

Shape-Adaptive Discrete Cosine Transform for Predictor Improvement in HEVC

Formangepasste diskrete Cosinus-Transformation zur Prädiktionsverbesserung im HEVC

Eugen Wige, Andreas Heindel, André Kaup

Chair of Multimedia Communications and Signal Processing University of Erlangen-Nuremberg

Applications with High Fidelity Requirements

- Professional applications
 - Medical applications
 - Monitoring systems
 - Industrial manufacturing
 - Digital cinema

Warner Bros, Matrix Reloaded

www.radiology-equipment.com, CT Scanner

www.tagesspiegel.de, Videoüberwachung

Hegewald & Peschke, Videoextensometer

E. Wige, A. Heindel, A. Kaup : SA-DCT for Prediction in HEVC Chair of Multimedia Communications and Signal Processing

Page 2

Standards for High Fidelity Compression

- Standards for professional applications
 - JPEG-LS, JPEG-2000, Motion JPEG
 - No inter-frame coding
 - Not optimal for video compression
- Standards for consumer applications
 - HEVC, H.264/AVC, MPEG-2
 - Inter-frame prediction available
 - Not optimized for high fidelity compression
- Noise within natural videos is considered as a critical issue for high fidelity compression
 - $f \xrightarrow{g} ENC \xrightarrow{b} DEC \xrightarrow{g_q}$

- Goal
 - Improve high fidelity inter-frame compression of noisy video sequences

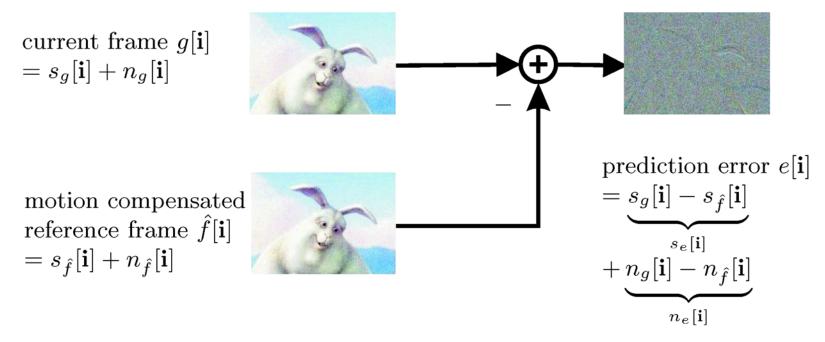
Outline

- Motivation for in-loop denoising in high fidelity compression
- Shape-Adaptive DCT for reference frame filtering
- Coding results for medium to high quality settings
- Reference frame filtering for low bitrate compression
- Coding results for low to medium quality settings
- Conclusion and outlook

www.radiology-equipment.com, CT Scanner

www.tagesspiegel.de, Videoüberwachung

Hegewald & Peschke, Videoextensometer

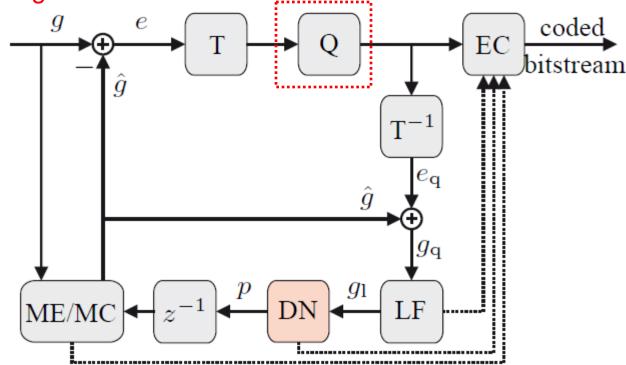

E. Wige, A. Heindel, A. Kaup : SA-DCT for Prediction in HEVC Chair of Multimedia Communications and Signal Processing

Page 4

Prediction Error Signal

Problem

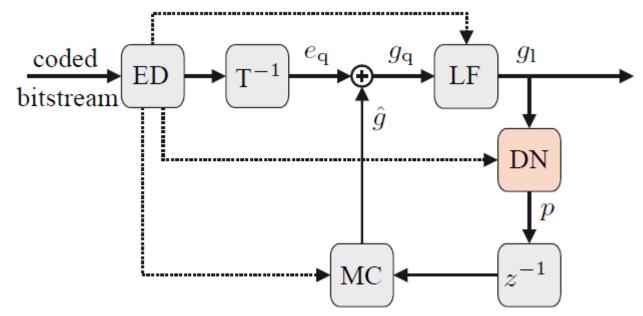
- Prediction error signal has more noise than the current frame itself


Solution

- Remove noise from the predictor

Inter-Frame Encoder with In-Loop Denoising

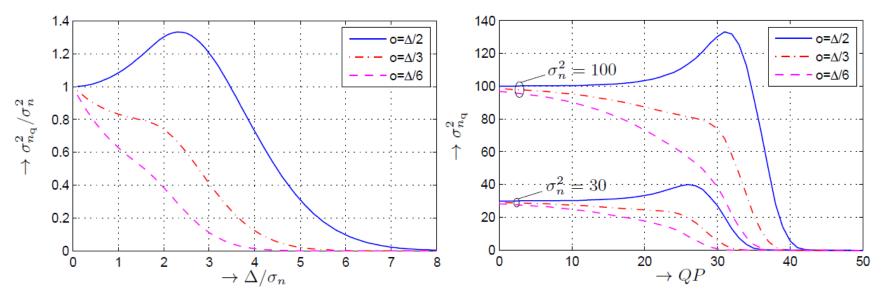
 Simplified block diagram of a lossy inter-frame encoder with in-loop denoising



E. Wige, G. Yammine, P. Amon, A. Hutter, A. Kaup, "Analysis of in-loop denoising in lossy transform coding", PCS 2010

Inter-Frame Decoder with In-Loop Denoising

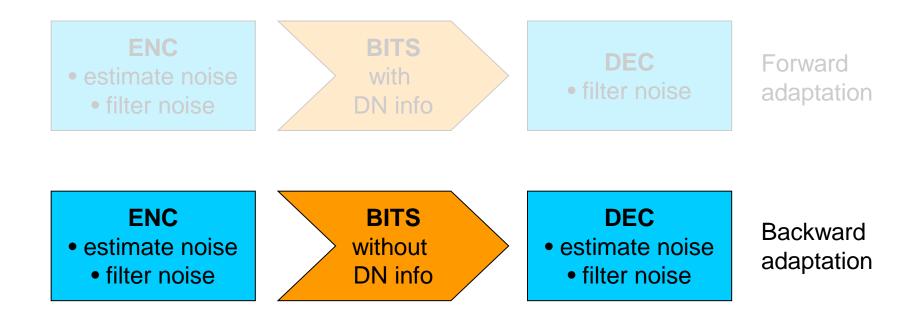
 Simplified block diagram of an inter-frame decoder with in-loop denoising



• Denoising is performed after displaying the decoded frames

Theoretical Analysis of In-Loop Quantization

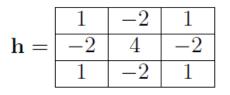
- Noise is generally decreasing for increasing QPs
- Rounding offset parameter o has additional denoising capabilities
- Noise dominates at small quantization step sizes

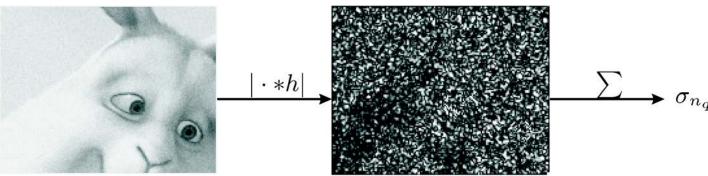


E. Wige, G. Yammine, P. Amon, A. Hutter, A. Kaup, "In-Loop Noise-Filtered Prediction for High Efficiency Video Coding", submitted to Transactions on Circuit and Systems for Video Technology

Realization of In-Loop Denoising

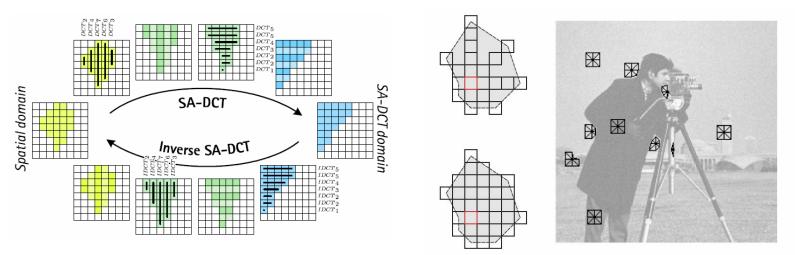
- If noise is unknown it has to be estimated
- Two ways to implement a codec with in-loop denoising




Mode Adaptive Noise Modeling

- Noise is different for different CU-types
 - Different quantization of intra and inter prediction residuals
 - Constant noise variance of skipped CUs
 - Mode Adaptive (MA) reference frame denoising
- Noise variance estimation

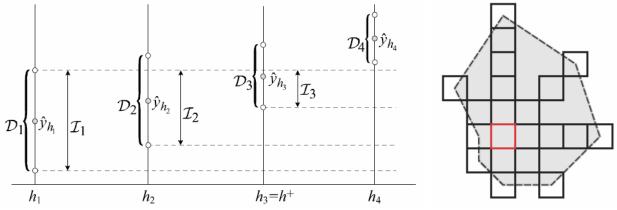
$$\sigma_{nq}[c] = \frac{1}{6|\mathbf{\Omega}_c|} \sqrt{\frac{\pi}{2}} \sum_{\mathbf{j}\in\mathbf{\Omega}_c} |g_l[\mathbf{j}] * \mathbf{h}|$$


• Mode class *c*={*Intra, Inter, Skip*}

E. Wige, G. Yammine, P. Amon, A. Hutter, A. Kaup, "Mode Adaptive Reference Frame Denoising for High Fidelity Compression in HEVC", VCIP 2012

- Introduced for coding of arbitrarily shaped regions [1]
- Supported in MPEG-4 Visual (Advanced Coding Efficiency Profile)
- Efficient denoising and deblocking tool
- Implementation of the SA-DCT algorithm according to [2]

[1] T. Sikora, B. Makai, "Shape-Adaptive DCT for generic coding of video," TCSVT 1995
[2] A. Foi, V. Katkovnik, and K. Egiazarian, "Pointwise Shape-Adaptive DCT for high-quality denoising and deblocking of grayscale and color images", TIP 2007


27.02.2013

LPA-ICI-Rule for SADCT

- Local Polynomial Approximation & Intersection of Confidence Intervals
 - Search for homogenous regions (based on directional LPA-kernels)
 - Estimation of pixel value by scalar product with kernel
 - Calculation of the confidence intervals

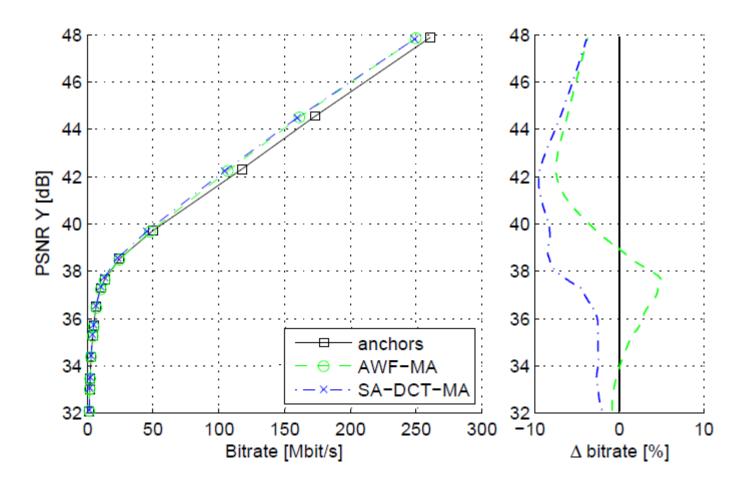
$$\mathcal{D}_{i} = \left[\hat{y}_{h_{i}}(x) - \Gamma \sigma_{\hat{y}_{h_{i}}(x)}, \ \hat{y}_{h_{i}}(x) + \Gamma \sigma_{\hat{y}_{h_{i}}(x)} \right]$$

Optimal length is given by the biggest reliable kernel

A. Foi, V. Katkovnik, and K. Egiazarian, "Pointwise Shape-Adaptive DCT for high-quality denoising and deblocking of grayscale and color images", TIP 2007

E. Wige, A. Heindel, A. Kaup : SA-DCT for Prediction in HEVC

- Integration of the SA-DCT reference frame denoising algorithm into the HM-8.2 reference software
- "Lowdelay P" parameter configuration settings
- Coding of 100 frames of high and low resolution sequences
 - ClassB sequences (1920x1080)
 - ClassD sequences (416x240)
- Calculation of average bitrate savings for three quality ranges
 - Lossless compression (LL)
 - High quality (HQ, $QP=\{12,...,27\}$)
 - Medium quality (MQ, $QP=\{22,...,37\}$)


• ClassB on the top and ClassD on the bottom

	Δ bitrate in %							
Sequence	AWF-MA			SA-DCT-MA				
	LL	HQ	MQ	LL	HQ	MQ		
BasketballDrive	-1.72	-3.46	0.12	-3.04	-10.23	-2.27		
BQTerrace	0.03	-0.82	7.66	-1.56	-9.08	-5.21		
Cactus	-1.92	-3.61	1.66	-2.61	-7.26	-3.54		
Kimono1	-1.30	-1.32	-0.45	-2.25	-9.84	-3.32		
ParkScene	-0.58	2.15	2.73	-1.18	1.74	-0.25		
Average	-1.10	-1.41	2.34	-2.13	-6.93	-2.92		
BasketballPass	3.86	3.97	0.82	-0.06	-0.16	-0.09		
BlowingBubbles	1.42	4.89	1.84	-0.20	-0.48	0.02		
BQSquare	9.55	27.89	12.80	-0.50	-0.01	0.65		
RaceHorses	-0.07	0.07	0.14	-0.03	-0.15	-0.03		
Average	3.69	9.21	3.90	-0.20	-0.20	0.14		

E. Wige, G. Yammine, P. Amon, A. Hutter, A. Kaup, "Mode Adaptive Reference Frame Denoising for High Fidelity Compression in HEVC", VCIP 2012

• Rate distortion and relative bitrate savings for *Cactus* (ClassB)

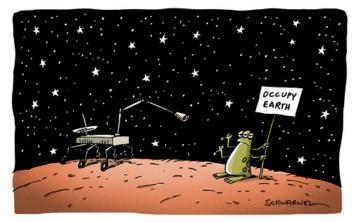
E. Wige, A. Heindel, A. Kaup : SA-DCT for Prediction in HEVC

Page 15

Chair of Multimedia Communications and Signal Processing

Application to Low Bitrate Coding

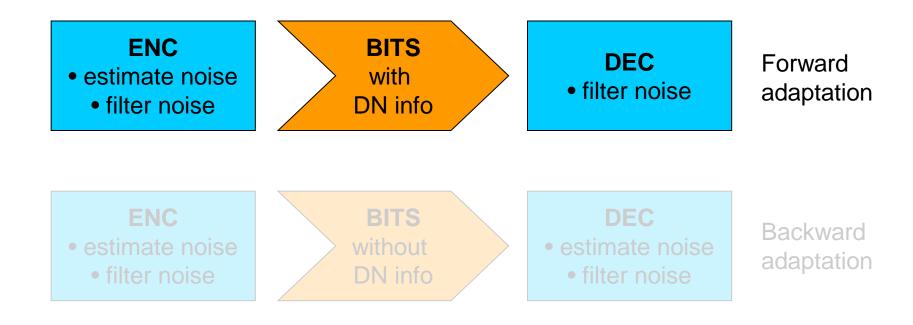
- Sometimes compression for very low bitrate transmission is needed
- An error signal is introduced into the reference frame due to coarse quantization
- Can the prediction be improved by reference frame filtering?



www.prosieben.de/tv/galileo, Mars rover "Curiosity"

http://www.engadget.com, Skype VOIP

MARSSONDE "CURIOSITY" SENDET ERSTE BILDER "

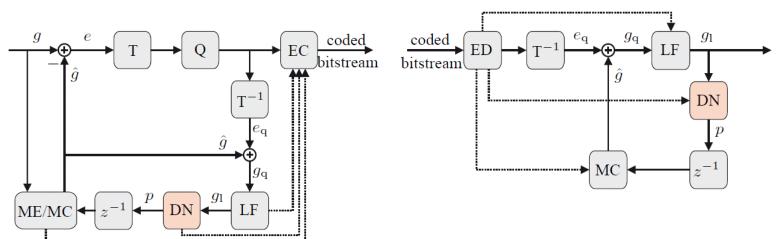


de.toonpool.com, Mars rover "Curiosity"

E. Wige, A. Heindel, A. Kaup : SA-DCT for Prediction in HEVC Chair of Multimedia Communications and Signal Processing Page 16 27.02.2013

Realization of In-Loop Denoising

- If noise is unknown it has to be estimated
- Two ways to implement a codec with in-loop denoising


E. Wige, A. Heindel, A. Kaup : SA-DCT for Prediction in HEVC

Page 17

Chair of Multimedia Communications and Signal Processing

Noise Modeling

- Estimate noise standard deviation in the encoder and transmit it to the decoder
- Modeling noise variance by the MSE between the current and the reconstructed picture
- Quantize the noise parameter for transmission
- Adaptive decission between p and g_l

E. Wige, A. Heindel, A. Kaup : SA-DCT for Prediction in HEVC

Page 18

Chair of Multimedia Communications and Signal Processing

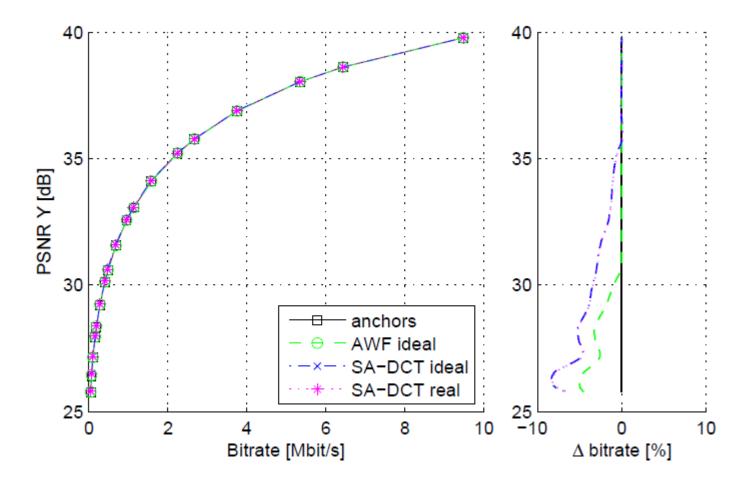
$$\sigma_{\mathbf{q}}^{\mathbf{z}} = \sqrt{\frac{1}{|\boldsymbol{\Omega}|} \sum_{\mathbf{j} \in \boldsymbol{\Omega}} (g[\mathbf{j}] - g_l[\mathbf{j}])^2}$$

$$\sigma_{\mathbf{q}} = \min(\mathrm{round}(\sigma_{\mathbf{q}}^{z} \cdot 10)/10, 25.5)$$

- Integration of the SA-DCT reference frame filtering algorithm into the HM-8.2 reference software
- "Lowdelay P" parameter configuration settings
- Coding of 100 frames of high and low resolution sequences
 - ClassB sequences (1920x1080)
 - ClassD sequences (416x240)
- Calculation of average bitrate savings for two quality ranges
 - Medium quality (MQ, $QP=\{22,...,37\}$)
 - Low quality (LQ, QP={37,...,51})

• ClassB on the top and ClassD on the bottom

	Δ bitrate in %							
Sequence	AWF ideal		SA-DCT ideal		SA-DCT real			
	MQ	LQ	MQ	LQ	MQ	LQ		
BasketballDrive	-0.13	-2.11	-3.57	-5.47	-3.57	-5.42		
BQTerrace	0.00	-0.38	-2.75	-3.78	-2.74	-3.69		
Cactus	0.00	-0.88	-2.70	-2.90	-2.70	-2.84		
Kimono1	-2.65	-9.42	-8.24	-10.18	-8.23	-10.12		
ParkScene	0.00	-2.24	-0.58	-4.64	-0.58	-4.57		
Average	-0.56	-3.01	-3.57	-5.39	-3.56	-5.33		
BasketballPass	-0.09	-2.64	-1.69	-4.54	-1.61	-3.84		
BlowingBubbles	0.00	-0.42	-0.10	-1.64	-0.04	-1.01		
BQSquare	0.07	0.17	-0.27	-2.25	-0.21	-1.69		
RaceHorses	-0.01	-0.69	-0.92	-4.34	-0.88	-3.94		
Average	-0.01	-0.90	-0.75	-3.19	-0.69	-2.62		


E. Wige, A. Heindel, A. Kaup : SA-DCT for Prediction in HEVC

Page 20

Chair of Multimedia Communications and Signal Processing

Simulation Results

• Rate distortion and relative bitrate savings for *ParkScene* (ClassB)

E. Wige, A. Heindel, A. Kaup : SA-DCT for Prediction in HEVC

Page 21

Chair of Multimedia Communications and Signal Processing

Summary

- Conclusion
 - Knowledge of noise can be exploited for more efficient prediction
 - Dedicated in-loop reference frame denoising filter is proposed
 - In general impact of the source noise decreases and impact of coding noise increases with increasing QP
 - Evaluation of the SA-DCT algorithm for prediction improvement
 - Significant bitrate savings can be achieved in the state-of-the-art video coding standard for strong and weak quantization
- Outlook
 - Improve the prediction efficiency for low-bitrate coding by coding variant noise modeling
 - Context adaptive entropy coding of the noise parameters
 - Combination of the forward and backward adaptive scheme
 - Use SA-DCT for output signal reconstruction

