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Chapter 1

Motivation

Since the first realisation of a laser half a century ago [Mai60], optical technologies

have made enormous progress. Today, coherent light sources are used as powerful

tools in many different areas of research, such as the natural and life sciences [Dud12,

Muq11]. Furthermore, advances in academic and industrial research have led to

innumerable applications of laser devices, e.g. in the fields of medicine, entertainment,

and industrial material treatment.

However, the area in which high-quality laser sources are of essential relevance is

the domain of modern telecommunication, i.e. optical data transmission. The impor-

tance of this technology was recently emphasised, when the Nobel Prize in Physics

2009 was partly awarded to Charles K. Kao, pioneer in the development of fibre

optics [Kao66]. In order to couple this technology to common electronic circuits, op-

toelectronic devices are required. These devices are generally based on semiconductor

lasers. The advances in semiconductor technology, especially with respect to epitax-

ial growth methods, have led to the development of miniaturised laser devices using

semiconductor nanostructures, in particular quantum wells, as gain material [Tel90].

The most prominent outcome of these research efforts is the vertical-cavity surface-

emitting laser (VCSEL) [Cho97]. Recently, it has been shown that data-transfer rates

of 100 Gbit/s can be achieved by using a single VCSEL device [Rod12]. Nevertheless,

the growing demand for broadband internet services in all areas of everyday life con-

tinues to drive a worldwide increase of network traffic. Accordingly, there is a need

to develop optical networks able to process larger data volumes at higher speeds.

Faster optoelectronic circuits, in turn, require improved sources of coherent radiation

with lower operating currents. A number of different approaches can be considered

to achieve this.

In order to achieve stable lasing operation, population inversion has to be estab-

lished inside the whole active medium. Consequently, one viable way to lower the

threshold-carrier density of microcavity lasers is to further reduce the dimensional-

ity of the gain medium. The use of self-assembled quantum dots, embedded in the

resonator during epitaxial growth, turns out to be very promising [Led11]. In quan-

tum dots, charge carriers are confined in all three dimensions, leading to discrete
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energy levels. As a result, quantum-dot lasers are assumed to provide stable output

characteristics over a wide range of temperatures. Furthermore, the β-factor, i.e. the

spontaneous emission rate of a quantum dot into the lasing mode divided by the

total spontaneous emission into all available modes, can be substantially enhanced in

a quantum-dot microresonator laser [Yam91]. This strongly increases the efficiency

and, consequently, lowers the threshold-carrier density of microcavity lasers. The gen-

eral drawback of high-β lasers lies in the difficulty to exactly identify the threshold, as

the typical kink in the input-output curve becomes smoother and finally disappears

in the ultimate case of β = 1, which would provide the thresholdless laser [Bjö91].

While quantum-dot lasers typically operate in the weak-coupling regime, another

possibility to further reduce the threshold-carrier density is to use quantum-well

microcavities in the strong-coupling regime. In this regime, energy is continuously

exchanged between excitons in the quantum well and photons in the cavity [Khi06].

As a result, mixed states of light and matter are created which form new eigenmodes

of the coupled system: microcavity polaritons [Wei92]. These quasi-particles are

composite bosons. Under specific conditions, they are known to undergo a phase

transition similar to Bose-Einstein condensation and accumulate in large numbers in

the ground state. Due to their photonic content, polaritons have a small effective

mass, which in principle allows for condensation at temperatures up to room tem-

perature in certain material systems [Chr07, Lu12]. Such a polariton condensate is

completely phase-coherent. Thus, it is expected to act as a coherent light source

without the need for population inversion. It is called the polariton laser [Ima96].

In the framework of this thesis, both approaches mentioned above are investi-

gated. First, the emission from pillar-shaped microcavities using quantum dots as

optically active material is considered. To this end, the lasing transition is anal-

ysed in terms of the excitation-power dependent emitted intensity and the degree

of linear polarisation. The first-order as well as the second-order correlations of

the emission are also evaluated. In this way, the coherence time τc and the photon

statistics of the emitted light field are determined. It is shown that a nonlinear-

ity in τc can be used to identify the threshold. Moreover, a theoretical model is

introduced which connects first-order and second-order correlations. Hence, a full

characterisation of the lasing transition of GaAs-based micropillars is given. Second,

a quantum-well microresonator operating in the strong-coupling regime is examined.

It is demonstrated that the different emission regimes of such a microcavity—thermal

emission, polariton lasing, and photon lasing—are separated by two distinct thresh-

olds. These two nonlinearities are observed in different quantities, i.e. the main

emission intensity and energy, the energy-dispersion relation, as well as the emission-

pulse duration. A special emphasis is placed on photon correlations, allowing to

determine the degree of second-order coherence of the cavity emission. Using a re-

cently introduced photon-correlation spectroscopy technique, the degree of coherence

is quantified across the different emission regimes of a microcavity-polariton system.

Furthermore, the temperature-dependence of pulsed polariton lasing is analysed.

This thesis is organised as follows. First, the theoretical background describing
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the interaction of light and matter in microcavities is provided in chapter 2. This

chapter also contains an introduction to optical correlation functions, which are used

to characterise different states of light emitted by the microcavity samples. The ap-

plied experimental methods, i.e. Michelson interferometry, Fourier-plane imaging and

photon-correlation spectroscopy, are presented in chapter 3. In the subsequent chap-

ters, the results of the experimental studies are discussed: in chapter 4, the lasing

transition of GaAs-based quantum-dot micropillar lasers is characterised. In chapter

5, the two-threshold behaviour of a quantum-well microcavity is demonstrated. Fi-

nally, a summary of the main results of this thesis combined with an outlook is given

in chapter 6.





Chapter 2

Theoretical Background

The characteristics of semiconductor light sources can be efficiently controlled in

different ways. Within the present thesis, the coupling strength of light and matter

in semiconductor microcavities is of major importance. Two possible regimes will be

treated: In chapter 4, the investigations on a weakly coupled micropillar resonator

system will be discussed. In chapter 5, a study of a planar microcavity in the strong

coupling regime will be presented. In order to adequately describe the experimental

results, the current chapter provides the corresponding theoretical background.

This chapter is organised as follows. First, basic electronic and optical properties

of semiconductor nanostructures, which are used as optically active material in semi-

conductor microresonators, are presented in section 2.1. Second, the fundamental

physics of semiconductor microcavities are discussed in section 2.2. The interaction

of both, carrier eigenstates in nanostructures and the light field inside a resonator, is

treated in section 2.3. Finally, the main methods applied in this work to characterise

states of light, i.e. the system of optical correlation functions, is described in section

2.4.

2.1 Semiconductor Nanostructures

Many electronic and optical properties of semiconductor materials can be described

by their electronic band structure. Probably the most prominent parameter of semi-

conductor band structures is the energy gap Egap between the valence band (VB)

maximum and the conduction band (CB) minimum. In the context of this work,

materials based on the III-V compound semiconductors gallium arsenide (GaAs) and

aluminium arsenide (AlAs) are investigated. While both GaAs and AlAs condense in

the zincblende structure, they differ significantly in their energy band-gap.1 However,

as their lattice constants are similar, these two semiconductors are well suited for

1While GaAs exhibits a band-gap energy of about EGaAs
gap = 1.42 eV at room temperature, the

band-gap of AlAs is EAlAs
gap ≈ 3 eV at 300 K. The lattice constants of GaAs and AlAs are aGaAs =

5.65 Å and aAlAs = 5.66 Å, respectively. Data taken from references [Ada85] and [Kri91].
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high-quality epitaxial growth using almost arbitrary percentages x in Ga1−xAlxAs

[Gru06].

In this section the reader is reminded of the basic electronic properties of semi-

conductors in general (subsection 2.1.1) and occurring peculiarities when the dimen-

sionality is reduced (subsection 2.1.2). The discussion is focused on the properties

of GaAs-based compound semiconductors and follows the textbooks by Gaponenko

[Gap98], Grundmann [Gru06], Klingshirn [Kli05], and Weisbuch [Wei91], unless spec-

ified otherwise.

2.1.1 Carrier eigenstates in semiconductors

In order to describe the properties of electrons in a solid with its∼ 1023 atoms, one has

to account for Coulomb interactions with all other electrons as well as with the lattice

ions. This generally results in a computational problem being ab-initio unsolvable

in explicit form, as the number of particles and the overall degrees of freedom are

simply too large. It is however possible to decouple the initial hierarchy of N coupled

one-particle equations by considering the collective effects of carriers and nuclei as an

average crystal potential Uave(~r). A simplified form of the single-particle Hamiltonian

H can then be written as

Hψ =

[
− ~2

2m
∇2 + Uave(~r)

]
ψ = Eψ . (2.1)

Taking further into account the periodicity of the crystal, the electron energy-eigen-

functions can be described by a product of a lattice-periodic wave function un,~k(~r)

modulated by a plane wave [Ash76]:

ψn,~k(~r) = ei
~k~run,~k(~r) . (2.2)

Here, n denotes the band index. The solutions given by equation (2.2) are generally

known as Bloch waves.

When calculating the band structure of a semiconductor, the particular crystal

symmetry is of great importance. As mentioned above, GaAs and alloys of the form

Ga1−xAlxAs crystallise in the zincblende structure; they consist of two interpenetrat-

ing face-centred-cubic lattices. GaAs is a direct band-gap semiconductor, meaning

that the lowest CB energy and the highest VB energy occur at the same crystal

momentum ~k, namely at the centre of the Brillouin zone (Γ-point) [Ash76]. The

conduction band has a parabolic form around the Γ-point, and electrons can thus be

described as quasi-particles with an effective mass m∗e which is inversely proportional

to the curvature of the CB. As the Bloch wave function has an s-type symmetry, the

CB in GaAs and AlAs is two-fold degenerate due to the two possible realisations of

the electron spin.

The valence band, on the other hand, has a p-type symmetry with angular mo-

mentum L = 1, which results in a six-fold degeneracy. The band with total angular
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momentum J = 1/2, however, is split from the band with J = 3/2 due to spin-orbit

effects. Furthermore, the valence band with J = 3/2 has an underlying fine struc-

ture:2 When the crystal momentum is along the z-axis, the angular momentum can

be quantised along z. Further, except at the Γ-point, the band |J = 3/2, Jz = 1/2〉
and the band |J = 3/2, Jz = 3/2〉 split due to their different effective masses. Here,

the band |J = 3/2, Jz = 1/2〉 with lighter effective mass m∗lh is called the light hole

(lh), while the band |J = 3/2, Jz = 3/2〉 with heavier effective mass m∗hh is denomi-

nated as the heavy hole (hh). In this thesis, only these two valence sub-bands will

be considered.

2.1.2 Carrier eigenstates in low-dimensional structures

With the technological progress of epitaxial growth techniques, such as molecular

beam epitaxy (MBE) and metalorganic vapour phase epitaxy, semiconductor mate-

rials can be fabricated with atomic monolayer precision. These advances gave birth

to low-dimensional heterostructures such as two-dimensional quantum wells (QWs),

one-dimensional quantum wires, and finally zero-dimensional quantum dots (QDs).

In these nanostructures the motion degree of freedom of charge carriers is constrained

in one or more dimensions on the order of their thermal de Broglie wavelength,

λdB
e,h = 2π~

[
3m∗e,hkBT

]−(1/2)
. (2.3)

Here, kB denotes the Boltzmann constant and T the carrier temperature. Conse-

quently, due to the confinement, the carrier eigenstates change significantly. Quanti-

sation effects become prominent, which manifest particularly in the density of states,

which in turn specifies the number of available carrier eigenstates within an infinites-

imal interval dE around a certain energy E. The dependence of the density of states

D(E) of CB electrons on the dimensionality is reflected in the following equations:

D3-dim(E) =
1

2π2

(
2m∗e

~2

)3/2√
E − ECB , (2.4a)

D2-dim(E) =
m∗e

π~2

∑
i

Θ(E − ECB −∆Ei) , (2.4b)

D1-dim(E) =
1

π

(
2m∗e

~2

)∑
i

[
niΘ(E − ECB −∆Ei)√

E − ECB −∆Ei

]
, (2.4c)

D0-dim(E) =
∑
i

niδ(E − ECB −∆Ei) . (2.4d)

The dimensionality-dependent quantisation effect is further illustrated in figure 2-1.

Within the framework of this thesis, microcavity systems with type-I QDs as well as

systems using type-I QWs as optically active material are investigated.3 While the

density of states is described by a sum of step functions in the case of a QW, it is

given by delta peaks in the case of a QD.

2For details on the fine structure of the hole bands, see, e.g., the discussion in reference [Wei91].
3The evolution of the band-gap energy of type-I nanostructures is shown schematically in panel

(b) of figure 2-2. Here, both the electron and the hole are confined inside the QW layer. In
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Figure 2-1: Schematic illustration of the electronic density of states for various dimen-

sionality. Figure is adapted from reference [Gap98].

Semiconductor quantum wells

A semiconductor quantum well is typically formed by growing a thin film of a material

A with energy band-gap Ea
gap between two layers of material B with larger energy

band-gap Eb
gap. The layer sequence and the evolution of the band-gap energy of such

a heterostructure are shown schematically in figures 2-2(a) and 2-2(b), respectively.

In such a QW, the wave function of the CB electron reads

ψa,b
~k

(~r) = exp
{
i~k|| · ~r

}
ua,b
n,~k

(~r) χn(z) , (2.5)

where ua,b
n,~k

(~r) is the Bloch wave function of the carrier in material A or B, and z is the

growth direction of the structure. Inside the QW plane, the electron can move freely.

Here, its wave function is described by a plane wave with a direction of propagation

k||. The envelope function χn(z) indicates the influence of the barrier layers and is

assumed to vary slowly with z. χn(z) satisfies a Schrödinger equation which takes

into account both the particular effective electron mass and the individual position

of the CB minimum in the different materials A and B. In such a QW structure, the

solutions for the confined electron wave functions are characterised by a sinusoidal

form inside the QW and an exponential decay outside the QW layer.

Due to the QW confinement potential both the CB minimum and the VB max-

imum are shifted, resulting in a larger energy band-gap Ea,qw
gap as compared to the

bulk case Ea,bulk
gap . This is illustrated in panel (c) of figure 2-2. Also, the hh and lh

bands are known to split at the Γ-point, which is a result of the different confinement

heterostructures with type-II band alignment, however, the evolution of the band-gap energy is

described by a staggered gap and, thus, electron and hole will localise in different materials [Gru06,

Vas99, Wei91].
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Figure 2-2: Schematic illustration of a type-I quantum-well structure. Panel (a) shows a

typical barrier-QW-barrier layer structure. The corresponding evolution of the energy gap

Egap along the structure growth direction is sketched in panel (b): The QW material A with

smaller energy gap Ea
gap is sandwiched between the barrier material B with larger energy gap

Eb
gap. A conduction-band electron (valence-band hole) captured by the QW confinement

potential is shown as filled (open) circle. A sketch of the two-dimensional zincblende QW

band structure is presented in panel (c). The band-gap energy Ea,qw
gap is larger in the

QW as compared to the energy gap Ea,bulk
gap in bulk material due to the confinement.

Also, the degeneracy of the two hole bands is lifted for kx,y = 0 due the different hh and

lh confinement energies in growth direction of the QW. In a first approximation, the hh

has a lighter in-plane mass as the lh (dotted lines). In general, these two bands anti-

cross, resulting in the bands shown as solid lines, as described by the so-called Luttinger

Hamiltonian [Kli05, Wei91].

energies in growth direction for hh and lh. Furthermore, in a first approximation,

the hh band exhibits a smaller in-plane mass mx,y
hh than the lh band, as depicted by

the dotted lines. Typically, these two bands anti-cross at some finite in-plane wave

number kx,y, forming the hh and lh bands shown by the solid lines in figure 2-2(c).4

As can be depicted from panel (b) of figure 2-2, electrons and holes can be trapped

inside such a QW layer, and, thus, the electron and hole wave functions overlap. Con-

sequently, the Coulomb interaction between electrons and holes has to be considered

in order to adequately describe their dynamics, especially with respect to radiative

recombination processes. When an electron in the CB and a hole (say a hh) in the

VB are bound by their Coulomb interaction, they are typically referred to as com-

4Note that, in general, the VB fine structure of a GaAs/AlGaAs QW is much richer. However, a

full description is beyond the scope of this thesis. A detailed discussion of the QW-VB fine structure

can be found, e.g., in reference [Cha85].
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pound quasi-particle, called the exciton.5 Essentially, an exciton in a QW can be

described by the same equations as the two-dimensional hydrogen atom.6 Here, the

problem can be separated into the centre of mass motion and the relative motion of

the constituents. While the centre of mass motion is characterised by plane waves,

the relative motion problem is more complex. It requires solving a one-body problem

in a Coulomb potential, where the reduced mass 1/m∗X = 1/m∗e +1/m∗h of the exciton

has to be taken into account. In a perfectly two-dimensional environment, this results

in the 1s-state of the exciton being described by a wave function

ψ1s(re-h) =
1

α1s

√
2π

exp

{
− re-h

2α1s

}
, (2.6)

where the QW exciton Bohr radius reads

α1s =
1

2

m0

m∗X
εraB = 0.5 · α3-dim

1s . (2.7)

Here, m0 is the free electron mass and aB is the Bohr radius of the hydrogen atom.

The relative distance between the electron and the hole is given by re-h. The exciton

binding energy is then calculated to be

Eqw
b,1s = − 4

ε2r

m∗X
m0

m0e
4

(4πε0~)2 ≈ 4E3-dim
b , (2.8)

where the third term is identified as the atomic Rydberg energy ERy = 13.6 eV. For

two-dimensional excitons, the theoretically possible binding energy is thus about four

times larger than in the case of excitons in bulk semiconductors.

From equations (2.7) and (2.8), the exciton Bohr radius and binding energy

in a GaAs QW are calculated to be α1s ≈ 11 nm and |Eqw
b,1s| ≈ 21 meV, respec-

tively.7 These parameter values would be true if the QW exciton was perfectly two-

dimensional. Due to the finite QW barrier height, however, the exciton wave function

spreads in z direction. In the QW microcavity sample investigated in this work, the

GaAs/AlAs QWs have a thickness of 7 nm. Their exciton binding energy is assumed

to be |Eqw
b,1s| ≈ 10 meV. Due to this increased binding energy as compared to the bulk

excitons, the QW exciton is less susceptible to ionisation. In contrast to the case of

a GaAs bulk crystal, it is therefore possible to measure excitonic photoluminescence

in GaAs QWs at temperatures up to room temperature [Che88].

5In the present work, the excitons are typically so-called Wannier-Mott excitons, characterised

by a relatively large exciton Bohr radius compared to the lattice constant. In contrast to Wannier-

Mott excitons, Frenkel excitons appear if electron and hole are localised at the same lattice atom.

This is usually the case in ionic crystals as well as in molecular solids [Kop07].
6While the three-dimensional hydrogen atom is a standard textbook example, the mathematical

treatment of the limiting case of a two-dimensional hydrogen atom is not. A detailed discussion of

the two-dimensional problem can be found, e.g., in the appendix of reference [Rou11].
7Here, the effective masses m∗e = 0.067m0 and m∗h = 0.5m0 as well as a permittivity of εr = 12.4

were used. Parameters taken from reference [Li00].
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For experiments where a quantum well is embedded in a microcavity,8 the energy

dispersion relation of a QW exciton with respect to its in-plane momentum is of par-

ticular interest. Using the electron and hole dispersions in parabolic approximation,

the dispersion of a QW exciton at small kx,y values is given by

Eqw
X (kx,y) = Eqw

gap + Eqw
e + Eqw

h + Eqw
b,1s (2.9)

≈ Eqw
X (0) +

~2k2
x,y

2m∗X
. (2.10)

However, in the experimentally accessible kx,y-range of typically a few inverse micro-

metres, the exciton dispersion can be assumed to be essentially flat.

Semiconductor quantum dots

While smooth and flat interfaces are desirable to optimise QWs, the actual lattice con-

stant mismatch of different semiconductor materials is the key to the self-assembled

growth of semiconductor quantum dots. The most important method to fabricate

high-quality self-assembled QDs, especially with respect to GaAs-based materials, is

the Stranski-Krastanov process [Leo94, Leo98]: Using a GaAs substrate, monolayers

of a material with smaller band-gap energy, like (In,Ga)As, are deposited subse-

quently, creating the so-called wetting layer. As soon as the wetting layer reaches a

critical thickness, the strain in the layer surface is minimised by developing distinct

islands. With further deposition of InAs monolayers, these islands start to grow until

they reach a height of several nanometres. Typically, the QDs are then covered with

a thick layer of GaAs. In a simplified picture, the evolution of the band-gap energy

in all three dimensions can thus be described as shown in panel (b) of figure 2-2.

In GaAs-based materials, such self-organised QDs typically reveal a shape close to

cylindrical lateral symmetry along with a strong in-plane carrier confinement [Bay02].

This means, that the QD radius rqd is smaller than the exciton Bohr radius αqd
1s . In

an idealised picture of a perfectly spherical QD, the exciton can be described taking

the Coulomb interaction and the dot confinement potential U (r) into account. This

results in the Hamiltonian

Hqd
X = − ~2

2m∗e
∇2 − ~2

2m∗h
∇2 − e2

ε|~re − ~rh|
+ Uqd(r) (2.11)

It leads to a ground electron-hole pair state (1s1s) energy, which in terms of the

three-dimensional exciton Rydberg energy E∗Ry = ERy ·m∗X/(ε2rm0) reads9

Eqd
1s,1s = Egap + π2

(
αqd

1s

rqd

)2

E∗Ry − 1.786
αqd

1s

rqd
E∗Ry − 0.248E∗Ry . (2.12)

8Compare section 2.3 of this chapter. Experimental results obtained on a microcavity with

embedded quantum wells are discussed in chapter 5.
9It should be noted that equation (2.12) is only valid in the limit rqd � aB. Furthermore, note

that equation (2.12) does not account for the fact that holes are typically of p-type symmetry in

GaAs-based materials, as mentioned in section 2.1.1. For a detailed discussion of the electron-hole

pair ground-state energy, please refer to chapter 2 of reference [Gap98] and references given therein.
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The creation of excitonic states in QDs can be realised by excitation of carriers

through optical or electrical pumping into the continuum of barrier states. Subse-

quently, the carriers are captured into the confinement potential of the QDs. Due to

fast non-radiative relaxation processes on a typical time scale of a picosecond [Gie07],

the carriers finally occupy the lowest-energy shell states inside the QDs. The lowest

state in (In,Ga)As-based quantum dots, whose energy can be approximated by equa-

tion (2.12), is composed of combinations of the electron with spin Se,z = ±1/2 and

the heavy-hole state with spin Shh,z = ±3/2.

The ground-state emission spectrum from a single semiconductor QD can be de-

scribed by a Lorentzian profile with Eqd
1s,1s as centre energy. The width ∆Eqd of this

emission line is directly related to the lifetime τX of the exciton by ∆Eqd ≈ ~/τX.

However, when ensembles of QDs are studied, the emission spectrum is generally

broadened as individual QDs differ in size, shape and material composition due to

the growth technique. The emission spectrum is then characterised by a Gaussian

envelope function.

In general, there are several other aspects which have to be considered when de-

scribing the emission spectra as well as the carrier dynamics, e.g. biexcitons, charged

QD states, and exchange interactions [Bay99, Bry90, Hin01]. These topics, however,

go beyond the scope of the present thesis.

2.2 Semiconductor Microcavities

Optical semiconductor microcavities are characterised by their resonator length being

of the order of the wavelength λcav for which they are designed. These resonators

have been fabricated and studied in many different geometries, such as microdiscs,

microspheres, photonic crystal cavities as well as Bragg resonators.10 In this thesis,

microcavities based on Bragg resonators are investigated. The corresponding physical

concepts are presented in this section. The discussion follows Savona et al. [Sav95],

unless indicated otherwise.

2.2.1 Bragg resonators

In principle, a Bragg resonator is a Fabry-Pérot-style optical resonator, i.e. two planar

mirrors facing each other at a distance Lcav. With ncav being the refractive index of the

medium inside the cavity, the free spectral range ∆λ between adjacent longitudinal

cavity modes is given by

∆λ =
λ2

2ncavLcav

. (2.13)

In a macroscopic resonator with this geometry (Lcav � λ), the different cavity modes

are closely spaced. However, when Lcav ∼ λcav/ncav as in a microcavity, the modes

10For a general overview on microcavities, see, e.g., the publications by Kavokin et al. [Kav07]

and Vahala [Vah03] and references given therein.
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Figure 2-3: Schematic illustration of an optical Bragg resonator containing a single QW

as optically active medium at the centre of the half-wavelength cavity layer. The black

horizontal arrow indicates the direction of growth z, which coincides with the direction

of hindered photon propagation kz (red arrow). The top and bottom DBR mirrors are

made of alternating layers of two different semiconductor materials with unequal indices of

refraction n1 and n2, respectively. The evolution of the refractive index is shown at the top.

In this example, the cavity layer with thickness Lcav = λ/2 is made from the same material

as the substrate. It should be noted that, while this illustration shows a QW embedded in

the cavity layer, the discussion in section 2.2 is strictly speaking only valid for an empty

microcavity. This figure is adapted from reference [Den10].

are spectrally strongly separated, which essentially allows single-mode emission.

In such a Bragg resonator, the mirrors are realised by so-called distributed Bragg

reflectors (DBRs). A schematic diagram of such a microresonator is shown in figure

2-3. The DBR surrounding the central cavity consists of periodic stacks of two λBr/4

layers with different refractive indices, where λBr is the Bragg design wavelength. In

the samples studied in this thesis these layers are typically made of GaAs (refractive

index nGaAs) and AlAs (nAlAs). In that way, the DBR creates a photonic band gap,

the so-called stopband. It is characterised by a spectral range of high reflectivity

around λBr. The stopband is accompanied by oscillating side-lobes on either side of

the reflection spectrum. In the theoretical case of an infinite DBR stack, the spectral

width ∆λSB of the stopband can be approximated by [Yeh88]

∆λSB ≈
4λBr

π
arcsin

(
nGaAs − nAlAs

nGaAs + nAlAs

)
. (2.14)

It results in ∆λSB ≈ 100 nm when supposing a resonance wavelength of λcav = 850 nm.

The transmission of photons propagating in the direction of the DBR periodicity,

which is usually the growth direction of the resonator, is thus suppressed and photons
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are efficiently reflected. The maximum peak reflectivity of the DBR stack is calculated

by

R = 1− 4

ncav

(
nAlAs

nGaAs

)2N

, (2.15)

and thus depends on both the refractive index contrast (nAlAs/nGaAs) and the number

of quarter-wave layer pairs N . The latter is also connected to the quality factor of

the cavity, Q. In terms of the experimentally accessible emission spectrum, the cavity

Q-factor can be approximated by

Q =
λcav

∆λcav

, (2.16)

with ∆λcav being the spectral width of the cavity mode.

In such a Bragg microresonator, the electromagnetic field inside the cavity can be

described as a standing wave with antinodes at the centre of the cavity as well as at

the interface of the cavity layer to the DBR stack. Accordingly, this wave penetrates

into the Bragg structure up to a penetration depth which is given by

LDBR =
λcav

2nGaAs

· nAlAsnGaAs

nGaAs − nAlAs

. (2.17)

This results in a total effective cavity length of Leff = Lcav + LDBR. Moreover, as a

consequence of possible growth imperfections, the stopband center frequency ωSB and

the frequency ωcav corresponding to Lcav are not necessarily identical. In general, the

resonant frequency of the Bragg resonator then reads [Pan99]

ωres =
ωcavLcav + ωSBLDBR

Leff

. (2.18)

In a microcavity structure as shown in figure 2-3, a photon is confined only along the

growth axis z. Consequently, a cavity photon will show an energy dispersion, which

can be described by

E0(k) =
~c
ncav

√(
2π

Lcav

)2

+ k2
|| , (2.19)

where k|| is the photon in-plane wave vector. This dispersion has a parabolic shape

for small k||, thus describing an effective photon mass mcav = hncav/(cLcav). This

effective mass is known to be in the order of 10−5m0 [Whi96]. Moreover, the energy

dispersion relation given in equation (2.19) has the advantage that it can easily be

accessed experimentally: The angle of the emission from the microcavity (θ) is directly

related to the photon in-plane wave vector by k|| = k sin(θ).

2.2.2 Micropillar cavities

In a Bragg resonator as described in the previous subsection, in-plane photon states

are unaffected by the cavity confinement. However, in order to further reduce the

mode volume, it is necessary to confine photons in the lateral direction as well. This



2.3 Coupling of Light and Matter in Semiconductor Microcavities 15

is usually achieved by further processing of a planar Bragg resonator: Using reactive

ion etching techniques, pillar-like structures with almost arbitrary cross-section can

be realised [Löf05, Rei07].

In this thesis, only micropillar cavities with nominally circular cross-section are

examined. The calculation of the corresponding cavity modes is thus a problem with

rotational symmetry. As a result, the energy of the fundamental as well as higher-

order modes is highly dependent on the diameter d of the pillar [Gut98]:

Enφ,nr =

√
E2

0 +
~2c2

n2
cav

x2
nφ,nr

[d/2]2
. (2.20)

Here, xnφ,nr is the nr-th zero of the Bessel function Jnφ(xnφ,nrr/[d/2]) [Abr72], and

E0 = ~ck0/ncav gives the quantisation energy in the direction of growth z, as it follows

from equation (2.19). It is thus possible to shift the mode spectrum into the blue by

reducing the pillar diameter.

Such a cylindrically shaped pillar microcavity exhibits distinct features. The rota-

tional symmetry of its emission, e.g., makes it favourable for coupling into optical fi-

bres. Moreover, the free-spectral range between adjacent lateral modes can be further

increased when decreasing the pillar diameter. Thereby higher-order modes may shift

out of the high-reflectivity stopband. However, when the micropillar cross-section is

perfectly circular, a drawback lies in the two-fold degeneracy of the fundamental

emission mode. This can deteriorate the polarisation stability of micropillar lasers.

A study of the polarisation and coherence properties of micropillar lasers with QDs

as active material will be presented in chapter 4.

2.3 Coupling of Light and Matter in Semiconduc-

tor Microcavities

As implied in the schematic illustration of a Bragg resonator shown in figure 2-3,

a semiconductor nanostructure such as a quantum well or a quantum dot can be

embedded in a microcavity and thus be used as optically active medium. In order

to maximise cavity-induced effects, the nanostructure is generally positioned at an

antinode of the intra-cavity electromagnetic field distribution, i.e. at the centre of

the cavity layer in the case of a half-wavelength cavity as shown in figure 2-3. The

main operation characteristics of the microcavity are then strongly influenced by the

coupling strength between excitons in the nanostructure and the fundamental cavity-

photon mode. In principle, one has to distinguish between the regimes of strong and

weak light-matter coupling.

The basic concepts of light-matter interaction are presented in this section. The

discussion follows essentially the publications by Kavokin et al. [Kav07] and by Deng

et al. [Den10], unless indicated otherwise.
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2.3.1 Weak coupling in microcavities

The regime of weak coupling is characterised by the alteration of the spontaneous

emission (SE) rate of an optically active emitter embedded in a microcavity, which

is generally known as the Purcell effect [Pur46].

The Purcell effect can theoretically be described by perturbation theory, i.e. by

the use of Fermi’s golden rule. Consider an optical emitter characterised by an electric

dipole ~d which interacts with the electromagnetic field ~E(~r, t) at position ~r and time

t. If the emission energy of the emitter is given by ~ωem, the SE rate of that emitter,

γsp, can be written as

γsp =
1

τsp

=
2π

~2

∣∣∣~d · ~E(~r, t)
∣∣∣2 · ρvac(ωem) . (2.21)

Here, ρvac(ωem) is the density of states of the electromagnetic field in the vacuum,

evaluated at the specific frequency of the emitter. In general, for a mode volume V

and an index of refraction n it is given by:

ρvac(ω) =
ω2V n3

π2c3 . (2.22)

The electromagnetic field inside a resonator, however, is altered. Considering a micro-

cavity with fundamental mode frequency ωcav and a quality factor of Q = ωcav/∆ωcav,

the photon density of states reads:

ρcav(ω) =
2

π

∆ωcav

4(ω − ωcav)2 + ∆ω2
cav

. (2.23)

As a consequence, the spontaneous emission rate into the cavity mode ωcav is changed

as well. In comparison to the SE rate into the vacuum, it is enhanced by a factor of

Fp =
3

4π2 ·
λ3

cav

n3
cav

· Q
Veff

, (2.24)

where Veff is the effective mode volume, and λcav and ncav are the design wavelength

and the effective index of refraction of the microcavity, respectively. The factor Fp

given by equation (2.24) is known as the Purcell factor. The influence of the altered

photonic density of states is sketched in figure 2-4: In the case of an emitter (QD1)

being in resonance with the cavity-photon field, the SE rate is enhanced, i.e. its

emission line broadened. For an off-resonant emitter (QD2), the SE rate remains

unchanged as in vacuum. Thus, by tailoring the photon field as by enclosing it in

a microresonator, the emission from an optically active medium can be used more

efficiently to generate optical gain.

Microcavities operating in the weak coupling regime are often used to realise low-

threshold lasing operation [Bjö94, McC92, Rei08]. A large Purcell factor can be used

to increase the so-called β-factor of the lasing mode, which is defined as the SE rate

into that specific mode divided by the total SE into all available resonator modes. In
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Figure 2-4: Photon density of states in the vacuum ρvac(ω) (dashed black) compared

to a microcavity single mode ρcav(ω) (solid black). The Lorentzian emission lines of two

quantum dots are sketched for two different cases. In the case of QD1, the emitter is in

resonance with the cavity mode, and its spontaneous emission rate is enhanced. In the case

of QD2, the emitter is strongly detuned with no final state to decay to. Consequently, the

lifetime of QD2 is increased, corresponding to a narrow emission line. Figure is adapted

from reference [Kav07].

a microresonator, the β-factor can reach values close to unity. This has a significant

influence on the emission characteristics of the microcavity, i.e. its lasing threshold

becomes more difficult to identify [Ric94, Yam91]. A thorough characterisation of

the lasing threshold of pillar-shaped Bragg microresonators with high Q-factors and

high β-factors is the main topic of the experimental study presented in chapter 4.

2.3.2 Strong coupling in microcavities

If the Q-factor of a microcavity is high enough, it is possible that a photon which has

been emitted into the resonator is re-absorbed by the optically active medium. In

such a case, a description of the system using perturbation theory and Fermi’s golden

rule is no longer valid. Instead, the coupling between the cavity-photon field and the

electronic excitation in the nanostructure has to be considered. Consequently, the

system is then denoted to be in the regime of strong coupling. In this section, the

nanostructure embedded in the microcavity is assumed to be a quantum well, as

illustrated in figure 2-3.

Using the so-called rotating wave approximation, the Hamiltonian of a micro-

cavity containing a QW is composed of the individual Hamilton operators of the

quantum-well exciton and the cavity photon, ĤX and ĤC, respectively. In addition,

the coupling of photon and exciton has to be accounted for. If the direction of growth

of the cavity—and thus the direction of photonic confinement—is assumed to be in z-

direction, only the in-plane dynamics corresponding to a wave vector k|| are essential.
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Using k = k|| for simplicity, the Hamiltonian then reads11

Ĥ = ĤX + ĤC + Ĥcoupling

=
∑
k

EX(k) â†kâk +
∑
k

EC(k) b̂†kb̂k +
∑
k

~g(k)
(
â†kb̂k + âkb̂

†
k

)
. (2.25)

Here, â†k and âk are the creation and annihilation operators of an exciton with in-

plane wave vector k. Accordingly, b̂†k and b̂k are the photonic counterparts. The

exciton-photon coupling is given by

~g(k) = µcvϕ1s

√
EC(k)/ (2ε0εr) , (2.26)

where µcv is the dipole matrix element describing the interaction of electron and

hole, and ϕ1s is the Fourier transformed envelope function of the 1s-exciton [compare

equation (2.6)]. The coupling term ~g(k) is non-zero only between modes with the

same in-plane wave vector.

The creation and annihilation operators of the photon mode are obviously bosonic.

Provided that the operators â†k and âk obey the bosonic algebra as well, i.e. [âkâ
†
k] = 1,

the Hamiltonian in equation (2.25) can be diagonalised. For that purpose, a so-called

Hopfield transformation is applied, which defines new operators p̂k and q̂k:

p̂k ≡ Xkâk − Ckb̂k , (2.27a)

q̂k ≡ Ckâk +Xkb̂k . (2.27b)

Here, the Hopfield coefficients Ck and Xk are introduced. As a result of the diago-

nalisation procedure, the microcavity Hamiltonian can be re-written as

Ĥ =
∑
k

EUP(k) q̂†kq̂k +
∑
k

ELP(k) p̂†kp̂k . (2.28)

The operators (p̂†k, p̂k) and (q̂†k, q̂k) describe the creation and annihilation operators

of new eigenstates of the system. These new quasi-particles are called the upper

polariton (UP) and lower polariton (LP), according to the two branches of higher

and lower eigenenergies, respectively.12 Their energy dispersion relations are denoted

as EUP(k) and ELP(k) and are deduced from the diagonalisation as

EUP,LP(k) =
1

2
[EX(k) + EC(k)]± 1

2

√
∆2
k + 4 [~g(k)]2 . (2.29)

The splitting between the two polariton branches is thus dependent on the light-

matter interaction strength 2~g as well as on the detuning between the energies of

the bare cavity mode and the bare exciton state given by

∆k ≡ EC(k)− EX(k) . (2.30)

11It should be noted that in the present description different spin states as well as other states

than the 1s-exciton are neglected.
12The term polariton in general refers to an interacting system of a photon with another quasi-

particle. The latter can be any optically accessible excitation of matter, e.g. a phonon, a plasmon or

a magnon. A more general overview on polaritonic systems can be found, e.g., in reference [Kli05].

Within this thesis, the term polariton refers solely to exciton-polaritons in quantum-well Bragg

resonators.
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Figure 2-5: Energy levels of the upper and lower polaritons at zero in-plane wave vector

as a function of the cavity-exciton detuning ∆0. The polariton energies EUP (red line)

and ELP (blue line) are obtained using equation (2.29). Parameters (EX = 1.610 eV,

2~g(0) = 2~ΩR = 14 meV) are chosen in order to match those of the microcavity sample

examined in chapter 5. The energy dispersions of the cavity-photon and the bare exciton

are shown as dashed and dotted lines, respectively.

As an example, the detuning dependence of the UP and LP energy levels at k = 0 is

shown in figure 2-5, using parameters of EX = 1.610 eV and 2~g(0) = 14 meV. These

parameters are chosen in order to match those of the microcavity sample examined

in chapter 5.

As a result, a polariton can be described as a linear superposition of a cavity

photon and a semiconductor exciton, both having the same in-plane wave vector k.

The bare photon and exciton modes are hence only transient states that periodically

exchange their energy. The average photonic and excitonic fractions of a polariton

are then given by the amplitude squared of the Hopfield coefficients, |Ck|2 and |Xk|2,

which satisfy the relation |Ck|2 + |Xk|2 = 1. These coefficients can be calculated by

|Ck|2 =
EUP(k)EX(k)− ELP(k)EC(k)

[EC(k) + EX(k)]
√

∆2
k + 4 [~g(k)]2

=
1

2

1− ∆k√
∆2
k + 4 [~g(k)]2

 , (2.31a)

|Xk|2 =
EUP(k)EC(k)− ELP(k)EX(k)

[EC(k) + EX(k)]
√

∆2
k + 4 [~g(k)]2

=
1

2

1 +
∆k√

∆2
k + 4 [~g(k)]2

 . (2.31b)
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In the case of the LP, its excitonic fraction is given by |Xk|2, while its photonic

fraction is given by |Ck|2. In the case of the UP, the behaviour is opposite.

Example dispersion relations EUP,LP(k) and the corresponding amplitude-squared

Hopfield coefficients are shown in figure 2-6 for different values of the cavity-photon

detuning ∆0. Here, the following observations can be made. The general behaviour

at larger k is found to be independent of the detuning: In that case, the LP asymp-

totically follows the bare exciton dispersion, while the UP asymptotically follows the

bare cavity-photon dispersion. At negative detuning, the LP has a higher photon

fraction around k = 0, while the UP has a larger exciton fraction. In contrast to

this, the LP is more exciton-like at positive detuning, while the UP is more photon-

like. In the special case of the cavity and the exciton modes being in resonance, i.e.

EC(0) = EX(0) (middle column of figure 2-6), the squared Hopfield coefficients are

|C0|2 = |X0|2 = 1/2. Thus, both the LP and the UP are exactly half-photon and

half-exciton at zero in-plane momentum. As can be seen from the example disper-

sion curves, the actual value of the detuning at k = 0 has a strong influence on the

curvature of the dispersion relations.

In the optically accessible momentum space around k = 0, the polariton disper-

sions can be approximated by parabolic functions as

ELP,UP(k) ≈ ELP,UP(0) +
~2k2

2mLP,UP

. (2.32)

Thereby, the effective masses of the LP and UP are defined. They can be expressed

by the exciton and cavity-photon masses, mX and mC, as follows:

1

mUP

=
|C0|2

mX

+
|X0|2

mC

, (2.33a)

1

mLP

=
|X0|2

mX

+
|C0|2

mC

. (2.33b)

As the effective photon mass is generally much lighter than the effective mass of the

exciton, mC � mX, the polariton masses can be approximated by

mUP = mC/|X0|2 , (2.34a)

mLP = mC/|C0|2 . (2.34b)

It is worth noting that the effective mass of the LP is of the order of mLP ∼ 10−4mX

and, thus, much lighter than the exciton mass. This will be of major importance

when treating polariton lasing in chapter 5.

In the same way as the Hopfield coefficients affect the polariton effective masses,

they also have a significant influence on the lifetime of the polariton states. The

lifetimes of polaritons with wave vector k are given by

1

τUP,k

=
|Ck|2

τX,k

+
|Xk|2

τC,k

, (2.35a)

1

τLP,k

=
|Xk|2

τX,k

+
|Ck|2

τC,k

. (2.35b)
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Figure 2-6: Top row : Dispersion relations E(k||) at different cavity-exciton detunings of

(a) ∆0 = −6 meV, (b) 0 meV and (c) +6 meV. The dispersion relations of the LP (blue line)

and the UP (red line) are obtained using equation (2.29). The exciton energy at k|| = 0

and the interaction strength are chosen to be EX(k|| = 0) = 1.61 eV and 2~g = 14 meV,

respectively. These parameters correspond approximately to those of the sample examined

in chapter 5. The bare cavity photon dispersion is based on equation (2.19), while the bare

exciton dispersion (dotted line) is assumed to be essentially flat in the k||-range shown.

Bottom row : Corresponding amplitude-squared Hopfield coefficients at the same cavity-

exciton detunings as in the upper row, calculated by means of equations (2.31a) and (2.31b).
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While quantum-well excitons can have lifetimes of τX,0 ∼ 1 ns, the cavity-photon

lifetime is rarely higher than a few picoseconds. The lifetime of the polaritons is thus

limited by the cavity-photon lifetime, which is proportional to the cavity Q-factor.

When the eigenstates of a combined system of a microcavity and a quantum well

can be described by the lower and upper polariton branches, the system is denoted to

be in the strong coupling (SC) regime.13 Although it may be suggested by equation

(2.29), a quantum-well microcavity is not generally in the strong coupling regime. To

outline the circumstances in which such a system is indeed characterised by polari-

tonic signatures, the finite lifetimes of both the cavity photon and the quantum-well

exciton have to be considered. When the leakage of photons out of the cavity and

non-radiative exciton recombination processes are governed by the decay rates γC

and γX, respectively, the polariton dispersions read

EUP,LP(k) =
1

2
[EX(k) + EC(k)− iγX − iγC]

± 1

2

√
4~2Ω2

R − [∆k − i(γX − γC)]2 .

(2.36)

Here, ΩR describes the so-called Rabi frequency, at which the photon and exciton

modes exchange energy. In the specific case of zero cavity-exciton detuning, ∆0 = 0,

this equation can be simplified to

EUP,LP(k) = EX(k)− iγX + γC

2
± 1

2

√
4~2Ω2

R − (γX − γC)2 . (2.37)

The result of the expressions (2.36) and (2.37) will strongly depend on the sign

of the square-root argument. This demonstrates that the physical behaviour of the

system is determined by the interrelation of the exciton-photon coupling strength and

dissipative terms. Only in the case of 2~ΩR > |γC − γX|, the two polariton branches

appear and the system is in the SC regime. Experimental investigations on such a

quantum-well microcavity with a Rabi splitting of ~ΩR ≈ 14 meV are presented in

chapter 5.

When the sign below the square root in equation (2.36) is negative, i.e. 2~ΩR <

|γC − γX|, the last term of the equation becomes purely imaginary. In this case, the

bare cavity-photon and exciton dispersion modes are recovered and the system is

operating in the weak coupling regime described in subsection 2.3.1.

2.4 Characterisation of Light Fields

The most common properties of light are certainly its intensity, its wavelength or

frequency, as well as its polarisation. There are, however, further characteristic pa-

13In the scientific community working on quantum-well microcavity systems, the terminology

of strong coupling is generally accepted. Note, however, that this regime is not identical with

strong coupling in terms of quantum optics. In a true quantum-optical strong coupling system, the

absorption of a single photon should alter the system. For better differentiation, the appearance of

the two polariton branches in quantum-well microcavities is often referred to as non-perturbative

normal-mode splitting [Jah96, Khi06].
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rameters, which manifest in the coherence properties of light. In this section, the

terminology used to describe the coherence properties of the emission from semi-

conductor light sources is explained.14

2.4.1 Optical correlation functions

In classical physics, an ideal electromagnetic wave can be described as a plane wave

with frequency ω0 and complex amplitude E(t) = A(t) · exp[−iΦ(t)]. Disregarding

the polarisation degree of freedom, the electric field part of an optical wave can be

written as:

E(t) =
1

2
E(t) · exp(−iω0t) +

1

2
E∗(t) · exp(iω0t) (2.38)

= E+(t) + E−(t) . (2.39)

Such a perfectly monochromatic optical wave does not exist in nature: The natural

spectral linewidth of any light source results in an electromagnetic wave with finite

extension in time.

The finite spectral linewidth has significant implications for any phase relations

of the wave. Consider the state of the wave E(t) at two arbitrary points in time, say

t1 and t1 + τ . The common way to quantify phase relations between these points is

to take the product of both and to average this product over many different times

t1. Thereby, the product is taken as hermitian:
〈
E+(t1) · E−(t1 + τ)

〉
. If the wave is

coherent, the state of the wave at time t1 defines its state at time t1+τ . Consequently,

the product should have a specific expectation value. On the other hand, if the wave

is not coherent, arbitrary points in time will not be correlated and the average of the

product will be zero. For any real light source, it is then interesting to determine the

evolution of the product with τ . Furthermore, the above mentioned quantity should

be evaluated for any arbitrary point in time t. This is usually done by introducing

the first-order correlation function,

G(1)(τ) = 〈E(t) · E∗(t+ τ)〉 · exp(−iω0τ) , (2.40)

which mainly reduces the problem to the complex amplitude E(t) of the optical wave.

In order to facilitate the comparison of that quantity for different light sources, the

first-order correlation function is often written in its normalised form, which reads:

g(1)(τ) =
G(1)(τ)

G(1)(0)
=
〈E(t) · E∗(t+ τ)〉

〈|E|2〉
· exp(−iω0τ) . (2.41)

The first-order correlation function is thus a complex number which satisfies the

following properties:

g(1)(0) = 1 , (2.42a)

g(1)(τ) = g(1)(−τ) . (2.42b)

14An introduction to the theory of quantum-optical correlation functions can be found, e.g., in

the textbooks by Loudon [Lou73] and by Mandel and Wolf [Man95].
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Figure 2-7: Spectral density S(ω) (a) and corresponding first-order correlation function

(b) of different emission lines, illustrating the Wiener-Khinchin theorem [equation (2.44)].

The first-order correlation function of a Gaussian emission spectrum (black line) is again

a Gaussian function. A Lorentzian emission line (grey line) results in an exponentially

decaying G(1)(τ).

Moreover, for any real light source, g(1)(τ) decreases to zero for delay times τ →∞.

The characteristic time describing the decrease is called the coherence time and can

be calculated by

τc =

∫ +∞

−∞
|g(1)(τ)|2 dτ . (2.43)

Hence, the coherence time specifies the range of delay times τ in which phase relations

of the wave are constant in time.

The coherence time of a light wave is also directly connected to the power spectral

density S(ω) of the light source. As stated by the Wiener-Khinchin theorem [Khi34],

G(1)(τ) and S(ω) are related by

G(1)(τ) =
1√
2π

∫ +∞

−∞
exp(iωτ) · S(ω) dω . (2.44)

This relation, which is a special case of the Fourier transformation, is illustrated in

figure 2-7: If S(ω) displays a Gaussian shape, the first-order correlation function has

a Gaussian shape, too. In the case of a Lorentzian power spectral density, G(1)(τ) is

characterised by an exponential decay.

Hence, first-order correlations can be used to determine the spectral shape of

an emission line as well as its coherence time τc. However, in order to obtain a

full characterisation of the coherence properties of light, it is necessary to consider

higher-order correlations as well. Consequently, the introduced correlation function

is extended to second-order. Thus, fluctuations in the light intensity instead of the

amplitude are considered: The intensity of a photon mode at time t is compared to

the intensity at time t+ τ . The corresponding correlation function then reads

G(2)(τ) = 〈I(t) I(t+ τ)〉 . (2.45)
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Figure 2-8: Second-order correlation function g(2)(τ) of different light states. A ther-

mal state (solid black) typically displays photon bunching around zero delay; g(2)(τ) then

decreases towards unity for larger delay times. A coherent state (dashed dark grey) is char-

acterised by g(2)(τ) ≡ 1. Non-classical light (solid grey) exhibits second-order correlation

values below unity, i.e. g(2)(τ = 0) = 0 in the case of a single photon source. Note the

characteristic differences between the states at zero delay.

Again, in order to provide comparability with other light sources of different absolute

intensity, the second-order correlation function is normalised:

g(2)(τ) =
G(2)(τ)

〈I(t)〉 〈I(t+ τ)〉
=
〈I(t) I(t+ τ)〉
〈I(t)〉 〈I(t+ τ)〉

. (2.46)

Moreover, to take non-classical effects into account, it is necessary to write g(2)(τ) in

terms of the time-dependent bosonic creation and annihilation operators, b̂†(t) and

b̂(t), respectively. Following the theory developed by Glauber [Gla63], the normalised

second-order correlation function is then given by

g(2)(τ) =

〈
b̂†(t) b̂†(t+ τ) b̂(t) b̂(t+ τ)

〉
〈
b̂†(t) b̂(t)

〉〈
b̂†(t+ τ) b̂(t+ τ)

〉 . (2.47)

Here, the normal ordering of the operators is explicitly needed, as otherwise the

change of the state of the optical field due to the measurement of one photon would

not be accounted for. Equation (2.47) thus describes the conditional probability to

detect a second photon at a delay τ after the detection of the first photon at time t,

divided by the probability of photon detections at the same times t and t+ τ in the

case of photons emitted statistically independent of each other.

Example g(2)(τ) curves for three different kinds of light states are shown in figure

2-8. For very large delay times, τ → ∞, second-order correlations have generally a

value of g(2)(τ → ∞) = 1. This is due to the fact that photon emission events with

large delay are essentially uncorrelated, independent of the actual light state. At zero
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delay, however, these three basic kinds of light states can clearly be distinguished.

The differences lie in the probability of the simultaneous detection of two photons

being increased, unchanged or decreased, as compared to the case of g(2)(τ → ∞).

Using the photon number operator of the mode of interest, n̂ = b̂†b̂, the value of

the second-order correlation function in the case of equal arrival time of two photons

(τ = 0) is calculated as follows:

g(2)(0) =
〈n̂(t) · [n̂(t)− 1]〉

〈n̂(t)〉2
(2.48)

= 1 +

〈
[∆n̂(t)]2

〉
− 〈n̂(t)〉

〈n̂(t)〉2

= 1− 1

〈n̂(t)〉
+

〈
[∆n̂(t)]2

〉
〈n̂(t)〉2

. (2.49)

This last expression is composed of three characteristic terms. The first term is con-

stant and thus independent of the light state. The second term, which has a negative

sign, accounts for the change of the light state caused by the detection of the first

photon at time t. It is inversely proportional to the number of photons in the mode

of interest: the larger the number of photons, the smaller the effect of this term.

Finally, the third term is related to the photon-number variance 〈[∆n̂(t)]2〉 and ac-

counts for the intrinsic noise of the photon-emission processes, which is characteristic

of the light state under investigation.

Equation (2.47) reflects the correlations between two photons emitted at times t

and t+τ . In general, correlations can be calculated up to arbitrary order. If the order

is chosen to be m, the corresponding correlation function describes the probability of

m-photon detections. Generally, the correlation function of mth-order is defined as

g(m)(t1, t2, · · · , tm) =
〈:
∏m

i=1 n̂(ti) :〉
〈
∏m

i=1 n̂(ti)〉
, (2.50)

where the colons assure normal ordering of the underlying creation and annihilation

operators. The times t1, t2, · · · , tm denote the detection times of the first, second,

· · · , and mth photon, respectively. From a practical point of view, however, the

investigation of light states is often restricted to correlations up to second or third

order.

2.4.2 Commonly encountered light states

The three different light states shown in figure 2-8, namely thermal, coherent and

non-classical light states, display characteristic features in their photon statistics,

i.e. the photon-number distribution. These differences in the photon statistics are

directly reflected in different values of the equal-time correlation functions of second

and higher order. The characteristics of these most commonly encountered states of

light are presented in this section.
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Non-classical states

Non-classical light states cannot be described by classical electromagnetism. Proba-

bly the most prominent non-classical light states are the so-called Fock states, which

are eigenstates of the photon-number operator n̂. The photon-number distribution

of an m-photon Fock state is defined as

PFock(n) ≡

{
1 if n = m ,

0 if n 6= m .
(2.51)

This distribution is obviously of sub-Poissonian character, which especially manifests

in a vanishing variance: 〈(∆nFock)2〉 = 0. As this state is defined by the number

of photons in the light mode of interest, the probability of observing more than one

photon at a time is highly dependent on n, too. The equal-time correlations of second

order, as defined by equation (2.49), are then given by:

g
(2)
Fock(0) ≡ 1− 1

〈n〉
. (2.52)

In the case of a Fock state with n = 1, as shown by the solid grey line in figure 2-8,

g(2)(0) thus vanishes. This effect is commonly used to characterise single-photon

sources.

In principle, any light state which exhibits g(2)(0) < 1 is a non-classical state, as

a quantum-mechanical treatment is necessary to describe it.

Coherent states

The light field irradiated by an ideal single-mode laser is described by a Poissonian

photon-number distribution, as the individual photon-emission processes are uncor-

related. With 〈n〉 denoting the mean photon number per time unit, the probability

of n photons actually being in the light mode of interest can be calculated by

Pcoh(n) =
〈n〉n

n!
exp (−〈n〉) . (2.53)

Here, the most probable photon number coincides with the mean photon number.

Furthermore, the variance of this Poissonian distribution is given by 〈(∆ncoh)2〉 = 〈n〉.
Following the relation given by equation (2.49), this results in equal-time correlations

of second-order of exactly

g
(2)
coh(0) ≡ 1 . (2.54)

Moreover, as shown by the dashed grey line in figure 2-8, g(2)(τ) is equal to unity

independent of the delay τ . This means that an ideal laser is indeed characterised by

uncorrelated photon-emission events. Accordingly, the enumerator and the denomi-

nator in equation (2.47) are identical in this case.

In general, equation (2.54) represents a state that is coherent in second-order. A

perfectly coherent state, however, is described to be coherent up to arbitrary order.
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Consequently, a perfectly coherent state is characterised by

g
(m)
coh (0) ≡ 1 (2.55)

for all m.

Thermal states

The textbook example of a thermal emitter is the black body. A radiation field in

a thermal state can thus be described to be in thermal equilibrium with a black

body which acts as an emitter: Emission and absorption processes are in thermal

equilibrium, i.e. they cancel each other out. Furthermore, the only parameter needed

to specify the quantised radiation field is its temperature T . It can be shown that

the photon-number distribution of a single thermal mode of such a radiation field is

given by

Pthe(n) =
〈n〉n

(〈n〉+ 1)n+1 , (2.56)

where the effective temperature of the system defines the mean photon number 〈n〉 =

[exp (~ω/kBT )− 1]−1. Equation (2.56) thus follows a Bose-Einstein distribution with

a variance of 〈(∆nthe)
2〉 = 〈n〉+〈n〉2. Here, the first term is identical to the Poissonian

noise of a coherent state, while the second term reflects intensity fluctuations in the

mode of interest.

The increase in photon-number fluctuations results in the characteristic bunching

peak observed in second-order correlations, namely in

g
(2)
the(0) ≡ 2 . (2.57)

This can be understood as follows: The detection of a photon indicates the high

probability that the intensity at the moment of detection is much higher than the

mean intensity. It is thus very likely that a second photon is detected simultaneously

with the first one. This photon bunching peak has a characteristic width around

τ = 0, as described by the Siegert relation:

g(2)(τ) = 1 +
∣∣∣g(1)(τ)

∣∣∣2 . (2.58)

Apparently, any bunching effect disappears for delays τ larger than the coherence

time τc of the light state, as shown by the solid black line in figure 2-8.

Finally, it can be demonstrated that a thermal state is also described by charac-

teristic values of higher-order correlations. In mth order, the equal-time correlations

are defined as:

g
(m)
the (0) ≡ m! . (2.59)



Chapter 3

Experimental Methods

Correlation techniques have been widely used in different fields of science working

with optical spectroscopy methods. Field autocorrelation techniques are utilised in

various disciplines, ranging from fundamental sciences, e.g. Fourier transform infra-

red spectroscopy [Smi09], to medical applications such as optical coherence tomo-

graphy [Hua91]. Interferometric autocorrelators are applied to measure the tem-

poral duration of short laser pulses [Dem03]. Photon correlation techniques using

Hanbury Brown-Twiss (HBT) setups are employed [HB56], e.g., to characterise single-

photon sources [Lou05]. All these examples illustrate the benefit of optical correlation

techniques for the characterisation of different light-emitting model systems.

In this thesis, two different optical correlation quantities of light are investigated.

From the emission of QD micropillar lasers, both the first-order and the second-order

correlation function are determined. The emission of a planar microcavity polariton

laser is analysed in a regime of strong non-equilibrium using non-resonant ultra-short

picosecond-pulsed excitation. Here, the focus lies on second-order correlation spec-

troscopy combined with time-resolved photoluminescence as well as angle-resolved

spectroscopy. In this chapter, the utilised experimental techniques are presented.

In section 3.1, the optical setup and the different components used to conduct

Michelson interferometry and micro-photoluminescence (micro-PL) measurements on

QD micropillars are described. In the subsequent sections, the experimental methods

used to investigate the planar microcavity sample are introduced. First, the exper-

imental method used to perform angle-resolved spectroscopy is described in section

3.2. Finally, the technique applied to measure time-resolved PL as well as second-

order correlations is discussed in section 3.3.

3.1 Michelson Interferometry

A sketch of the optical setup used for the investigations of the QD pillar microcavities

is shown in figure 3-1. A continuous wave (cw) diode laser, that operates at an

emission wavelength of 785 nm, is used to excite the samples. Two neutral density
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Figure 3-1: Sketch of the optical setup utilised for the investigation of QD micropillars;

see chapter 4. The sample is excited using a cw diode laser operating at a wavelength of

785 nm. Via a beam splitter and a microscope objective, the excitation laser is focused onto

the sample which is held at low temperatures in a He-flow cryostat. Photoluminescence

is collected using the same MO. A specific polarisation component of the emission can be

selected using a half-wave plate and a Glan-Taylor prism. The emission light beam is then

transferred to the Michelson interferometer. At the output of the MI, the signal is recorded

by a CCD camera connected to an optical monochromator. In this illustration, the reference

laser of the interferometer is switched off for clarity; a closeup of the interferometer is shown

in figure 3-2. A detailed description of the individual components is given in the main text.

attenuators are used to control the excitation intensity. The excitation laser beam

is directed via a beam splitter onto an axis perpendicular to the sample surface and

focused onto the sample using a microscope objective (MO). Depending on the lateral

size of the micropillar, different objectives with adequate numerical apertures (NAs)

and magnification are used.1 The use of MOs allows for small spot diameters in

the range of 1–10µm. Furthermore, in order to be able to selectively investigate

individual micropillars, the objective is mounted on piezo-driven actuators thereby

allowing for positioning with sub-micron resolution.

The micropillar sample is fixed in the liquid-helium flow cryostat shown in figure

3-1 at the left hand end of the optical table. The temperature at the position of

1Different microscope objectives are utilised, depending on the experimental requirements. The

available MOs (Mitutoyo “M Plan APO”) are optimised for the near-infrared spectral region and

have the following specifications:

MO1: 10x magnification, NA = 0.26, working distance 30.5 mm.

MO2: 50x magnification, NA = 0.42, working distance 17.0 mm.

MO3: 100x magnification, NA = 0.5, working distance 12.0 mm.
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Figure 3-2: Closeup view of the Michelson interferometer, which consists of a non-

polarising 50/50 beam splitter cube and two retroreflector mirrors each mounted on specific

translation units. The interference pattern of the HeNe-laser (orange colour) is recorded

by two standard silicon photodiodes and used as a reference for the computer-controlled

stabilisation algorithm. The emission from the sample under investigation (red colour) is

directed parallel to the beam of the reference laser.

the sample can be varied in the range of 10 –325 K. The cryostat is mounted on a

set of three translation stages, each equipped with a differential micrometer screw.

This configuration allows for a coarse positioning of the cryostat and the sample

with respect to the MO and to the optical excitation and detection axis. The photo-

luminescence of the sample is collected using the MO described before and passes

through the beam splitter. A specific polarisation component is selected using a set

of polarisation optics, namely a half-wave plate and a Glan-Taylor prism. Here, the

prism is kept fixed during all experiments, while the wave plate is adjusted in order

to select a certain polarisation direction from the emission of the samples. The PL

is then directed towards the Michelson interferometer (MI), which is shown in figure

3-2.

The Michelson interferometer consists mainly of a 50/50 beam splitter cube and

two retroreflector mirrors each attached to a delay unit. The beam splitter is non-

polarising and features a high-degree anti-reflection coating to minimise secondary

reflections in the interference signal. The light beam under investigation is directed

to the beam splitter cube and split into two parts of equal intensity. Each part is sent

towards a retroreflector mirror which guides the light beam back towards the beam

splitter. Both retroreflector mirrors are aligned such that the different parts of the

beam are fully overlapping when they finally join again at the beam splitter and exit

the interferometer. Here, the interference of the two beams can be measured with an
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appropriate detector, as will be further described below.

In order to investigate the dependence of interference effects on the optical path

difference, each retroreflector mirror is attached to a translation stage.2 The first

mirror is mounted on a mechanical stage controlled by a rotary pulse encoder. It can

be moved by 306 mm at most with a step resolution of less than 0.5µm. The second

mirror is mounted on a piezo-driven actuator which can be moved over a maximal

distance of 15µm. The actuator is regulated by a closed-loop control system based

on an electronic proportional-integral element. Thereby, typical deficiencies of piezo-

elements like thermal drifts, hysteresis, and creeping can be almost fully avoided. This

enables a stable displacement of the mirror with an accuracy of less than a nanometre.

In the configuration applied here, these two translation stages allow for changes of

the optical path difference in the range of ∆lmin = −530 mm to ∆lmax = 82 mm.

The Michelson interferometer is further equipped with a standard cw helium-neon

laser, as shown in the bottom left part of figure 3-2. The use of this auxiliary laser,

emitting at a wavelength of about 632.8 nm, has two purposes. First, primary align-

ment of the interferometer is easily achieved using the visible light from the HeNe-

laser. By positioning scriber templates at distances much larger than the maximal

movement range of the translation stages, it is assured that the recombined beams at

the output port of the MI are both highly parallel and overlapping, independent from

the actual position of the translation stages. Second, using two standard Si photo-

diodes as shown in figure 3-2, the interference pattern of the HeNe-laser emission

can be monitored simultaneously with the actual interference measurement of the

cavity emission. Thereby, any mechanical disturbances in the interferometric setup

can directly be detected and accounted for during the data analysis. Alternatively,

the piezo-driven actuator in the interferometer can be used to compensate for any

perturbation in real time allowing stable measurements on longer time scales. The

stabilisation can be switched on or off depending on the current experimental condi-

tions. In the experiments described in this thesis, stabilisation is used whenever the

acquisition of single intensity data points lasted longer than 100 ms.

Changing the optical path length of one or both of the beams enables the mea-

surement of interference fringes. To measure the interference pattern of the different

emission modes of QD micropillar lasers, a spectrometer is attached to the output

port of the interferometer.3 Via a 100 mm lens, the interference signal is focused

onto the entrance slit of a monochromator with a focal length of 500 mm. The

monochromator is equipped with a motorised turret carrying three optical diffraction

gratings with different groove densities. The spectrally resolved light cone is then

2The interferometer is equipped with a M-531 linear positioning stage and a P-752 high precision

nanopositioning stage, both manufactured by Physik Instrumente (PI) GmbH & Co. KG.
3The spectrometer consists of a SpectraPro 2500i monochromator by Acton Research Corpora-

tion and a Spec-10:400/UV/LN Si CCD camera by Roper Scientific. The monochromator features a

motorised turret carrying three gratings with different groove densities. The available gratings fea-

ture groove densities of 300, 600 and 1200 grooves/mm. The gratings with 300 and 1200 grooves/mm

are blazed at a wavelength of 1µm. The grating with 600 grooves/mm is blazed at 500 nm. The

CCD camera has a resolution of 1340 by 400 pixels, where each pixel has an edge length of 20µm.



3.1 Michelson Interferometry 33

recorded by a liquid-nitrogen cooled charge-coupled device (CCD) camera.4 Un-

der perfect alignment conditions, the overall spectral resolution of the spectrometer

is roughly 100µeV. By using the spectrometer instead of a simple photodiode, it

is possible to simultaneously record first-order correlations of the different spectral

components of the sample under investigation.

For the present work, the aim of Michelson interferometry is to measure the

first-order correlation function g(1)(τ) and to determine the coherence time of the

QD micropillar cavity emission. Accordingly, the typical measurement procedure is

as follows. While the position of the mechanical translation stage is kept fixed, the

piezo-driven actuator is moved step-by-step and the intensity of the interference signal

is measured simultaneously. Thereby, the actuator is moved over a total distance that

equals approximately the wavelength of the signal under investigation. This results

in typical interference fringes which directly reflect the evolution of g(1)(τ). While the

oscillation period of the first-order correlation function is thus known, the quantity

of interest is the so-called visibility V of the fringes which is defined as

V =
Imax − Imin

Imax + Imin

. (3.1)

Here, Imax and Imin are the maximal and minimal intensity of the measured interfer-

ence signal, respectively. Both values are obtained by fitting a cosine function to the

data. By repeating this sequence for different positions of the mechanical translation

stage, the dependence of the visibility on the delay time τ between both beams can

be measured. The resulting quantity V (τ) is directly related to g(1)(τ), as can be

derived from equation (2.41):

V (τ) =
Imax(τ)− Imin(τ)

Imax(τ) + Imin(τ)
=
∣∣∣g(1)(τ)

∣∣∣ . (3.2)

Accordingly, the measurement of V (τ) corresponds to a direct measure of the envelope

function of the first-order correlation function g(1)(τ). This gives direct access to the

coherence time, as will be shown in chapter 4.3.

The Michelson interferometer is fully computer-controlled. A software applica-

tion was written in Labview which features a graphical user interface. This appli-

cation controls the positioning of the two delay units, initialises measurements by

the spectrometer, enables data acquisition, and actively stabilises the interferometer

using the interference signal from the HeNe-laser, as described above.

The experimental setup presented in figure 3-1 can further be used to perform

standard micro-PL spectroscopy measurements by blocking one of the interferometer

arms, thereby avoiding interference effects.

4The CCD camera was typically operated at a temperature of −100◦C.
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Figure 3-3: Sketch of the experimental setup utilised to perform Fourier-plane imaging as

well as streak camera measurements. It consists of an excitation laser system, various optical

elements to bring the excitation laser to the sample, a liquid-helium flow cryostat, optical

elements to collect light emission from the sample, and two different optical detectors. The

first detector is an optical spectrometer (mid right), as presented in the previous section.

Here, it is used for Fourier-plane imaging and PL spectroscopy. The second detector is

the streak camera (bottom right), whose functionality is covered in section 3.3. Detailed

information about each part of the setup is given in the main text and in the caption of

figure 3-5.

3.2 Fourier-Plane Imaging

To investigate the strongly-coupled planar microcavity sample, mainly two different

techniques are applied. First, Fourier-plane imaging is performed to measure the

in-plane dispersion of the cavity emission. From this data, different excitation-power

dependent quantities can be derived, namely the actual shape of the dispersion,

the energy, the intensity, as well as the linewidth of the emission. Second, photon-

correlation spectroscopy and time-resolved PL is employed. All measurements are

realised using the optical setup shown in figure 3-3. In this section, the different

opto-mechanical components of the setup as well as the working principle of Fourier-

plane imaging are described. The technique used for photon correlation spectroscopy

and time-resolved PL will be covered in section 3.3.

In order to optically excite the samples, a picosecond-pulsed laser system is
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utilised. This laser system consists of a Nd:YVO4-based cw laser emitting at a wave-

length of 532 nm, which pumps a mode-locked Ti:sapphire laser oscillator.5 The emis-

sion wavelength of the mode-locked laser can be tuned in the range of 700–1000 nm.

Here, the emission wavelength is configured to either correspond to the first reflec-

tion minimum of the DBR stopband of the investigated cavity sample (λ ≈ 744 nm)

or to be quasi-resonant with the lower polariton branch under the specific angle of

incidence. The laser cavity is set to produce optical pulses with pulse durations of

2 ps at a pulse repetition rate of 75.39 MHz.

Using a beam splitter, a minor part of the excitation beam is directed to a fast

photodiode in order to synchronise the excitation laser with the streak camera used

for photon-correlation spectroscopy, as described in section 3.3. Furthermore, the

intensity of the excitation laser can be controlled by two neutral density attenuators.

The attenuators are positioned such that their density gradients increase in opposite

directions in order to minimise beam displacements to a negligible level. In order

to control its polarisation, the excitation laser beam passes through a Glan-Taylor

prism, a half wave plate as well as a quarter wave plate. The beam is then directed

towards the sample at an angle of incidence of roughly 45◦ from the sample surface

and focused onto the sample by a lens with a focal length of 65 mm. The excitation

spot on the sample typically has a diameter of 20–30µm.

The planar microcavity sample is positioned in the He-flow cryostat in the same

way as the micropillar sample. The emission from the cavity is collected using a

microscope objective. As MOs with long working distances are used, it is possible

to perform both non-resonant and quasi-resonant excitation of the sample under an

angle of incidence of roughly 45◦, as mentioned above. The numerical aperture of the

MO defines hence the range of emission-angles that are collected by the MO and which

are thus accessible for Fourier-plane imaging.6 Here, MOs with numerical apertures

of 0.26 and 0.42 are used, corresponding to maximal detection angles of ±15◦ and

±24.8◦, respectively. As described in chapter 2.2.1, the angle θ of the emitted light

from a Bragg microcavity directly reflects the in-plane wave vector k|| of the cavity

photons. When the cavity is in the strong coupling regime, this corresponds exactly

to the wave vector of the cavity polaritons. Both quantities are related by

k|| = k · sin θ =
Eph

~c
sin θ . (3.3)

Furthermore, all photons emitted under the same angle θ meet in the same point of

the Fourier plane of the collecting objective. The intensity and energy distribution

of the Fourier plane can then be measured using an appropriate lens system and a

suitable optical detector. The basic principle of Fourier-plane imaging is illustrated

in figure 3-4. In the setup presented in figure 3-3, two lenses with focal lengths of

5The pump laser is a Coherent Verdi-V10 which has a maximum output power of 10 W. It pumps

a Coherent Mira Optima 900-D, which contains a Ti:sapphire crystal as active medium. In principle,

this dual-version of the Mira can be configured to emit pulses with durations in the picosecond or

in the femtosecond range.
6An alternative way to measure the angular-resolved photoluminescence from microcavities is to

utilise goniometer rails [Den06, Stu11].
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Figure 3-4: Schematic illustration of the Fourier-plane imaging technique. The beam

path used for Fourier-plane imaging is indicated by red solid lines: All photons emitted

under the same angle meet in the same point in the Fourier plane, which is identical to

the back focal plane of the microscope objective (MO). The Fourier plane is subsequently

imaged onto a detector, e.g. the entrance slit of a spectrometer. For comparison, the beam

path conventionally used for real space imaging of the sample is shown by dashed black

lines. Note that, in the actual experiment two lenses are used to image the Fourier plane

onto the entrance slit of the monochromator; thereby, the diameter of the beam is adapted

to the height of the CCD chip dimensions in order to maximise the angular resolution.

750 mm and 600 mm, respectively, are inserted in the detection beam path to image

the Fourier plane onto the entrance slit of the spectrometer.7 The angular resolution

of this method is then given by the chip dimensions and pixel sizes of the CCD

camera.8

Moreover, a set of polarisation optics positioned in the detection beam path right

after the 750 mm lens is used to single out a specific polarisation component of the

emission from the microcavity. This set consists of a quarter-wave plate, a half-wave

plate and a Glan-Taylor prism.

3.3 Photon Correlation Spectroscopy

When single-photon sources of any kind shall be identified and characterised, the

typical procedure is to apply photon correlation spectroscopy techniques [Lou05]. To

characterise coherent semiconductor light sources, photon correlation methods have

been applied to measure the second-order coherence of their emission: Different types

of microcavities have been studied in the regime of weak coupling [Ulr07, Wit11] as

7See footnote on page 32 for further information on the spectrometer.
8The CCD camera attached to the monochromator has a vertical resolution of 400 pixels. In

perfect alignment conditions, this results in minimum bin sizes of ∆θ ≈ 0.08◦ per pixel or of

∆θ ≈ 0.12◦ per pixel when using the MO with 10x or 50x magnification, respectively.



3.3 Photon Correlation Spectroscopy 37

well as in the regime of strong coupling [Den02, Kas08a, Lov08]. In all these works,

second-order correlations were measured using two avalanche photodiodes in HBT

configuration. The resulting time resolution of such a HBT setup lies typically above

100 ps.

In order to check, whether the real (i.e. not masked by the finite experimental time

resolution) photon correlation function according to equation (2.47) can be measured,

the time resolution has to be compared to the coherence time of the light investigated.

As described in chapter 2.4, any photon bunching effect occurs only within the coher-

ence time of light. The time resolution of avalanche photodiodes is often sufficient for

investigating the light emission by atoms. In semiconductors, spontaneous emission

occurs on a sub-nanosecond time scale with coherence times often shorter than the

time resolution of a HBT setup. When semiconductor nanostructures are embedded

in a microresonator, there may additionally be a strong enhancement of the sponta-

neous decay rate due to the Purcell effect [Pur46] such that the decay dynamics can

no longer be resolved by such a setup due to the short coherence times [Gér98].

In this section an experimental technique is presented that uses a modified streak

camera featuring a time resolution of 2 ps and which is thus adequate to characterise

the fast emission processes of semiconductor microcavities. This technique has been

introduced in references [Wie09] and [Aßm09]. Within the framework of this thesis,

this technique was further enhanced to enable faster data acquisition and shorter

measurement times. The experimental details are illustrated in subsection 3.3.1,

while the procedure of data processing is described in subsection 3.3.2. Finally, typical

error sources and corresponding countermeasures are discussed in subsection 3.3.3.

This photon correlation spectroscopy technique is applied to investigate a strongly-

coupled microcavity-polariton system; the discussion of the results will be presented

in chapter 5. A detailed description of this technique has also been published, see

item P1 in the publication list (page 123).

3.3.1 Streak camera setup

The optical setup used to perform photon correlation spectroscopy with a streak

camera was shown in the previous section in figure 3-3. As mentioned above, a small

part of the excitation laser beam is directed onto a fast photodiode. This photodiode

generates a trigger signal for the streak camera. Thereby, the streak camera is syn-

chronised with the pulse repetition period of the excitation laser. The emission from

the sample, which is collected via a MO, is first directed onto the spectrometer to

monitor the spectrum of the cavity emission. Subsequently, a diaphragm is used to

exclusively select the emission with zero in-plane wave vector, which corresponds to

the emission normal to the sample surface. To further restrict the photon correla-

tion analysis to the emission mode of interest, an interference filter with a narrow

bandwidth of approximately 1 nm is utilised.

As in standard streak camera measurements, the signal is then focused onto the

entrance slit of the streak device using a lens with a focal length of 50 mm. After pass-
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Figure 3-5: Closeup view of the streak camera used for photon-correlation spectroscopy

and time-resolved measurements. The streak camera is synchronised with the picosecond-

pulsed laser via the fast trigger photodiode shown in figure 3-3. The sample emission, which

is preselected in k||-space using a diaphragm and in energy using an interference filter, is

focused onto the entrance slit of the camera by a 50 mm lens. The functionality of the

streak camera is described in detail in the main text.

ing through the entrance slit the light pulse hits onto a photocathode, thereby generat-

ing photoelectrons. These electrons, whose number is proportional to the light-pulse

intensity, are electrically accelerated towards a micro-channel plate (MCP). On this

way, the electrons are also deflected perpendicular to their direction of flight using a

pair of sweep electrodes. This vertical sweep unit is synchronised with the excitation

laser via the fast photodiode (compare figure 3-3) and provides the time resolution,

as photoelectrons traversing the unit at different times are deflected under differ-

ent angles. When the electrons pass through the MCP stage,9 they are multiplied

and finally hit a phosphor screen. While the vertical position on the screen is then

proportional to the arrival time of the individual photons, the horizontal position

corresponds to the position of the photon inside the light cone. Furthermore, the in-

tensity of the screen phosphorescence is proportional to the intensity of the incident

light. Finally, an image of the phosphor screen is captured by a CCD camera with a

resolution of 640 by 480 pixels.

9In subsection 3.3.3, the importance of the settings of the MCP gain voltage will be discussed.
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In order to perform photon-correlation measurements, single-shot pictures have

to be recorded. Unfortunately, acquiring only one single pulse streak per image would

result in unreasonably long data acquisition times. For this reason, the streak cam-

era is equipped with a second pair of sweep electrodes, which deflects the accelerated

photoelectrons in horizontal direction. Due to this additional deflection of the elec-

trons a set of several dozen consecutive streaks, positioned next to each other in

horizontal direction, can be imaged simultaneously. The minimal horizontal deflec-

tion speed is determined by the minimal distance required to distinguish individual

vertical streaks on the screen. The speed can be set to 300, 600, or 1200 ns per full

horizontal screen width (640 pixels). When using the deflection time of 600 ns, 45

consecutive pulses can be recorded per single picture. Example single and integrated

images are shown in figure 3-6.

A further customisation of the streak device lies in the choice of the phosphor

screen, which is made of P-46 phosphor (Y3Al5O12:Ce) in the present camera setup.

P-46 phosphor features a fast bi-exponential afterglow decay with the slower timescale

being in the range of few tens of microseconds. The afterglow decay rates are thus fast

enough to allow for high CCD camera frame rates. The drawback of this phosphor is

a reduced number of emitted photons per incident electron. This is compensated for

by adding a second micro-channel plate to the streak camera. The upper boundary

for the overall operation speed of the streak camera is then given by the effective

frame rate of the CCD imaging the phosphor screen.

Within the framework of this thesis, the overall operation speed of the correlation

spectroscopy technique described above was further improved. In a previous configu-

ration, the frame rate of the CCD camera attached to the streak device was typically

set to roughly 70 Hz. The CCD camera was then triggered by the dual-time blank-

ing unit of the streak camera. The feedback signal resetting the blanking unit came

from a hardware dongle attached to the computer running the streak-camera control

software.10 In the present settings, the primary trigger signal still stems from the

blanking unit. The hardware dongle, however, could be omitted: The CCD camera

is configured to provide itself the reset signal to the blanking unit, thereby maximis-

ing the operation speed. In this configuration, the maximal frame rate is increased

to roughly 140 Hz. To enable this high frame rate the CCD camera has to be run in

2-tap mode, which allows for independent readout of the two half-screens of the CCD

chip. Correspondingly, the data acquisition time needed to record a typical set of

100,000 single-shot pictures is reduced from 20–25 minutes to roughly 12 minutes.11

10Hamamatsu Trigger/Status Adapter C.
11CCD cameras with higher frame rates than the one used in the present work are indeed avail-

able. Unfortunately, their high speed comes at the cost of significantly reduced quantum efficiency.

Therefore, they are not suitable for photon correlation spectroscopy using the streak camera.
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Figure 3-6: Examples of raw integrated (upper panel) and single-shot (lower panel) data

acquired in photon-correlation measurements using the streak camera. The upper panel

image was obtained after integration over 60,000 single pictures. The vertical black lines in

the upper panel denote the borders of the individual streak bins. Photons arriving outside

of these borders are not considered for data analysis. The vertical distance between two

green lines in the lower panel illustrates the pixel binning within individual streak bins. In

this example, the 700 ps of the vertical time axis are divided into 30 time bins. The insets

show magnified time bins exemplifying two-, three, and four-photon coincidences.

3.3.2 Photon statistics data processing

Typical examples of integrated and single pictures acquired with the technique de-

scribed above are shown in the upper and lower panel of figure 3-6, respectively. In

the following, a detailed discussion on how to extract the second-order correlation

function from the raw data is presented.

To calculate the intensity correlation function, the number of photon pairs de-

tected at times t and t + τ , respectively, has to be determined. This information

can be extracted from each single picture as follows. At first all photons in all pic-

tures are sorted to vertical streak bins with a width of one streak. Streak bins are

illustrated in the upper panel of figure 3-6 by vertical black lines. Photons that are

detected between two streak bins have to be disregarded. Subsequently, the temporal

resolution ∆τ can be set by pixel binning within each single streak bin. Thus, the

streak bins are divided into time bins of a length corresponding to ∆τ . In the lower
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panel of figure 3-6, this time binning is represented by the horizontal green lines.

The binned data set is then analysed with an algorithm that counts all photon

pairs inside each single streak of each single picture and sorts them according to the

time of detection of the first photon and the time delay τ between the two photons. In

the case of equal arrival time, thus τ = 0, this count is multiplied by two. Thereby, it

is accounted for the fact that the number of photon pairs counted in a bin containing

n photons will be n(n − 1)/2. As the definition of g(2)(τ) makes use of the photon

number of the mode of interest before and after the detection of a first photon, the

number of photon pairs should be n(n − 1). Dividing the number of pairs by the

number of recorded single pictures already gives the photon pair counting rate for

a certain combination of arrival time t and delay τ . Accordingly, the simultaneous

detection of four photons, as depicted in the lowest inset of figure 3-6, corresponds to

twelve two-photon pairs. The determination of the photon pair number corresponds

to calculating the enumerator of equation (2.47),

G(2)(t, τ) =
〈
b̂†(t) b̂†(t+ τ) b̂(t) b̂(t+ τ)

〉
, (3.4)

which represents the second-order correlation function without normalisation. Note

that, in equation (3.4), 〈·〉 denotes the ensemble average, not the average over different

times t.

In order to obtain the second-order correlation function in its normalised form, it

is required to determine the expectation value of the number of photon pairs detected

at the same times t and t+τ emitted by a light source with identical temporal profile,

but which emits photons statistically independent of each other. This corresponds to

the product of the mean photon count rates at times t and t + τ . This information

can be obtained by integrating all the single pictures as shown in the upper panel

of figure 3-6. Here, any effects of correlations are averaged out. The normalised

second-order correlation function,

g(2)(t, τ) =
G(2)(t, τ)〈

b̂†(t) b̂(t)
〉〈

b̂†(t+ τ) b̂(t+ τ)
〉 , (3.5)

is thus the measured photon-pair count rate at times t and t+ τ as described above

divided by the product of the mean photon count rates at the same times.

From g(2)(t, τ), it is then possible to calculate a time-averaged g(2)(τ) by dividing

the sum of the photon pair detection rates by the sum of the squared mean photon

numbers. This averaging over different times t does not significantly change the actual

value of g(2)(τ) for a certain value of τ , as the average is intensity weighted. This is

further supported by the results presented in reference [Aßm10], where it has been

shown that the actual value of g(2)(t, τ = 0) does not significantly change during the

main part of an emission pulse from a microcavity.
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3.3.3 Counteracting typical error sources

The photon correlation spectroscopy technique described above has significant ad-

vantages compared to common HBT setups, particularly considering the time resolu-

tion. Moreover, it avoids typical error sources present in HBT-like configurations, e.g.

afterpulsing, crosstalk and misalignment of the two detectors. However, it also intro-

duces new sources of errors. In this subsection, the most prominent error sources in

photon correlation spectroscopy using the streak camera technique—namely photon

reconstruction and timing jitter—will be discussed.

Photons that are detected by the streak camera will usually not fill a single pixel

on the chip of the CCD camera imaging the phosphor screen, but will have a size of

several pixels. A built-in algorithm of the streak-camera control software reconstructs

the actual position of the photon on the screen by determining the centre of gravity of

the intensity of the affected pixels. However, this routine can be fooled by inevitable

local inhomogeneities of the phosphor screen. Thereby, it is possible that one photon

can be accounted for as two. During the analysis of second-order correlations, this

would result in a photon distribution with unreasonably high pair count rates for

pixel distances shorter or equal to the typical radius rph of a single photon on the

CCD chip, which then abruptly falls off step-like for distances larger than rph.

This problem can be solved by introducing artificially dead pixels within a radius

of rph around the centre of gravity of any detected photon. All other photons de-

tected within this area are discarded from further analysis. This way, any erroneous

photon counts due to reconstruction problems are eliminated. As a drawback of this

approach, a certain number of real photon detections are disregarded, too. These

losses have to be accounted for when normalising the second-order correlation func-

tion. The dead pixels around each photon correspond to an effective loss in detector

size for detecting another photon after the first one went down. As a consequence,

the normalisation has to be modified by a factor of wA′/A, with A being the size

of a bin on the screen, A′ being the reduced size after introducing artificially dead

pixels and w being a weighting factor. The weighting factor is necessary, as the mean

number of photon counts is generally not distributed equally along the width of a

bin. If artificially dead pixels are used in measurements of higher-order correlation

functions, it is necessary to consider the decreasing effective detector size inside a

time bin accordingly after each photon detection.

The second inherent source of error is timing jitter. Obviously, jitter-induced

effects are directly noticeable when time-resolved correlations like g(2)(t, τ) are in-

vestigated [Aßm10]. However, timing jitter has also a significant influence on the

measured photon correlations g(2)(τ) when the studied light source emits pulses of

extremely short duration, as will be discussed in the following. To begin with, it

should be mentioned that most quantities relevant for calculating second-order corre-

lations are not sensitive to jitter: Even though the peak position of the detected signal

and the number of detected photon pairs in a certain time bin will generally vary

slightly in each single picture, the pulse shape, the τ -dependence of the photon pair

count rate and the sum of all detected photon pairs will not depend on timing jitter.
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Figure 3-7: Theoretical example for the jitter-affected shape of g
(2)
j (τ) (black curve).

The abscissa gives the delay τ for the black curve and the time t for the other curves. Red

and blue curves give the photon pair count rates and squared mean photon count rates,

respectively. The green curve represents the constant background noise count rate. The

resulting g
(2)
j (τ) displays values larger, smaller and equal to unity, depending on which of

the count rates gives the dominant contribution at a given τ .

Also, the time-integrated photon pair count rate [G(2)(τ); compare equation (3.4)]

is not affected by jitter. The mean photon count rate used for the normalisation,

however, might be broadened due to timing jitter.

The effect of jitter on g(2)(τ) can be modelled theoretically as follows. As a general

example, the signal under investigation is assumed to be characterised by a Gaussian

pulse shape S(t) with amplitude of unity and standard deviation W as well as by a

Gaussian jitter J(t) with standard deviation J . The resulting mean photon count rate

is then given by the convolution of both, given by another Gaussian Sj(t). The latter

is characterised by a standard deviation of Wj = (W 2 + J2)1/2. The lowest possible

magnitude of the jitter is determined by the temporal response of the photocathode.

In principle, it can be increased by instabilities of the trigger signal or the excitation

laser used. Additionally, background noise has to be considered via a constant noise

count rate rn. This way, the jitter-affected g
(2)
j (τ) can be written as

g
(2)
j (τ) =

∫∫
[S(τ2) + rn] · [S(τ + τ2) + rn] · J(t− τ2) dτ2 dt∫ [

Sj(t) + rn
]
·
[
Sj(t+ τ) + rn

]
dt

. (3.6)

This function is illustrated in figure 3-7. As can be seen, equation (3.6) mainly

consists of three components, namely the photon pair count rates, the squared mean

photon count rates and background noise. The photon pair distribution is generally

narrower than the squared mean photon count rate, which directly results in artificial

bunching around zero delay. When these two distribution eventually cross, g
(2)
j (τ)

reaches values below unity. For even larger delay τ , the cross-correlation between the

original signal and background noise becomes dominant and g
(2)
j (τ) returns to unity.
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Figure 3-8: Jitter-induced second-order correlation function g
(2)
j (τ) of a pulsed laser

for different streak camera settings. The pulsed laser has a FWHM pulse duration of

3.53 ps (corresponding to a standard deviation of 1.5 ps) and a centre wavelength of 768 nm.

Experimental data are shown as black squares; the red solid line represents a fit to the data.

Data points around τ = 0 display values significantly below the actual correlation values,

which is the direct consequence of introducing artificially dead pixels; see main text. These

data points were excluded from the fit. Streak camera settings: (a) MCP gain 17, photon

counting threshold 100, (b) MCP gain 42, photon counting threshold 170.

A direct way to demonstrate the validity of equation (3.6) is to analyse the second-

order correlation function of a well-known laser source such as the picosecond-pulsed

laser described in section 3.2. To this end, the mode-locked laser was configured to

irradiate pulses with a full width at half maximum (FWHM) temporal duration of

3.53 ps, as evidenced by using a standard autocorrelator. The FWHM of the pulse

duration corresponds to a standard deviation of W = 1.5 ps. A typical example of

experimental results is shown in figure 3-8. In this analysis, the vertical bin size was

set to the minimum of one pixel per bin, which equals a bin length of roughly 283 fs.

At first sight, a significant reduction of g
(2)
j (τ) around zero delay is apparent. This

is a direct consequence of introducing artificially dead pixels. For time delays larger

than approximately one picosecond, this effect vanishes.

The red lines in figure 3-8 are fits to the data using equation (3.6). The fit yields

the parameters W = 1.5 ps, J = 1.80 ps, and rn = 0.0015 for the data shown in panel

(a), while it results in the parameters W = 1.42 ps, J = 1.38 ps, and rn = 0.0033

for the data shown in panel (b). The differences in the data and in the fit results

demonstrate the importance of correct streak camera settings: When the threshold

value of the photon reconstruction algorithm is set too low [as in panel (a)], the

photon size on the screen becomes rather large, while the intensity at many of the

pixels is not very different from the threshold value. In such a case, it is more difficult

to distinguish between subsequent photons, thereby causing a slight underestimation

at small delays in the range of 1 ps < τ < 3 ps. It also explains the large jitter value
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of J = 1.80 ps because the actual position of the centre of gravity of the intensity of

two subsequent photons is hard to determine. On the other hand, when the photon

counting threshold is set too high, as in panel (b) of figure 3-8, typically the jitter is

calculated correctly, but the general uncertainty level increases. This can be seen in

panel (b) where the error bars are much larger than in panel (a). In the case of the

present streak camera, it was determined that the results are best when the photon

counting threshold is set to 110. Under typical operation conditions, the timing jitter

is found to be J ≈ 1.3–1.4. It is thus crucial to choose the threshold value as well

as the MCP gain voltage carefully. However, the exact parameter values should vary

from one streak camera device to another, depending on the built-in MCP stage, the

kind and condition of the phosphorous screens, and the CCD camera.

Generally, the experimentally most relevant quantities are the time-integrated

equal-time correlations of second order. Provided that the noise count rate rn is low,

the measured correlation values can be corrected for pulses with Gaussian or similar

temporal shape. In second order the real and measured equal-time correlations,

g(2)(0) and g
(2)
j (0) respectively, are then related as follows:

g
(2)
j (0) = g(2)(0)×

√
1 +

(
J

W

)2

. (3.7)

According to this equation, the deviations become significant when the jitter width

J is on the order of 20% of the signal width W or larger. Thus, the timing jitter

has to be taken into account when light sources with emission pulse durations below

W = 10 ps are investigated.





Chapter 4

Lasing Threshold of Quantum-Dot

Micropillar Lasers

The lasing threshold is one of the most fundamental parameters of semiconductor

lasers, especially with regard to large-scale commercial applications. The efficiency

of a laser, and thus the actual threshold carrier density, is affected by different charac-

teristic quantities. In order to achieve stable lasing operation, population inversion1

has to be established inside the whole active medium. Consequently, the use of

nanostructures as active media has become standard in low power laser diodes.

The most prominent outcome of both academic and industrial research aimed at

the reduction of the threshold carrier density in semiconductor lasers is the vertical-

cavity surface-emitting laser (VCSEL) [Cho97]. A typical VCSEL comprehensively

consists of a microcavity made of DBR mirrors, an optical cavity layer with a thick-

ness in the one-wavelength range, and a semiconductor nanostructure embedded as

active medium in the cavity layer. While most of the commercially available VCSELs

today feature quantum wells as the active medium, lasers using quantum dots (QDs)

have attracted much interest in the past decade in academic research [Vah03, Rei10],

especially as QD lasers are assumed to operate without requiring a full population

inversion [Gie07]. The downside of lasers with small active medium volumes is that

the optical gain per round trip is small, too. In order to counter this deficiency, the

lifetime of the photons within the cavity has to be increased, which corresponds to

maximising the cavity Q-factor. This is usually achieved by using microcavities with

a high number of DBR layer pairs.

Of particular interest is the so-called β-factor of the lasing mode which is defined

as the spontaneous emission rate into that specific mode divided by the total spon-

taneous emission into all available modes. The β-factor has a strong influence on the

shape of the input-output (i/o) curve of a laser: The step-like nonlinearity in the

emitted intensity of the lasing mode, as displayed by conventional lasers with β � 1,

1In semiconductor lasers, the lasing condition is defined by the Bernard-Duraffourg criterion

which describes it in terms of quasi-Fermi levels of the states (i.e. bands) involved in the actual

lasing transition [Ber61].
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Figure 4-1: Input-output curves for lasers with different β-factors, as calculated using

equation (4.1). The particular value of the β-factor is indicated.

becomes much smoother and finally disappears as β → 1, thus realising the case of

the so-called thresholdless laser [Mar88, Bjö91]. This change in the i/o-curve is shown

for different β-values in figure 4-1. While conventional semiconductor-based lasers

feature β-values in the range of 10−5 [Yam92], in the case of high-Q microcavities

operating in the weak-coupling regime the β-factor can be substantially enhanced by

taking advantage of the Purcell effect described in chapter 2.3.1. Micropillar cavities

using quantum dots as optically active material placed at the central antinode of the

electromagnetic field distribution are known to display considerable Purcell enhance-

ment with Purcell factors FP significantly larger than unity [Gér98, Sol01, Loh06].

Nonetheless, these enhancements of the laser efficiency lead to specific difficulties:

the lasing threshold becomes very smooth, thereby complicating a direct identification

of the onset of stimulated emission, as is obvious from figure 4-1. To compensate

this drawback it has been suggested to use a combination of i/o-curve data, first-

order correlations, and second-order correlations in order to characterise the lasing

transition of high-Q, high-β microcavity lasers more accurately [Ric94, Wie10].

In this context, it has been shown that both the first- and second-order correlation

functions display characteristic features that allow one to investigate the transition

from spontaneous to stimulated emission in systems with a low number of emitters

[Ulr07, Ate08, Wie09]. Nevertheless, the experimental techniques used so far to

record second-order correlations suffer from disadvantages at low excitation powers.

Hanbury Brown-and-Twiss setups do not have the appropriate time resolution as

correlation effects occur only within the coherence time of the emission [Ate08], which

typically is below 100 ps in the regime of spontaneous emission. The streak-camera

technique described in chapter 3.3 does feature a time resolution in the picosecond

range, but its quantum efficiency for emission wavelengths ≥ 900 nm—as typical

for GaAs-based QD cavities—is too low to extract sufficient statistics at low signal

intensities [Wie09].
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The first aim of this chapter is to present and discuss results of comprehensive

optical studies on GaAs-based micropillar cavities which include self-assembled QDs

as the active medium (see sample description in section 4.1). These QD cavities

operate in the weak-coupling regime, i.e. the system can be described by the bare

exciton and photon states (compare chapter 2.3.1). A basic characterisation of the

sample by means of micro-photoluminescence (micro-PL) measurements is given in

section 4.2. In this context, the β-factor of the investigated cavities will be estimated

from the measured i/o-curves. In the main part of this chapter, a discussion of the

coherence properties of the cavities (section 4.3) is followed by an analysis of the

evolution of the fundamental mode polarisation (section 4.4). Here, record values for

both the coherence time and the degree of linear polarisation of QD micropillars are

reported.

The second aim of this chapter is to provide a completion of a recently presented

photon statistics analysis of quantum-dot micropillar lasers. Therefore, a theoretical

model relating the first- and second-order correlation functions will be presented in

section 4.5. Based on this theoretical model it will be possible to describe second-

order correlations over the entire excitation power range from the thermal regime

throughout the lasing transition up to the regime of stimulated emission. The chapter

is summarised in section 4.6.

4.1 The GaAs-based Micropillar Sample Structure

The pillar microcavities investigated in the present work are mainly based on a planar

AlGaAs heterostructure.2 This planar microcavity structure was grown on a (001)

oriented GaAs substrate by molecular beam epitaxy (MBE) [Löf05, Rei06]. A sketch

of the layer sequence of the planar structure is shown in figure 4-2. A GaAs one-

wavelength cavity layer with a thickness of 262 nm is sandwiched between the upper

and lower cavity mirrors. The DBR mirrors are composed of 26-period (top) and

33-period (bottom) AlAs/GaAs stacks, respectively. Each layer pair in the DBR

stacks consists of a 74 nm-thick AlAs layer and a 68 nm-thick GaAs λ/4 layer. With

these parameters, the planar microcavity is essentially designed for a cavity resonance

wavelength at about 900 nm at cryogenic temperatures.

The GaAs λ-cavity contains a single layer of self-assembled AlGaInAs quantum

dots. By positioning the QD layer exactly at the centre of the one-wavelength cavity,

thus at the antinode of the intra-cavity electromagnetic field, the light–matter inter-

action strength, i.e. the Purcell factor FP, is maximised. The dot surface density of

about 6 · 109 cm−2 is relatively low compared to previous studies [Gér96, Gér98]; this

low density especially favours increased cavity Q-factors as optical losses caused by

band-gap absorption are reduced [Löf05].

2The pillar microcavity sample used for the studies presented in this chapter has been fabricated

in the working group of Prof. Alfred Forchel at the Julius-Maximilians-Universität of Würzburg,

Germany. The identifier of the sample is M2754-9-5A.
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26 pairs 

GaAs/AlAs

33 pairs 

GaAs/AlAs

λ cavity GaAs 

AlGaInAs QDs

Figure 4-2: Sketch of the layer sequence of the investigated micropillar sample. A λ-cavity

containing a single QD layer is sandwiched between the top and bottom DBR structure.

For the present work micropillars with different diameters in the range of d = 2µm to d =

8µm were investigated. Demonstrative scanning electron microscopy images of micropillars

similar to the ones investigated in the present work can be found in reference [Rei10].

In order to fabricate micropillars of cylindrical shape, the MBE-grown planar

microcavity was further processed using high-resolution electron-beam lithography

and plasma-induced reactive ion etching, as described in reference [Löf05]. In the

present work, a sample containing micropillars with different diameters in the range

of 1µm to 8µm is investigated.

All results presented in this chapter were obtained using the experimental setup

described in chapter 3.1. The micropillar laser sample was positioned into the He-

flow cryostat and glued to the cold finger of the cryostat with thermally conductive

silver paint. All measurements were performed at a temperature of roughly 10 K

unless indicated otherwise. As described in chapter 3.1, single micropillars could be

accessed using a microscope objective mounted to a piezo-driven translation stage.

The pillars were excited above the GaAs bandgap and the stop-band of the DBR

structure by a continuous-wave diode laser with an emission energy of ~ω = 1.58 eV

corresponding to a wavelength of roughly 785 nm.

4.2 Characteristic Luminescence

In order to directly measure the PL of the micropillars, one arm of the Michelson

interferometer (described in chapter 3.1) was blocked, thereby avoiding unwanted

interference effects. Example micro-PL spectra of pillar cavities with different diam-
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Figure 4-3: Micro-PL spectra measured on different GaAs-based micropillar cavities

with diameters of (a) 8µm, (b) 6µm, and (c) 4µm. The excitation power was in the

range of roughly 1% of the individual lasing threshold power of each resonator. The FM

of each cavity is indicated. Note that the different intensity scales are not comparable;

typically the FM intensity of a thinner pillar is weaker. Inset: Circles represent the spectral

position of the FM as a function of the micropillar diameter d; the dashed line is a fit using

equation (2.20).

eters are shown in figure 4-3. These spectra were measured at excitation powers far

below the lasing threshold, which will be discussed below.

As described in chapter 2.2, the structuring of the planar cavity towards a micro-

pillar leads to a three-dimensional optical confinement, thus rising the energy of the

fundamental mode (FM) of the cavity. From the experimental data, it becomes

obvious that the energy of the FM is shifted from 1.381 eV to nearly 1.386 eV when

decreasing the diameter from 8µm to 4µm. This shift in energy is summarised in

the inset of figure 4-3(c) and is in good agreement with theoretical expectations as
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Figure 4-4: Input-output characteristics of the different micropillars. In this plot, only

the X-polarised component of the FM is considered as it dominates the emission at high

excitation powers. In all cases a smooth transition to lasing operation can be observed. The

excitation power is normalised to the onset of the lasing transition region, which is found to

be P0 = 92µW, 131µW and 200µW for the micropillar with diameter d = 4µm, 6µm and

8µm, respectively. The dashed lines are theoretical curves calculated using equation (4.1)

and varying the values for the β-factor as indicated in the different panels.

shown by the fit using equation (2.20). Except for the micropillar with d = 4µm with

a spectral linewidth of the FM of ∆E = 110µeV, the linewidth of the FM is below

the resolution of the experimental setup which is roughly 100µeV. In all cases, this

yields promising high cavity Q-factors in the range of 104. Note also that the number

of visible modes is decreasing when going from larger to smaller diameters, as the

free spectral range between different cavity modes increases with stronger transverse

optical confinement. Thereby, higher modes may be shifted to higher emission angles

or possibly even to energies outside of the DBR stop-band. These results are in good

agreement with literature [Gér96, Rei07, Rei10].
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Theoretically, the FM should be twofold polarisation degenerate due to the rota-

tional symmetry of the pillar cross-section. Likewise, it is clear that every deviation

from perfect rotational symmetry should lift the degeneracy and result in two orthog-

onal, linearly polarised mode components. These components are generally polarised

along one of the main axes of the pillar cross-section, which will be denoted as the

X- and the Y -axes, corresponding to polarisation detection angles of ϑ = 0◦ and

ϑ = 90◦, respectively. The splitting in energy between these two FM components

depends strongly on the degree of ellipticity of the pillar cross-section [Gay98]. As

the observed FM linewidths are resolution-limited, such a splitting cannot be mea-

sured with the present experimental setup. Nevertheless, the mode polarised along

the X-direction is found to strongly dominate the emission at high excitation powers

in all cavities, as will be discussed in more detail in section 4.4.

In order to characterise the transition towards lasing operation, the excitation-

power dependence of the X-polarised mode emission was measured. The resulting

i/o-curves are shown in figure 4-4 on a double-logarithmic scale. Independent of

the diameter, an s-shaped smooth transition from the regime of dominating sponta-

neous emission to the regime of dominating stimulated emission can be observed, in

qualitative agreement with results reported from investigations on similar micropillar

structures [Ate08, Rei06]. For better comparison all excitation powers are normalised

to the excitation power at the onset of the lasing transition region denoted as P0.

Under identical experimental conditions, the actual value of P0 is found to decrease

for smaller pillar diameters. This is expected for different reasons: First, the num-

ber of QDs in which the carrier population has to be inverted should be fewer for

smaller pillar cross-sections. Second, as can be seen from figure 4-3, the available

mode volume in the cavity, in which the QDs can radiate, is much smaller in thinner

pillars.

The i/o-curves shown in figure 4-4 do also allow for an estimate of the β-factor

of the lasing mode. In a theoretical model using a two-level system to describe the

lasing transition, the relation between the pump rate p and the mean photon number

in the lasing mode ñ is described by [Ric94]

ñ = (2κβ)−1 ·
[
−(κ− βp) +

√
(κ− βp)2 + 4κβ2p

]
. (4.1)

Here, κ is a second fit parameter that accounts for the cavity decay rate. It has been

pointed out in reference [Gie07] that models using simple two-level systems are not

able to incorporate semiconductor specific features such as Pauli blocking, Coulomb

interaction and modifications of the source term of spontaneous emission. While

these features have a considerable effect on the second-order correlation function—as

will be described in more detail in section 4.5—the influence on the i/o-curve seems

to be negligible for the case of the cavities discussed here.

As displayed in figure 4-4, equation (4.1) is indeed capable of describing the

measured i/o-curve data. The β-factor was varied in order to best fit the s-shaped

transition from thermal to coherent emission. This way, the β-values of the investi-

gated microcavities can be estimated to be β = 0.07 (pillar diameter d = 4µm), 0.03
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Figure 4-5: Visibility curves of the emission from the two polarisation-split components

of the 8µm-pillar’s FM for different excitation powers. Solid (open) symbols represent

visibility curves detected in X-direction (Y -direction). The solid (dashed) lines are fits to

X-data (Y -data), which are performed using an exponentially decaying function. From

these fits the coherence time of radiation can be deduced, as shown in figure 4-6. Inset:

Typical high-resolution interference fringes, measured at a delay time τ close to 0 (V = 0.98)

and at 250 ps (V = 0.20) for P = P0 (X-polarisation).

(d = 6µm), and 0.01 (d = 8µm), respectively. As expected, this trend is directly

reflected in the shape of the kink in the i/o-curve which appears more pronounced

for the large-diameter pillar.

4.3 First-Order Coherence

The coherence time of radiation is probably the most important property of a laser.

Also, it has been suggested that the evolution of the coherence time can be used as an

indicator in order to clearly identify the lasing transition of high-β lasers [Wie10]. To

determine the coherence time experimentally, the high-resolution Michelson interfer-

ometer presented in chapter 3.1 was utilised. From the recorded interference pattern

the the visibility V has to be derived by fitting a sinusoidal function to the fringes,

as shown for two different delay times τ in the inset of figure 4-5. As described in

equation (3.2), the resulting delay-time dependent visibility V (τ) is directly propor-

tional to the absolute value of the first-order correlation function g(1)(τ). Finally, the

coherence time can be computed using equation (2.43).

Power dependent visibility measurements with the polarisation detection along

one of the main axes were performed. Example visibility curves of the emission from

the FM of the 8µm-pillar are shown in figure 4-5. Solid (open) symbols represent

visibility curves detected along the X-axis (Y -axis). The main observation is the

fact that the visibility at delay times τ 6= 0 is significantly enhanced for both modes
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Figure 4-6: Excitation power dependence of the coherence time τc of the different micro-

pillars. Only the X-polarised component of the micropillars’ FM was evaluated, as in

figure 4-4. The excitation power is normalised to the onset of the lasing transition region,

as described in figure 4-4. In all cases the evolution of the coherence time can essentially be

described by an exponential function. As expected, longer coherence times were observed

for micropillars with lower values of the β-factor.

at higher excitation powers, corresponding to longer coherence times at higher ex-

citation powers. Furthermore, the experimental data can be nicely described by an

exponential function

V (τ) =
∣∣∣g(1)(τ)

∣∣∣ = exp (−|τ |/τc) . (4.2)

By fitting the data using equation (4.2), one can directly compute the coherence

time τc. The results of these fits are summarised in figure 4-6 for the case of the

FM component polarised along the X-axis. In all cases, the increase of τc follows an

exponential function. In the case of the 8µm-pillar, τc increases from (45±5) ps up to

(21± 5) ns when the pump power is increased from 0.03P0 to 6.5P0. This represents

a record value for the coherence of the emission of quantum-dot seeded micropillars.

The weaker mode (polarised along Y ), however, displays a less substantial increase in

τc, from (39± 5) ps below threshold (0.03P0) up to (2.0± 0.2) ns in the lasing regime

(6.5P0). The discrepancy in τc at high excitation powers is indeed expected, as the

X-mode also dominates the emission in terms of significantly higher intensity, as will

be discussed in section 4.4.

It is also important to note that the actual values of τc are strongly influenced

by the β-factor. While higher values of the β-factor were determined for thinner

micropillar diameters, the coherence time becomes shorter for these. Due to stronger

contribution of spontaneous emission into the lasing mode, the effective coherence

time of the lasing mode is shorter for high-β lasers. This is in line with other reports

and with the mentioned theoretical framework; compare reference [Ate08].

From the measured coherence times, it is also possible to estimate the Q-factors

of the FM components. They can be derived from the lowest measured values of
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τc using the relation ∆E = 2~/τc. This way, the cavity quality factors have been

calculated to be Q4 ∼ 28, 000 (d = 4µm), Q6 ∼ 33, 000 (6µm), and Q8 ∼ 47, 000

(8µm).

As an exponential increase of the coherence time around the lasing threshold

region was observed in the emission from all micropillars, the experimental determi-

nation of g(1)(τ) was shown to be indicative of the position of the laser threshold.

Besides the i/o-curves discussed above, the degree of polarisation and second-order

correlations must be considered as well; see the following sections of this chapter.

Finally, it is noted that in recent literature a Gaussian shape of the visibility

curve below the laser threshold has been observed [Ate07, Ate08]. In a theoretical

framework [Wie10], this has been explained to be due to quantum-mechanical inter-

action processes which are connected to the degree of population inversion in the

quantum-dot ensemble. This behaviour cannot be observed in the emission from the

present samples. One reason might be that the cavities investigated in the work by

Ates et al. were thinner, with diameters of 4µm at maximum. Also, it is possible,

though unlikely, that a Gaussian-like visibility curve would have been observed at even

lower excitation powers than those presented here. Unfortunately, the true physical

origin of such a change in the shape of g(1)(τ) is not yet fully understood. However,

despite the small differences in the shape of the first-order correlation function at

low excitation, in general, the results presented here remain in good agreement with

theory [Wie10].

4.4 Degree of Linear Polarisation

In micropillars with a perfect circular cross-section the FM is generally twofold degen-

erate. It has been shown that this degeneracy can lead to unfavourable effects on the

laser performance, e.g. polarisation instabilities and mode partition noise in VCSEL

devices [Kuk95]. Also, in the field of single-photon sources, where polarisation-

encoded quantum cryptography schemes shall be implemented, polarisation control

is of major importance. This problem can be circumvented, however, by using micro-

pillars with elliptical cross-section [Mor01, Uni05].

As mentioned above, the emission from the FM of the micropillars investigated

in this work has been observed to be polarisation-split into two orthogonal, linearly

polarised modes. In the previous sections, the discussion was mainly focused on the

FM component polarised in the X-direction, which was found to dominate the lasing

emission at high excitation powers. In this section, the evolution of the degree of

linear polarisation with excitation power will be analysed in more detail. Here, the

discussion will be restricted on the micropillar with d = 8µm.

In panel (a) of figure 4-7, the integrated intensity of the fundamental cavity mode

is shown as a function of the polarisation detection angle ϑ. The plot is normalised

with respect to the maximum intensity, which is always observed at ϑ = 0◦. Generally,
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Figure 4-7: (a) Polar plot of the total emission intensity of the FM as a function of

the polarisation angle ϑ. Almost full linear polarisation (ρL = 0.99± 0.01) along ϑ = 0◦ is

observed at 5P0. (b) Input-output characteristics of the X-polarised (filled symbols) and Y -

polarised (open symbols) component of the FM. (c) Evolution of the degree of polarisation

ρL with increasing excitation power. Red symbols are obtained from sinusoidal fits using

full polarisation data as shown in (a); black symbols are calculated by relating the emission

intensities of the X and Y component shown in (b).

the angle-dependent intensity I(ϑ) can be described by the relation

I(ϑ) = 0.5 · [1 + ρL cos(2ϑ)] , (4.3)

where the degree of linear polarisation ρL is characterised by the intensities along the

main micropillar axes:

ρL =
I(0◦)− I(90◦)

I(0◦) + I(90◦)
. (4.4)

At low excitation powers (P = 0.1P0), the degree of linear polarisation is found to be

moderate with ρL = (0.19± 0.05). As mentioned above, the X-mode dominates the

emission intensity above threshold. This is confirmed in figure 4-7(a), where almost

full linear polarisation with ρL = (0.99± 0.01) can be observed at 5P0.

A second possibility to determine the degree of polarisation is to directly compare

i/o-curves measured at polarisation detection angles of ϑ = 0◦ and ϑ = 90◦. The i/o-

curves measured along the X-axis and the Y -axis, are shown in panel (b) of figure 4-7.

Note the large differences in intensity in the lasing regime. The degree of polarisation

can then be calculated using equation (4.4). In panel (c) of figure 4-7, the resulting

values for ρL obtained from angle-resolved measurements at fixed excitation power

[panel (a)] and from i/o-curves at fixed detection angle are compared. The results

seem to be very well reproducible.

In the following, another possibility to determine the degree of linear polarisation

will be presented. The advantage of this method is that the evolution of ρL and of

the coherence times of both FM components can be measured simultaneously. In

order to do this, interferometric measurements must be performed. In section 4.3,

visibility curves were recorded for theX- and the Y -mode separately, corresponding to

polarisation detection angles of ϑ = 0◦ and ϑ = 90◦, respectively. When the detection
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Figure 4-8: Calculated visibility curves for a polarisation detection angle ϑ = 45◦,

i.e. exactly in between of the micropillar’s main axes. The curves were generated using

equation (4.5). Parameter values were taken from the results presented in section 4.3 and

assuming an energy splitting between the two FM components of 40µeV.

angle is set to ϑ = 45◦, both FM components contribute to the signal, resulting in

beats.3 Assuming a Lorentzian spectral shape for each of the cross-polarised modes,

the resulting visibility curve can be described by a combination of two exponentially

decaying functions and reads

V (τ) ∼
[
I2
X + I2

Y + 2 IX IY cos(∆ωτ)
]1/2

. (4.5)

Here, Ii = αiIi exp
(
−|τ |/τ ic

)
with i = X, Y , and Ii and τ ic representing the intensity

and the coherence time, respectively, of the different FM components. The transmis-

sion coefficient of polarisation i through the optical elements (i.e. the beam splitter)

is accounted for by αi.
4

In order to allow for a better comparison with the results presented in the previous

section, equation (4.5) was used to simulate the expected results of visibility curve

measurements at a polarisation detection angle of ϑ = 45◦. Here, values for the

coherence times of the X- and the Y -mode as determined from figure 4-5 as well as

values for the relative intensities from figure 4-7(c) were employed. As the linewidth

of the FM of the 8µm-pillar is narrower than the experimental resolution of 100µeV,

for the simulations the energy splitting between X and Y is assumed to be 40µeV.

The simulated curves are shown in figure 4-8. In all cases, clear oscillations can be

seen. Also, their amplitude decreases with increasing excitation power, which reflects

the increase of the degree of linear polarisation.

Visibility curves experimentally measured at ϑ = 45◦ are shown in figure 4-9.

As expected, the period of the oscillations does not depend on the pump power.

3Such oscillations have been observed in reference [Ate07], but have not been analysed further

except for the oscillation period.
4The transmission ratios are α−1

X = 0.51 and α−1
Y = 0.43.
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Figure 4-9: First-order correlation function of the 8µm-pillar’s FM, measured at polari-

sation detection angle ϑ = 45◦, thus exactly in between of the micropillar’s main axes. The

inset shows an enlarged visibility curve with remains of oscillatory behaviour at P = 6.5P0.

The curves are fits obtained using equation (4.5). The actual results of the fits are presented

in figure 4-10.

However, it changes from one micropillar to another. In the case of the 8µm-pillar

an oscillation period of roughly 120 ps is observed. This corresponds to an energy

splitting between the two cross-polarised modes of ~∆ω = (35 ± 3)µeV, which lies

in the expected range. The power dependence of the degree of linear polarisation

derived from the fits is shown in figure 4-10(a). As expected, at low powers the value

of ρL is rather small and in agreement with ρL ∼ 0.2 obtained from figure 4-7. The

degree of polarisation reaches values in the range ρL ≈ 0.2–0.4. In this regime both

modes contribute significantly leading to polarisation beats with large amplitudes,

which is undesirable for laser operation. It is only at excitation powers well above

the threshold region that the X-polarised mode finally dominates the emission which

results in polarisation stable operation with ρL = 0.995± 0.005, in line with the data

presented in figure 4-7. However, oscillations can still be observed in the regime of

stimulated emission above threshold, as can be seen from the inset of figure 4-9.

A similar behaviour is found in the evolution of the coherence times, as shown

in figure 4-10(b). Below the threshold, the coherence times of both modes are com-

parable. This also means that their corresponding Q-factors are close to each other:

here, using again the lowest measured coherence times, i.e. τc,X = (48 ± 6) ps and

τc,Y = (42 ± 6) ps, the Q-factors are found to be QX ∼ 50, 000 and QY ∼ 44, 000,

respectively. These quite similar Q-factors are indicative of the small ellipticity of

the pillars [Dar06]. Furthermore, while τc,X and τc,Y both increase significantly in the

lasing transition region, τc,X increases much more strongly at P > P0 and reaches a

value of (20± 4) ns at an excitation power of 6.5P0. Differences in the actual values

of the coherence times with respect to those derived in the previous section are at-

tributed to the increased level of uncertainty in the fitting procedure in the oscillating

case due to the large number of parameters.
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Figure 4-10: (a) Excitation power dependence of the coherence time τc of the different

components of the 8µm-pillar’s FM. (b) Degree of linear polarisation ρL of the emission

from the FM. Data in both panels were obtained from fits to the results shown in figure

4-9. Compare also with figures 4-6 and 4-7.

The above described observation can be explained by a residual, comparatively

small degree of ellipticity of the micropillar cross-section. However, in order to ensure

that the direction of polarisation is not imprinted by the excitation laser, the direction

of polarisation of the linearly polarised excitation laser was rotated. Thereby, the

direction of polarisation of the micropillar emission was found to be independent of the

polarisation of the pump. Consequently, the characteristic direction of polarisation

is indeed an intrinsic feature of the given micropillar.

The domination of a specific linearly polarised microcavity mode might also be

due to tuning of certain exciton transitions out of or into resonance with the X-mode

at high excitation powers. As the exact position of the exciton transition is very

sensitive to changes of the lattice temperature, temperature-dependent first-order

correlation measurements on an auxiliary micropillar with d = 8µm were performed.

As shown in figure 4-11, an increase of the sample temperature up to 77 K does not

significantly affect the coherence and polarisation properties. Here, P0 denotes the

threshold at 10 K. The higher lattice temperature leads only to an increase of the

actual laser threshold value. This can be seen from lower visibility values at 2P0 and

77 K as compared to 10 K and is related to stronger contributions of non-radiative

recombination processes. A further important finding lies in the actual coherence time

of the X-mode above threshold at 77 K. It is found to be (18±5) ns and therefore only

marginally lower than at 10 K. These results also underline the suitability of GaAs-

based QD micropillars for laser applications at elevated temperatures [Böc08, Rei08].

To summarise this section, a detailed analysis of the FM polarisation was per-

formed. The evolution of the degree of linear polarisation with the excitation power

was determined in three different ways, showing concordant results. First-order cor-

relation measurements at detection angle ϑ = 45◦ were introduced, exhibiting char-

acteristic oscillatory behaviour. This method allows for a direct measurement of the
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Figure 4-11: First-order correlation function (ϑ = 45◦) of the FM of a different micro-

pillar with d = 8µm at excitation powers of 2P0 (blue triangles) and 6.5P0 (green circles).

Solid (open) symbols represent data taken at 10 K (77 K). For this microcavity the lasing

transition region started at P0 = 240µW (10 K) and at P0 = 290µW (77 K), respectively.

coherence times, the relative intensities as well as the energy splitting of the two

FM components. The presented results can be explained with the existence of an

initial inequality in the mode strengths related to an elliptical pillar cross-section,

which manifests itself by slightly linearly polarised emission at low excitation pow-

ers. Although the intensities, the coherence times, and the Q-factors are found to be

comparable in the low excitation power regime, the X-mode finally prevails above

the lasing threshold. Considering the polarisation and coherence properties derived

above, one may define a threshold for this QD laser as the point where the single

mode starts to dominate, namely 6.5P0, which is situated at the higher plateau of

the s-shaped i/o-curve.

4.5 Interdependence of Correlations of First and

Second Order

As mentioned above, additionally to i/o-curves, first-order correlations and the degree

of linear polarisation, it is necessary to evaluate the photon statistics of the emission

from a high-β laser in order to best characterise the lasing threshold. Using the streak-

camera technique presented in chapter 3.3, the second-order correlations of the FM

of the 8µm-pillar have been investigated previously [Wie09]. However, statistically

relevant measurements were only possible in the excitation power range at and above

the lasing threshold. The main cause for the lack of reliable data in the thermal

emission regime was the low quantum efficiency of the S-20 photocathode inside the

streak device in the spectral region around 900 nm. In this section, a method to

overcome this deficiency is introduced and applied.
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In order to overcome the mentioned limitation and to fully characterise the las-

ing transition, a theoretical model is developed that relates first- and second-order

correlations. This way, it is demonstrated that experimental results from g(1)(τ) mea-

surements, i.e. the coherence time of radiation, can be used to extend the accessible

excitation power range for equal-delay time photon statistics into the thermal regime

below threshold.

First, a macroscopic radiating system in the regime of spontaneous emission is

considered. The interdependence of first- and second-order correlations is then given

by the Siegert relation:

g(2)(τ) = 1 +
∣∣∣g(1)(τ)

∣∣∣2 . (4.6)

This relation assumes that the different emitters contributing to the total radiation

act independently, so that no coherence can build up and lasing with g(2)(0) = 1

cannot occur. As described in chapter 2.4, photon bunching occurs only within the

coherence time of the emission. This can be seen when combining equations (4.2)

and (4.6) and, in particular, results in g(2)(0) = 2 since g(1)(0) ≡ 1. Furthermore,

quantum light emission with g(2)(τ) < 1 cannot occur in this case. This is indeed

plausible as a large number of emitters is involved.

Consequently, whenever second-order correlation values below 1 are measured,

only a very limited number of emitters can be contributing to the light generation.

The observation of photon anti-bunching generally occurs when single-photon sources

are investigated [Lou05]. However, a significant drop of second-order correlations

below unity has also been observed in the photon statistics of the high-Q micropillar

discussed in this chapter, as demonstrated in reference [Wie09]. This suggests that a

low number of QDs contributing to the emission of the X-component of the cavity’s

FM.

Such a reduced number of active emitters, say N , can be taken into account in

the second-order correlation function by adapting a model first developed in the field

of quantum optics with atoms [Car78]. For this purpose, the total electric field EN(t)

has to be described as the superposition of the electric field Ei(t) irradiated by each

single emitter i:

EN(t) =
N∑
i=1

Ei(t) . (4.7)

Assuming the N emitters to be effectively equal and presupposing the absence of

background noise, the overall second-order correlations ofN emitters can be expressed

as [Car78]

G
(2)
N (τ) = NG

(2)
A (τ) +N(N − 1) ·

[
I2
A +

∣∣∣G(1)
A (τ)

∣∣∣2] , (4.8)

where, IA = 〈E−i E+
i 〉 is the intensity of the radiation from a single emitter, and

G
(1)
A (τ) and G

(2)
A (τ) are the corresponding first- and second-order correlation func-

tions, respectively. In order to obtain the normalised correlation function g
(2)
N (τ),

equation (4.8) has to be divided by |G(1)(0)|2 = (NI)2. It is then readily shown

that the normalised second-order correlation function of a N -emitter system can be
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written as:5

g
(2)
N (τ) =

g
(2)
A (τ)

N
+

(
1− 1

N

)[
1 +

∣∣∣g(1)(τ)
∣∣∣2] . (4.9)

Here, g
(2)
A (τ) = 1−exp(−|τ |/td) is the intensity autocorrelation function of the electric

field emitted by a single QD, which exhibits the well known anti-bunching behaviour.

It is assumed here that the system can exhibit perfect anti-bunching. In general,

this behaviour may be deteriorated by a stray light background, e.g. as shown in

reference [Mic00]. The parameter td is the characteristic time describing the relax-

ation back to non-quantum light emission for later τ . For very weak excitation of

the QD, td is just given by the spontaneous emission decay time τsp. This also in-

cludes resonator-induced effects such as Purcell enhancement. Higher pump rates

generally also lead to faster decay and shorter td times, which then has to be written

as t−1
d (P ) = 1/τsp + W (P ) + Wcav(P ). Here, W (P ) accounts for faster re-excitation

of the QD, whereas Wcav(P ) includes emission events that are due to stimulation by

intra-cavity photons.

Besides the anti-bunching term just discussed, the right hand side of equation (4.9)

contains also a bunching term similar to the one in the Siegert relation, which may,

however, also be smaller than 1, depending on the actual value of N . Both terms

are weighted by coefficients determined by the number of emitters: For N = 1, only

g
(2)
A (τ) adds to the overall correlations, while bunching disappears. For increasing N ,

the anti-bunching term decreases continuously, while the second term simultaneously

gains in importance. In the limit of an infinite number of emitters, the Siegert relation

is recovered.

To describe the variation of g
(2)
N (τ) with excitation power, and incorporate the

threshold to stimulated emission and the lasing regime, further modifications are

necessary. In this regime, g
(2)
N (τ) has to drop to unity for a large number of emitters.

Therefore, the contribution of the bunching component in equation (4.6), |g(1)(τ)|2,

has to be reduced continuously for increasing excitation power and increasing cavity

photon number. This can be achieved by introducing a phenomenological, excitation-

power dependent factor χ1(P ):

g
(2)
N (τ) = 1 + χ1(P )

∣∣∣g(1)(τ)
∣∣∣2 . (4.10)

Clearly, χ1 must take the value 1 in the spontaneous emission regime, while it has to

be zero for pure lasing. The drop from 1 to 0 has to occur within the laser threshold

range. Generally, χ1 can be expected to depend not only on the pump rate of photons

into the resonator, but also on the photon loss rate, i.e. on the Q-factor of the cavity.

When going to a finite emitter number, this scaling factor has to be maintained.

Additionally, the anti-bunching behaviour needs to be softened at and above the

lasing threshold. This can be obtained by introducing another scaling factor χ2(P )

within the first term of equation (4.9), which is then rewritten as:

g
(2)
N (τ) =

1

N

[
1− χ2 exp

(
−|τ |
td

)]
+

(
1− 1

N

)[
1 + χ1

∣∣∣g(1)(τ)
∣∣∣2] . (4.11)

5See appendix A for details of the derivation of equation (4.9).
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Figure 4-12: Second-order intensity correlation function of the 8µm pillar’s FM at exci-

tation powers of (a) 4P0, (b) 2P0, (c) P0 and (d) 0.03P0. The figure shows both experimen-

tal results from streak camera measurements (black spheres), as well as simulations using

equation (4.11) taking into account the coherence times derived from g(1)(τ) measurements

shown in figure 4-5. At very low excitation powers [panel (d)] no measurements could be

achieved due to limited sensitivity of the streak device. Here, the expected parameters

χ1 = χ2 = 1 as well as td = 250 ps were used for the calculations; see main text.

Here, χ2 has to depend on the photon generation and loss rate. In the regime of

spontaneous emission with a negligible photon number in the resonator χ2 should

approach unity. With increasing excitation power the average number of intra-cavity

photons increases, which reduces possible anti-bunching effects, as two photons may

then be emitted at the same time. For very high photon densities χ2 therefore has

to drop to zero. In reference [Wie09] it has been shown that for the resonator under

investigation quantum light emission can occur in the threshold region and above, so

that even at those excitation powers anti-bunching is important, while the bunching

effects are already minimised.

It should be noted that equation (4.11) is, in general, valid for cw experiments.

However, if the discussion is restricted to delay times τ much smaller than the pulse

repetition period, it should also hold for pulsed excitation experiments. As has been

shown in reference [Aßm10] for a similar QD-micropillar system, the degree of second-

order coherence is relatively constant throughout the dominant part of an emission
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Figure 4-13: Excitation power dependence of the cavity feedback factors χ1 and χ2,

respectively. The values for χ1,2 were obtained from the fits using equation (4.11).

pulse. Accordingly, as g
(2)
N (τ) is an intensity-weighted average over all times t within

a pulse, deviations at the beginning and at the end of a pulse should be of no major

consequence. Furthermore, considering the cw excitation scheme in the g(1)(τ) exper-

iments, one has to account for the photon lifetime which decreases from ∼250 ps at

P0 to ∼150 ps at 4P0 and thereby limits the effective coherence time of the QD-cavity

system.6

Hence, following equation (4.11) it is possible to compare the measured g(1)(τ)

data, i.e. the coherence time τc, with results obtained from direct photon statistics

measurements. Experimentally determined g
(2)
N (τ) curves are shown in figure 4-12,

panels (a)-(c). To realise the calculations discussed above, fixed values for the number

of QDs N were chosen. Subsequently, the curves were fitted to the experimental data

by variation of the parameters χ1, χ2, and td.

As illustrated in figure 4-12, the simulated curves show a reasonable agreement

with the experimental data. The different parameters were determined with a rather

good accuracy, as revealed in figure 4-13 which shows the evolution of χ1 and χ2

with excitation power. The reason for the preciseness of the parameters is that they

represent different characteristics of the g
(2)
N (τ) curves. First, χ1 accounts mainly

for the bunching behaviour which occurs at early delay times τ . Here, the other

parameters are only of minor importance. The simulations reveal χ1 to decrease

from χ1 ≈ 1 in the thermal regime down to roughly 0.1 in the lasing transition region

at and above P0. Second, χ2 describes solely the magnitude of the anti-bunching

term in equation (4.11) and is found to decrease from unity below threshold to a

value of χ2 ≈ 0.83 at 4P0. This moderate decrease comes from the fact that anti-

bunching is also observed in the lasing regime. Finally, td exclusively characterises the

relaxation from quantum to non-quantum light. In the threshold region, td is found

to be td ≈ 6 ps at P0 and td ≈ 3 ps at 4P0. A central result of the fitting procedure

is that the data is best fit by the model when a number of emitters in the range

of 5 ≤ N ≤ 8 is assumed, which is in excellent agreement with the values assumed

in the theoretical modelling framework applied in reference [Wie09]. Although this

6With the photon lifetime τ0, the effective coherence time of the system is τ−1
c,eff = (2τ0)−1 + τ−1

c .
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Figure 4-14: Excitation power dependence of the equal-time second-order correlation

function g(2)(0). Data obtained with the streak camera are shown as spheres; data obtained

from the fits shown in figure 4-12 are represented by triangles. In the thermal regime

(P < 0.1P0), a value range of g(2)(0) = 1.66± 0.12 is determined; see main text.

means that only 2–3% of the estimated total number of QDs in the active layer are

contributing to the lasing operation, these results highlight the fact that the high-Q

micropillar under investigation is indeed a few-emitter cavity system as manifested

in the anti-bunching signal.

Furthermore, as shown in figure 4-12(d), it is possible to simulate second-order

correlation values at low excitation powers (here 0.03P0) when reliable g(2)(τ) mea-

surements are made difficult by the limited sensitivity of the streak camera in the

near-infrared spectral range. In this case, the QD laser is operated far below its

threshold, and thus spontaneous emission events are predominant. Therefore, the

scaling parameters were set to the expected values χ1(P�P0) = χ2(P�P0) = 1.

Also, a value of td = 250 ps was used [San02], corresponding to a Purcell factor of

about 2, which is in agreement with auxiliary time-resolved photoluminescence data.

It is interesting to note that in the case of a two-emitter system, quantum light statis-

tics are observed at finite delay times while g
(2)
N (τ) equals unity for zero delay time.

For larger values of N , a bunching peak around τ = 0 is accompanied by a decrease

of g
(2)
N (τ) slightly below unity at larger delay times. However, it can be seen that in

the case of N = 20 the results are already converging to the classical value, namely a

notable bunching peak within the coherence time and uncorrelated photons at large

delay times.

Considering the calculation results for 5 ≤ N ≤ 8, the model can also be used

to derive values for the equal-time correlation g(2)(0) as depicted in figure 4-14. The

comparison of direct and indirect g
(2)
N (τ) measurements reveals a good agreement for

excitation powers P ≥ 0.7P0. Furthermore, it is possible to provide a reasonable

estimate for the state of the QD laser far below the threshold, which differs signifi-
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cantly from the case of a macroscopic thermal emitter: in the regime of spontaneous

emission (say P < 0.1P0), the equal-time correlations amount to a value of only

g(2)(0) = 1.66±0.12. This clear deviation from the classical result is indeed expected

for a system with a low number of emitters [Wie09].

While the results achieved with the presented model can describe the experi-

mental data measured with the streak camera up to certain level, the model has

clear limitations. Especially when compared to the theoretical framework modelling

quantum-dot-based microcavity lasers introduced in reference [Gie07] and further

developed in references [Aßm10, Ate08, Ulr07], several phenomena cannot explic-

itly be accounted for. This includes semiconductor-specific effects like the modified

source term of spontaneous emission, Pauli-blocking, the absence of complete carrier

inversion as well as many-body Coulomb effects. Another important point which

is not included in the presented model are the oscillations observed in g
(2)
N (τ) (see

figure 4-12). According to the mentioned microscopic theoretical framework, these

oscillations can be traced back to the dynamical coupling between photons and carri-

ers. In general terms of laser physics, these oscillations can be compared to relaxation

oscillations as well as to Rabi oscillations. For the purpose of completeness, it should

also be mentioned that the introduced model does not account for any cavity feeding

effects by QDs that are not (quasi-)resonant with the cavity FM [Lau10, Win09]. It

is however reasonable to neglect these at this stage, especially in the case of phonon-

assisted feeding which occurs on a much slower time scale as compared to the present

experimental configuration [Hoh09].

Nevertheless, despite these shortcomings, the results obtained with the presented

model do agree quite well on a qualitative level with the above mentioned microscopic

theory. Much larger deviations from the theoretical work by Gies et al. are assumed to

occur when cavities with even larger β-factors in the range of β ≥ 0.1 are investigated.

It should also be stressed that the presented model is intended as a readily accessible

tool to describe the coherence properties of a QD laser on a basic level allowing for

easy comparison with experimental data—as an alternative to complex theoretical

modelling requiring extensive numerical calculations.

4.6 Conclusions

To summarise this chapter, the lasing thresholds of QD micropillar lasers exhibiting

both high Q-factors and β-factors were investigated. As expected, the lasing transi-

tion of the fundamental cavity mode was difficult to identify solely from the i/o-curve

data. Consequently, the first-order correlations as well as the degree of linear polar-

isation were evaluated with different experimental methods. The lasing threshold

was found to be accompanied by a strong nonlinear increase in the coherence time

τc. Record values for the coherence times of more than 20 ns were determined. Si-

multaneously, the degree of linear polarisation ρL increased significantly. However,

stable linear polarisation with ρL > 0.99 was not reached until higher excitation were

applied, i.e. P = 6.5P0. Finally, a theoretical model was introduced that allows to
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describe the coherence of the radiation from micropillar lasers in terms of both first-

and second-order correlations.

Parts of the work presented in this chapter were published in J. Opt. Soc. Am.

B 28, 1404-1408 (2011); see item P3 in the publication list (page 123).



Chapter 5

Thresholds of a Polariton Laser

Quantum theory predicts that exciton-polaritons in a microcavity should behave as

bosonic particles in the low-density limit. Because of this, they are expected to un-

dergo Bose-Einstein condensation (BEC) under specific conditions. As it has been

pointed out by Imamoğlu et al. [Ima96], the realisation of a macroscopic, coherent

polariton BEC should lead to coherent, laser-like emission without the need of elec-

tronic population inversion.1 This type of coherent emission of radiation is generally

called polariton lasing. While a proof-of-principle experiment on polariton conden-

sation in a GaAs-based microcavity has been presented in reference [Wer09], the aim

of the current chapter is to show that polariton lasing can be distinguished from

photon lasing by the observation of a two-threshold behaviour in the emission from

a GaAs-based microcavity.

This chapter is organised as follows. First, in section 5.1, the fundamental physics

of a BEC of microcavity exciton-polaritons are discussed. Second, the design of the

investigated microcavity sample and its basic characteristics are described in section

5.2. Results of the experimental studies are presented in the subsequent parts: The

two-threshold behaviour of a pulsed polariton laser at low temperatures (T = 10 K)

is demonstrated in section 5.3. Furthermore, its temperature-dependent behaviour is

analysed in section 5.4. Finally, a summary is given in section 5.5.

5.1 Microcavity-Polariton Lasers

Bosonic particles have the property to condense in unlimited numbers in their ground

state. The basic physics of this so-called Bose-Einstein condensation are described in

this section, following references [Den10, Kav07].

Consider a system of size rBE and dimensionality d which consists of N non-

1As mentioned in chapter 4, the lasing condition in semiconductor lasers is defined by the

Bernard-Duraffourg criterion which describes it in terms of quasi-Fermi levels of the states (i.e.

bands) involved in the actual lasing transition [Ber61]. However, note that it is generally accepted

to use the term population inversion as a synonym for the Bernard-Duraffourg criterion.
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interacting bosonic particles with an energy dispersion E(~k). In such a system, the

energy distribution of the particles is highly dependent on the temperature T and

follows the Bose-Einstein distribution function:

fBE(~k, T, µ) =

(
exp

{
E(~k)− µ
kBT

}
− 1

)−1

. (5.1)

Here, µ gives the chemical potential, which is negative if the ground state is E(0) = 0.

Consequently, −µ is the energy needed to add another bosonic particle to the system.

Its value is determined by the following normalisation condition:

N(T, µ) =

(
exp

{
− µ

kBT

}
− 1

)−1

+
∑
~k,~k 6=0

fBE(~k, T, µ) . (5.2)

In this equation, as it is the state of interest, the ground state with k = 0 has been

separated from other states.

The particle density n(T, µ) can be determined in the thermodynamic limit, by

transforming the sum into an integral. The total boson density then reads

n(T, µ) = lim
rBE→∞

N(T, µ)

(rBE)d
= n0(T, µ) +

1

(2π)d

∞∫
0

fBE(~k, T, µ) d~k , (5.3)

where

n0(T, µ) = lim
rBE→∞

1

(rBE)d
·
(

exp

{
− µ

kBT

}
− 1

)−1

(5.4)

represents the particle density of the ground state. While n0(T, µ) vanishes if µ 6= 0,

the integral in equation (5.3) increases with µ. As a result, there exists a maxi-

mum particle density nc that can be reached following the Bose-Einstein distribution

function; it is determined by:

nc(T ) = lim
µ→0

1

(2π)d

∞∫
0

fBE(~k, T ) d~k . (5.5)

Assuming a parabolic dispersion and a dimensionality d > 2, nc is a critical den-

sity above which all additionally added particles collapse into the ground state, as

proposed by Einstein [Ein24]. The ground-state particle density then reads:

n0(T ) = n(T )− nc(T ) . (5.6)

This represents a phase transition characterised by a massive accumulation of bosonic

particles in the ground state. Here, the chemical potential is the order parameter; it

vanishes at the phase transition.

In more modern theories, condensation has been described for interacting bosons.

This led to the definition that BEC is associated with the occurrence of a macroscopic

wave function ψ(~r) with an average value of

〈ψ(~r)〉 =
√
ncond(~r) · exp{iφ(~r)} , (5.7)
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which simultaneously represents the order parameter of the phase transition. Above

the condensation threshold, the phase is constant across the whole condensate, i.e.

the condensate is completely phase-coherent. The actual value of the phase, however,

is randomly chosen at the transition to BEC.

If the bosonic system is two-dimensional, such as it is the case for microcavity

polaritons, equation (5.5) diverges. Strictly speaking, BEC at finite temperatures is

not possible in a uniform d = 2 system [Hoh67, Mer66]. If, however, the particles

are confined by a spatially varying potential, a BEC-like phase transition at finite

temperatures becomes allowed.2 For a two-dimensional box system of size rBE, the

critical particle density at a specific temperature Tc reads

nc(Tc) =
2

λ2
dB

ln

{
rBE

λdB

}
, (5.8)

where λdB represents the thermal de Broglie wavelength.

Despite the reduced dimensionality, there are two main reasons why microcavity

polaritons are very promising for BEC experiments. First, as discussed in chapter

2.3.2, one of the most prominent characteristics of microcavity polaritons is their light

effective mass which is a direct consequence of their photonic content. This allows

in principle to observe polariton condensation at significantly higher temperatures

as compared, for example, with condensation of atoms [And95, Dav95]. Second, a

major advantage of microcavity systems lies in the experimental accessibility, as the

photons emitted from the cavity are part of the polaritonic wave function and, thus,

give direct insight into several properties of the system.

In recent years, there have been several demonstrations of typical signatures of

BEC in microcavities, such as macroscopic occupation of the ground state [Kas06,

Wer09], spatial condensation [Bal07], strong increase of first-order spatial coherence

[Den07, Ric05], quantised and half-quantised vortices [Lag08, Lag09], superfluidity

[Amo09a, Amo09b], as well as the build-up of spontaneous polarisation [Bau08].

However, there is still a hot debate on how the coherent emission of a polariton

condensate (“polariton lasing”) can be distinguished from coherent emission of a con-

ventional photon laser. In an early work [Den03], two different kind of thresholds have

been observed on different positions of the same sample and, thus, at different cavity-

exciton detuning. Later, it has been argued about the similarities of photon lasing

and a polariton condensate [Baj07]. In the same publication, it has been suggested

that “the observation of a second threshold at higher excitation density correspond-

ing to photon lasing” would be “an unambiguous proof for polariton condensation

or polariton lasing”. Such a two-threshold behaviour has been observed by the same

authors in micropillars [Baj08] as well as by another group who applied mechanical

stress to a planar GaAs-based microcavity [Bal09].

In the current chapter, it will be shown that it is possible to observe two distinct

thresholds in the emission of a GaAs-based microcavity while increasing the carrier

2In the two-dimensional case, another phase transition might occur, the so-called Berezinskii-

Kosterlitz-Thouless (BKT) transition [Ber71, Kos73].
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Figure 5-1: Sketch of the layer sequence of the investigated quantum-well microcavity

sample. The resonator consists of a half-wavelength AlAs cavity layer sandwiched between

two DBR mirrors. The DBR stacks are made of consecutive λ/4 layer pairs of Ga0.8Al0.2As

(56 nm) and AlAs (65 nm). Three stacks of four GaAs quantum wells are embedded in the

microcavity.

density. Therefore, different characteristic quantities will be analysed in the spectral

as well as in the time domain.

5.2 The GaAs-based Quantum-Well Microcavity

Sample

The microcavity sample used for the studies presented in this chapter is based on a

planar AlGaAs heterostructure.3 It consists of a λ/2 AlAs cavity sandwiched between

two distributed Bragg reflector (DBR) mirrors. The DBR stacks are composed of 16

alternating Ga0.8Al0.2As/AlAs layers on top and 20 alternating layers at the bottom

of the central cavity layer. This planar microcavity structure was grown on a (001)

oriented GaAs substrate by molecular beam epitaxy.

Three sets of four GaAs/AlAs quantum wells are embedded at the cavity centre

as well as in the first DBR layers on either side of the cavity layer. Compared to

resonators with a lower number of QWs, the use of twelve wells allows to decrease

the exciton density per well for a specific polariton density. Correspondingly, the po-

lariton density at which exciton-exciton interactions become relevant, is much higher.

Simultaneously, as the Rabi splitting ΩR scales with the square root of the QW num-

ber, the light-matter coupling is increased [Hou94b]. A sketch of the layer sequence

3The microcavity sample used for the studies presented in this chapter has been grown in the

research group of Prof. Alfred Forchel at the Julius-Maximilians-Universität of Würzburg, Germany.

The identifier of the sample is C1059.
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Figure 5-2: Energy of the lower (blue colour) and upper (red colour) polariton in de-

pendence of the radial position on the sample wafer. Experimental data are obtained from

reflectivity measurements. The lines represent fits to the data using equation (5.9) and

assuming both the cavity mode (dashed line) and exciton resonance (dotted line) energy to

change linearly with the radial position on the wafer. Compare also figure 2-6.

is shown in figure 5-1.

The cavity layer is wedge shaped, i.e. the cavity-photon energy varies across the

sample. This allows for changing the cavity-exciton detuning in a certain range. How-

ever, for most experiments discussed in this chapter, the cavity-photon and exciton

mode were chosen to be in resonance.

The eigenmodes of the system can be deduced from reflectivity measurements.

Therefore, the reflectivity spectrum has been measured in dependence of the radial

position rwf on the sample wafer.4 The experimental data are shown in figure 5-2.

In order to fit the data, equation (2.29) is evaluated for zero in-plane wave vector,

which results in

EUP,LP(rwf) =
1

2
[EX(rwf) + EC(rwf)]±

1

2

√
[EX(rwf)− EC(rwf)]

2 + 4 [~ΩR]2 , (5.9)

where EX(rwf) ≡ αX · rwf + βX and EC(rwf) ≡ αC · rwf + βC. Thus, the energies of the

exciton resonance and the cavity mode are assumed to vary linearly with the radial

position rwf. From the fitting procedure, the vacuum Rabi splitting5 is calculated to

be 2~ΩR ∼ 14 meV. The quality factor of the microcavity is assumed to be about

1, 800.

For the measurements discussed in this chapter, the experimental techniques pre-

sented in chapters 3.2 and 3.3 were used. During all measurements the sample was

4Experimental data shown in figure 5-2 were obtained from reflectivity measurements which have

been performed by the research group of Prof. Alfred Forchel at the Julius-Maximilians-Universität

of Würzburg, Germany.
5Note that, in general, the determined value of the Rabi splitting depends on the applied exper-

imental method [Sav95].



74 Thresholds of a Polariton Laser

kept in a helium-flow cryostat. Optical excitation was provided by a picosecond-

pulsed Ti-Sapphire laser. The pump laser was focused to a Gaussian spot approxi-

mately 30µm in diameter on the sample at an angle of 45◦ from normal incidence.

The emission of the sample was collected from the central area of the excitation spot

using a microscope objective. To investigate the far-field emission of the sample,

the Fourier plane was imaged onto the entrance slit of a monochromator and de-

tected with a nitrogen-cooled CCD camera (see chapter 3.2). In order to perform

time-resolved measurements, the emission from the sample was directed to a streak

camera with a time-resolution of 2 ps (see chapter 3.3).

5.3 Two-Threshold Behaviour of a Pulsed Polariton

Laser

In this section, experimental results obtained at zero cavity-exciton detuning and a

sample temperature of T = 10 K are presented. In order to identify the position

corresponding to zero cavity-exciton detuning, the PL of the coupled system was

measured in dependence of the position on the sample (not shown). From a fit of the

upper and lower polariton energies using equation (5.9), the position with ∆0 = 0

was determined. In subsection 5.3.1, results obtained from Fourier-plane imaging are

discussed. Subsequently, in subsection 5.3.2, results of streak-camera measurements

are demonstrated. Finally, the observed characteristics of the different states of the

microcavity are summarised in subsection 5.3.3.

5.3.1 Two thresholds in the spectral domain (T = 10 K)

The energy dispersion relation is supposed to change when microcavity polaritons

condense and a polariton laser is formed. Furthermore, when the microcavity system

transits into photon-lasing operation at high carrier densities, the polariton states

should disappear. In order to investigate this behaviour, excitation-power dependent

dispersion measurement were performed.

Figure 5-3 shows in-plane energy dispersions at different excitation powers P . At

low pump powers (here 0.4 mW) only the LP branch is observed, as it is exclusively

populated at low temperatures [figure 5-3(a)]. The LP branch is well fitted using

equation (2.29). Upon increasing excitation power, there is evidence for a transition

from the quadratic LP branch at low excitation power towards a blueshifted state.

This first threshold in the microcavity emission occurs at an excitation power of

Pth1 ≈ 15 mW, as can be seen from figures 5-3(b) and 5-3(c). It is identified as the

threshold to polariton lasing, as will be discussed in detail below.

Above the threshold to polariton condensation, a blueshift of the LPs at k|| = 0 as

well as a change of the excitation spectrum is expected [Den10]. In the case of reso-

nant excitation of lower polaritons with large k|| values, the energy dispersion should
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Figure 5-3: Energy-dispersion relations at different excitation powers. The black solid

line gives the LP and was calculated with equation (2.29). Parameters have been chosen

to fit the experimental LP data. The cavity photon dispersion (C; solid white) is obtained

from equation (2.19) using the same parameters. The exciton energy (X; dotted white) is

assumed to be constant in the observed k||-range. The linear false colour scale goes from

royal blue (low intensity) to red (high intensity), as indicated at the top.

exhibit a phonon-like linear behaviour for |k||ξ| < 1 with ξ = ~/(2m∗LPgcnc)
−1/2.

Here,6 gc is a coupling constant reflecting the interaction of two condensate particles

and nc is the condensate particle density. In standard equilibrium Bogoliubov theory

the occurring energy dispersion above threshold is given by [Oze05]

ωBog(k||) = ωLP(k||) + gcnc + gcnc

√
(k||ξ)

2[(k||ξ)
2 + 2] . (5.10)

Here, contributions by reservoir excitons are neglected, as polaritons are injected res-

onantly. Dispersion curves with such a shape have first been observed on a nominally

identical microcavity sample [Uts08]. Using resonant excitation, the sample described

in section 5.2 was also shown to display Bogoliubov excitation spectra; see item P2

in the publication list (page 123).

However, when non-resonant excitation is applied, the contributions from the

exciton reservoir cannot be neglected any more. A reasonable method to describe

the dynamics of a polariton-condensate wave function ψc(~r) is to use a generalised

6The quantity ξ is the so-called healing length and describes “the minimal distance over which

the condensate wave function can vary significantly” [Oze05].
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Gross-Pitaevskii equation (GPE),7

i~
∂ψc(~r)

∂t
=

{
ELP −

~2

2m∗LP

∇2
~r +

i~
2

(
R[nR(~r)]− γc

)
+ Vext(~r) + ~gc|ψc(~r)|2 + VR(~r)

}
ψc(~r) ,

(5.11)

where ELP = ~ωLP is the LP energy at k|| = 0; exciton and cavity disorder are included

in Vext(~r). The condensate decay and gain rate are given by γc and R[nR(~r)], respec-

tively, and the latter depends on the local density of reservoir polaritons nR. This

reservoir effectively generates a mean-field repulsive potential VR(~r) ≈ ~gRnR(~r) +

~gPP (~r), which depends on the interaction strength of reservoir polaritons gR and

the pump rate P (~r). Furthermore, the GPE (5.11) is coupled to a rate equation for

the reservoir density:

ṅR(~r) = P (~r)− γRnR(~r)−R[nR(~r)] · |ψc(~r)|2 . (5.12)

In this equation, γR gives the decay rate of reservoir polaritons; the last term of the

right side accounts for transitions of reservoir polaritons into the condensate.

The stationary solutions for the coupled equations (5.11) and (5.12) depend on

both the size and the spatial shape of the excitation spot P (~r) [Wou08]. Assuming

a spatially homogeneous excitation spot, it has been found that the reservoir density

is clamped above threshold (nR = nR,th1), while the condensate density grows as

|ψ0|2 = (P − Pth1)/γc. Furthermore, in this case the condensate wave function can

be described by

ψc(~r) = ψ0 · exp
{
i(~kc~r − ωct)

}
. (5.13)

In general, there exist several allowed stable solutions, as the value of the condensate

wave vector ~kc remains undetermined. Nevertheless, for a given ~kc, the eigenfrequency

ωc of the condensate is given by:

ωc − ωLP =
~2k2

c

2m
+ gc |ψ0|

2 + gRnR + gPP . (5.14)

However, in the case of an inhomogeneous excitation-spot profile the situation is

slightly different: The stationary solutions will be of the form

ψc(~r, t) = ψ0(~r) · exp{−iωct} =
√
ρc(~r) · exp{i[φc(~r)− ωct]} , (5.15)

nR(~r, t) = nR(~r) , (5.16)

where ρc(~r) and φc(~r) denote the condensate’s local density and phase, respectively.

Using the equations (5.11) and (5.12) and the Ansatz given by equations (5.15) and

(5.16), a solution for the condensate eigenfrequency and wave vector can be obtained

by local density approximation [Wou08]. Using this approach, one has to account

for the fact that the condensate eigenfrequency is constant in space. Consequently,

7Equations (5.11) to (5.17) are discussed in more detail in the publications by Wouters et al.

[Wou07, Wou08].
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Figure 5-4: Dispersion curves at the first threshold (Pth1) observed at the indicated

detunings ∆0. Data measured with MO2 (NA = 0.42). The dispersion relation of the

condensate is essentially flat at all detunings. At negative cavity-exciton detuning, the

dispersion follows the LP dispersion at large in-plane momenta. The false colour scale is

linear in panel (a) and logarithmic in panels (b) to (d). The lines give calculated LP (black)

and cavity-photon (C; white) mode dispersions. Black circles (red triangles) follow the

energy at the intensity maxima corresponding to the lower polariton (condensed polariton)

mode. Signal at large k|| values is magnified [panel (a)], for better visibility.
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the wave vector ~kc(~r) has to compensate for the variation of P (~r), and thus varies

in space across the condensate. When a circularly symmetric Gaussian laser spot is

applied, as in the present experiment, the solutions of the equations discussed above

should display rotational symmetry as well. Neglecting disorder induced effects, the

condensate eigenfrequency has been calculated to

ωc − ωLP = gcρc(r = 0) + gRnR(r = 0) + gPP (r = 0) . (5.17)

The circular symmetry further implies that the local wave vector at the centre of the

excitation spot equals zero, ~kc(r = 0) = 0. As the excitation-spot profile decreases in

radial direction, ~kc(~r) is always pointed outwards and increases with ~r.

Numerical simulations for the case of a Gaussian excitation spot with diameter

of about 20µm have shown that the dispersion of the condensate is essentially flat

for small k||-values.8 Using the MO with larger numerical aperture, a deeper under-

standing of the examined microcavity state at the first threshold is obtained. As

can be seen from figure 5-4(a), the shape of the condensate dispersion is flat in the

observed k||-range. The flat nature of the dispersion becomes more clear at negative

detunings, as demonstrated exemplarily in figures 5-4(b) to 5-4(d) for detunings of

∆0 = EC − EX = −5 meV, −8 meV and −11 meV, respectively. Here, it is seen that

the dispersion is flat until it reaches the LP branches at high k||-values. Accordingly,

the observed shape of the dispersion agrees with the discussed theory. Moreover, the

results are in line with reports from other groups, see for example reference [Mar10].

At higher excitation powers, the main emission mode occurs at further blueshifted

energies. As depicted in figure 5-3(d), the emission at P ≈ 3Pth1 originates from an

energy about 1−2 meV below the calculated cavity-photon mode. At P = 5Pth1, two-

mode emission is observed: While the larger part of the emission still comes from

below the cavity mode, a second mode appears at roughly 3 meV above the cavity-

photon mode [figure 5-3(e)]. At excitation powers well above this first threshold, the

emission comes predominantly from the blueshifted cavity-photon mode [figure 5-3(f),

P = 250 mW]. In this case, the dispersion of the emission displays a parabolic shape.

Here, the SC is most probably bleached and the system remains weakly coupled. The

cavity thus operates as a standard photon laser. The blueshift with respect to the

calculated bare cavity mode may be attributed to changes in the material refractive

indices with increasing carrier density [Moh94]; this is, however, not fully understood.

Recently, another working group has discovered a similar behaviour [Chr12].

In order to analyse the dispersion curve changes in more detail, the evolution of

different characteristic parameters with increasing excitation power was examined.

Here, only the emission around zero in-plane momentum (|k||| ≤ 0.13µm−1) was

taken into account.

Figure 5-5(a) shows the cavity-emission spectrum around zero in-plane momen-

tum as a function of the excitation power. Here, the evolution of the main emission

8Different results are expected for smaller excitation spot sizes [Wou08]: The condensate is

expected to emerge at a finite k||-value, forming a ring-shaped object. This has been observed

experimentally in a CdTe-based cavity [Ric05] as well as in a GaAs-based resonator [Chr12].
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Figure 5-5: (a) Excitation-power dependence of the cavity emission spectrum in a linear

colour scale going from dark blue (low intensity) to red (high intensity). (b) Emission

spectrum at selected excitation powers: P � Pth1, P = Pth1, P ≈ Pth2 and P � Pth2

(from left to right). In both panels, only the emission corresponding to in-plane momenta

|k||| ≤ 0.13µm−1 was taken into account.

energy can be traced: Being rather constant in the thermal regime below Pth1, a

clear jump of the emission energy of roughly 4 meV is found at the condensation

threshold. This shows that the scheme of excitation is a relevant parameter, as the

blueshift is usually smooth when cw excitation is applied. The discontinuous be-

haviour at the first threshold can be explained considering the combination of pulsed

excitation and time-integrated dispersion imaging: The blueshift of LPs evolves with

time throughout an emission pulse. Although a notable part of the emission origi-

nates from blueshifted polaritons (as evidenced by dispersion images with logarith-

mic colour scale; not shown), the thermal LP branch still dominates the emission

for P < 15 mW. At Pth1, the emission from condensed polaritons finally prevails.

As the total number of particles in the condensed state is already relatively high at

this stage, a jump in energy is observed. Both, the observed discontinuous behaviour

and the large blueshift are in good agreement with other results obtained for pulsed

excitation (see, e.g., reference [Mar10]), whereas different results have been reported

from continuous-wave experiments [Baj08, Wer09].

Above Pth1 the emission energy first exhibits a further smooth blueshift, as ex-

pected for an interacting condensate with increasing particle density. It then stays at

an almost constant value, which implies that also the average particle density in the

condensed mode remains almost constant. Simultaneously, a second mode at higher

energy appears and reaches comparable intensity directly below the second thresh-

old, as shown in figure 5-5(b). Starting from Pth2 = 80 mW, this mode dominates

the emission. Correspondingly, another jump is observed in the emission energy, be-

fore it remains fixed for higher powers. The total blueshift as compared to the low

density LP energy is then roughly 10 meV, the SC is thus definitely broken. It is

assumed that the cavity mainly operates as a standard photon laser above the sec-
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Figure 5-6: Evaluation of the cavity emission with in-plane momenta |k||| ≤ 0.13µm−1.

Panel (a) shows the excitation-power dependence of the integrated intensity. Panel (b)

displays the spectral linewidth (FWHM) of different emission modes: the LP, the polariton

laser, as well as the photon laser mode. Linewidths are obtained by fitting a single- or

double-peak Gaussian function to the spectra shown in figure 5-5. The vertical dashed

lines indicate the two thresholds, as observed from the dispersion maps. The lines are a

guide to the eye.

ond threshold. Furthermore, the transition to photon lasing is assumed to coincide

with the so-called Mott density. Above the Mott density, the carriers are no longer

bound to excitons, but form an electron-hole plasma. Nevertheless, due to the pulsed

excitation scheme, remains of polariton lasing are still observed at high powers, as

depicted in figure 5-5(b) for P = 250 mW. This result is in agreement with recent

reports on time-resolved measurements, where the temporal transition from photon

lasing to polariton lasing has been investigated [Kam12]: While photon lasing was

observed at early times, emission from the polariton condensate was seen at later

times in the pulsed emission. Thus, the system relaxes back to the strong coupling

regime, as soon as the exciton density falls below the Mott density. For the present

cavity this was also observed; see item P6 in the publication list (page 123).

A similar two-threshold behaviour is found in the development of the integrated

emission intensity with excitation power, see figure 5-6(a). In the thermal regime

the intensity increases linearly with pump power. With further increasing excitation

power a strongly non-linear behaviour is observed, until a first saturation level is

reached. At even higher pump powers a second non-linear behaviour is found. Both

nonlinearities occur at the power levels where the changes in the dispersion curves as

well as in the evolution of the emission energy were seen. As mentioned above, these

two nonlinearities can be ascribed to the build-up of a polariton condensate at Pth1

and the onset of standard photon lasing at Pth2, respectively.

While two distinct thresholds are observed in the cavity-emission energy and in-

tensity, the situation is more difficult in the case of the spectral linewidth, as shown
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in figure 5-6(b). The full width at half maximum (FWHM) was determined by fitting

single- or double-peak Gaussian functions to the emission spectra.9 The linewidth

increases gradually in the thermal regime. A clear narrowing is observed at the tran-

sition to the condensate; here the linewidth is ∼ 1.4 meV. Above Pth1, the linewidth

further increases. In the excitation power range between the two thresholds, the

appearing second mode displays a larger width than the polariton laser and further

increases up to a maximum width of about 3 meV. Around the second threshold de-

scribed above, the linewidth of the polariton laser strongly increases while the width

of the photon laser strongly decreases. The opposite tendency is observed at very

high carrier densities.

In the excitation power range between the thresholds, the monotonous increase of

the polariton-laser linewidth can be explained by density fluctuations and polariton-

polariton interactions [Por03], as will be discussed in more detail in section 5.3.2. The

decrease of the cavity-photon linewidth around Pth2 is a typical sign for the onset of

standard lasing. Finally, the observed ongoing increase above Pth2 may be explained

by fluctuations of the refractive index throughout an emission pulse [Wan05]. In the

high density regime of photon lasing, heating of the electronic system may also play

a role. Nevertheless, the emission above the second threshold is identified as photon

lasing by analysing the other spectral and temporal quantities.

5.3.2 Two thresholds in the time domain (T = 10 K)

The spectroscopic results presented in the previous subsection are clear indicators

of the system changing its state at the observed thresholds. However, a detailed

characterisation of the emission requires also studies of its coherence properties as well

as its behaviour in the time domain. In order to assure comparability of time-resolved

and spectroscopic data, the investigations in the temporal domain were restricted to

the emission around k|| = 0. Furthermore, the 1 nm-wide bandpass filter10 followed

the strongest emission mode according to figure 5-5(a).

The coherence properties are determined in terms of the second-order correlation

function. To this end, the streak-camera technique introduced in chapter 3.3 was

applied. As the photons emitted from the cavity are part of the polaritonic wave

function, the photon statistics of the emitted light is supposed to reflect the quantum

statistical behaviour of the microcavity-polariton system. In particular, the second-

order correlation function for equal-time events,

g(2)(τ = 0) =

〈
: n̂2 :

〉
〈n̂〉2

, (5.18)

was measured. For a single-threshold microcavity, in which the SC is bleached be-

fore reaching the critical LP density needed for polariton condensation, a standard

9Note that the true linewidth is blurred due to temporal variations of the total carrier density

subsequent to an excitation pulse.
10See chapter 3.3.1 for details.
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Figure 5-7: Excitation-power dependence of the equal-time correlation function g(2)(τ =

0). The vertical dashed lines represent the thresholds. The blue and the red line indicate the

thermal and the coherent state, respectively. Note that, for all time-resolved measurements,

a 1 nm-wide bandpass filter was used to single out the main emission mode. Only the

emission with zero in-plane wave vector is considered here.

laser behaviour has been observed in reference [Aßm09]: a smooth transition from

g(2)(0) = 2 to g(2)(0) = 1. This corresponds to the transition from thermal emission

below threshold to the coherent emission of a photon laser above the lasing thresh-

old. However, the second-order correlations of a microcavity-polariton system that

exhibits a two-threshold behaviour, as shown in the previous subsection, are supposed

to exhibit a more sophisticated power dependence.

Investigations of the photon statistics presented up to now have been performed

using HBT setups with time resolutions of many tens to a few hundred picoseconds

[Den02, Kas08a, Lov08]: In an early work [Den02], strong photon bunching at the

condensation threshold followed by continuously decreasing g(2)(0)-values with in-

creasing pumping power has been observed, but no coherent state. On the other

hand, a more recent report demonstrated increasing photon fluctuations above the

condensation threshold [Kas08a]. In all cases, only a single threshold has been dis-

cussed. In this section, the evolution of second-order correlations from the thermal

regime to the photon-lasing regime at high excitation powers will be analysed.

Figure 5-7 shows the results of our photon-correlation measurements as a function

of excitation power. At low powers the correlation function tends to a value of ap-

proximately 2. Hence, the emission has thermal light characteristics. With increasing

excitation power g(2)(0) decreases towards unity; almost full second-order coherence

is reached at P = Pth1. This drop in g(2)(0) coincides with both the build-up of the

condensate (figure 5-4) and the first non-linear increase of the integrated intensity

[figure 5-6(a)]. For a rather small range of excitation powers the system stays in a

regime in which the emitted light exhibits a high degree of second-order coherence,

in other words g(2)(0) values close to unity, before photon fluctuations increase again



5.3 Two-Threshold Behaviour of a Pulsed Polariton Laser 83

until g(2)(0) reaches a value of about 1.65.

This increase has been predicted by theorists [Sar08, Sch08]. It can be explained in

terms of condensate-particle fluctuations: Based on a model consisting of a polariton

reservoir in the so-called bottleneck region11 of the LP branch and radiatively active

modes around k|| = 0, the dynamics of the mode with k|| = 0 has been determined

[Sch08]. A central result is that scattering processes of polaritons in the active region,

i.e. between polaritons with k|| = 0 and a pair of polaritons with opposite momenta

(k||,−k||), strongly increase above the condensation threshold.12 These scattering

processes result in increasing fluctuations of the condensate particle number and

manifest in an unchanged average density of the condensate ground state despite

of the increasing pumping. This finding is consistent with the saturation behaviour

seen in the previous section in both the i/o-curve and the main emission energy: the

effective condensate population remains constant in this density range.

At very high excitation powers, starting from Pth2, the second-order correlation

function approaches g(2)(0) = 1 again, reflecting the breakdown of SC and the tran-

sition to conventional photon lasing. It should be emphasised that the thresholds

observed in figure 5-7 are in excellent agreement with the position of the thresholds

observed in spectroscopic measurements in the previous section.

From the same data set used to quantify photon correlations, the temporal evo-

lution of the cavity emission can be deduced by integrating over all recorded pulses

and images (see figure 3-6). Consequently, the time-resolution stays the same (2 ps).

Example temporal traces of the cavity emission are shown in panels (a) to (c) of

figure 5-8. From these, the pulse duration is determined. As the temporal shape

of the cavity emission can be strongly asymmetric at certain excitation powers, the

pulse duration-at-half-maximum was determined in a first step. This quantity was

then multiplied by (1/2) · [ln(4)]−1/2, in order to enable direct comparison with the

standard deviation of a Gaussian jitter as discussed in chapter 3.3.

Following this procedure, the results shown in figure 5-8(d) are obtained. Ob-

viously, the two-threshold behaviour seen in the spectrally resolved data and in

the second-order correlations is confirmed by the evolution of the cavity’s emission-

pulse duration with increasing excitation power. At low pump powers the pulses

are comparatively long (25 ps and more) as the LP branch gets slowly populated

through spontaneous scattering processes. The tendency shows that far longer pulse

durations are expected at very low carrier densities, as is known from literature

[Bil09, Den02, Den03]. With increasing power the pulses are getting shorter because

of parametric scattering into the ground state, as expected for a condensed polariton

state. The range where the pulse duration is as short as 5 ps is relatively small. At

11The bottleneck region of the LP branch is the region where the dispersion changes from exciton-

like to more photon-like. As the dispersion becomes much steeper for smaller k||-values, the density

of available polariton states strongly decreases. As a result, polaritons accumulate in the region

around k|| ≈ 10µm−1. The polariton bottleneck is known to be suppressed at higher excitation

densities [Sko02, Tar00]. Note that the reservoir model remains valid in that case, as the particle

density at large k||-values is implicitly accounted for; see equation (5.11).
12Similar theoretical results are obtained using a mean-field model [Sar08].
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Figure 5-8: Time-resolved spectroscopy: Panels (a) to (c) show the temporal pulse profile

measured at the first, at the second, and above the second threshold, respectively. Panel (d)

shows the excitation-power dependence of the emission-pulse duration (Gaussian standard

deviation). The data point marked by circles correspond to the pulse profiles shown in

panels (a)−(c). Note that, for all time-resolved measurements, a 1 nm-wide bandpass filter

has been used to single out the main emission mode. Only the emission with zero in-plane

wave vector is considered here.

those excitation powers the emitted light shows almost full coherence. Starting from

20 mW polariton-polariton scattering processes set in and cause a depletion as well

as subsequent repopulation of the k|| = 0 state. This results in an increasing pulse

duration, which reaches a saturation level at about 17 ps. While stimulated scattering

down to the condensate ground state remains active for a longer time window, the

pulse duration of 17 ps is supposed to be limited by the time after which all free carri-

ers have relaxed down to the LP branch. In this regime above the first threshold, the

occupation of the ground state is supposed to stay above unity but does not increase

further, considering that photon correlations concurrently increase. Furthermore, si-

multaneously with the second threshold in the integrated intensity and the decrease

of second-order correlation to unity, the pulses are shortening again. The shortest

pulse duration of 2 ps is given by the bare cavity lifetime. Thus, both thresholds are

accompanied by distinct changes in the temporal pulse duration.

5.3.3 The two-threshold criterion

To summarise this section, the two-threshold behaviour in the emission of a planar

GaAs-based microcavity under non-resonant pulsed excitation was demonstrated and

analysed in detail. The comparison of five different quantities revealed a good overall

accordance. Consequently, a comprehensive characterisation of the three different

states of the cavity can be given:

(1) At low excitation powers the microcavity polariton system is in a thermal
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regime of polariton photoluminescence. Here, the emission intensity from the LP

increases linearly with excitation power. Also, the thermal state is underlined by

strong photon fluctuations [g(2)(0)→ 2] and long emission pulses.

(2) The first threshold at Pth1 is identified as polariton condensation, despite of

the large blueshift of the emission. Simultaneously with the first nonlinearity in the

input-output curve, the build-up of the condensate in momentum space is observed.

Its dispersion is essentially flat over the whole mapped k||-range. The emission from

the condensed state is further characterised by spectral linewidth narrowing, almost

full second-order coherence [g(2)(0) ∼ 1.1], and short emission-pulse durations of

roughly 5 ps. Moreover, it should be stressed that the condensation threshold differs

significantly from a standard lasing threshold when increasing P across the thresh-

old: First, the energy shifts continuously into the blue for Pth1 < P < 24 mW, as the

number of particles in the condensed state is increasing. Second, polariton-polariton

scattering processes cause particle fluctuations which lead to an increase of second-

order correlations up to values of g(2)(0) ∼ 1.6. Third, the emission-pulse duration

increases again to significantly higher values (∼ 15 ps) than at Pth1. Finally, a satura-

tion in the emission intensity is observed, which is consistent with a constant emission

energy for P > 24 mW.

(3) The second threshold at high excitation power (Pth2) goes along with the

breakdown of SC and the onset of conventional photon lasing. This is reflected in

a second nonlinearity in the integrated intensity as well as by another significant

change in the emission energy. At this point the dispersion curve displays a parabolic

shape, characteristic for cavity-mode emission. The regime of photon lasing is also

accompanied by well-known characteristics in the time domain, such as a high degree

of second-order coherence as well as extremely short pulse durations, reflecting the

cavity-photon lifetime and the cavity Q-factor.

Thus, it was shown that the combination of well-resolved photon statistics with

an in-depth spectral and temporal analysis does give an in-depth characterisation of

the quantum state of a microcavity exciton-polariton system. Using the above listed

characteristics, a distinction between the states of polariton lasing and photon lasing

is achieved.

The presented two-threshold behaviour is reproducible in the cavity-exciton de-

tuning range of roughly −3 meV< ∆0 < +3 meV. For more negative detunings, the

energy as well as the dispersion relation of the condensed mode can still be dis-

tinguished from the cavity-photon mode, as evidenced in figure 5-4. However, the

transition from polariton lasing at medium carrier densities to photon lasing at high

excitation powers is much smoother in that case as well as in the case of positive

cavity-exciton detunings of ∆0 > 3 meV.
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5.4 Temperature Dependence of a Pulsed Polariton

Laser

In the last section, a two-threshold behaviour in the emission from a GaAs-based

microcavity was demonstrated. With respect to potential applications, it is partic-

ularly necessary to determine the temperature range in which a polariton laser can

operate. The light mass of the lower polariton allows in principle for condensation

and accordingly inversionless lasing operation at room temperature. However, it has

already been shown that material parameters place an upper limit on the possible

range of temperatures over which gain in terms of bosonic final state stimulation can

be achieved [Sab01]. First of all, the regime of SC has to be preserved at high carrier

densities, where the exciton oscillator strength may bleach [Hou95]. In this regard,

the probably most important parameter is the quantum-well exciton binding energy

Eqw
b,1s.

13 Once the thermal energy kBT becomes comparable to Eqw
b,1s, the dissociation

of excitons into free carriers is expected to set in. However, the linear optical re-

sponse of the dissociated system is not significantly altered in this regime: The SC in

GaAs-based microcavity systems persists even at thermal energies far beyond Eqw
b,1s

and even up to room temperature, as Tsintzos et al. evidenced by electroluminescence

measurements [Tsi08, Tsi09]. At those high temperatures, SC has been maintained

as the Rabi splitting was still larger than the difference of the particular linewidths

of the exciton and the cavity mode.

In such GaAs-based systems typical values of the exciton binding energy are on the

order of Eqw
b,1s ∼ 10 meV, which correspond to an exciton dissociation temperature of

roughly 100 K. However, exciton dissociation also means that the predominant carrier

species turns from composite bosons to fermions. Accordingly, degenerate population

of the ground state and bosonic final-state stimulation are suppressed, condensation

becomes difficult to achieve and the emission of a macroscopic number of coherent

photons is only possible by driving the system into the weak coupling regime and

inverting it, thus turning it into a vertical-cavity surface-emitting lasers (VCSEL).

In the current section, the transition from SC to weak coupling and the mecha-

nisms suppressing polariton lasing at elevated temperatures are investigated. There-

fore, a temperature dependent study of the emission from the microcavity introduced

in section 5.2 is presented. The experimental conditions were essentially the same

as in the previous section, except for the excitation spot size which was reduced to

25µm to allow for higher carrier densities. As in the previous section, a discussion of

results from Fourier-plane spectroscopy (subsection 5.4.1) is followed by an analysis of

streak-camera measurements (subsection 5.4.2). A possible explanation of the factors

suppressing polariton lasing at higher temperatures is given in subsection 5.4.3.

As both the cavity-photon and the exciton energies vary with temperature, the

position on the wedge-shaped sample yielding zero detuning is determined experi-

mentally for each temperature. To this end, the position of the UP and LP energies

13See equation (2.8).
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Figure 5-9: (a) Energy of the upper and lower polariton (k|| = 0) versus the position on the

sample, plotted for different temperatures. (b) Energy difference between UP and LP. The

data have been fitted with a parabolic function, revealing the approximate sample position

with zero cavity-exciton detuning. Apparently, the Rabi splitting is not significantly altered

at higher temperatures. Data are extracted from energy dispersion measurements. The

indicated temperature legend accounts for both panels. Note that the scale of the abscissae

is not identical to figure 5-2.

at k|| = 0 were scanned across the sample. By fitting a parabolic function to the

energy difference EUP − ELP, the point of minimum splitting was identified. This is

illustrated in figure 5-9. Strong coupling is observed up to 110 K in the used sample.

Also, the Rabi splitting deduced from PL measurements does not change significantly

in the examined temperature range.

5.4.1 Two thresholds in the spectral domain (T ≥ 10 K)

Example energy-dispersion curves at various temperatures are shown in figure 5-10.

The curves were measured at excitation powers slightly above the first nonlinearity

observed at the indicated temperatures, as will be further discussed below. This way,

the persistence of SC at lower carrier densities as well as the shape of the dispersion

at the first threshold can be monitored simultaneously. As can be seen from figure

5-10(f), the LP branch can be observed at temperatures up to T = 110 K. Thus, the

regime of SC persists over the whole temperature range in which zero detuning can

be achieved on the investigated sample. This behaviour is in accordance with other

reports [Hou94a, Tsi08, Tsi09]. In order to identify the polariton and photon lasing

thresholds at the different temperatures, the two-threshold criterion introduced in

the previous section is applied.

The Fourier-plane images shown in figure 5-10 reveal that the energy-dispersion

relation observed at the first threshold is significantly different from the cavity-photon

dispersion for temperatures up to 50 K. On the other hand, the emission at the first
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0 0.2 0.4 0.6 0.8 1.0

Figure 5-10: Dispersion curves at the first threshold observed at the indicated temper-

atures. The excitation powers were Pth1 = (a) 3.7, (b) 5.1, (c) 8.9, (d) 17, (e) 37, and (f)

63 mW. The lines indicate the dispersion of the LP (black), bare exciton X (solid white),

and bare cavity-photon mode C (dashed white). In panel (d) further curves are introduced:

The solid blue line (LPBS) is a blueshifted LP, while the dashed red line (CRS) is obtained

by shifting C into the red. All dispersion maps are normalised, as shown by the linear

colour scale. In panel (d) the measured signal at large k|| values is magnified, as indicated.

threshold measured at 90 K and 110 K seems to originate from the cavity-photon

mode. The situation at 70 K is less clear. In order to obtain a deeper understanding

of the data, the integrated intensity as well as the spectrum of the emission with zero

in-plane momentum (
∣∣k||∣∣ ≤ 0.16µm−1) were extracted from the dispersion curves.

The evolution of both quantities in relation to the excitation power is shown in figures

5-11 and 5-12 for different temperatures.

In the temperature range up to T = 50 K, mainly three different regimes can be

identified. First, starting at low excitation powers, the emission intensity increases

linearly. At these polariton densities, only the thermally populated LP branch is

seen, the emission energy remains almost constant. Furthermore, when increasing
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Figure 5-11: Excitation-power dependence of the emitted intensity from the strongest

emission mode around zero in-plane wave vector (|k||| ≤ 0.16µm−1). The corresponding

temperatures are indicated. The intensities are normalised by accounting for the integration

time used to measure the dispersion curve at the lowest excitation power (P = 500µW).

The vertical dashed lines mark the two thresholds, Pth1 and Pth2, as indicated in panel (a).

At temperatures of 90 K and 110 K, only a single threshold is visible.

the power, a strongly non-linear behaviour is observed in the integrated intensity, fol-

lowed by a regime of sub-linear increase. As can be seen from figure 5-12, the emission

energy of the strongest mode exhibits a distinct blueshift at this first threshold Pth1,

which is a typical signature of the spontaneous formation of a condensate of inter-

acting particles. This is followed by a further continuous blueshift and a regime of

almost constant spectral position. Note that this intermediate continuous blueshift

is not that pronounced at 50 K. Furthermore, the shape of the dispersion is observed

to change at this excitation power Pth1: The dispersion curve is mainly flat in this

regime [Wou08], as discussed in the previous section. Consequently, this first non-

linear change in intensity, energy and dispersion shape can be attributed to the onset

of pulsed polariton lasing.

At a higher density, denoted Pth2 in figure 5-11(a), the intensity starts to increase

again at least linearly, while the energy undergoes another considerable blueshift. The

emission then comes predominantly from a slightly blueshifted cavity-photon mode.

At this stage, the system has changed to the weak-coupling regime and cavity-photon

lasing occurs. Moreover, for larger k|| values, the dispersion can be described by a

cavity mode, blueshifted due to an altered effective index of refraction of the cavity.

As mentioned above, this change in the refractive index might be caused by the high
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Figure 5-12: Excitation-power dependence of the emission spectrum around zero in-plane

wave vector (|k||| ≤ 0.16µm−1). The linear colour scale goes from dark blue (low intensity)

to red (high intensity). The corresponding temperatures are indicated. The vertical dashed

lines mark the two thresholds Pth1 and Pth2, which occur at the same excitation power as

in figure 5-11. At temperatures of 90 K and 110 K, only a single threshold is visible.
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charge-carrier densities [Moh94].

Interestingly, another emission mode emerges at the highest excitation powers that

could be achieved. As can be seen from figure 5-12, this mode emits at an energy

between the condensate mode observed at Pth1 and the photon-laser mode seen at

Pth2. In this high-density regime, the emission linewidth is significantly broadened

and amounts to roughly 2.5 meV.14

While two distinct thresholds were identified at temperatures up to 50 K, the

situation at an increased temperature of 70 K is less clear. The blueshift of roughly

5.5 meV that occurs at the first threshold is comparable to half the Rabi splitting,

which would suggest the system having changed to the weak coupling regime. This

can be seen from the dispersion curves [figure 5-10(d)]: The emission mode is rather

close to the bare cavity mode. Also, the shape of the dispersion at larger k||-values is

ambiguous: It lies between a blueshifted LP mode (labelled LPBS) and a redshifted

cavity-photon mode (labelled CRS). While a blueshifted LP would be a hint for the

persistence of SC, a redshifted cavity mode would point to photon lasing [Baj07]. This

would, however, be inconsistent with the blueshift of the cavity-photon mode that is

observed at excitation powers above the second threshold for T ≤ 50 K. Moreover,

at higher excitation powers a second jump in the emission energy of ≥ 1 meV is

apparent at T = 70 K. It is only at this stage that the system is definitely in the

weak-coupling regime, and the emission then agrees perfectly with the cavity-photon

dispersion. This interpretation is underlined by the position of the emission energies

at the two thresholds as well as the corresponding blueshifts.

When going to even higher temperatures of 90 and 110 K, only a single threshold

can be identified in the accessible excitation-power range. It is accompanied by a

non-linear increase in the intensity as well as by a large blueshift of roughly 7 meV,

which is half the Rabi splitting of the examined sample. As depicted in figures 5-

10(e) and 5-10(f), the emission comes from the bare cavity photon mode. Contrary to

the behaviour at lower temperatures, the emission energy seems to remain constant

at very high emission powers at these high temperatures; the parabolic dispersion

is unchanged at high excitation powers. Furthermore, the jump in intensity at the

photon-lasing threshold is more prominent than the jumps at both thresholds for

T ≤ 70 K. This is expected and can be explained as follows. As shown in figure 5-11,

the intensity of the LP below threshold decreases with temperature as non-radiative

recombination processes become more relevant. However, in the regime of photon

lasing, we assume that non-radiative recombination becomes negligible as radiative

recombination dynamics should become faster, which results in the more pronounced

jump. Note also that the reduction in photon-lasing threshold excitation power at

90K compared to the value at 70K is in good qualitative agreement with reference

[Tso12].

Accordingly, two thresholds at excitation powers Pth1 and Pth2 were observed from

angular-resolved measurements at temperatures up to 70 K. They are manifested in

14As mentioned in the previous section, it should be noted that the true linewidth of the micro-

cavity emission is only accessible in low-noise continuous-wave measurements.
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clear changes in the energy dispersion relation, in the integrated intensity as well as

in the main emission energy.

5.4.2 Two thresholds in the time domain (T ≥ 10 K)

In the same way as in section 5.3, the spectroscopic data discussed so far are now

compared with results obtained from time-resolved measurements. Accordingly, the

equal-time second-order correlation function as well as the emission-pulse duration

are analysed in relation to the excitation density.

Emission-pulse durations and photon correlations at various temperatures are

shown in figures 5-13 and 5-14, respectively. At temperatures up to 70 K two thresh-

olds corresponding to the onset of polariton and photon lasing can be identified.

When approaching the first threshold, the pulse duration shortens to roughly 5 ps.

Subsequently, it increases again to values of approximately 17 ps (for T = 10 K), 15 ps

(30 K), 10 ps (50 K), and 8 ps (70 K) in the polariton-lasing regime. Beyond the second

threshold the emission-pulse duration reduces to the bare cavity lifetime of approxi-

mately 2 ps at all temperatures. However, in the polariton-lasing regime the increase

in the pulse durations tends to become smaller with increasing temperature. This
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Figure 5-13: Excitation-power dependencies of the emission-pulse duration, measured at

different temperatures. The vertical dashed lines represent the thresholds as in figures 5-11

and 5-12. Note that the streak-camera measurements performed in the context of this thesis

are restricted to the cavity emission with zero in-plane wave vector (|k||| ≤ 0.16µm−1).
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behaviour can be understood in terms of an acceleration of the relaxation dynamics of

the non-resonantly excited carriers towards the polariton dispersion [Kas08b, Wer09]:

The relaxation kinetics becomes more efficient with increasing temperature, due to

the increased rate of phonon scattering.

The corresponding g(2)(0) shows a decrease from the thermal-regime value of two

towards a value close to unity at the first threshold, reflecting thus a high degree of

second-order coherence. This is followed by an increase towards values around 1.3

(T = 10 K), 1.65 (30 K), 1.4 (50 K), and 1.25 (70 K). This increase in g(2)(0) can

be explained considering scattering processes between polaritons with wave vector

k|| = 0 and polaritons with k|| 6= 0 [Sch08, Sch10]. These processes increase above the

threshold to polariton lasing, acting thereby as a noise source for the mode around

k|| = 0, as discussed in section 5.3.2. Consequently, this results in a loss of second-

order coherence and thus in increasing g(2)(0) values at excitation powers between

the two thresholds. Above the second threshold, g(2)(0) decreases to unity at all

temperatures, indicating the Mott transition and the onset of standard cavity-photon

lasing.
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Figure 5-14: Excitation-power dependencies of the equal-time correlation function g(2)(0),

measured at different temperatures. The horizontal line indicates the coherent state which

is characterised by g(2)(0) ≡ 1; the vertical dashed lines represent the thresholds as in

figures 5-11 and 5-12. Note that the streak-camera measurements performed in the context

of this thesis are restricted to the cavity emission with zero in-plane wave vector (|k||| ≤
0.16µm−1).
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Figure 5-15: (a) Integrated intensity from the strongest emission mode versus the rela-

tive excitation density plotted for various temperatures. Relative excitation densities are

given in fractions of the photon-lasing threshold Pth2. (b) Ratio of the threshold densities,

Pth1/Pth2. The lines are guide to the eye.

Furthermore, the positions of the two thresholds are in good accordance with the

positions of the nonlinearities in the i/o-curve shown in figure 5-11. Again, the results

obtained at 70 K do not allow for a clear distinction between two thresholds: While

the pulse duration exhibits a small increase at intermediate powers, g(2)(0) essentially

decreases monotonically from a thermal to a coherent value.

The situation changes significantly for temperatures above 70 K, in agreement

with the observations in the spectral domain. At 90 K and 110 K only a single

threshold is visible in both photon correlations and the pulse duration. It occurs

at a three to ten times higher threshold excitation density than the first threshold

evidenced at lower temperatures, and roughly coincides with the excitation densities

at the second threshold seen there. Therefore, it is a reasonable assumption to link

this single threshold to the onset of standard cavity-photon lasing.

5.4.3 Processes suppressing polariton lasing at T > 70 K

As demonstrated in sections 5.4.1 and 5.4.2, polariton lasing is observed at temper-

atures up to 70 K in the examined microcavity sample. The underlying effects that

are responsible for the suppression of polariton lasing at higher temperatures are

discussed in this part.

At first glance, one possible reason for the non-appearance of polariton lasing at

temperatures above 70 K might be an increase of the exciton linewidth with increased

temperature. This change in the exciton linewidth would directly affect the Rabi

splitting. However, this can be disproved by dispersion measurements at very low

excitation power, from which a Rabi splitting of roughly 13.5 meV at 110 K is deduced.

This is in agreement with reference [Gam95], which states that the linewidth of
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quantum-well excitons does not increase significantly for temperatures below 100 K.

In the following, the relative positions of the two thresholds, ρP = Pth1/Pth2, are

analysed. Therefore, all i/o-curves are plotted on a comparable scale in figure 5-15(a).

In order to realise comparability, the excitation densities are expressed in fractions

of the photon-lasing threshold Pth2. To this end, it is assumed that in the photon-

lasing regime the dynamics become so fast that non-radiative recombination becomes

negligible, as mentioned above, and the emitted intensity therefore becomes directly

proportional to the inserted carrier density independent of temperature. While at

10 K the relative excitation density ratio of the first to the second threshold takes

on a value of 0.16, it slightly decreases to 0.13 at 30 K [figure 5-15, panels (b) and

(c)]. At even higher temperatures ρP increases up to a value of 0.31 at 70 K. To some

degree this increase for T > 30 K is expected and can be explained as follows: On

one hand, the Mott transition essentially occurs either due to wave function overlap

of the inserted carriers or due to an ionization catastrophe causing screening and

thus further ionization when a certain number of carriers is inserted into the system

[Ric78]. In both cases the transition carrier density—which is assumed to coincide

with Pth2—is not expected to show a considerable temperature dependence15 for the

exciton binding energy of Eqw
b,1s ∼ 10 meV considered here [Sno08]. Furthermore, it is

known that the scattering rate from the exciton reservoir towards the bottom of the

LP branch is inversely proportional to the exciton temperature, thus increasing also

the excitation power necessary for polariton condensation [Por02]. Both effects may

lead to an increase of ρP .

On the other hand, the total carrier density at the first threshold will depend

strongly on the fraction of the total carriers which form exciton-polaritons and on

the characteristic timescale of their relaxation to the lower-polariton ground state

compared to the typical timescale of non-radiative relaxation processes which both

depend on temperature. At elevated temperatures the bottleneck in polariton relax-

ation is expected to become suppressed due to increased polariton-polariton scattering

[Tar00]. Also longitudinal optical phonon scattering is assumed to become effective

at above 60 K in GaAs and is known to improve the polariton relaxation rate to-

wards the ground state drastically [Mar10, Tas97]. As a rough qualitative estimate

of the relative importance of those effects, the relative exciton fraction can be approx-

imated using the Saha equation, which takes the following form for a non-degenerate

two-dimensional system in thermal equilibrium [Phi96]:

NeNh

NX

= K =
µXkBT

π~2 exp

{
−
Eqw

b,1s

kBT

}
. (5.19)

Here, Ne (Nh) is the electron (hole) density, and NX and µX represent the exciton den-

sity and reduced mass, respectively. Obviously, this is a rough simplification as the

non-degeneracy condition is fulfilled only below threshold and thermal equilibrium

is not necessarily established. Nevertheless, it is sufficient to estimate the relative

15Significant changes of the Mott density are expected when very low temperatures way below

10 K are investigated [Sno08].
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Figure 5-16: (a) Fraction of the carriers present that form excitons according to the

Saha equation (5.19) versus the total carrier density in the system plotted for temperatures

of T = 10, 30, · · · , 110 K. The vertical dashed line indicates the carrier density used in

panel (b). (b) Exciton fraction according to the Saha equation for a carrier density of

2.5 × 1010 cm−2, corresponding roughly to 5% of the Mott density. Red dots give the

intensity ratio of the emission from the LP ground state at a given temperature T to the

emission from the LP ground state at T = 10 K. For the intensity ratio values experimental

data gathered at an excitation power of roughly 5% of Pth2 were analysed. Note that,

strictly speaking, the Saha equation is only valid below the Mott density.

importance of exciton ionization and modifications of the relaxation rate. The cal-

culated relative exciton fractions compared to the total carrier densities at various

temperatures are shown in figure 5-16(a). In the present considerations, the main in-

terest lies on the low excitation densities way below the degeneracy threshold where

the Saha equation still is a good approximation. It is assumed that the Mott thresh-

old density per quantum well is on the order of 5×1011 cm−2, which is a typical value

for the kind of sample considered here. Using this parameter, the exciton fractions

far below threshold predicted by the Saha equation can be compared to the relative

emitted LP intensities. The comparison is shown in figure 5-16(b). The ratios of the

emitted intensities follow the predicted exciton fractions quite well, indicating that

the exciton formation rate is the dominating effect determining the LP emission at

low excitation densities. At high temperatures beyond 70 K equation (5.19) tends to

slightly overestimate the ratio of the emitted intensities. This behaviour is attributed

to additional small effects of temperature-dependent non-radiative recombination.

However, it is obvious that the relative position of the first threshold is not com-

pletely determined by the exciton fraction and the corresponding exciton density

present in the system. The small but distinct reduction of the threshold carrier

density that occurs when going from 10 K to 30 K despite the strongly reduced ex-

citon fraction in the system indicates that relaxation towards the LP ground state

becomes much more efficient at slightly increased lattice temperatures. This finding

agrees with previous studies showing that a slightly increased lattice temperature
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tends to lower the polariton-lasing threshold for not too positive detunings. How-

ever, the exact range of detunings where this decrease of the threshold occurs was

shown to vary from sample to sample and probably also depends on the excitation

conditions [Kas08b, Wer09]. Generally, previous studies have shown the polariton

bottleneck to become more efficiently suppressed at around 30 K due to beneficial

phonon scattering [Tar00].

5.5 Conclusions

In this chapter, the emission from a microcavity-polariton system was investigated.

A prominent two-threshold behaviour was observed at T = 10 K in different exper-

imentally accessible quantities in the spectral as well as in the time domain: Two

distinct transitions were identified in the energy-dispersion, the main emission energy

and intensity as well as in the photon correlations and in the emission-pulse duration.

Using these results, a list of criteria to distinguish three regimes of thermal emission,

polariton lasing, and photon lasing was given.

In a temperature-dependent study, it was demonstrated that the two-threshold

behaviour is observed at temperatures up to 70 K. At elevated temperatures of 90 K

and 110 K, only a single threshold is observed, which is attributed to the transition

to photon lasing.

Following the analysis of the relative position of the observed two thresholds, the

suppression of polariton lasing at higher temperatures can be explained by thermal

ionization of excitons which effectively reduces the available number of polaritons.

However, it should be noted that the results presented in section 5.4.3 do not exclude

the possibility that the breakdown of strong coupling might be explained in terms of

Coulomb-correlated electron-hole plasma systems [Kir97, Szc04]. Therefore, further

theoretical calculations are necessary to clarify the nature of this transition.

Parts of the results presented in this chapter were (or will be) published in items

P2 and P4-P6 in the publication list (page 123).





Chapter 6

Summary and Outlook

In this thesis, the nonlinearities occurring in the emission of two different kinds of

microcavity lasers, respectively working in the regimes of weak and strong coupling,

were studied. The lasing thresholds were identified by means of different experimental

methods.

First, the lasing thresholds of quantum-dot micropillars with different diameters

were examined. In each case, the fundamental cavity mode was found to be split

into two orthogonally polarised modes of comparable intensity in the thermal regime.

This was attributed to a residual ellipticity in the cross-section of the pillars. From

input-output curves, β-factors in the range of 0.01 to 0.07 were determined. Accord-

ingly, the threshold-carrier density was difficult to identify solely from the i/o-curves.

The emission from a micropillar with a diameter of 8µm was analysed in more detail.

Polarisation-sensitive measurements revealed that one of the fundamental mode com-

ponents was dominating the emission above threshold, resulting in a high degree of

linear polarisation of ρL = 0.99. Furthermore, the first-order correlation function was

measured using a high-resolution Michelson interferometer. Record coherence times

of roughly 20 ns for the stronger mode were derived. A simple theoretical model

connecting first-order and second-order correlations was introduced. The presented

model allowed for an estimate of the effective number of QDs contributing to the

system’s radiation. Based on a result of approximately five to eight contributing

quantum dots, a value range for second-order equal-time correlations in the thermal

regime was evaluated. In this way, the experimentally accessible excitation-power

range for photon-correlation measurements using a streak camera was extended into

the thermal emission regime.

These results allow for a comprehensive characterisation of the lasing threshold of

quantum-dot micropillars. However, there are still a number of open questions. For

example, it is still unclear whether the number of quantum dots contributing to the

cavity emission is the sole reason for the observed non-classical light emission around

the threshold region. Further studies could examine cross-correlations between differ-

ent micropillar modes, e.g. between the two fundamental mode components: a laser

device emitting simultaneously two or more uncorrelated modes could be beneficial
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with regard to enhanced optical data transmission rates using multiplexing methods.

Second, the two-threshold behaviour of a GaAs-based quantum-well microcavity

operating in the regime of strong coupling was demonstrated. Experimental results

obtained from Fourier-plane spectroscopy and time-resolved measurements were com-

bined: two distinct nonlinearities were observed in the energy-dispersion relation, the

emitted intensity and energy, as well as in the emission-pulse duration. It was shown

that polariton lasing and conventional photon lasing can clearly be distinguished.

Additionally, the second-order correlation function was measured by means of the

recently introduced streak-camera technique, which was improved in the framework

of this thesis. Following this approach, the polariton laser was evidenced to feature

a high degree of second-order coherence of g(2)(0) = 1.1 just above the transition to

polariton condensation. The evolution of g(2)(0) with excitation power also revealed a

prominent two-threshold behaviour. Furthermore, in a temperature-dependent study

of polariton lasing, the two thresholds mentioned above could be observed at temper-

atures up to 70 K. The suppression of polariton lasing at higher temperatures could

be explained by thermal ionization of excitons, which effectively reduces the available

number of polaritons. However, it should be noted that the presented results do not

exclude the possibility that the breakdown of strong coupling might be explained in

terms of Coulomb-correlated electron-hole plasma systems. Therefore, further theo-

retical calculations are necessary to fully clarify the nature of this transition.

In this second part, a set of criteria was presented which allows one to distin-

guish polariton lasing from conventional photon lasing. Unfortunately, the suitabil-

ity of GaAs-based polariton lasers for potential applications is hard to estimate, as

polariton lasing is suppressed for temperatures above 70 K. However, GaAs-based

microcavities remain an excellent example system allowing for the exploration of the

properties of polariton condensates in general. It is very likely that results obtained

from GaAs-based resonators may be transferred to other material systems, such as

GaN or ZnO. Those semiconductors appear to be more promising for room temper-

ature applications due to their larger exciton binding energy.

Further scientific research on polariton condensates should investigate their phase-

coherence as well as their superfluid nature. Using the available Michelson interfer-

ometer in a slightly changed configuration, the first-order spatial correlation function

of polaritonic systems could be evaluated under different experimental conditions.

Also, by shaping the polariton landscape using different excitation-spot geometries,

the direction of flow of polaritons could be controlled. Finally, a very promising idea

is to realise all-optical switches and gates with the help of imprinted potentials.



Appendix A

Second-Order Correlations of an

N-Emitter System

The second-order correlation function of an ensemble of N (identical) emitters was

first explicitly derived in the context of resonance fluorescence from atomic beams

with atomic number fluctuations [Car78]. The total radiation from such a system can

be described by a superposition of the electric fields eradiated by each single emitter:

EN(t)(t) =

N(t)∑
i=1

Ei(t) + ε , (A.1)

where ε is a time-independent term describing any scattered light from the back-

ground, i.e. noise. The second-order correlation function of the total field can then

be calculated as follows:

G
(2)
N(t)(τ) =

〈
E−(t)E−(t+ τ)E+(t+ τ)E+(t)

〉
(A.2)

=

〈
N(t)∑
i=1

N(t+τ)∑
j=1

N(t+τ)∑
m=1

N(t)∑
n=1

(
E−i (t) + ε−

) (
E−j (t+ τ) + ε−

)
×
(
E+
m(t+ τ) + ε+

) (
E+
n (t) + ε+

)〉
. (A.3)

In order to facilitate the computation of G
(2)
N(t)(τ), a few reasonable assumption can

be made. It is presumed that the number of active emitters, i.e. the number of

QDs resonant with the cavity FM, is time-independent, thus N(t) = N(t + τ) = N .

It is also assumed that fields from different emitters are not correlated in the first

instance. Possible correlations due to cavity induced effects in the micropillar are

introduced in section 4.5 using the phenomenological factors χ1 and χ2. With the

two aforementioned assumptions, equation (A.3) can be rewritten as

G
(2)
N (τ) = NG

(2)
A (τ) +N(N − 1) ·

[
I2
A +

∣∣∣G(1)
A (τ)

∣∣∣2]
+ |ε|4 + 2IAN |ε|2 + 2Re

(
G

(1)
A

)
N |ε|2 , (A.4)
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where the intensity of the emission from a single emitter is IA = 〈E−i E+
i 〉. The first-

and the second-order correlation functions of the emission from each single emitter

included in equation (A.4) are defined as usual:

G
(1)
A (τ) =

〈
E−i (τ)E+

i (0)
〉
, (A.5)

G
(2)
A (τ) =

〈
E−i (0)E−i (τ)E+

i (τ)E+
i (0)

〉
. (A.6)

A full analytical description of both G
(1)
A (τ) and G

(2)
A (τ) can be found in reference

[Car76]. As any effect induced by the cavity surrounding the QD layer is accounted

for by χ1,2 (see section 4.5), the additional terms including noise related phenomena

can be omitted, i.e. we can set ε ≡ 0. Thus G
(2)
N (τ) can be rewritten as

G
(2)
N (τ) = NG

(2)
A (τ) +N(N − 1) ·

[
I2
A +

∣∣∣G(1)
A (τ)

∣∣∣2] . (A.7)

This equation mainly consists of three parts: the first part is proportional to G
(2)
A (τ)

and, as each emitter contributes equally, also proportional to N . This part reflects

the anti-bunching behaviour of single emitters and is thus dominant for low values of

N . The second and third parts have their origins in the product of correlations from

different atoms. Their contribution increases for larger ensembles of emitters. The

coefficient of the second and third part results from the number of possible emitter

pairs, which is N(N − 1).1

In order to obtain the normalised second-order correlation function g
(2)
N (τ), equa-

tion (A.7) must be divided by |G(1)(0)|2 = (NI)2. Equation (4.9) is then readily

obtained.

1A detailed discussion of the different parts in equation (A.7) can be found in reference [Hen03].
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S. Höfling, and A. Forchel, Low threshold electrically pumped quantum

dot-micropillar lasers, Appl. Phys. Lett. 93, 061104 (2008), doi:10.1063/

1.2969397. 16, 60

[Rei10] S. Reitzenstein and A. Forchel, Quantum Dot Micropillars, J. Phys. D: Appl.

Phys. 43, 033001 (2010), doi:10.1088/0022-3727/43/3/033001. 47, 50, 52

[Ric78] T. M. Rice, The Electron-Hole Liquid in Semiconductors: Theoretical As-

pects, in Advances in Research and Applications (edited by H. Ehrenreich,

F. Seitz, and D. Turnbull), vol. 32 of Solid State Physics, pp. 1 – 86, Aca-

demic Press (1978), doi:10.1016/S0081-1947(08)60438-5. 95

[Ric94] P. R. Rice and H. J. Carmichael, Photon Statistics of a Cavity-QED Laser:

A Comment on the Laser–Phase-Transition Analogy, Phys. Rev. A 50, 4318

(1994), doi:10.1103/PhysRevA.50.4318. 17, 48, 53

[Ric05] M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, Sponta-
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Symbols and Abbreviations

Symbol Meaning

aB Bohr radius of the hydrogen atom

α1s Exciton Bohr radius

β Spontaneous emission factor

BEC Bose-Einstein condensate

c Speed of light (299792458 m/s)

Ck, Hk Hopfield coefficients

CB, VB Conduction band, valence band

CCD Charge-coupled device

cw Continuous wave

D(E) Electronic density of states

d Diameter

∆0 Cavity-exciton detuning

DBR Distributed Bragg reflector

e Electron, unit charge (1.602176 · 10−19 C)

Eb Exciton binding energy

Egap Band-gap energy

ERy Rydberg energy

FP Purcell factor

FM Fundamental mode (of a microcavity)

G(1), G(2) General correlation function of first, second order

g(1), g(2), · · · , g(m) Normalised correlation function of first, second, mth order

γ Decay rate

g Coupling factor

~ h/2π = 1.054571 · 10−34 Js = 6.582118 · 10−16 eVs

Hk, Ck Hopfield coefficients

HBT Hanbury-Brown-Twiss



122 Symbols and Abbreviations

i/o input-output

kB Boltzmann constant (1.38062 · 10−23 J/K)
~k, k|| Wave vector, in-plane wave vector

λ Wavelength

Leff Effective cavity length

LP, UP Lower, upper polariton

m0 Free electron mass (9.109381 · 10−31 kg)

m∗ Effective mass of a (quasi-) particle in the solid state

MBE Molecular beam epitaxy

MCP Micro-channel plate

MI Michelson interferometer

MO Microscope objective

n Refractive index or photon number of a light state, see context

n̂ Photon-number operator

NA Numerical aperture

P Excitation power

PL Photoluminescence

Q Quality factor

QD, QW Quantum dot, quantum well

R Reflectivity

ρ(ω) Optical density of states

ρL Degree of linear polarisation

τc Coherence time, without index: delay time

t Time

T Temperature

θ Emission angle

ϑ Angle of polarisation

UP, LP Upper, lower polariton

V Visibility

VB, CB Valence band, conduction band

VCSEL Vertical-cavity surface-emitting laser

ΩR Rabi frequency
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