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Abstract  

We propose an enhanced blind maximum ratio combiner (BMRC) allowing for a transmit signal independent diversity 

combining in multi-antenna receivers. The underlying Multi-Channel Frequency Least Mean Squares (MCFLMS) algo-

rithm comes with reasonable computational complexity and estimates the channel impulse response for each receive 

antenna iteratively by means of second order statistics. In literature, the MCFLMS algorithm is mainly applied to audio 

signals. In this work, we describe several enhancements of this algorithm to ensure its proper convergence with over-

sampled communication signals which are distorted by frequency-selective fast-fading channels. In addition, we provide 

BER simulation results for a 1x2 SIMO DVB-T2 system and show that our blind MRC can even outperform convention-

al pilot-based MRC at the receiver side.   

1. Introduction 

SIMO systems with coherent detection can deliver high 

channel capacity provided that an accurate knowledge of 

the channel state information (CSI) is available at the re-

ceiver. There exists a huge literature on the issue of receiv-

er diversity combining, see for example [1]. Some ap-

proaches require only partial CSI knowledge, e.g. Equal 

Gain Combining (EGC), others expect full CSI knowledge, 

e.g. Maximum Ratio Combining (MRC). In case of spatial-

ly uncorrelated channels, the highest gain is obtained using 

MRC. In the absence of correlation among the antennas 

and assuming equally likely transmitted symbols, the total 

conditioned SNR per symbol, is given by [1]:        
∑   

 
   , where    denotes the SNR of the     diversity 

branch and M is the number of receive antennas. Typical-

ly, CSI is acquired at the receiver side using Pilot Assisted 

Channel Estimation (PACE). Fig.1, depicts the conven-

tional architecture to perform diversity combining. The 

sent signal s(n) goes through M different communication 

channels, where         refers to the     tap of the     

channel at the     time instant, assuming a time varying 

channel. As shown, part of the demodulator circuit has to 

be duplicated to acquire the CSI for each receiver diversity 

branch which is needed to compute the combining filters 

  ,   ,….   , which are then forwarded to the combiner 

block. The design of these blocks strongly depends on the 

communication signal structure e.g. the synchronization 

depends on the framing structure, the demodulation is ap-

plied differently for single-carrier or multicarrier signals, 

the pilot information is transmitted and thus extracted dif-

ferently, and so on. 

2.  Blind Maximum Ratio Combining 

In this work, we propose the use of a generic combiner, 

whose structure is shown in Fig.2. Based on the received 

signals and without prior knowledge of the sent signal 

structure, this combiner exploits the spatial diversity of the 

SIMO channel and combines the received signals into one 

signal to be  forwarded to the SISO demodulator. The SI- 

-SO demodulator  removes the distortion introduced by  

both the channel and the time domain combiner using 

PACE. The advantage of this multi-antenna diversity re-

ceiver structure is its independency from the underlying 

transmit signal structure, making it applicable to a large 

variety of communication signals. A similar idea appeared 

in [2], where using an Eigenfilter approach the received 

signals were blindly combined. In that work, however, the 

communication channel was restricted to a flat fading SI-

MO channel corresponding to a one tap combiner. Instead, 

we assume a frequency selective fast fading SIMO channel 

making a multi-tap combiner mandatory. In order to ac-

quire the CSI independently of the transmit signal struc-

ture, we propose using Blind Channel Identification (BCI) 

algorithms which exploit the differences between the re-

ceived antenna signals to obtain sufficient CSI for MRC.  

 

 
Figure 1 Standard SIMO receiver using MRC based on 

PACE 

 
Figure 2 Blind maximum ratio combining 

The combining itself is done by convolving the received 

signals with their respective channel matched filters in the 

time domain          ̂        In [3], the problem of 

jointly estimating the sent signal and the channel for an 

acoustic system was discussed. In that work, an iterative 

approach is considered, which includes two subsystems for  

array is also used for equalization. In that work, apriori  
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information about the channel and the sent signal is 

assumed which is not the case in our work. In the choice of 

a suitable BCI algorithm, we considered the following 

points in our selection criteria: 

1. Computational complexity 

2. Speed of convergence 

3. Ability to handle special traits in communication 

signals 

 

3.  Blind Channel Identification 
 
There exists an extensive literature on the topic of BCI, see 

for example [4], [5]. However, these algorithms were 

mostly applied to acoustic signals in static channels. In 

contrast, fast convergence of the BCI has to be guranteed 

in order to track fast fading communication channels. 

Therefore, we select an algorithm which is based on sec-

ond order statistics (SOS), as opposed to algorithms based 

on higher order statistics (HOS) [4], [5]. Although the 

latter possess better estimation accuracy, the former have 

the advantage of a faster convergence rate. The family of 

the SOS approaches includes the cross relations (CR) 

algorithm [6]. The idea behind the CR approach is 

straightforward: in the noise free case, given    is the re-

ceived signal from antenna   ,    is the communication  

channel between the transmitter and the     receiver and   

is the time index, the received signal at antenna    can be 

written as: 

                   (1) 

Convolving       with      and       with      , yields 

                             

The cross relations problem statement is then to find the 

two sets of filter coefficients:    and    which satisfy (2). 

A very good summary of this family of algorithms can be 

found in [7]. Motivated by the desire to apply BCI to real 

life systems, thus requiring the algorithms to be both 

adaptive and computationally simple, an iterative imple-

mentation of the CR problem was developed in [8]–[12], 

namely the Multi-Channel Least Mean Squares 

(MCLMS) approach. In solving the iterative problem, the 

authors used the Least Mean Squares (LMS) approach 

and later Newton’s algorithm to speed up the conver-

gence. In [11], the authors derived an expression for an 

optimal step size blind multichannel LMS in the Wiener 

sense. In our work, we use the iterative version of the CR 

approach which is adapted to work in the frequency  

domain as in [9], [10]. We work with this particular adap- 

-tation of the CR algorithm because of the attractive re-

duction in computational complexity accompanied by 

frequency domain adaptive filtering [13].  The interested 

reader is referred to [10], page 4 for a complexity analysis 

of MCFLMS algorithm. 

 

3.1 Outline of the iterative solution 
 

We first put down the system model we shall use. We 

shall adopt the following matrix representation for de- 

-scribing the received signal at a single antenna  .       is 

the received signal at antenna   ,       is the time domain 

Toeplitz channel matrix and       is the added noise in  

the time domain. 

                                        

The received vector            is defined as 

          [               ]        

We define the channel coefficients vector           as 

          [               ]        
In (3), we use   to denote the FIR channel order and N 

denotes the observation window length, where N   L+1. 

Inserting N = L+1 in (3) yields 

                                          
The cross relations between two antennas in the noise free 

case,   and  , can now be put into this form  

  
            

             

Equation (7) is the basis for a cost function for the LMS 

algorithm. The cost function incorporates the cross rela-

tions between every pair of received antenna signals. The 

error signal     for antennas   and   is defined as 

         
            

                

The cost function can be defined as the summation of the 

squared cross relations errors among all M antennas: 

     ∑ ∑ |      |
 

 

     

   

   

       

 

3.2 Multi-Channel Frequency LMS 

 
In [9], [10], the authors describe the derivation and the 

main steps of the MCFLMS approach. We recall only the 

main update equation of the MCFLMS approach: 

 

 ̂̃       
 ̂̃           ̃   

   ̂̃           ̃     
    , 

where   is the step size parameter and  ̂̃     is frequency 

domain estimate of the     antenna at the     iteration of 

the algorithm. Note that MCFLMS operates in block-wise 

mode i.e. one iteration includes processing a block of N 

samples.     ̃    
  ̃   

  ̂̃    
,  where  ̃  ) is the cost function 

of the MCFLMS in the frequency domain. The frequency 

domain gradient is computed as a function of the frequen-

cy domain CR error,  ̃      as opposed to time domain 

CR error in (8). The diagonal matrices  ̃  
    are  com-

puted from the FFT of the received signals as: 

 

 ̂̃     
 ̂̃             

  ∑  ̃ 
  

        
   

    ̃     

   ̂̃             
  ∑  ̃ 

  
        

   
    ̃          

 11), 

where      
   and      

   are defined in [9] and [10] as 

masks for the mathematical representation of the overlap 

save operation. 

 

3.3 Enhanced MCFLMS 

 
The problem statement of cross relations has an inherent 

ambiguity, which means the output blind channel esti- 

-mates are scalar multiples of the actual channel impulse 

responses:  ̂̃                     . This is because 

multiplying both sides of (2) with a complex scalar factor 
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still satisfies the equation. Hence a special metric is de-

fined to measure the estimation accuracy, namely the 

Normalized Root Projection Mean Square Error (NRPM- 

 

-SE). The NRPMSE is computed as follows [14]: 

          ||     
 ̂         

 ̂     ̂   
  ̂   ||  (12) 

where   ̂            [ ̂ 
      ̂ 

    ]  

and  ̂           ̂̃      

In the following, we present several modifications applied 

to the MCFLMS algorithm to enhance its tracking capa-

bility and adapt it to reliably estimate wireless channels 

based on communication signals. We demonstrate the 

effectiveness of these approaches using the NRPMSE. 

The subsequent simulation results were obtained using a 

Rayleigh fading TU6 channel, whose power delay profile 

is shown in Fig.3. The sent signal is a DVB-T2 signal, 

with an elementary period T = 7/ 64 sec, resulting in a 

TU6 channel of length 47 taps. However, in order to be 

able to use the FFT radix 2 we used a block size of 64 

received samples for the MCFLMS. This implies an over-

estimation by 17 taps, knowledge of the actual channel 

length was however used at the end of each iteration to set 

the last 17 taps to zero. At the receiver side, we use M=2 

antennas. 

 

3.3.1Adaptive step size 

 
In order to speed up the convergence rate of the MCFLMS 

we use the adaptive step size proposed in [11]. The idea is 

to utilize the fact that the gradient is orthogonal to the true 

channel impulse response in the noise free case. The adap 

tive step size is then computed as:  

 
Figure 3 TU6 channel power delay profile 

  
 ̂      ̃    

|   ̃    |
  (13) 

 

      where   ̃    [   ̃
        ̃

    ]          
 

3.3.2 Adaptive Sparseness Control 

 

 In [15], [16], channel sparseness in the time domain is 

exploited to enhance the performance of the MCLMS 

approach. Since the sparseness is visible only in the time 

domain, we go back to the first definition of the cost func-

tion in (9). 

3.3.2.1 Sparse Cross Relations 

The sparseness of a channel   can be measured by the    

norm |   |
 

 
 where      . The idea is to minimize the 

   norm of the estimated channel. In [15],[16] the cross 

relations cost function is extended by adding the follow-

ing sparseness constraint function (SC) function: 

             |   |
 

 
   (14) 

where the sparseness weighting factor     controls the 

weight given to the SC related to the CR criteria. The 

gradient of the cost function in (14), can be found to be 

[15] 

   
         ̅       (15) 

where   

 ̅           ( ̂    ) | ̂      |
   

    

The parameter       helps to avoid divergence prob-

lems.  We propose dividing the update steps into three 

parts: 

a) MCFLMS update as in (1) 

b) Update due to sparseness criteria (performed in the 

time domain via applying IFFT on the output of (11)), 

by adding the second term in (18) to the output from 

the MCFLMS. The final update equation is: 

 ̂         ( ̂̃    )     ̅    (16) 

c) Apply FFT on the final estimate to be used in the next 

iteration k+1  

 ̂̃        ( ̂    )    (17) 

 

3.3.2.2 Adaptive Sparseness Weighting Factor 

 

 In this section, we look into optimizing the sparseness 

weight. In Fig.4, at very high SNR and low Doppler shift, 

we can see the trade-off between speed of convergence 

and steady state performance. In general, increasing   

results in in a faster convergence. However, as the algo-

rithm converges, continuing to add the penalty function 

affects the steady state performance. Thus, once a steady 

state estimate is reached, the penalty function of the 

sparseness criteria should be given less weight. We there-

fore propose an adaptive sparseness weighting factor 

    . The idea is to set      in relation to the change of 

the estimate every iteration. We choose to set 

                   ,   (18) 

where    is a weighting factor, which should be set ac-

cording to the channel conditions as shall be explained. In 

Fig.4, we can see how the proposed optimum weighting 

for the sparseness criterion achieves a much better steady 

state performance. As can be seen in Fig.5, at the begin-

ning, the sparseness cost function is assigned with a high 

weighting value which decreases as the algorithm ap-

proaches a steady state performance. In Fig.6, we see the 

effect of using different values of  , on the performance 

at different SNR and Doppler shifts. In general, we can 

conclude that there is a tendency for the optimum value of 

  to increase as the Doppler shift increases (because then 

the convergence becomes of higher importance) and to 

decrease as the signal to noise ratio increases. In [16], the 

authors also indicate this tendency for the optimal   to 

decrease as the SNR increases. From the plots, we can 
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also observe that the Doppler shift affects the value of the 

optimum   We therefore propose to set the optimum   to 

be directly proportional to the AWGN variance and the 

Doppler shift. 

 

3.3.3.3 Stability with partial spectrum excitation 
 
In the proposed architecture, the blind combiner is placed 

before the SISO demodulator of a communication system. 

In order to keep this combiner independent of the transmit 

signal waveform (e.g. pulse shape, bandwidth), we have 

to assume a sampling frequency that fulfills the sampling 

theorem for all considered input signals.  Consequently, 

the sampled receive signal that is  forwarded to the input 

of the blind combiner may contain frequency bands which 

are not excited by the transmit signal, so-called null 

bands. This is especially true for the frequency band near 

half of the sampling rate which typically lacks of CSI and 

thus introduces an ambiguity into the problem of the cross 

relations. In fact, these null bands violate one of the so-

called identifiability conditions [6], [17]: that the sampled 

receive signal must have full spectrum excitation. To 

demonstrate this problem, we refer to Figure 8, where a 

sent signal has only 50 percent of its spectrum excited 

with data information. We notice that, especially at low 

SNR the estimated channel tends to have high values  in 

the non- excited regions, resulting in misconvergence 

behavior of the MCFLMS. Therefore, dealing with these  

 

 
Figure 4 NRPMSE using fixed values of      vs the pro-

posed optimum   with        at     .1Hz and 

SNR=150dB 

null bands is inevitable in our proposed architecture. Our 

solution to this problem, is to apply a weighting factor on 

the estimated channel in the out of band regions, once the 

ratio between the power in these regions to the power in 

the active regions exceeds a certain threshold.  In Figure 8, 

we see the enhancement in NRPMSE brought by the con-

trol criteria. In this simulation, we used a threshold of 1 

and a weighting factor which sets the power in the out of 

band region to half of the  power in the active region. 

 

4.  Blind Maximum Ratio Combining 
 
In this section, we present simulation results for a 1x2 

DVB-T2 SIMO system. An OFDM signal is typically pro- 

-cessed in the frequency domain i.e. after the FFT block.  

The frequency domain signals are maximum ratio com 

 
Figure 5 Values of         vs number of iterations with 

       at          and SNR=150dB. 

 
Figure 6 Effect of   on the NRPMSE at different Doppler 

shifts and SNR 

 
 

Figure 7 Spectrum of sent signal, true and estimated chan-

nel at SNR=5dB and         Hz 

bined using the pilot assisted channel estimates of the cor-

resoonding antennas. This approach  is denoted by FDC 

(Frequency Domain Combining). Our approach, on the 

other hand, processes the received signals in the time do-

main regardless of the structure of the transmit signal, 

hence we denote it by BTDC (Blind Time  Domain Com-

bining). An 8k FFT is used with a guard interval of 2k 

samples. Out of the 8192 subcarriers, only 6817 carried 

data information and 16QAM modulation is used on the 

OFDM subcarriers with an LDPC coding rate of 0.5. The 

pilot pattern PP1 is used with      and      [18]. 

Pilot assisted channel estimation (PACE) is applied using 

linear interpolation in the frequency domain. Typically in 

static channels, 2D interpolation is applied which can give 

a very good performance.  However, in mobile channels  
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with high Doppler and especially with long FFT sizes 

(symbol time  1 ms) the temporal correlation doesn’t  

 
Figure 8 NRPMSE in the case weighting is used vs the 

case it is not used using        at SNR=5dB and 

         

allow to utilize the scattered pilots in the time domain. 

Transmitting an OFDM symbol in a time-varying channel 

induces inter-carrier interference (ICI), which typically 

results in an error floor in the BER[19]. ICI can be miti-

gated by adding an ICI-canceler instead of the simple ZF 

equalizer. Furthermore, ICI also influences the quality of 

channel estimation. More sophisticated techniques for 

channel estimation which incorporates knowledge of the 

ICI could also be used. The conventional approach, denot-

ed by FDC(hPACE), uses the PACE for frequency domain 

combining and equalization, whereas the proposed ap-

proach BTDC(hPACE) uses the PACE for equalization of 

the blindly combined signal only, as shown in Fig.2. In the 

synchronous mode of BTDC, denoted by 

BTDCSync(hPACE), every OFDM symbol is convolved 

with one matched filter obtained from the averaging of the 

MCFLMS estimates (for the corresponding antenna i) over 

the respective OFDM symbol time. The matched filter 

used at antenna i to combine the     OFDM symbol can be 

written as 

        
 

        
∑  ̂ 

       
  

        
 

 

       (
        

 
)  

   

(19) 

Where  ̂ 
        is the     estimated tap of the     an-

tenna captured during the     iteration of the algorithm, 

     and     are the FFT size and the guard interval, 

respectively. This means that coarse-time synchronization 

to the OFDM transmitter is assumed. On the other hand, 

in the simulation denoted by BTDCAsync, synchroniza-

tion to the transmitter is not assumed i.e. blocks of N = 64 

samples within the received OFDM symbol are combined 

using the instantaneous estimates from the MCFLMS. As 

shown in Fig.9, using PACE and synchronization infor-

mation, the proposed architecture performs even slightly 

better than the conventional solution. The main reason is 

the comparatively high frequency selectivity of the TU6 

channel which doesn’t allow for a very accurate frequen- 

cy domain estimate of the channel using 1D frequency 

interpolation, especially with linear interpolation. 

Furthermore, the MCFLMS algorithm exploits all the  

received samples for its channel estimate and uses short 

blocks of data (N = 64 samples) in the time domain. Usi- 

-ng perfect CSI, we can see the conventional approach 

denoted by            equalization slightly outper-

formed the synchronous mode of the BTDC denoted by 

            which uses the MCFLMS estimate for  

combining and the perfect channel knowledge for equali-

zation which uses the MCFLMS estimate for combining 

and the perfect channel knowledge for equalization. 

Asynchronous combining (i.e. block by block combining) 

leads to ICI, because of the time varying distortion intro-

duced in the time domain combiner block on the OFDM 

symbol, and therefore a worse performance is achieved. 

As shown in Fig.9, a degradation in performance is ob-

served in the asynchronous case ( 0.7dB and 1.1 dB SNR 

loss when using       and       for equalization respec-

tively). However, the performance is still notably better 

compared to SISO. In addition, the ICI effect can be re-

duced by further smoothing the output of the MCFLMS to 

avoid abrupt changes in the blind channel estimate, which 

is used for time domain combining. We propose that the 

BTDC operates in the asynchronous mode until frame 

synchronization is achieved and fed back from the de-

modulator to the combiner block as shown in Fig.2. Be-

cause of the different architecture, the PACE block in the 

proposed architecture estimates an equivalent channel 

which can be written in the form: 

          ∑         ̂ 
        

   .  

The equivalent channel is less frequency selective than 

the individual channels (nulls are typically eliminated by 

MRC), hence the equivalent channel can be better approx-

imated by interpolation compared to SISO. In addition, 

the PACE takes as an input the output of the combiner 

block therefore it benefits from a higher SNR of the com-

bined signal. This is shown in Fig.10, where the normal-

ized MSE in CE is plotted in both cases for the conven-

tional solution vs the BTDC solution. Fig.11 depicts the 

NRPMSE of the MCFLMS in dB vs time at a total SNR 

of 7dB. 

 
Figure 9 BER performance of the proposed architecture in 

a DVB-T2 system after the LDPC decoder, using the TU6 

channel at         

4. Conclusion 
 

In this work, we propose a communication receiver with a 

generic SIMO combiner. We suggest using blind channel 
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Figure 10  Normalized MSE in channel estimation 

using linear interpolation at         

 
Figure 11  Normalized NRPMSE using 1x2 DVB-

T2 system at         and total SNR=7dB 

estimation to acquire the amount of CSI that is required to 

perform MRC in the time domain. We restricted our work 

to SOS algorithms to ensure a high channel tracking capa-

bility for mobile channels and focused our investigation on 

an iterative algorithm based on frequency domain adaptive 

filtering as an attractive approach for real time implemen-

tation. Without explicit knowledge of the SNR and by re-

lying on intermediate results of the MCFLMS algorithm, 

we computed low-complex adaptive step size and sparse-

ness measures, which enhanced the convergence and 

channel tracking capability. Moreover, we applied a simple 

but effective stability criterion in order to ensure that the 

algorithm converges with oversampled communication 

signals. We presented results based on NRPMSE which 

illustrate the effectiveness of these measures. Finally, we 

presented coded BER results for a simulated DVB-T2 sys-

tem, which highlights the competitiveness of BMRC com-

pared to the conventional solution. The complexity of the 

proposed combiner exceeds the complexity of the conven-

tional approach, however a sub-optimal solution which has 

less complexity is subject of current investigation.  
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