it was
a difficult task with respect to grids and remains problematic realising clouds. Although
the latter came up with the promise of easy usage, this is only the case for customers and
only at the expense of a reduced set of functions. Providing and managing clouds is still
a challenge that even the largest industrial providers sometimes fail to meet successfully.
Such a failure combined with the deliberate ‘outsourcing’ of management functions to
the customer can lead to significant service downtimes [56], a situation which even more
emphasises the necessity for research in the area of DCI manageability.

The management of service-oriented (distributed) infrastructures is, from a general
viewpoint, an undertaking which spawns almost all parts of the organisation providing
the respective service. One holistic approach to integrate all management tasks is the IT
Infrastructure Library (ITIL) which tackles, in addition to service-level management (the
technical realisation of which we cover in this thesis), processes like capacity manage-
ment, availability management, problem management, and application management [135].
Especially in the cloud context ITIL and similar approaches are valuable input trying to cope
with the increasing complexity of management tasks.
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Efficiency

Research related to distributed computing infrastructures often addresses optimisation is-
sues to provide more efficient services or operate IT infrastructures in a more efficient
manner. Common challenges in this area, related especially to the topic of this thesis, are
the optimisation of application response-times, the increase of a DCI’s activity throughput,
or, driven by the global need for energy efficiency [133] and sustainability24, the efficient
utilisation of the physical infrastructure. This challenge requires methods, tools, and algo-
rithms that support the optimisation of multiple, often contradictory, criteria. Especially
scheduling services are core to efficient IT taking application requirements into account
and matching them to infrastructure capabilities.

Reliability

Distributed infrastructures grow continuously in size (see paragraph about ‘Scalability’)
and applications increasingly exploit the dynamic orchestration capabilities of service-
oriented systems. We therefore face a landscape where, dynamically based on multi-
criteria optimisation, applications are dependent on multiple services and thus are the
service offers which are based on these applications. Especially cloud-based business ser-
vices, which are, for example, developed using vmforce25, executed on Amazon’s EC2,
and making use of Microsoft’s Azure Storage26, vitally need reliable infrastructures and
auxiliary services.

To ensure reliability, the management of quality-of-service requirements and constraints
through electronic contracts plays an important role. The variety of services, roles, and
business objectives in large-scale DCIs requires a suitable abstraction of quality-of-service
parameters and their automated processing. Moreover, models are needed that not only
capture job-like resource requirements and capabilities [7], but provide the foundation for
redundant, fault-tolerant, and secure service provisioning. Service-level agreements, as
they are for instance described by ITIL, are a potent tool to build reliable service infras-
tructures.

Security

Existing grid infrastructures like those mentioned in Section 2.1.1 have already built-in se-
curity features to manage public key infrastructures (PKIs) and virtual organizations, or to
transfer data via encrypted and secured channels. But experience presumes that many of
these solutions may not be the right choice for usage in large-scale cloud infrastructures
with different business models and dynamic service provisioning. As trust and security are
still prominent challenges on the cloud research agenda [8], easy-to-use and seamless,
but at the same time scalable security solutions will be necessary to extend clouds be-
yond the current business model. Such solutions will include support for various standards
which can not be found in grid-like infrastructures and they will provide more integration

24ICT for Sustainable Growth, last visited: January 25, 2013. http://ec.europa.eu/information_society/activities/-
sustainable_growth/index_en.htm.

25The trusted cloud for enterprise Java developers, last visited: January 25, 2013. http://www.vmforce.com/.
26Windows Azure Storage, last visited: January 25, 2013. http://www.microsoft.com/windowsazure/storage/.
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of various approaches27.

Complexity

Most of the aforementioned aspects relate to the overall challenge of mastering the com-
plexity of a distributed computing infrastructure which in general should scale well, should
provide services dynamically, and should integrate easily across different administrative
domains. With an envisaged scale of millions of services, compute nodes, and an orders
of magnitude larger number of connected devices and data objects that altogether will be
part of a DCI, or even many at once, we have to handle complex system beyond what is
nowadays possible. Such systems need to, on the one hand, hide some of their complex-
ity and offer simple access mechanisms, and, on the other hand, increase the degree of
automation and self-management.

2.2. Scheduling in Distributed Computing Infrastructures

The general, fundamental objective of scheduling has already been described in the para-
graph ‘Contribution of this Thesis’ of Section 1: Pinedo defines the task of scheduling as
the optimisation of a number of objectives aiming at ‘the allocation of limited resources to
tasks over time’ [111].

Taking only a single-core CPU into account, Pinedo’s definition mainly implies that the
various processes, which are executed on this CPU, have to be scheduled in a way that
every process gets its share of CPU-time. Such ‘uniprocessor time-slicing’ [27], has been
extensively researched and may take different, potentially competing, objectives into ac-
count. Another scheduling dimension opens up by adding more CPUs to the equation,
whether through multiprocessor machines, cluster computers, or massively-parallel pro-
cessing (MPP) systems. There, it is not only the question ‘when’ to execute a task, but also
‘where’. Although the solution might seem, at first sight, simple by just assigning tasks to
CPUs until the machine is completely loaded (and keep further tasks in a waiting queue),
parallel I/O [30] or system fragmentation [99], to give just two examples, advocate more
elaborated solutions.

Distributed computing infrastructures raise the complexity of infrastructure manage-
ment, and thus scheduling, to yet another level. The following criteria, among others,
increase the difficulty of developing proper scheduling solutions:

• DCIs comprise different kind of resource types which potentially have to be co-
scheduled [141].

• Especially in grids, resources belong to different administrative domains that decide
autonomously who has which access rights on a specific resource [41].

• A DCI might include especially scarce resources like scientific instruments [140].

• In general, most resources are embedded into some kind of local scheduling leading
to DCI scheduling hierarchies [31].

27Like for example provided by Microsoft Azure which supports already a variety of access control mecha-
nisms. Last visited: June 09, 2011. http://www.microsoft.com/windowsazure/appfabric/accesscontrol/.
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• Although normally a computational task is treated as the entity to be scheduled and
data is just seen as related input or output, large amounts of such data imply to take
specific care of its locality [33].

Taking all the above constraints into account, DCI scheduling becomes a complex pro-
cess that tries to optimise multiple criteria at once. We therefore face, in cases where we
not only try to optimise one criterion like machine-load, a so-called ‘multi-criteria schedul-
ing problem’ [134], many of which are NP-hard28. Hardware, like multi-core CPUs or
graphical-processing units (GPUs), application domains, including complex work-flows or
real-time scenarios, and scale, considering thousands of potential resources as execution
entities, are additional factors which make scheduling in distributed computing infrastruc-
tures an increasingly complex problem.

In service-oriented environments, scheduling is part of service-level management and
all the criteria defining the scope of service provisioning can be subsumed under the term
‘quality-of-service’. The purpose of the scheduler in such an environment is to map the
user’s requirements to the provider’s capabilities, a task resulting in an agreement about
the quality-of-service, i.e. the different service-related parameters which govern the ser-
vice provisioning. Such an agreement is normally called a service-level agreement29 (SLA).
Although this is mainly a terminology-related issue, we adhere throughout this thesis to
service-related terms since most state-of-the-art DCIs are service-oriented infrastructures.

2.2.1. Problem Definition

In summary, we can, returning to the introductory definition of scheduling by Pinedo, de-
fine the problem of scheduling in DCIs as follows:

Scheduling in service-oriented distributed computing infrastructures translates to the
assignment of services to activities over time aiming at the optimisation of multiple,

potentially competing, quality-of-service criteria30.

The core of the problem is the generation of ‘good’ schedules, which ideally take all
quality-of-service requirements from all involved parties into account. Every developer of
a scheduler tries to fulfil this fundamental objective. In an ideal environment, where all
necessary data to calculate a scheduler is accessible and processable, and where the time
to generate the schedule is negligible, it would be possible to operate based on the opti-
mal schedule at every point in time. In reality, a large number of side conditions prevent
this. For distributed computing infrastructures as we consider them in this work, such con-
ditions arise from the general challenges, as introduced in Section 2.1.3, as well as from
technological restrictions. Dealing with scalability, for example, is not trivial, since poten-
tially millions of services form the target set of a scheduler’s objective function. Taking all
target values into account generating a schedule may lead to hour-long calculations, an

28Complexity results for scheduling problems, last visited: January 25, 2013. http://www.informatik.uni-
osnabrueck.de/knust/class/.

29Please refer to Chapter 7 for a detailed introduction to SLAs.
30Please note that the we deliberately omitted, in comparison to the original definition, the term ‘limited’

in relation to services since, especially in public clouds, services may not constitute scarce resources.
The application of scheduling is nevertheless of benefit as quality-of-service parameters like cost can be
optimised.
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approach which is not feasible in a DCI where requests have to be processed in a time-
frame of seconds.

Taking the side conditions into account, it is not enough to develop sophisticated schedul-
ing algorithms, but the scheduling problem then translates into a larger challenge, namely
the design of an automated scheduling process and scheduling architecture supporting it.
Tackling this and proposing a solution beyond specialised scheduling systems and applica-
tion area-specific algorithms is the core objective of this work. This approach introduces,
in addition to researching scheduling algorithms, further problems that we address and for
which we propose solutions. These ‘inferred’ problems to be solved are:

• How to describe the activity to be scheduled?

• How to describe the capabilities of a DCI system?

• How to describe the quality-of-service criteria to be considered when scheduling?

• How to optimise the interaction of the various strategies forming the scheduling pro-
cess?

The approach that presents a solution to these problems and that answers the question
of ‘how to design an automated scheduling process and an architecture supporting it’ is
outlined in Chapter 4 ‘Concept’. There, also questions like ‘how the scheduling service
interacts with other DCI middleware services’, ‘how dispersed information related to one
activity is handled’, or ‘how the scheduling process is actually executed’ are discussed and
solutions are proposed.

2.2.2. A Note on Benefits of the Application of SLAs to Scheduling in
DCIs

One means to support scheduling in distributed-scheduling infrastructures is its tight in-
tegration with a service-level management framework. Our work is based on such an
approach, integrating scheduler, service-level agreements, and auxiliary services into a
generic scheduling architecture.

Although anticipating some of the details of the following chapters, we introduce here,
in relation to the aforementioned challenges, benefits of such an approach. We do this
without discussing the requirements towards scheduling beyond the previous paragraph
and without presenting SLAs in detail. Therefore, the following list shows the general
advantages of the solution that will evolve in the course of the upcoming chapters:

• Service-level agreements can carry a rich set of parameters that describe services
and resources while linking those parameters directly with quality-of-service require-
ments. This allows (i) the modelling of all kinds of services and resources, (ii) the
inclusion of related service-level capabilities and constraints, and (iii) the application
of sophisticated algorithms based on a large pool of input parameters.

• The chosen approach minimises the implications put on scheduling algorithm de-
velopment by treating them as black boxes. Therefore multiple algorithms can be
implemented and applied.
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• The autonomy of DCI sites is not compromised and requirements on authentication,
authorisation, et cetera can be easily integrated as quality-of-service parameters.

• The reservation of services or resources can be represented through time-related
QoS and can be backed up through guarantees. This allows, inter alia, the provision
of third-party reservation services.

• Administrative or service provisioning hierarchies can be modelled as SLA hierarchies
thus relieving the schedulers from maintaining their scheduling-specific topology in-
formation.

• SLA relations can also be used to orchestrate services thus modelling work-flows or
process chains.

• Data is, in the light of SLAs, handled as any other resource. This allows the handling
of data (and the related locality issues) equally to any other resource within the DCI
and thus for scheduling.

• Service-level agreements can be treated as legally-valid contracts giving users proper
guarantees with respect to their QoS requirements. In cases where contracts are not
necessary, SLAs can be used without any legal implications.

• The extension of the QoS parameter set, for example to implement further schedul-
ing algorithms, can be modelled through SLA extensions.

This list provides an overview of the overall advantage of applying service-level agree-
ments to scheduling in DCIs although a number of assumptions on models and implemen-
tations have been implicitly made. The last item, for example, will only be valid if the SLA
model is designed in an extensible manner. We will show later what theses assumptions
are and how schedulers can be implemented to benefit from SLAs.

In this chapter we motivated the work we conducted and defined the problem we try to
solve. Furthermore, we provided, especially for those readers not familiar with distributed

computing infrastructures, a brief historical overview to introduce the topical area.
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3. Requirements

The purpose of this chapter is to summarise the requirements faced by researchers as
well as middleware architects and implementers who deal with the management of
distributed computing infrastructures. We therefore explain a couple of application

scenarios from which we derive common requirements and then we link them to the
respective middleware artefacts.

In the previous chapter we listed the common challenges that have to be tackled when
dealing with distributed infrastructures. As this thesis deals with one particular aspect of
such infrastructures and their operation, namely scheduling, we look in this chapter at
the requirements that can be derived from respective application scenarios. Therefore
we describe three cases where scheduling is the central issue, namely (i) the scheduling
of complex work-flows, (ii) co-allocation of activities, and (iii) the delegation of scheduling
requests. In doing so, we follow a common structure to simplify the induction of general re-
quirements to be fulfilled by middleware managing DCIs. We describe these requirements
in great detail to lay the foundations for the concept outlined in the following chapter.

3.1. Selected Scheduling Scenarios

In distributed computing we find a wide field of research topics: models [78], algorithms
[40], services [141], and systems [10]. Accordingly, a large number of application scenar-
ios and related requirements exist in this area. We have already collected some of them
focussing on the generic aspects of grid scheduling [149]. In this chapter, we re-visit two
of these scenarios, ‘scheduling of complex work-flows’ and ‘co-allocation of computational
activities’, and add a third one that reflects requirements from cloud-like infrastructures,
the delegation of activities from one DCI to another.

3.1.1. Application Scenario I – Scheduling Complex Work-Flows

Many distributed applications require the coordinated processing of complex work-flows,
which includes scheduling of heterogeneous resources within different administrative do-
mains. A typical scenario is the scheduling of computational resources in conjunction with
data, storage, network, and other available resources as for example software licenses or
experimental devices. Such scenarios are frequently found in grids and inter-cloud set-ups
where scientists execute complex work-flows as part of experiments. In such cases, the
scheduler has to coordinate and plan the execution of the whole work-flow in advance.
While at the same time, issues like cost, resource reservation, and data staging have to
be taken into account.
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Scenario

A typical scenario includes scheduling of a distributed computational job including net-
work, data, software, and storage combined with the request for a visualisation service.
The user might, in terms of concrete requirements, request (i) 48 processing nodes of a
specific type, (ii) 8 GB of available memory per node, and (iii) a specific licensed software
package for the time of one hour between 8am and 6pm of the following day. In addi-
tion, visualisation requires a minimum dedicated bandwidth of half a GBit/s between the
visualisation device and the main system during program execution. Furthermore

• the program relies on a specific input data-set from a data repository;

• the user’s budget is restricted;

• they prefers a lower price to an earlier execution.

A scheduler should be able to generate the complete schedule for the execution of this
work-flow including all activities implicitly necessary for data management before and
after the actual start. Fig. 3.1 shows an example of a possible scheduling output.

This example, however, is quite basic for the sake of explanation. In real applications it
could easily be extended to contain additional work-flow steps. The scheduler should take
the allocation of all requested resources into account and, if necessary, create advance
reservations.

Storing dataData access

Data transfer Data transfer

Data storage

Communication for computation

Parallel computation

Software usage

Loading data Parallel computation Providing data

Communication for visualiation

Visualisation

timet_0

Data

Network A

Computer A

Network B

Computer B

Software license

Network C

Viualisation service

Storage

Figure 3.1.: Example schedule for work-flow scenario

This is essential to meet time or precedence requirements. The respective resources
ideally should be reserved in advance in order to guarantee the proper execution of the
whole work-flow. It is equally important to cope dynamically with potential changes to
the schedule including failures, like the unexpected unavailability of a service or resource.
Therefore, support for potential re-scheduling of work-flows is mandatory.
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Sequence

The following sequence of events shows the scheduling of complex work-flows. The infor-
mation in brackets refers to the services that are involved in the execution of the respec-
tive step and which are introduced later in the ‘Services’ section of this chapter.

1. Composition and submission of the work-flow request

The work-flow description is generated and transferred to an entity capable of pro-
cessing its contents. Following the example, a work-flow will be generated that con-
tains the service and resource requirements and constraints. With respect to this
scenario no specific language to describe the work-flow request is demanded (Ser-
vices 1 and 2).

2. Pre-processing of the work-flow request

The work-flow request has to be parsed and validated if possible. If the entity pre-
processing the work-flow is unable to do so it may try to translate the work-flow into
a suitable description (Services 2 and 5).

3. Gathering of static resource information

Some service is needed which gathers static information about existing services and
resources. This service may be an information service or a database. As far as the
example scenario is concerned, it is assumed that this processing step identifies a
pool of 800 services and resources of all requested kinds (Services 3, 4, 8 and 9).

4. Pre-selection of resources

Based on the information collected in Step 3, algorithms are applied to limit the
number of resources which are potentially capable of participating in the processing
of the work-flow. In our example this may cut resource candidates down to 30, since
some systems may not have 48 processors, may not offer the software requested,
or the respective system may be maintained the following day (Service 3).

5. Query of dynamic resource information

The dynamic query delivers information like whether the current load of the machine
allows allocating 48 processors. This is different from Step 4, where resources are
sorted out because they offer less than 48 processors. Through this, the number of
potential resources, which are actually used in the next step to process the schedule,
is further limited (Services 3, 4, 8 and 9).

6. Generation of the schedule and initialization of required reservations

Based on the resource information gathered in the previous steps, a schedule is gen-
erated, as shown in Fig. 3.1. It is then attempted to reserve the necessary resources
in advance, a process which may fail several times due to the complexity of the work-
flow and the number of dependencies between the reservations needed. Failure of
negotiation may lead to re-scheduling, possibly with a preceding Step 5 (Services 2
and 6).
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7. Execution of work-flow

Once the schedule as shown in Fig. 3.1 is confirmed, it is processed and executed. In
case of the example, data is first taken from some storage system and transferred
via network A to computer A. If no error occurs, the work-flow is executed until the
last chunk of resulting data is written via network A to storage (Services 2 and 7).

8. Completion of work-flow

This includes the finalisation of monitoring and reporting as well as the delivery of
the data the work-flow produced (Services 1, 2, 8 and 9).

Functional Requirements

The evaluation of the scenario reveals certain functional requirements which the DCI mid-
dleware services have to implement.

• Authentication, authorization, user right delegation and work-flow integrity verifica-
tion

Authentication and authorization are essential services for a work-flow-processing
DCI middleware. To enable the scheduler to act on behalf of the user, the respective
rights have to be delegated from the user to the scheduler. This scenario also re-
quires that the integrity of a work-flow, or parts of the work-flow, can be verified any
time during the scheduling process.

• Work-flow parsing and validation

The work-flow description has to be parsed and formally validated.

• Retrieval of static and dynamic information

To map the resource requests which are contained in the work-flow description onto
available resources, information about the resources and their status has to be re-
trieved from appropriate entities (and offered by these entities). It should be possible
to gather static and dynamic resource information separately in order to restrict the
time-consuming dynamic information retrieval.

• Resource pre-selection

To avoid information queries on resources which do not fulfil policy constraints de-
fined by the user or which are definitely not capable of fulfilling a resource request,
a set of resources should be selected based on the so-called ‘static’ resource infor-
mation.

• Service choreography and management

It might be useful to have mechanisms which allow choreography and management
of services representing the pre-selected resources on different levels to obtain the
desired dynamic information faster and more reliable.

• Scheduling

A schedule has to be generated based on the information about the work-flow, the
resources, the services, the accounts, etc.
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• Agreement negotiation and advance reservation

It is essential to meet time or precedence requirements defined by the work-flow.
Therefore resource availability has to be negotiated with schedulers or reservation
services to reserve in advance the resources selected by the schedule.

• Workflow execution/processing

The work-flow has to be processed. It is assumed that the local resource managers
execute the atomic entities a work-flow consists of.

• Monitoring

Information has to be collected about the status of a work-flow during its lifetime and
the resources needed to execute it.

• Assessment and reporting

The service rendered has to be assessed and reported according to the service-level
negotiated and the service quality actually delivered. Cost of the service delivery,
penalties in case of non-performance or -compliance, and audits are based on these
functions.

• Failure management

Failure management is essential not only to have an instrument to monitor and pos-
sibly re-schedule work-flows in case of failure within the system, but also to provide
users with information and tools to manage such failure.

Services

The following services and functionalities are required for the scheduling1:

1. Submission service or agent acting on-behalf of a user (steps 1 and 8)

2. Scheduling and resource management service (steps 1, 2, 3, 6, 7 and 8)

3. Brokering service (steps 3, 4 and 5)

4. Information service (steps 3 and 5)

5. Translation service (step 2)

6. Negotiation service (step 6)

7. Work-flow execution service (step 7)

8. Monitoring service (steps 3, 5 and 8)

9. Reporting service (steps 3, 5 and 8)

1Related steps of the work-flow precessing sequence, as described in the ‘Sequence’ section, are listed in
brackets.
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3.1.2. Application Scenario II – Co-allocation of Computational Activities

A common demand for high-performance applications is the co-allocation of multiple HPC
systems to obtain better performance through scaling applications onto larger DCIs. The
VIOLA (Vertically Integrated Optical Testbed for Large Applications) project has hosted a
number of such applications aiming at the development of a meta-scheduling framework
to co-allocate distributed computers and optical networks [43].

Scenario

The applications of interest are parallel and distributed simulations from the multi-physics
area the different parts of which are executed on different computational resources con-
nected through an optical network. The user outlines her activity together with related
resource requirements. In order to run such a simulation, both compute resources and the
interconnecting network must be available at execution time. Furthermore, users want
to have a certain service quality, specifying terms like minimal bandwidth or delay. For
co-allocation a meta-scheduling service is necessary which interacts with both the DCI
middleware and all local resource management and scheduling systems (RMS). The ser-
vice is also responsible for negotiating a common time-slot with all local RMS to guarantee
the co-allocation of their resources. Once such a common time-slot is identified, resources
are reserved at all sites. Subsequently, the parallel applications can be executed, man-
aged, and monitored. Fig. 3.2 shows an example of an application which requires two
computational site and the interconnecting network.

Sequence

The following sequence of events reflects the co-allocation process [141]. The information
in brackets refers to the services that are involved in the execution of the respective step
and which are introduced later in the ‘Services’ section of this chapter.

1. Composition and submission of application description

After the user has defined the description and resource requirements of the appli-
cation, they send them to the meta-scheduling service explicitly specifying the re-
quested HPC resources (Services 1 and 2).

2. Resource preview and pre-selection

The meta-scheduling service queries the local RMS to get the earliest time the re-
quested resources will be available. Following that, the RMS generates resource
availability previews, which comprise a list of time-frames during which the requested
QoS (e.g. a fixed number of nodes) can be provided. It is possible that the preview
contains only one entry or even zero entries if the resource is fully booked within the
requested time-frame (Services 3, 4, and 6).

3. Generation of schedule and reservation of resources

Based on the preview the meta-scheduling service calculates the possible start time.
If the individual start times do not allow the co-allocation of the resources, the meta-
scheduling service will use the latest possible start time as the earliest start time for
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Figure 3.2.: The Co-allocation of two compute resources and a network switch (modified
version based on [42])

a next scheduling iteration. The process is repeated from step 1 until a common time-
frame is found or the end of the preview period for all the local systems is reached.
The latter case generates an error condition (Service 2).

4. Cross-checking of start times

In case the individual start times match, the meta-scheduling service checks the
scheduled start times for each reservation by asking the local schedulers for the
properties of the reservation. This step is necessary because new reservations may
have been submitted in the meantime by other users or processes, thus preventing
the reservation of resources at the requested time. If one or more reservations are
invalid, all reservations will be cancelled. The latest effective start time of all reser-
vations will be used as the earliest start time to repeat the process beginning with
step 1. If all reservations are scheduled for the appropriate time, the co-allocation of
the resources will be completed (Service 2 and 6).

5. Finalisation of scheduling

The meta-scheduling service passes the co-allocation information back to the client

29



3. Requirements

(Services 1 and 2).

6. Co-allocation and execution of the application

Once the scheduled start time is due, all reserved resources (including the network)
will be co-allocated and the application can be executed (Service 6).

7. Completion of application

The final step includes reporting about the resources consumed and the delivery of
the application output to the user (Services 5, 6, and 1).

Functional Requirements

Looking at the sequence of actions that have to be executed in this scenario, we recognise
the following functional requirements:

• Information retrieval

The meta-scheduling service needs information about the current and the future
state of reservations for all local resource management and scheduling systems that
offer their resources.

• Negotiation

The meta-scheduling service must have functions to negotiate with the different RMS
about the quality-of-service (i.e. the start time of the application).

• Co-allocation

The scenario requires the automation of co-allocation of compute and network re-
sources. Based on the high-level application requirements the users define, the
middleware has to deal transparently with low-level scheduling issues of the co-
allocation process.

• Resource reservation

The requested resources must be reserved for their future allocation, a function also
called advance reservation.

• Support for service-level agreements

It is necessary that the middleware services follow an SLA model and expose inter-
faces that enable users to negotiate and reach an understanding on service-level
agreements.

• Monitoring and failure management

A monitoring infrastructure is essential to recognise failures and to gather data needed
for SLA compliance assessment.
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Services

The list of services that are needed to realise the above mentioned functions is quite sim-
ilar to those given for the work-flow example. We also assume here that an execution
environment exists to run the application. In case of IANOS [113], the most advanced
implementation of this scenario, the UNICORE middleware is the respective execution en-
vironment integrated with the services listed below2:

1. Submission service or agent acting on-behalf of a user (steps 1 and 7)

2. Meta-scheduling service (steps 1, 3, 4, and 5)

3. Brokering service (step 2)

4. Information service (step 2)

5. Monitoring service (step 7)

6. RMS adapter (steps 2, 4, 6, and 7)

The RMS adapter is the interface between the meta-scheduling service and the local
RMS. It hides the specifics of the RMS and enables co-allocation of virtually any kind of
resource. The only potential limitation can be imposed by the local RMS or their site policy:
if they do not publish at least the next possible start time or do not support advance
reservation, co-allocation will not be possible.

3.1.3. Application Scenario III – Delegation of Scheduling Requests

The development of scheduling and resource management for grid infrastructures has
long been influenced by meta-schedulers (also called super-schedulers or simply grid
schedulers). The majority of them have one thing in common: the meta-scheduler con-
stitutes a ‘higher-level’ scheduler which interfaces ‘lower-level’ schedulers or local RMS
and passes scheduling decisions [132] to them. Another approach is the delegation of
scheduling requests from one scheduler to another, inter alia proposed by the the German
DGSI project3. Especially with clouds providing ‘pay-as-you-go’ compute resources, this
scenario is an alternative worth evaluating.

Scenario

In this scenario, which is depicted in Fig. 3.3, a client sends an activity request to the
primary scheduler. It contains all information the scheduler needs to calculate a schedule
and to hand over the activity to an execution service. Upon receipt, the primary scheduler
takes the activity request and, if it is willing to handle it, creates an activity instance for
it, storing the initial request and, if applicable, additional information. The latter should
at least include a ‘provenance record’ which denotes that the current scheduler has taken

2Related steps of the work-flow precessing sequence, as described in the ‘Sequence’ section, are listed in
brackets.

3D-Grid Scheduler Interoperability, last visited March 1, 2011: http://www.d-grid-
ggmbh.de/index.php?id=98&L=1.
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Figure 3.3.: Delegation of scheduling requests

over responsibility for the execution of the given activity. Other candidate information
are scheduling attributes, dependencies on other activities, and the current state of the
activity.

The scheduler decides, for reasons not relevant here, that it cannot fulfil the request
and delegates it to another, secondary scheduler. In this case, the delegator acts like a
client towards the potential delegatee. Again, if the delegatee is willing to accept the job, it
takes over responsibility and the provenance records and depending information (e.g. the
expected execution service) are updated accordingly. If necessary, the activity request is
modified, and the manipulation history is kept. Such modifications might include, as de-
picted in Fig. 3.3, whether a secondary scheduler rejects or accepts a delegation request,
the state transition of the activity, or the resources consumed.

Throughout the whole process, state information is constantly updated in the activity
instance. After activity completion, the resource consumption is written to the activity
instance. The corresponding entries and dependent parts of the activity instance could
then be marked final to denote the completion of the activity.

Sequence

The sequence of messages passed between the different services in the scenario is de-
picted in Fig. 3.4. The information in brackets refers to the services that are involved in
the execution of the respective step and which are introduced later in the ‘Services’ sec-
tion of this chapte

1. Composition and submission of the activity

A client submits an activity request to the primary scheduler. The request should
include all information that is needed to make a scheduling decision and to execute
the activity afterwards (Services 1 and 2).
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2. Activity creation

The primary scheduler informs the activity management service about the activity
instance following the acceptance of the activity request (Services 2 and 5).

3. Scheduling and delegation

The primary scheduler cannot schedule the request and therefore delegates it to
the secondary scheduler A which rejects it and updates the activity instance respec-
tively. The primary scheduler then initiates another delegation attempt addressing
secondary scheduler B4. The secondary scheduler B informs the activity manage-
ment service about the acceptance of the delegation request (Services 2, 3, 4, and
5).

4. Execution

The secondary scheduler B notifies the activity management service about the hand-
over of the activity to the execution service. This service updates the activity in-
stance according to the state of the activity execution, informs it about the resources
used, et cetera (Services 3 and 5).

Client Primary 
Scheduler

Secondary 
Scheduler A

Secondary 
Scheduler B

 Activity Store BES

submitActivity
generateActivityInstance

requestActivityDelegation

updateActivityInstance

requestActivityDelegation

acceptDelegation

updateActivityInstance

executeActivity

rejectDelegation

updateActivityInstance

updateActivityInstance

Figure 3.4.: Sequence diagram for the delegation of activities

The scenario shows, for the sake of simplicity, only the steps until the activity is exe-
cuted. Further steps that occur during the processing of the activity, like feed-back of re-
sults, are not shown, nor are potential activity monitoring or assessment steps presented.

Functional Requirements

• Information retrieval

4The arrow for this delegation attempt originates only for visual reasons from secondary scheduler B.
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The primary scheduler needs information about the capabilities of other schedulers
to prevent delegation negotiations with secondary schedulers that are not capable
of accepting the request anyway.

• Scheduling

Obviously this scenario features schedulers. An additional functional requirement
in comparison to the other two uses cases is the demand for a common format to
exchange the scheduling requests.

• Activity management

A service or a framework of services is needed which handles the activity instances.
They have to support at least the CRUD set of operations (cf. Section 9 for one
realisation of this functional requirements).

• Negotiation

The schedulers must support negotiations to get to an agreement regarding the dele-
gation. This includes the ability to negotiate the conditions of the activity delegation
like price or time. The same interfaces should be offered to the client to negotiate
the initial request.

• Monitoring

It is essential to have monitoring information about the underlying infrastructure to
make proper scheduling decisions. Another reason for this function is the activity
management, which, as we will point out later (cf. Section 5), aggregates all infor-
mation related to a specific activity.

Services

For this scenario, the execution environment and other activity information sources than
those depicted in Fig. 3.4 are not in our focus and are therefore not included in the following
list of services5:

1. Submission service or agent acting on-behalf of a user (step 1)

2. Primary scheduler (steps 1, 2, and 3)

3. Secondary scheduler(s) (steps 3 and 4)

4. Information service (step 3)

5. Activity management service(s) (steps 2, 3, and 4)

5Related steps of the work-flow precessing sequence, as described in the ‘Sequence’ section, are listed in
brackets.
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3.2. Analysis of the Requirements of the Application
Scenarios

The three scenarios include several common requirements. Obviously, scheduling is a
central aspect of each case, but this was the main characteristic for their selection any-
way. What we seek are common requirements that have to be considered by developers,
architects as well as implementers, of service-oriented distributed infrastructures.

The following set of requirements has been identified:

• <REQ-1> Discovery of services and resources: For all three scenarios it is nec-
essary that the schedulers can discover other entities, them being services or re-
sources, which fulfil specific constraints or fit certain parameters.

• <REQ-2> Access to service and resource information: In addition to discov-
ering entities, a common requirement is access to up-to-date service or resource
information. As there is no clear distinction between ‘static’ and ‘dynamic’ informa-
tion, we postulate that during a pre-selection phase all static information about a
resource or service is provided and that dynamic information is requested in cases
where a service has to make decisions based upon data which may have changed
since the previous decision. Examples for static information are the resource cat-
egory or the maximum amount of nodes a high-performance computing user can
request; examples for dynamic information include the current load of a system or
potential start time for an activity.

• <REQ-3> Brokering: Although brokering and scheduling are often equated with
each other, we differentiate between these two requirements: a scheduling service
decides where and when to execute an activity, whereas the brokering service pre-
selects suitable services or resources that are candidates for the actual scheduling
process. This feature is explicitly required by the first two scenarios and it is implicit
in the ‘Scheduling and delegation’ step of the third one. There the primary scheduler
needs a priori information about potential secondary schedulers to contact only those
which are, based on their static information, capable of scheduling the request.

• <REQ-4> Scheduling: It is essential for distributed computing infrastructures that
a user does not have to manually coordinate access to service. To this end, efficient
resource management functions are required which automatically schedule activi-
ties, work-flows, or applications. This item also captures the demand for service
orchestration, co-allocation, and delegation, all of which we see as particular forms
of scheduling.

• <REQ-5> Advance reservation of services and resources: The first two scenar-
ios mention advance reservation as an important requirement to realise work-flow
scheduling as well as co-allocation. With respect to the third case, it is not relevant
in what way the individual scheduler actually implements the schedule. Therefore
advance reservation is not required, but it is not explicitly excluded either.

• <REQ-6> Service-level agreement management: Although this function is only
required explicitly for the co-allocation scenario, all of them implicitly carry the need
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for handling quality-of-service requirements. This becomes primarily evident be-
cause of the demand for negotiating the condition of either activity delegation or
resource reservation. And, anticipating that almost all DCIs will be service-oriented
infrastructures in the future, we foresee the necessity of SLA-driven design principles
to increase. Failure management, as referred to in the first scenario, is included here.

• <REQ-7> (SLA) negotiation: All three scenarios include the requirement of ne-
gotiation. This translates to SLA negotiation under the assumption of service-level
management to be a core part of future DCI management infrastructures.

• <REQ-8> Activity management: This requirement is only supported by scenario
number three, we will reason later, however, why the addition of activity manage-
ment to DCIs makes sense in general.

• <REQ-9> Monitoring: Prior to and during the execution of an activity it is neces-
sary to monitor the state of services and resources. In the specific case of the third
scenario, monitoring is central to the whole scenario. There, the activity is created
once a user request is received and it is continuously updated with monitoring infor-
mation6.

3.2.1. Non-Requirements

Apart from the selected requirements, some of those mentioned in the scenarios do not
represent core aspects of this thesis. These ‘non-requirements’ are:

• Composition and submission of execution requests: In the DCI landscape a
number of clients, portals, and APIs exist which comprise functions like the specifica-
tion of execution requests (also known as tasks, jobs, processes, activities, applica-
tions, work-flows, or alike) and the submission of such requests. Some are generic,
other are domain-specific, maybe even tailored to one specific application. Com-
mon to all of them is that they rely on middleware interfaces and the request model
prescribed by the middleware. As we focus on the middleware, its services, and
interfaces, such client-side entities are of no interest to us.

• Provisioning and execution: Any distributed computing infrastructure, whether it
is an HPC system, a grid, or a cloud, provides means to provision the services and
resources requested by a user. It also needs execution services to fulfil the users’
requests. Undeniably, there are plenty of requirements in this area to increase per-
formance, manageability, or usability, but in the light of our application scenarios,
provisioning and execution capabilities are taken for granted. Briefly, we are inter-
ested in the interfaces and data models but treat the services as black boxes.

• Assessment and reporting: The pay-as-you-go business model, which is one cen-
tral pillar of cloud-like DCIs, gives prominence to proper service-level assessment,
reporting, billing, and auditing. Although this is undeniably a very important feature
of today’s distributed infrastructures, we see these as ‘added-value services’ that
deserve significant research effort, but are not of importance for scheduling itself.

6For an in-depth introduction to the notion of an activity we refer to Section 5.
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We will show, however, that our contributions will help to increase service quality in
this area, too.

• Security: Security aspects are core to almost any DCI application: it is essential,
for example, to authenticate and authorise users and keep the integrity of data. To
us, this is reflected in security-related service requirements and QoS demands. Such
items are only part of the ‘payload’ of activities and service-level agreements, but
not central to our research.

• Pre-processing/validation of execution requests: We consider pre-processing
of execution as a function inherent to any processing entity in a DCI middleware.
At least a syntactical check of a job or work-flow description is necessary to grant
further processing. Since a multitude of today’s execution requests are specified in
XML, such a basic validation is executed automatically by the respective parser.

3.3. Implications for Distributed Computing Middleware

Following the previous brief summary of requirements, we now reflect on the implications
of actually implementing services which fulfil them. Based on a previous evaluation which
merely covers grids [122], we now execute this analysis with service-oriented infrastruc-
tures as the target environment and a maximum of generality as our main objective.

Instead of identifying a minimal subset of functions, which would probably render the re-
sulting middleware inadequate for most application scenarios, we carefully identify the rel-
evant set of requirements to make the services which implement them usable for multiple
scenarios. On the other hand, this function set should not be too large to be implemented
into a reliable and robust middleware. Doing the splits between specifics and generality
is a difficult task; our respective solution is presented in Chapter 4. Whether or not it is
commonly applicable should be subject of further discussion within the DCI community.

In the following paragraphs we adhere to the nine requirements the previous section
and link them to middleware services which implement them.

Registry for Services and Resources

The service which lets users or other services discover entities within a DCI is called reg-
istry. We assume that in a first step it is necessary to identify services and resources
that are principally available. The middleware must offer a fast mechanism to identify the
entities which fit a given description. The actual selection or scheduling will be based on
additional information retrieval or negotiation, a process which might require several steps
(see also ‘brokering’ and ‘scheduling service’, as well as ‘negotiator’ below).

While for enterprises an index or directory information service might be feasible, it be-
comes a more complex problem to identify which services and resources are currently
available in a large-scale infrastructure. For future DCIs, a flexible and scalable discovery
service is required. There are technologies, e.g. from the peer-to-peer area, that work well
for large-scale systems. For smaller environments, however, other approaches, like the
mentioned index and directory services, may be more efficient. A coherent or standard
interface which supports both approaches is desired.
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Nevertheless, it is important to identify entities which meet the requirements of an ac-
tivity in the best possible way. In general, it is not sufficient to discover all the entities of a
specific type as the result set might be too large and thus not useful for processing. This
implies that models for a flexibly parametrised search are required to pre-select a prior-
itized and small set of ‘good’ resources. Therefore, a flexible methodology is necessary
to limit and steer the search towards the anticipated results. For resource brokerage or
scheduling, it might be necessary to re-iterate and modify the search criteria in order to
improve the list of suitable entities.

Information service

Besides a registry containing basic data about the entities in a DCI, it is necessary to
have additional information about resources, some of which is static or at least valid for
a relatively long time. Such information may be suitable for caching or storing in remote
information services. Other information is highly dynamic and therefore not suitable for
deferral to remote services. Independent of such characteristics, this information is pro-
vided by an information service.

Therefore, middleware should provide coherent access to this static and dynamic in-
formation. It also has to be considered that it may not only consist of simple key-value
pairs, but that more complex and potentially time-variant data collections might as well
be needed. A typical example here is data about planned or predicted future events, like
resource reservations or the predicted load of a compute system.

Similarly, access to information about past events might be needed. Some systems may
utilize such historic information to make predictions about future events. Nevertheless, it
has to be acknowledged that access to this data is important for many application scenar-
ios and for many scheduling and brokering services. Most of current information services
do not support a rich and extensible information model. Moreover, many existing services
are not suitable for a scalable scenario with many entities and corresponding information
sources.

To summarise: a coherent interface to infrastructure information is essential for any DCI.
It should support caching whenever possible, e.g. if the information does not change for
a sufficiently long period. Furthermore, it should include mechanisms and paradigms to
retrieve dynamic information. In any case, the unified information service should not be
limited to specific resource types or kinds of services, but it has to be designed in a generic
and extensible manner. Data, network, and software resources and their corresponding
management services are, for instance, often and probably unnecessarily treated differ-
ently. Thus, a more flexible and generic information service could decrease the complexity
of building DCI middleware.

Brokering service

It is essential to have flexible and automatic brokering and scheduling services. Because
of the large number of potential services and resources comprising a DCI and because of
the heterogeneity of access policies with different providers, the user cannot effectively
execute the selection of services and resource needed for an activity in a manual fashion.

A middleware service that helps to pre-select suitable services and resources is called
broker. Its purpose is to reduce the set of entities worth considering and hand over a
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candidate selection to the scheduling service. This is best done by using only a small
amount of data like service type. Typical requests sent from a broker to a registry are
‘give me the EPR7 of all services that have the capability to negotiate about the usage of
compute resources’ or ‘list all storage resources that offer at least 300 TByte of space’.

Scheduling service

First, we have to consider that scheduling implies an activity description that includes all
data needed to properly match user requirements to service and resource capabilities.
While many current distributed computing infrastructures still deal with simple jobs [70],
we envisage increasing demand for complex work-flow execution, business processing,
and HPC applications. Therefore all services involved in the processing of such activities
will have to be able to cope with them, including the scheduling service.

Due to the different access and scheduling policies that might exist with a DCI, we can-
not expect that a single scheduling strategy will suit all needs. Instead, it must be taken
into account that a DCI most likely has many different schedulers with varying features
and strategies which are optimized for certain applications. Therefore, it is be essential
for scheduling services to offer well-defined interfaces and protocols to all the functional
entities and all the information a scheduler needs. Such a scheduling architecture, includ-
ing the capability to exchange scheduling requests between services, will facilitate the
implementation of different application-specific schedulers [132].

Considering the different types of resources, it is important that all of them can also
be included in the brokering and scheduling processes. Especially, data and network re-
sources are often associated with dedicated management and information services [9,
118]. For instance, access to planned data transfers or network reservations are impor-
tant to co-allocation scenarios like the one presented in Section 3.1. Current approaches,
however, do usually not provide adequate means to integrate such resources into schedul-
ing, although the management tasks are very similar to those of other resources. Here,
consistent and coherent interfaces are vital to integrate any kind of resource and service
into the management of a DCI. Ideally, an activity should be able to request data resources
and network links from a scheduler in the same fashion as it requests software components
or compute power.

It is also critical that different scheduling instances can interact with each other, a re-
quirement supported by the ‘delegation of scheduling requests’ scenario. One approach is
to support such interactions through the provision of negotiation interfaces which permit
the creation of agreements between scheduling services. Due to the complexity of the
scheduling task in a large-scale DCI, such negotiations can take a long time as many iter-
ations of probably parallel negotiations with different other providers might be necessary.
Therefore, any access to information that can support this procedure will be helpful. This
can include tentative information about availability, potential quality of service, or costs.

Advance reservation service

As stated above, all three scenarios require the reservation of resources in advance. This
is essential to guarantee their availability once the environment for a particular activity

7An end-point reference provides means to contact a service. A common way to format EPRs is a Uniform
Resource Identifier: http://tools.ietf.org/html/rfc3986 (last visited March 3, 2011).
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has to be deployed. In case of compute resources this feature is already included in some
of the typical batch systems like LSF8 or PBS9, but many services that manage other kind
of resources, like storage or data, do not provide this kind of function.

Clouds, which are the latest technology base for DCIs, are considered to be ‘virtually
inexhaustible’ resources. This, however, is only true for their public representatives and
only for the current business model. Private cloud-based or even public computing in-
frastructures, once they properly support the HPC business model and funding agencies
get involved in it, will also experience resource shortage. In such cases ‘best-effort’ ap-
proaches will not work effectively, and scheduling based on advance reservation will be
necessary.

Service-level agreement framework

While some usage scenarios can get by with simple job submission paradigms, others
have more extensive requirements or need even guarantees for certain levels of service.
An example for the former are Globus grid jobs, like those submitted via the globus-job-
run command10, which mainly allows to specify the executable, the files to be staged in
and out, the number of processes, and the maximum runtime. In contrast to such an HPC
type of activity, our three scenarios include requirements like guaranteeing the time of
execution or negotiating certain QoS parameters between services.

There are other such applications [2, 12]. And the increase in service-orientated con-
cepts also mandates the inclusion of service-level management principles into the design
of DCIs. We therefore foresee that service-level agreements will become an integral part
of DCIs. In such an agreement, which is created before the actual activity execution and
service provisioning, all necessary quality-of-service parameters are specified. It can in-
clude both the simple job submission to a remote queuing system and actual execution
time constraints.

Negotiator

A negotiator, or negotiation service as it is also called, is a middleware component that
is needed to execute the process of SLA negotiation. One instantiation is needed on the
service consumer as well as on the service provider side. Governed by their respective
business objectives, they negotiate about the quality-of-service, and the rights and re-
sponsibilities of both parties. The common goal is to reach an agreement, i.e. to establish
a contract that contains the specifics of service consumption and delivery.

Because of the scale of DCIs (the European Grid Initiative EGI.eu has 10.000 users, for
example, and operates around 243.000 compute cores 11) negotiation with manual in-
tervention is not possible. DCIs therefore need negotiation services that can, potentially
within the scope of a framework contract, automatically agree on the terms of service

8Platform LSF – The HPC Workload Management Standard, last visited: January 25, 2013.
http://www.platform.com/workload-management/high-performance-computing.

9PBS Professional, last visited: January 25, 2013. http://www.pbsworks.com/Product.aspx?id=1.
10globus-job-run – Execute a job using GRAM, last visited: January 25, 2013.

http://www.globus.org/toolkit/docs/5.0/5.0.3/execution/gram5/pi/#gram5-cmd-globus-job-run.
11Steven Newhouse, The European Grid Infrastructure, last visited: January 25, 2013.

http://www.egi.eu/export/sites/egi/results/presentations/EGI-AstroPP1.pdf.
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delivery. Moreover, these services need to support various business objectives leading
to different negotiation strategies. Hence, support for this kind of flexibility is of great
importance.

Activity management framework

The management of activities as illustrated in Section 3.1 involves a number of services
comprising an activity management framework. It should be designed to capture, if de-
sired, all information related to an activity, which comprises a great amount of data as well
as a large variety of different data sources.

The integration of an activity management framework into a DCI middleware necessi-
tates great care during the design process as it is central to the whole distributed comput-
ing infrastructure.

Monitoring framework

Monitoring the status of an activity or a service-level agreement is an integral part of DCIs.
Due to the dynamic nature of these infrastructures, frequent and unexpected changes
require immediate reactions from the management services. To this end, these changes
must be reliably detected and signalled.

To improve usability, it is necessary that monitoring and event notification are provided
as core services without the implication of significant additional overhead for applications.
For future generation DCIs it will be important to have a generic and coherent interface for
all kinds of monitoring operations. This should include, but is not limited to, the monitoring
of resource conditions, service state, reservations, current schedules, activity execution,
and conformance of allocations to service level agreements.

It is open to discussion whether the data captured by monitoring should be integrated
into a general information service or not. Monitoring is a valuable source for dynamic
data as requested by requirement <REQ-9>, but most likely it is not feasible to keep and
advertise all data gathered by a monitoring framework using an information service. We
will resume this discussion later in Chapter 11.

3.4. Examination of DCI Schedulers

Although it is widely acknowledged that the co-ordinated execution of activities in a DCI
is vital — even in environments without competitive resource usage — we observe that
the findings of research and development in the area of scheduling seldom find their way
into production systems. Many of them still make use of comparatively simple schedul-
ing algorithms like first-come-first-serve (FCFS) combined with backfilling [128]. Or they
do not deploy a DCI-wide scheduler at all and leave resource allocation to local, on-site
schedulers. Large DCIs like DEISA operate that way and burden users with site-selection
as well as acquisition of knowledge about capabilities and restrictions of the various sites.
The reasons for not deploying sophisticated scheduling solutions are manifold, reaching
from costly algorithms over the lack of generic-enough scheduling solutions to simply the
missing awareness of the potential of scheduling.
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3.4. Examination of DCI Schedulers

A number of schedulers (which are sometimes also called ‘brokers’) exist for different
kinds of infrastructures and for different purposes. We examine six of them, which repre-
sent the large variety of existing systems, briefly, namely the Cluster Scheduler12, Grid-
Way13, the Hadoop Capacity Scheduler14, Haizea15, IANOS [78], and the MOAB Workload
Manager16. The purpose of this examination is to show the characteristics of selected
schedulers based on the following criteria17:

• The type criterion describes the target DCI type (cloud, grid, etc.) and whether the
scheduler is centralised or de-centralised.

• The information model criterion captures whether a standard model is supported or
a proprietary one is used.

• The QoS criterion lists the quality-of-service parameters supported by the sched-
ulers.

• The SLA model criterion captures whether the scheduler supports service-level agree-
ments.

• The negotiation criterion shows whether or not negotiation of QoS is supported.

• The delegation criterion expresses whether or not a scheduler allows the delegation
of scheduling requests to other schedulers.

• The reservation criterion shows the reservation capabilities of a scheduler.

• The middleware criterion captures whether a scheduler has been implemented for a
certain kind of DCI middleware.

• The dependencies criterion reflects lists other services which are needed to operate
the respective scheduler.

• The license criterion shows under which license the scheduler is distributed.

• The Misc criterion lists additional valuable information.

The results, which are shown in Table 3.1, reveal that none of the schedulers support all
features that are required (see also Chapter 3) for DCI schedulers, many rely on proprietary
features, or support only specific target DCIs. Therefore this examination motivates our
work to define a generic scheduling architecture for DCIs which, in case it is used develop
a scheduler, fulfils all requirements.

12Cloud Scheduler, last visited: January 25, 2013. http://www.cloudscheduler.org/.
13GridWay.org, last visited: January 25, 2013. http://www.gridway.org/doku.php.
14Capacity Scheduler Guide, last visited: January 25, 2013. http://hadoop.apache.org/common/docs/r0.20.2/-

capacity_scheduler.html.
15Haizea, last visited: January 25, 2013. http://haizea.cs.uchicago.edu/.
16Moab Workload Manager, last visited: January 25, 2013. http://www.clusterresources.com/pages/products/-

moab-cluster-suite/workload-manager.php.
17We have to anticipate at this point and do not introduce the rational for selecting the criteria. It will become

clear in Chapter 3 why they have been chosen.
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3. Requirements

Further scheduling systems exist, which are, for the sake of brevity, not examined here.
The interested reader may also review ASKALON18, the Cloud Scheduler19, the Community
Scheduler Framework20, the Condor-G task broker21, the eNANOS grid resource broker or
the KOALA grid scheduler22.

Research and development are driven by a large amount of applications which motivate
the integration of scheduling services into distributed computing infrastructures. We

have selected three applications and evaluated them focussing on their common issues.
The resulting list of nine requirements, which constitute the framework for a generic

scheduling architecture, is the first achievement of our work. To link the requirements to
actual services, we provided an analysis of the implications of implementing the required

functions. The section concluded with the evaluation of existing scheduling systems in
the light of these functions.

18ASKALON – Grid Application Development and Computing Environment, last visited: January 25, 2013.
http://www.dps.uibk.ac.at/projects/askalon/.

19Cloud Scheduler, last visited: January 25, 2013. http://www.cloudscheduler.org/.
20CSF, last visited: January 25, 2013. http://sourceforge.net/projects/gcsf/.
21Condor - High Throughput Computing, last visited: January 25, 2013.

http://www.cs.wisc.edu/condor/condorg/.
22The KOALA Co-Allocating Grid Scheduler, last visited: January 25, 2013. http://www.st.ewi.tudelft.nl/koala/.
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4. Concept

Here we outline the concept of a generic scheduling architecture for distributed
computing infrastructures. It fulfils the requirements outlined in the previous chapter and

links them to actual middleware services. A core part of this thesis is what connects the
requirements and the services: a number of models, methodologies, and architectural
designs, which are also motivated in this chapter. Finally, we introduce the scheduling

process to be executed with such an architecture in place.

Distributed computing infrastructures are complex constructs. Researchers have been
working on architectural blueprints for whole infrastructures as well as parts of them. An
early example of a distributed middleware is CORBA, the Common Object Request Broker
Architecture1. Despite a promising start, it has not gained common acceptance yet [66].
Another approach, in this case targeting grids, is the Open Grid Services Architecture
(OGSA) [52], an by now discontinued endeavour by the Open Grid Forum. In addition
to concepts for a complete architecture of a DCI, there are many that target a specific part
it, for example monitoring [69] or security [32].

We acknowledge that architectural blueprints for DCIs are a two-edged sword, since
architecture-compliance competes with evolving technologies, requirement-mismatch, and
the ambition of researchers to push their own creations. This is why the concept we
present in the following section remains on the level of services and their interactions,
and does not specify classes and interfaces. Our goal is to use the architecture as a foun-
dation for the description of the scheduling process in Section 4.2 and as a means to clarify
how the different models, methodologies, and designs (cf. Section 4.3) can be realised and
are linked together.

4.1. Concept of a Generic DCI Scheduling Architecture

We base our concept of a generic scheduling architecture for distributed computing envi-
ronments on previous research [58,122,132] in which we focussed on grid infrastructures
and for the most part on the architecture itself. In this thesis, we revive the outcome of
this research and evaluate it with respect to the application scenarios and requirements
outlined in Section 3. The result is an architecture that extends the one focussing on
scheduler interoperability [58] with concise activity management, information manage-
ment, and SLA management.

To begin, we re-introduce the nine requirements to be fulfilled by the scheduling service
environment.

1CORBA, last visited: January 25, 2013. http://corba.org/.
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4. Concept

• <REQ-1> Discovery of services and resources

• <REQ-2> Access to service and resource information

• <REQ-3> Brokering

• <REQ-4> Scheduling

• <REQ-5> Advance reservation of services and resources

• <REQ-6> Service-level agreement management

• <REQ-7> (SLA) negotiation

• <REQ-8> Activity management

• <REQ-9> Monitoring

Each of the requirements corresponds, as shown in Fig. 4.1, with a service of the archi-
tecture. The only case with no corresponding service is the requirement for service-level
agreement management (<REQ-6>). The respective model and functions are integrated
into a number of services. In the next two sections, the relationships between require-
ments and services will become clearer, as we describe the process of scheduling based
on this architecture, the models, and methodologies.

Scheduling 
service

Scheduling 
service
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reservation

service
Negotiator Monitoring 
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Figure 4.1.: A generic scheduling architecture for distributed computing infrastructures
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4.1. Concept of a Generic DCI Scheduling Architecture

We distinguish three ‘levels’ in this architecture: (i) client, (ii) middleware, and (iii) in-
frastructure. Although it is not possible to make a clear distinction between the different
layers, especially in a service-oriented infrastructure where services are deployed ad-hoc
to form added-value service orchestrations, the layering is valid for our application scenar-
ios and clearly separates consumers from providers.

Every consumer-provider relationship, either between the different layers or between
different administrative domains, is governed by one or many electronic contracts. A
service-level management framework integrated in the architecture and a negotiator at
every party2 are the basis for fulfilling requirements <REQ-6> and <REQ-7>.

Whenever a request to execute an activity arrives at a scheduling service, an activity
is created or its information is updated, in case it already exists. The respective data
related to an activity is maintained by the activity management framework, which also
receives data from monitoring sensors, residing on infrastructure level and sending data
on the services and resources which have been provisioned to fulfil the activity request.
Other services can, if they have the necessary authority, subscribe to an activity and
receive notifications about events related to it. The activity management framework and
the monitoring sensor implement the functions needed to fulfil requirements <REQ-8>
and <REQ-9> respectively.

The core of the scheduling architecture is the scheduling service itself, which controls
the scheduling process and makes the final decision about where and when an activity
is executed3. To achieve this, it relies on the brokering service to answer queries on ser-
vice and resource capabilities (as demanded by <REQ-3>). Furthermore, the scheduling
service depends on resources to be allocated at the point in time determined in the SLA
(required by <REQ-4>). This necessitates an advance reservation service for every re-
source in order to be able to reserve it (<REQ-5>).

The whole process of scheduling relies on data about the services and resources which
form the computing infrastructure. This data is kept in an information service, which is
accessed by brokering services and which populates the registry with ‘basic’ data needed
to discover a service or a resource (as requested by <REQ-1>). The information service
keeps an up-to-date view on the data relevant to make scheduling decisions (and therefore
implements <REQ-2>)4. Such information could be generated by the same monitoring
sensors that send data to the activity management framework.

Services on the boundary between two administrative domains are needed to share in-
formation between two or more sites. In case of the registry this is not imperative: each
administrative domain within a DCI could host its own registries as long as all services
know how to access them. In case of the activity management framework it is more com-
plicated, since it is essential that all information related to one specific activity can be iden-
tified as such. This implies either some kind of DCI-wide name management or, as shown
in Fig. 4.1, a shared activity management framework. To prevent single points of failure,
all shared services should be deployed more than once within a DCI. The figure presents
only one instance of the registry and the activity management framework to make clear
that they maintain data shared between different administrative domains. Similarly, the

2For the sake of simplicity, the negotiator component on client level is not pictured and those used by the
scheduling services are included in the respective boxes.

3The scheduling process is introduced in this chapter in Section 4.2 and the actual decision making approach
is outlined in Chapter 8.

4To keep the figure simple, Fig. 4.1 does not picture any information sources to update this data.
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4. Concept

architecture prescribes no strategy on replication or data maintenance policies within a
DCI or within the different domains.

4.1.1. Interaction with Infrastructure Services and Resources

Each service making up a DCI middleware, and therefore also those described above, is
operated by a legal entity, whether it is an academic compute centre, a National Grid
Initiative5, or a company. Every single service could, in theory, belong to a different legal
entity, which would render communication between the services overly complex due to
issues like security, trust, or simply performance. In practice, it comes handy to operate
the infrastructure services per resource and most of the DCI middleware services per site.

A typical grid site6 operates a number of infrastructure resources each of which is nor-
mally equipped with local management services. These services are employed to manage
resources, retrieve information on them, and integrate them into the scheduling process.
In a standard cluster or grid this is the task of a local scheduling service, also called batch
system, local resource manager (LRM), or (local) resource management system ((L)RMS),
with Torque7 being a popular open source representative. Usually, one RMS is deployed
per site. It receives jobs, executes them on the compute site, and manages the output.
Some RMS can also reserve resources in advance, like Torque extended by the MAUI sched-
uler8, or consume SLAs, like LSF version 69.

Fig. 4.1 presents three services at the interface between the infrastructure and the mid-
dleware layer: (i) negotiator, (ii) advance reservation service, and (iii) monitoring sensor.
In the typical grid set-up described above, the latter two services would be provided by an
RMS. As of today, this would imply that SLA-based negotiation is not possible and that mon-
itoring data is restricted to job and queue-related monitoring information. It is therefore
necessary to provide a negotiator and enhanced monitoring capabilities integrated with
activity management, in order to connect a DCI infrastructure to the scheduling service.

4.1.2. Interaction with Clients

As depicted Fig. 4.1, the scheduling service provides the client-side interface to distributed
computing infrastructures. This modus operandi, a client interacting directly with the
scheduling service, is quite common, for example, in grids, but other set-ups exist, too.
This includes portals, applications, or other schedulers accessing the scheduling service
on behalf of the human client and therefore being clients themselves. Any client or client
agent has to implement client-side negotiation functions to come to an agreement with
the scheduling service about the activity execution and its related quality-of-service pa-
rameters.

5EGI – Resource Providers, last visited: January 25, 2013. http://www.egi.eu/production-
infrastructure/Resource-providers/.

6An example here is the reference installation of the German national academic grid, called D-Grid:
http://dgiref.d-grid.de/wiki/Image:Architecture01.png (last visited: March 04, 2011).

7Torque Resource Manager, last visited: January 25, 2013. http://www.clusterresources.com/products/torque-
resource-manager.php.

8MAUI Cluster Scheduler, last visited: January 25, 2013. http://www.clusterresources.com/products/maui-
cluster-scheduler.php.

9Goal-Oriented SLA-Driven Scheduling, last visited: January 25, 2013. http://hpc.ilri.cgiar.org/documents/-
admin_6.0/sch_sla_aware.html.

48



4.2. The Scheduling Process

4.2. The Scheduling Process

Scheduling in distributed infrastructures is complex and, depending on the objective func-
tion and the number of entities to take into account, a lengthy process. One structured
approach to describe the stages of DCI scheduling was published by Schopf in 2004 [120].
It comprises three phases, which in total include 10 different actions. As Schopf espe-
cially targets grid infrastructures and neither considers SLAs or delegation nor negotiation
or activity management, we extend her approach to reflect the requirements depicted in
Chapter 3.

4.2.1. ‘Ten Actions When Grid Scheduling’ Revisited

Schopf subtitled her contribution ‘The user as a Grid Scheduler’ indicating, that at the time
of publication, fully automated support for her concept did not exist. Therefore many of
the actions depicted in Fig. 4.2 were actually executed manually.10

Phase 2 - System Selection

4. Information Gathering

5. System Selection

Phase 3 - Job Execution

6. Advance Reservation

7. Job Submission

8. Preparation Tasks

9. Monitoring Progress

10. Job Completion

11. Clean-up Tasks

1. Authorization Filtering

2. Application Definition

3. Min. Requirement Filtering

Phase 1 - Resource Discovery

Figure 4.2.: Three phases/ten actions for grid scheduling (Step 6 ‘Advance Reservation’ is
optional) [120]

The actions are grouped in three phases: (i) resource discovery, (ii) system selection,
and (iii) job execution. They contain eleven steps, one of which is optional11:

1. Authorization filtering: In this step, the scheduling service determines the re-
sources the user has access to.

2. Application requirement definition: The user defines a minimal set of resource
requirements to enable the scheduling service to search for candidate resources for
a job.

3. Minimal requirement filtering: It is the purpose of this step to exclude resources
from the pool which do not fulfil the minimal set of requirements.

10An example for the user-centric work-flow has been the usage of a UNICORE grid via a graphical client
software: http://unicore.eu/documentation/manuals/unicore5/files/client_manual.pdf (last visited: March
6, 2011).

11Please note that we do not distinguish here between steps possibly executed manually and those carried out
by a scheduling service. For the understanding of the process and with respect to the update we propose
in the next paragraph this is irrelevant.
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4. Dynamic information gathering: To calculate the best-possible schedule, the
scheduling service needs up-to-date information about candidate resources.

5. System selection: In this step, the scheduling service selects the system(s) to run
the job on.

6. Advance reservation: Some of the selected resources may need be reserved in
advance to guarantee the execution of the job. This is an optional step.

7. Job submission: In this step the job is executed to the selected systems(s).

8. Preparation tasks: The preparatory actions ensure that the environment to exe-
cute the job is set up properly. This step includes e.g. the stage-in of data or the
allocation of reservations.

9. Monitoring progress: For some applications it is evident to monitor the progress of
the job and validate whether it adheres to certain performance demands. Negative
validation may lead to re-scheduling (Step 4).

10. Job completion: The user needs to be informed about the completion of her job.

11. Cleanup tasks: This step includes actions like data retrieval or freeing of temporary
storage.

We now take these steps as a basis for an updated scheduling process for distributed
computing infrastructures with support for service-level management, activities, and del-
egation.

4.2.2. The Scheduling Process for DCIs

The first important difference between Schopf’s and our approach is that we aim for a
fully-automated scheduling process. The steps depicted in Fig. 4.3 can be automatically
executed in a DCI environment that implements the architecture presented in Fig. 4.1. Full
automation, though, is not mandatory as synchronisation points for manual intervention
or checking can be added to the process. This may, for example, be necessary to authorise
the negotiated price of a service offer.

Fig. 4.3 outlines the scheduling process, which comprises eleven steps. In addition,
decisions taken at three of them may lead to the delegation of the scheduling request,
which has been depicted accordingly. Last but not least we linked the scheduling steps to
the respective phases of the SLA life-cycle, which is introduced in full detail in Chapter 7.

1. Activity template receipt

Upon receipt of an activity template, a scheduling service either creates an activity
instance or updates an existing one. Both is done by calling the respective function
provided by the activity management framework12. Further content is added to the
activity template, as a result of the following steps, until all necessary data is avail-
able and the activity can be executed. We do not make any assumptions about the
nature of the client who submits the activity template. It can be the user herself, an

12We anticipate some terms and interrelations here that are introduced later in Chapter 5.
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4.2. The Scheduling Process

1. Activity template receipt

2. Information gathering

3. Service & resource pre-selection

4. Service & resource selection

5. Negotiation

6. Advance reservation

7. Infrastructure provisioning

8. Activity execution

9. Monitoring

10. Activity completion

11. Termination

? Delegation

? Delegation

? Delegation

Development

Negotiation

Implementation

Execution

Assessment

Termination

Figure 4.3.: The scheduling process for distributed computing infrastructures. The arrows
to the left indicate the respective phases of the SLA life-cycle according to
Fig. 7.1

agent acting on behalf of the user, or another scheduling service. As such, the activ-
ity template can be part of or embedded into an SLA and subject of negotiation itself.
Regarding the scheduling process, however, the activity template merely represents
the customer’s requirements and we do not take chained negotiations, nested SLAs,
or other interrelations into account.

2. Information gathering

As a first step towards creating a schedule, information about services and resources
is gathered by the scheduling service to create an up-to-date view on the resource
pool. In general, the scheduler does not request all available information about all
services and resources, but either uses registries to discover certain kinds of services
or queries brokers for entities with certain characteristics (cf. Fig. 4.1). This step is,
depending on the scheduling strategy, executed multiple times featuring a variety of
query parameters. Although depicted only once in Fig. 4.3, it is suggested to gather
information at least twice, first for pre-section and second for the actual selection
process (see below).

The information gathering may lead to the delegation of a scheduling request in case
no suitable services or resources can be found.

3. Service and resource pre-selection

As a next step, services and resources are pre-selected. In a fully automated, large-
scale DCI the scheduling service most likely queries a number of brokers to retrieve
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candidate services and resources based on a basic set of static parameters13. As a
result, the scheduling service has a narrowed range of candidates and considers for
scheduling, for example, only HPC systems with a maximum of 1024 cores. In case
no candidates have been selected by the contacted brokers, the scheduling service
may delegate the activity to another scheduler or reject the activity respectively.

Contrary to Schopf, we include user authorisation in the pre-selection step as it is
just one additional static parameter.

4. Service and resource selection

With a range of candidates at hand, the scheduling service selects services and re-
sources that are needed to fulfil the request embedded in the activity template. This
means, reviving the previous example, that the scheduling service calculates the
best-fitting schedule taking all resources into account which offer, say, 256 cores at
the requested time. Most likely, other constraints are included in the activity tem-
plate, like a maximum cost, a minimum amount of memory, or the availability of a
particular software license.

If no resource(s) can be selected, it will be up to the provider of the scheduling service
to define a strategy to react accordingly. This may either be re-scheduling, starting
again with the ‘information gathering’ step, or the delegation of the request14. Such
events can be recorded through the activity management framework, as can similar
events during the previous steps of the scheduling process.

5. Negotiation

The scheduling service then has to negotiate with the negotiators of all entities which
are required to execute the activity. For some resources this may not be necessary,
for example, if best effort network provision suffices to run an application. In all other
cases, the scheduling service has to negotiate the terms of service provision with a
service or a resource. In the event of one or more failed negotiations, it is again up
to the provider to decide how to react (by specifying the respective policies) and the
re-scheduling of the request is the likeliest strategy.

SLA with external parties, as e.g. depicted in Fig 4.1 between two scheduling ser-
vices belonging to different administrative domains, are essential contracts to agree
upon quality-of-service. Especially in cloud-like environments, negotiation between
a scheduler and the IaaS provider about the virtual machines and their prices are
likely to become a common scenario. But also within one enterprise ‘internal SLAs’,
or operational-level agreements (OLAs) as they are called by ITIL, are recommended
to ‘set out specific back-to-back targets for support groups that underpin the targets
included in SLAs’ [103].

Negotiation itself can be a multi-step process, as described in Section 7.5. With
respect to scheduling in DCIs, it is one step of the whole process and we do not make
any assumptions about its specifics.

13For the distinction between static and dynamic service and resource information we refer to Section 3.2.
14We did not depict the optional delegation step here since we assume it is in the interest of the provider to

find suitable resources and therefore to re-schedule.
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6. Advance reservation

After the negotiation of an SLA, it is, in many cases, essential to reserve a resource
in advance. This is an action normally executed automatically by a provider and
triggered by the event of having an SLA agreed upon. It simply implies that in case
a provider guarantees a customer access to a resource, like a number of compute
nodes or storage space, the provider has to reserve it in advance.

The advance reservation step is executed by a an entity which we call advance reser-
vation service (according to Fig. 4.1). In general, this service is integrated into a
dedicated RMS for the particular resource, whether it is a storage or a network reser-
vation system. For most compute resources in DCIs, the advance reservation service
is part of the back-end batch system. It manages clusters or HPC systems, and there-
fore it is essential that it supports advance reservation.

7. Infrastructure provisioning

At the time the activity execution has been scheduled, the infrastructure to perform
this has to be in place. In state-of-the-art DCIs, many of which are grids, this step
involves mainly activation of a reservation and preparative actions like staging of
files or execution of pre-run scripts. With IaaS environments as the current targets
for the provision of resources in DCIs, this step is more dynamic. It involves the
deployment of virtual machines and services, the set-up of VLANs, and the creation
of an ad-hoc monitoring infrastructure for the particular activity.

Ideally, the infrastructure provisioning not only includes compute resources, but also
takes issues like the time needed for data pre- and post-staging into account. Some-
thing like this would imply that the infrastructure provisioning starts hours or even
days before the reservation becomes active. It may also include storage and network
services which are not explicitly demanded by the client in her activity description.
It is therefore the task of the scheduling service to take such problems into account.

8. Activity execution

The actual execution of the activity is triggered by the advance reservation service
(cf. Fig, 4.1). As it maintains the reservation, it is also responsible for starting an
activity. Regarding implementations of the generic scheduling architecture, it could
also be a specific execution service, which has the reservation information present
and initiates the execution. It is important to note that no specific action is expected
to be taken by either the client or the scheduling service as the infrastructure ser-
vices will take care of the execution. All necessary information has been included in
the activity template or was added to it during the negotiation step.

9. Monitoring

As part of the ‘infrastructure provisioning’ step, activity-specific monitoring services
are deployed or activated, and they are registered with the activity management
framework. Through this, continuous monitoring of the activity during its runtime is
guaranteed. Other services that assess SLA-compliance of the service offer or report
the state of the activity to the client can subscribe to monitoring information. Also,
the scheduling service, as presented in Fig. 4.1, is informed about the state of the
activity and may act upon it.
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10. Activity completion

Once the execution of an activity has ended, either because all of its parts have been
processed or because of an error condition, the scheduling service is informed and
the activity information is updated accordingly.

11. Termination

Upon termination, the environment used to execute the activity is decommissioned.
Resources are de-allocated, for example if the reservation exceeds the runtime of
the activity, and virtual machines are shut down. In some cases, post-execution ac-
tions are performed, like cleaning up temporary file space or conducting user-specific
commands. Final information about the activity is then included in the activity record
to provide data about resource usage or the cost of service delivery.

We additionally refer to Appendix A for a sequence diagram linking the scheduling pro-
cess to the respective middleware services (cf. Section 4.1).

4.3. Models, Methods, and Architectures: An Overview

This work contributes models, methods, and architectural designs which serve as founda-
tions to implement a generic scheduling architecture and to realise the aforementioned
scheduling process. The respective artefacts are summarised in Fig. 4.4. To the left, the
nine requirements derived from the scenarios in Section 3 are listed. The arrows in the
middle column indicate the respective model, method, or architecture we have extended,
contributed to, or developed to meet the various requirements. To the right, the respec-
tive implementations are listed. In case an arrow stretches more than one column, our
research has revealed existing concepts that fulfil the requirements and thus do not call
for any novel contribution. The color-coding indicates related concepts: blue relates to in-
formation management, red to scheduling, green to service-level agreements, and yellow
to activity information management.

The scheduling process and the value of the resulting schedule rely on the quality of
the information about the entities in a distributed computing environment. According to
the requirements, two issues are of importance here: discovery and information access.
A number of solutions that meet the former and that are applicable to DCIs already exist,
inter alia UDDI15. We therefore focus on the modelling of information and introduce an
DCI-ready adaptation of the Common Information Model in Chapter 6 ‘The Information
Model’. Furthermore, this model is the foundation of all information management within a
DCI including the activity management.

A broker can be seen as an intermediary between the information service and the sched-
uler fulfilling the mere task of limiting the range of scheduling candidates. Therefore, bro-
kering is primarily used to find the best-possible mapping of queries from the scheduler to
available services and resources. It is a field of ongoing research which is primarily ded-
icated to the development of algorithms. Advance reservation is, same as brokering, not
within the focus of the methodological part of this thesis. In the context of the scheduling

15OASIS UDDI Specification TC, last visited: January 25, 2013. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=uddi-spec.
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Figure 4.4.: From requirements over models, methods, and architecture to realisations (‘AR
service’ is ‘Advance reservation service’; ‘ UDAP’ is ‘Universal Dynamic Activity
Package’; ‘Mgmt’ is ‘Management’)

process, advance reservation, on the one hand, is a feature to be provided by infras-
tructure services and, on the other hand, a function called by the scheduler. Recalling
the example of a grid site from Section 4.1.1, it is usually the local RMS that implements
advance reservation and offers the respective function to its clients. For the scheduling
process only this is of importance, even though we extend this concept to any kind of
‘reservable’ entity. The main contributions with respect to the set of scheduling require-
ments are a generic architecture for scheduling services including the respective process
and a tailored model to generate schedules for DCIs (including the delegation of schedul-
ing requests between scheduling services). These artefacts are introduced in Section 4.1,
Section 4.2, and Chapter 8 ‘The Scheduling Model’ respectively.

In distributed computing, service-level agreements are often used as framework con-
tracts for the delivery of services. In general, they are paper contracts containing all
details about the delivery of particular services.16 In this thesis, we refer to service-level

16A good example is the service-level agreement between the European Grid Initiative EGI.eu
(http://www.egi.eu, last visited: February 28, 2011) and their technology providers. The respective tem-
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agreement as electronic contracts which are automatically negotiated between services.
To achieve this, we contributed to the the application of WS-Agreement within the schedul-
ing domain and also to the development of WS-Agreement Negotiation.17 The particular
results of these contributions are introduced in Section 7 ‘The Service-Level Agreement
Model’.

The concept of activity management and its tight integration into the generic schedul-
ing architecture originates from our work in the NextGRID project. There we developed the
Universal Dynamic Activity Package, a model to aggregate all information that is related to
an activity. Chapter 5 ‘The Activity Model’ describes this model and, in addition, presents
a particular evolution of the Universal Dynamic Activity Package, namely the Activity In-
stance Description. The two models rely heavily on all monitoring information related to an
activity being fed into the activity management framework. We require that the monitor-
ing sensors which generate this information are deployed within a DCI and see the update
of an activity mainly as an automated process, potentially including the transformation of
monitoring data into the required format.

In the following section we briefly review the middleware services which implement the
artefacts introduced in this section.

4.4. Implementation of the Concept: An Overview

Based upon the artefacts introduced in the previous section, the services which make
up the scheduling architecture (cf. Fig. 4.1) have been implemented. The core of this
architecture are service-level management and activity management, and its overall aim
is to provide the foundation for automated negotiation of electronic contracts.

Fig. 4.4 shows the respective services. Most services correspond to those depicted in
the architecture in Fig. 4.1. Others are either integrated into one of the former services or
frameworks, like the brokering service, the advance reservation service, and the negotia-
tor, or they comprise multiple services as the SLA framework and the activity management
framework. The registry, however, is a special case as it has been realised as a front-end to
the Common Information Service, offering tailored XQuery18 calls for service and resource
discovery. The implementations of the services are described in detail in Chapter 9.

In this chapter we introduced two major contributions of our work, as there are the
concept of a generic scheduling architecture for distributed computing environments and

an automated scheduling process that is based upon this architecture. Furthermore, we
gave a rough idea of four fundamental models which are necessary to realise scheduling

architecture and process and which present further contributions explained in the
following chapters.

plate can be found here: https://documents.egi.eu/document/241, last visited: February 28, 2011.
17We would like to state here explicitly that we did not contribute to the initial specification of WS-

Agreement [6].
18XQuery 1.0: An XML Query Language (Second Edition), last visited: January 25, 2013.

http://www.w3.org/TR/xquery/.
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5. The Activity Model

This chapter introduces the concept of an activity and describes two models how to
realise it. The first model, called Universal Dynamic Activity Package, has been

developed and implemented within the European NextGRID project. The second model,
which has been derived from the first one, is the Activity Instance Container, which is

maintained by the Open Grid Forum.

In state-of-the-art distributed computing infrastructures, information about an activity
is fragmented and dispersed. Activity-related information, such as SLAs, activity state
changes, or consumption of resources, is currently captured using a variety of schemata
and services, and it is stored in different ways and by different logical components. This
dispersion of activity information leads to management, security, and logistic overheads
in discovering, accessing and using that information. Furthermore, the handling of infor-
mation demands a lot from system administrators and results in infrastructures activity in-
formation is managed by various services. This makes it difficult for users and providers to
find this information, since they have to search for and to ‘keep an eye’ on many sources.

One good example for a DCI where this challenge is obvious is the German D-Grid [53],
since it features three different middlewares and consequently three different information
systems. This led to significant development work and requires continuous operational
efforts to maintain activity information.

To solve the aforementioned issues of information fragmentation, we now introduce the
Universal Dynamic Activity Package (UDAP) model.

5.1. The UDAP Model

The Universal Dynamic Activity Package aims at bringing all of the information fragments
associated with an activity into one logical package, regardless of the various schemata
used to describe and capture these fragments. Using UDAP, any service requiring activity
information has a single source for retrieving and updating that information. Information
consumers can subscribe to the interface of an entity managing an activity, so that they
may be notified of changes in activity information, thus allowing them to fulfil their role
with respect to that activity. The same consumers can poll the UDAP management in-
terface for activity information in read, update, and append operations, in addition to or
instead of subscribing for notifications.
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5.1.1. Clarification of the Term Activity

First of all it is essential to understand the meaning of the term activity. Those familiar
with cluster computers or grids normally know the concept of a job. This is a container
used to specify what to execute on the respective system. Furthermore, a job includes
parameters to further define the execution environment in terms of operating systems,
libraries, or storage demand. Common terms used for the same thing are task, process, or
work-flow, with the latter two normally applied to interdependent tasks or jobs.

An activity can be all of the former; and it can be more: it can be a job, a task, a data
processing operation, a data access operation, an application execution, or a Web service
invocation. In general, it is a unit of work in a distributed computing infrastructure: it is
something that a user, a service, or an application needs to do or to execute. An activity
is per definition atomic. This means that, from the activity management perspective, an
activity is an indivisible unit of work. Several activities, however, can be connected to form
a sequence, which may be managed conditionally, sequentially, or in parallel. Therefore,
activities can be atomic nodes in a work-flow.

5.1.2. Information Captured by an Activity

In general, the UDAP model allows all kind of information related to an activity to be cap-
tured. The concrete implementation of an activity therefore depends on the environment
into which it is integrated, but most likely includes:

• all of the activity’s requirements,

• all of its dependencies (on data and other activities) for the composition and man-
agement of activities for work-flow, scheduling and brokering processes,

• all of its contextual information, such as the topical domain (e.g. ERP or weather fore-
casting), security details (including the owner of the activity and who is authorised to
access its information), SLAs, quality-of-service information, and other related poli-
cies, and

• all of its monitoring information, such as state, history, resource usage information,
accounting data, or policy conformance.

5.1.3. UDAP Concepts

The core of the UDAP model is the UDAP Description. Its information is managed by a
UDAP Manager and processed by UDAP Clients. The concepts are pictured in Figure 5.1
and described in the following paragraphs.

UDAP Description

The UDAP Description document is the package that holds all the information associated
with an activity. It needs a schematic structure that allows it to classify activity information
and to reflect the state of this activity at any point in time.
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Figure 5.1.: The UDAP Manager is in charge of a UDAP Description for one specific activity
(represented by the dashed box). UDAP Clients concerned with that activity
may subscribe to the UDAP Manager to be notified of changes in the activity.
In addition, clients that ‘serve’ an activity (i.e. generate information related to
the activity) can add information to it.

UDAP Manager

The UDAP Manager is the entity that deals with the management-oriented aspects of all
other UDAP entities. Its task includes (i) the creation and destruction of activities and
(ii) the interactions with the clients, which subscribe for notifications regarding certain
activities.

UDAP Client

Any service within a distributed computing infrastructure that uses and/or produces activ-
ity information is called a UDAP Client. It invokes the public management interface of the
UDAP Manager for read, update, and append operations of activity information. A UDAP
Client can subscribe to the interface of an activity, in order to receive notification of ac-
tivity information based events. The subscription of a UDAP Client may be conditional,
where the condition dictates the type of activity information-based event that the client is
interested in, e.g. ‘notify me if the state of the activity changes to running’ or ‘notify me if
the resource usage of the activity has exceeded the budget of the activity owner’.

UDAP as an Intermediary

An interesting feature of UDAP is that it acts as an intermediary between activity owners
and the service and resource providers that serve that activity (cf. Figure 5.2). This is a
result of the activity being at the centre of the interactions between the activity owner and
the service providers.

The activity owner, who initiates the activity, does this through a DCI middleware ser-
vice, such as a portal or a scheduling service. This service itself is a UDAP Client, which
can subscribe for activity information-based events to the activity that it has initiated.
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The intermediary characteristic of UDAP leads to a symmetric, uniform interface for ac-
tivity management with the initiator on one side and the service providers that serve that
activity on the other, all interacting with and using the activity through the same interface.

Activity 
inititator
(e.g. a 

scheduler
Activity

serve
Service 
provider

(e.g. 
compute)

initiate

UDAP Client UDAP Client

Figure 5.2.: An activity as an intermediary between an activity owner/initiator and a ser-
vice provider serving that activity. The box labelled ‘Activity’ represents the
abstract activity entity (cf. also Figure 5.1).

UDAP Schema

The UDAP schema captures the structure of the activity information in a UDAP Description.
Its purpose is to manage all information associated with an activity within a distributed
computing infrastructure. This, in turn, allows any service that is concerned with an ac-
tivity to access and use that information processing the UDAP schema or parts of it. The
high-level structure of the schema is shown in Figure 5.3. The depicted elements contain
the following information:

• The UDAP element is the root element of a UDAP Description. It represents a unique,
atomic activity and captures all the information about that activity.

• The ActivityID holds the unique ID of the UDAP Description.

• The activity is described through the ActivityDescription.

• A Record captures activity information throughout its lifetime. Hence, a running
history of the activity is captured by a number of Entry elements.

• An Entry contains (besides a time stamp indicating its creation date and time):

– an element that describes the state of the activity at the time the entry is
entered into the activity’s record,

– all of the resource information required by and associated with the activity,

– contextual information, such as policy information or domain-specific informa-
tion, which is captured by the Context element, and

– dependency information, such as dependencies on data or other activities,
state of the system.

• A Result element.

The XML rendering of the UDAP schema can be found in Appendix B.
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Figure 5.3.: A high-level view of the UDAP schema

5.2. The Activity Instance Container

Following the effort to define and implement UDAP within the NextGRID project, we for-
warded the approach to the Open Grid Forum (OGF) for standardisation. The Job Submis-
sion Description Language (JSDL) working group acquired the activity concept, evaluated
it in the light of its stakeholders’ use cases, and specified the Activity Instance Container
(AIC). Unlike UDAP, the JSDL working group pursues an approach tailored to the needs
of DCIs that apply standards of the Open Grid Forum. AID integrates with concepts like
the Basic Execution Service [49] or JSDL [7], thus keeping the model extensible for usage
beyond the foundational use cases.

A thorough introduction of the Activity Instance Container is beyond the scope of this
thesis. Since the activity model implemented for this thesis is the UDAP model, we refer
to the OGF document for further details [106].

5.3. Assessment of the Activity Model

The application of the activity model to DCIs allows central maintenance of all information
related to one activity and, furthermore, consumers are able, at every point in time, to
gather up-to-date data. In a common scenario this information is currently generated by
monitoring sensors, accounting components, logging services, and alike. And the result-
ing data is provided through different interfaces and in different formats. The ubiquitous
realisation of the activity model would decrease the maintenance overhead and provide
concise and up-to-date information. We did, however, not yet discuss the implications of
introducing such a model. There are plenty of issues to examine, many of which are related
to system design and implementation. Here, we highlight two topics which have been in-
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tensively discussed in the course of developing the activity model, namely i) integration
of the model into existing DCIs and ii) access control to the activity information.

Obviously, the application of the activity model requires all information sources and
activity clients to follow the model and implement the respective interfaces, an under-
taking difficult to achieve for an existing middleware. We implemented our prototypes
from scratch, utilising grid services mainly for execution purposes, and therefore cannot
provide the respective heuristics. However, with the current implementation of multiple
cloud-based solutions, it might be worth considering the integration of the activity model
into service-oriented DCIs. Nevertheless we are confident that such issues can be resolved
and show one implementation tackling some of them in Section 9.1.

In this chapter, we introduced the activity model. It represents a possibility to capture all
information related to an activity in one (logical) place and allows to design DCIs with a

concise information maintenance concept. The model has been successfully applied to a
number of scenarios and, furthermore, this part of our work has been taken up by the

Open Grid Forum to specify the Activity Instance Container.
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The Common Information Model is a standard to capture the manageable entities of an IT
infrastructure. In this chapter, we describe the basics of this model, provide a rationale

for its application to distributed computing infrastructures, and introduce an extension to
the model that has been defined to manage resources in UNICORE-based DCIs.

By definition, an information model is a data model representing entities in an arbi-
trary problem domain. In the context of distributed infrastructures, an information model
presents a viable solution for the management and exploitation of resources. Applied by
an information service it can, for instance, assist a resource broker to discover the best
resource by analysing model instances. Another example would be that the information
service queries resource data on request of a job scheduler, in order to schedule and mon-
itor activities. To successfully schedule distributed systems, it is essential that the entities
involved in the processing of an activity are properly described. Applied to a service-
oriented system, this means that a scheduler needs the best possible description of the
characteristics of a service to find the most suitable one, while in a grid, the scheduler
has to match between the resource requirements of a user and the capabilities of the DCI.
More concretely, in case an application relies on a certain software version, it is of no help
if an information system captures the deployment information with a boolean value, but
contains no data about the actually deployed version. In the same way, many scenar-
ios can be obtained that involve other components or services concerned with resource
management or scheduling.

The Common Information Model (CIM) [83] is one possibility to describe the manage-
able entities of infrastructures. We show in the course of this chapter that it fulfils the
requirements of an information model for distributed computing infrastructures, introduce
its basic concepts, and present one specific extension and implementation of CIM for in-
frastructures that operate the UNICORE middleware1 [17].

6.1. Requirements

We evaluated existing information models and conducted a requirement analysis within
the NextGRID project. From this, the following requirements to be fulfilled by an informa-
tion model for DCIs have originated [94]2:

1Pleas note that we refer throughout this thesis to UNICORE Version 5.
2We refer to GLUE version 1.3 throughout this thesis since the evaluation has been conducted before the

GLUE 2 standard has been published by the Open Grid Forum in 2009 [5].
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• A unified model is needed which captures all resource concepts of a DCI like type
(like software or hardware) and environment (like compute or data).

• It is essential that the model distinguishes clearly between abstract and concrete
classes.

• The defined class hierarchy must be extensible to allow the integration of future
concepts.

• The model has to be based on the object-oriented paradigm.

• An implementation of the model has to be based on interoperable and open stan-
dards such as XML Schema to maximise interoperability.

Although a number of information services for the kind of infrastructures we consider
already exist, we discovered some gaps that have to be filled regarding the requirements
listed above. We therefore decided to use the Common Information Model as the founda-
tion for an information service for DCIs, which is described in Section 9.

6.2. Rationale for Choosing the Common Information Model

An information service is believed to be highly dependent on the underlying information
model, since it is the base for discovering services or resources. During the design phase
of the information service, there were two potential approaches for modelling information:
the first was the creation of a customised model from scratch, and the second was the
adaptation and evaluation of one of the existing information models well-known to the
grid and e-Science community.

Each of the two has advantages and disadvantages. The approach of designing a new
model from scratch would result in a proprietary solution which furnishes only our pro-
posed information service, but would not be interoperable with other existing services and
middlewares. Not only does this effect interoperability, it may be prone to some fallacies in
terms of completeness and correctness catering the information discovery requirements
of all potential clients of an information service, e.g. a broker or a scheduler.

The second approach would require the evaluation of existing information models which
are currently used in distributed computing environments. We conducted such an evalu-
ation which revealed [94] that these models actually do not meet all of our requirements.
Therefore, extensions need to be applied, introducing additional complexity in case of
varying requirements. This shows on the one hand, that by adapting an existing model
we can profit from its maturity, semantic correctness and from interoperability with al-
ready existing implementations. On the other hand, if the adapted model already aggre-
gates hidden defects, these are implicitly part of the extended model. Therefore archi-
tects should balance the arguments carefully when adapting a standard; especially when
a model evolves into a new version through a standardisation community. Furthermore,
in the majority of cases a standards-compliant model is customised for specific business
requirements, which again raises the question of interoperability.

In our case we followed the second approach as standard-compliance and interoperabil-
ity are two of the main requirements. Ab initio, two options appeared to be adequate
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candidates for the information model: GLUE and CIM. While the GLUE model is widely
accepted by major middlewares in the grid community, CIM is mainly used in industry.

GLUE, the Grid Laboratory Uniform Environment, is an information model that aims to
provide interoperability among different grid stake-holders. It is a collaborative effort ini-
tiated by the European DataTAG3 and the US iVDGL4 projects. Later EGEE5, Globus [48],
NorduGrid6 and LCG7 joined the process of development and standardisation. GLUE is
an object-oriented information model that represents computing and storage resources
without exposing any complex hierarchies of entities. This model is concrete and handles
information using aggregation and composition between entities. The GLUE information
model contains simple entities without complex association and extensibility. Therefore,
the major challenge in applying GLUE is to realise the essential extensions for the SLA-
based scheduling-driven use cases. However, we could avoid enforcing extensions by
realising workarounds, but this only provides short-lived solutions. Consequently, such
a solution results in a lack of interoperable interfaces with other third party components
which already use GLUE. As interoperability was one of our objectives, GLUE’s shortcom-
ings lead us to contemplate the second alternative, the CIM model.

6.3. The Common Information Model

CIM, developed by the Distributed Management Task Force (DMTF)8, is a model that rep-
resents managed physical and logical computing entities, applications, and systems [83].
The scope of the Common Information Model is not only limited to distributed computing
entities, it also accommodates the modelling of entities required to manage file systems,
operating systems, or even hardware controllers. DMTF defines CIM as follows [36]:

The DMTF Common Information Model (CIM) is a conceptual information model for
describing computing and business entities in 46 enterprise and Internet environments. It
provides a consistent definition and structure of data, using object-oriented techniques.

The CIM Schema establishes a common conceptual framework that describes the
managed environment. A fundamental taxonomy of objects is defined both with respect
to classification and association, and with respect to a basic set of classes intended to

establish a common framework.

Furthermore, CIM adheres to object-oriented design principles and is based upon a hier-
archy of abstractions: ’CIM is an information model [...] that attempts to unify and extend
the existing instrumentation and management standards [...] using object-oriented con-
structs and design.’ [36]. From there we can exploit a number characteristics that help to
design an information schema for distributed computing infrastructures. These include:

• Abstraction and classification: CIM supports the classification of management
objects by extracting objects with common behaviour, properties, and relationships.

3EU-DataTAG, last visited February 23, 2011: http://datatag.web.cern.ch/datatag/.
4The project’s web site is not online any more.
5Enabling Grids for E-sciencE (EGEE), last visited February 23, 2011: http://www.eu-egee.org/.
6NorduGrid, last visited February 23, 2011: http://www.nordugrid.org/.
7Worldwide LHC Computing Grid, last visited February 23, 2011: http://lcg.web.cern.ch/LCG.
8Distributed Management Task Force,Inc., last visited February 23, 2011: http://www.dmtf.org/.
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• Object Inheritance: CIM helps making taxonomies of management objects by sub-
classing high-level objects with more domain-specific objects.

• Dependency definition: Various dependencies are defined with the help of as-
sociations to depict relationships between management objects. CIM takes full ad-
vantage of object paradigms by showing complex relationship with associations and
labels in a standardized format.

While performing the analysis and evaluation of the GLUE and the CIM models, we found
the latter to be the proper candidate fostering our requirements of representing heteroge-
neous, distributed, and platform-agnostic resources.

6.3.1. Basic Concepts

On the top level, CIM defines three levels of abstraction which represent the ‘basic con-
cepts’: core model, common model, and extension schema. The core model is a set of ab-
stract classes on which all other models are based. It introduces, among other things, the
notion of model scalability and extensibility. Common models are based on the core model
and represent concepts like systems, applications, or devices. The extension schema pro-
vides room for extensibility and customisation. All three are briefly discussed in next para-
graphs.

6.3.2. The Core Model

The CIM core model is the root of all the CIM common models. It represents all objects and
relationships that the common models share. The root core entity is the abstract Managed
Element class. All other CIM classes inherit from it (cf. Figure 6.1), making it the basis of
a large collection of associated entities that can be used to describe an IT infrastructure.
Since an in-depth description of the core model (and any other CIM model) would exceed
the scope of this thesis, we refer the interested reader to Westerinen and Strassner [143],
who introduce the core model in detail.

6.3.3. The Common Models

The purpose of the various CIM common models is to encapsulate the characteristics of
what the DMTF calls ‘management domains’. They represent the DMTF’s approach to sub-
divide the vast amount of managed objects into groups which inherit properties common
to all groups from the core model. The overall goal is to define these models indepen-
dent of any specific implementation or technological approach, which guarantees broad
applicability and interoperation.

CIM comprises twelve common models: Database, Event, Interoperability, Metrics, Net-
work, Physical, Policy, Support, User, System, Device, and Application. In the following
paragraphs we introduce the last three, since only they are used for the specific model
introduced in Section 6.4.1.
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Capabilities Configuration Location MethodParameters Setting StatisticalInformation SupportAccess

Collection FRU ManagedSystemElement Product SettingData StatisticalData View

ManagedElement

PhysicalElement LogicalElement

Job SoftwareIdentity EnabledLogicalElement

Figure 6.1.: An overview of the root entities of the CIM core model (abstract classes are
italicised)

System Model

The System Model defines abstract concepts related to a computer system and the aggre-
gation of its components which are meant to compose one single system [38]. In addition,
the model describes the functions provided by the particular components, as there are for
example file (system, operating system, job, processes, or threads). All different concepts
of the System Model are derived from the CIM_System object in the core model.

Device Model

The abstraction of hardware, ranging from lower-level concepts like LEDs or batteries to
higher-level concepts like storage systems, is captured by the Device Model [37]. In ad-
dition to the mere functions of such devices, it also conceptually defines the state and
configuration of various components. One important concept to be mentioned specifically
is the logical device, which itself is defined in the core model. Its subclasses do not stand
for the hardware itself, but the functions provided by a specific device. A logical device
is linked to systems as defined by the System Model, which can aggregate other systems
the same way as logical devices can aggregate other devices.

Application Model

The CIM Application Model has been created to represent software and application man-
agement [39]. It allows to model software products from desktop applications to dis-
tributed computing or web-based applications. In practice, information system developers
create domain-specific instances for their application and populate it with the necessary
information for their software. This information, which could refer to software-related bits
like memory demand, other software it depends on, or version information, is then con-
sumed by management tools or operating systems. Figure 6.2 shows these concepts and
relationships in greater detail.
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Figure 6.2.: Developing a management-ready application [39]

6.3.4. The Extension Schema

One specific object-oriented design-related characteristic that led to the selection of the
Common Information Model is its extensibility [36] (also known as sub-classing or inher-
itance). This allows product vendors or technology providers to extend CIM in order to
model their demands, products, and services.

Extensibility is also one of the requirements for an information model of distributed com-
puting infrastructures (see Section 6.1). We used this capability extensively to realise a
CIM-based information model for the UNICORE grid middleware, which we introduce in the
section below. The reason to apply extensions to the core or common models is the de-
mand for expressing the specifics related to a certain infrastructure and its management.

6.4. En Route to a Distributed Computing Information
System: The UNICORE Information Model

We proposed and implemented an information service called CIS, the Common Information
Service [94] (cf. Section 9.2), that is built upon a CIM-based information model. This infor-
mation model emerged from two diploma theses [93, 95] and has been specifically mod-
elled for the UNICORE distributed computing middleware. In addition to the core classes
introduced before, additional classes have been derived to fulfil UNICORE-specific require-
ments.

6.4.1. The UNICORE Resource Model

In contrast to other DCIs, UNICORE uses the same resource model to describe site capa-
bilities and to request resources for the execution of activities. This concept makes the
matching of consumer demand and provider capabilities a simple task and it integrates
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well with the UNICORE job model [129].

Resource

CapabilityResourceCapacityResource Broker InformationResource
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StorageServer USpace Home Temp Root AlternativeUSpace

PathedStorageSpool

FloatingPoint

NetworkDataProcessing Application Context QoSCheck

PerformanceResource SoftwareResource ResourceCheck

Priority ResourceBooking Host

Figure 6.3.: The UNICORE resource model

Figure 6.3 illustrates the UNICORE’s hierarchical resource model. It evolves from a core
concept of everything being a resource, from which all other resource types are derived.
The top-level concepts are:

• Resource: The abstract core concept of the UNICORE resource model is the Re-
source. It captures the kind of information that is inherited by all other resources.

• Capability Resource: The UNICORE Capability Resource describes a capability, in-
cluding its type and its functions, that must be present at a particular site.

• Capacity Resource: A Capacity Resource is the a measurable entity which is pro-
vided by a site (or requested by an activity). Obvious examples are nodes, proces-
sors, or memory.

• Information Resource: The UNICORE information model captures the meta-information
that is necessary to describe a resource through a concept called Information Re-
source.

• Broker: A UNICORE Broker is a specific site which provides resource information for
end-users or schedulers.

6.4.2. Mapping the UNICORE Resource Model to CIM

The new information model which derives from the UNICORE resource model is called
UNICORE-CIM model. It uses every possible CIM concept to model UNICORE resources.
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Consequently, concepts not present in CIM are modelled through extensions. In addition
to core model concepts, the System, Device, and Application Models are exploited. Ta-
ble 6.1 gives examples of the UNICORE to CIM mapping along with the respective CIM
model which is extended for UNICORE customisation. As a result, the UNICORE-CIM model
reflects the same semantics as the original UNICORE resource model, but is extensible,
portable, and platform-independent. Furthermore, the UNICORE-CIM model is standards-
based.

Table 6.1.: Mapping UNICORE resources to CIM classes – Selected examples

UNICORE resource CIM class CIM common model
USpace UCR_USpace System Model extension
Home UCR_Home System Model extension
Node UCR_NodeResource System Model extension
PathedStorage UCR_FileStorageResource System Model extension
Memory UCR_MemoryResource Device Model extension
Processor UCR_ProcessorResource Device Model extension
Application CIM_SoftwareElement Application Model

There are further concepts that have been selected to create an information model
capable of serving service-oriented infrastructures, like Service and ServiceAccessPoint
(both included in the CIM core model). These additions to the UNICORE-CIM model enable
providers to offer their resources as services, thus advertising type, features, and access
point through an endpoint reference.

Based on the requirement to create a standards-based and interoperable information
model for distributed computing infrastructures, we developed a CIM-based information

model. Although it is specifically tailored to the needs of UNICORE, the outlined approach
can also be applied to other DCIs. The Common Information Model has the capabilities to

capture the managed entities of any such infrastructure, allowing extensions to fill
potential gaps. Unmanageable entities of an IT infrastructure, however, are not covered
due to the approach taken by the DMTF. From a service-level management point of view

this is irrelevant, but for a general information model it is something to take into
consideration.
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In this chapter, we describe essential foundations for the understanding of service-level
agreements and the way they fit into the big picture of service-level management. We

also examine the Web Services Agreement standard which is the basis for the core
contribution of this thesis. Furthermore, we introduce contributions to SLA negotiation,

leading to the Web Services Agreement Negotiation specification currently being
standardised.

An electronic agreement provides a contractual frame in which customer relationships
are managed. This evolved to the common notion of service-level agreements throughout
industry during the previous two decades. SLAs are used to map business-level objectives
to services and allow for proper monitoring and reporting, a capability not only limited
to business cases, but also relevant to any consumer-provider relationship in which the
automated management of SLA is a key requirement. This includes the initiation of an SLA
between two parties, the provisioning of the service, and the monitoring of the SLA while
a service is provided until the completion or termination of a service delivery.

According to [46], the TeleManagement Forum’s SLA Handbook defines a service-level
agreement as:

‘[a] formal negotiated agreement between two parties, sometimes called a service level
guarantee [...]], it is a contract (or part of one) that exists between the service provider

and the customer, designed to create a common understanding about services, priorities,
responsibilities, etc.’

7.1. Life-Cycle of a Service-Level Agreement

A structured approach towards the management of the different phases an individual
service-level agreement passes during its lifetime is essential. This facilitates the im-
plementation of a service-level management system and is applicable independent of the
domain the SLA is actually applied to. Although there is no universal definition of an SLA
life-cycle, the one defined by the TeleManagement Forum [46] is commonly applied in the
distributed computing area [145] or is used as the basis for refinements and specialisa-
tions.

Figure 7.1 shows this life-cycle, which consists of the six phases Development, Negotia-
tion, Implementation, Execution, Assessment, and Termination. These phases are passed
from service development over service provisioning to the termination and decommis-
sioning of a service governed by an SLA. Depending on the application scenario, phase
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transitions may not be visible, or phases may be even omitted, but for the general case
this life-cycle is applicable. In the following the different phases are described.

7.1.1. Service and SLA Template Development

In the first phase of the SLA life-cycle, the service and the respective SLA Template(s)
are developed. In general, the provider has the service already in place, for example a
compute resource offered via a DCI or some simulation software offered as a service, and
constructs the SLA based on the existing service. This may lead to the notion of an SLA as
an added-value feature to be included in the development process of the service becoming
the common approach once SLAs will be ubiquitous in such infrastructures.

Development Negotiation Implementation Execution Assessment

Template development
and entitlement

Negotiate and
execute contracts

Generate and
provision service
orders and SLA

monitoring

Operate and
maintain / monitor
SLA performance

Assess performance
and reassess

templates

Termination

Terminate and
decomission

service

Figure 7.1.: The SLA life-cycle according to the TeleManagement Forum [46]

According to Lee and Ben-Natan [84], the SLA Template itself should contain, from a
‘purely contractual standpoint’, the following items: the agreement definition, i.e. parties,
contract terms and conditions, and service access points, the service definition, perfor-
mance/metric definitions, measurement definitions, correction definitions and reconcilia-
tion definitions. In the DCI landscape, however, the contractual requirements are some-
times relaxed (e.g. in academic environments where the actual costs are not always billed)
or the focus is on other or additional service characteristics. In Section 7.2.2, we elaborate
on different SLA (Template) specifications, which result from the divergent requirements
of different stakeholders. The SLA Templates are used to offer the service to customers
and therefore to lay the foundation for a common understanding of the service quality. Be-
tween the service and its templates there may be a one-to-many relationship as a provider
may offer the same service under different conditions.

There is an ongoing discussion whether the service and SLA Template development
should be part of the life-cycle since this phase may, depending on the service provided,
only occur once for numerous SLA instances and therefore for multiple passes of the SLA
life-cycle. On the other hand, however, there are several application scenarios within the
DCI community which include this phase at every pass. One example is the dynamic gen-
eration of services through orchestration and the respective dynamic development of SLAs
on a case to case basis. Although this development will most likely follow fixed patterns
and make use of draft SLA Templates, it justifies the inclusion of this phase into the SLA
life-cycle.
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7.1.2. Contract Negotiation

Once a service customer has retrieved, through whatever means necessary, an SLA Tem-
plate (i.e. a service offer) that fulfils her requirements, the customer and the provider
need to reach a binding agreement regarding the service to be delivered. To get there,
consumer and provider negotiate the service delivery terms governed by the SLA Tem-
plate. Regarding negotiation, a number of models and specific protocols for distributed
computing infrastructures exist, which are described in Section 7.5.

The result of the negotiation phase is either an agreed upon and ready-to-execute SLA,
i.e. a contract, or nothing. In the latter case, the consumer may look for other providers
to negotiate with, change her requirements, or wait for a later point in time where the
preconditions for a negotiation may have changed.

7.1.3. Implementation

The implementation of an SLA includes the instantiation, configuration and provisioning of
the service instances which are needed to fulfil the contract between the service consumer
and the service provider. In contrast to the phases described before, the implementation
phase is usually performed per service instance, including all means to monitor, measure,
and report performance. This normally does not only include the service(s) defined in
the SLA, but depending on performance metric or measurement definitions also auxiliary
services that provide the necessary monitoring information for the service provider to
control the service execution.

7.1.4. Service Execution

During service execution the service provider has to deliver what has been contractually
agreed upon as the result of the negotiation process: the service according to the service-
level agreement. This includes, as mentioned before, the operation of not only the service
to be delivered, but also auxiliary services and functions necessary to fulfil the SLA. It is
essential during this phase to monitor the performance of the service, measure and record
it, and, in parallel, assess the performance as described in the next phase. In case the SLA
is breached, depending on the kind of service provided, monitoring and assessment may
result in immediate actions to provide the service agreed upon (e.g. in case of a downtime
of a data streaming service during an important presentation of a visualisation software)
or the data gathered is just recorded for reporting purposes (which is often the case for
academic computer services which operate on a best effort policy).

7.1.5. Performance Assessment

The assessment of the service’s performance is executed during its execution (although
post-termination assessment is implicitly part of the decommissioning phase) and serves
the service provider and the service consumer, who both want their business objectives
to be met. For the service provider, this implies the control over executing services while
the service consumer demands status information about the currently delivered quality of
service. In both cases, this includes monitoring, evaluation and potentially the application
of corrective measures. In addition, this phase may result in a re-assessment of the SLA

75



7. The Service-Level Agreement Model

Templates in such cases where e.g. the quality of service cannot be provided as advertised
in the template, or where the provider may see potential revenue improvements.

7.1.6. Service Termination and Decomissioning

The final phase in the SLA life-cycle includes the termination of the service (and the aux-
iliary services) as well as its decommission. The service termination is due to a certain
condition, which is an arbitrary event that triggers it. Most likely it is either the fulfill-
ment of the service or some SLA violation during the service runtime. In both cases, the
service provider decommissions the service, which includes actions like final assessment,
accounting of the service execution, or billing for the provided service.

7.2. Development of Service-Level Agreements

The first phase of the SLA life-cycle deals, as mentioned above, with formulating the ser-
vice offer in terms of an SLA Template. This is then used to advertise the service to poten-
tial customers, describing all necessary details about the forthcoming electronic contract.
SLA Templates are normally developed by service developers, often supported by other
parties within a company, like the sales or the legal department.

7.2.1. Content of a Service-Level Agreement

According to the definition given in the introduction, an SLA must contain all information
necessary for service consumers and providers to achieve a common understanding of
services, priorities, responsibilities, et cetera. This definition is not very concrete when
it comes to the actual content of an SLA, i.e. the specification of the terms on which
provider and consumer agree during the negotiation. But since the content of a service-
level agreement is highly application-domain-dependent anyway, a uniform definition is
neither possible nor desired. This is confirmed by the existence of a number of different
SLA specifications that are actually used within the distributed computing landscape and
which are introduced in the following paragraph.

7.2.2. Existing SLA Specifications

A large variety of SLA specifications already exists analogically with the different domains
they are applied to. Even in the specialised area of distributed computing we see a good
dozen specifications aiming at different use cases, projects, or infrastructures.

It is not the purpose of this thesis to deliver an in-depth description of all existing speci-
fications. We therefore refer mainly to existing literature, compare the different contribu-
tions, and come up with a rationale for the choice we made for our work: the Web Services
Agreement (WS-Agreement) specification1.

1Please note that a description of WS-Agreement is not included here as it is introduced in detail in Sec-
tion 7.4.
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Project Developments

We first list SLA specifications which we do not consider for this thesis as they repre-
sent specific project developments that have not been created as stand-alone models for
greater communities:

• Akogrimo [87].

• AssessGRID [35].

• BEinGRID [34].

• BREIN [104].

• TrustCOM [148].

Parkin et al. describe and compare them [107] together with the NextGRID SLA model,
which we consider below.

Discontinued Efforts

Discontinued efforts, which have not created significant uptake but nevertheless came up
with concepts worth mentioning, are the SLAng language, the SLA model from the Euro-
pean project SLA@SOI [75], and the NextGRID SLA model. SLAng has been developed
by the University College London to ‘[associate] QoS targets (e.g. performance, avail-
ability, reliability, etc.) with identifiable Application Service Provider (ASP) architectural
elements’ [82] using service-level agreements. The objective of SLAng is to provide a
language which supports the whole SLA life-cycle for ASP business scenarios that em-
ploy component-oriented middleware. The SLA model specified by SLA@SOI introduces
a syntax that can be used to formally describe SLAs and their respective templates in a
machine-processable and language-independent manner.

Another such example is the the NextGRID SLA model. Wieder and Yahyapour provide
a thorough description of the model [145]. Figure 7.2 depicts an overview of the basic
concepts of the NextGRID SLA, as there are SLA Identifier, SLA Context, SLA Terms, and
Signatures.

Interesting exemplary details of NextGRID’s SLA model, most likely the result of the
industrial focus of the project [96], are SLA terms like Success Criterion or Service Man-
agement, and the concept of Signatures.

The Success Criterion of every SLA term is defined through a value (or a range of values)
and the respective unit. An example for a success criterion could be the waiting time
(value) of a Grid job measured in seconds (unit) or the number (value) of available software
licenses (unit). Whether a Success Criterion is met or not is defined through the Metric
element. To achieve this, the address of a measurement service is determined, which
monitors the Success Criterion’s value and measures its success. Regarding the above-
mentioned examples this would e.g. guarantee that the waiting time is not longer than
3600 seconds or that at least five licenses of some software are available.

Through the Service Management term it is possible to specify auxiliary services which
are used to manage the service that is subject of the agreement. In the NextGRID context
this implies the indication of the service address. Furthermore, it is distinguished between
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Figure 7.2.: The NextGRID SLA [145]

resource provision services, customer escalation services, and more general management
services that can be used to manage SLA terms.

To prevent that a service-level agreement is forged, once it has been agreed upon, it can
be signed by an arbitrary number of parties. Which party actually signs the SLA depends
on the business convention between the service provider and the service consumer. The
signers may not necessarily be the provider and the consumer, but typically both parties
sign the SLA. Other usage scenarios may foresee to have a trusted third party, e.g. an SLA
broker, which also signs the agreement.

Web Service Level Agreement Language

IBM has developed the Web Service Level Agreements (WSLA)2 framework for specifying
and monitoring service-level agreements for web services [77]. The initial version was
published in 2001 as part of IBM’s ‘Emerging Technologies Toolkit’. A final revision was
published in 2003. Although WSLA is not continued as far as the specification itself is
concerned, the approach still attracts researchers and developers [102,115].

The framework is able to measure and monitor the QoS parameters of a web service
and to report violations to the parties specified in the SLA. In a web service environment,

2Web Service Level Agreements (WSLA) Project – SLA Compliance Monitoring for e-Business on demand, last
visited: January 25, 2013. http://www.research.ibm.com/wsla/.

78



7.2. Development of Service-Level Agreements

services are usually subscribed dynamically and on demand. Therefore, automatic SLA
monitoring and enforcement helps to fulfil the requirements of both service providers and
consumers. WSLA provides a formal language based on XML Schema to express SLAs and
a runtime architecture, which is able to interpret this language. This architecture com-
prises several SLA monitoring services, which may be outsourced to third parties (sup-
porting parties). The WSLA language allows service customers and providers to define
SLAs and their parameters and specify how they are measured. The WSLA monitoring
services are automatically configured to enforce an SLA upon receipt.

The SLA management life-cycle of WSLA consists of five distinct stages:

• Negotiation/Establishment: In this stage, an agreement between the provider
and the consumer of a service is arranged and signed. An SLA document is gener-
ated.

• SLA Deployment: The SLA document of the previous stage is validated and dis-
tributed to the involved components and parties.

• Measurement and Reporting: In this stage, the SLA parameters are computed
by retrieving resource metrics from the managed resources and the measured SLA
parameters are compared against the guarantees defined in the SLA.

• Corrective Management Actions: If a service-level objective has been violated,
corrective actions are carried out. This could be opening a ticket or automatically
communicating with the management system to solve potential performance prob-
lems.

• SLA Termination: The parties of an SLA can negotiate the termination the same
way the establishment is done. Alternatively, an expiration date can be specified in
the SLA.

Although the WSLA life-cycle phases carry different names than those described in Sec-
tion 7.1, and the initial SLA development phase is missing, WSLA follows the same pattern
and therefore represents the same approach towards service-level management.

The SLA* Model

In 2010, Kearney et al. published the SLA* syntax for service-level agreements [76]. They
explain the need for it as follows:

Historically, SLA* was developed as a generalisation and refinement of the web-service
specific XML standards: WS-Agreement, WSLA, and WSDL. Instead of Web services,

however, SLA* deals with services in general, and instead of XML, it is language
independent. SLA* provides a specification of SLA(T) content at a fine-grained level of
detail, which is both richly expressive and inherently extensible: supporting controlled

customisation to arbitrary domain-specific requirements.

SLA* is an outcome of the SLA@SOI3 project and is an intrinsic part of its service-oriented
infrastructure. Domain-independence was especially important to support the various

3SLA@SOI – Empowering the service industry with SLA-aware infrastructures, last visited: January 25, 2013.
http://sla-at-soi.eu.
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business domains SLA@SOI has as targets and to integrate with legacy software that al-
ready exists there. Language-independence and a broader view on services than taken
by its competitors were also essential for the specification of SLA* to prevent semantic
restrictions by using e.g. XML and to be able to include e.g human services respectively.

7.3. Rationale for choosing WS-Agreement

We chose WS-Agreement as the SLA specification for the work presented in our thesis for
the following five reasons:

• domain independence [88],

• extensibility [6],

• standard compliance [6],

• wide spreading [123], and

• tool support [11].

The SLA* syntax (cf. previous paragraph) would have been the next best candidate,
but, owing to the fact that it was released in 2010, it was not available when the decision
about an SLA specification was taken. It may still lack wide up-take and it is not standard-
compliant, but language independence and the inclusion of non-electronic services are
appealing attributes, which WS-Agreement lacks.

The project developments listed in the previous section are mainly using WS-Agreement
in combination with WSLA, but have not been short-listed due to their alignment to spe-
cific project requirements. Although this is not true of the SLA model developed by the
NextGRID project, it was not chosen either, since it is discontinued and the model is not
even accessible any more via the project web site. This is not the case with SLAng and
WSLA, but in comparison to WS-Agreement these two lack standard-compliance and tool
support.

Although WS-Agreement provides the best foundation for scheduling in distributed in-
frastructures, we have to mention an issue which could be proven disadvantageous4: WS-
Agreement is tightly-coupled to XML Schema and uses artefacts from the following Web
service standards: WS-Addressing5 (WSA), Web Services Resource Framework6 (WSRF),
and Web Services Description Language7 (WSDL). We don not regard this as a disadvan-
tage per se; the semantics of XML Schema, however, are restrictive in some cases [76].
Furthermore, significant parts of the community do not acknowledge the notion of stateful
Web services, which are core to WSRF, and propagate the ‘RESTful’ approach. Therefore
the support for WSRF, and hence WS-Agreement, in terms of technologies and tools could
be improved.

4It is often argued that WS-Agreement is overly complex and difficult to use. However, our experience with
service-level management in general and service-level agreements in particular shown that this is no cri-
terion to base a decision on, since all of the specifications mentioned here require significant investments
using them.

5Web Services Addressing, last visited: January 25, 2013. http://www.w3.org/Submission/ws-addressing/.
6OASIS Web Services Resource Framework (WSRF) TC, last visited: January 25, 2013. https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrf.
7Web Services Description Language (WSDL) 1.1, last visited: January 25, 2013. http://www.w3.org/TR/wsdl.
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7.4. Introduction to Web Services Agreement

It is the objective of the WS-Agreement specification [6], defined by the GRAAP Working
Group8 of the Open Grid Forum, to provide a domain-independent and standard way of
establishing and monitoring service-level agreements. The specification comprises three
major elements: (i) a description format for agreement templates and agreements; (ii) a
basic protocol for establishing agreements, and (iii) an interface specification to monitor
agreements at runtime.

Figure 7.3.: Concepts and interfaces of WS-Agreement [88]

Agreements according to the specification are bilateral and set up between the Agree-
ment Initiator and the Agreement Responder, as shown in Figure 7.3. These roles are inde-
pendent of the roles of service providers and service consumers, and the domain in which
jobs or other services are performed. An agreement defines a dynamically-established and
dynamically-managed relationship between the two parties. The object of the relationship
is the delivery of a service, e.g. the execution of a job or the reservation of compute
resources by one of the parties within the context of the agreement. The terms of this
delivery are set by negotiating the respective roles, rights and obligations of the parties.
The agreement may not only specify functional properties for identification or creation
of the service, but also non-functional properties of the service, such as performance or
availability.

Figure 7.3 also outlines the main concepts and interfaces of the WS-Agreement specifi-
cation. In the chosen example, the Agreement Responder is a service provider, the Agree-

8Grid Resource Allocation Agreement Protocol WG (GRAAP-WG), last visited: January 25, 2013.
https://forge.gridforum.org/sf/projects/graap-wg.
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ment Initiator the service consumer. An Agreement Responder exposes an interface of an
Agreement Factory, which offers an operation to create an agreement and an operation
to retrieve a set of agreement templates proposed by the agreement provider. Agree-
ment templates are potential agreements which include fields that still need to be filled
in. Templates describe the outline of a potential agreement. They help an Agreement
Initiator to create agreements that the agreement provider can understand and accept.
The Create Agreement operation returns ‘accept’ or ‘reject’ if a synchronous reply is ex-
pected. Otherwise, in case of a longer decision-making process on resource allocation,
the service responder can convey the decision to an Agreement Response interface that
the initiator exposes. If the Create Agreement operation succeeds, an agreement instance
is created. The agreement instance exposes the terms of the agreement as properties
that can be queried. In addition, the runtime states for the agreement as a whole and its
individual terms can be inspected by the Initiator. All interfaces exposed by the parties,
Agreement Factory, Agreement, and Agreement Response are resources according to the
Web Services Resource Framework (WSRF)9.

Upon acceptance of an agreement, both, service provider and service consumer have
to prepare for the service, which typically depends on the kind of service which is sub-
ject to the agreement. For example, a service provider schedules a job that is defined in
the agreement. A service consumer will make the stage-in files available as defined in
the agreement. Further service specific interaction may take place between the parties
governed by the agreement.

The WS-Agreement specification defines the content model of, both, agreements and
agreement templates as an XML-based language (cf. also Figure 7.4). Structurally, an
agreement consists of a name, a context section, and the agreement terms. The agree-
ment context contains definitions like parties involved and their roles in the agreement.
The agreement terms represent contractual obligations and include a description of the
service as well as the specific guarantees given. A Service Description Term (SDT) can be
a reference to an existing service, a domain specific description of a service (e.g., a job
description, a data service, etc.), or a set of observable properties of the service. Multiple
SDTs can describe different aspects of the same service. A Guarantee Term, on the other
hand, specifies non-functional characteristics in service level objectives, an optional qual-
ifying condition under which objectives are to be met, and an associated business value
specifying the importance of meeting these objectives.

The WS-Agreement specification only defines the top-level structure of agreements and
agreement templates. This outer structure must be complemented by means of expres-
sions suitable for a particular domain. For example, a guarantee term is defined as com-
prising the scope of an element, qualifying condition, service level objective, and business
value. There are no language elements defined to specify a service level objective. Par-
ties have to choose a suitable condition language to express the logic expressions defin-
ing a service level objective. Agreement templates contain the same content structure as
agreements but add a constraints section. This section defines which content of a tem-
plate agreement can be changed by an agreement initiation and the constraints which
must be met when filling in a template to create an Agreement Offer. A constraint com-
prises a named pointer to an XML element in the context section or the term section of the

9OASIS Web Services Resource Framework (WSRF) Technical Committee, last visited February 26, 2011:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf.
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Figure 7.4.: A high-level view of the WS-Agreement schema

agreement and a constraint expression defining the set of eligible values that can be filled
in at this position. For example, an Initiator can choose between several options of a job
or can specify the location of a stage in file.

7.5. Negotiation of Service-Level Agreements

It is the purpose of the negotiation phase within the SLA life-cycle (as described in Sec-
tion 7.1) to reach an agreement between customer and service provider. In the context
of negotiation, not only technical issues are important, but also legal ones need to be
considered, like responsibilities, payment details, compensations, etc. Negotiating mul-
tiple criteria like the aforementioned can be a costly process, which may turn out to be
uneconomical. For this reason, McKee et al. [91] propose to balance the advantages and
disadvantages of negotiation carefully and execute complex negotiation only where its
cost are justifiable.

This thesis is about scheduling with electronic contracts and service-level agreements
are an intrinsic part of the concept presented in Section 4. Nevertheless, contributions to
the WS-Agreement specification have not been in our focus, except for the publication of
an experience document about the usage of the standard [12]10. Central to our research
is the application of WS-Agreement to various scheduling-related usage scenarios, which
are listed in Section 8, and advancements in SLA negotiation [65].

10Such a document is required to make an OGF proposed recommendation a full recommendation, i.e. an
OGF standard.
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Before we approach the actual contributions, we introduce a number of negotiation mod-
els and already existing SLA negotiation protocols. They serve as the foundation to in-
troduce a multi-step negotiation approach we proposed en route to the WS-Agreement
Negotiation protocol specification.

7.5.1. Negotiation Models

Negotiation models are descriptions of how a contract between one or more sellers of
goods, resources or services and one or more buyers of such products can be established.
The major part of establishing a contract is to reach an agreement (i.e. a common un-
derstanding) on the terms of the contract. This is accomplished by negotiations between
the buyer and the seller, who have different requirements and constraints. Negotiations
come in different forms and involve diverse procedures. In this section, the models most
relevant to service-related research and development are introduced.

Accept/Reject

Probably the simplest negotiation protocol is the ‘Accept/Reject’ model. In this protocol
the seller advertises his goods to potential customers. Buyers select the products they
would like to purchase and announce their choice to the seller. The seller then decides on
whether to accept or reject the deal. In this process, none of the parameters of the deal
are negotiable. The seller can only accept or reject whatever choice the buyer has made.
This implies that an offer usually is identical with the seller’s advertisement, as otherwise
no agreement is reached. As this is the common procedure in self-service supermarkets,
this protocol is also termed the ‘supermarket approach’.

Formally, the displaying of goods is considered an ‘invitation to treat’ in the context of
contract law [19]. The buyer then makes a binding offer to the seller, who can accept or
reject it. The result of this negotiation is either a contract for exchanging goods for money,
or nothing.

Mapped to the SLA world, an SLA template is the equivalent of an invitation to treat, as it
is a (more or less) public display of the seller’s offer. The buyer then submits an SLA offer.
If this is accepted, the negotiation process results in an SLA which is a binding contract
agreed upon by both parties. The contract usually stipulates that the described services
are provided to the customer who in turn has to provide some form of payment. As noted
before, none of the parameters is negotiable. Translated to SLAs, this means that none of
the terms can be changed and the SLA template, the offer, and the final SLA all contain
the same non-functional properties.

Discrete Offer

The discrete offer model, as depicted in Figure 7.5, follows the so-called ‘take-it-or-leave-
it’ approach [64]. Sometimes also referred to as ‘one-phase-commit’ model, it assumes
that service providers have a pre-defined set of service offers, which are accessible to
customers. Once a customer receives a service offer, this negotiation model foresees that
he agrees to one of the offers but cannot to modify any of the terms.

This model is quite similar to the accept/reject model introduced before. The main differ-
ence is that the roles of who provides a binding offer and who finally accepts or rejects an
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SLA are reversed. For the accept/reject model, the consumer makes a binding offer and
the provider decides on acceptance/rejection. In the discrete offer model, the provider
makes a binding offer and the consumer accepts or rejects it.

Customer
Provider

Can I get 
X?

You can 
have X*

Yes

No

Customer

Provider 1

I want X

I can X'

I can X

Ok
Provider 2

Figure 7.5.: The Discrete Offer model (left) and the Invite-Tender model (right)

Invite-Tender

The invite-tender model moves away from the accept/reject protocol, in which consumers
search for appropriate service providers. Here, the service consumer specifies his re-
quirements and publishes this specification to the ‘outside world’ to be found by service
providers. Providers interested in providing the needed service can send tenders on this
invitation. The tenders are then reviewed by the consumer, potentially adapted and sent
back to the provider who can send in new tenders. In general, it follows a similar approach
to the multi-phase (n-phase) negotiation and it could be realized by a symmetric proto-
col. Fig. 7.5 shows a customer following this model with two service providers sending in
tenders. In the example, service provider 2 offers exactly the desired service so that no
further negotiation needs to take place.

Multi-phase (n-phase) negotiation

As mentioned before, the discrete offer model is rather inflexible and therefore not suf-
ficient in all business cases. More flexibility can be achieved by extending the discrete
offer approach to several rounds of negotiation. In the beginning, the concept is similar
to the discrete offer model with a request and a potential offer following. Now, instead of
either agreeing to or rejecting the offer, the customer can adapt the offer and send it as a
counter-offer to the provider, who can also modify the counter-offer and send it back (as
shown in Figure 7.6).

This process happens repeatedly and might run indefinitely, which is the biggest concern
of the critics of this model. However, when realized in a proper way, there are mechanisms
and decision points for both customer and service provider to stop this negotiation, either
with or without an agreement.
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Customer
Provider

Can I get 
X?

You can 
have X*

I want X**

You can 
have X*'

...

Figure 7.6.: Multi-phase negotiation

English Auction

The model of the English Auction realizes a first-price, open cry, ascending auction [100].
It starts with a price set by the auctioneer, followed by bids that constantly increase the
price. If no further bid is received within a certain length of time, the highest bidder
is awarded the goods. This process ensures that the price is increased until only one
participant is left, who pays the highest price.

Dutch Auction

Unlike the English Auction, the Dutch Auction starts with a high price, which then is de-
creased subsequently [85]. Lowering the price continues until one of the participants is
willing to pay the current price, or a pre-defined price is reached (the minimum acceptable
price as defined by the seller in advance), in which case the item is not sold. In principle,
the Dutch Auction is a very simple and quick protocol, as it needs only one bid to finish the
auction.

Vickrey Auction

Vickrey proposed an adapted auction model, based on the principle of hidden offers: the
Vickrey Auction model [137]. Similar to the procedure in the English Auction, the partic-
ipant with the highest bid wins. However, in this adapted form, he only has to pay the
second highest price. The advantage of this model is that the participants are encouraged
to bid a realistic price instead of bidding above or below their real valuation.

7.5.2. SLA-related Negotiation Protocols

This section introduces specifications of computer-processable models and communication
protocols that can be used to realize certain negotiation models with the help of machines.
For making SLA negotiations accessible to computers, service-level agreements must be
encoded in some electronic format that can be processed by a computer. Furthermore,
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the communication between the negotiation partners must be defined in an unambiguous
way. Depending on the desired degree of automation, other parts of the models need to
be specified as well, for example computer-‘understandable’ languages for describing the
terms inside SLAs.

The specifications introduced in this section cover the automation of the negotiation to
different degrees. All of them are designed to be used generically, meaning that they are
not bound to a particular application domain but can be used for any application. Using
the specifications for a particular application scenario nevertheless requires additional
artefacts, most commonly descriptions of properties of the targeted domain.

WS-Agreement Protocol

Although not primarily aimed at being a negotiation protocol specification, WS-Agreement
is mentioned here as it offers basic SLA creation mechanisms (cf. Section 7.4) and as its
SLA structure definition is used by other activities to realise more complex forms of SLA
negotiation [67].

WS-Agreement defines a simple interface for establishing SLAs [6]. The interface allows
one party to send an SLA offer to another party, who can then accept or reject it. Through
this, WS-Agreement enables parties to use either the accept/reject or the discrete offer
model as described before.

The WS-Agreement protocol supports these negotiation models through a simple pro-
tocol, which is depicted in Fig. 7.7. First, the AgreementInititator starts off with sending
a getResourceProperties message, on which the AgreementResponder returns a set of
agreement templates representing services including their descriptions, properties, guar-
antees, and constraints.

AgreementIntiator AgreementResponder

getResourceProperty

getResourceProperty : AgreementTemplates

createAgreement (InitiatorAgreementEPR, AgrementOffer)

createAgreement (-,-) : CreatedAgreementEPR

Figure 7.7.: WS-Agreement negotiation protocol (depicting the ‘Accept’ case; see also 7.3)

Assuming that any of the services fulfils the requirements of the AgreementInitiator,
which could be for example a scheduler, it sends a createAgreement message to indicate
the offered agreement. It is then the AgreementResponder which actually accepts the
final agreement by returning its EPR or which ends the negotiation with a fault message
indicating the rejection of the offered agreement.
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WS-Negotiation

WS-Negotiation is an XML-based language, which was proposed by Hung et al. as a basis
for agreement establishment between customers and service providers [68]. The speci-
fication is split into three parts: Negotiation Message, Negotiation Exchange, and Nego-
tiation Decision Making. The Negotiation Message part describes the format of the ex-
changed information between customer and service provider. Even though planned, an
enhancement of the message description with definitions of schema and semantics has
not yet been performed.

Message exchanges are following the Negotiation Protocol, which covers bilateral multi-
phase negotiations. The rules provided for negotiation define the protocol to be a repeated
exchange of offers and counter-offers, i.e. a multi-phase negotiation model is followed.

Finally, the Negotiation Decision Making part represents decision processes that are
based on the strategies of the individual users. The strategies are aligned with each ne-
gotiation participant’s preferences and by that they are specific to each participant and
therefore not defined in the specification.

Service Negotiation and Acquisition Protocol – SNAP

The SNAP protocol has been published by Czajkowski et al. [29] to present a protocol for
remote management of service level agreements across the borders of different resource
providers. The main focus of this work is on enabling resource reservation and provisioning
by negotiating single service level agreements across multiple administrative domains and
by that referring to different resources. Within the SNAP concept, the cross-domain issue
is addressed by the introduction of three types of service level agreements:

• TSLAs: Task Service Level Agreements cover the execution of an activity (task).
Within this construct information about service steps and resource requirements is
contained.

• RSLAs: Resource Service Level Agreements cover the rights to consume a resource
but they do not not necessarily specify what the resource will be used for. Here, the
resource is characterized by its abstract service capabilities.

• BSLAs: Binding Service Level Agreements cover the use of a resource for a task.
This task is then either defined directly by a TSLA or a unique identifier, which allows
its application to a RSLA.

SNAP was published in 2002, but did not find the desired acceptance in the community.
There were some basic implementations, e.g. one using a three-phase commit protocol by
Haji et al. [61]. The biggest weakness of SNAP, however, is its generality, as this makes
an implementation rather difficult [116].

The Contract Net Protocol

Contract Net is a protocol used in multi-agent systems [126]. It supports distributed prob-
lem solving by task sharing between several participants. Once a big task needs to be
completed, the problem is broken down into different sub-tasks, which are distributed to
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other participants. In this model, an invitation to tender is generated for each of the sub-
tasks. Based on this, bids are received from potential contractors (agents) and the winning
ones get the tasks to execute.

FIPA Contract Net Protocol

The Foundation for Intelligent Physical Agents (FIPA, a standards body in the agent-technology
area) has proposed a specification on top of the Contract Net Protocol as depicted in Fig-
ure 7.8. The FIPA Contract Net Protocol (CNP) [23] foresees a single round of bids. Once a
deadline has been reached, all bids are evaluated and the winners get the tasks.

Customer
Provider

Call for 
proposals

refuse/
propose

accept/
reject

Figure 7.8.: The FIPA Contract Net Protocol

FIPA Iterated Contract Net Protocol

An adaptation of the CNP is the FIPA Iterated Contract Net Protocol (ICNP) [22], which
realizes an approach allowing for several bids by one bidder. Through this, it is possible to
have several bidding rounds, one after the other (depending on the pre-defined values of
the auctioneer).

The Combinatorial Contract Net Interaction Protocol

Another adaptation of the Contract Net Protocol is the Combinatorial Contract Net Pro-
tocol [74]. This protocol was developed and implemented in 2009 within the context of
the BREIN project. It extends the CNP to support reverse combinatorial multi-attribute
auctions over multiple tiers, specifically BREIN supply chain levels. The protocol allows the
evaluation of subcontracts to enable the creation of better binding proposals. The protocol
is labelled ‘combinatorial’ as it provides three different combination possibilities: Combi-
nation of tasks, of attributes and of tiers. Combination of tasks allows to provide offers
for not only one, but several tasks. They can be described with AND or XOR operators,
the latter of which allows the customer to accept only one part of the tasks, not neces-
sarily the complete proposal. The combination of attributes was introduced to allow for
multi-attribute auctions with an enhanced winner determination. Finally, the combination
of tiers enables the consideration of dependencies across different levels, especially for
the purpose of subcontracting.
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7.5.3. An Extension of WS-Agreement towards Dynamic Work-flow
Negotiation

A number of application scenarios exist, in which the orchestration of resources is nec-
essary to offer added-value services [15, 112]. In DCIs, scheduling services are typically
deployed to execute tasks like work-flow scheduling or co-allocation (cf. also Section 3).
The latter requires the meta-scheduler to co-ordinate resource management systems lo-
cated in different domains. As the site autonomy has to be respected, negotiation is the
only way to achieve the intended co-ordination.

In this section, we introduce a specific protocol to tackle dynamic negotiation and cre-
ation of SLAs [110]. Thereto we discuss an approach based on the concept of transactions
and propose an extension to the WS-Agreement protocol which implements it.

Commit Protocols for Distributed Databases

Distributed transactional systems have been widely studied. One of their objectives is to
propagate a consistent state across several systems, in a way that at any time all systems
can show a consistent state to the users. This maintains and propagates a logical co-
herent state between systems. To provide crash recovery, several operations are logically
grouped into transactions. Those transactions permit the change from one consistent view
to another. For instance, you do not credit a bank account if you have not debited another
bank account. These, however, are two independent operations. A bank’s distributed
database system must group the two operations in one transaction. Thus, it permits the
change from one consistent state ‘before the transfer’ to another ‘after the transfer’.

Database state changes are visible to other users once a transaction is committed to
the system. This implies that in distributed infrastructures, each transaction can impact
several other systems. To control this, commit protocols have been developed [13,79,105].

Skeen describes the purpose of a commit as follows [124]:

The processing of a single transaction is viewed as follows. At some time during its
execution, a commit point is reached where the site decides to commit or to abort the

transaction. A commit is an unconditional guarantee to execute the transaction to
completion, even in the event of multiple failures. Similarly, an abort is an unconditional

guarantee to ‘back out’ the transaction so that none of its results persist. If a failure
occurs before the commit point is reached, then immediately upon recovering the site will

abort the transaction. Commit and abort are irreversible.

The application of transaction principles to work-flow scheduling in DCIs has led to a
proposal based on the negotiation of agreement templates [110] which is outlined below.

Negotiation of Agreement Templates

To minimise the extensions to the WS-Agreement, we suggest not to negotiate SLAs but
to negotiate and refine the templates that can be used to create an SLA. Here, our focus
is on the bilateral negotiation of agreement templates.

In the following scenario (cf. Fig. 7.9) we describe how an agreement initiator (e.g. an
activity scheduler for distributed computing infrastructures) negotiates agreement tem-
plates with two agreement providers (e.g. a network scheduler and a CPU scheduler). For
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this purpose, we propose a simple n-phase negotiation model. In order to use this model
with the WS-Agreement protocol, we introduce a new message to the sequence called ne-
gotiateTemplate. This message takes one template as input (i.e the offer) and returns zero
or more templates (i.e. the counter offer).

The negotiation protocol for the scenario is divided into three steps: (i) initialisation,
(ii) template negotiation, and (iii) post-processing. We now describe these steps in detail.
Please note that we use the terms the agreement initiator (according to the WS-Agreement
specification [6]), ‘negotiation initiator’, and DCI Scheduler synonymously. Accordingly,
we refer to agreement providers (WS-Agreement terminology) also as ‘negotiation respon-
ders’.

1. Initialisation of the negotiation process

First, the negotiation initiator starts the process by querying a set of SLA templates
from agreement providers. To do so, it sends a standard WS-Agreement message,
getResourceProperty, to the agreement providers11. Then, the initiator chooses the
most suitable template as a starting point for the negotiation process. This tem-
plate defines the context of the subsequent iterations; therefore all subsequent of-
fers must refer to it. This is necessary in order to enable an agreement provider
to check the validity of an offer by assessing the adherence of the original creation
constraints during the negotiation process.

DCI Scheduler CPU Scheduler Network Scheduler

negotiateTemplate

negotiateTemplate

commit

commit

prepareAgreement

prepareAgreement : EPR

prepareAgreement

prepareAgreement : EPR

Figure 7.9.: Extension of the WS-Agreement negotiation protocol for dynamic work-flow
scheduling [110]

11This step is not depicted in Fig. 7.9 as it is the same as already described in Section 7.5.2, Fig. 7.7.
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2. Negotiation of the agreement template

After the negotiation initiator has chosen an agreement template, it creates a new
agreement template based on it. This step most likely includes modifications (gov-
erned by the creation constraints of the original template) of service description
terms, service property terms, and guarantee terms. Hereby it is essential that any
subsequent template contains a reference to the original template. In addition, the
negotiation initiator may include new creation constraints to provide hints for the
negotiation responder within which limits the negotiation initiator will be willing to
create an agreement. For instance, the initial CPU scheduler template may contain
‘any number of 2GHz x586 CPU between 5pm to 6pm’, whereas the initiator may
request ‘at least 5 1GHz x586 CPU anytime’.

After the initiator has created the new agreement template, it is sent to the respec-
tive responder(s) via a negotiateTemplate message (as shown in Fig. 7.9).

Once the responder has received a negotiateTemplate message, it first has to check
the validity of the refined template. This step includes (i) the retrieval of the original
agreement template, (ii) the validation of the structure of the input document on
the basis of the original, and (iii) the validation of content changes in the refined
document with respect to the original creation constraints.

Following this, the agreement provider checks whether the service defined in the re-
quest can be provided or not. In our example, it is only then that the CPU scheduler
decides that 5 1GHz x586 CPUs can be provided; therefore it just returns the agree-
ment template to the client, indicating that an offer based on that template may
be accepted. Otherwise, the provider employs some strategy to create reasonable
counter offers. During this process the agreement provider should take into account
the constraints of the negotiation initiator. Counter offers are basically a set of new
agreement templates that base on the template received from the negotiation initia-
tor. The relationship between dynamically created templates and original ones must
be reflected by updating the context of the new templates accordingly. After creat-
ing the counter offers the provider sends them back to the negotiation initiator as a
response to the negotiateTemplate message.

3. Post-processing of the templates

After the negotiation initiator has received the counter offers from the negotiation
responder, it checks whether one or more meet its requirements. If there is no such
template, the initiator can either stop the negotiation process or start afresh from
step 1. In case there is a suitable template, the initiator validates whether there is
demand for further negotiation steps. If so, the initiator uses the selected template
and proceeds with step 2, otherwise the selected template is used to actually create
a service-level agreement.

SLA Creation extending the WS-Agreement protocol

After the negotiation process has come up with an agreement template suitable for both
parties, the initiator needs to create the agreement. At this point, a problem similar to the
transaction problem in distributed databases systems arises.
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The goal of a DCI scheduler is to create a set of SLAs with different resource providers
(two in our scenario), in order to orchestrate the use of multiple resources (compute and
network respectively). Therefore, the scheduler first negotiates a set of templates with
the providers which identify potential resource provisioning times. However, these tem-
plates only provide hints, there is no guarantee that the providers will agree on the terms
associated with them. This means that a strategy to create all SLAs or none of them is
prerequisite to the execution of the related work-flow.

In principle, there are two major strategies to achieve this:

1. the usage of transactions to create the SLAs or

2. the creation of separate SLAs, applying policies to the process.

The usage of transaction mechanisms to create distributed SLAs, namely the usage of a
two-phase commit protocol, has already been discussed above. Since there is no sup-
port for two-phase commit in WS-Agreement yet, we need to extend the specification to
address this problem.

One potential solution is the addition of a type of agreement that has to be created in two
phases: the first phase is a creation of the agreement triggered by a prepareAgreement
message and the second involves a Commit message to achieve that all SLAs related to
the activities of a work-flow are created.

SLA Creation using the WS-Agreement protocol

The second strategy is to create an SLA in one step using WS-Agreement functions, can-
cellation mechanisms, and incentives. In order to realise this, we need to investigate the
content of an SLA. On the one hand, an SLA describes the service and its properties. On the
other hand, it specifies the guarantees for a specific service. In a co-allocation scenario,
where a scheduler uses SLAs to co-ordinate e.g. network and computational resources, it
employs execution guarantees in order to assure that the different services are provided
at the same time. These guarantees most likely include costs associated with the service
provisioning, as well as penalties that arise when a guarantee is violated.

An SLA, however, might be prematurely terminated by the agreement initiator, before
the service is actually provided. This is in fact a cancellation of an SLA. If a service provider
guarantees a certain execution time for a service, this will normally be realised through
resource reservations. Therefore, the resource provider wants to prevent the termination
of an existing SLA. This can be achieved by including a basic payment within the SLA,
a small amount that is even charged if the SLA is terminated by the agreement initiator
before the service is actually provided. It is a termination penalty and represents the cost
for the overhead produced by the resource reservation.

In order to provide the foundation for a scheduler to efficiently negotiate and create
SLAs, there could be a certain time period in which the SLA can be terminated without
penalty. The duration of this period can dynamically be specified during the negotiation
process. The agreement provider could use a certain trust index in order to determine
the maximum length of this period. This offers a feasible solution for the orchestration of
multiple resources using the current accept/reject SLA creation of WS-Agreement.
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7.5.4. WS-Agreement Negotiation

The development of a protocol to automatically negotiate SLAs that adhere to a normative
format has been a long process. It started in 2007 with a set of ‘Re-Negotiation Wish-
lists’ 12 compiled by OGF’s GRAAP working group, the home of WS-Agreement, and led to
the WS-Agreement Negotiation Version 1.0 proposed recommendation13 [138].

During this time-frame, multiple negotiation protocols for multi-phase (re-)negotiation
have been proposed, including

• our transaction-based protocol, which has been introduced in the previous para-
graphs,

• a re-negotiation protocol we designed based on the requirements captured in the
Re-Negotiation Wishlists and on requirements from contract law [108],

• SLA negotiation supported by business rules [109],

• a negotiation approach based on the alternate offers protocol [136], and

• a WS-Agreement-based framework that allows the usage of multiple negotiation pro-
tocols [67].

The purpose of our work, though, is to develop an SLA negotiation protocol that is com-
pliant with WS-Agreement and therefore can be adopted by the community that already
uses it [123]. This is why we contributed to the standardisation process of WS-Agreement
Negotiation14.

In this section, we briefly describe the main objectives of WS-Agreement Negotiation
and sketch the solution. For in in-depth presentation of all the different concepts including
the offer structure, the WSDL portTypes, and XML Schemata we refer to the the specifica-
tion [138].

Objectives of the WS-Agreement Negotiation Specification

During the three years of development we discussed various application scenarios leading
to different requirements and objectives. Finally, the following objectives have guided the
design process of the WS-Agreement Negotiation specification:

• WS-Agreement Negotiation has to be built upon the WS-Agreement specification [6].

• It has to support both negotiation and re-negotiation of SLAs.

• It has to provide both binding and non-binding negotiations.

• Its protocol has to allow symmetric and asymmetric message exchange.

• All valid states and state transitions have to be well specified.

• XML Schema and WSDL have to be used to normatively describe negotiation arte-
facts and interfaces, respectively.

12Re-Negotiation Wishlists, last visited: January 25, 2013. https://forge.gridforum.org/sf/wiki/do/-
viewPage/projects.graap-wg/wiki/ReNegotiationWishlists.

13The OGF process towards standardisation is described by Catlett et al. [21]. The public comment phase is
the final step before a specification becomes a proposed recommendation, i.e. a proposed standard.

14Please note that a standard in general cannot be attributed to a single author as it is a community effort.

94



7.5. Negotiation of Service-Level Agreements

The Negotiation Model

WS-Agreement Negotiation introduces a three layer negotiation model (as depicted in
Fig. 7.10) by extending WS-Agreement with a negotiation layer. Briefly, its purpose is
to add multi-phase (re-)negotiation capabilities to the existing specification, which only
supports the basic accept/reject model. The basis of the negotiation is a series of offers
and counter-offers potentially leading to an agreement. Furthermore, the layer introduces
the concept of advertising negotiation offers to parties interested in negotiating SLAs. Last
but not least, the termination of the negotiation process can be explicitly triggered.

Figure 7.10.: Conceptual overview of the layered negotiation model [138]

To finally create an agreement once the negotiation process is finished, either createA-
greement or createPendingAgreement is called on the part of the initiator’s agreement
layer.

Logically, the negotiation layer is decoupled from the other two, which facilitates the
application of other negotiation layers on top of WS-Agreement. Through this, other nego-
tiation models may be applied to serve requirements other than those mentioned above.

Application to the ‘Delegation of Scheduling Requests’ Scenario

Instead of going into greater detail, we illustrate how WS-Agreement Negotiation can be
integrated with the delegation scenario set forth in Section 3.1.3. As shown in Fig. 7.11,
the primary scheduler, which has received an initial service request, but does not have
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access to sufficient resources to fulfil it, tries to find another scheduler to delegate the re-
quest to. In a first step, the primary scheduler contacts different secondary schedulers15

by requesting SLA templates from them. As a result, it receives descriptions of services
(i.e. templates) that can potentially fulfil the initial request. After making a scheduling
decision, the primary scheduler, which in this example acts both as negotiation and agree-
ment initiator, starts to negotiate with the secondary scheduler (initiateNegotiation) and
subsequently receives an EPR of the negotiation service. In the following, both schedulers
can exchange offers and counter offers until they reach an agreement (or none) governed
by the negotiation context. If both parties agree on the delegation conditions, an SLA
will be created by calling the createAgreement method. In case the secondary scheduler
A cannot fulfil the demands of the primary scheduler, it will start negotiating with other
schedulers as depicted in the actual application scenario in Fig. 3.3.

Agreement 
Responder

getTemplates()

Negotiation ResponderNegotiation Initiator/
Agreement Initiator

Client-side
Negotiation
Service

Negotiaton
Factory

Negotiaton

Templates

initiateNegotiation()

NegotiationResponderEPR

negotiateOffers()

CounterOffers

createAgreement()

AgreementEPR

Loop

Primary Scheduler

Agreement
Factory

Secondary Scheduler A

Figure 7.11.: Message exchange between two schedulers to negotiate about a scheduling
request following the example in Section 3.1.3

In this part of the thesis, we introduced the life-cycle of an SLA, in order to then direct our
attention to the development and negotiation of SLAs. Regarding the latter, we provided

an overview of existing SLA negotiation models and protocols to motivate our research
leading towards multi-phase negotiation and the contribution to the WS-Agreement

Negotiation specification.

15We depicted only one secondary scheduler to keep the figure simple.
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In the previous chapters, we introduced a scheduling architecture and a fitting scheduling
process. Furthermore, we presented the activity, information, and SLA models, which

provide the foundation for state-of-the-art scheduling in contemporary distributed
computing infrastructures. In this chapter, we link theses assets and define a scheduling

model that utilises all the aforementioned concepts and entities to compute the
best-suited schedule.

After introducing the models needed to develop a concise generic scheduling archi-
tecture, namely the activity, the information, and the SLA model, we now face the core
scheduling model applied by scheduling services which operate within an SLA-based DCI.
The model is designed to operate in an infrastructure implementing the architecture intro-
duced in Section 4.1 and following the overall scheduling process as of Section 4.2.2. It
exploits service-level agreements according to the WS-Agreement model (cf. Section 7.4)
and the WS-Agreement Negotiation protocol described in Section 7.5.4.

The purpose of the scheduling model is to solve the scheduling problem presented in
Section 2.2.1 and thus providing the means to realise the ‘assignment of services to ac-
tivities over time aiming at the optimisation of multiple, potentially competing, quality-
of-service criteria’ (as stated in Section 2.2). Special emphasis is put on the delegation
of activities to other sites in cases where the services available to the local scheduling
service are insufficient to fulfil the requirements of an activity. The respective application
scenario is shown in detail in Section 3.1.3 and evaluated in Chapter 10. This tight in-
tegration of delegation integrates on the one hand well with the ‘computing on demand’
business model of cloud providers and offers, on the hand, more options to customers of
a global service market. We envisage that this model and similar other models are essen-
tial to capture the increasing number of objective parameters and to handle the growing
amount of data during decision making processes like the one considered in our work.

8.1. The Scheduling Model

Figure 8.1 depicts the proposed scheduling model. It shows the different actions that are
executed by the scheduling service, the respective strategies related to each action, the
middleware services (directly) involved in each action, and the relationship between the
different actions and entities involved.

In the following, we first introduce the different categories of scheduling strategies, de-
picting their purpose and their role within the scheduling model. Then, we describe the
sequence of scheduling actions, and how the scheduling service interacts with other enti-
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ties and how it applies the strategies to finally compute a schedule. Last but not least we
discuss the advantages, particularities, and the consequences of its application.

Candidate service

Pre-selection 
Strategy Pre-selectionselect Registry

discover

SLA templates

Scheduling
Strategy

Schedule 
generation

schedule Brokering
Service

query

service info

Negotiation 
Strategy Negotiationnegotiate Negotiatornegotiate

SLA

Scheduling Service Domain Middleware Domain

AR Service

reserve

Delegation
Strategy Delegationdecide

Activity template(s)

Schedule 
Selection
Strategy

Schedule
selection

select

Schedule

Schedule

start scheduling

Activity template(s)

Figure 8.1.: Sequence of actions executed within the scheduling service. The respective
strategies are depicted to the left. The respective actions related to other mid-
dleware services are shown to the right (’AR service’ is advance reservation
service)

8.1.1. Strategies

Our objective is to deal with strategies in relation to their purpose and assign roles to
them in the scheduling model, respectively. The five fundamental strategic roles of the
scheduling model are shown in Fig. 8.1: (i) delegation, (ii) pre-selection, (iii) scheduling,
iv) service selection, and v) negotiation. They are described in the following paragraphs
and set into relation in Section 8.1.2. Especially for the third role, scheduling, multiple
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strategies, which are often called scheduling algorithms, exist for various application sce-
narios, environments, and scheduling objectives. As it is not our ambition to discuss their
variety here, we refer to Bruckner [18], Pinedo [111], and T’kindt [134] for further informa-
tion and as sources for advanced literature research. The specific strategies themselves,
which represent the domain-specific logic used to schedule activities, are treated, as far
as the model is concerned, as ‘black boxes’1.

Delegation Strategy

The delegation strategy determines which activities are delegated. This is done by eval-
uating all ‘un-scheduled’ activities under the control of a scheduling service with respect
to their delegation potential. To achieve this, most likely historical data about passed
scheduling cycles and the outcome of previous negotiations is considered to apply a strat-
egy that realises, for example, reputation-based business objectives [127].

Pre-selection Strategy

The pre-selection strategy removes service and resource candidates that cannot fulfil the
demands specified in the activity template. The purpose of such strategies is the reduction
of choices for further scheduling actions in order to avoid costly calculations or negotia-
tions. Pre-selection, in general, operates on data that is static at least during the execution
of the scheduling cycle, like the maximum amount of cores a virtual machine can have or
the maximum runtime a provider permits for job execution. Based on such information,
the pre-election strategy can make binary decisions for each static parameter to elimi-
nate service and resource candidates which are not worth to be considered for further
scheduling.

Scheduling Strategy

The scheduling strategy assigns a service or resource to an activity, like a number of
nodes to a parallel compute job or web service endpoints to a business process. The
result provided by a scheduling strategy is zero or more scheduling scenarios that fulfil
the requirements specified in the activity template. Well-known algorithms like ‘earliest-
due-date-first’ (EDD) [134] can be applied here, but also domain- or customer-specific
ones.

Schedule Selection Strategy

The schedule selection strategy has the responsibility to select the schedule which is ac-
tually executed. This is equivalent to selecting a provider (or a number of providers) and
it takes different criteria into account than the scheduling strategy. Important for the final
selection of a schedule can be the price to execute the schedule, site- or customer-specific
policies, or provider-specific business objectives. Depending on the requirements of the
scheduling service provider, schedule selection strategy and scheduling strategy may be
combined into one single strategy. This is feasible in cases where the cost of applying two
different strategies outweighs the benefit.

1Concrete strategies implemented to evaluate the scheduling approach can be found in Appendix C.
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Negotiation Strategy

The negotiation strategy (called negotiation model in Section 7.5.1) describes how a con-
tract is established between a consumer and a provider. Its purpose is to reach an agree-
ment between both parties on the terms of the contract. Once such an agreement is
reached, no further scheduling actions are carried out and the activity can be executed.
Please note that negotiation is conducted between scheduling services of different DCI
sites and not within a single site. In cases where the services and resources needed to
fulfil a schedule are under control of one scheduling service, no negotiation is necessary.

8.1.2. Sequence of Actions

The computation of a schedule is initiated, as depicted in Fig. 8.1, once an activity tem-
plate (or multiple templates) are passed to the scheduling service. In DCIs with an SLA
management framework in place, this first step is part of the negotiation between a cus-
tomer and the scheduling service provider (cf. Fig. 4.1). It is then decided whether the
template(s) qualify for local scheduling or for delegation through the application of a del-
egation strategy. Candidates for delegation are all unscheduled activities, whether newly
submitted or remaining from previously executed pre-selection, scheduling, or schedule
selection actions. Independent of the previous decision, the same actions are executed
for locally scheduled and delegated resources. The only difference is the association of
services and resources to either a local or a remote site. The activity templates (repre-
senting activities to be scheduled) are then matched against SLA templates (representing
service or resource offers) based on a pre-selection strategy. This action includes calls to
registries, which contain the information necessary to pre-select suitable candidates for
further scheduling.

The result of the pre-selection action, and the input to the schedule generation action,
is a list of services (or resources) suitable to fulfil the activity template. As part of the
generation of schedules, information about candidate services and resources is requested
from brokering services to retrieve an up-to-date view on the service and resource land-
scape. Using this information, a scheduling strategy is applied to generate a list of po-
tential schedules, which may already be ranked to indicate preferences to the subsequent
schedule selection action. There, the scheduling service applies a selection strategy to
decide which schedule is to be executed. In case only one candidate schedule exists or
the negotiation action is used to actually select the final schedule, the schedule selection
step may be omitted.

The final step is the negotiation of an SLA between the scheduling service, which is
in charge of scheduling a certain activity, and the service/resource provider. After an
agreement on the terms of provisioning is reached, the schedule is in place and the entity
that submitted the activity template can be informed accordingly. Most likely, the provider
internally reserves the respective services and resources to guarantee the fulfilment of
the SLA and thus the adherence of the schedule.

Although the sequence of actions is depicted in sequential order, it is possible that ac-
tions are executed repeatedly or that the sequence is interrupted after executing a certain
action and resumed at another. An example for the former case is the repeated applica-
tion of a pre-selection strategy to decrease the number of candidate services; the latter
may occur in cases where the negotiation strategy does not produce any result and the
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scheduling service resumes with the scheduling strategy based on up-to-date resource
information.

8.2. Discussion

In the introduction we stressed the fact that most existing scheduling services and schedul-
ing algorithms are designed for specific environments or application scenarios, hence they
lack general applicability. Therefore we motivated a generic scheduling architecture and
a matching scheduling process. The outlined scheduling model complements both assets
on a strategic level and introduces a modular and flexible approach which suits state-of-
the-art service-oriented distributed infrastructures.

However, a generic approach does not imply universal applicability. Therefore we dis-
cuss in this section a number of questions related to the practicability of the scheduling
model and a number of issues regarding its relation to other models introduced within the
scope of this work.

8.2.1. Relation to the Scheduling Process

The scheduling process as outlined in Section 4.2 illustrates the life-cycle of an activity
from the scheduling perspective. It includes all steps from the receipt of an activity tem-
plate to the termination of an activity (cf. also Fig. 4.3). The scheduling model, however,
defines the different strategies to be applied by a scheduling service, the sequence of
actions to actually compute and realise a schedule, and the interactions between the
scheduling service and other middleware services. It is included in the scheduling pro-
cess2 and provides a fine-grained view focussing on the scheduling service and taking the
specifics of the scheduling architecture into account. In short, the scheduling model in-
troduced here is one particular method to generate a schedule following the scheduling
process for DCIs as specified in Section 4.2.

8.2.2. Relation to the Activity Model

The core entity, which is scheduled, is an activity according to the description in Section 5.
This implies that the scheduling service interacts with an activity management framework
(cf. Fig. 4.3) to create or update activities, or to receive notifications regarding its activity
subscriptions. The decision on which activity-related events are considered, however,
is completely domain-specific. The financial service application scenario as discussed in
Section 9.1.2 [96], for example, creates an activity just after the SLA has been negotiated
and the service contract is in place. Other scenarios, like those where scheduling decisions
themselves are of interest, might imply the recording of any strategic decision made, the
documentation of any candidate schedule, or the logging of any negotiation. As long
these actions are executed according to the activity model, decisions about granularity
and amount of activity recordings are incumbent on the scheduling service provider.

2Please note that the scheduling process can be used with other scheduling models, too.
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8.2.3. Thoughts on Delegation

Delegation is an intrinsic feature of the approach we propose. Its integration is motivated
by application scenarios like the one presented in Section 3.1.3, but also the increasing
need to consider data center locality when using and operating DCIs. The latter factor,
as of today mainly motivated by the requirement to reduce energy cost [3], is specifically
addressed by the steadily growing cloud-like service offers. Furthermore, a number of Eu-
ropean research projects, like VENUS-C3 or BonFIRE4, deal with this topic from a research
perspective.

Our scheduling model is designed to operate in distributed computing infrastructures
where users and operators require out-sourcing of activities based on policies or budgetary
constraints. Delegation can be a strategic decision reflected in the negotiation strategy or
based solely on events like unavailability of local resources (cf. Section 4.2.2).

It is, though, also possible to prevent delegation, either through software design de-
cisions or through the definition of the respective strategies. One particular aspect to
consider there is cost. The application of a delegation strategy may result in one negoti-
ation per delegated activity. As negotiation can be costly [91], it is particularly important
to consider the ROI of such decisions. ‘Inexpensive’ negotiation strategies, like Accept/Re-
ject (cf. Section 7.5.1), or alternative decisions, for example the rejection of the initially
received activity template, should be then taken into consideration.

8.2.4. Complexity of the Model and Inter-relation between Strategies

The scheduling model includes five strategies in order to compute and realise a schedule.
This seems to be, at first sight, a complex approach to achieve something which, in lit-
erature, is often realised through the application of one scheduling algorithm. Since the
purpose of the different strategies has already been introduced above, we discuss in the
following the feasibility of the model in different situations and the inter-relation between
the strategies:

• The scheduling model can be customised according to the domain-specific needs
and policies of the scheduling service provider. The following options can be applied
to reduce complexity in case it is not feasible to implement the complete scheduling
model:

– The delegation strategy can be omitted and all activity templates can be lo-
cally scheduled. The scheduling model then still follows the scheduling process
where upon activity template receipt the pre-selection step is executed. The
downside of this approach is that costly actions are executed to schedule (types
of) activities although subsequent actions of the scheduling process are likely
to fail.

– Scheduling strategy and schedule selection strategy maybe, as previously dis-
cussed, combined. A simple approach, which is often used in practice, is the
prioritisation of schedules and selection of the one with the highest priority.

3VENUS-C – Virtual multidisciplinary environments using cloud infrastructures, last visited: January 25, 2013.
http://www.venus-c.eu/Pages/Home.aspx.

4BonFIRE, last visited: January 25, 2013. http://bonfire-project.com/.
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Especially with respect to strategies applying single-criteria optimisation, this
selection is implicit.

– The schedule selection strategy may be omitted completely.

• The separation of scheduling and schedule selection strategy may exclude well-
suited schedules (regarding the efficient use of a DCI) due to certain business objec-
tives. The scheduling service provider has to be aware of the implications of applying
such objectives, involving the respective business units in the definition and opera-
tion of the service. This implies additional overhead compared to solutions where
such business criteria are not part of the equation.

• In case there is demand for negotiating with multiple sites over one activity, e.g. if
the invite-tender negotiation model described in Section 7.5.1 is applied, the schedul-
ing model has to be implemented in a way that allows to configure the different
strategies accordingly. Either the schedule selection step is skipped or it selects
schedules tailored for the chosen negotiation strategy.

• It should be noted that, although it is a general issue related to negotiation, we
need to take care of that negotiations finish in finite time and that they do not block
the overall scheduling process. To achieve this, it is essential to design appropriate
negotiation strategies, but also to monitor the overall progress of scheduling closely.

In this section, we treat the strategies as ‘black-boxes’. As the strategies are domain-
or site-specific and carry the particular logic a scheduling service provider needs (or offers
their clients), their realisation and customisation is a complex undertaking. Nevertheless,
we think that such effort is well invested and that in the long term, the flexibility of our
approach will lead to a positive ROI. To provide an initial evaluation of the scheduling
model, we have chosen in Chapter 10 the delegation scenario from Section 3.1.3 as a
particular example to discuss the interaction between the various strategies.

The scheduling model as introduced in this chapter specifies how to compute the
best-suited schedule in an environment defined by the previously introduced scheduling

architecture and scheduling process, and combined with the three core models. We
therefore described how the scheduling model fits into this environment, how it interacts
with the other entities, and which particular strategies are needed to create a schedule.

Furthermore, we discussed the implications of the application of the model regarding
aspects like domain-specifics or cost.
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9. Realisation

After introducing the various models that constitute the basis for DCI scheduling with
electronic contracts, we now show selected implementations of these models. To this

end, we introduce the UDAP activity management framework, the CIS information
service, and the IANOS scheduling framework.

The full realisation of our scheduling architecture, including the essential auxiliary ser-
vices, would be tantamount to creating a more or less complete new DCI middleware. We
did not approach this venture as part of our work, as we aim at providing the concept of a
generic scheduling architecture for state-of-the-art DCIs and not at a complete realisation
of this concept.

Nevertheless, some of the models we have introduced have been implemented within
German and European projects. This includes the realisation of an activity management
framework based on the UDAP model (cf. Chapter 5). It has been implemented as part of
the NextGRID project and is described in Section 9.1. The same project is accountable for
the implementation of the Common Information Service, a software entity based on the
UNICORE-specific, CIM-based information model. A derivative of the initial service, which
is outlined in Section 9.2, is now part of the UNICORE distribution1. Last, but not least,
the idea of integrating service-level agreements and scheduling mechanisms to provide
reliable quality-of-service is something we have been following for quite some time. Al-
though there is no complete implementation of the generic DCI scheduling architecture as
outlined in Section 4.1, we contributed to a number of research projects working towards
such an implementation. The most advanced, IANOS, is introduced in Section 9.3.

We conclude this chapter with a discussion on the implications of realising the complete
generic DCI scheduling architecture. This conclusion summarises the issues which have
been debated within the different projects and it states the challenges practitioners will
face.

9.1. The Activity Management Framework

The most complete implementation of an activity management framework is the the UDAP
Infrastructure [64,96]. It realises the UDAP model described in Section 5.1 and implements
a number of generic services which can be customised to serve a large variety of applica-
tion scenarios.

1UNICORE – CIS, last visited: January 25, 2013. http://www.unicore.eu/unicore/architecture/service-
layer.php#anchor_cis
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The definition of what an activity actually is, and therefore which state changes are to
be recorded, essentially depends on the operator of the infrastructure. In case of a grid job
that is executed via a Basic Execution System [49], the job has one of the following states:
pending, running, terminated, failed, or finished. Consequently, any state transition will
most likely trigger an update of the activity instance. In other cases, having no well-defined
state machine, it may be more complicate to answer questions like ’Is a delegation request
to another scheduler a change of the activity instance?’

The generic activity management framework introduced below is the foundation for the
realisation of arbitrary activity management scenarios. Among those implemented where
for example ranking of SLAs, adjustment of SLAs, and the business example described in
Section 9.1.2.

9.1.1. Generic Architecture

The UDAP activity management framework consists of a set of services which realise three
major functionalities: management of activities instances, registration of activities, and
service discovery. Fig. 9.1 depicts the three fundamental packages of this framework, as
there are UDAP Manager, and Activity Registry, and UDAP Advertiser. The details pertain-
ing to each package are described in the following three subsections.

UDAP Advertiser

Activity Registry UDAP Manager
<<use>>

<<use>>

Activity Management Framework

UDAP
Clients

<<use>>

Figure 9.1.: A high-level view on the UDAP Infrastructure components (representing the
activity management framework as depicted in Fig. 4.1)
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UDAP Manager

The UDAP Manager is the central entity that deals with the management-oriented aspects
of all other UDAP parts, including functions like creation and removal of activity instances.
Besides managing activities, the UDAP Manager handles the interaction with client-side
components, thus representing the interface to the other services of the generic schedul-
ing framework (as depicted in Fig. 4.1). Client services can execute actions like the creation
of an activity or the subscription to activity state changes. In the former case, the UDAP
Manager acts as a factory to create the various activities.

The UDAP Activity (representing a UDAP document as introduced in Section 5.1.3) is
the central component of the UDAP Manager as illustrated in Figure 9.2. It is an abstract
representation of an activity; its specialisations, like for example an SLA Activity or an
IaaS Activity, extend it with domain-specific properties and functions. Authorised clients
can update or read an activity, and thus either adding Entries to the activity document or
retrieve an activity’s Record (cf. Section 5.1.3).

SLA Activity

UDAP Activity

UDAP Manager

IaaS Activity

<<create>>

Activity
Removal

Sub-
scription 

Update

Read 

Activity
Creation

Figure 9.2.: The UDAP Manager provides the factory interface to create UDAP Activities

Activity Registry

The Activity Registry is an intrinsic part of the UDAP framework. It is the underlying com-
ponent providing persistent storage of activity information. In case of the aforementioned
SLA Activity, for example, all data related to one specific service-level agreement is cap-
tured within the Activity Registry. This data can then be used to record all service and
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resource usage related to an SLA or to evaluate the compliance of the service delivery
with the corresponding service terms.

The Activity Registry provides, as depicted in Figure. 9.3, several interfaces in order to
manipulate the activity state. These interfaces implicitly provide methods like database
CRUD (Create, Read, Update and Delete) operations. To realise its functions, the Activity
registry uses two sub-components: the DB Manager and the Lifetime Manager. The DB
Manager offers core data access capabilities and performs low-level storage operations,
whereas the Lifetime Manager manages the life-time of the individual activities in order to
ensure the data integrity of activities.

Activity Registry

Registration

Update

Deletion

Query

DB Manager

Lifetime Manager

<<use>>

<<use>>

Figure 9.3.: The Activity Registry used in the UDAP framework

UDAP Advertiser

The UDAP Advertiser matches service capabilities with service requests. Services (or re-
sources depending on the environment UDAP is operated in) are published using the Pub-
lish interface of the UDAP Advertiser while queries are executed via the Query interface.
In the back-end, the UDAP Advertiser uses the Activity Registry to register services and
search for them.

The Model Transformer is an abstract component which is used by the UDAP Advertiser
to handle services seamlessly. It provides means to dynamically add specialised transform-
ers thus extending the capabilities of the UDAP Advertiser. In case of the UDAP framework,
which uses CIM as the model to capture information (see also Section 6), a CIM instance
document is constructed by a language-specific CIM Transformer whenever a service is
published. This allows domain-specific service description languages to be used with the
UDAP framework without changing the client-side model. The same adheres to the query
interface which transforms domain-specific requests to XQuery FLOWR expressions imple-
menting XQuery Transformers.

This construct a) provides a consistent instrument to internally model services and ac-
tivities in the same way and b) re-uses the Activity Registry for services, too. The UDAP
implementation actually utilises the Common Information Service (see Section 9.2) to im-
plement part of the capabilities described here.
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UDAP Advertiser
<<use>>

Publish

Query 
Model Transformer

CIM 
Transformer

XQuery 
Transformer

Figure 9.4.: The UDAP Advertiser and its sub-components (the CIM Transformer and
XQuery Transformer are place-holders for concrete implementations of trans-
formers between service/resource descriptions and the CIM model and be-
tween service/resource queries and XQuery expressions)

9.1.2. UDAP Application Scenarios

The Activity Model, as introduced in Section 5, has been specified in a way that does not
restrict activities to certain domains or application areas. In general, this should also ap-
ply to any implementation of the model. In practice, we designed the activity framework
described above, which fulfils the requirements of a number of application scenarios (in-
ter alia the one described by Hasselmeyer et al. [64] and the one introduced by Mersch
et al. [96]), but may not meet those of other applications outside the scope of our devel-
opments. Among these scenarios some are commonly applicable to distributed service-
oriented infrastructures. Serving as an example, we first detail a common scenario for
which the UDAP framework has been customised: the integration of activities with an SLA
management framework. Second, we show a particular application scenario which bene-
fits from an activity management framework and which has been implemented as part of
the NextGRID project, the implied volatility calculation.

Integration with SLA Management

UDAP provides a unified interface to manage activities of any kind. The term ‘activity’
is, as pointed out in Chapter 5, abstract in notion. Therefore, a service-level agreement
with all its life-cycle-related actions (see Section 7.1) can also be treated as an activity
and the respective SLA management can exploit the activity management framework as
the central entity for SLA-related information. This UDAP application scenario has been
implemented within the NextGRID project and was applied in a customised form to the
implied volatility scenario introduced below.

Generally, the SLA management service is deployed by providers to monitor the com-
pliance of the service provision with the service terms that have been agreed between
service providers and consumers. In this process, it needs up-to-date information about
all services, processes, and resources which are linked to the respective SLA. This infor-
mation is delivered by the activity management framework.
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loop

:ClientSide
Negotiator

:ProviderSide
Negotiator

:SLAManagement
Service

:UDAPManager

:SLAActivity

createAgreement

createAgreement:Accept

sendEvent

createActivity

create

createActivity:EPR

read

read:ActivityRecord

assessSLACompliance

Figure 9.5.: The sequence diagram depicting UDAP creating an SLA-related activity

The sequence of events is initiated by the negotiation of an SLA. Once the client is
satisfied with the result of the negotiation, the following steps are executed as shown in
Figure 9.5 (the pre-createActivity negotiation messages are not depicted here):

1. The client-side negotiator2 sends the final offer via an createAgreement message
to the provider-side negotiator which sends the respective accept message back (in
case of an reject message, no activity instance is created).

2. Then, the provider-side negotiator sends an event to the SLA management service
indicating that an SLA has been accepted. In case of the UDAP implementation, this
event contains the necessary information showing the type of event and the SLA
itself.

3. Triggered by the event, the SLA management service sends a createAgreement mes-
sage to the UDAP Manager (thus acting, accordant with Figure 5.1, as a UDAP Client).

4. As a result, the SLA Activity is created.

5. Then, the SLA management service (and other services which are not considered
here) retrieves the EPR of the SLA Activity. Once the activity has been created, any
authorised service can read or update it (see also Figure 9.2).

6. As an example, the continuous monitoring of the SLA compliance is shown in a loop
which comprises reading the activity record and assessing the SLA compliance based
on the agreed terms and the content of the activity record.

2For enhanced readability class names are not written in their concatenated form (as done in Figure 9.5
following the UML notation).
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The update and read of the SLA activity is not, as shown here, restricted to the as-
sessment through the SLA management service, but other applications like billing, which
exploits the final activity record containing the resources and services used to fulfil the
SLA, or client-side monitoring, which accesses only particular parts of the activity record
intended for consumption by a customer, are possible, too. Depending on the application
domain, rather any service can act as a UDAP client and, depending on the authorisation
settings, read or update the information on the SLA Activity.

The Implied Volatility Application

The calculation of the implied volatility of stock options is a computationally expensive
process which in general exceeds the resources available at a customer’s site. Finan-
cial service providers therefore offer the required implied volatility services, adapting dy-
namically their own resource consumption to the customer’s demands. The success of
such a business model relies on carefully negotiated and observed service-level agree-
ments. The NextGRID project has designed and implemented an implied volatility frame-
work [96] which is based on the NextGRID SLA framework [64] and the UDAP framework.

Introducing Implied Volatility Within the stock market, stock and stock options can be
purchased. Stock signifies an ownership position within a corporation. Options represent
an option to buy (in the case of a call option) or sell (in the case of a put option) a set
amount of stock from/to a third party at a set price (the strike price) in the future (the ma-
turity date of the option). An option is purchased from the third party and if it is profitable
on the maturity date (for example, the strike price of a call option is less than the current
value of the stock, allowing the holder of the option to buy the stock more cheaply than
would otherwise be possible) it will be exercised; otherwise it will be left to expire.

When the stock market is open, stocks and option prices are constantly being updated.
Stock options are normally priced using the Black Scholes model [14]. This equation con-
tains a volatility parameter which can not be observed in practice. There is a one-to-one
relationship between the theoretical price of a stock option and its volatility. Unfortunately
there is no closed form solution for implying the volatility from the stock option price. If the
volatility is known, trades can be executed to take advantage of volatility spikes. The im-
plied volatility must be calculated using a numerical method; a Newton-Raphson [150] it-
erative process is normally used, which is computationally expensive as the peak rate of
the option market is 120,000 prices per second.

The Financial Service Scenario The implied volatility application features four ac-
tors: the Financial Customer, the Financial Provider, the Compute Provider, and the Data
Provider.

Instead of each Financial Customer having the implied volatility software running on a
local machine or on one supplied by the Financial Provider, the customers have access to a
portal where they can search for financial services (implied volatility being only one such
service). They may also browse what data feeds are available to supply these services.
Once a customer has selected a service, a choice of available Financial Providers (together
with the respective service-level agreement templates) is presented for the customer to
choose the most suitable. This choice then stimulates the Financial Provider to discover
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compute and data services and establish the corresponding business with Compute and
Data Providers. The respective relationships between the different actors and the services
under negotiation are pictured in Figure 9.6.

Financial 
Customer

Financial
Provider

Compute
Provider

Data
Provider

Financial
Service

Compute
Service

Data
Service

Figure 9.6.: Relationships between the different parties indicating the three SLAs needed
for the financial service scenario

One essential customer requirement in the given scenario is high reliability, which im-
plies the fast and correct response of the system to failure. As an example, one could imag-
ine the partial or complete failure of the service provided by the Compute Provider, which
results in breaching the SLA between the Financial Provider and the Compute Provider. To
avoid significant down time, the Financial Provider will react automatically to the situation,
halt the supply of the data feed, discover a new suitable compute resource, agree a new
SLA with the new Compute Provider, and deploy the software. The data feed may then
be re-started pointing at the new compute resource which will then begin supplying the
Financial Customer with the output data stream. From the point of view of the customer,
the SLA breach will therefore only affect her in terms of a short delay while the Financial
Provider switches Compute Providers.

Integrating UDAP with the Implied Volatility Application The implementation of
the financial application scenario integrates a number of services: application-related,
infrastructure-related, SLA management-related, and activity management-related. They
are in greater detail described by Mersch et al. [96], while here we focus on the interrela-
tion between service delivery, SLA management, and activity management.

The whole scenario is driven by a Financial Customer’s interest in retrieving a continu-
ous data feed containing relevant implied volatility information. To provide this service, a
number of other services are needed (as shown in Figure 9.7). As a first step, which is not
shown here, the customer needs to find suitable providers who are able to deliver the re-
quested service. Afterwards, once the customer has retrieved a list of Financial Providers
and has chosen one, they need to negotiate the terms of service provision with the re-
spective provider. If an SLA between the Financial Customer and the Financial Provider is
established, additional compute and data services are needed to fulfil the requirements
of the customer. Consequently, the provider will search for and negotiate with Compute
and Data Providers about the respective terms and conditions. In case of success, three
SLAs are established according to Figure 9.6 and subsequently, the Financial Provider can
deploy the the implied volatility software at the Compute Provider, the data feed from the
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Figure 9.7.: The implied volatility application (‘IV’ at the leftmost label is the abbreviation
for implied volatility)

Data Provider can be established and the customer retrieves the desired implied volatility
data.

With three SLAs being established consequently three activities are created following
step 1 to 5 of Figure 9.5. The three activities are continuously updated by different infor-
mation sources, like a Ganglia monitoring system for the compute service or some specific
data feed control service. With an activity management framework in place, the SLA man-
agement service can retrieve all data related to a specific SLA and thus can assess whether
the current service provision is still compliant with the terms set in the SLA. In cases where
an SLA is breeched (or is tended to be breeched), the SLA management service can take
appropriate actions based on pre-set policies. One such action, which has been imple-
mented as part of the implied volatility application, is sending an alert to the Financial
Provider in cases where failure of the financial service puts the Financial Providers reputa-
tion at risk. Such an alert may, for example, result in finding another provider or in adding
more compute resources to fulfil the high demands of the implied volatility calculation.

This automated failure management based on the UDAP framework and the NextGRID
SLA management means improvement in comparison to the manual intervention which
has been executed before. Through the application described here, the required reliability
of the financial service has therefore been improved.

9.2. The Common Information Service

The demand for an information service based on the Common Information Model and
its UNICORE-specific customisation (see Chapter 6 for details) led to the implementation
of the Common Information Service (CIS) [94]. Initially developed within the NextGRID
project and customised to work with UDAP and the implied volatility application, CIS is
now part of the UNICORE distribution3 and is deployed in DCIs world-wide.

3CIS: Current Status and Roadmap, last visited: January 25, 2013. http://unicore.eu/community/development/-
CIS/cis.php.
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9.2.1. Requirements

A analysis of the requirements to be fulfilled by CIS, based on potential usage scenar-
ios, the service discovery methodology [63] of the NextGRID project, and the resource
information handling of the UNICORE middleware [130], led to the following functional
requirements the information service should comply with:

• The service (or resource) information registration has to be compliant with the infor-
mation model.

• An information update capability has to be provided.

• Interfaces to perform user-specific and template-based search are required.

• Operations have to be exposed through a standardised interface, most likely WSDL.

• The communication with remote clients has to be realised via XML-based protocols.

Furthermore, a number of design decisions have been made, mainly to be able to adapt
CIS to various domains (using various information models) and to ease integration into
service-based infrastructures. This included the possibility to extend or exchange the un-
derlying information model to adopt to the different requirements of DCI operators.

The entirety of requirements was not fulfilled by other informations services, like the
Monitoring and Discovery Service (MDS4) [121] the Relational Grid Monitoring Architecture
(R-GMA) [25], which have been evaluated prior to the development of CIS [94].

9.2.2. Architecture

A holistic view on the architecture of the Common Information Service is depicted in Fig-
ure 9.8. It adopts the standardised service-oriented architecture [89] and is based on three
intrinsic steps:

Service
Discovery

Service
Publisher

Service
Consumer

1. publish/register/manage
2. q

uer
y/lo

ok u
p

3. bind/use

Figure 9.8.: A generic view on the service-oriented architecture of an information service

1. Publish service information: The Service Publisher publishes detailed information
about the services and resources it provides (like CPU, memory, or software). This
information can be managed through operations like update or remove.
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2. Look-up of desired services: The Service Consumer sends a query to the Service
Discovery requesting published information provided by different publishers. In re-
turn, a list of EPRs and other meta-data of Service Publishers is provided.

3. Bind/Use: Once the Service Consumer has received the EPR of the desired services,
a session is established to use the services offered by the Service Publisher.

The detailed architecture and the design of each component are described in the follow-
ing subsections.

The Service Publisher and the Information Provider

The Service Publisher is responsible for publishing the description and capabilities of a
service to a registry. This is achieved via a web service request that registers the resource
information at the Service Publisher in the form of an XML document. Up-to-date resource
or service information is usually gathered via a wrapper service which acts as a gateway to
different types of existing information providers, for example Hawkweye4 or Ganglia [90].

The Service Publisher sub-component of CIS comprises, as depicted in Figure 9.9, the
following set of entities to accomplish the processes of service registration and information
publishing:

• Information Provider.

• Information Detector.

• Information Translator.

• Information Service Delegate.
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<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/..."
 xmlns:is="http://fzj.unicore.de" 
 targetNamespace="http://fzj.unicore.de">

  ...

<element name="Resource" 
 type="is:ResourceType">
  <complexType name="ResourceType">
    <sequence>
      <element ref="is:CIM_ManagedElement"
       minOccurs="0"
       maxOccurs="unbounded" />
    </sequence>
  </complexType>
</element>
</schema>

Information Detector

Information Translator

Information Service Delegate

provider-specific information

XML

XSLT

Service Publisher

provider-specific

information

CIM schema

Figure 9.9.: The structure of the Service Publisher (and its relation to the Information
Provider)

4Hawkeye – A Monitoring and Management Tool for Distributed Systems , last visited: January 25, 2013.
http://www.cs.wisc.edu/condor/hawkeye/.
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The Information Provider is an entity external to CIS, like the aforementioned systems
Hawkeye or Ganglia, which serves as a source of information. It is responsible for supplying
up-to-date data about services and resource to the core of the information service. This
data can be used by the consumers of CIS (see below) and it is essential for a variety of
services to, for example, make scheduling decisions or assess the compliance of service-
level agreements.

The Information Detector is based upon the Adapter design pattern [54]; it is used to
integrate two systems with incompatible interfaces. It specifically detects the up-to-date
dynamic information from the Information Providers introduced before and passes this in-
formation on to the Information Translator (see next paragraph). The Information Detector
plays an important role to guarantee consistency and integrity of information by observing
Information Providers constantly through a notification mechanism. The Information De-
tector and Translator work in a coordinated way; in case updated information is detected,
it is directly translated and stored in the information service.

The responsibility of the Information Translator is to map the resource or service infor-
mation provided by Information Providers via the Information Detector to the underlying
information model which, in case of CIS, is an customised version of the Common Infor-
mation Model as described in Chapter 6. Such a task is necessary since, in general, the
models used by the Information Providers differ from CIM. This component requires a so-
phisticated logic, since correct matching between two systems in the context of an infor-
mation service is a complex task. Therefore, the translator converts the data delivered by
the Information Providers to the CIM schema. This requires the mapping of semantics as
well as checking whether the resulting XML documents are valid and well-formed. From
the implementation perspective, the conversion mechanism makes use of XSLT transfor-
mations, which are performed to create CIM schema-compliant information in the form of
an XML document.

The last entity comprising the Service Publisher, the Information Service Delegate, is
based on the J2EE design pattern called Business Delegate [4]. Since the Common In-
formation Service is distributed over different tiers, it hides the complexity of locating an
information service, i.e. the function call to register or to update service and resource
descriptions. In other words, it provides access to the business logic layer, the core of CIS.
An Information Delegate is being used at the Service Consumer side, too, so as to hide
complexity of looking up the querying service.

The Service Consumer

The information published through Service Providers is accessed using an entity called
Service Consumer. Such a consumer provides transparent access to the data kept in the
information service via its query interface thus hiding the user interaction and information
service location. To achieve this, a Service Consumer looks up and queries the information
service for desired services on behalf of its users. As soon as a set of service EPRs is
retrieved, the Service Consumer tries to communicate with the individual services using
their respective endpoints.

In Figure 9.10 a detailed view of the Service Consumer is given focussing on higher-level
entities. It is based on the MVC (Model View Controller) architecture and hence provides
extensibility of the individual model, view, and controller components.

The Service Consumer comprises the following core components:
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Figure 9.10.: The Service Consumer and its connections to external components

• The Consumer Information Delegate plays the same role as the Information Service
Delegate plays in the Service Publisher context. Precisely, it encapsulates the in-
formation of the connection to Service Discovery, de-couples the Service Consumer
from the information service and delegates the function calls to the business logic
layer.

• The Consumer Information Model knows about the information that is needed by the
customers (the User in Figure 9.10). Transformations of transfer objects are being
carried out here, too, to suppress the load of network calls.

• The Consumer Information Controller is responsible for accepting query requests
from different kinds of users as there can be web browsers, schedulers, or brokers.
These requests are processed and then delegated to the information service. On
the event of response, the controller decides which response to send to which client;
it, for example, sends a query result to a particular JSP page if the client is a web
browser.

• The Consumer Information Subject is a ‘view’ in terms of the MVC pattern. Regarding
the Service Consumer, a view can be considered the representation of information
according to a particular client. A dynamic user interface, for example, is generated
for a web client using JSPs or customised DTOs (Data Transfer Object) are constructed
for information brokers and schedulers.

• Potential Users can, as mentioned before, be web clients, information brokers, and
schedulers. A web client provides means for the end users to visually publish, query,
and manage lifetime for resource descriptions (through HTML based interface), while
schedulers and brokers use these services transparently through API function calls.

Service Discovery

Service Discovery is the third base component of CIS and it provides two main functions:
(i) service registration and (ii) service look-up. It consists of three layers as presented in
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Figure 9.11.
The core layer is the Business Logic Layer which encapsulates the mechanisms for

the aforementioned registration and look-up/querying functions and which includes, apart
from the Façade, the main components Service registration and Service look-up as illus-
trated in Figure 9.11. Service registration is responsible for providing registration-related
functions as there are inter alia register resource, update resource description, and de-
struction of registration. Service look-up, on the other hand, is implemented to provide
the look-up services to users. They are customised utility functions that include queries
featuring the most frequent criteria, e.g. a query by memory size or a query for specific
application software installed. Furthermore, the service look-up is complemented by query
interfaces that support plain XPath or XQuery expressions.
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Figure 9.11.: The different layers of Service Discovery

The second layer, called Data Integration Layer, performs registration and querying
transactions. Moreover, it functions as a bridge to the information repository (in case
of the CIS implementation, a Berkeley XML database is used) and provides operations to
manipulate the data sets. The Data Integration Layer encapsulates all the functionality
related to the handling of the core database functions like connection pooling, creation,
and destruction. The purpose of separating this layer from the business logic layer is to
de-couple both layers thus supporting several databases from different vendors.

The Presentation Layer encapsulates the functionality required to expose service and
resource information using web service interfaces. The Presentation Layer usually com-
municates with the Business Logic Layer via a Façade. This is schematically shown in
Figure 9.11. A WSDL document describes the interface of this layer and hence represents
the access mechanism for Service Consumers.

9.2.3. Replication

Distributed computing infrastructures, like e-Science environments or grids, often handle
massive amounts of client requests and have to deliver responses without substantial
delays or errors. Consequently, they need redundant software and hardware resources to
provide the required quality-of-service. Since replication is one basic principle to provide
fault-tolerant, highly available, and scalable applications, we designed an auxiliary layer to
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complement the core Common Information Service. This layer handles redundancy issues
in the context of fault tolerance and availability.

In this section, we therefore first briefly sketch the requirements that a replication archi-
tecture for an information service has to meet and second introduce a specific replication
framework for CIS5.

Replicating an information service has one obvious requirement, the consistency of in-
formation. This has to be guaranteed independent of the software or hardware entity
actually providing the required data. Regarding of the different entities within a replica-
tion framework, another requirement emerges: the clients of the information service do
not have to deal with the complexity and topology of the framework; replication has to
be transparent for them. In case an error is detected, either software or hardware-related,
the replication framework should recover automatically by removing the respective replica
from the compound. As a final requirement, we see transactional control as an essential
task to be met by an information service for DCIs. Due to the large amount of transac-
tions which influence the overall performance of the system, we realise an “exactly-one”
transaction policy, preventing the system from dealing with redundant transactions.

An evaluation of existing replication techniques [95] revealed that it is essential to re-
alise a combination of web services layer and database layer replication to fulfil the re-
quirements outlined above. As the most promising and tangible approach to multi-tier
replication we see, according to the evaluation, the ADAPT framework developed by a Eu-
ropean IST project of the same name6. Following the ADAPT approach, CIS exposes its
web services tier through a load balancer which chooses the best-suited server to process
a request. The web services tier itself is deployed as a set of replicas interacting with the
database tier, which again provides its own replicas.

Through the independent replication at both tiers CIS is able to handle different fail-over
scenarios. The web service tier manages its own replication algorithm and relies on a cen-
tralised database. Therefore, if any of the currently serving web service replicas crashes,
the next server will take over and the database tier will not be effected being considered
as centralised. In the same way the database replica tier is connected to a reliable and
centralised web services container. This implies that the failure of any database replica
will be transparent to the web services tier.

Technically, the replication on the web services tier is based on WS-Replication [117],
a specification for web services with high availability demands which ensures reliability
and scalability. The database tier, however, is replicated through the introduction of an
additional middleware layer, the XML Replication Middleware (XRM) [86].

9.3. The IANOS Scheduling Framework

Exploiting the benefits of SLAs in distributed computing environments is on the research
agenda for a decade now [29] and in the focus of our work almost since [114]. Our first
work integrating SLAs into a scheduling framework was in the course of the German VIOLA
project [26], an effort which led to the creation of the meta-scheduling service (MSS) [42].

5An in-depth discussion of replication concepts and models is beyond the scope of this work, we therefore
refer to [71] as one source of further information.

6ADAPT Middleware Technologies for Adaptive and Composable Distributed Components, last visited: January
25, 2013. http://adapt.ls.fi.upm.es/adapt.
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The latest development continuing these efforts, an integration of the MSS and the Intelli-
gent Scheduling System (ISS) [60], is IANOS, the so-called Intelligent Application Oriented
Scheduling Framework [78,113,147]. Although it does not fully adhere to the scheduling
architecture, process, and model proposed in our work, it is an intermediate step towards
their realisation. With respect to the models we propose, it uses the SLA model and the
scheduling model (although not to its full extend), whereas the activity and the information
model are not exploited.

The overall idea behind IANOS is the allocation of computing and network resources in a
coordinated fashion governed by service level agreements. Its implementation is based on
state-of-the-art web service technologies and DCI-related standards (like WS-Agreement,
JSDL, or GLUE), combined to provide scheduling services within a DCI.

IANOS is, by design, agnostic to specific middleware except for an adaption layer that
has to be adopted depending on the target infrastructure. IANOS, furthermore, delivers a
monitoring framework to collect resource and application data on past activities that can
be used to detect overloaded resources and to pin-point inefficient applications that could
be further optimized. The following sections introduce the IANOS architecture and the
scheduling process, and, in addition, compare them to the concept proposed in Chapter 4.

9.3.1. Architecture

The IANOS architecture is presented in Figure 9.12, depicting two different DCI sites, which
offer infrastructure resources and services to clients. All activity processing in IANOS is
governed by SLAs, i.e. the MSS negotiates contracts with clients as well as DCI sites
to secure the QoS of activity execution. To achieve this, a negotiator as introduced in
Section 4.1 is integrated into the MSS.

The various services and components comprising the MSS framework are introduced in
the following paragraphs.

The Meta-Scheduling Service

The meta-scheduling service is the core entity of the IANOS framework and is one partic-
ular instantiation of a scheduling service as depicted in Fig. 4.1. It represents providers in
negotiations with clients exploiting WS-Agreement as the foundation for an SLA framework
(cf. Section 7.4). The MSS validates client requests, queries the underlying DCI sites for
available services, and offers suitable SLA templates to clients. Furthermore, it negotiates
with clients about the actual service level, queries the broker for candidate resources and
services, negotiates with potential sites about service provision, and schedules the actual
activity execution.

Middleware Adapter

The middleware adapter mediates access to a DCI sites through a generic set of modules.
It provides information about resources and handles the submission of scheduled activ-
ities. This includes the provision of site-specific SLA templates (to be offered to clients
via the meta-scheduling service) and the reservation of resources and services according
to the active schedule. The middleware adapter is the only module of IANOS that is con-
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Figure 9.12.: IANOS Architecture (‘MSS’ is the meta-scheduling service; ‘RMS’ resolves to
resource management service)

nected to a DCI site. Therefore, interfaces are defined for each adapter module to easily
integrate with site-specific DCI middleware using a plug-in mechanism.

Brokering Service

The brokering service selects the candidate resources and services suitable for a particular
query from the meta-scheduling service. To compute the selection, it uses two objective
functions: the execution time model and the cost model [78]. Exploiting these models
and data about the infrastructure, QoS requirements, and activities, the brokering service
computes an ordered list of suitable configurations (including start-time and deadlines),
and sends it to the MSS. The brokering service retrieves all relevant information about the
DCI sites from the information service.

Information Service

The information service of the IANOS framework has the purpose to collect historic data
about previous application runs (via an interface to the data warehouse) and data about
the current state of resources and services (exploiting the interface to the monitoring
service). This data is, on request, presented to the brokering service formatted according
to the GLUE standard [5].
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Data Warehouse

The data warehouse is a repository that stores all information related to services, re-
sources, and historic application runs. In particular, the data warehouse stores the fol-
lowing information:

• Resource data: Application-independent infrastructure capabilities and IANOS-related
parameters

• Application data: Application characteristics and requirements regarding software,
libraries, memory, and performance

• Execution data: Execution-dependent infrastructure usage records, application-intrinsic
parameters, and proprietary information

Monitoring Service & Module

The monitoring service receives activity information from the MSS and passes them to the
monitoring module [59] to monitor the execution of applications. The monitoring module
measures and collects execution information relevant to IANOS (like the MFLOPS/s rate,
memory needs, cache misses, or communication and network information) during appli-
cation execution. It, in addition, performs a mapping between hardware monitoring data
using Ganglia7 and application data using the site-specific RMS. At the end of the execu-
tion, it prepares and sends the respective data to information service for further process-
ing.

9.3.2. IANOS Scheduling Process

The IANOS scheduling framework adheres to the scheduling process as outlined in Sec-
tion 4.2. All eleven steps shown in Fig. 4.3 are realised, although not linked to all concepts
we propose (cf. the evaluation of the realised models in Section 9.4). The instantiation of
the process as implemented in IANOS is depicted in Fig. 9.13 featuring the following steps:

1. The user submits the activity request, which is called a job following IANOS ter-
minology, in the form of a WS-Agreement SLA offer thus initiating a negotiation.
Here, IANOS implements the Accept/Reject model (cf. Section 7.5.1). Prior to this
step, the client can already select between the SLA templates offered by the IANOS
provider(s).

2. The meta-scheduling service pre-selects suitable candidate resources based on pa-
rameters like the client’s access rights or the availability of requested applications.

3a. Based on the pre-selection, the MSS queries candidate resources (represented by the
respective DCI sites in Fig. 9.13) to obtain up-to-date information about the available
resources.

3b. This information is the passed to the brokering service as part of a requestCandidates
request. In addition, quality-of-service requirements derived from the initial SLA offer
are sent.

7Ganglia Monitoring System, last visited: January 25, 2013. http://ganglia.sourceforge.net/.
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9. Realisation

3c. The previous step triggers a request from the brokering service to the information
service that results in the delivery of data about eligible resources. This data includes
inter alia historic information about past job executions.

4a. The brokering service then selects, taking all information about the job request and
the resource capabilities into account, a list of candidate resources. To achieve this,
the brokering service takes the IANOS cost function model [59] into account and
provides the MSS with an ordered list of candidates.

4b. The meta-scheduling service takes the first candidate and schedules it accordingly.

5. Based on the schedule, the MSS negotiates with the respective distributed computing
infrastructure sites to agree upon the quality-of-service requested by the client. For
this step, again, WS-Agreement and the Accept/Reject negotiation model are used.

In case the negotiations with the DCI sites are successful, all prerequisites are fulfilled
for the IANOS provider to accept the initial SLA offer and finalise the agreement with the
client (the respective and all following steps are not depicted in Fig. 9.13). Then, according
to the scheduling process we propagate (cf. Fig. 4.3), the implementation phase starts and
the infrastructure can be provisioned, the job can be executed, monitored, and assessed
governed by the SLA. We do not consider these steps in more detail here, since they do
not show any particularities in comparison to the general process.

9.4. Discussion of the Realisation of the Models

All four core models have been realised: the activity model (cf. Chapter 5) through the
activity management framework (cf. Section 9.1), the information model (cf. Chapter 6)
through the Common Information Service (cf. Section 9.2), and both the service-level
agreement model and the scheduling model (cf. Chapter 7 and Chapter 8) through the
IANOS scheduling framework (cf. Section 9.3). All implementations have been tested
within projects and the results have been published in conference proceedings and jour-
nals. The development of the models and their realisations, however, progressed and we
therefore briefly assess their status based on the following criteria:

• Compliance with the model

• Sustainability

• Potential for integration into a DCI

The results of the assessment are summarised in Table 9.1.

In this chapter we introduced the realisations of our four core models. Furthermore, we
presented the application of the models to scenarios like implied volatility calculations,

information provision, and SLA-governed scheduling. A complete realisation of the
generic scheduling architecture applying our scheduling process has not been realised.

The rationale for this is discussed in Chapter 11.
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9.4. Discussion of the Realisation of the Models

Table 9.1.: Assessment of the models and their realisations

Activity model Information
model

SLA model Scheduling model

Realisation Activity man-
agement frame-
work (NextGRID
project)

Common In-
formation Ser-
vice (NextGRID
project)

IANOS schedul-
ing framework
(IANOS consor-
tium)

IANOS schedul-
ing framework
(IANOS consor-
tium)

Compliance
with model

Full Full Full Partly (no delega-
tion)

Sustainability
of the model

The Activity In-
stance Container
at the Open Grid
Forum

CIM is further de-
veloped through
DMTF

WS-Agreement
(Negotiation) is
an OGF recom-
mendation

Not assessable
(full model has
only been simu-
lated)

Sustainability
of the realisa-
tion

The NextGRID
implementation
is deprecated,
but the German
project DGSI
(http://dgsi.d-
grid.de/) has
implemented the
activity instance
description

The successor
of the NextGRID
realisation, also
called Common
Information Ser-
vice, is part of
the UNICORE
framework and
will be further
maintained by the
UNICORE consor-
tium; it is based
on GLUE

The IANOS
framework is
maintained by
Fraunhofer in-
stitute SCAI
(www.ianos.org)
and the inherent
WS-Agreement
implementa-
tion WSAG4J
(http://packcs-
e0.scai.fraunhofer.-
de/wsag4j/) is
used in a multi-
tude of projects

The IANOS frame-
work is main-
tained by Fraun-
hofer institute
SCAI

Potential for in-
tegration

The existing re-
alisation is not
maintained any
more and should
therefore not be
used. The DGSI
implementation
of the activity
instance descrip-
tion could be an
option

If using UNICORE
for setting up an
DCI, CIS is the
right choice; for
other middle-
ware a thorough
assessment is
mandatory

WSAG4J is con-
figurable and ex-
tensible to serve
as the core SLA
framework for any
DCI

It is recommend
to evaluate con-
cepts and design
of the current im-
plementation, but
the integration of
the current imple-
mentation is not
recommended as
it is not integrat-
ing with all the
other models
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10. Simulation and Evaluation

To evaluate our SLA-based scheduling model, we simulate a multi-site scheduling
environment according to one of the application scenarios introduced in Section 3.1. The

evaluation is a two-stage process featuring artificial workload traces as well as realistic
ones. Through this, we show the feasibility of our model and provide an initial idea of how

the different scheduling strategies interact.

Our scheduling architecture, process, and model, including the necessary foundations,
i.e. the core models, have been specified and partly implemented. An extensive evalu-
ation of all these assets would imply the implementation of a more or less complete DCI
middleware, an undertaking way beyond our work1. We therefore decided to take the
activity delegation application scenario from Section 3.1.3 and to apply the scheduling
model from Chapter 8 to it. Through this, we show the feasibility of our scheduling model
mapped to a scenario of growing importance in cloud-like environments: scaling-out to
external providers or, to express it in our terms, the delegation of activities.

...

S0

S1

Snactivity queue delegation

Figure 10.1.: The simulated application scenario: scheduling service S1 delegates activi-
ties to services S1, ..., Sn

1Please refer to Chapter 11 to retrieve more information regarding this issue.
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10. Simulation and Evaluation

Fig. 10.1 shows the inherent scheduling question of the delegation scenario, which is a
distributed off-line scheduling problem. Each site Sn has an active schedule, depicted with
the time on the horizontal axis and the allocated number of resources, which are CPUs in
our simulation, on the vertical axis. The intersection of both axes represents the current
point in time t0. Underutilised sites, with utilisation of u < 1, have free slots (CPUsfree(t0))
and are potential targets for delegation.

The local scheduling strategy tries to associate one activity to one specific machine that
is under the control of the respective site. In addition to the local scheduling, there are
consequently potentially N− 1 available sites to delegate activities to, each with a limited
set of resources and potentially different parameters like processing cost or CPU speed.
In Fig. 10.1, for instance, site S0 utilises all its resources and has seven activities in its
queue. Six of these activities have already been chosen to be delegated to other sites
(depicted as grey boxes). Sites S1 and Sn, however, have spare resources and at the
same time activities in their queue. This implies that the queued activities have resource
requirements that exceed the locally available resources.

The purpose of this simulation is, in short, to evaluate our scheduling model through the
application of various scheduling strategies to answer the question which activities are
scheduled locally and which are delegated to remote sites.

10.1. Simulation Environment

To solve the scheduling problem, we apply our scheduling model introduced in Section 8.
To achieve this, we extended an existing scheduling simulator, called teikoku [57], to ex-
ecute SLA-based scheduling strategies using the WSAG4J framework2, and define the fol-
lowing pre-requisites:

• Activities are either scheduled locally, queued locally, or delegated.

• Delegation is governed by service-level agreements.

• Only one-step delegations are considered. In case a negotiation fails, no other site is
contacted during the present scheduling cycle.

• A site can delegate multiple activities at once.

• SLAs and their templates are expressed using WS-Agreement (see Section 7.4).

• The negotiation protocol is the WS-Agreement protocol implementing an accept/re-
ject negotiation model (see Section 7.5.2).

• There is exactly one scheduling service per site.

• The simulation environment does not support advance reservation.

• Workload traces to be fed into the simulation system follow the Standard Workload
Format (SWF)3.

2Welcome to WSAG4J, last visited: January 25, 2013. http://packcs- e0.scai.fraunhofer.de/wsag4j/.
3The Standard Workload Format, last visited: January 25, 2013. http://www.cs.huji.ac.il/labs/parallel/work-

load/swf.html.

132



10.1. Simulation Environment

Within the simulation environment, we set up a number of sites, as described in Sec-
tion 10.5 and Section 10.6, respectively. Activity-specific information is either generated
or taken from SWF traces and integrated into service-level agreement templates, both of
which are introduced below.

Pre-selection Registry

Schedule 
generation

Scheduling
Service

Negotiation Negotiator

Activity 
template(s)

SLA templates

negotiate

SLA

Delegation

Schedule
selection

Local
Execution

Site n - scheduling service Site k

get
templates

SLA
templates

get templates

Figure 10.2.: The simulation environment exemplified depicting two sites

The simulation set-up is depicted in Fig. 10.2. It shows two sites, Site n receives activity
templates and executes actions according to the scheduling model, whereas Site k is a
potential destination for delegation. In a first step, Site n executes a delegation strategy to
determine which activities are candidates for delegation and which are scheduled locally.
The strategy is executed upon all queued and newly submitted activities. In case of the
simulation, locally scheduled activities are executed immediately, a procedure equivalent
to the execution a first-come-first-serve scheduling algorithm, until no local resources are
available any more. This is done to ‘de-couple’ local and remote jobs, hence making the
criteria for delegation candidates clear and the evaluation results reliable. In a production
DCI, the scheduling of local jobs will most likely also follow our scheduling model and the
scheduling service will apply the different strategies to compute the best-suited schedule.

In a next step, Site n requests templates from the registry of Site k. In a DCI imple-
menting our generic architecture according to Fig. 4.1, this information would be provided
by the information service, in case of the simulation, the SLA templates are generated
by the scheduling service (cf. Section 10.1.2 later in this chapter). The SLA templates
are then fed into the pre-selection process and the respective scheduling actions are ex-
ecuted as outlined in Section 8.1.2. The final step is the application of the negotiation
strategy which is, as the simulation uses WS-Agreement (not WS-Agreement Negotiation),
a simple accept/reject model applied using the WS-Agreement basic negotiation protocol.
If the offered agreement is accepted, the respective activity is delegated to Site k. Not all
initiated delegation requests lead to an offer or even to an agreement. A template may
contain constraints which are not acceptable for the initiator. An offer, however, may be
not accepted due to status changes of other activities, which e.g. have been started in the
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10. Simulation and Evaluation

mean time and consume resources necessary to accept a delegation request.

10.1.1. Activities

The activities used in the simulations are described using the following parameters4

• ActivityID — a unique identifier for each activity in the trace.

• Requested runtime — runtime requested by the client (wall-clock execution time of
the activity).

• Number of requested CPUs — number of CPUs requested by the client.

• Submission time — submission time relative to the beginning of the trace.

• Average CPU time used — average time consumed (summed over all allocated CPUs).

• Number of allocated CPUs — actually allocated CPUs.

For our simulations, these parameters are either derived from workload traces following
the SWF (see also Section 10.6) or are artificially generated (as described in Section 10.5).

10.1.2. Service Level Agreements

Fig. 10.3 depicts the various WS-Agreement-related documents that are created during a
simulation cycle. The first document is a pre-defined draft template for each activity to
be scheduled. This template is processed and filled with simulation-specific parameters.
The resource-related activity data from the workload traces (see previous section) is then
added to the template as Service Description Terms (cf. Section 7.4). After that, the mod-
ified template is transformed into an agreement offer document that, upon acceptance,
becomes an agreement.

In the first step, data about the specifics of the simulation environment is added to the
draft template, including information about the agreement initiator and responder roles,
template ID, state information, the price of the service offer, maximum number of CPUs
offered, maximum runtime offered, and source as well as destination site of a potential
delegation.

Before the actual WS-Agreement offer is created, the template is modified by adding de-
scriptions of the activities that should be delegated an thus negotiated. The descriptions
are added to the template as Service Description Terms using Job Submission Description
Language (JSDL) [7]. Each activity is described separately by using its Universally Unique
Identifier (UUID) in an element called JobIdentification, its number of requested CPUs in an
element called TotalCPUs, and its requested runtime in an element called TotalCPUTime.
After adding all activities to the template, another Service Description Term (SDT) is en-
tered which contains sums of the totally requested runtime and number of CPUs. This
is required to compare the requirements with the maximum runtime and the maximum
number of CPUs offer. After these modifications have been accomplished, the template is
converted into an agreement offer compliant with the WS-Agreement specification. This

4These parameters are a mixture of client-side resource requirements and resource usage information logged
in the traces. All this data is coded into a UDAP description (cf. Section 5.1.3).

134



10.2. Optimisation Criteria

Draft 
Template

Simulation
Environment

+ Agreement
Template

Modified
Agreement
Template

+Activity
Information

Agreement
OfferAgreement

data

data

conversioncreation

Figure 10.3.: The different states an SLA passes during a simulated scheduling cycle

offer is then the staring point for negotiations and the (potential) creation of an agreement
about activity delegation.

10.2. Optimisation Criteria

The selection of one or more optimisation criteria for the simulation (and also for pro-
duction DCIs) is a difficult and far-reaching decision as the criteria reflect the, in general
conflicting, business objectives of the different stakeholders involved in service provision-
ing and consumption. We therefore decided to apply three different criteria and simulate
the effects. Furthermore, we observe theses effects from a local and a global perspective,
with one simulated site and, respectively, the whole simulation environment as reference
systems.

10.2.1. Local Optimisation Criteria

We use the following local optimisation criteria to for a DCI site providing a scheduling
service: Average Weighted Response Time (AWRT), utilisation, and cost.

The AWRT is defined according to Ernemann et al. [45]:

AWRT =

∑
j∈activities

(ResourceConsumptionj·(endTimej−startTimej)

TotalResourceConsumption with

TotalResourceConsumption =
∑

j∈activities
ResourceConsumptionj and

ResourceConsumptionj = (ReqResourcesj · (endTimej − startTimej)).
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10. Simulation and Evaluation

The metric utilisation states how many processors of all available processors are in
use:

u =
CPUsused(t)
CPUstotal

.

It helps DCI providers to assess how well their computing resource are utilised. To prevent
idle systems, negotiation strategies (like those introduced in Section 7.5) help to optimise
load by delegating activities at peak times and receiving remote activities during times
with low utilisation.

The cost to execute all locally submitted activities is another metric that is applied in
our simulations. As an optimisation criterion it is interesting for providers to exploit it to
minimize the cost for computing incoming activities.

10.2.2. Global Optimisation Criteria

The system-wide optimisation criteria include the local ones described before. From a
global perspective, it is also profitable to decrease AWRT and price, and to increase the
utilisation at the same time. The global metrics will be provided as average values span-
ning all sites at any given moment. On a global scale, the overall simulation time can also
be used as a metric. It is the simulated time, no the wall-clock time, that it takes to execute
all available activities. The wall clock time is expected to increase for simulations which
execute a large number of negotiations, as these consume a considerably long time. In
such cases, the simulation’s wall-clock time rises whereas at the same time e.g. the AWRT
ideally shrinks with each negotiation.

10.3. Strategies and Policies

The scheduling model introduces a variety of strategies that can be used in combination.
One purpose of the simulation is to evaluate a number of them and the effect of different
optimisation criteria. This section introduces the specific strategies we have implemented
including the provider-side policies to reflect business objectives.

10.3.1. Strategies related to the Scheduling Model

The implemented and simulated strategies are introduced in detail in Appendix C. They
are ordered according to the role they take in the scheduling model:

• Delegation Strategies:

– CPU Threshold Delegation Strategy (cpu_thresh_del)

– Runtime Threshold Delegation Strategy (runtime_thresh_del)

– Activity Threshold Delegation Strategy (activity_thresh_del)

– Global Average Weighted Response Time Delegation Strategy
(global_awrt_del)

– No Delegation Strategy (no_del)

– Random Delegation Strategy (random_del)

– Wave All Activities Through Delegation Strategy (wave-all_del)
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10.4. Evaluation Metrics

– Wave All New Activities Through Delegation Strategy (wave-all-new_del)

• Pre-selection Strategies

– Random Pre-selection Strategy (random_pre-sel)

– Wave Through Pre-selection Strategy (wave_pre-sel)

• Scheduling Strategies

– Random Scheduling Strategy (random_sched)

– Price Greedy Scheduling Strategy (price-greedy_sched)

– Lowest Cost First Lowest CPU First Scheduling Strategy
(low-cost_low-cpu_first_sched)

– Lowest Cost First Shortest Runtime First Scheduling Strategy
(low-cost_low-rt_first_sched)

– Lowest Cost First Minimal CPU Tardiness Scheduling Strategy
(low-cost_first_min_cpu-tard_sched)

• Schedule Selection Strategies

– Random Schedule Selection Strategy (random_sched-sel)

– Wave Through Schedule Selection Strategy (wave_sched-sel)

• Negotiation Strategies

– WS-Agreement Negotiation Strategy (wsag_basic_neg)

10.3.2. Provider-related Policies

We introduce a set of policies that providers can use to implement their business objec-
tives. These following policies have been considered (see Appendix D for further details):

• CPU Time Policies

– Global AWRT CPU Time Policy (global-awrt_cpu-time_policy)

– Random CPU Time Policy (random_cpu-time_policy)

– Static CPU Time Policy (static_cpu-time_policy)

– No CPU Time Policy (no_cpu-time_policy)

• Pricing Policies

– (Global) Utilisation-Based Pricing Policy ((global_)util_price_policy)

– Static Pricing Policy (static_price_policy)

10.4. Evaluation Metrics

This section covers the metrics used for evaluation. It first introduces the various metrics
and describes the relations between them. Then, these metrics are discussed from the
perspective of the consumer and the the provider.
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10.4.1. Average Weighted Response Time

The response time for each activity is determined measuring the time between the submis-
sion of an activity and its end time. The result is weighted using the requested resources,
i.e. the requested number of CPUs, and the average per site is computed. This metric is
also used on a global, i.e. simulation-wide, basis calculating the mean value over all sites.

10.4.2. Resource-related Metrics

The LocallyAvailableCPUTime metric reflects the amount of CPU time offered to other sites.
The RequestedCPUTime is the accumulated value of CPU time requested for activities in
the current delegation cycle. LocallyAvailableCPUs is the amount of free CPUs at a specific
site. RequestedCPUs is the accumulated number over all activities’ CPUs in the current
negotiation. ActivitiesToDelegate reflects the number of activities that have been chosen
by the delegation strategy, whereas RemoteSites is the number of remote sites that are
available for delegation. Utilisation captures the current utilisation of a site and is defined
as

u = 1 − freeCPUs
totalCPUs .

QueuedCPU is the accumulated amount of CPU requests currently queued. WaitingActiv-
ities and WaitingTime are the respective number of activities currently queued and the
accumulated amount of requested CPU time of activities currently in queue. The latter
three metrics are useful to asses the load of a queue.

10.4.3. Price-related Metrics

The ActualPrice metric represents the actually paid price for the execution of an activity. It
is the price paid for delegating an activity (i.e. remote execution) or the cost to execute it
locally. The AveragePricePerHour is the mean value calculated taking the prices of all tem-
plates in the current delegation cycle into account. The OwnCost metric represents the
cost which accrue to execute an activity locally. The OwnCostPerHour is the previous met-
ric weighted with time (and the price offered to other sites). The SavedThroughDelegation
metric captures the savings or cost arising from delegation. It is calculated according to
the following formula:

SavedThroughDelegation = OwnCost−ActualPrice

The result is 0 if the activity is executed locally; if delegated SavedThroughDelegation is
either positive or even negative depending on the price for delegation.

10.4.4. Negotiation-related Metrics

SuccessfulNegotiations is the number of successfully established negotiations. The num-
ber of established agreements is likely to be higher since one negotiation often implies the
creation of a number of agreements with various sites. NegotiationDuration is the dura-
tion of the whole negotiation process. It is a value measured in real time, not simulation
time, and provides valuable information about the cost to carry out negotiations. Outcome
notes the outcome of a negotiation, its value is 0 in case the current negotiation fails and
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1 otherwise. The metric StartedNegotiations keeps track of the number of attempted ne-
gotiations. This value is useful in relation to SuccessfulNegotiations since it delivers data
regarding the rate of successful negotiations.

10.4.5. Stakeholders’ Perspective

In our application scenario, we observe two different perspectives on the evaluation met-
rics: consumer and provider (of resources and services). Both have a different view on the
importance of a certain metric, a fact we briefly discuss in this section.

Consumer

The AWRT is in general important for consumers. It is a reference value indicating how
long it might take for a submitted activity before it is actually executed. Especially in
cases where a timely processing of an activity is business-critical this value becomes a key
indicator to choose a resource provider. A consumer might also be interested in the savings
that arise from a delegation. If a provider is less expensive than another or delegation is
cheaper than local execution of an activity, this metric becomes relevant. Last, but not
least, the number of CPUs available at the delegation target is of relevant for a consumer.
It describes a resource capability and is, in our simulation, used exemplary for the large
variety of resource capabilities normally offered to consumers through an SLA.

We therefore use the following metrics to evaluate the simulation of the scheduling
model form the consumer’s perspective: AWRT, SavedThroughDelegation, and LocallyAvail-
ableCPUs. More metrics could have been included in the evaluation, but are either redun-
dant or in general not relevant for consumers.

Provider

A resource provider is, compared to the consumer, more interested to gather information
on idle resources and on the utilisation of their systems. Therefore, utilisation u (as de-
fined in Section 10.4.2) is an important, if not the most important, metric for a resource
provider. Further metrics are WaitingTime, WaitingActivities, and QueuedCPUs, indicating
whether whether a site is overloaded by submissions. Regarding negotiations, a provider
is interested to know how long these negotiations may take and how many succeed. This
is allows to estimate the overhead related to negotiations. Last, but not least, resource
providers are interested to keep their costs under control and therefore how much they
can save through delegation.

We therefore exploit the following metrics to evaluate our simulations from the providers
perspective:

• Utilisation,

• WaitingTime,

• WaitingActivities,

• QueuedCPUs,

• NegotiationDuration,
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• Outcome, and

• SavedThroughDelegation.

10.5. Evaluation of Artificial Traces

In a first pass, a trace generator has been written to create custom workload traces. Using
this tool, traces can be modelled by changing the activity characteristics. Both runtime
and CPU requirements can be configured for activities. The generated traces have a sim-
ple structure and allow the generation of a ‘laboratory environment’ for simulations. The
advantage of using artificial traces is the possibility to quickly assess key features for a
later production set-up. Disadvantages evolve around the fact that theses traces do not
reflect user behaviour, which differs significantly depending on user grouping, application
mixture, and other factors. We, therefore, consider realistic workloads in Section 10.6 and
try to reveal additional data complementary to the method used in this section.

10.5.1. Simulation Set-Up

The six sites in our simulation are configured half as sinks and half as sources. Sinks have
more resources than necessary to execute the assigned workload. Thus, they operate with
a low utilisation and a low AWRT (in case delegation is not applied). Sources, in turn, have
more submissions than they can handle, resulting in general in an AWRT higher than at
sinks. The utilisation of sources can vary depending on the size of the submitted activities.

Six machines with the following characteristics are used to evaluate artificial traces:

• Site 1 – 3 (sinks):

– Maximal number of CPUs: 384.

– Initial price per hour: 100 units.

– Initial runtime: 0.5 · 104 seconds.

• Site 4 – 6 (sources):

– Maximal number of CPUs: 128.

– Initial price per hour: 100 units.

– Initial runtime: 5 · 104 seconds.

Fig. 10.4 shows an assessment for the artificial traces, which are generated according
to the algorithms shown in Appendix E. The requested number of CPUs increases from site
1 to 3 and from site 4 to 6 accordingly. The maximally requested runtime is the same for
all sites, however, the average again shows the distribution of short and long activities.
This distribution becomes also evident looking at the maximal activity size, which is the
product of requested CPUs and requested runtime. The total simulation time is the same
for all traces.
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Figure 10.4.: Characteristics of the artificial traces (The abscissa shows the different sites,
the ordinate the following values: number of requested CPUs (first row), re-
quested runtime in seconds (second row), and the product of the number of
requested CPUs and the requested runtime in seconds as well as the total
simulation time in milliseconds (third row)).

10.5.2. Reference Run

A reference run with the no_del delegation strategy has been executed to provide a ba-
sis for the evaluations of subsequent simulation set-ups. This strategy enforces that no
delegation takes place implying that all simulation sites have to be configured to use the
no_del strategy. As a result, source sites keep being overloaded with activities and sinks
are under-utilised.

The metrics AWRT and utilisation for the reference run are depicted in Fig. 10.5 and
Fig. 10.6, respectively. Each upper diagram shows the current value with the simulation
time on the abscissa. Each lower diagram shows the mean values for the corresponding
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Figure 10.5.: The AWRT for the No Delegation Strategy (no_del) reference run (The upper
diagram shows the AWRT in milliseconds as a function of the simulation time
(in milliseconds). The lower diagram shows the average AWRT per site (in
milliseconds) including the mean value and the median).

sites and, in addition, the mean and median values.
Diagram 10.5 shows the AWRT without any delegation strategy. Sites 1, 2, and 3 show

a negligible average weighted response time in contrast to sites 4, 5, and 6. The diagram,
too, reflects the dependence of the average AWRT on the average activity size with site 6
showing the steepest slop. Furthermore, the evaluation reveals that the first three sites
finish activity processing around 0.7·109 milliseconds. This point in time is shortly after the
last activity submission in the trace. Contrary to the under-utilised sites, sites 4 and 5 need
almost twice as long to process activities and site 6 needs around 2.25 · 109 milliseconds.

Diagram 10.6 depicts the utilisation for same simulation run. Sites 1, 2, and 3 have a
low utilisation, as they provide, at any time, more resources than necessary to process the
simulated load. Sites 4 and 5 are initially almost a 100% utilised, but utilisation decreases
due to fragmentation. Site 6 has a utilisation of circa 66% which may appear low. The
reason for that is the trace design which assigns a number of 256/3 = 85.3̄ CPUs requested
CPUs to each activity. As site 6 provides 128 CPUs, just one activity can be executed at a
time. This leads to the utilization of 85.3̄/128 = 0.6̄.

The average key metrics for the no_del reference run are listed in 10.1 to provide refer-
ence values for subsequent simulations.

10.5.3. Best Set-ups for Artificial Traces

We simulated a large variety of strategy combinations to find the best set-up for delega-
tion. For these set-ups, every source site applies a delegation strategy
s ∈ DelegationStrategies 6= no_del. As CPU Time Policy it is mandatory to use no_cpu-
time_policy to prevent delegation to a source site. Other strategies can be chosen arbi-
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Figure 10.6.: The utilisation for the no-delegation reference run (The upper diagram shows
the utilisation as a function of the simulation time (in milliseconds). The lower
diagram shows the average utilisation per site including mean and median).

Metric Value
AWRT 1.36 · 105

SavedThroughDelegation N/A
NumberLocallyAvailableCPUs 88.3
Utilisation 0.692
WaitingActivities 999
WaitingTime 3.92 · 106

QueuedCPUs 16725
NegotiationDuration N/A
Outcome N/A

Table 10.1.: Average values for the key metrics of the reference run

trarily and, thus, influence to the simulation result.
A sink site applies the no_del strategy to prevent delegation of activities to a source site.

As CPU time policy any s ∈ CPUTimePolicies 6= no_cpu–time_policy can be used. This
ensures that a CPU time value is offered to a source and consequently the delegation to a
sink is possible.

In addition to the aforementioned pre-requisites, i.e. sinks do not delegate activities and
sources do not accept activities for delegation, we restricted the usage of strategies and
policies applied within our scheduling model:

• The pre-selection strategy is always wave_pre-sel. This implies that all SLA templates
are taken into consideration.

• The schedule selection strategy is wave_sched-sel. Consequently, all schedules are
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Strategy / Policy Source Sink
Delegation Strategy activity_thresh_del no_del
Pre-selection Strategy wave_pre-sel wave_pre-sel
Scheduling Strategy low-cost_low-cpu_first_sched low-cost_low-cpu_first_sched
Sched. Select. Strategy wave_sched-sel wave_sched-sel
Negotiation Strategy wsag_basic_policy wsag_basic_policy
CPU Time Policy no_cpu-time_policy static_cpu-time_policy
Pricing Policy global_util_price_policy global_util_price_policy

Table 10.2.: The best set-up for AWRT optimisation

Metric Value
AWRT 0.523 · 105

SavedThroughDelegation 1.23 · 108

NumberLocallyAvailableCPUs 46.72
Utilisation 0.734
WaitingActivities 243
WaitingTime 4.09 · 106

QueuedCPUs 8170
NegotiationDuration 3
Outcome 0.93

Table 10.3.: Average values for key metrics of the best AWRT set-up

candidates for negotiation.

This set-up is feasible for configurations like we used for our simulation. In cases with
more sites and more delegation targets it is sensible to restrict candidate services and
schedules to make computation and negotiation less costly.

Best Set-up for AWRT Optimisation

Table 10.2 lists the strategies and policies used to achieve best results regarding the global
mean of the per-site AWRT values. Table 10.3, however, shows the key metrics for this
simulation. In contrast to the reference run, the AWRT decreases from 1.36 · 105 to 0.523 ·
105 milliseconds, which is a considerable improvement. Furthermore, this set-up provides
an acceptable negotiation duration and a good success rate for negotiations (the mean
Outcome is 0.93 with 1 being a successful negotiation and 0 otherwise.

Figure 10.7 depicts the AWRT per site, which has improved significantly for sites 4 and
5 compared to Fig. 10.5. Site 6 shows only minor improvements because the mean re-
quested number of CPUs of its activities is so big that they can hardly be executed on
other sites. A small decrease of the AWRT, though, can be observed compared to the
reference run.

In Fig. 10.8 a slight positive effect on the utilisation can be perceived. In particular the
utilisation of sites 1 to 3 increases from approximately 0.6 in the reference run to a values
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Figure 10.7.: The AWRT for the AWRT-optimised set-up according to Table 10.2 (The upper
diagram shows the AWRT in milliseconds as a function of the simulation time
(in milliseconds). The lower diagram shows the average AWRT per site (in
milliseconds) including mean value and median).

near 0.7. The global gain in utilisation, however, is small with a change from 0.692 to
0.734. Moreover, sites 1 to 5 finish the processing of activities at a similar time, an effect
due to delegation. Site 6, however, in general fails to delegate its activities as the sinks do
not offer big enough slots (in terms of LocallyAvailableCPUs). A more adaptive approach
towards CPU Time Strategies might solve this issue.

Fig. 10.9 displays the negotiation-related evaluation results. They reveal that only sites
4 and 5 have completed negotiations, site 6 is in general unable to pass on any of its large
activities, and sites 1 to 3 do not apply delegation strategies. In this set-up, sites 4 and 5
gain by delegating activities according to the util_price_policy.

Best Set-up for Utilisation Optimisation

Table 10.4 lists the strategies and policies used to achieve best results regarding global
utilisation. The respective mean values for the key metrics are shown in Table 10.5, re-
vealing that the optimal mean utilization is 0.768 which is a gain of 0.076 compared to
the reference run (cf. Table 10.1). Even though this is an improvement of 10,98%, there
is potential for further enhancement as an analysis of queued activities exposes, showing
that the majority of waiting activities is small or medium sized and consequently suitable
for delegation.

The AWRT according to Fig. 10.10 also shows an improvement compared to the reference
set-up. Site 6, however, is only marginally participating in the negotiation process due to
reasons mentioned in the previous section. As a results, its AWRT again rises to the level
of the reference run. Fig. 10.11 visualises the utilisation for all sites separately. It is worth
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Figure 10.8.: The utilisation for the AWRT-optimised set-up according to Table 10.2 (The
upper diagram shows the utilisation as a function of the simulation time (in
milliseconds). The lower diagram shows the average utilisation per site in-
cluding mean value and median).
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Figure 10.9.: The cost savings through delegation for the AWRT-optimised set-up according
to Table 10.2 (The upper diagram shows the savings as a function of the sim-
ulation time (in milliseconds). The lower diagram shows the average savings
per site including mean value and median).

noting that the utilisation of sites 1, 2, and 3 improves significantly compared to the refer-
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Strategy / Policy Source Sink
Delegation Strategy runtime_thresh_del no_del
Pre-selection Strategy wave_pre-sel wave_pre-sel
Scheduling Strategy low-cost_low-cpu_first_sched low-cost_low-cpu_first_sched
Sched. Select. Strategy wave_sched-sel wave_sched-sel
Negotiation Strategy wsag_basic_policy wsag_basic_policy
CPU Time Policy no_cpu-time_policy global-awrt_cpu-time_policy
Pricing Policy static_price_policy static_price_policy

Table 10.4.: The best set-up for utilisation optimisation

Metric Value
AWRT 0.7 · 105

SavedThroughDelegation 0
NumberLocallyAvailableCPUs 86.9
Utilisation 0.768
WaitingActivities 225.9
WaitingTime 4.03 · 106

QueuedCPUs 1050
NegotiationDuration 2.94
Outcome 0.89

Table 10.5.: Average values for key metrics of the best utilisation set-up

ence run, site 2, for instance, shows an improvement from 0.6 to over 0.8. The cost saving
through delegation is zero for all sites due to the application of the static_price_policy,
which implies that all sites execute activities at the same price.

Best Set-up for Cost Optimisation

Table 10.6 groups the various strategies and policies used to optimise cost for the simula-
tion of artificial traces. Although mean value of cost saved through delegation is optimal
compared to the other set-ups, most other key metrics show significantly worse values in
contrast to set-ups optimising AWRT and utilisation.

Strategy / Policy Source Sink
Delegation Strategy cpu_thresh_del no_del
Pre-selection Strategy wave_pre-sel wave_pre-sel
Scheduling Strategy low-cost_low-rt_first_sched low-cost_low-rt_first_sched
Sched. Select. Strategy wave_sched-sel wave_sched-sel
Negotiation Strategy wsag_basic_policy wsag_basic_policy
CPU Time Policy no_cpu-time_policy static_cpu-time_policy
Pricing Policy global_util_price_policy global_util_price_policy

Table 10.6.: The best set-up for cost optimisation
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Figure 10.10.: The AWRT for the utilisation-optimised set-up according to Table 10.4 (The
upper diagram shows the AWRT in milliseconds as a function of the simula-
tion time (in milliseconds). The lower diagram shows the average AWRT per
site (in milliseconds) including mean value and median).
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Figure 10.11.: The utilisation for the utilisation-optimised set-up according to Table 10.4
(The upper diagram shows the utilisation as a function of the simulation
time (in milliseconds). The lower diagram shows the average utilisation per
site including mean value and median).
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Metric Value
AWRT 0.93 · 105

SavedThroughDelegation 1.373 · 1010

NumberLocallyAvailableCPUs 51.84
Utilisation 0.701
WaitingActivities 41.9
WaitingTime 4.31 · 106

QueuedCPUs 1420
NegotiationDuration 2.35
Outcome 0.93

Table 10.7.: Average values for key metrics of the best cost set-up

The AWRT for this set-up shows a slight improvement in comparison to reference run:
0.93 · 105 versus 1.36 · 105 milliseconds (see Fig. 10.12). Fig. 10.13, however, shows
only a minimal improvement regarding mean utilisation compared to the reference run:
some sites show small improvements whereas others experience a small decrease. AWRT
optimisation and utilisation optimisation show significantly better values for this metric.
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Figure 10.12.: The AWRT for the cost-optimised set-up according to Table 10.6 (The upper
diagram shows the AWRT in milliseconds as a function of the simulation time
(in milliseconds). The lower diagram shows the average AWRT per site (in
milliseconds) including mean value and median).

Fig. 10.13 shows a rapid drop in utilisation for site 3 around 1 · 108 milliseconds. This
decrease in utilisation results in a price drop for the respective site (cf. the upper diagram
of Fig. 10.14) as the current utilisation fell below the average utilisation. This effect is
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Figure 10.13.: The utilisation for the cost-optimised set-up according to Table 10.6 (The
upper diagram shows the utilisation as a function of the simulation time
(in milliseconds). The lower diagram shows the average utilisation per site
including mean value and median).

driven by the global_util_price_policy pricing policy and let, according to the simulation log
files, to an increase of delegations of large activities from site 6 to site 3. The respective
cost savings become evident in Fig. 10.14.

10.5.4. Discussion of Results

The results from the different set-ups show that an improvement of the global AWRT is pos-
sible, as all simulations result in better values compared to the reference scenario. Looking
at the utilisation of the whole simulation environment, we experience advancements on a
global scale (i.e. the mean utilisation), although always below 11% compared to the no-
delegation scenario. However, on a per-site basis, no clear trend towards higher utilisation
is visible as some sites show even worse utilisation values compared to the reference
run. Especially the acceptance of large activities delegated from a remote site can lead
to blocking behaviour, thus preventing smaller incoming activities from being executed.
Here, another negotiation model than Accept/Reject as integrated into WS-Agreement is
essential to a priori assess the impact of delegations for the local site. The cost saving
due to the chosen pricing strategies leads to no benefit or even to a loss except for the
cost optimisation case. Even then, the other key metrics are not satisfying. Further pricing
policies and simulations are necessary to investigate this issue.
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Figure 10.14.: The cost savings through delegation for the cost-optimised set-up according
to Table 10.6 (The upper diagram shows the savings as a function of the
simulation time (in milliseconds). The lower diagram shows the average
savings per site including mean value and median)

10.6. Evaluation of Traces from Realistic Workloads

To be able to judge the conclusiveness of the results from the previous evaluations on
realistic application scenarios, we compare them with realistic workloads and run the same
tests for the realistic as we did for the artificial ones to find the optimal set-ups for the three
core metrics.

10.6.1. Simulation Set-Up

The realistic traces for these evaluations have been taken from the workload archive5.
They are formatted according to the Standard Workload Format (SWF). There are a number
of noteworthy characteristics of the archive:

• The majority of traces is taken from systems commonly referred to as ‘HPC systems’.

• Most traces are not annotated with information about activity types or user classes.

• The characteristics of the individual traces vary heavily in terms of the logged period,
number of available CPUs, submission frequency, or mean/maximal activity size.

• Only a small absolute number of traces is available.6

5Logs of Real Parallel Workloads from Production Systems, last visited: January 25, 2013.
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

6The archive contains 30 traces as of May 3, 2012.
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10. Simulation and Evaluation

These facts makes reliable statements about the general applicability of the results of
the simulation difficult. Nevertheless, we have chosen three traces with similar values
regarding the maximal available number off CPU size and the average requested number
of CPUs to have an environment suitable to measure the impact of our scheduling model
on realistic workloads. Fig. 10.15 shows the characteristics of the three traces, each of
which is assigned to one particular site. Sites 1 and 2 have similar maximal requested
runtimes, whereas site 3 has a substantially larger value here. Regarding the average
requested runtime, however, site 2 has the largest value. The total simulation time has
been adopted to fit the shortest-running trace.
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Figure 10.15.: Characteristics of the artificial traces (The abscissa shows the different sites,
the ordinate the following values: number of requested CPUs (first row),
requested runtime in seconds (second row), and the product of the number
of requested CPUs and the requested runtime as well as the total simulation
time units, both in seconds (third row)).

152



10.6. Evaluation of Traces from Realistic Workloads

Site # CPUmax Price per CPUh
1 256 100
2 512 100
3 256 100

Table 10.8.: Site configurations for the realistic workload traces

Metric Value
AWRT 2.79 · 104

SavedThroughDelegation N/A
NumberLocallyAvailableCPUs 66
Utilisation 0.752
WaitingActivities 67.6
WaitingTime 1.49 · 106

QueuedCPUs 4.29 · 105

NegotiationDuration N/A
Outcome N/A

Table 10.9.: Average values for the key metrics of the reference run

In a first attempt, the three sites have been configured offering the maximum number of
CPUs corresponding to the characteristics of the traces. This resulted in mean utilisations
which did not make delegation necessary. As this set-up is not worthwhile with our appli-
cation scenario in mind, the sites have been configured according to Table 10.8, resulting
in overloaded and under-utilised sites. Activities with an amount of requested CPUs larger
than the respective site could handle have therefore been dismissed.

10.6.2. Reference Run

The set-up for the reference run with SWF traces is the same as for the artificial simulations
without delegation (see Section 10.5.2). Table 10.9 lists the achieved average values for
all key metrics. Again, no values are available for the duration of negotiations, outcome,
and cost savings since the no_del strategy is applied.

Fig. 10.16 shows a continuously rising AWRT for all three site, however, the incline is less
steep for sites 1 and 2. The simulation ends for these sites at approximately 1.5 · 108 mil-
liseconds (the last activities for all sites have been submitted before 1 · 108 milliseconds),
whereas site 3 needs a longer period to execute all accumulated activities.

Fig. 10.17 depicts that site 3 has the lowest utilisation of all sites despite its large (and
steadily increasing) mean AWRT and the growing amount of queued activities. This veri-
fies that site 3 is often blocked by queued activities which are larger than the remaining
number of available CPUs, a situation which is not resolved due to the local application of
the first-come-first-serve scheduling strategy. Site 1, however, has an average utilisation
just below 80% and site 1 has the highest average utilisation greater than 95%. Assessing
the diagrams it is expected that site 2 will benefit from the usage of delegation strategies
and that the utilisation will improve.
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Figure 10.16.: The AWRT for the No Delegation Strategy (no_del) reference run (The upper
diagram shows the AWRT in milliseconds as a function of the simulation time
(in milliseconds). The lower diagram shows the average AWRT per site (in
milliseconds) including the mean value and the median).

The diagrams in Fig. 10.18 show, for the sake of completeness, the cost for the three
sites. Since all three sites have the same price per CPUh, site 3 has, owing to the trace
characteristics, the largest costs per activity.

10.6.3. Optimal Set-ups

The simulations with realistic traces have been conducted analogically to the artificial
cases to determine the optimal set-up for the scheduling model. The results are described
and evaluated in the following sections.

Best Set-up for AWRT Optimisation

The set-up with the best AWRT is listed in Table 10.10. It is worth mentioning that it is
nearly identical to the cost optimisation set-up for the artificial runs (cf. Table 10.6). The
only difference is the static_price_policy used in this set-up.

The results for the simulations with this configuration are listed in Table 10.11, providing
the same key metrics used in the previous evaluations. A clear benefit of this set-up is
the significant improvement of the mean AWRT from 2.79 · 104 milliseconds in case of the
reference run to 0.653 · 104 milliseconds. As a downside, we see a decrease of the mean
utilisation below the value of the reference simulation.
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Figure 10.17.: The utilisation for the no-delegation reference run (The upper diagram
shows the utilisation as a function of the simulation time (in milliseconds).
The lower diagram shows the average utilisation per site including mean
and median).

Strategy Instance
Delegation Strategy cpu_thresh_del
Pre-selection Strategy wave_pre-sel
Scheduling Strategy low-cost_low-cpu_first_sched
Sched. Select. Strategy wave_sched-sel
Negotiation Strategy wsag_basic_policy
CPU Time Policy static_cpu-time_policy
Pricing Policy static_price_policy

Table 10.10.: The best set-up for AWRT optimisation

Fig. 10.19 and 10.20 depict the diagrams for AWRT and utilisation, respectively. The
improvement regarding the AWRT is weighty for site 1 and especially for site 3, whereas
the value for site 2 remains on a similar level compared to the reference simulation. The
mean utilisation, in contrast, decreases, although further potential to optimise the dele-
gation strategy can be deduced from the fact that site 1 finishes its activity processing
considerably earlier than the other two sites.

The cost metric is not depicted, as no savings can be achieved due to the application of
the static pricing strategy.
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Figure 10.18.: The cost for the no-delegation reference run

Best Set-up for Utilisation Optimisation

Table 10.12 characterises the best utilisation set-up by its strategies. The mean values re-
sulting from the simulation are given in Table 10.13. This set-up realises the best value for
the mean utilisation and, at the same time, delivers the same mean AWRT as the previous,
AWRT-optimised, set-up. The gain with respect to utilisation is, compared to the reference
run, a marginal 2,8%, a result which shows potential for improvement. Further studies
based on the results reported here may reveal under which conditions this is possible.

Fig. 10.21 exposes the same characteristic as the corresponding diagram for AWRT-
optimising set-up (cf. Fig. 10.19) mainly due to the usage of the same pricing policy and the
same delegation strategy (static_price_policy and cpu_thresh_del, respectively). Fig. 10.22
shows no significant increase in utilisation for site 1 and site 3 in contrast to site 2, which
has a mean utilisation of nearly 95%. Again, the same effect as for the AWRT case can be
observed revealing that more delegations to site 1 could improve global utilisation.

Best Set-up for Cost Optimisation

The set-up with the greatest average cost savings is the same as the best AWRT-optimising
set-up (cf. Table 10.10). The only difference is the use of the utilisation-based pricing
policy (util_price_policy), which does not affect the delegation behaviour7. Hence, the
diagrams for AWRT and utilisation correspond to those in Fig. 10.19 and Fig. 10.20. The

7The pricing policy only affects delegation decisions if combined with a schedule selection strategy that
rewards cheaper prices. For the current set-ups, this case is not considered.
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Metric Value
AWRT 0.653 · 104

SavedThroughDelegation 0
NumberLocallyAvailableCPUs 117.9
Utilisation 0.68
WaitingActivities 5.78
WaitingTime 1.00 · 106

QueuedCPUs 1.86 · 105

NegotiationDuration 1.49
Outcome 0.927

Table 10.11.: Average values for key metrics of the best AWRT set-up
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Figure 10.19.: The AWRT for the AWRT-optimised set-up according to Table 10.10 (The up-
per diagram shows the AWRT in milliseconds as a function of the simulation
time (in milliseconds). The lower diagram shows the average AWRT per site
(in milliseconds) including mean value and median).

global average savings are 4.02 · 106 as shown in Fig. 10.23.
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Figure 10.20.: The utilisation for the AWRT-optimised set-up according to Table 10.10 (The
upper diagram shows the utilisation as a function of the simulation time
(in milliseconds). The lower diagram shows the average utilisation per site
including mean value and median).

Strategy Instance
Delegation Strategy cpu_thresh_del
Pre-selection Strategy wave_pre-sel
Scheduling Strategy low-cost_low-rt_first_sched
Sched. Select. Strategy wave_sched-sel
Negotiation Strategy wsag_basic_policy
CPU Time Policy static_cpu-time_policy
Pricing Policy static_price_policy

Table 10.12.: The best set-up for utilization optimisation

10.6.4. Discussion of Results

The simulations of realistic traces revealed that an improvement regarding utilisation and
AWRT is achievable through the application of our scheduling model. Furthermore, we see
improvements regarding cost optimisation. It therefore should be possible to enhance a
scheduler, implemented according to our scheduling model, with pricing policies to ap-
proximate or even calculate when to accept activities and when to delegate them to max-
imise profit.

It has to be noted, though, that SWF traces of suitable size have been selected and the
maximal available number of CPUs has been changed compared to the original machine to
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Metric Value
AWRT 0.653 · 104

SavedThroughDelegation 0
NumberLocallyAvailableCPUs 56.3
Utilisation 0.78
WaitingActivities 5.78
WaitingTime 1.00 · 106

QueuedCPUs 1.86 · 105

NegotiationDuration 1.52
Outcome 0.93

Table 10.13.: Average values for key metrics of the best utilisation set-up
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Figure 10.21.: The AWRT for the utilisation-optimised set-up according to Table 10.12 (The
upper diagram shows the AWRT in milliseconds as a function of the simula-
tion time (in milliseconds). The lower diagram shows the average AWRT per
site (in milliseconds) including mean value and median).

artificially create a situation of resource scarcity. Furthermore, the effect of our scheduling
model was only simulated with three distinct SWF traces. These pre-requisites restrict the
general applicability of the findings and call for addition evaluations.

Despite these restrictions, it has been demonstrated that the design of our scheduling
model is applicable and that it is possible to improve certain metrics in simulations with
artificial and realistic workloads. Especially the impact of delegation and improvements
compared to the reference runs are demonstrated and show potential for applying the
model to out-sourcing or overflow scenarios.
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Figure 10.22.: The utilisation for the utilisation-optimised set-up according to Table 10.12
(The upper diagram shows the utilisation as a function of the simulation
time (in milliseconds). The lower diagram shows the average utilisation per
site including mean value and median).
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Figure 10.23.: The cost savings through delegation for the cost-optimised set-up according
to Table 10.10 (The upper diagram shows the savings as a function of the
simulation time (in milliseconds). The lower diagram shows the average
savings per site including mean value and median).
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10.6. Evaluation of Traces from Realistic Workloads

In this chapter, we demonstrated the applicability of our scheduling model by
implementing a simulation framework that integrates the model with the one of our

application scenarios. Focussing on the impact of different strategies and policies on the
computed schedule, we evaluated artificial and SWF workload traces. These evaluations

revealed that the scheduling model is, in general, applicable to improve AWRT, utilisation,
and cost. The general applicability of the model, though, has to be further tested to

deduce best practices for production use.
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11. Conclusion

Looking at existing academic efforts in the area of scheduling in distributed computing
infrastructures, we see two major strands: (i) research on algorithms and (ii) development
of schedulers for specific infrastructures. As of today, with the increase of service-oriented
solutions, the growing variety of application scenarios, the evolution of production grids,
and the convergence of mid-tier HPC infrastructures into cloud-based DCIs, a complemen-
tary aspect has to be researched: How can we provide generic scheduling solutions for
service-oriented DCIs?

Although this question subsumes our motivation in a bold and simple way, it captures
the two main aspects of our work, (i) the provision of a generic scheduling architecture,
process, and model and (ii) the integration of the aforementioned assets with the IT ser-
vice management of state-of-the-art DCIs. In this chapter, we explore how far we have
gotten realising these aspects by summarising our results, by discussing the implications
of actually integrating our approach into a DCI, and by presenting perspectives for future
research.

11.1. Results

The results of our work can be grouped into four categories: (i) generic concept, (ii) core
models, (iii) implementations, and (iv) concept verification. The first category contains
the generic scheduling architecture and the scheduling process as introduced in Chap-
ter 4. These conceptual entities describe the services and interactions necessary to re-
alise scheduling in state-of-the-art distributed computing infrastructures. To achieve that,
however, it is necessary to implement our four core models, namely the activity, infor-
mation, service-level agreement, and the scheduling model. These entities are described
in Chapters 5 to 8. All four models have been fully implemented within the European
projects NextGRID and IANOS (except for the scheduling model, which was lacking delega-
tion). Furthermore, some models and implementations are sustainably maintained by the
community as standards or products, as described in Chapter 9. The fourth result is the
verification of the concept. We have chosen the ‘delegation of scheduling requests’ ap-
plication scenario (cf. Section 3.1.3) and evaluated the effects of applying our scheduling
model to it. The respective simulations demonstrated the feasibility of our approach and,
at the same time, revealed potential for improvements.

One asset that was not on the roadmap is the full integration of all concepts and models
into one implementation. The implication of not having a complete implementation is that
it was not possible to verify the integrated approach fully, but just certain parts separately
or in combination. The rationale behind this decision is given in the following section.
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11.2. Implications of Integrating the Proposed Concept into
State-of-the-Art DCIs

The introduction of electronic contracts to scheduling in distributed computing infrastruc-
tures is a complex undertaking, especially if the target is a generic solution that fulfils
such a broad range of requirements as those gathered in Section 3. The development of
the IANOS scheduler, for example, which also implements WS-Agreement and parts of the
scheduling model, was a multi-year venture.

We assess the complete realisation of our concept as the implementation of a com-
plete DCI middleware, an undertaking way beyond our work. To fulfil all requirements, it is
essential that the fundamental models are considered at service design time. This is a pre-
requisite not given as far as state-of-the-art DCI middleware is concerned. And although
some of the implementations of our models and concepts are mature and available as
open source software (cf. Table 9.1), we would not advise to combine the various parts to
form a DCI middleware. We rather see our work as a feasibility study for future scheduling
solutions. Furthermore, it presents a modular approach applicable to a multitude of prob-
lems associated with building DCI solutions. Of course, it also serves as blueprint for a the
core of a distributed computing infrastructure.

11.3. Outlook

We have thoroughly discussed the concept and models in the respective chapters and we
think that the essential issues have been raised to enable readers to judge the feasibility
of the contribution. But certainly issues and questions remain to complement what has
been described here. We could discuss extensively further matter that was not in the
scope of our work, but focus on two points that seem to be especially important: (i) the
relation of our solution to IT service management in general and (ii) issues with information
management.

11.3.1. IT Service Management

Although we do not propagate clouds as the ultimate solution, it seems that providers
and users of distributed computing infrastructures will benefit from ubiquitous service-
orientation. Although many DCIs are actually service-oriented infrastructures, the full
potential is not yet exploited. Looking, for example, at the life-cycle of a service-level
agreement (cf. Fig. 7.1), most DCIs support mainly the first three phases development,
negotiation, implementation. The execution phase is also implemented, but most often
detached from the service-level management with the activity description passed to mid-
dleware services for execution and monitoring.

The purpose of SLAs in our concept is to offer technical means for a coherent view on
a DCI as a single system. SLAs are the instrument to codify the objectives and responsi-
bilities of users and service providers and constitute, transparent for the user, the single
entry point to the system. The users get their contracts and the service to be delivered,
including orchestration of other services, is controlled by the DCI middleware. Whenever
there is an agreement on a service-level (i.e. an electronic contract has been negotiated
and agreed upon), the services necessary to fulfil the contract are provisioned. Prior to
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the provisioning, an activity instance is created to capture all further information related
to the contract.

Service-level agreements, however, are just one part of IT service management. One of
the most comprehensive frameworks to be used for managing IT services, the Information
Technology Infrastructure Library (ITIL) [135], consists of publications and specifications
created by the UK’s Office of Government Commerce (OGC). Initially, ITIL has been de-
veloped to reduce the UK government’s growing cost for IT services. It defines a large
variety of ITIL processes like capacity management, incident management, and service-
level management, which, inter alia, deals with the application of SLAs.

Compared to the objectives fulfilled by our work, ITIL follows a much broader approach.
Examples for additional objectives are [1]:

• ‘Identification of process improvement opportunities [...]’.

• ‘Improvements to system/service reliability and stability’.

• ‘To generate operational data to be analysed as part of preventive action initiatives’.

Evidently, the fulfilment of such objectives is not solely achieved through SLAs, but in-
volves various processes. Here, ITIL delivers the necessary best practices and recipes to
integrate SLAs into IT service management solutions.

With our solution, which integrates service-level agreements as an intrinsic part of a
scheduling concept, we provide the foundations for a pervasive IT service management
of distributed computing infrastructures and pave the way towards automated service
provisioning. It is, though, just an initial step. The ITIL-compliant service delivery is much
more than the implementation of our solution. It involves things like service portfolio
management, service validation management or release management, to name just a
few. And it is not sufficient to create technical solutions, but mandates the realisation of
the respective processes within the data center, including documentation, training, and
knowledge management.

11.3.2. Information Management

We observe that in existing DCIs information about infrastructure, services, and activities
is dispersed. Various data sources and consumers exist in such environments making it
difficult to manage and process the respective information. We therefore introduced the
activity model to have a central entity for managing activity-related information. As a
result, we use the activity instance to capture the activity description, the SLA(s) related
to it, data about resource and service consumption, and alike. Although we now have a
model and services to centrally process and consume the bits of information needed for
scheduling, there is still room for optimisation.

Here, we want to highlight especially two issues, i.e. the redundancy in modelling and
keeping information and the difficulty of mapping between different models. In general,
DCIs combine different languages to request activities, describe resource capabilities,
search for services, formalise SLAs, or monitor their progress. Common examples are
JSDL, GLUE, XQuery, WS-Agreement, or parameter–value pairs, respectively. Even though
we introduced the activity model, we rely on a variety of existing standards like CIM and,
as a result, have to deal with redundant information. Examples include the activity de-
scription, which is included in the SLA and the activity instance, and resource capabilities,
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parts of which are kept in the registry and also the information service. Another stumbling
block is the mapping between different information-carrying formats, which often offer dif-
ferent semantics and richness. As a result, performance-limiting technologies like XSLT
have to be used to transform the different formats, an approach that might fail for certain
concepts in case they are not supported by one of the languages.

Approaches to overcome such limitations are manifold, as e.g. requesting and search-
ing for services using SLA templates that follow the format used by the service provider,
or using the same language to describe resource capabilities and activity requirements.
The obvious solution, the development of an integrated information model processable
by all services within a DCI, is, although tempting, a less promising approach as many
unsuccessful efforts show.

11.4. Future Perspective

We have experienced the difficult path from ‘DCI silos’ over ‘Grid Services’ towards virtu-
alised service infrastructures, including various interoperability efforts and an effort called
the Semantic Grid. Although this is what we call technological evolution, some of the en-
deavours that brought us here may have benefited from a broader view and from less ‘not
invented here’ attitude.

For future developments, we consider it indispensable that DCIs are not only designed
with a certain standard base set of functions in mind (as currently done by the European
Middleware Initiative1), but also based on common models and comprehending an intrin-
sic service-level management concept. Following that approach, we will experience the
convergence of academic and industrial efforts, something we already see in the cloud
landscape. Especially the infrastructure-as-a-service management solutions, with Cloud-
Stack2, Eucalyptus, OpenNebula, and OpenStack3 as the most prominent representatives,
are used by companies providing cloud services as well as academic data centres, which
operate private or public clouds. Here, we will face a growing demand for elaborated ser-
vice management solutions that are generic enough to be adapted to changing business
objectives and technological choices.

With our generic scheduling architecture and the associated models and processes we
provide one building block to satisfy this demand and to offer automated service-level
management solutions for distributed computing infrastructures.

1European Middleware Initiative, last visited: January 25, 2013. http://www.eu-emi.eu/.
2CloudStack – Open Source Cloud Computing, last visited: January 25, 2013. http://www.cloudstack.org/.
3OpenStack – Open source software for building private and public clouds, last visited: January 25, 2013.

http://openstack.org/.
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A. Sequence Diagram of the Scheduling
Process
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Figure A.1.: The sequence of the scheduling process as described in Section 4
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A. Sequence Diagram of the Scheduling Process

Fig. A.1 depicts the sequence of messages exchanged between the services that estab-
lish the generic scheduling architecture, as shown in Fig. 4.1. The diagram thereby follows
the overall scheduling process specified in Section 4.2 (cf. Fig. 4.3), thus omitting step 9
to 11, i.e. ‘monitoring’, ‘activity completion’, and ‘termination’, to keep the diagram clear.

Further issues to be noted:

• The creation of an activity through the activity management framework results in an
EPR, which propagated back to the management framework and to the scheduling
service A. The respective messages are not depicted.

• The delegation of an activity, which is depicted in the diagram as a result of pre-
selection step that delivers no results, is actually executed at a well-defined point
in time according to the scheduling model to prevent continuous delegations (see
Fig. 8.1). Here, the process of flagging an activity as a candidate for delegation,
which would include the respective activity in the delegation pool, is explicitly picture
to show the messages sent. Again, the propagation of the EPR is not shown explicitly,
only the update of the activity, reflecting the delegation, is depicted.

• The steps generateSchedule and selectSchedule, which represent two strategies of
the scheduling model (cf. Fig. 8.1), are together step 3 ‘Service and resource selec-
tion’ of the scheduling process.

• The update of the activity following the reserve message reflects the status change
caused by the execution of the activity (which is also not explicitly depicted).

• No communication with the client is shown as it does add essential information.
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B. The UDAP Schema

The following XML Schema captures the UDAP schema as described in Section 5.1 and
implemented in Section 9.1.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://nextgrid.org/2007/01/udap"
xmlns:udap="http://nextgrid.org/2007/01/udap"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
attributeFormDefault="unqualified" elementFormDefault="qualified">

<!-- ****** The UDAP document ****** -->
<xsd:element name="UDAP">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ActivityID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="ActivityDescription" type="udap:DescriptionType"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="Record" type="udap:RecordType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="Result" type="udap:ResultType" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<!-- The DescriptionType describes the activity. This is
basically xsd:any, allowing to embed any activity
description according to the "Dialect" -->

<xsd:complexType name="DescriptionType">
<xsd:sequence>
<xsd:any namespace="##other" minOccurs="0" processContents="lax"/>
</xsd:sequence>
<xsd:attribute name="Dialect" type="xsd:string" use="required"/>
</xsd:complexType>

<!-- The RecordType -->
<xsd:complexType name="RecordType">
<xsd:sequence>
<xsd:element name="Entry" type="udap:RecordEntryType" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
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<!-- The RecordEntryType -->
<xsd:complexType name="RecordEntryType">
<xsd:sequence>
<xsd:element name="TimeStamp" type="xsd:dateTime" minOccurs="1" maxOccurs="1"/>
<xsd:element name="State" type="udap:StateType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="Resource" type="udap:ResourceType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="Context" type="udap:ContextType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="Dependency" type="udap:DependencyType" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="Category" type="udap:RecordEntryCategoryType"/>
</xsd:complexType>

<!-- Activity state -->
<xsd:simpleType name="StateType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="pending"/>
<xsd:enumeration value="running"/>
<xsd:enumeration value="runningPreempted"/>
<xsd:enumeration value="runningMigrating"/>
<xsd:enumeration value="runningPaused"/>
<xsd:enumeration value="cancelled"/>
<xsd:enumeration value="failed"/>
<xsd:enumeration value="finished"/>
</xsd:restriction>
</xsd:simpleType>

<!-- The ResourceType defines the resource-related requirements of a UDAP document -->
<xsd:complexType name="ResourceType">
<xsd:sequence>
<xsd:any namespace="##other" minOccurs="0" processContents="lax"/>
</xsd:sequence>
</xsd:complexType>

<!-- The ContextType describes policy constraints, QoS, security characteristics
related to an activity -->

<xsd:complexType name="ContextType">
<xsd:sequence>
<xsd:any namespace="##other" minOccurs="0" processContents="lax"/>
</xsd:sequence>
</xsd:complexType>

<!-- Activity dependency -->
<xsd:complexType name="DependencyType">
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<xsd:sequence>
<xsd:any namespace="##other" minOccurs="0" processContents="lax"/>
</xsd:sequence>
</xsd:complexType>

<!-- An entry in the record can be:
- the original one, i.e. the one submitted to the UDAP manager,
- the current one, which represents the current valid document, and
- an archive one, provided for monitoring and persistence. -->
<xsd:simpleType name="RecordEntryCategoryType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="original"/>
<xsd:enumeration value="current"/>
<xsd:enumeration value="archive"/>
</xsd:restriction>
</xsd:simpleType>

<!-- The ResultType -->
<xsd:complexType name="ResultType">
<xsd:sequence>
<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"
processContents="lax"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>
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C. Strategies related to the Scheduling
Model

This chapter outlines the details of the various strategies that are evaluated in Chapter 10.
The strategies are ordered according to the classification used in Section 10.3.

C.1. Delegation Strategies

CPU Threshold Delegation Strategy (cpu_thresh_del)

Three strategies have been realised based on a passing window approach. The first one
is the CPU Threshold Delegation Strategy. In the beginning, it puts all queued activities
and newly arrived activities in a common pool, which is ordered according the number of
CPUs requested by every activity (in ascending order). The strategy then iterates over
the pool, adding the current activity’s number of requested CPUs to a variable. If this
variable reaches an upper threshold, defining the maximum number CPUs, the iteration
is terminated. If the variable stays below the threshold, the current activity is added to a
collection of activities to be delegated (the delegation list), and the iteration is continued
until all activities in the pool have been processed. The number of CPUs in the delegation
list, in addition, needs to satisfy a lower threshold, too, which in combination with the
upper threshold, defines the passing window. If this threshold is satisfied the delegation
list is processed further, otherwise it is deleted and all activities remain in the queue. The
simulation set-up as described in Section 10 uses a minimal passing window in the range
w ∈ [1, 32].

Ordering activities previous to the application of the strategy prevents huge activities
from blocking delegations as negotiations that do not succeed for a very long time due to
site fragementation [73]. Since all activities marked for delegation must be delegated, the
upper threshold constrains the maximal size of a collection. The lower threshold, however,
reduces the communication overhead related to negotiations. It prevents frequent nego-
tiations with a small amount of activities. In addition, it keeps a buffer of activities in the
local queue to be executed locally.

Minimal values for the lower and the upper thresholds are pre-defined. Depending on
the outcome of a negotiation, the window is adapted. In the case of a successful delegation
both values are doubled, in case of an unsuccessful negotiation, they are halved. Several
threshold values between 0.1 and 10 have been evaluated, the value 2, though, delivered
best results. Further investigations to tailor this factor seem to be promising, e.g. dynamic
adaptation of the change rate rate are an option.

A challenge for the window-based approach is rapid changes of the available resources.
Then this strategy may not deliver the desired results. The thresholds also have to be
carefully set as the delegation strategy will not work properly if the smallest activity in the
queue requests more CPUs than are allowed by the upper threshold. In such a case the
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window size can lead to locking delegation until an activity is submitted that fits into the
window. A following successful delegation than probably increases the window size again.

Runtime Threshold Delegation Strategy (runtime_thresh_del)

The runtime_thresh_del strategy is similar to the cpu_thresh_del strategy with the only
difference of using the total runtime instead of the number of CPUs. The total runtime
is the runtime assigned to an activity times the requested number of CPUs. The minimal
window size is

w ∈ [1
2 · runtimestatic, 200 · runtimestatic].

analogue to the passing window size introduced in the previous section. runtimestatic is
the site-specific static value for the total runtime.

Activity Threshold Delegation Strategy (activity_tresh_del)

The activity_tresh_del belongs to the class of passing window strategies. It uses solely
the number of activities in a queue as the basis for delegation. The minimal window is
w ∈ [1, 2].

Global Average Weighted Response Time Delegation Strategy
(global_awrt_del)

The global_awrt_del strategy polls a universal metric service, which is implemented as part
of the simulation environment, for the global average weighted response timeAWRTglobal
and compares it to the local valueAWRTlocal. The decision to delegate either all activities
in the queue or none is calculated as follows:

AWRTlocal > AWRTglobal ⇒ DL = Q (delegate all activities),
else DL = ∅ (delegate none)

The simulations revealed that in cases where only the global_awrt_del strategy is used,
the delegation list DL gets large. Such a large number of activities normally cannot be
delegated since its requested resources most likely exceed the available resources. There-
fore, a combination with, for example, the cpu_thresh_del strategy can be used to adjust
the size of DL respectively.

No Delegation Strategy (no_del)

The no_del strategy always returns an empty DL and therefore prevents all delegations
from a particular site. Delegation to this site is still possible. Using the no_del strategy,
so-called sinks are created, which do not delegate their activities but are able to receive
activities from other sites (see also Section 10.5.1).

Random Delegation Strategy (random_del)

The random_del strategy assigns every activity in the queue a chance of 50% (p = 0.5)
to be delegated. Depending on the outcome of the assignment, the chance for delegation
of subsequent activities is either increased by p = p · 1.1 in case the previous activity has
been delegated or decreased by p = p · 0.9 in case of no previous delegation.
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Wave All Activities Through Delegation Strategy (wave-all_del)

The wave-all_del strategy always delegates all activities in the queue and all newly sub-
mitted activities.

Wave All New Activities Through Delegation Strategy (wave-all-new_del)

The wave-all-new_del strategy always delegates the activities that have been submitted
since the previous pass of the scheduling process.

C.2. Pre-selection Strategies

Two Pre-selection Strategies have been implemented:

• Random Pre-selection Strategy (random_pre-sel) — each candidate service is given
a chance of 50% to pass

• Wave Through Pre-selection Strategy (wave_pre-sel) — all candidate services pass

No further pre-section strategies have been implemented since the number of SLA tem-
plates representing candidate services is rather low in the simulation set-up. As such,
these strategies do not have a great effect on the overall performance of the scheduling
process. In an environment that features a large number of sites and which offers multiple
templates per site, further pre-selection will be necessary. A simple pre-selection might
for example check for candidate services that do not offer enough resources to be used in
the scheduling process and dismiss them.

C.3. Scheduling Strategies

Random Scheduling Strategy (random_sched)

The random_sched strategy takes a random SLA template and iterates over all unsched-
uled activities in the queue. If an activity fits, it is assigned to the template. In case all
activities have been checked without any assignment to the template, the next random
template is chosen. This process is repeated until no more templates are available or until
all queued activities have been assigned to templates. The former case implies that no
schedule could be created, the latter finishes with a valid schedule. This strategy is re-
peated five times resulting in 0 to 5 schedules as input to any schedule selection strategy.

Price Greedy Scheduling Strategy (price-greedy_sched)

The price-greedy_sched scheduling strategy chooses the cheapest SLA template, selects
the largest queued activity, and tries to match both. This process is shown in Fig. C.1.
The ‘size’ of a template is determined by the product CPUs · runtime. This strategy,
which is listed as Algorithm 1, has a complexity of O(n · k), with |activities| = n and
|templates| = k. It takes a maximum of n iterations with each of the k templates. This is a
relatively low complexity compared to the non-polynomial complexities of more elaborated
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strategies. Therefore, price-greedy_sched is used as a back-up strategy in cases where the
computation of a schedule using a different strategy takes too long (the default threshold
here is 30 seconds).
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Figure C.1.: The largest matching activity from the queue (left) is chosen for an SLA tem-
plate (right)

Algorithm 1 Price Greedy Scheduling Strategy
activities = getSortedActivities(activities)
template = retrieveCheapestTemplate(templates)
while template 6= null∧ |activities| > 0 do

for i = 0 to |activities| do
activityCPUs = activity[i].cpus
activityRuntime = activity[i].runtime
if activityCPUs > template.cpus ∧ activityRuntime > (activityRuntime ·
activityCPUs) then
scenario.addLink(template, activity)
template.cpus = template.cpus− activityCPUs
template.runtime = template.runtime− activityCPUs · activityRuntime
activities.remove(activity)
i−−

end if
end for
template = retrieveCheapestTemplate(templates)

end while

Lowest Cost First Lowest CPU First Scheduling Strategy
(low-cost_low-cpu_first_sched)

The low-cost_low-cpu_first_sched strategy iterates, like the price-greedy_sched one, over
all SLA templates starting with the cheapest price. For each template, it iterates over all
activities in the queue, which are sorted in this case by ascending number of requested
CPUs. Each activity is assigned to the selected template if it still fits regarding the re-
quested runtime and requested CPUs. This strategy, which is listed as Algorithm 2, op-
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erates along the same lines as the price greedy scheduling strategy. The only exception
is the initial activity order that is based, in case of low-cost_low-cpu_first_sched, on the
requested number of CPUs. As such, the strategy also has the complexity of O(n · k).

Algorithm 2 Lowest Cost First Lowest CPU First Scheduling Strategy
activities = sortActivitiesByCPUsAscending(activities)
template = pollCheapestTemplate()
while template 6= null∧ |activities| > 0 do

for all activity in activities do
if activity.cpus 6 template.cpus then

if (activity.time · activity.cpus) 6 template.time then
scenario.addLink(template, activity)
template.time = template.time− (activity.time · activity.cpus)
template.cpus = template.cpus− activity.cpus
activityToRemove = activitiesToRemove+ activity

end if
end if

end for
activities.remove(activitiesToRemove)

end while

Lowest Cost First Shortest Runtime First Scheduling Strategy
(low-cost_low-rt_first_sched)

The low-cost_low-rt_first_sched strategy follows the same approach as the low-cost_low-
cpu_first_sched strategy. This time, however, the requested runtime is used to sort the
activities. The complexity again is O(n · k).

Lowest Cost First Minimal CPU Tardiness Scheduling Strategy
(low-cost_first_min_cpu-tard_sched)

The low-cost_first_min_cpu-tard_sched strategy iterates also over all SLA templates, start-
ing with the cheapest. To match the selected template, it uses a strategy to minimise
tardiness on a particular machine (1||

∑
Tj, with Tj being the tardiness of activity j, see

also [111]).
The pre-requisites of our evaluation set-up (cf. Section 10.5.1) for the application of the

strategy are the following: activities have no due dates, all activities have already been
released, and there is a common deadline for each template (i.e. total runtime). Since
activities cannot be scheduled in sequence this strategy cannot be used as described by
Pinedo [111]. Instead, it will treat the amount of free CPUs as time. The actual time for
each slot will be used to filter out activities that do not fit. Fig. C.2 and C.3 show an
activity being scheduled into a slot and the resulting adaptation of the slot, respectively.
The next activity will be scheduled in sequence regarding to the abscissa, representing
the free CPUs. Here, the amount of available CPUs is treated as common due date for all
activities cputotal ≡ dj, j ∈ activities and the CPUs as processing times cpusj ≡ pj. The
tardiness is then the amount of CPUs that are needed in addition to the available ones.
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This algorithm thus computes a schedule for each SLA template minimising the tardiness.
All “tardy” activities are then collected and used for the next template.
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Figure C.2.: An activity is scheduled into an empty slot
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Figure C.3.: The slot size changes due to the scheduled activity

Since we do not want to produce schedules with tardy activities, an extension of the al-
gorithm has been implemented to remove all tardy activities. A further extension is used
to iterate over all templates to receive a complete scheduling scenario using as many tem-
plates as needed. For each schedule that has been calculated with the previous approach
a number of sub-schedules using the remaining templates is created. These sub-schedules
are then combined with the present schedule to a number of complete schedules. A tree
representing the various created schedules is illustrated in Fig. C.4. The vertical axis goes
deeper into the recursions and uses each time a new template. The horizontal axis shows
alternate solutions using the same set of activities and templates. Fig. C.5 shows the
creation of a schedule in one path down the recursion. At the beginning there are four ac-
tivities and four templates. Two activities can be scheduled into the first template. Then,
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in the next recursion, the remaining two activities are scheduled into the second template.

Figure C.4.: Choices encountered by the extended minimal tardiness strategy

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X Axis

Y
 A

x
is

X

X

remaining
jobs

recursive

recursive

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X Axis

Y
 A

x
is

Figure C.5.: Extended minimal tardiness strategy with two recursions

Algorithm 3 first polls the cheapest templates and then creates all optimal scenarios us-
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Algorithm 3 Extended version of the minimal tardiness strategy
template = pollCheapestTemplate()
if template 6= null∧ |activities| > 0 then
optimal = calcOptSchedulesWithMinTardiness(template, activities, 0);
for all scenario in optimal do
remainingActivities = 0
linksToRemove = 0
usedCPUs = 0
usedTime = 0
for all link in scenario.links do
usedCPUs = usedCPUs+ link.activity.cpus
usedTime = usedTime+ link.activity.time · link.activity.cpus
if usedCPUs > template.cpus∨ usedTime > template.time then
remainingActivities = remainingActivities+ link.activity
linksToRemove = linksToRemove+ link

end if
end for
scenario.removeLinks(linksToRemove)
subSchedules = createSchedules(templates, remainingActivities)
for all scenario in subSchedules do
combinedScenario = combineScenarios(scenario, subSchedule)
finalScenarios.add(combinedScenario)

end for
end for

else
if |activities| = 0 then
finalScenario.add(∅)

end if
end if
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ing the minimal tardiness algorithm. For each schedule activities remain. Those activities
are separated from the schedule. These activities and the remaining templates are used to
create optimal schedules for the sub-problem. The sub-schedules are then combined with
the previous schedule to an equal number of complete schedules. A leaf in the schedule
tree contains an empty set of optimal schedules if all activities have been scheduled. If
no more templates are available a leaf containing a null value which is the end of a failed
path is returned. This algorithm can be further optimized by only selecting a number of
sub-schedules from all available ones.

C.4. Schedule Selection Strategies

Two schedule selection strategies have been implemented:

• Random Schedule Selection Strategy (random_sched-sel) — each site is given a
chance of 50% to pass,

• Wave Through Schedule Selection Strategy (wave_sched-sel) — all sites pass.

No further schedule selection strategies have been implemented as the simulation set-up
does not feature more than six sites.

C.5. Negotiation Strategies

Following the WS-Agreement specification to implement an SLA-framework, we only imple-
mented its basic negotiation strategy (wsag_basic_neg), which realises an accept/reject or
discrete offer negotiation model.

201
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Providers can use the following policies to implement their business objectives. The fol-
lowing policies have been implemented and evaluated throughout the simulation.

D.1. CPU Time Policies

Global AWRT CPU Time Policy (global-awrt_cpu-time_policy)

The total CPU time (TotalCPUTime) offered at a point in time t by a particular site through
an SLA is a function of local and global AWRT and of the previous TotalCPUTime value:

TotalCPUTime(t) = f(TotalCPUTime(t− 1),AWRTglobal(t),AWRTlocal(t)).

The current value changes depending on following conditions:

AWRTlocal > AWRTglobal ⇒ CPUTime ↑,
AWRTlocal < AWRTglobal ⇒ CPUTime ↓.

The TotalCPUTime is increased or decreased, depending on the aforementioned condi-
tions, by an interval ∆CPUTime = 1

4 · CPUTimestatic. The result is limited by a lower
boundary TotalCPUTimemin = 1

4 · CPUTimestatic. The site-specific value is updated ev-
ery time an event related to the local execution of an activity is received. This may be
either the start or the completion of an execution.

Other CPU Time Policies

Another total CPU time strategy is the Random CPU Time Policy (random_cpu-time_policy).
It returns a random value between 1

2 · CPUTimestatic and 1.5 · CPUTimestatic. The No
CPU Time Policy (no_cpu-time_policy) returns no total CPU time and as such can be used
to create a source node. A source node does not accept any remotely incoming activities,
but it delegates its own activities to other sites. Last, but not least, the Static CPU Time
Policy (static_cpu-time_policy) represent a provider’s simple policy to always allow a fixed
CPU time independent of the amount of free processors.

D.2. Pricing Policies

(Global) Utilization-Based Pricing Policy ((global_)util_price_policy)

The Utilisation-Based Pricing Policy (util_price_policy) adjusts the price attached to an SLA
template according to the costs of a particular site. Metrics used for this calculation are
(with global values for the respective global policy):

203



D. Provider Policies

• ucur — the current utilization of the site

• ū — the average utilization of the site

• x — x determines the price according to price = x · pricestatic.

Fig. D.1 shows the values for x, which have been implemented in the simulation, as a
solid line. There are three sections in the diagram. The first one 0 6 u 6 0.5 · ū (with ū
termed uav in the figure) has constantly x = 0.5. The next section 0.5 · ū < u 6 ū with x
being linearly interpolated between 0.5 and 1. The third section ū < u 6 1 interpolates a
value for x in ]1, . . . 2].
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Figure D.1.: Two possible pricing-functions

The respective decision to calculate x can be described as follows:

ucur > ū⇒ x−1
ucur−ū

= 2−1
1−ū ⇔ x = ucur−ū

1−ū + 1

ucur < ū⇒
x− 1

2

ucur−
1
2 ū

=
1− 1

2

ū− 1
2 ū
⇔ x =

ucur−
1
2 ū

ū + 1
2

ucur = ū⇒ x = 1

This way of determining the price has the effect that if a site currently runs below its
long time average utilization, it provides a cheaper price to attract consumer. In case the
site operates above its average utilization it, consequently, offers a higher price.

The implemented pricing scheme with linear interpolation is one basic approach of de-
termining the price based on the average utilization. A function similar to the dotted curve
in Fig. D.1 could also be used. The determination of an optimal curve for a certain provider
would exceed our work and should be evaluated separately, preferably through an eco-
nomic application scenario.

Static Pricing Policy (static_price_policy)

The Static Pricing Policy (static_price_policy) keeps the same price for each SLA template
for the whole duration of the simulation.
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E. Trace Generation of Artifical Traces

To generate a trace, the maximum amount of available CPUs (maxCPUs), the total simu-
lation time (totalSimTime), and the intended activity size have to be known. Using this
information, chunks for time intervals are created as described in Algorithm 4. The chunks
contain the same activity sizes throughout the interval. Fig. E.1 shows a chunk. First,
the total CPU time is fragmented in accordance to the intended CPU size of the activities.
Then, for each region of CPUs the whole duration is fragmented. The values for those frag-
mentations are chosen randomly from a pre-configured interval. All chunks are generated
in sequence and are appended into one trace file as described by Algorithm 5.

Algorithm 4 The generation of a trace-chunk

cpuFragmentationIndex = random(cpuFragmentation)
cpus = maxCPUs

cpuFragmentationIndex

for all i in cpuFragmentationIndex do
timeFragmentationIndex = random(timeFragmentation)
duration = ∆t

timeFragmentationIndex

for all i in timeFragmentationIndex do
activities.add(new Activity(startTime, cpus, duration))

end for
end for

Algorithm 5 The generation of a complete SWF trace
∆t = chunkSize
tcurrent = 0
while tcurrent <= totalSimTime do

generateChunk(tcurrent,∆t, cpuFragentation, timeFragentation,maxCPUs)
end while
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Figure E.1.: Fragmentation of CPUs and runtime
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