Enlarged Higgs
sectors as a
window into
flavor symmetric
extensions of the 1) A
standard model







Enlarged Higgs sectors as a
window into flavor symmetric
theories beyond the standard

model of particle physics

Dissertation zur Erlangung des akademischen Grades

Dr. rer. nat.
im Fach Physik

vorgelegt von
Philipp Leser

aus Herten

Fakultit Physik
Technische Universitit Dortmund

Dortmund, im Dezember 2012



Gutachter dieser Arbeit sind
Herr Prof. Dr. Heinrich Pis und Frau Prof. Dr. Gudrun Hiller.
Datum der miindlichen Priifung: 31. Januar 2013

This thesis contains work that has been previously published by the author:

* [1] G. Bhattacharyya, P. Leser, and H. Pis, “Exotic Higgs boson decay modes as a
harbinger of S; flavor symmetry”, Phys. Rev. D83, 011701(R),
arXiv: 1006.5597 [hep-ph] (2011)

« [2]1D. Leser and H. Pis, “Neutrino mass hierarchy and the origin of leptonic flavor
mixing from the righthanded sector”, Phys. Rev. D84, 017303,
arXiv: 1104.2448 [hep-ph] (2011)

« [3] T. W. Kephart, P. Leser, and H. Pis, “Knotted strings and leptonic flavor
structure”, Mod. Phys. Lett. A27, 1250224,
arXiv: 1106.6201 [hep-ph] (2012)

+ [4] G. Bhattacharyya, P. Leser, and H. Pis, “Novel signatures of the Higgs sector
from S, flavor symmetry”, Phys. Rev. D86, 036009,
arXiv: 1206.4202 [hep-ph] (2012)

« [5] I. d. M. Varzielas, D. Emmanuel-Costa, and P. Leser, “Geometrical CP
violation from non-renormalisable scalar potentials”, Phys. Lett. B716, 193,
arXiv: 1204.3633 [hep-ph] (2012)

« [6] G. Bhattacharyya, I. d. M. Varzielas, and P. Leser, “Common origin of fermion
mixing and geometrical CP violation, and its test through Higgs physics at the
LHC”, Phys. Rev. Lett. 109, 241603,
arXiv: 1210.0545 [hep-ph] (2012)



Summary

The flavor puzzle refers to the existence of three generations of quarks and leptons with
identical gauge couplings but widely hierarchical masses. These generations mix among
each other, but with very different mixing matrices in the quark and lepton sectors re-
spectively. Flavor models used to address these issues often lack unique predictions and
testability. Consequently, in this thesis we investigate phenomenological models that
aim to solve parts of the flavor puzzle, but are testable using collider experiments. A
neutrino mixing model based on the symmetry S; is analyzed which contains a Higgs
sector potentially testable at the LHC through exotic decays. We also propose a model
based on A(27), which for the first time provides a calculable, geometrical phase stable
up to all orders as the only source of CP violation. The model can reproduce all CKM
data while having a symmetry breaking sector testable at the LHC. Finally—as an alter-
native to discrete symmetries—using a class of generic seesaw models we investigate
the consequences of a scenario in which all the neutrino mixing is generated in a heavy
right-handed Majorana sector. We show that even in the generic class of models con-
sidered, common experimental predictions such as a normal neutrino mass hierarchy
emerge.

Zusammenfassung

Das Flavorproblem beschreibt drei Generationen von Quarks und Leptonen, die zwar
identische Eichkopplungen aber stark hierarchische Massen aufweisen. Diese Genera-
tionen mischen untereinander, allerdings sind die Strukturen der Mischungsmatrizen
in den Quark- und Leptonsektoren sehr verschieden. Flavormodelle, die diese Probleme
zu beheben versuchen, haben oft wenig eindeutige Vorhersagen und sind kaum test-
bar. Aus diesem Grund untersuchen wir phinomenologische Flavormodelle, die mit
Beschleunigerexperimenten tiberpriifbar sind. Ein Neutrinomischungsmodell auf Basis
der Gruppe S; wird vorgestellt, dessen Higgs-Sektor am LHC mithilfe von exotischen
Zerfillen untersucht werden kann. Weiterhin postulieren wir ein Modell auf Basis der
Gruppe A(27), das erstmalig eine berechenbare, geometrische Phase enthilt, die in allen
Ordnungen stabil bleibt, und die die einzige Quelle der CP-Verletzung darstellt. Das
Modell reproduziert die CKM-Daten vollstindig, wobei der symmetriebrechende Sektor
iberpriifbare LHC-Signale enthilt. Als eine Alternative zu diskreten Symmetrien untersu-
chen wir mithilfe eines generischen Seesaw-Modells die Konsequenzen eines Szenarios,
in dem die gesamte Neutrinomischung im schweren rechtshindigen Majorana-Sektor
des Modells generiert wird. Wir zeigen, dass selbst in dieser generischen Klasse von
Modellen experimentelle Vorhersagen wie eine normale Neutrinohierarchie enthalten
sind.
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1 Introduction

On July 4, 2012, a promising candidate for the last missing piece of the standard model
of particle physics was discovered at the Large Hadron Collider (LHC), located at CERN
in Geneva. As we will review in this chapter, this Higgs particle is of fundamental
importance, yet its discovery nevertheless does not answer all open questions: Indeed,
the field of particle physics in 2012 is at the crossroads. Although successful tests of the
standard model of particle physics have been ongoing at various collider experiments
for decades, especially the mechanism of spontaneous symmetry breaking (SSB), whose
realization would lead to the existence of the Higgs boson has been mostly untested
so far, with previous experiments only being able to give exclusion ranges for the mass
of the particle. After the discovery of a Higgs-like particle it will now be important to
pinpoint the exact mechanism of symmetry breaking involved through measurements
of production rates, decays and thus ultimately of the fundamental couplings. The LHC
is also the experiment that should finally shed a light onto large parts of the parameter
space for supersymmetric extensions of the standard model, which have been proposed
to solve several problems the theory has.

Among these problems—some of which we will discuss in section 1.3 of this work—
the flavor puzzle is especially mesmerizing: It describes three almost identical generations
of elementary particles for whose existence no explanation has yet been discovered. It
also refers to the fact that the generations of particles are not perfect copies of each other,
but exhibit strong mass hierarchies. Transitions from a particle of one generation to a
particle of another generation are also possible, and the transition rates are governed by
mixing matrices whose entries seem too patterned to be random.

Flavor models that address these issues often lack unique predictions and have limited
testability. In this work we deal with the flavor puzzle and its possible connection to
signals visible at the LHC. We propose discrete symmetries as the governing principle
behind the observed patterns of particle mixing in the lepton and quark sectors. As an
improvement of the experimental testability of these models, the symmetries are also
responsible for extended electroweak symmetry breaking sectors, leading to signals
involving Higgs-like particles that can be tested at the LHC. We thus promote the sym-
metry breaking sector to a window into the fundamental patterns that appear in the
flavor puzzle.
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Also, for the first time we propose a flavor model based on the discrete symmetry
group A(27), which not only successfully reproduces the Cabbibo-Kobayashi-Maskawa
(CKM) mixing, but also includes a geometrically calculable phase in the symmetry
breaking vacuum which can act as the source of CP violation in the CKM sector. The
model can also be extended to include the leptons and it features a scalar breaking sector
at a low energy scale which can be tested at the LHC.

As an alternative to the approach based on discrete symmetries, we also investigate
a generic seesaw model where the neutrino mixing matrix is generated by the heavy
right-handed Majorana sector, a result of physics at the grand unified theory (GUT) scale.
We show that even in this generic case without a specific flavor symmetry, predictions
for the measurable neutrino data emerge.

1.1 The standard model of particle physics

The standard model of particle physics [7-10] is a framework that explains all basic
interactions among particles. It is highly successful experimentally [11], yet cannot ex-
plain all of the observed phenomena, as will be more extensively explained in section 1.3.
Because of this, extensions of the standard model have to be considered. An important
key to evaluating these extensions is the symmetry breaking process, in which the mech-
anism of SSB is employed in order to mediate between an unbroken, fully symmetric
energy scale of the theory and the obviously less symmetric lower scale at which our
observations in experiments take place. The particular way in which this mechanism
works, specifically which symmetry breaking fields are involved and what their cou-
plings to the standard model sector are provides a window into physics models beyond
the standard model. In light of the recent experimental results from the LHC [12, 13]
hinting at the existence of a scalar particle that can play the role of the Higgs boson [14],
this approach is highly relevant. As a starting point, itis prudent to list the basic building
blocks of this mechanism:

1.2 Symmetry groups and the standard model

Interactions between subatomic particles are governed by the electromagnetic, weak,
and strong forces. In the framework of quantum field theory these forces are described
by the electroweak theory'—which is a unification of the electromagnetic and weak

Lalso called Glashow-Weinberg-Salam (GWS) theory.
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forces—and quantum chromodynamics (QCD) respectively. The standard model con-
sists of these dynamic theories understood as acting on a number of fundamental
particles that are otherwise not predicted by theory. These fundamental matter particles
can be found in the left half of figure 1.1. As an umbrella for most of modern particle
physics the standard model has lead to highly detailed predictions and has been experi-
mentally supported to an astonishing degree [11]. In the language of group theory the
interaction content of the standard model can be written schematically as the product
of three groups:

SU®), x SUR), x U(1),. (1.1)

Each of these is a group of continuous local transformations, i.e. the parameters of the
transformations depend on the Minkowski spacetime coordinate x. As a consequence
of the locality of the transformations, gauge fields have to be introduced to keep the
Lagrangian invariant at all points of spacetime. Physically the gauge fields have to
be treated as dynamical variables and are usually interpreted as representing physical
particles that serve as mediators of the force the local symmetry group describes. In
figure 1.1 the gauge fields are displayed in the rightmost column.

The group SU(3), describes QCD, the theory of strong interactions. The index C
stands for the color charge that is associated with QCD. The fundamental particles
that take part in strong interactions—the quarks up, charm, top, and down, strange,
bottom—are each assigned to the three-dimensional fundamental representation 3
of SU(3).. Each of the three dimensions corresponds to one of the three different color
charges, whimsically called red, green, and blue. The number of force mediators is given
by the dimension of the adjoint representation of the gauge group. In the case of QCD
the adjoint representation of SU(3),. is the octect 8. The eight mediators are the gluons
and carry a color/anticolor charge.

The non-Abelian nature of SU(3),. gives rise to the properties of confinement and asymp-
totic freedom: It is not possible to separate two quarks from each other, because the
strength of the force does not diminish with distance. Quarks are thus confined into

Zlullc|t] «|y
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Figure 1.1: The particle content of the standard model.
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mesons (quark—anti-quark) and baryons (three quarks), both in singlets of SU(3),. As
energy increases the force grows weaker which means that quarks can be considered
asymptotically free. In the high energy regime QCD is thus accessible to being treated
in the context of perturbation theory.

In equation (1.1) the remaining product group SU(2),; X U(1), represents the Glashow-
Weinberg-Salam (GWS) theory, a unified theory of the weak interactions and quantum
electrodynamics (QED). The models and consequences discussed in this dissertation
belong to this electroweak sector of the standard model and to extensions thereof. The
GWS gauge group has 3 + 1 generators of which three are broken in the process of
electroweak symmetry breaking, leading to three massive vector bosons W*, Z° and one
massless mediator, y, listed in the rightmost column of figure 1.1.

As indicated by the index L of SU(2),, only left-chiral fields take part in the weak inter-
actions mediated by SU(2),, where a left-chiral spinor field y; is defined by ysy; = —y;.
This fact manifests itself in the assignments of the particles to representations of SU(2), .
The left-handed doublets of the standard model are

V, v, v,
e I’n T
L L L (1‘2)
u C t
d S b
L L L

In each doublet, the upper and lower entries differ by an electric charge of 1 (in units of
the electron charge), i.e. the neutrinos are uncharged while electron, muon, and tau
have charge —1. The up-type quarks have charge +24 and the down-type quarks have
charge —'4. Analogous to the treatment of spin in classical quantum mechanics—which
is also described by an SU(2) symmetry—the third component of the weak isospin is +4
for the upper entries and —' for the lower entries.

1.2.1 Mass generation of fermions and gauge bosons

The right-handed fields that appear in mass terms in the Lagrangian are singlets un-
der SUQ2),:
Ly D —m,e eg. (1.3)

In this expression, m, as a constant is uncharged under SU(2), as is the singlet e,
while ¢, belongs to the doublet of equation (1.2). The expression is thus not invariant
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Figure 1.2: Illustration of the potential shown in equation (1.5). This is the so-called
Mexican hat—potential.

under SU(2), and therefore all mass terms with an equivalent structure are forbidden.
The celebrated solution to this problem is to explain the origin of m, dynamically. Instead
of starting with the constant m,, a new field ¢, which is a doublet under SU(2),, is
inserted into the expression:

Ly D -y, deex, (1.4)

where y, is a dimensionless coupling constant. As the group SU(2), has a multiplication
rule 2 ® 2 = 1, the expression is now invariant. The mass term of equation (1.3) is
obtained when ¢ is replaced by its vacuum expectation value (VEV) <q’)> , which breaks
the SU(2), symmetry spontaneously?.

The field ¢ obtains a VEV that corresponds to the stable minimum of its potential. As
an example, consider a scalar field ¢ with an associated scalar potential V:

2
v, =32 <|q)|2 - %v2> . (1.5)

There are two classes of extremal points for this potential: It has an unstable maximum
at the origin and a ring of stable minima with radius v. At the origin, the potential
is invariant under U(1) rotations, as can be seen in figure 1.2. However, as soon as
the potential acquires a VEV on the ring of stable minima, this symmetry is broken
spontaneously. A remnant of the symmetry is left in the fact that each point along the
ring of minima is equivalent, parametrized by a massless Goldstone boson, which can
be understood as an excitation along the ring of minima. The excitation along the
orthogonal axis corresponds to a massive physical scalar.

2As opposed to a nonspontaneous or explicit breaking by manual insertion of a noninvariant term. Such
a noninvariant term, which has a coupling with a positive mass dimension is called soft.
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The equivalent process in SU(2), x U(1), involves the scalar field ¢ of equation (1.4),
which has four degrees of freedom:

¢++ix+
(]')O+i)(0

¢ (1.6)

When the symmetry is broken, each field acquires a VEV. However, due to the spherical
structure of the potential, the doublet can always be rotated in such a way that

0
(¢) = : (17)
v+h

where v is the VEV and h is the real physical scalar field. Through this process, the mass
term in equation (1.3) as well as the masses of the three massive gauge bosons W* and Z°
are generated. The masses of the gauge bosons are not generated through Yukawa terms,
but come into play as a consequence of the covariant derivative:

Db =0, - 2w, —ig'3B, | 6. (1.8)
Here, g and g’ are electroweak coupling constants, the z° and Y are the generators
of SU(2); and U(1), respectively, and W}, B, are the gauge boson fields. After expanding
the term |D Mqﬁlz and inserting the VEV of equation (1.7), three massive gauge boson
states and one massless state emerge. The massless state is identified as the photon y,
the massive states are W* and Z°. It is reassuring although not trivial that breaking the
symmetry spontaneously conserves the number of degrees of freedom: Three Goldstone
bosons that should appear are absorbed in the process of making W* and Z° massive.
This process of SSB in which the gauge boson and fermion masses are generated is
commonly known as the Higgs mechanism [14]. The real physical scalar particle h is
consequently called the Higgs particle®.

1.2.2 Three generations of fermions

It is an experimental observation that quarks and leptons appear in three generations
which differ in mass, but are identical with respect to charges under the gauge sym-
metries. In the picture of figure 1.1, the gauge symmetry that describes the standard

3This name is often applied without great consistency. Generally, when one encounters a Higgs particle
in a model, it can be any scalar taking part in the process of electroweak SSB. It does not necessarily
have to have the properties of the standard model Higgs particle.
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model mediates only between the rows of the diagram, i.e. between the upper and
lower entries of the SU(2), doublets. However, transitions between the generations are
nevertheless possible due to a mismatch of the symmetry basis and the mass basis of
the fermions: SU(2), transitions via the W* boson mediate for example between a v’
and a d’ quark in the weak eigenbasis, but expressed in terms of mass eigenstates which
are also eigenstates of the QCD interactions, d’ is a mixture of the mass eigenstates d, s,
and b. This was first postulated by Nicola Cabbibo in 1963 for the case of the first two
generations and thus the mixing angle describing the d/s mixing is called 6, [15].

As QCD processes mediate between mass eigenstates and as those are observed in
experiments, when writing u, c, t or d, s, b mass eigenstates are usually implied.

The matrix expressing the full mixing information between all three quark genera-
tions is called the CKM matrix. It is unitary and approximately diagonal, the largest
off-diagonal element being the Cabbibo angle 6, [16]:

+0.00015
0.97427 + 0.00015 0.22534 +0.00065  0.00351
—0.00014
+0.0011
[Vexn| = [0.22520 £ 0.00065 0.97344 +0.00016  0.0411 . (1.9)
—0.0005

+0.00029 +0.0011 +0.000021
0.00867 0.0404 0.999146

—0.00031 —0.0005 —0.000046

Note that although in this numerical representation of the magnitudes nine entries
are given, there are only three real degrees of freedom and one complex, commonly
expressed as three mixing angles and one complex phase. The CKM matrix is obtained
by inspecting a charged, i.e. W*, current and switching to the weak eigenbasis:

Wi y*d,
— Wy v i
= W, u ViV, y"VyVdy (1.10)
T +
= wia, |V e,
where V; is the matrix of eigenvectors that diagonalizes the product of mass matri-
ces m;m; and Ve = V,V..
In the leptonic sector there exists an equivalent mixing matrix, the Pontecorvo-Maki-

Nakagawa—Sakata (PMNS) matrix, which encodes the neutrino mixing information
between the weak eigenstates v,, v,, v, and the mass eigenstates v;, v,, v;. Numerically,
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it is strikingly different from the CKM matrix in that it involves large mixing angles*,
instead of being almost diagonal. The current best fit values for the mixing angles
are [18]

912

33.3°, (1.11a)

40.0° normal
0 = . , (1.11b)
50.4° inverted

0,5 = 8.6°, (1.11c)

where the indices refer to the weak eigenstates and the angles 6,,, 6,5, and 6,5 are
commonly referred to as solar, atmospheric, and reactor angles. The angles are related to
the entries of the PMNS matrix U via these equations: [19]

0,3 = arcsin <|U13|> , (1.12a)
rarctan M) ifu,; #0

01 = 1 [Vl : (1.12b)
z else
L 2
arctan (121} if Uy #0

0,5 =3 |Us3| . (1.12¢)
z else

As it is currently not possible to accurately measure the neutrinos’ masses, but only the
mass squared differences, the mass hierarchy is not fixed. The data allows for a normal
hierarchy, in which mJ—i.e. the mass associated with the third mass eigenstate—is
the largest squared mass, and an inverted hierarchy, in which m? is the lightest squared
mass.

The PMNS matrix can be expressed using unitary transformation matrices equivalent
to the case of the CKM matrix in equation (1.10), with mass matrices for the charged
leptons and neutrinos in place of the mass matrices for up- and down-type quarks. In
most cases’ the neutrino mass matrix is normal—i.e. MM" = M'M—and can thus
be diagonalized using an eigenvalue decomposition yielding a unitary transformation
matrix instead of using a singular value decomposition®. It is customary to transform
the Lagrangian into the basis where the charged lepton mass matrix is diagonal. This
basis is called flavor basis. In many models the natural symmetry basis as dictated by the
model symmetry has a nondiagonal charged lepton mass matrix.

‘A thorough review of the history of the neutrino can be found in reference [17].
>specifically, if Majorana neutrinos are assumed.
OThis is the case in the seesaw mechanism introduced in the next section.
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1.3 Two shortcomings of the standard model

While the standard model as a theory is in excellent agreement with the data, it has
some shortcomings that have lead to the advent of a multitude of extensions. As an
example, the hierarchy problem, which refers to the fact that the Higgs boson mass should
be of GUT scale but electroweak precision data points to a Higgs at the electroweak
scale, is unsolved in the framework of the standard model. Its solution is one of the
prominent features of supersymmetry. At this point, we are going to elaborate on two
shortcomings of the standard model that are of importance to this work:

1.3.1 Massive neutrinos

The existence of small neutrino masses is experimentally well-established [20-23] by
the observance of neutrino oscillations and is encoded in the PMNS matrix introduced
in the last section. The absolute scale of the neutrino masses can be deduced from
cosmological experiments [24-33], given as the sum of all neutrino masses. The current
bound is

D m <05ev, (1.13)

where m! is the mass of the ith neutrino mass eigenstate. Generating this mass using a
mass term like the one shown in equation (1.3) requires right-handed neutrinos, which
do not exist in the standard model.

Adding neutrino masses to the theory involves two building blocks:

Dirac masses The most straightforward way to generate neutrino masses is to
add right-handed neutrinos and construct a Dirac mass term as in equation (1.3). A
disadvantage of this method is that even the highest possible neutrino mass allowed by
the bound of equation (1.13) is many orders of magnitude smaller than the masses of
the charged leptons and quarks, requiring unnaturally small Yukawa couplings.

Majorana masses As neutrinos are uncharged, they can be Majorana particles,
i.e. they can be their own antiparticles [34]. In this case, it is possible to construct a
Majorana mass term’ [35]:

£, Dy Mvg. (1.14)

The Majorana mass M is not generated by the standard model Higgs mechanism and
is thus not required to lay at the TeV scale. A tell-tale sign for the Majorana nature of

The position of the charge conjugation superscript C is important: \75 Vg is a Majorana mass term for a
right-handed neutrino vy, the one given in equation (1.14) generates a left-handed Majorana mass.
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(a) Type I seesaw mechanism. (b) Type II seesaw mechanism.

Figure 1.3: Feynman diagrams for two different types of seesaw mechanism. In fig-
ure 1.3a the Dirac mass is generated by the VEV <¢> and M is the Majorana
mass. In figure 1.3b the heavy SU(2) triplet A° generates a mass term for
the low-mass neutrinos.

the neutrino would be the discovery of neutrinoless double beta decay [36], which is
a |AL| = 2 process, i.e. the lepton number is changed by two units. Another effect of
the Majorana nature is the existence of two additional CP-violating phases in the PMNS
matrix.

There is a multitude of ways in which the two mass terms can be combined to give
the observed neutrino masses. A very successful method is the seesaw mechanism, in
which an electroweak scale Dirac mass and a GUT-scale right-handed Majorana mass
are combined to generate a small effective neutrino mass. A renormalizable realization
of the type I mechanism can be written as

L5 iy, <¢°> + %vaR +Hec. (L.15)

Note that that right-handed field v, receives a heavy Majorana mass M. The first part
of the expression is an ordinary Dirac mass term involving the left- and right-handed
neutrino fields and the vacuum expectation value of the Higgs field ¢.

In a one-generation case the generation of a light neutrino mass can be easily seen:
Consider a Dirac mass my, and a right-handed Majorana mass M, where M is much larger
than my. Diagonalizing the mass matrix

, (1.16)

10
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yields two eigenvalues, which can approximated as

D (1.17)
(1.18)

The mass m; can be seen as the light neutrino mass by virtue of suppression by the
GUT scale mass M. A diagrammatic realization of this seesaw type I mechanism is displayed
in figure 1.3a. When considering all three generations of neutrinos, the mass matrix
can be written as

MY = mI M m,, (1.19)

where my now refers to the matrix of Dirac masses corresponding to the first part of
equation (1.15) and M is now the matrix of Majorana masses, i.e. the second part of
equation (1.15). This formula illustrates how masses that are very light compared to the
charged leptons and quarks can be obtained for the neutrinos.

Another possible way to generate an effective neutrino mass operator is by coupling
the left-handed neutrino to a heavy SU(2) triplet particle A, as shown in figure 1.3b.
This is known as the seesaw type II mechanism. Both seesaw mechanisms can be seen as
high-energy models that at the low scale generate a neutrino mass operator. This can be
interpreted as integrating out the heavy right-handed neutrino v; in the type I realization
or the heavy scalar A° in the type Il model.

1.3.2 The flavor puzzie

The three generations of matter particles shown in figures 1.1 and 1.4 behave identically
with respect to the gauge interactions introduced in this chapter. However, during the
process of electroweak symmetry breaking every particle receives a different mass and
nontrivial mixing relations between the generations emerge. These intergenerational
differences are in contrast with the uniformity of their gauge interactions.

As illustrated in figure 1.4 the mass differences between the generations of quarks and
leptons are large and can be considered clearly hierarchical. In the neutrino sector the
absolute mass scale is not precisely known beyond the result shown in equation (1.13),
except that it is at a very low energy compared to all other massive particles. Itis also
possible that the neutrino mass spectrum is close to being degenerate.

In summary, there are two types of hierarchies in the flavor sector that are unexplained
as of now: The large hierarchy observed within the charged fermion sector and the
enormous hierarchy between the charged fermion masses and the neutrino masses.

11
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Figure 1.4: The mass hierarchy between the three generations of fermions. Based on
data from reference [16].

The second piece of the flavor puzzle is the mixing information for quarks (equa-
tion [1.9]) and neutrinos (equations [1.11]), encoded in the CKM and PMNS matrices,
respectively. The CKM matrix can be expressed as a small deviation from unity, as all
the mixing angles are small. This view is taken in the Wolfenstein parametrization [37],
where the deviation from unity is expressed as a series expansion in the Cabibbo an-
gle A =6, = 13.04°:

A2 3
1- 5 A Al ( p— 171)
Verm ~ ~1 1- £ A2, (1.20)
AR (1-p—in) —-AX 1

where 4, A, p, and  are the Wolfenstein parameters, representing the three real and one
complex degrees of freedom.

Such a parametrization is not suitable for the PMNS matrix however, as it contains
large mixing angles with 6,5 being close to maximal, as can be seen in equation (1.11b).
In fact, before the nonzero nature of the mixing angle 6,5 (cf. equation [1.11c]) was

12



1.3 Two shortcomings of the standard model

established by recent experiments [38—40], the mixing matrix was excellently described
by the tribimaximal pattern [41, 42]:

o

2

(Vouns) ™ & (1.21)

Al = WIN
Wi Wik Wi

NIR NI

Now thata nonzero 6,5 is an experimental fact, the tribimaximal pattern can still function
as aviable starting point from which to generate a nonzero 6,5.

Not included in the PMNS parametrization are complex phases. One such phase—
called the Dirac phase—is the leptonic equivalent of the one complex degree of freedom
contained in the CKM matrix. In addition, the possible Majorana nature of the neutrinos
allows for two more CP-violating phases. The phases in the neutrino sector are currently
unconstrained by experimental data [18].

All couplings that are responsible for the mixing matrices of quarks and leptons are
free parameters in the standard model; it does not make any prediction.

13






2 Symmetry groups in model building

In chapter 1 the standard model was shown to be based on the mathematical foundation
of the continuous local symmetry groups U(1), SU(2), and SU(3). The theoretical setup
of the standard model is mostly concerned with the vertical direction of figure 1.1, i.e. with
interactions involving gauge bosons and transitions between isospin states. Even though
the CKM matrix is commonly discussed in the context of the standard model, its content
is solely based on experimental input and cannot be predicted by the standard model.

The models discussed in this work employ discrete symmetry groups to constrain the
possible textures of particle mixing and therefore explain the mixing patterns introduced
in chapter 1. A short introduction into the group theoretical vocabulary needed follows
at this point, a much more thorough treatment can be found in references [43, 44].

2.1 The vocabulary of group theory

A group is defined as a set G, where any two elements can be combined using an oper-
ation e to produce another element, which is also an element of G. The set G and the
operation « used to combine the elements have to fulfill four requirements:

Closure Va,beG: asb €@,

Associativity Va,b,c€G: (aeb)ec=ase(beo),

Existence of an identity element Je€G: eea=aee=q,
Existence of an inverse element YVa € G,3b € G: aeb=bea=c.

Note that while associativity is a requirement, commutativity is not. Groups whose
elements can all be commuted are called Abelian, all other groups are consequently
non-Abelian. Groups with a finite number of elements are called finite groups.

The elements g~'ag are called conjugate elements to a € G. The set of these conjugate
elements is called a conjugacy class.

The PMNS matrix is not part of the standard model, as there is no canonical mechanism for neutrino
mass generation.
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2 Symmetry groups in model building

Often, it is possible to express all elements of a group in terms of finite combinations
of a subset of these elements and their inverse elements. This subset is called the
generating set of the group, its elements are the generators.

A representation of a group G maps each element a of G onto a matrix D(a) homomor-
phically, i.e. while preserving the multiplication structure D(a)D(b) = D(a « b), where b
is another element of G. The vector space on which these matrices act is called the
representation space. Its dimension is the dimension of the representation. We commonly
deal with one-dimensional, two-dimensional, and three-dimensional representations
in flavor models (often called singlet?, doublet and triplet representations), but larger
representations are common in GUTs.

If the representation space contains a subspace in which the operations D(a)v for
any element a € G acting on a vector v in that subspace result in a vector that is also
an element of the subspace, it is called an invariant subspace. Any representation that
has an invariant subspace is called reducible. Consequently, an irreducible representation
contains no such invariant subspace.

A very important result that is given without proof here is that the number of irre-
ducible representations of a group is equal to the number of its conjugacy classes.

To construct larger groups it is possible to multiply groups in several ways. The
simplest such construction is the direct product: For two groups A and B with elements g,
and b, the product group A X B consists of the elements (a;, b;) and the group operation
is performed in each component:

(a,b;) (aj,bj) = (a;+ a;,b; e bj). 2.1
A more complicated way to construct a larger group is by using the semidirect product. It
is a generalization of the direct product and is usually written using the X symbol. In
the semidirect product group A X B, the new group elements are still the tuples (a;, b;),
however the group operation is now defined as

(a;,b;) » (a;b;) = (a; 25, (a), b; ¢ by), 2.2)

where f, is a homomorphism mapping from B into the group of automorphisms of A.
Note that the semidirect product is not commutative and also not unique, as different
homomorphisms f produce different semidirect product groups.

A common special case that is used in this work is that of a large group G with a
normal® subgroup N and a subgroup H. If every group element g of G can be written

2In this work singlet is only used for one-dimensional invariants.
3 A normal subgroup N is invariant under conjugation with elements of its parent group G, i.e. gng™* € N.
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2.2 Groups used for model building

0°,120°,240° 0°,90°,180°,270° 0°,72°,144°,
216°,288°

Figure 2.1: Geometric representation of the cyclic group Z, forn = 3,4,5. The group
elements are the rotations that leave the polygon invariant.

as g = nh = hn and the groups H and N only have the identity element in common, then
with the homomorphism

fhi(”j) = hinj(hi)‘l, (2.3)

the semidirect product N X H is isomorphic to G. We will see this applied in the
discussion of A(27) in section 2.2.3.

2.2 Groups used for model building

Generally, the effort of finding groups suitable for flavor models has been concentrated
on subgroups of SU(3) as there are three families. A classification of the SU(3) sub-
groups with small order and their use in particle physics can be found in reference [45]
and renewed interest in flavor symmetries has lead to more recent work, e.g. in ref-
erence [46]. Here, we concentrate on the discrete groups used to build the models
discussed in the following chapters and introduce them in order of increasing complex-

1ty.

2.2.1 The cyclic group Z,

A cyclic group Z, is generated by one generator g and its powers:

(9) = {go,gl,gz, ,g”‘l}. 2.4)
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2 Symmetry groups in model building

In a finite cyclic group, when starting with an element a of the group and multiplying it
with g iteratively one eventually ends up with the element a again, thus closing the cycle*.
The groups Z, are Abelian and have only one-dimensional irreducible representations.

A geometrical representation of the cyclic groups Z, can be obtained by considering a
regular n-gon, i.e. a polygon with n vertices, and is shown in figure 2.1. The elements of
the group are then the rotations that leave the n-gon invariant’.

The smallest nontrivial group Z,—also called parity—is often used in particle physics
to represent two distinct classes of particles that should not interact, where one class
is assigned the representation 1 (g = ) and the other is assigned to 1’, defined
as g¢ = —¢, where g is the group element. An interaction y ¢ is thus forbidden.

2.2.2 The symmetric group S,

The symmetric group S, is the group of all possible permutations of n objects. The
elements are usually written as

a, ... a

) (2.5)
Clg(l) eee ao_(n)

where the first row gives the original order of the elements a, and the second row gives
the new order after permuting the elements. The first row is often omitted when the
original order is obvious (e.g. when itis a;, a,, a5, ...). The group S, contains as many
elements as there are permutations of n object, so there are n! elements.

The smallest symmetric group, S, is trivial, containing only the identity element.
The next-simplest example is S,, which is simply the parity group Z,, introduced in the
previous section.

The symmetric group S,

The smallest non-Abelian group is the permutation group of three objects, S;. It con-
tains 3! = 6 elements and can be imagined as the symmetry group of an equilateral

“This is not true for the infinite cyclic group, which has infinitely many distinct elements and is isomor-
phic to the additive group of integers Z.

°It is interesting that the the infinite group of the natural numbers is a cyclic group under addition but
the rotation group of the circle is not, even though it might seem to be a natural limit of a polygon
with an ever-increasing number of vertices.
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2.2 Groups used for model building

1 ' 2
(213)

Figure 2.2: Geometric representation of the symmetric group S; including its elements.

The identity element (123) is not shown.

triangle. In this geometrical image, the vertices of the equilateral triangle can be la-
beled 1, 2, 3 and the elements can be written as permutations:

Identity (e) : (123), (2.6a)
Reflections (a;, a, a3) : (213), (321), (132), (2.6b)
Rotations (ay, as) : (312), (231). (2.60)

Interestingly, the group can be generated by just two elements: rotation by 120° and
reflection along one axis. The set of all elements is then

{e,a,b,ab,ba,aba}, 2.7

where e is the identity, a = (231) is a rotation by 120° and b = (213) is a reflection along
one of the axes shown in figure 2.2. Of course, other choices for a, b out of the elements
shown in equation (2.6) are possible and equivalent.

The irreducible representations of S; To deduce the number of irreducible
representations, the number of conjugacy classes has to be identified. In the case of S;,
the conjugacy classes are

{e}, (2.8a)
{ab, ba}, (2.8b)
{a,b,aba}. (2.80)

Consequently, S; has three irreducible representations, called 1, 1" and 2. The existence
of a doublet representation makes it suitable for nontrivial model building applications.
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2 Symmetry groups in model building

A real representation directly representing the vectors pointing to the vertices of the
triangle of figure 2.2 can be chosen. In thatcase, the rotation and reflection matrices are a
subset of the O(2) elements in an R? representation. However, in order to accommodate
complex fields in this work, a complex doublet representation Dg = D, is used [47]:

10
D,(e) = ,
01
0 1 0 w? 0 o
DZ(al) = ’ DZ(aZ) = s DZ(a3) = s (2-9)
10 ®w 0 ®* 0
w 0 @? 0
Dz(a4) = s Dz(as) = s
0 0 w

where w = exp(27i/3) is the third root of unity. The two one-dimensional representa-
tions can be distinguished by their behavior under reflections:

D,(e) = D,(a,) = D,(a,) = D,(ay) = D,(a,) = Dy(a5) =1, (2.10a)
D,.(e) = Dy,(a,) = D, (a5) = 1,

(2.10b)
Dll(al) = Dl/(az) = Dl/(a3) == —1.

Objects belonging to the one-dimensional 1 representation are invariants under S;,
i.e. all group elements are mapped to a multiplication with 1. It is therefore a true singlet
representation®. The antisymmetric one-dimensional representation 1’ is characterized
by a sign swap under the reflective group elements a,, a, and a;.

The tensor products of S; In order to construct invariant terms to be used in

the Lagrangian of a field theory, the tensor products of the group have to be known.
To deduce the product of two doublets 2, consider’ (x;,x,), and (y;,y,);, and how

all different combinations of the entries behave under transformation with a, and a,.

®In this work, a singlet is always an invariant. The expression one-dimensional representation is used for the
generic case.

’As in general there can be more than one representation of the same dimensionality, the representation
is indicated by a subscript when using the component form. Where the representation is clarified
using the e-notation, this subscript is omitted.
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2.2 Groups used for model building

In each case, the matrices D,(a,) and D,(a,) are applied to the doublets and then all
combinations are considered. When applying the group element a, one gets:
DS(ay)
XYy — XY,

DS (ay)

XYy — XYy,

c 2.11)
Dz (al)

XYy — XY,
DS (ay)

XY, > X1Y1-

Applying the group element a, in its two-dimensional representation D,(a,) yields:
DS(ay)
XYy — @ XYy,
DS(ay)
X1Yz - > XY

2.12

BS(a0) ( )

XYy — XU
DS (a,)

XYy — wX3l;.

In both one-dimensional representations, the elements of the group are represented by
multiplication with +1, so no factors of @ may remain in the tensor products. It is thus
possible to combine the entries of the doublets (x;,x,); and (y;, y,); in the following
ways:

XY, +x,4; € 1, (2.13a)
XY, — Xy, € 1. (2.13b)

Note that for a complex doublet field ¢ = (¢;, ¢,)7 € 2 the Hermitian conjugate is given
by ¢’ = (d);, qu) € 2. In this case, the tensor product with a second doublet field y
is [48]

blun + dhy, €1, (2.14)
by, — piw, € 1'. (2.14b)

It is also possible to form a new doublet out of two doublets:

+
d)l WZ

. € 2. (2.15)
¢é‘l’1
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2 Symmetry groups in model building

The tensor products involving one-dimensional representations are somewhat simpler,
forvelandwe1':

wel, (2.16a)
ww e 1, (2.16b)
wel'. (2.160)

In summary, the tensor products of S; are

22=101 @2, (2.17a)
11 =1, (2.17b)
'®1 =1 (2.17¢)

The respective construction rules are listed in equations (2.13) and (2.16).

2.2.3 The group A(3n?)

The group A(3n?) is a subgroup of SU(3) of order 3n?. It is the smallest non-Abelian
subgroup with three-dimensional representations®. It can be expressed as the group
product [43, 49]

ABM) ~ (Z, X Z}) X Zs. (2.18)
All elements of the group can be written by combining its three generators, which are
the generators of the product groups Z, X Z, and Z;:

b =1, 2.19)

for the Z, subgroup of A(3n?) and
a"=a"=1, (2.20a)
aa’ =a’a, (2.20b)

forthe Z xZ; subgroup. These two subgroups are connected via the semidirect product,
which in this case uses a conjugation as the homomorphism, as was introduced in
section 2.1:

bab™ =a7ta' T, (2.21a)
ba'b™! =a. (2.21b)
All elements of A(3n?) can be expressed as a product of a, a’, and b. The further treatment

of A(3n?) diverges for n = 3Z and n # 3Z. As A(27) is extensively used in this work,
only that case is considered from now on.

8The well-known group A, is A(12).
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2.2 Groups used for model building

The irreducible representations of A(27) The number of irreducible repre-
sentations is equal to the number of conjugacy classes of the group. Forn = 37, the
conjugacy classes of A(3n?) are [43]

C,: {e}’ (2.22a)
. { aka/—k}’ k= g 23_11 , (2.22b)
™ {ala’m, a g’ gt } (I,m) # (% 2?]1) (23_11 §>, (2.22¢)

e s {ber ratm =01, A2 w =01 n-1hp =012, @24)
";3,11’=0,1,...,n—1},p=0,1,2. 2.22¢)

Cizzg) : {bzap‘“"ma’”lm =0,1,...,
The total number of conjugacy classes is 9 + (n® — 3)/3, consisting of two cases of equa-
tion (2.22b), (n>—3)/3 cases of equation (2.22c) and three cases each of equations (2.22d)
and (2.22e). This corresponds to nine one-dimensional representations—including one
singlet—as well as (n> — 3)/3 triplets. Consequently A(27) has nine one-dimensional
and two three-dimensional representations.

The conjugacy classes for A(27) are

C: {e}’ (2.23a)
Cgl): {a’a/Z}’ (2.23b)
ng) : {az, a’}, (2.230)

C(30,1) : {a’, da, aza’z}, (2.23d)
Céo’z): {a’z,az,aa’}, (2.23¢)
C(;’p): {ba?, ba*"'a’, ba?%a"}, (2.23f)
cZ?: {ba?, ba""'a’, ba" 20’2} (2.23g)

The nine one-dimensional representations are written as 1, fort,s = 0,1,2 and the
two triplets are called 3y, ;; and 3,y ,;. At this point it is worth noting that there is a
certain ambiguity in the labeling of the triplets because of the conjugation property
of the semidirect product. In fact, representations obtained by conjugation with the
elements b and b? are equivalent. Due to this, the square bracket used to label the triplets
is defined as

kKl =& v (k=Lk v -k=1). (2.24)
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2 Symmetry groups in model building

The generators of the three-dimensional representations are

010
D;b)=l0 0 1|, (2.25a)
1 00
@ 0 0
Dia@=|0 & o0 | (2.25b)
0 0 ™!
w0 0
D;a)=] 0 & 0] (2.25¢)
0 0 o
where k,1 = 0,1,2 and w = exp(2zi/3). The indices k and [ represent the charges

under Z; and Z} respectively. Due to this there is not only an ambiguity encoded in the
bracket notation of equation (2.24) but also in the cyclic nature of the Z, charges. For
example, an equivalent set of generators that can be used includes b* as the permuting
generator and swaps the placement of @' and @ in D5(a)°. Also note that for k = |
the matrices D;(a) and D5(a’) are trivial and such triplet representations are actually
reducible. The generators a and a’ can be represented as diagonal matrices because they
commute, as shown in equation (2.20b).

In the one-dimensional representations 1, forr,s = 0,1, 2 the generators commute.
By inspection of the definition of the generators in equations (2.19) and (2.20) the
one-dimensional representations of the generators can be obtained:

D,(b) = ', (2.26a)

D,(a) = Dy(d") = &' (2.26b)

As can be seen in these expressions, the indices r and s refer to the charges under Z,
and Z}. Consequently, the singlet of A(27) is 1.

In summary, the group A(27) has nine one-dimensional representations, labeled 1,
forr,s = 0,1,2 and two three-dimensional representations 3;y,;; and 34,

This set has the advantage of memorability, as the diagonal generator for 3j0j1y is Diag(«®, 0!, ?)
and for 3jgy it is Diag(w®, w?, w'), mimicking the subscript in the powers of the first two entries.
However, due to consistency with the literature we stick to the notation of references [43, 49] at this
point.
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2.2 Groups used for model building

The tensor products of A(27) In order to construct invariants, the tensor prod-
ucts of the three-dimensional and one-dimensional representations have to be known.
In general, three products are possible in A(27) [49]:

lr’s ® 1],/’5/ - 1r+r’,s+s” (2273)
L ® 3w = persiiess (2.27b)
2
3(k,l> ® 3(k’,l’) = Z 5(](’,I’),([—k+s][—l+s]) <10,s 7] 11,; @ 12,5) (2.270)

s=0

D 3 i+ D i —icnr i @ Sy -

As can be seen in equation (2.27a), the product of two one-dimensional representations
is determined by their behavior under the subgroup Z, x Z, where the charges are each
added. The tensor product of two three-dimensional representations shown in equa-
tion (2.27c¢) is more complicated, as it can contain either the nine one-dimensional rep-
resentations of A(27), including the singlet 1, ,, or three-dimensional representations.
In the cases where the Kronecker symbol allows for one-dimensional representations,
the three-dimensional representations in the same product are always of the type 3,
i.e. they are reducible. Following the notation of reference [43] the tensor products of
equation (2.27) can be expressed in terms of the components of the representations. For
reasons of clarity, the three different combinations of three-dimensional representations
are considered separately:

X1,-1 Y11 X1 —1Y1,-1 X_10Y1,-1 X1 —1Y-1,0
Xo0.1 ® Yo.1 = X0,1Yo,1 ©® X1-1Y0.1 ©® Xo1Y1-1 |* (2.28a)
X_10 5 Y_10 3 X_10Y-10 5 X01Y-10 3 X_10Y0,1 3

(o1 (o1t (01121 e 01121
Xy 2 Y Xy 2Ys 2 X_50Y22 X3 2Y-20
X0,2 ® Yo, = X0,2Yo0,2 ® X2.-2Yo2 ® X02Y2.-2 (2.28b)
X_20 Yoso X_20Y-2,0 X02Y-2,0 X_2.0Y0,2

30121 30112 o1 o)1) foI1]
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2 Symmetry groups in model building

In the case of multiplying two three-dimensional representations to produce the nine
one-dimensional representations of A(27), the reducible three-dimensional representa-
tions shown in equation (2.27c) are omitted as they contain no unique physical content:

P
1-1 Yo11 )
_ 2r r
Xo.1 ® Yo1| = (xl,—ly—l,l T @0 X1Yo—1 T @ X—1,091,0>
r=0 r.0
X_10 3 Y10 3
11 (0112 . (2.28¢)
2r T
© Z <X1,—1':Jo,—1 + 07X 1Yp 0 + @ X—1,o':l-1,1>
1 1
r=0 "
2
2r T
7] Z <X1,—1U1,0 tw XY+ @ X—1,090,—1>1-
r=0 r2

Finally, the product of a three-dimensional representation and a one-dimensional repre-
sentation (equation [2.27b]) can be computed as follows:

X1 X _1%rs
— T
or | ® (2). = | o, | 2.284)
s
2r
X—l,O @ X—l,Ozr,s
3011 3is11s)
Xy 2 Xy 2%
—_— T
X2 | ® <zr,s)1 = | @Xo%4s | (2.28¢)
s
2r
X0 W™ X_3 0%
30112 32491
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3 Signatures of a flavor model based
on the permutation group S;

In section 1.3.2 the flavor puzzle was introduced, one piece of it being the failure of the
standard model to predict the mixing angles of quarks and leptons. The approach of
using symmetry groups to explain and unify phenomena in particle physics has been
vindicated by the success of the standard model and that success has lead to a similar
approach being used to attempt to solve the flavor puzzle as well. Early attempts were
made starting in the 1960s, using the continuous symmetry groups known from the
dynamic sector of the standard model [50-53]1, however these models were not very
successful [49].

The discovery of the nonzero neutrino mass [38—40] and the subsequent measure-
ments of the mixing angles have changed the picture considerably: Finite discrete
groups often provide matrices with large mixing angles, mimicking the large mixing
angles found in the neutrino sector. For reviews of the use of discrete flavor symmetries
in neutrino model building, see e.g. references [54-57].

In most cases when using discrete flavor symmetries to model the masses and mixing
of matter particles additional fields in nontrivial representations have to be introduced.
The mechanism of SSB is then used to break the symmetry, but the scale at which that
happens can vary: In many cases additional fields called familons or flavons® are used,
which are assigned to a nontrivial representation of the symmetry group and acquire
a VEV a a high energy scale (cf. reference [60]). This breaking scheme is separated
from the Higgs mechanism and due to their high masses, the flavons are invisible
experimentally.

An alternative approach is using an extended electroweak breaking sector with non-
trivial charges under the family group. Interesting experimental signatures such as
nonstandard decays involving scalars and gauge bosons and/or large flavor changing
neutral currents (FCNCs) often arise in such scenarios. The models discussed in this
work fall into this category.

The term familon has been in use since the 1980s [58]. Originally, flavon stood for a completely unrelated
concept, but the two terms have been used interchangeably since the 1990s [59].
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3 Signatures of a flavor model based on the permutation group S,

The permutation group S, introduced in section 2.2.2 is a particularly attractive can-
didate. It was first used in the context of flavor physics in reference [61] and has been
explored by many authors since [62-72].

A problem many models using discrete flavor symmetries to solve the flavor puzzle
have is that while they provide well-motivated and well-working fits to the data, their
predictive power is often low. In this chapter, we explore a specific model (introduced in
reference [48]) in the context of the scalar sector, thus providing experimental signatures
that can be used to test the model. We specifically concentrate on the extended scalar
sector compared to the standard model.

3.1 Building blocks of the model

The attractiveness of the group S; is based on the fact that it is the smallest discrete
symmetry group having a two-dimensional irreducible representation. It is thus a good
candidate for the description of the maximal mixing of two generations, which is a good
approximation for the atmospheric neutrino mixing angle 6,; ~ 40.0° [18]. This result
remains attractive after the discovery of a nonzero mixing angle 6,5 [73-75]. That the
group has two nonequivalent one-dimensional representations (see equation [2.17]) is
also crucial for the correct reproduction of the fermion masses and mixing.

In the model proposed in reference [48] three scalar SU(2) doublets are introduced
with couplings to the gauge and fermion sectors as dictated by their charges under S;.
It is an interesting result that the same mixing mechanism that produces the large angle
in the neutrino sector is responsible for producing an almost diagonal mixing in the
quark sector by cancellation. The neutrino mass generation is treated separately using a
type II seesaw mechanism (cf. section 1.3.1). By construction the neutrino mass matrix
emerging from that mechanism is diagonal in this model, with the neutrino mixing
angles encoded in the PMNS matrix stemming from the mismatch between this diagonal
matrix and the off-diagonal nature of the charged lepton sector. The triplets used in
the seesaw mechanism are heavy and are not dealt with in this work. Also, the exact
mechanism by which the neutrino mixing angles and the CKM matrix are obtained is
not repeated at this point. It can be found in reference [48].

In order to use the symmetry group S, to construct a Lagrangian the fields used have
to be assigned to representations of the group. In the case of the model presented in
[48] the assignments are presented in table 3.1. The VEVs of the three scalar doublet
fields ¢,, ¢,, and ¢, induce SSB in the electroweak sector, replacing the standard model
Higgs mechanism.
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3.1 Building blocks of the model

Table 3.1: Assignments of particles to irreducible representations of S,.

2 1 1
Lﬂ C c C
Leptons T L,e~, u
LT
2
Q C ,C c C jC C
Quarks b~,t Qpu-,c,d,s
Q
’ 2
é
Scalars d)l [oR
2

2

Note: The assignments are given as in reference [48]. L,, L, and L, are SU(2) doublets
containing the charged leptons and neutrinos. Analogously Q,,Q,, and Q5 contain
the quarks. The charge-conjugated fields are SU(2) singlets and written using the C
superscript. Finally, ¢, ¢,, and ¢; are SU(2) doublet scalar fields.

The addition of the scalar SU(2) doublet fields ¢, ¢,, and ¢, to the model leads to
a scalar potential involving those fields. The most general scalar potential invariant
under S; with the assignments of table 3.1 is given by references [48, 76]:

s A
V=1 (g1 + dahy) + 33 + S (b1 + $20)°
+ S (D11 = 0362)" + dsdhybaths by + 5 (B35 + As(6363) (d1b1 + drh)

+ AP (drh] + s h3) s + | bl + Al (br1byhy + ol hy) + Hoc .
(3.1
After the process of SSB, nine degrees of freedom are left in the scalar sector: three
neutral scalars, two neutral pseudoscalars and two charged scalars with two degrees

of freedom each. The remaining degrees of freedom are neutral (G%) and charged (G*)
Goldstone bosons which are eaten up by Z° and W* respectively. Consequently, the
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3 Signatures of a flavor model based on the permutation group S,

values of the VEVs are restricted by v? + v + v; = v3,,, where vg,, = 246 GeV. The
remaining fields are labeled as follows:

0
b, — , (3.2a)
hy
h+
R . (3.2b)
h, +iy,
h+
bs—-1 | (3.20)
hy + 1y,

The VEVs of the fields ¢, ¢,, and ¢, are labeled as v;, v,, and v;. We assume that the
scalar sector is not a source of CP violation, i.e. the couplings 4,; g, and the VEVs v, v,,
and v, are real in this work.

Producing the maximal atmospheric mixing angle in the neutrino sector requires the
specific vacuum alignment v, = v, = v, as shown in reference [48]. This choice is not
arbitrary, but is one of the solutions allowed by the minimization of the scalar potential
of equation (3.1).

At this point we consider two different scenarios and their implications on collider
signatures:

3.2 Scenario I: Light scalars and scalar
three-point interactions

The following scenario was first explored in the diploma thesis in reference [77] and
further expanded in reference [1]. As the second scenario builds upon it, it is repeated
here with additional comments regarding the impact of the discovery of the Higgs.

3.2.1 Mass spectrum of the scalars

In this scenario, we only consider the CP-even scalars h,, h,, and h;, assuming very high
masses for all other degrees of freedom. When we impose the condition v, = v, itis
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3.2 Scenario I: Light scalars and scalar three-point interactions

possible to minimize the potential (3.1) and derive conditions on the squared mass
parameters m” and m3:

—m® = (2A; + A3)VP + (As + Ag + A;)v3 + 3Aquvs, (3.3)
3

3 = 4403+ 2(As + Ao + 4oV + 25 (3.3b)
3

These conditions ensure an extremal point for the chosen vacuum alignment, but they
do not guarantee that it corresponds to a minimum of the potential. This has to be
checked separately by calculating the Hessian matrix, i.e. the square matrix of second
order partial derivatives giving the local curvature of the potential. Coincidentally, the
Hessian matrix in this case is the squared mass matrix of the scalars. Thus, the positivity
of the eigenvalues of that matrix—which is necessary to obtain physical masses for the
scalars—also ensures that the vacuum alignment v; = v, represents a minimum of the
potential.

This procedure ensures a local minimum in v; = v,, butit s still necessary to choose
the potential parameters 4;; g, in a way that guarantees the global, i.e. asymptotic,
stability of the potential. After the process of SSB the potential is a polynomial of order
four and its global stability in the asymptotic limit ¢b; , 3, — +oo can be ensured by the
following set of conditions:

M+A4,>0, A, +4;>4,, 4,>0,

(3.4)
As + Ag > 0, A; >0, Ag>0.

These conditions keep the coefficients of the highest-order terms positive and thus
define the asymptotic behavior of the potential. Note that this simple set of conditions
is stricter than necessary as it cuts off parts of the parameter space that might still be
viable. A more precise treatment of this problem can be found in the second scenario
presented in section 3.3.

To calculate the masses and mixing of the three CP-even scalars, the SSB expan-
sion (l)? = v, + h; (withi = 1,2, 3) is inserted into equation (3.1). The resulting matrix
in the (hy, h,, h;)T basis can be diagonalized to obtain the physical—i.e. mass basis—
scalars h,, h;, and h,. In terms of the mass basis scalars, h;, h,, and h; can be expressed
as follows:

m:mﬂ+m@—iﬂm (3.52)
2
h, = Uyh, + Uh + —h,, (3.5b)

V2

hy = Uyh, + Uy h (3.5¢)

o
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3 Signatures of a flavor model based on the permutation group S,

where U, and U, (for i = 1, 3) are analytically tractable but complicated functions
of A(; g, and the VEVs v and v3, which are not shown here. Note that the equality of
the mixing coefficients contained in h; and h, is a consequence of v; = v,. Itis also
interesting that the mixing equation for h, does not depend on any parameter of the
potential or the VEVs:

h,=—(h,—hy). (3.6)

This is a consequence of the S; symmetry, which generates a squared mass matrix of
the pattern

A B C
B A C}| (3.7)
Cc CD

which for arbitrary values of A, B, C, and D always yields (—1, 1, 0)" as one eigenvector.
The squared masses of the three CP-even neutral scalars h, h;, and h, are

my = 44,0° — 24307 — U3 (24,05 + 54g0) , (3.82)

m = % [4/11v2v3 + 2430705 4+ 24,03 — 2450 + 3Aq003 — Am3] : (3.8b)
3
1

mﬁ[ = o [4&1112113 +2450%05 + 24,V — 2Ag0° + 345005 + Am3] , (3.8¢0)

where
Am3 = lSUU3{ZUU§ (2(15 + Ag + /17)2 — A (2}”1 + ’13)>

+ 2450 (241 + Ay) — 3444405 + 12450703 (A5 + Ag + 4,) + 12/1§u3u3} (3.9)

1

2
+ {21)21;3(2/11 +A5) + 24,03 — 240 + 3,18uu§} 2

To assess the possible mass spectrum of the CP-even scalars h,, h;, and h, a numerical
domly in the range [0, 1], while the ratio of v/v is kept fixed at 0.6 to ensure compliance
with the CKM fit of reference [48]. Since h, and h, behave similarly with respect to
their Yukawa and gauge interactions (as will be shown in the next section), only their
mass splitting is shown in figure 3.1a. The relation between m;, and m;,_is shown in
figure 3.1b.

32



3.2 Scenario I: Light scalars and scalar three-point interactions

300

250

200 —

150

100 —

my— my, [GeV]

50

100 120 140 160 180 200
mhb [GCV]

(a) Splitting My — My, against My, .

240 |- -
20 - -
200 |- .
180

160 —

My, [GeV]

140 |- -

120

100
0 50 100 150 200 250 300 350

My [GeV]
(b) Allowed range of my, .

Figure 3.1: Results of a random numerical search for allowed scalar masses with a
fixed v;/v = 0.6 [1].

33



3 Signatures of a flavor model based on the permutation group S,

3.2.2 Scalar couplings to gauge and matter fields

When calculating the kinetic terms |Dﬂ¢i|2 (with i = 1,2,3), the couplings of the
symmetry basis scalars h, , 5, to the gauge bosons W* and 7° are suppressed by a factor
of v,/ugy < 1fori =1,2,3. Using equation (3.5a) to transform the kinetic terms into the
mass basis of the scalars, two interesting changes compared to standard model physics
emerge:

1. The physical scalars h, and h, both couple to W*W~ and z°Z°, but their couplings

are modified by
1 (20Uy, +v3Uy,)  forhy, (3.10a)
Usm
1 (20U, + v3Uy,)  forh,. (3.10b)
Usm

2. The scalar h, does not couple to Z°Z° or WW~ through the three-point vertex,
unlike the other scalars or the standard model Higgs. This is a consequence of the
orthogonality of the h, + h, state (roughly h, and h ) and the h, — h, state, which
was identified as h, in equation (3.6). Note that the four-point vertices h2Z°Z°
and h2W*W- still exist.

To obtain the couplings of the scalars to the quarks and leptons, the S; invariant
Yukawa Lagrangian &, has to be considered:

Py = f,eehs + foepChy + f,u (uh, + thy) + H75(—ph, + thy)
+ giuuChy + giuchy + gicS(ch, + thy) + gatS(—ch, + thy) (3.11)
+ g3ddh; + gldsChy + gisC(sh, + bhy) + g3b(—sh, + bh;) + H.c.,

u/d

where the |, , 45, are the leptonic and the g, , 5,

the up and down sectors.

are the quark Yukawa couplings for

The couplings of h, and h, to the quarks and leptons depend on the parameters

.....

to fermions depend only on f; , 45, (or, g‘{l/l‘fz’ 45) for the quarks). This is clearly a con-

sequence of equation (3.6). The full expressions for the couplings are complicated
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3.2 Scenario I: Light scalars and scalar three-point interactions

functions of these parameters and are not given here, however the patterns in the
Yukawa matrices deserve some attention’:

0 0 oz
L7R
Y, =| 0 0 Y;‘” , (3.12a)
a L‘R
Y:'LeR TLHR 0
b/ /\
YEL‘ER ELLR 0
— / /1
by = YZ;R Y';fuR ol (3.12b)
0 0 Y
LTR

While h,,, show the diagonal Yukawa couplings similar to the standard model Higgs,
they also have off-diagonal components. Due to the absence of natural flavor conser-
vation [78], these lead to scalar-mediated flavor changing currents at tree level, with
branching ratios determined by the Yukawa couplings f and g. However, numerically,
these off-diagonal couplings are so small as to be insignificant.

The scalar h,, interestingly, has no diagonal couplings to the quarks and leptons, but
instead only features off-diagonal couplings involving a particle of the third generation.

The last two points require further clarification. In a theory with more than one SU(2)
scalar doublet, tree level FCNCs generally exist in the scalar sector. For example, they
exist in the ordinary two Higgs doublet model (2HDM), but in the supersymmetric
standard model they are avoided by the arrangement that one doublet couples only to
the up-type fermions and the other to only the down-types. In nonsupersymmetric
scenarios—in the absence of any natural flavor conservation—symmetry arguments
have been advanced in the context of multi-Higgs models to show that the off-diagonal
Yukawa couplings of the neutral scalars are suppressed by their relation to the off-
diagonal entries of the CKM matrix [79].

In the present case, S; symmetry, under which both scalars and fermions transform
nontrivially, is instrumental in suppressing the off-diagonal couplings. To provide an in-
tuitive understanding, we take—as an example—only the two-flavor y—7 sector together
with two neutral scalars h, and h,. Itis not difficult to see that the combination (h, — h,),
which corresponds to h,, couples only off-diagonally, as mentioned earlier. But the other
combination (h, + h,), which corresponds to h,, following equation (3.5a), couples
only diagonally to physical u or = states. When we consider the quark sector, ¢ and =

2We show the Yukawa matrices for the charged lepton sector as an example. The equivalent matrices
for the quarks follow the same patterns, however.
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3 Signatures of a flavor model based on the permutation group S,

would be replaced by second and third generation quarks which will have CKM mixing.
This will yield off-diagonal entries for the h,, couplings to quarks suppressed by the
off-diagonal CKM elements. The same happens for off-diagonal couplings involving
the first two generations as well. The tiny size of tree level FCNC rates in an S; fla-
vor model has been noticed also earlier, where predictions for the branching ratios
(BRs) BR(r — 3u), BR(K, — 2e), and BR(B, — 2u) have been given [80]. In some
setups where the fermion transformations under S, are not appropriately adjusted, the
off-diagonal Yukawa couplings may become order one which induce sizable neutral
scalar mediated rare processes, like K, — pe or K, — 2x at tree level. This requires
those neutral scalars to lie beyond several TeV [76, 81]. In our case, once we adjust the
fi/g:"c1 couplings (with i = 1,2, 4,5) to reproduce the fermion masses and mixing, the
off-diagonal Yukawa couplings are determined too. The largest of them corresponds
to ¢ tgh,, which is about 0.8. The second largest off-diagonal coupling is that fors; b h,,
and is about 0.02. The next in line is ji; 7xh,, whose coefficient is about 0.008. The
others are orders of magnitude smaller, and are of no numerical significance. Although
FCNC processes like B;,—B, and B—B_ mixing proceed at tree level, the contributions are
adequately suppressed even for light scalar mediators.

3.2.3 Collider signatures

The perturbativity condition |4; _g,| < 1and the requirement m, , > 114 GeV (for
which we set v;/v ~ 0.6) yields m,, in the neighbourhood of 125 GeV and m;_ within
400 GeV—see the scatter plots in figure 3.1. Note that while the result for the mass of h,
is in tension with the Higgs data from the LHC [12, 13], the mass range can be extended
easily by adjusting the allowed range for 4;; _ g, still within perturbative bounds. This
is the approach taken in scenario II, presented in the next section. Both h, and h, would
decay into the usual Z°Z°, W*W~, bb, yy, etc. modes, but the dominant decay mode of h,
(or h) for the case of m, < m, /2 (or m, < m, /2) would be into h,h,. Since the h,Z°Z°
or h W"W~ couplings are nonexistent, the mass of h, is not directly constrained by
the experimental results of the Large Electron—Positron Collider (LEP) and LHC. We
numerically calculate the strength of the h,h h, coupling from the set of acceptable
parameters characterizing the potential, and introduce a parameter k which is the ratio
of the h,h,h, coupling and the h,W*W~ coupling. The magnitude of k depends on the
choice of A; g, and v;. Assuming m; = 75 GeV, we obtain k in the range of 6-30.
Just to compare with a 2HDM [82], the corresponding k value, when the heavier Higgs
weighing around 400 GeV decays into two lighter Higgs (114 GeV each), is about 10.
In figure 3.2a we have plotted the branching ratio of h, — h;h, as a function of m,,
for two representative values m, =50 GeV and m, =75GeV, and fork ~ 5and k ~ 30,
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3.2 Scenario I: Light scalars and scalar three-point interactions

which correspond to the smallest and largest k obtained from the set of accepted scalar
parameters. We observe that till the WTW~ or Z°Z° decay modes open up, the branching
ratio h, — h,h, is almost 100%. To calculate the decay widths into the usual modes
(other than h,h ), we have used HDECAY [83] by appropriately modifying the gauge and
Yukawa couplings. As figure 3.2b suggests, as longas m; < m,, h, will dominantly decay
into jets, and one of them can be identified as the b-jet. The branching ratio ofh, — ut
is, nevertheless, not negligible (about 0.1). As shown in figure 3.3, for m, << m,, the
branching ratio of t — h,c is quite sizable, which falls with increasing m, . It may be
possible to reconstruct h, from h, — u7. In fact, alight h, would be copiously produced
from the top decay at the LHC. On the other hand, if m;, > m,, as can be seen again from
figure 3.2b, h, decays to ft with an almost 100% branching ratio.

A large k provides an interesting twist to the failed Higgs search at LEP. In this
case, h, — h,h, would overwhelm h, — bb, and hence the conventional search for
the SM-like scalar (h,, as the lighter between h, and h,) would fail. This is similar to
what happens in the next-to-minimal supersymmetric models, when the lightest scalar
would dominantly decay into two pseudoscalars, and each pseudoscalar would then
decay into 2b or 27 final states. In view of these possible 4b or 47 Higgs signals, LEP
data have been reanalyzed putting constraints on the Higgs production cross section
times the decay branching ratios [84, 85]. The possibility of the Higgs cascade decays
into 4j (j standing for quark or gluon), 2j + 2 photons and 4 photons has been studied
too [86, 87]. From a study of 4b final states, a limit m, > 110 GeV (for a standard model
like Higgs) has been obtained [86]. From all other cascade decays the limit on m, will
be considerably weaker. Our h, has the special feature that it has only off-diagonal
Yukawa couplings involving one third-family fermion. If h, is lighter than the top quark,
itwould decay as h, — h,h, = 2b + 2j, and into b + 1j + u + 7, the latter constituting
a spectacular signal with two different lepton flavors y and r. The standard 2b and
cascade 4b decay searches are not sensitive to our final states, and so a value of m;, much
lighter than 110 GeV would have been compatible.

As a standard model like Higgs has been discovered at a mass of 125 GeV [12, 13],
which corresponds to the scalar hy, in this scenario, the hidden decay into a nonstandard
channel can be ruled out, although the total measured branching ratio is lower than
expected as of now. This effectively places a lower mass limit on h,, with m, > m, /2.
Scenario II, which follows in the next section, takes this new result into account.

In summary, in the setup of scenario I there are two scalars which are standard
model Higgs like, except that each of them can have a dominant decay into the third
(hy, — h,h,). The latter, i.e. h,, has no h,VV-type gauge interactions, and has only fla-
vor off-diagonal Yukawa couplings with one fermion from the third generation. The
measurement of the Higgs mass at the LHC places a lower bound on the mass of'h,.
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Figure 3.2: Branching ratios for several scalar decay modes and the production of h,
through top decays. In (a), k compares the strength of the h;h h, coupling
to the strength of h,W"W~ coupling [1].
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Figure 3.3: Branching ratio of the top quark decay into h, and charm quark.
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3.3 Scenario llI: Light scalars and pseudoscalars

The first scenario dealt with only the CP-even scalars and concentrated on the de-
cay h, — h,h,. In the scenario investigated in this section, presented in reference [4],
the pseudoscalar degrees of freedom are taken into account as well and an experimental
signature in the light of the Higgs discovery is discussed. The main properties dictating
the collider signatures remain the same:

1. Two of the three CP-even scalars h,, have standard model like couplings except
that they can dominantly decay into the third scalar h,, whose couplings are not
standard model like.

2. The scalar h, and pseudoscalar y, have no interactions of the type (h,/y,)VV,
where V = W=, 7°.

3. The scalars/pseudoscalars h,/ y, have only flavor off-diagonal Yukawa couplings
with one fermion of the third generation.

More specifically, in this scenario we have extended the previous analysis by including
not only the CP-even neutral scalars, but all scalar degrees of freedom: three CP-even
neutral scalars, two CP-odd neutral scalars and two sets of charged scalars. In this
section we will perform the following steps:

1. Determination of the mass spectrum of the neutral scalars/pseudoscalars and the
charged scalars following an improved potential minimization technique,

2. Calculation of their couplings to the gauge bosons and matter fields, and

3. Identification of a novel channel of a scalar (pseudoscalar) decay within reach of
the LHC.

3.3.1 Mass spectrum of the scalars/pseudoscalars and
charged scalars

To obtain the mass spectrum for the physical scalars/pseudoscalars and charged scalars,
the potential of equation (3.1) has to be minimized taking all of the fields into account.
After diagonalizing the mass matrices the masses of the physical scalars/pseudoscalars
are obtained. These are denoted by h,, , x,,, and hlb.

To keep the potential globally bounded from below the conventional approach is to
arrange all the coefficients of the highest-power terms in the potential to be positive
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3.3 Scenario II: Light scalars and pseudoscalars

definite. This was followed in the first scenario where only the CP-even degrees of
freedom were considered. However, this strategy eliminates the allowed possibility of a
large part of valid parameter space where the potential is bounded from below although
some coefficients still stay negative.

The present scenario is now more complete in the sense that we deal with the complete
spectrum including all neutral and charged degrees of freedom following the potential
minimization. Moreover, some parts of the allowed parameter space that were cut off
by the traditional method are now resurrected by our new approach. As a first step, to
have an analytic feel we identify some simple-looking relations of the coefficients by
inspection that allow the potential to stay positive and also provide the physical scalar
masses. To do this the scalar potential in equation (3.1) is factorized into a simplified
polynomial in ¢,, ¢,, and ¢;, treating them naively as real quantities for calculational
ease. There remain three distinct types of terms of order four: ¢, ¢7 J.z, and ¢} ¢,
where i,j,k = 1,2,3. Out of the nine terms, only six have independent coefficients,
called ¢y ¢

GPy + ads + GBS + Pids
+ s + QP35 + P Dr s + D3 + (i3 (3.13)

.....

G =As+ Ay, =24, 5=24,.

(3.14)

By inspection we found the following conditions on the coefficients ¢, ¢, from the
analytic expressions:

>0, >0,
262 -0, 262-06, 2020, 2042-0, (3.15)

1 1 1 1

These conditions ensure an acceptable mass spectrum for the neutral scalars/pseudo-
scalars and charged scalars and keep the potential globally stable. However, this method
renders a large part of the parameter space still inaccessible. Moreover, the masses ob-
tained by employing equation (3.15) are generally quite light, none exceeding 300 GeV

To obtain a more complete picture we have transformed equation (3.13) into spherical
coordinates (p, 0, ¢). The potential then splits into a radial and an angular part. The
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question of global stability is thus reduced to keeping the overall sign of the angular
part of the potential positive definite in the limit of the radial part going to infinity:

sin* 0{ (2, — ¢5) cos(4¢) + 6¢, + ¢ } + 8¢, cos* 0
+ sin2(29)<2c4 sin® ¢ + [ sin(2q’>)> + 8¢, cos? ¢ sin? 0 cos? 0

+ 4¢5 sin(2¢) sin® 6 cos 0<sin ¢ + cos ¢>> >0 (3.16)

As this is a transcendental inequality there is no analytically tractable and simple set of
conditions that can be imposed on the coefficients ¢; ¢, to solve equation (3.16). We
therefore decided to check the positivity of this function numerically at each point of the
parameter space. This allows us to explore the until now inaccessible territory of the
stable parameter space that could not be reached by the conditions of equation (3.15).
Consequently, masses well beyond 300 GeV for the scalars/pseudoscalars can be reached
even while keeping |4, _¢,| < 7. To sum up, our equation (3.15) is an improvement
over what we have done in scenario I and subsequently our numerical approach improves
the size of the accessible parameter space even further.

Diagonalizing the mass matrix of the pseudoscalars gives the symmetry basis pseudo-
scalars y, , ; in terms of the physical basis pseudoscalars y,:

n="c-| 1|, B, (3.17a)
1= 9 7|~ - b> :
Usm V2 a \/EUSM
v 0 1 U3
Hn=—"GC+|—|x.— Ko (3.17b)
Usm \/5 ﬂ \/EUSM
v
X3 = 2+ \/5—3)@- (3.17¢)
Usm Usm

It is interesting to note that the mixing coefficients are very simple and just depend on

the ratio v;/vgy,. This is in stark contrast to the mixing of h,, ; and h,; . given in equa-

.....

of equation (3.1).

The mixing relations for the charged scalars h], are obtained by substituting y — h*
and G° — G* in equation (3.17).
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We now derive the pseudoscalar squared masses as

m> = —945uvs, (3.18a)
m2, = —1, (2,17 + ,18%) : (3.18b)
The corresponding squared masses for the charged scalars are
My, = =2430> = U3 (g + A7) + 545003, (3.192)
my. = v}, <,16 + A+ z%) . (3.19b)

The allowed ranges for the masses can be found by a random scattering in the param-
eter space where the couplings in the potential are varied within 4, g, € [-7, 7] and
the ratio v;/v is fixed to 0.6. The allowed range for the couplings 4, ¢, has been in-
creased with respect to scenario I to admit a broader mass spectrum. The values are still
very much within perturbative bounds. This leads to a CP-even mass spectrum similar
to scenario I, but with higher allowed ranges. The scalar h, can be as massive as roughly
800 GeV or arbitrarily light as it evades the LEP bound due to its maximally nonstandard
couplings. The mass of the standard model like scalar h, is limited within 114-500 GeYV,
while h, is still heavier. Both h, and h, masses should however satisfy the LEP lower
bound of 114 GeV (See figure 3.5 for details).

In view of the recent LHC results [12, 13] that hint towards a standard model like
Higgs boson at around 125 GeV with a large excluded region above and below, the mass
spectrum in this model is compatible with the following scenario:

1. The scalar h, plays the role of the standard model like Higgs boson with a mass of
roughly 125 GeV. The Yukawa and gauge couplings of h, and h, are standard model
like with numerically negligible flavor off-diagonal couplings, as in scenario I [1].

2. The scalars/pseudoscalars h, and y, have nonstandard interactions that hide
them from standard searches, as will be discussed in the following sections. In
particular, h, and y, can be very light.

3. All other scalar/pseudoscalar masses, including the charged scalars, can have
masses above 550 GeV. We however note that the existing limits on charged scalar
masses are not so stringent and the parameters of our potential can be arranged
to admit a much smaller mass for them, though this is not the main focus of our
present work.
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Figure 3.5: Scatter plots of masses of h,, h,, h, and y,, where v;/v = 0.6. The lines
give the current interesting window between 114 GeV (LEP) and 130 GeV
(LHC) [12, 13]. (continued on next page)
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Table 3.2: Three-point vertices involving at least one neutral scalar/pseudoscalar and
gauge bosons. A black square indicates that the vertex exists.

hEW* hEW® 1.z 1L WEWF 7z
h, | — | — — —
h, — m — ] ] u
h, — m — | ] N
%o _ — — — — —
X — u — — — —

3.3.2 Scalar/pseudoscalar couplings to gauge and matter
fields

It is worth noting that among the couplings listed in table 3.2 the ones involving h, do
not depend on any parameters of the scalar potential, while the couplings of h, and h, to
the gauge bosons are complicated functions of the scalar mixing parameters, which we
refer to in our tables by black squares without displaying their explicit forms. The h, y,Z
coupling has a simple form

i
haZi =56, (3.20)

where G = 1/g? + g'? is an electroweak coupling constant and q,, is the momentum
transfer. As stated in the first scenario, h, stands out because it does not couple to
pairs of gauge bosons via the three-point vertex. As a result, neither the LEP lower limit
0f 114 GeV nor the electroweak precision test upper limit of around 200 GeV applies
on it. The same is true for the pseudoscalar y,. For certain kinematic regions, the
coupling h, ,Z is important for collider searches as we shall see later. Table 3.3 contains
the other gauge-scalar-scalar and the triple-scalar vertices. Note that h, couples only
off-diagonally to the other scalars/pseudoscalars. The h,h¥h; couplings depend only

on v,/v, while the other triple scalar couplings are complicated functions of the scalar
mixing parameters.

The Yukawa Lagrangian of the CP-even scalars in the basis (h;, h,, h;) was given in
equation (3.11) and is still correct in this scenario. Rotating the scalars to their physical
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3.3 Scenario II: Light scalars and pseudoscalars

Table 3.3: Other three-point vertices. A black square indicates that the vertex exists.

(a) Charged scalars and gauge bosons.

hiy hizZ hyy hyZ
h* | | — —
h — — | |

(b) Three-scalar/pseudoscalar couplings.

hohy  hehy R RTRE RChY O RTRY xxe mn dak
h, — n n — — = — — =
h, ] — — = ] — n n —
h | — — = ] — n n —

basis (h,, hy, h ) gives the Yukawa matrices Y, ,, shown in equation (3.12). In general,
there are two generic textures of Yukawa couplings in this model [1]:

Y;; Y5, O 0 0 Yy

HereY, symbolically describes the Yukawa couplings for h,, y,, and h, whileY,  describe
the couplings for hy, h, x,, and h". The pattern holds both for leptons and quarks, as
in scenario I, and reproduces the observed masses and mixing [48]. The off-diagonal
couplings in Y, . remain numerically small and can be controlled by one free parameter
which keeps processes like 4 — ey and meson mixing well under control. The largest
off-diagonal coupling inY, is (h,/ x,)ct which is about 0.8 that leads to viable production
channel of h, via t decays as described in the next section. The next largest couplings
are (h,/y,)sb ~ 0.02 and (h,/y,)ut = 0.008. The y,u7 coupling induces an interesting
decay channel potentially observable at the LHC. Note that since the h}tb coupling does
not exist the mass of h} is not constrained by the LHC searches in the t - h*b channel
in the mass window of 80 to 160 GeV [88, 89].
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3 Signatures of a flavor model based on the permutation group S,

@ (b)

(c)

Figure 3.6: Feynman graphs for dominant sources of h, production and decays which
might be relevant at the LHC.

3.3.3 Collider signatures

If kinematically allowed the dominant production of h, occurs through t — h,c (fig-
ure 3.6a). The subsequent decay channels depend crucially on the mass of the pseudosca-
lar y,: ifm, <m,,h decays dominantly into bandsquarks, or r and u (see figure 3.6b).
The BR fort — h,cis about 0.17(0.06) for my, = 130(150) GeV. Then h, — uz proceeds
with a BR 0f10% and h, — bs with 90%.

A spectacular channel opens up when h, — y,Z is kinematically accessible (fig-
ure 3.6c). The BR of h, — Zy, is almost 100% due to the numerical dominance of
the gauge coupling over the Yukawa couplings involving light fermions, followed
by y, — 7u with a BR of about 10%, and aZ — uu BR of about 3%. If two h, are
produced from tt pairs, this could lead to a characteristic signal with up to six muons
with the tau tags. The BRs fort — ch, and subsequently h, — y,Z — 7puuu are plotted
in figures 3.8. For these plots m, = 20 GeV has been assumed, which is allowed by
current data. The BR peaks for m, = 110 GeV once the kinematic threshold is crossed
and then falls sharply for larger masses due to phase space constraints.

In summary, this is a natural extension of the work [1] presented as scenario I in sec-
tion 3.2, where only the CP-even scalars were studied, assuming the pseudoscalars to
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3.3 Scenario II: Light scalars and pseudoscalars

be too heavy to be relevant. In this scenario we have analyzed the complete scalar/pseu-
doscalar sector of the S, flavor model. We deal with three CP-even, two CP-odd and
two sets of charged scalar particles. In this scenario we have improved the potential
minimization technique which enabled us to explore a larger region of the allowed
parameter space. Itis possible to arrange the mass spectrum in full compatibility with
the current LHC data, with the scalar h, mimicking the Higgs-like object lurking around
125 GeV. The specific scalar (pseudoscalar) with prominent nonstandard gauge and
Yukawa interactions, namely h, (y,), evade standard searches at LEP/Tevatron/LHC and
hence can be rather light. The other scalars/pseudoscalars can be arranged to stay be-
yond the current LHC reach (e.g. 550 GeV). In particular, we have identified a promising
channel for h, search involving up to six muons in the final state with the tau tags.
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Figure 3.8: Different branching ratios involving the production and decay of h,. In all
cases, m, = 20 GeV is assumed.
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4 Geometrical CP violation and the
flavor puzzle

The model based on S; presented in chapter 3 is a successful demonstration of a discrete
symmetry’s ability to produce the mixing of particles in a geometrical way. In particular,
the doublet structure of S; makes it a suitable candidate for the explanation of the
maximal atmospheric neutrino mixing angle 6,;. We have shown that such a model
can also have significant impact on the electroweak breaking sector which leads to
nonstandard collider signatures. It is reasonable to assume that such a behavior should
appear in all models based on discrete symmetries where there is no separate and hidden
flavon sector.

In this chapter we concentrate on a model that aims to reproduce the quark mixing
data, which is known at a precision level, as well as the lepton mixing data. At the
same time, a new ingredient is introduced: The model also includes a geometrical and
calculable source of CP violation that enters the CKM matrix and is determined by the
vacuum of the model’.

4.1 Introduction to the idea of geometrical CP
violation

In the 1970s the idea that CP might be a spontaneously broken symmetry was intro-
duced [90, 91]. In this work we refer to this idea as spontaneous CP violation (SCPV).
It has remarkable physical consequences: Starting from a Lagrangian that is CP in-
variant CP is broken through specific complex phases that appear in the Higgs VEVs
breaking the gauge symmetry”. This SCPV mechanism provides an elegant solution
to the strong CP problem, as was explored in references [92-99]. It is also helpful
in alleviating the supersymmetric CP problem [100]. Furthermore, SCPV is the only
mechanism that allows for a CP asymmetry to appear in perturbative string theory [101-
1031.

IThe model was analyzed in reference [5].
20ne has to make sure that no field redefinition can be found that evades the SCPV phases.
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4 Geometrical CP violation and the flavor puzzle

Table 4.1: Assignments of the scalar fields to A(27) representations.

301 301121
Hl
H H2
H3
H,
H' H)
gt

Note: The representations of A(27) can be reviewed in section 2.2.3. The fields H',
with i = 1,2, 3, are scalar doublets of SU(2).

In general, the CP violating phase appearing in SCPV can depend on the parameters
of the Higgs potential, which makes it tunable. An interesting subclass of SCPV ap-
pears when the CP phases do not depend on the potential parameters, but are instead
calculable [104]. This is referred to as geometrical CP violation (GCPV) in this work,
because the source of CP violation is a geometrical property of the underlying symmetry
group. It was only recently realized by imposing the non-Abelian discrete symmetry
group A(27)—which was introduced in section 2.2.3—on the full Lagrangian [104].
More recently, GCPV in the context of the group A(54) (cf. references [43, 105]) was also
considered [106], which leads to the same scalar potential as A(27). One of the main
features of GCPV is that the phases of the VEVs are stable against radiative corrections
due to the presence of the non-Abelian discrete symmetry [107, 108].

In reference [106] a promising leading order fermion mass structure was presented.
However, viable Yukawa structures require taking terms at the nonrenormalizable level
into account. Naturally, the scalar potential acquires higher-order terms at the same
time and the compatibility with GCPV is not guaranteed. In this chapter we present
an analysis of the scalar potential invariant under A(27) (or A(54), which has the same
scalar sector) that leads to GCPV by allowing higher order terms in the scalar potential.
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4.2 Geometrical CP violation from the scalar potential of A(27)

4.2 Geometrical CP violation from the scalar
potential of A(27)

It is possible to classify the terms allowed in the potential and their effect on the pre-
viously obtained vacuum solutions using the properties of the underlying symmetry.
Both A(27) and A(54) can be considered here, as their differences do not manifest
themselves in the scalar potential: Due to the SU(2) doublet nature of the scalars an
even number of A(27)/A(54) triplets and their conjugates is needed to form an invariant.
Compared to A(27), A(54) has an additional generator that swaps two components of a
triplet. This generator then combines two separate A(27) invariants that are related by
this transformation into a single invariant of A(54). However, this does not affect the
analysis of the scalar potential, because the cyclic permutation of all three components
is a generator shared by both groups.

4.2.1 The renormalizable potential

The renormalizable potential V,, consists of the scalar fields defined in table 4.1. In
this chapter, the A(27) triplets H and H' will usually be shown in terms of their compo-
nents H' and Hl.T (where i = 1, 2, 3). To make the representations easier to distinguish,
the superscript H' denotes that the fields belongs to a 3y, representation, while its
conjugate H?—where asubscriptiis used—Dbelongs to the 3, representation of A(27).

The potential V., is then given as
Vien = HH + (HH))(HH)) + (HHHH]) + ¢, [ Z (H)’H;H} + H.c] . 4.1)
ik

Here, repeated indices denote a sum, and we have omitted the arbitrary parameters of
each term except for the single phase-dependent term that is inside the square brackets.

As the phase-dependence of the VEVs is relevant for this analysis, it is given as an
explicit imaginary exponential function:

<Hl> = v,e”,

<H2> = v,ei®2, 4.2)
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4 Geometrical CP violation and the flavor puzzle

In particular, when the vacuum expectation values are inserted into the potential V.,
the exponentials compensate each other in all terms of the sum except for the last. There
the following combination of angles appears in the combined exponential:

0, = 20+ @ + ¢, (4.3)

wherei # j # k.

The VEVs that can be obtained from the minimization of V,, were first presented in
reference [104] and further used in reference [106]. Two classes can be distinguished
depending on the sign of ¢, in equation (4.1):

1
<H>=i3 w |, or (4.42)
o
W
Hy=-2]1], (4.4b)
V3 1

with the calculable phase w = exp(2xi/3). Within each class it is possible to obtain
equivalent VEVs by taking cyclic permutations of the components, e.g. (1,1, ®*)', or by
swapping the powers of , e.g. (w,1,1)".

This w appearing in the VEV is the core ingredient of GCPV. It can serve as the only
source of CPviolation and is entirely determined by the minimization of the potential V.,
of equation (4.1).

4.2.2 Higher-order terms in the potential

When introducing higher-order terms, the number of such terms in the nonrenormaliz-
able potential V increases steeply with the order considered. We use properties of the
underlying symmetries to classify this large number of terms in a smaller number of
categories that remains manageable up to a certain point. Avery important question that
arises when adding such terms is whether the property of GCPV survives at higher orders,
that is whether the structure of the VEVs presented in equation (4.4) remains valid. It is
especially important to assess if v; = v, = v; can be maintained. First, note that this
equality property of the VEVs is fundamentally connected to the underlying Z, cyclic per-
mutation generator introduced in section 2.2.3 (cf. equation [2.25]), which is contained
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4.2 Geometrical CP violation from the scalar potential of A(27)

in both A(27) and A(54). In the symmetry basis of the scalars, this generator forces
any invariant term to be a cyclically permuting combination of the three scalar doublets
contained in H. In equations, we denote the cyclic permutation by the shorthand c.p.
and only give one instance, i.e. H'H} + c.p. stands for H'H} + H2H., + H>H,.

Phase-independent contributions

Starting with the phase-independent combinations we observe that they appear only in
three different types. Specifically, the distinguishing property of these three types is how
many of the components of the triplets are included in a single part of the combination.
We have either

v +c.p., or (4.52)
vj'v, + c.p., or (4.5b)
v'lu?vg + c.p., (4.5¢)

where [, m, n are different powers depending on the order of the term. Each of these

terms has a different effect on the VEVs. At the renormalizable level of V.., only the
first two types are allowed (cf. equations [4.5a] and [4.5b]):
2 2 2

(riH]) + (R + (PPHD) (4.62)

(HlHj> <H2H§> + c.p. (4.6b)

The last type—corresponding to the type of equation (4.5c)—appears at order six:

(rm]) (o)) (0HY). 4.7)

Table 4.2 summarizes the type of VEVs that each phase-independent combination type
favors, depending on the coefficient of that combination being positive or negative.

When considering the triplet tensor products of higher order than two, each invariant
can contain more than one type of combination. However, it is always possible to rewrite
the potential in such a way that all terms belonging to one combination are grouped.
The coefficient for that group is then a linear combination involving the O(1) coefficients
of all the invariants that contain that cyclic combination as well as group theoretical
factors and mass scale suppression factors.

In order to obtain a (0,0, 1)"T ora (1,1, 1)T VEV, ultimately the requirement turns out to
be that the combined importance of terms favoring one or the other VEV is stronger. This
holds even when there is a large number of terms favoring each type of VEV. At arbitrarily
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4 Geometrical CP violation and the flavor puzzle

Table 4.2: Types of combinations and preferred VEVs according to the sign of their

coefficient.
+ -
1 0
] + c.p. 1 0
1 1
0 0
Ui + c.p. 0 1
1 1
0 0 1
viul'vl + c.p. 0 / 1 1
1 1 1

Note: The combinations displayed in equation (4.5) prefer different VEVs, shown here.
The phases @ and w? are omitted, as the terms are phase-independent.

high orders in the scalar potential V, the symmetry generically predicts either a (0, 0, 1)T
or (1,1,1)" type of VEV due to its underlying cyclic structure. There are exceptions to
this generic prediction, related with the appearance of'a (0,1,1)" VEV or a VEV with
the hybrid form (x, y, y)" with the ratio x/y depending on the values of the combined
coefficients, but we have observed that to obtain those fine-tuning of the coefficients is
required. The reason is that at each order, the v/ type is naturally dominating (and this
effect increases with the order). On the other hand, there are also more combinations of
the other types, particularly the Ullv?vg type which appears most frequently in invariants.
Therefore in a typical situation, with similarly valued coefficients for all invariants, the
sign of the combined coefficients of v and ullugvg determines the VEV, with the v:“vj’,1
terms not affecting things unless one enhances their contributions—which would be
the fine-tuning we referred to previously. So to obtain either (0,0, 1)" or (1,1,1)" VEVs
is quite natural and there are huge regions of parameter space that lead to them.
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4.2 Geometrical CP violation from the scalar potential of A(27)

To better illustrate this we have parametrized a VEV of constant unit magnitude:

v, = sin(a - 7) cos(f - ), (4.8a)
v, = sin(a - 7) sin(f - x), (4.8b)
vy = cos(a - «). (4.8¢)

In this parametrization, the (1,1, 1)" direction corresponds to f = Y4 and a ~ 0.30
(strictly, cos(a - 7) = 1/ \/g). Due to the periodicity we focus on the region between
zero and % for a and f. In the case in figure 4.1a, the v} (positive coefficient) and v v} v}
(negative coeflicient) terms work together to easily produce a (1,1, 1)" VEV. In the case in
figure 4.1b, v/ (positive coefficient) overpowers vllvg‘vg (positive coefficient) to produce
a(1,1,1)" VEV, even though the coefficient of the v is only %7 of the coefficient of v;v?vg.
The effect of the terms v'v}' only becomes relevant if their coefficients are significantly
enhanced. The plots shown were created for order six, but they are representative of
what happens at higher orders. Note that in both cases reversing the signs of all the

coefficients would invert the plotand would lead to the (0, 0, 1)" type of VEVs as expected.

Phase-dependent contributions

We have shown that only the last term of equation (4.1) depends on the phase of the VEV.
At higher order, new phase dependencies emerge. Again, the large number of new terms
that are possible at higher orders can be classified using the fundamental properties of
the symmetries. The remaining generators thatare shared by the groups A(27) and A(54)
are also Z, factors and are fundamentally connected to the allowed phase-dependent
invariants.

One such phase-dependent expression was identified in reference [106]: When the
powers of the renormalizable—order four—phase-dependent invariant are doubled,
another invariant with a distinctly different phase-dependency appears:

> (1) () (4.9)

ik

where i,j,k = 1,2, 3. This works not only when doubling the powers, but with any
integer multiple n. At a given order new combined phases ;" are thus enabled:

0 = —2ng; + ne; + ne; (i#j#k). (4.10)
Yet a different phase dependency pattern #; arises at order six:

1, =3¢, — 3¢; + 0¢y (i#j#k. 4.11)
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0.5

04F

p (]

0.1

0 0.1 0.2 0.3 0.4 0.5
a [x]

(@ (1,1,1) arises from cooperating terms.

0.5

04rF

03F

p ]

02F

0.1

0 0.1 0.2 0.3 04 0.5
a [7]

(b) (1,1,1) arises from dominant term.

Figure 4.1: Potential strength for cases of different dominating combinations shown in
equation (4.5). Deep areas of the potential are darker than light areas.
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4.2 Geometrical CP violation from the scalar potential of A(27)

Like in equation (4.10), this expression can be generalized using integer multiples n
that appear at higher orders:

n; = 3ng; — 3ng; + 0@, i#j#k. (4.12)

Remarkably, as there is a link between the allowed phase-dependencies and the genera-
tors of the group A(27), it can be concluded that the combinations in equations (4.10)
and (4.12) are all allowed possibilities. This can be verified by explicitly computing all
possible invariant products and sorting them according to the phase-dependencies. We
found that beyond order twelve the number of invariants is too large for this approach
to be effective, but it remains possible to verify certain properties about the 6" and
combinations: They first appear through the respective powers of the lowest order terms
with the  and n dependencies. For example 6> and > appear at order twelve respectively

from NS [\
;] () (HH))" (4.13)
e g (uh) 4.14
;( ) ()" (4.14)

As with the phase-independent terms discussed already, distinct invariants may include
more than one type of phase-dependence, but we can rewrite the potential V in terms
of the unique combinations. The effective combined coefficient of each combination
is a weighted sum of the O(1) coefficients of the invariants containing it, with group
theoretical factors and the appropriate number of mass scale suppressions for the
nonrenormalizable invariants. As an illustration of this, in A(27) the product

(H@HT>®(H®H*®HT®H>, 4.15)

contains an invariant

l(HlH"'>3 +ep ] +3 l(HH{"’)Z (HZH"'> +ep

! . ! ") +c.p.
2

<H1H§) (H3H§> + c.p.

Going back to the types of VEVs listed in table 4.2, the (0, 0, 1) VEV loses the phase-
dependency, so from here on we consider only the (1,1, 1)" class of VEVs. The phase-
dependent combinations also preserve the (1,1, 1)" VEVs naturally (as a direct conse-
quence of the nondiagonal cyclic generator). We can now take different combinations

+3 + GH'H?H’H/HH]. (4.16)
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4 Geometrical CP violation and the flavor puzzle

that share the same phase-dependence and further reduce the number of independent
combined coefficients: we only need a single one for each unique phase-dependency.
A demonstration of this is possible at order six, where one can obtain the 6, phase
dependence that appears first at order four in two distinct ways:

1. By combining the 6, portion of the invariant with a matched additional HlHI to
obtain

2 .. 5
[<H1> HIH] (HIH{) + C.p.l +H.c., 4.17)

2. or by combining the 6, portion of the invariant with either unmatched H*H}/H>HJ,
to obtain

2 -
[<H1> HiH] (H2H), ) +cp.| + Hee. (4.18)

Given a (1,1, 1) type of VEV, any Hin = 1%/3 so they all become equivalent. They
are also equivalent to the already existing order four term with the same 6, dependency
and we can absorb their effect into a suitable redefinition of the lowest order coefficient
(which is naturally dominant, given the higher order terms all have mass scale suppres-
sions). This procedure greatly reduces the number of relevant parameters, particularly
when considering high orders where the number of invariants is huge, and allows us
to treat the minimization of the potential when a numerical approach would not be
feasible.

The effect of all 6, dependent terms is therefore already known—with a positive com-
bined coefficient ¢, the favored VEV is (w, 1, 1)T, contributing —3c9vf to the potential,
otherwise with a negative coefficient the (1, w, )" type of VEV is favored contribut-
ing 6¢,v} (¢y < 0).

We must now consider the effect of the phase dependencies that appear only at the
nonrenormalizable level:

0", n, n". (4.19)

It turns out they all preserve the existing GCPV VEVs, given suitable signs of their
respective combined coefficients. Starting with ", we conclude for any n that a positive
combined coefficient ¢} favors the (@, 1, 1) class of VEVs, contributing —3cjv}"/M*"~%
to the potential. For a negative combined coefficient the (1, , ®*)" class of VEVs is
favored with the potential contribution 6¢ju’"/M“"~*, where M is a generic mass scale
associated with the completion of the theory.
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4.2 Geometrical CP violation from the scalar potential of A(27)

Consider next 7. These terms do not distinguish the two classes of VEVs and a negative
combined coefficient ¢, would preserve both classes of VEVs with a potential contribu-
tion 6cnvf/M2. Finally, for " phase-dependencies the effect is the same, with negative
combined coefficients ] preserving either class of VEVs with 6¢/v"/M©"~.

The conclusion is that it is possible to exactly preserve both the (1,1, 1)" type of VEV
together with calculable phases to an arbitrarily high order if one is willing to choose
the appropriate signs of the respective combined coefficients. Note also that the 8" or "
phase-dependencies get a minimum of either four or six additional v/M suppressions
respectively.

To summarize, A(27) and A(54) are the smallest groups that lead to complex VEVs
with calculable phases stable against radiative corrections with the minimum number of
three Higgs SU(2) doublets. We have investigated their nonrenormalizable potentials.
We described a procedure that allows to classify the possible invariants and greatly
reduce the number of relevant parameters. Following this procedure we could treat the
minimization of the potential and concluded that the calculable phases can be naturally
preserved to arbitrarily high order.
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4 Geometrical CP violation and the flavor puzzle

4.3 Fermion masses and mixing

In the last section it was shown that a model based on the discrete symmetry A(27) can
have VEVs that contain phases of geometric origin. These VEVs are acquired during the
process of electroweak SSB in which the scalar fields contained in the triplet H take part.
Astonishingly, the GCPV VEVs are stable even when higher orders in the scalar fields H
are considered.

In this section, we extend the model and present for the first time a viable flavor model
of fermion masses and mixing that is able to account for all currently observed data®.
We require a Lagrangian which is invariant under the standard model gauge group, the
non-Abelian discrete symmetry A(27) and CP, that is the scalar sector discussed in the
last section is the only source of CP violation in this model. We shall show that in this
model novel phenomenology—similar to the model presented in chapter 3—emerges,
which makes it testable at the LHC.

The origin of CP violation is currently an open question in particle physics. In the
standard model, CP is broken due to complex Yukawa couplings and CP violation
manifests itself in charged weak interactions through the CKM matrix. Going beyond
the standard model it is possible to explore the origin of CP violation, and breaking CP
spontaneously is particularly appealing [90, 91]. In the framework of SCPV, CP is a
symmetry of the Lagrangian and therefore its parameters are real. CP violation can then
arise from complex VEVs of the Higgs multiplets, provided the unitary transformation, U,
given by

(H) » (H)" = Uy(H,). (4.20)

acting on the H; and relating the VEV to its complex conjugate, is not a symmetry of the
Lagrangian. Ifitis, then CP is conserved even though the VEVs are complex.

In this model, the calculable phase arising from GCPV is uniquely determined inde-
pendently of the arbitrary parameters of the scalar potential. GCPV requires at least
three Higgs doublets and a non-Abelian symmetry [104]. A(27) is known to be the
smallest group for producing geometrical phases. In reference [106] this was gener-
alized to larger groups obtaining the same calculable phases. Recently, several new
phase solutions were advanced and expressed in terms of the number of scalars and the
group [109].

So far, viable models of fermion masses and mixing within the GCPV framework
have not been constructed, although promising leading order structures have been
proposed [106]. Motivated by these previous works, we attempt here to produce for the
first time the minimal model of GCPV which can fit all data in the quark sector, which is

3The results of this section were presented in reference [6].
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known to great accuracy, including the complex phase. For this purpose we add only
the minimal amount of additional matter to the A(27) model introduced.

As in the last section, we assume—without any loss of generality—that the three
Higgs doublets, H', transform as a A(27) triplet with an assignment to a 3, irreducible

representation with an upper index. Their Hermitian conjugates HZ transform as the
conjugate representation 3,,,,; with a lower index, constituting the antitriplet. We now
clarify our notation and illustrate some group properties. We deviate somewhat from
the notation of section 2.2.3 by using an equivalent representation of the generators
of A(27). The generator that performs cyclic permutation is defined as

Hl
D3(b) | 1

D3(b) | H!

H2
H3

, (4.21a)

, (4.21b)

where w = exp(27i/3). The action of the first diagonal generator is given as

Hl
D3(a) | H?

D3(a)| H!

Hl
wH?
CO2H3

i
H

21yt
a)H2 .

R
wH,

) (4.21¢)

(4.21d)

The one-dimensional representations 1, i transform as given in equation (2.206), i.e. the
first index corresponds to the b generator, the second index to the a generator.
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4 Geometrical CP violation and the flavor puzzle

We have shown in the last section that the renormalizable scalar potential in the A(27)
context can lead to a complex VEV of the type:

w
<H> =vl1ll, (4.22)

1

that necessarily violates CP, as the corresponding U (cf. equation [4.20]) is not a sym-
metry of the potential. We will revisit the scalar potential in greater detail later, but now
it is important to focus on the Yukawa interactions.

When focusing on the Yukawa interactions, we start with the quarks and recall the
results of reference [106]: In order to make invariant Yukawa terms some of the quarks
must transform as triplet or antitriplet under A(27) [104]. We write the invariants
symbolically as

QH'dC, (4.23)

and
QH/uC, (4.24)

where we omit the SU(2) indices, with Q the left-handed quark doublets and u€, d©
as the up and down right-handed SU(2) singlets. As described in reference [106], by
choosing Q' as a 3,011 We would necessarily require the (d%)" to transform also as a 3i01-
Instead, if Q; is a 3,y ), the u is forced to be a 3. The end resultis at least one sector
has a leading order Yukawa structure given by the A(27) invariant 3;5;;; ® 3,0;;5; ® 30111+
With the VEV in equation (4.22), this structure leads to a mass matrix with three degen-
erate quark masses. We therefore conclude that Q cannot be assigned as a triplet or an
antitriplet.
We are thus forced to choose instead u® and d© as A(27) triplets yielding

QHide, (4.25)

and
QH; (u°Y, (4.26)

with Q as one-dimensional representations. Both sectors have Yukawas arising as
the A(27) invariants

I;® (3[01[1] ® 3[0][2]) : 4.27)

Although 3,y,;; ® 39,5 results in nine distinct one-dimensional representations, the
group properties are such that any 3;q,;; ® 3,0 — 1;; with i # 0 explicitly involves
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4.3 Fermion masses and mixing

powers of the complex w, so these possibilities are not allowed by CP invariance of the
Lagrangian. To generate a renormalizable Yukawa interaction we are then restricted to
assign Qy, Q, and Q; each as one or the other of the three 1; one-dimensional represen-
tations. The remaining possibilities are then assigning

1. all three Q in the same one-dimensional representations, or
2. assigning two in the same, or
3. all three Q in different representations.

All three structures lead to mass matrices that have a special structure distinguished by
rows. The choice of Qas 1y, 1, or 1, forces the respective H'd| or H; (u°Y product
to be 1,,, 1, or 1, respectively, which essentially amounts to a shift in the position
of the w in the mass matrix. More explicitly the corresponding down mass matrix M,
looks like:

Yo Yy, Y;
Md =Vly, Yo Y| (4.28)
Yy Y3 Yo

and the associated up quark mass matrix looks very similar (w? instead of w and the
second and third rows swapped). Conversely, if Q;, Q,, and Q; are assigned to 1, 1, ¢,
and 1, respectively, we get:

Yy Yy Yg
Md =V Yy,w Y, Yy, |- (4.29)
Ys Y Yo

We recall that due to the explicit CP invariance of the Lagrangian, the Yukawa couplings
are all real, and the phase appears only through the complex VEV. At this point it is
instructive to show the Hermitian matrices MM

y 0 0
MMi=37[0 2 0] (4.30)
0 0 uj

Vanishing off-diagonal entries follow from 1 4+ @ + @* = 0.
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4 Geometrical CP violation and the flavor puzzle

Finally, for M,; we have:

Yy Y O
MMy =3 yy, 2 0] (4.31)
0 0

Note that the determinant of this structure is zero but it has two nonvanishing masses.
The last choice—all generations of Q in the same one-dimensional representation—
leads to a rank one structure with a single nonvanishing mass. Another relevant obser-
vation is that the complex phase is entirely absent in all these Hermitian structures.

In order to obtain a viable CKM matrix it is necessary to generate additional off-
diagonal terms. The minimal way to do this is to add a gauge singlet scalar that is
assigned to a nontrivial A(27) one-dimensional representation, which we denote as ¢.
Without any loss of generality we place ¢ in the representation 1, ;. This enables a new
nonrenormalizable Yukawa coefficient per row, associated with terms of the type QH‘dfq’;.
For Q, Q,,and Q3 in 1, 1,4, and 1, respectively, we have to add to M, the correspond-
ing mass matrix:

Yp1  Yp1 @ Yy

M, =" (4.32)

Ypo  Yp® Yy
Yp3®@  Ygz  Yy3

From the interference M dM;+M ¢MZ we obtain the required off-diagonal entries whereas

the effect of M¢M; can be absorbed within the structure of MdMZ.

A complex phase in the CKM matrix requires that the Hermitian matrices of the MM*
type are complex, which is not the case up to now. To preserve the complex phase
in the Hermitian matrices requires a further augmentation. The minimal possibility
is to consider the nonrenormalizable interactions that contain higher powers of H,
e.g. QHide(HkH[T). The only nontrivial structure that we extract from the last nonrenor-
malizable combination is:

Ym 9141602 ’:JH1CU2
My =v| yy, ':Jszz Uszz ’ (4.33)
UI—BQ’Z yl—sz Yus

where the identity 1 + @ + @” = 0 was used and the existing coefficients were redefined
to absorb similar entries in the mass matrix. From the interference MdM; + MHMZ we
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4.3 Fermion masses and mixing

Table 4.3: Comparison of experimental results for the Wolfenstein parameters with a

model fit.

Wolfenstein parameter Experimental value Model value

A 0.22535 + 0.00065 0.22534
+0.022

A 0.811 0.810
—-0.012
+0.026

p 0.131 0.129
—-0.013
+0.013

n 0.345 0.344
-0.014

Note: The experimental values for the Wolfenstein parameters are from reference [16].

obtain the phases that enable complex CKM elements, whereas both M¢M:I + MHMZ&

and MHML give structures that do not qualitatively change the analysis. The essential
point is that the presence of My, is crucial to generate the phase.

Note that M, and My, are the minimal mandatory additions that are necessary for a
perfect fit to the existing data. Following the above chain of arguments, we finally write
the relevant Lagrangian, explicitly showing the A(27) multiplet indices, as:

Zyuk = Q (Hﬁuj + H,d9 + Hd% + HdI [H,H"| ) : (4.34)

The assignments of the particles to the irreducible representations of A(27) are summa-
rized in table 4.4.

In fact we found that the only choice that favorably accounts for the precision flavor
data is when Q;, Q,, and Q; are chosen as 1, 1,,, and 1, respectively. Concerning
the up quark sector, MHMI can be considered to be diagonal, and we need only one
additional nonrenormalizable Yukawa coupling in order to generate the small up quark
mass. In figure 4.2 we show that with this choice we can successfully reproduce the
Wolfenstein parameters from reference [16], which are given in table 4.3.

The lepton sector is experimentally less constrained than the quark sector. The pos-
sible invariants depend on what is responsible for the generation of neutrino masses,
e.g. the type of seesaw mechanism, as discussed in reference [110]. In addition to the
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4 Geometrical CP violation and the flavor puzzle

| |
P |
ﬁ | N |

I
-0.02 -0.01 0 0.01  0.02

Figure 4.2: The experimental spread of the Wolfenstein parameters 4, A, g and # around
their central values [16]. Each experimental value is shifted in such a way
that their central values line up with the y axis. Crosses denote our model
values.

structures that fit the quark sector, other representation choices can also work in the
lepton sector. A leptonic model based on the 3y, ® 3;9;;; ® 3(;; invariants in A(27) has
been discussed in reference [111] (for the A, group see the detailed analysis in references
[112, 113]).

We now turn our attention to the scalar potential which contains the A(27) triplet H;
as well as ¢ and is thus more complex than the one shown in equation (4.1). The full
renormalizable potential is (recalling that all couplings are real):

WH@:mﬂmm+QM+mﬁﬁ+m4ﬁ+ﬂ4+%“m@y
- 2
+ c.p.] + A, [HlHl'HzH; + c.p.] + A3 [HIH;HIH_I) + H.c. + c.p.] + A4 [(,bng]
-u%ﬂm@hﬂﬁ+q@+%pﬂm@pﬂ£+qﬁ,mﬁ)

where we write c.p. to denote the cyclic permutations on the A(27) indices which we do
not explicitly show. The geometrical phase solution in equations (4.22) is not affected
by ¢¢'. When A and A, are small, equation (4.22) holds, and otherwise one can add
aZ, symmetry acting on ¢ to trivially enforce them to vanish (in this case equation (4.32)
arises from a ¢* insertion instead of ¢, all conclusions remaining unchanged). For
illustration we display only the CP-even scalar components (in this class of models, one
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4.3 Fermion masses and mixing

can separately identify scalars and pseudoscalars [114]). Following the minimization of
the potential and determination of the mass eigenvalues, we observed these features:

1. Thefield ¢ is much heavier (beyond 1 TeV) and decouples from the SU(2) doublets.
More specifically, the mass of ¢ is determined by 4, 5 ¢, while those of h, ,, , are
controlled by 4, , 3,

2. The physical scalars h, h, and h, mix in a very specific way as witnessed in chapter 3
in the S; context [1, 4, 70, 115]. The scalar mass squared matrix has the structure

A B C
B A C|, (4.36)

C CD

which leads to one physical scalar h, thatis orthogonal to the other scalars and has
no h,VV-type gauge couplings (where V = W*, 7°). Its Yukawa couplings to up- and
down-type quarks are strongly suppressed, except that the h,cc and h,uc couplings
are about 0.25. The other physical scalars, h, and h,, have almost standard model
like gauge and Yukawa couplings.

Adjusting the scalar potential couplings, two viable scenarios can be identified:

1. There is only one light scalar, h,, that plays the role of the standard model like
Higgs found near 125 GeV. In this case all other scalars are beyond the current
exclusion range of the LHC.

2. A scenario which has richer collider consequences emerges when the exotic
scalar h, is light enough to be produced (either through h,uc, h,cc interactions
or through heavy scalar decays) at the LHC. Under the reasonable assumption
that m,, is greater than 1 TeV or so we can obtain the following analytic relations:

m =2 (202 - 200 + 3402 (4.37a)
mi:%@%f+4%f—\@h%&ﬁ+8%%

, (4.37b)
_m@@+m@—M@@+Mgﬂﬁ,

mi:%@%&+4@&+v€pﬂaﬁ+8M@

. 4.37¢)
—m%%+m@—mbg+mgﬂﬁ.
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4 Geometrical CP violation and the flavor puzzle

Figure 4.3: Example of a decay mode of the exotic scalar h, that can be tested at the LHC.

Itis possible to adjust the potential couplings 4; to yield m;_around or perhaps
slightly larger than the mass 125 GeV of the standard model like h,, with h_heavier
than 600 GeV.

In this case, a spectacular decay channel opens through h, — y,Z, fixingm, =~ 20 GeV,
with subsequent decays of the pseudoscalar y, to charged leptons of different flavors
(e.g. u7) and of the Z° boson to leptons—see figure 4.3. There is enough freedom in the
lepton sector to boost this y, coupling, which may generate a sizable branching ratio in
this channel. However, a more specific prediction requires a detailed numerical study
of the lepton Yukawa sector which we do not delve into here.

In summary, we have for the first time reproduced the CKM mixing matrix in a mini-
mal A(27) flavor model, which is the smallest group where one can implement sponta-
neous CP violation of geometrical origin. Since quark mixing can be tested in several
different independent channels, to reproduce the CKM matrix in a minimal scenario
is often more difficult than fitting the lepton mixing. Within the framework of a large
class of discrete symmetries it is usually difficult to exclude different choices of represen-
tations from data. But our scenario is quite falsifiable, in the sense that only two choices
broadly worked, out of which only one set of matter and Higgs representations fits the
ever growing precision of flavor data. The scalar sector of the model inherits enough
symmetries of the flavor group which induce exotic scalar decays into multi-lepton of
different flavors, constituting a smoking gun signal of the model testable at the LHC.
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4.3 Fermion masses and mixing

Table 4.4: Assignments of the scalar and fermion fields to A(27) representations.

3011y 30121 Loo 1y, 1y,
Hl
SU(2), H2
scalars P
H,
H,
H,
SUQ2), ¢
scalar
SUQ), uc
fermions
dC
SU(2), Q
fermions
Q,
Qs

Note: The representations of A(27) can be reviewed in section 2.2.3. The fields H',
withi=1,2, 3, are scalar SU(2) doublets, ¢ is an SU(2) singlet scalar.

71






5 Neutrino mixing from the
right-handed sector

In the absence of light right-handed neutrinos, neutrino masses can be generated
through the effective Weinberg dimension-five-operator [35]

— Ly = %(ZLc/S) (¢TZR) + H.c,, (5.1)

where C is a coupling, m a mass scale suppressing the operator and

C 0
VL . eR ¢+ ¢ il

c 0 -1
eL -V d) _¢

N
=

1]
AN

1]
<

1l
<

1l

(5.2)

A simple realization of this operator is through the low energy limit of the seesaw
mechanism introduced in section 1.3.

In the quark sector the mixing is described by the CKM matrix, which is approximately
diagonal, i.e. quark mixing is small. The fact that the mixing effects can be treated as
perturbations to a mostly diagonal mixing matrix is the idea that lead to the Wolfenstein
parametrization [37] of the CKM matrix, which is an expansion in the Cabbibo angle 6,
and was used in the last chapter.

The situation in the neutrino sector is entirely different: The PMNS matrix, which
describes neutrino mixing, can be experimentally determined to be, at the 3¢ level [18],

[0.795,0.846] [0.513,0.585] [0.126,0.178]
Vomns = [[0.205,0.543] [0.416,0.730] [0.579,0.808] |- (5.3)
[0.215,0.548] [0.409,0.725] [0.567,0.800]

The nonzero nature of 6,5 is now an experimental fact. However, it is still a reasonable
assumption to treat it as deviation from zero, considering that the two other angles
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5 Neutrino mixing from the right-handed sector

are much larger than 6,;. In this approximation, the tribimaximal pattern [41, 42] still
serves as a starting point:

2 1
v o
Vouns = Vigy = ﬁ % % . (5.4)
11 1
Vo V32

5.1 Generic assumptions for the left- and
right-handed sectors

At this point we assume that all leptonic mixing originates from a heavy Majorana sector
while the Dirac mass matrices of the neutrinos and charged leptons are diagonal'. This
point of view is motivated by the fact that the CKM mixing is generated in absence of
a high-energy mechanism like the seesaw mechanism and is quite small. Assuming
that the quark and lepton sectors are related in general, it is reasonable to assume that a
source of mixing in the low-energy neutrino sector would be similar to the one producing
the CKM sector, i.e. it would produce small angles. The observed big angles are then
the consequence of an additional sector not present for quarks, i.e. the right-handed
Majorana sector.

The postulated relationship between quarks and leptons is quite a natural consequence
of SO(10) GUTs. With all quarks and leptons unified in a 16 multiplet of SO(10), the
GUT will cause the mass matrices of the quarks and leptons to be very similar. This
means that they could at least approximately all be brought into a diagonal form. The
experimentally obvious differences between the CKM quark mixing matrix and the
PMNS lepton mixing matrix have to be explained by an additional mechanism, which
can be the seesaw mechanism used here.

With respect to the seesaw formula in equation (1.19), the model investigated here
can be written as

m> 0 0
my=|10 m) 0| (5.5)
0 0 m

IThis section and the numerical analysis are based on reference [2], updated for 6;3 > 0.
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5.1 Generic assumptions for the left- and right-handed sectors

and M € R*?3 symmetric and arbitrary. After applying equation (1.19), the mass matrix
in the flavor basis is given by

3 2
[M22M33 — (My3) ] <m11)> (My3My3 = M33M12)m11)m12) (MpMy3 = Mzlea)m?m?
1 2
v L 2
Mﬂv T A3 (M3My3 — M33M12)m11)m12) [M11M33 - (M13) ] <sz> (Mp;My5 — M11M23)m?m? >

5 2
(MpMp3 — M22M13)m1Dm? (MpMy3 — M11M23)m2Dm3D [MuMzz - (Mlz) ] (mlg)>
(5.6)

where the common factor of mass dimension three is given by
2 2 2
A® = —Mg; (Mu) + 2M;p,M;3My; — My, (MB) - My (Mza) + My MpMss. (5.7)

It is obvious that the structure of the matrix depends crucially on the differences of the
Majorana masses M;;.

The (1, 1) element of equation (5.6) is the effective mass m 85 observed in neutrinoless
double beta decays. In order to make statements about the neutrino mixing angles and
mass squared differences, the mass matrix has to be diagonalized using an eigenvalue
decomposition, yielding the mixing matrix U. We use the ordering scheme of refer-
ence [116] in which the labels m, and m, are assigned to the pair of eigenvalues whose
absolute mass squared difference is minimal. Out of these two the eigenvalue whose
corresponding eigenvector has the smaller modulus in the first component is labeled m,.
The hierarchy of the neutrino masses is then given by the sign of the mass squared
differences Amj3, or Am3,. The mixing angles can then be determined using [19]

0,5 = arcsin <|U13|> : (5.8a)
arctan <|U—u|> ifu,#0

0, = |us| e (5.8b)
% else
arctan <U—23|> ifU;; #0

0y = 3 U5 BT (5.80)
% else

If the mass matrix in equation (5.6) is supposed to represent neutrino data, it needs
to be able to generate neutrino mixing that is close to being tribimaximal [41, 42]. A
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5 Neutrino mixing from the right-handed sector

general class of flavor space mass matrices that leads to tribimaximal mixing is given by
the following pattern [65]:

X Yy Y
MM = y x+v y—vl (5.9)

y y—v x+v

where x, y, and v are real numbers. It is useful to compare the entries of this matrix to
equation (5.6) for the two important mass hierarchies, illustrated in figure 5.1:

1. Inverted hierarchy: In this case we approximate an inverted mass hierarchy by two
neutrino masses at a higher scale rii and one neutrino mass set to zero—i.e., the
diagonal mass matrix becomes Diag(ri, 1fi, 0). Equation (5.9) can then be written

as
100
m-oll, (5.10)
2 2
1 1
03 3

which is equivalent to settingx = 1,y = 0, and v = =% in equation (5.9). Com-
paring equation (5.10) with the mass matrix of equation (5.6) leads to a set of
equations whose solutions determine if an inverted neutrino mass hierarchy is
possible in this model:

1
&
1 2
A3 (Mé M11M33> (mlzj) =5
1 2 m
A3 (Mfz M11M22> (m?) =5
1 (5.11)
e (M33My, = My3sMys) mpm3 = 0,
1
A3 (M22M13 M12M23> mll)msD =0,
1 1
A3 (M11M23 M12M13) m,my = 5
Trying to solve this set of equations immediately leads to a condition
i = 0, (5.12)
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which means that in this approximation it is not possible to generate an inverted
neutrino mass hierarchy. Translated to a realistic scenario where the facts that
tribimaximal mixing is only an approximation and that the smaller mass squared
difference is not zero are taken into account, one can conclude that in this model
the inverted mass hierarchy should be strongly disfavored.

. Normal hierarchy: A normal neutrino mass hierarchy is approximated by two

vanishing neutrino masses and one neutrino mass at a higher scale ri—i.e., a
diagonal mass matrix of Diag(0, 0, 1ii). This leads to a flavor space mass matrix of’
the form

0 0 0
i-lo 1 _§ (5.13)
o -1 1

Again, comparing this matrix with equation (5.6) gives a set of equations. Note
thatin this case the (1, 1) element of the matrix is zero instead of 1fi. This eliminates
the suppressive condition of equation (5.12). The rest of the set of equations is
solvable and just restricts the parameter space of the mass matrix.

5.2 Numerical analysis

In this section we present the results of a numerical analysis to determine the general
allowed ranges for the following observables:

1.

The neutrinoless double beta decay parameter m,, given by the (1, 1)-entry of the
mass matrix in equation (5.6),

. The lightest neutrino mass m,,

. The neutrino mixing angle 6,3, as it is the mixing angle with the largest relative

experimental uncertainty.

The Dirac masses m? are mostly responsible for the mass eigenvalues of the neutri-
nos, while the mixing angles are dominantly determined by the Majorana mass matrix
entries M.

Because of this, the numerical analysis of each point in the parameter space is per-
formed in two steps: First, random starting points of the electroweak scale are chosen
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5 Neutrino mixing from the right-handed sector

3

(a) Normal hierarchy.

m2
Ve Vi v, m%
Ve Vv u V. m%
Vi v, mg
(b) Inverted hierarchy.

Figure 5.1: [llustration of neutrino mass hierarchies. The mixing in terms of v,, v,
and v, is based on a tribimaximal mixing scheme, however 6,; > 0 is indi-
cated using the shaded area.
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Table 5.1: Experimental neutrino data from the global fit of reference [18].

Parameter Best fit lo range 30 range
0., [°] 33.8 +0.8 31-36
655" [°] 40.0 +2.1/-15 36-55
0;‘;" [°] 50.4 +1.2/-1.3 36-55
05 [°] 8.6 +0.44/-0.46 7.2-9.5

Note: The 1o ranges of 0,,, 65", and 6,5 are used in the numerical analysis.

for the Dirac masses m? , which are then varied. The Majorana parameters M; are also
chosen randomly at a scale of up to 100 x 10 GeV, but are not varied in this step. We
have ignored the possibility of CP violation here and assigned real valued numbers to all
parameters. A yp, function for the mass squared differences can be calculated using the
diagonalized mass matrix and comparison values from a global fit of all experimental
data [18] (the uncertainties refer to 1o and 3¢ ranges respectively):

(Amﬁl)exp = 7.50 + 0.185(7.00 — 8.09) x 10~ eV2, (5.14)
5\ &p.norm +0.069 3 w2
<Am31> =247+ (2.27 = 2.69) x 1073 eV2, (5.15)
—0.067
5 exp,inv +0.042 3 )
(am3,) ™" =243+ (=2.65 — —2.24) x 107 eV2, (5.16)
—0.065

This y;, function is numerically minimized using a multidimensional minimization
algorithm [117]. At this point, if the minimum is above the threshold value for y, the
data point is discarded. For the accepted points, the second step consists of calculating
the mixing angles [116]. The y; function for the angles is then analyzed and compared
to the data obtained from the global fit of experimental results [18], shown in table 5.1.

For the number of degrees of freedom considered, the threshold value for y; is at 16.8
for a significance of 0.99. The scan covering roughly 16 x 10° data points finds 5470
acceptable samples that lead to a normal neutrino mass hierarchy and just 6 samples
with an inverted neutrino mass hierarchy. This meets the expectation of the inverted
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5 Neutrino mixing from the right-handed sector

mass hierarchy being strongly suppressed in the model. The best fit point lies in the
regime of normal mass ordering with y; = 0.15. This low value is possible because we
do not fit a specific model, but a large class of models. The parameters leading to this
best fit are

M,;; =57 x 10" GeV, M,, =50 x 10" GeV, M,; = 34 x 10" GeV,
M;, =33 x 102 GeV, M; =19 x 102 GeV, M,; =47 x 10" GeV, (5.17)
m? =17 GeV, my =16 GeV, my =19 GeV.

For all acceptable points, the values for the lightest neutrino mass m,, are displayed in
figure 5.2 for a normal mass hierarchy. For the inverted hierarchy case the small number
of successful samples does not warrant a plot.

For both hierarchies, the best fit lightest neutrino mass m,, is below 0.005 eV (cf. fig-
ure 5.2). Both values lead to summed neutrino masses M, = ) m; below the current
bound of roughly M, = 0.5 eV[24-33].

As the contribution from m,, is negligible and 6,5 is still small, the neutrinoless double
beta decay observables for the cases of normal or inverted hierarchies are given by (see
e.g. references [118—121] and the references therein)

\/Am3, sin? (6;,) for normal hierarchy

my, ~ :
\/Amj, resp. 4/Am3,cos(20;,) forinverted hierarchy

where Am;, < Am,; and CP conservation has been assumed. The two values given for
the case of an inverted mass hierarchy stem from the sign ambiguity of the + sin? (912)
term in the sum of masses. Using these formulas, the mass squared differences and
mixing angles given in the global fit of reference [18] lead to mg;’,rmal ~ 0.003 eV for the
case of a normal mass hierarchy. The two possible values for the inverted mass hierarchy
case are m;nl;”b ~ 0.05eV and miﬁnl;”a ~ 0.04 eV. As the model discussed here reproduces
the mixing angles and mass parameters of the global fit, it also reproduces the global
fitvalues for the mass parameter of the neutrinoless double beta decay m,, as given by
equation (5.18).

All angles can be fitted to the experimental data of reference [18]. However, as the
PMNS sector features a mixing pattern that can still be considered to be a deviation from
tribimaximal, it is instructive to take a look at the case where 6,5 is not part of the fit. In
that case, only the mass squared differences and the angles 6,, and 6,5 are fitted. The
allowed ranges for the angle 6,; can then be seen as a prediction of the model. In the
case of a normal mass hierarchy, there is a clear preference for 6,; ~ 0, however we have
seen that the experimental data including a nonzero 6,5 can be fitted. In the case of an

(5.18)

80



5.2 Numerical analysis

inverted mass hierarchy, the preferred value of 6,5 is clearly close to a maximal mixing
angle. This means that the model with a solely right-handed mixing origin is a natural
candidate for a tribimaximal mixing pattern. While the deviation from zero that has
been found in 6,5 can be fitted, a more natural explanation would be to generate it using
a small mixing parameter in the left-handed mass matrix.

In summary, a generic model based on a seesaw type I mechanism with diagonal Dirac
mass matrices for both the charged leptons and the neutrinos has been considered in
this section. All contributions to the observed neutrino mixing originate from the heavy
Majorana masses through a generic Majorana mass matrix that allows for off-diagonal
components. It has been shown that models of that kind—which are well-motivated by
GUTs—generate a small mixing angle 6,5 naturally and that a normal neutrino mass
hierarchy is preferred. Even though the current value for 6,5 can be fitted using this
model, it may be more sensible from a model-building standpoint to separate the
generation of the small deviation from zero from the generation of the other angles by
considering 6,5 as a correction to the diagonal Dirac mass matrix.
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Lightest neutrino mass

_ 5
6 [ i = = | ]
e
R e —— 2% -
e = 4
12 |- el .
e
10 | e | 3
-__h:_ = -
~ RS '-="'_—"._
X 8§ L ::__'_—5.:_ - _
= z
6 — e = —
E-:--_
4 e —
=== 1
2 - = _
0 | | | | 0
0 0.002 0.004 0.006 0.008 0.01

mg [eV]
Figure 5.2: The lightest neutrino mass in the case of normal neutrino mass hierarchy.

The bin sizes are Ax = 0.0001 eV and Ay = 0.05. The shade is proportional
to the number of hits that lie in the shaded bin.
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5.3 An exemplary realization inspired by knot
theory

When considering parameters as in equation (5.6), patterns are often enforced using
discrete symmetries, as we have done in chapters 2, 3, and 4 in similar contexts. Another
possibility is to assume as little structure as possible and let the parameters assume
random values. This concept is called anarchy [122-125] and the numerical analysis of
the right-handed sector presented in the last section uses a similar approach.

In this section we demonstrate that there may exist structure in the right-handed sector
that is not governed by a discrete flavor symmetry. More precisely, we will propose that
the leptonic flavor structure could arise from the topological configurations of closed
strings.

Closed strings are a fundamental ingredient of string theory, including in particular
the graviton and its anti—de Sitter (adS)/QCD dual, the glueball, as well as dilaton
superfields with fermionic degrees of freedom having the correct quantum numbers of
a right-handed neutrino (a fact used extensively e.g. in neutrino mass models with large
extra dimensions, see e.g. reference [126]).

It thus seems well-motivated that topologically nontrivial string configurations such
as knots and links can contribute to the mass of closed string states, and may even
dominate it. As string tension tends to minimize the string length, the knot or link
length can be assumed to be directly proportional to the mass. For example, it has been
shown in references [127-129] that the experimental spectrum of glueball candidates
can be fitted very nicely by knot and link energies.

Here we exploit another interesting feature of the knot and link spectrum. Typically
there exist different close-to-degenerate states with very small energy gaps. If right-
handed neutrino masses are dominated by the knots and links of closed strings in a
seesaw framework, large and maximal leptonic mixing may result naturally from the
knot and link spectrum without the need for any flavor symmetry.

Consider the Dirac mass matrix of equation (5.6) and a right-handed Majorana mass
matrix

K L L
my my m,
M=|mt mf mt (5.19)
1 my mg
L L K
my om; my

Instead of populating the entries anarchically as in the last section, we now assume
that the heavy masses m" take on values according to the spectrum of characteristic

i
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5 Neutrino mixing from the right-handed sector

lengths of knots and links [130], multiplied by a common high-energy scale mg at which
knotted string configurations can exist:

m = £ - mg, (5.20)
where the flm refer to the characteristic lengths of table 5.3. The diagonal entries of
the mass matrix are generated by the knots’ lengths, while the off-diagonal entries are
related to the characteristic lengths of the links.

The characteristic lengths of knots and links are derived in reference [130] using an
algorithm to minimize the lengths of polygons with fixed thickness. It turns out that
the the characteristic length of a knot or link is a function of the number of crossings.

The mass matrix of the three light left-handed neutrinos in the flavor basis is given in
equation (5.6) with the substitutions

K L L L
M; - m:, My > my, M —>my, My - ms. (5.21)

In the last section, approximative conditions on the entries of equation (5.6) were
derived for the case of normal and inverted neutrino mass hierarchies. It is interesting
to apply these conditions to the a knot-generated right-handed sector.

For a normal neutrino mass hierarchy, the comparison yields a set of relations between
the Majorana parameters mf, miL and the other parameters:

2 2
my/my = (m?) /<m3D> , (5.22a)

my/m} = my/m3, (5.22b)
mymy = mim}, (5.22¢)
2
it # (mb)’ (5.22d)
2 2
=2 <m13)> <(m§> - mlfm§> /A3, (5.22e)

where A3 is given in equation (5.7). If the Dirac masses m? are assumed to be roughly
equal the first three conditions can be fulfilled if the selected lengths ff and £} are close
to each other. In general, as the order (crossing number) of the knots increases, the
spacing decreases since the length grows roughly linearly with crossing number, but
the number of knots grows faster than exponentially with crossing number.

As the neutrino mass scale i is small due to the seesaw mechanism, the electroweak
scale m factor in the condition fi = 2(m>)*[(m})? — m{‘m}]/A® needs to be compensated
by making the expression in the parentheses small. This can again be achieved by having
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5.3 An exemplary realization inspired by knot theory

an almost degenerate spectrum for fIK and fiL. Since the spectrum of knots and links
features almost degenerate lengths, it is thus expected that it will provide a better fit to
the leptonic flavor structure than random numbers.

The corresponding condition for an inverted hierarchy, which is approximated as two
neutrino masses ata higher scale rfi and one neutrino mass set to zero—i.e., the diagonal
mass matrix Diag(fi, i, 0), gives a system of equations that can only be solved if rii = 0.
Thus, in this approximation it is not possible to generate an inverted neutrino mass
hierarchy. Taking into account that the tribimaximal pattern is only an approximation
and that the smaller mass difference is not zero, one would expect that in this model
the inverted mass hierarchy should be suppressed.

Finally we analyze the compatibility of the model with a degenerate neutrino mass
spectrum. Assuming a diagonal mass matrix Diag(rfi, i, i) the conditions that follow
from equation (5.6) read:

mPmy # 0, (5.23a)

my = my <m2D>2 /(m?)z , (5.23b)
my = my (m?)z /(m?)z , (5.23¢c)

my # 0, (5.23d)

myimy # 0, (5.23e)

my # 0, (5.23f)

my =m; = mj =0, (5.23g)
mmk <m3D>2 1l A} =0, (5.23h)

Out of these conditions, the last two are in contradiction with the framework of
the model: The miL and m{‘ parameters cannot be zero or close to zero. The model
investigated in this paper thus cannot be used to explain a degenerate neutrino mass
hierarchy.

In order to investigate the viability of the models, we turn to a numerical analysis
similar to the once performed in the last section. Now, however, instead of random
numbers, every possible combination of characteristic lengths up to a given knot order
is used as an input for the right-handed Majorana masses. No duplicate lengths of knots
or links are allowed.

The parameters m? fori = 1,2, 3 as well as the overall scale of the Majorana masses
are not fixed by the model. As the scope of this analysis is the viability of the choice of
knots and links as a source of Majorana masses, the Dirac masses are chosen in a way
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5 Neutrino mixing from the right-handed sector

as to minimize the y? value of the squared mass differences of the neutrinos compared
to experimental data [18]. This way, no potentially viable combinations of knots and
links are discarded due to a wrong choice for the Dirac masses. The overall Majorana
scale factor that is multiplied with the characteristic lengths of the knots and links is
fixed at 10 GeV.

If the characteristic string spectrum is realized by cosmic strings, one has to respect
bounds obtained by the effect of such cosmological defects on the power law index of
primordial density perturbations as measured in cosmic microwave background (CMB)
probes such as the Wilkinson Microwave Anisotropy Probe (WMAP) experiment [131].

Such cosmological defects arise in the phase transitions associated with the spon-
taneous breakdown of non-Abelian gauge symmetries. The string tension, which is
Newton’s constant times the mass per unit length, is then related to the symmetry
breaking scale. If strings are formed at the GUT scale 10" GeV, then the string tension is
approximately 10~°, which is below the constraint from CMB observations [131]. Even
stronger constraints result from the contribution of cosmic strings to the stochastic
background of gravitational waves which can be constrained from pulsar timing obser-
vations [132]. These constraints require a string tension below 10~ corresponding to
a symmetry breaking scale of about 10"® GeV. Consequently we adopt this value as an

upper bound for the scale confinement m_, = mg.

For the subset of models that have acceptable squared mass differences the mixing
angles are calculated and also compared to the experimental values. All models with
a y* < 16.8 for the mixing angles are considered viable. This corresponds to a P value
of 0.01 and six degrees of freedom.

The scan covering 10692864 possible combinations of knots’ and links’ lengths re-
sults in 10930 models with normal neutrino mass hierarchy and no models with an
inverted neutrino mass hierarchy that fall below the »? limit of 16.8. This means that
about 0.07% of all possible combinations yield phenomenologically acceptable results.
The best fit lies in the regime of normal hierarchy with a ;(Ifest = 0.07. The best fit model
is described by the parameters in table 5.2.

This can be compared with the case of an anarchic right-handed Majorana matrix
discussed in the last section, where the same number of combinations was tested,
but using random numbers instead of characteristic lengths. We recall that the scan
yielded 5470 successful hits with a best fit result in the regime of normal hierarchy.
The relative number of viable models with a normal neutrino mass hierarchy is even
larger in the case of knots and links. This can be explained by the conditions that follow
from equation (5.6), which lead to the spectrum of knots and links being able to fit the
requirements for a normal mass hierarchy easier than random numbers.
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In the anarchy case the total number of acceptable models is lower than the total
number of acceptable models in the case of knots and links. This means that the models
using the characteristic lengths of knots and links are more suitable to fit the neutrino
data than a fit using anarchy.

Table 5.2: The model parameters giving the best fit for normal and inverted hierarchies.
The knots and links indices refer to table 5.3.

K, K, K, L, L L, m> [GeV] m) [GeV] m) [GeV]

01 06 11 08 16 06 11.47 12.48 12.69

To determine the phenomenological consequences of the allowed models, the fol-
lowing observables are calculated: the double beta decay parameter m,, the lightest
neutrino mass m, and the neutrino mixing angle 6,5. In the normal hierarchy case, m,
tends to be small, i.e. between 0.001 eV and 0.008 eV. Note that most of the viable models
have m;; around 0.005 eV and 0.007 eV.

The lightest neutrino mass in the normal hierarchy case is below 0.001 eV, illustrated
in figure 5.3, well below the current bound on the sum of the neutrino masses obtained
from cosmological observations ) m; < 0.5 eV [24-33].

As in the last section, we have repeated the numerical analysis omitting 6,5 from the
fit. We have then surveyed the model prediction for the angle and compared that to the
global fit. The results for a normal mass hierarchy are shown in figure 5.4. A small
angle 0,5 close to zero is preferred, again pointing towards an origin of a nonzero 6,
that is not in the right-handed Majorana sector.

We would like to stress that the scenario we are pursuing here is an effective model
which may result from various ultraviolet completions. In the following we sketch some
qualitative ideas about such completions. First, fundamental closed strings could be
considered, but it is not clear if these can have tight knots because of their vanishingly
small cross section. Another option to generate massive knots near the GUT scale are
cosmic strings. If a collapsing loop of nontrivial topology K tightens before it decays,
then the tight knot configuration will have mass

My ~ Ly(¢) (5.24)

near the symmetry breaking scale (¢), where the U(1) is broken that gives rise to the
cosmic string. Here Ly is the dimensionless length of the knot K, i.e. the length of the
knot divided by the radius of the cosmic string.
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5 Neutrino mixing from the right-handed sector

If a knot is bosonic above the supersymmetry breaking scale, then it will also have
a fermionic partner of the same mass. Furthermore, If the fermionic knots are gauge
singlets, then they can serve as the heavy right-handed neutrinos needed for the seesaw
mechanism to generate the very light observed neutrino states.

The stability of various knot types will be model dependent, hence the lightest knots
may not be stable and so may not be the ones that mix with the light neutrinos.

In summary, in this section we have provided an example for a right-handed sector that
is neither governed by anarchy nor by a discrete flavor symmetry: A seesaw type I model
whose Majorana mass structure is determined by the discrete spectrum of tight knots
and links. We have not given an ultraviolet completion of this model, but have given
some hints to what such a completion might look like. Based on the general structure
of the mass matrices of the last section, we have shown that the model fits the current
experimental neutrino data on squared mass differences and mixing angles, including a
nonzero angle 0,5. It has also been shown that the spectrum of knots and links produces
a larger number of viable models than a spectrum of random numbers. The model
favors a normal neutrino mass hierarchy and predicts a small mixing angle ;5.
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Lightest neutrino mass
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Figure 5.3: The lightest neutrino mass m,, for the models using the characteristic lengths
of knots and links. The plot has been divided into 106 bins along the x-axis
and 35 bins along the y-axis. The shade of the rectangles represents the
number of models found in that area. Outside of the boundary line, less
than ten hits per rectangle were recorded.
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Figure 5.4: The quantity sin> (26,5 ) for the models with a normal mass hierarchy. 6,5

90

was excluded from the fit for this plot. The plot has been divided into 334
bins along the x-axis for the range 0, ..., 1 and 35 bins along the y-axis.
The shade of the rectangles represents the number of models found in that
area. The global fit value for sin?(26,;) including 16 uncertainties given by
reference [18] is indicated by a dashed line.



5.3 An exemplary realization inspired by knot theory

Table 5.3: Characteristic lengths of knots and links up to knot order seven, taken from

reference [130].

Index Knot length [a.u.] Link length [a.u.]
00 32.7436 25.1334
01 42.0887 40.0122
02 47.2016 49.7716
03 49.4701 54.3768
04 56.7058 56.7000
05 57.0235 58.1013
06 57.8392 57.8141
07 61.4067 58.0070
08 63.8556 50.5539
09 63.9285 64.2345
10 64.2687 65.0204
11 65.2560 65.3257
12 65.6924 65.0602
13 65.6086 66.1915
14 66.3147
15 55.5095
16 57.7631
17 65.8062
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Acronyms

2HDM two Higgs doublet model.
adS anti—de Sitter.

BR branching ratio.

CKM Cabbibo-Kobayashi-Maskawa.
CMB cosmic microwave background.
FCNC flavor changing neutral current.
GCPV geometrical CP violation.

GUT grand unified theory.

GWS Glashow-Weinberg-Salam.
LEP Large Electron—Positron Collider.
LHC Large Hadron Collider.

PMNS Pontecorvo-Maki-Nakagawa—Sakata.
QCD quantum chromodynamics.
QED quantum electrodynamics.
SCPV spontaneous CP violation.
SSB spontaneous symmetry breaking.
VEV vacuum expectation value.

WMAP Wilkinson Microwave Anisotropy Probe.
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