

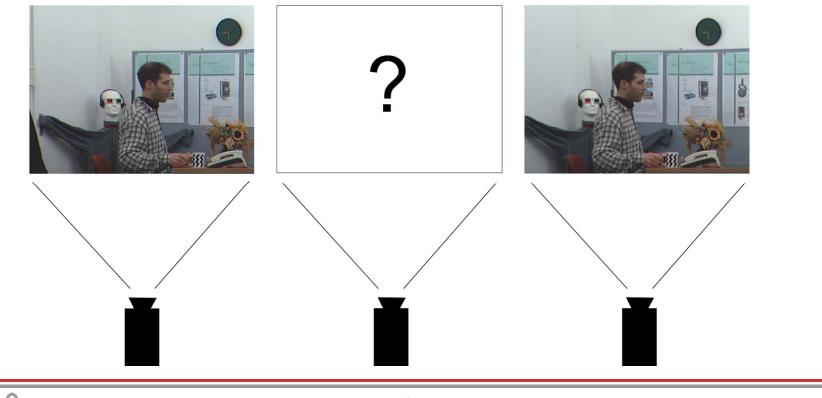
Mixed-Resolution View Synthesis Using BM3D-Refined Image Merging

BM3D-verfeinerte Zwischenbildsynthese für unterschiedlich aufgelöste Referenzansichten

T. Richter, E. Wige, and A. Kaup

richter@Int.de

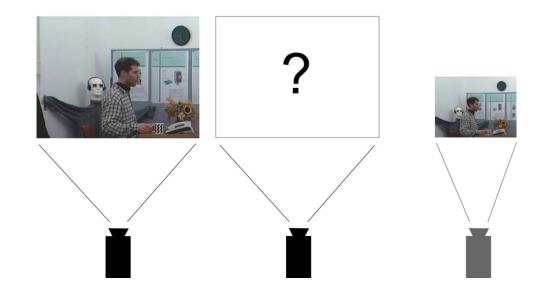
Multimedia Communication and Signal Processing


Telecommunications Laboratory University of Erlangen-Nuremberg

- Motivation
- Mixed-Resolution View Synthesis
- BM3D-Refined Image Merging
- Simulation Results
- Conclusion

Motivation

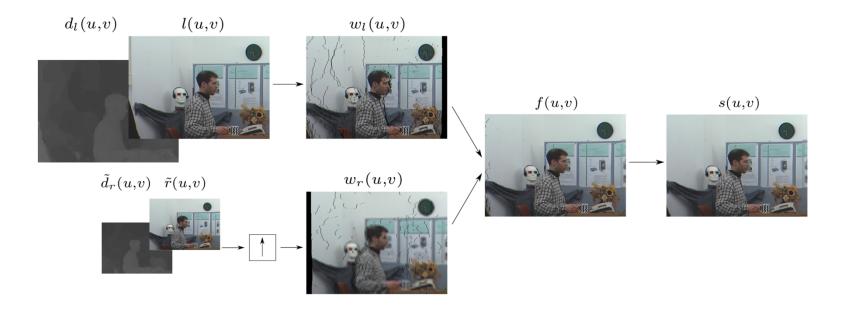
- Full-resolution view synthesis is a key issue in the 3D video domain.
- Responds to the question how to synthesize a desired intermediate view from adjacent reference views.



Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing

Motivation

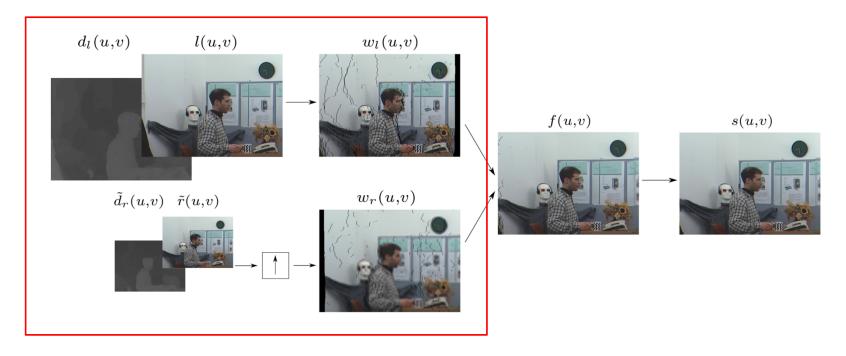
- Mixed-resolution (MR) setup useful in various applications, due to:
 - binocular suppression theory
 - less costs with respect to the used camera array
 - less data to transmit
 - less data to store



How to synthesize a high resolution intermediate view from neighboring reference views with different spatial resolutions?

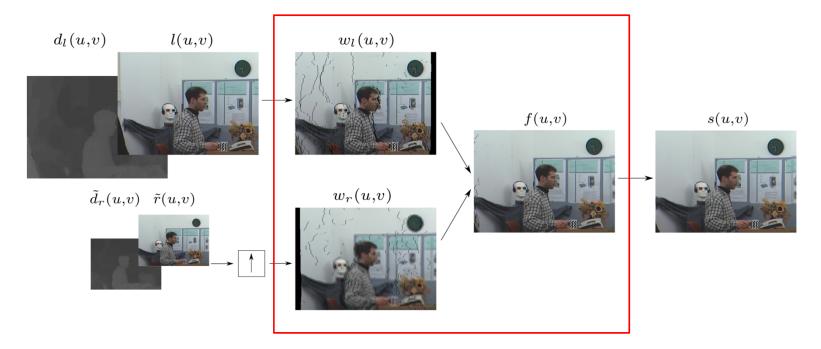
Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing Page 4 2013-02-26

Basic overview over the view synthesis algorithm in a MR setup



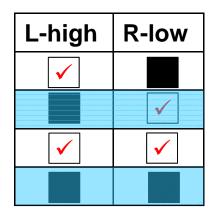
- Basically 3 steps:
- Image warping
- Image merging
- Hole filling

2013-02-26


Image warping:

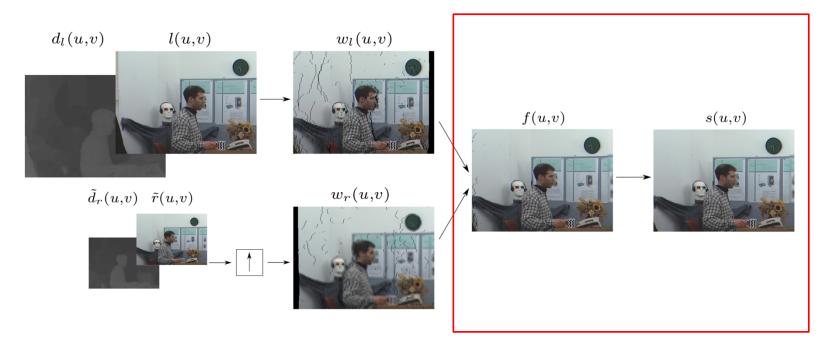
 Two reference views are warped into the desired intermediate view via their corresponding depth maps.

Image merging:



Both obtained warped images are merged together.

Image merging:


$$f(u,v) = \begin{cases} w_l(u,v), & \text{if}(u,v) \in \mathcal{H}_r \setminus \mathcal{H}_l \\ w_r(u,v), & \text{if}(u,v) \in \mathcal{H}_l \setminus \mathcal{H}_r \\ w_l(u,v), & \text{if}(u,v) \in \bar{\mathcal{H}}_l \cap \bar{\mathcal{H}}_r \\ 0, & \text{if}(u,v) \in \mathcal{H}_l \cap \mathcal{H}_r \end{cases}$$

• \mathcal{H}_l respectively \mathcal{H}_r describe the set of holes in the related warped images $w_l(u,v)$ and $w_r(u,v)$.

Hole filling:

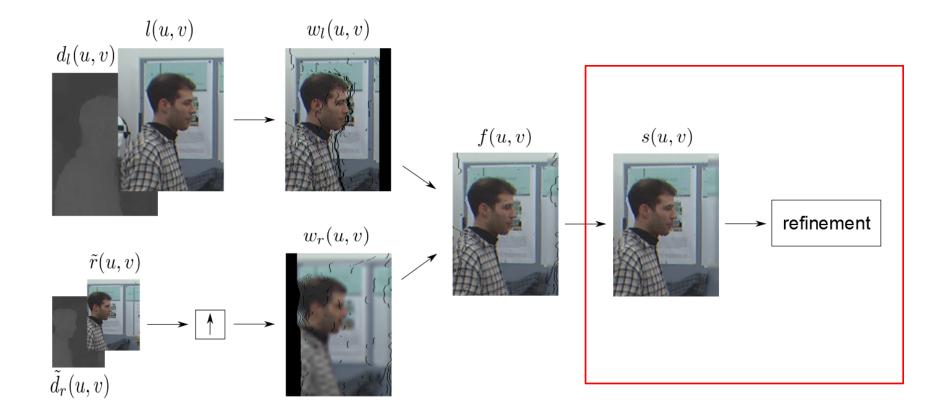
 A hole-filling algorithm is applied on the merged image to fill the remaining holes and create the final synthesized view.

Page 9

Problem:

Some of the information in the merged image has to be taken from the low-resolution reference!

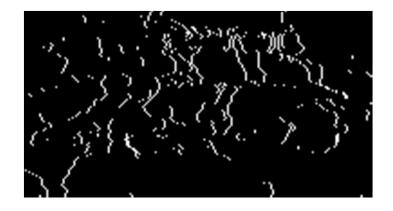
synthesized detail of alt_moabit sequence in FR-setup


synthesized detail of alt_moabit sequence in MR-setup

Insertion of interpolated and hence blurred regions from the low-resolution reference leads to annoying visible artifacts in the synthesized view.

Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing Page 10

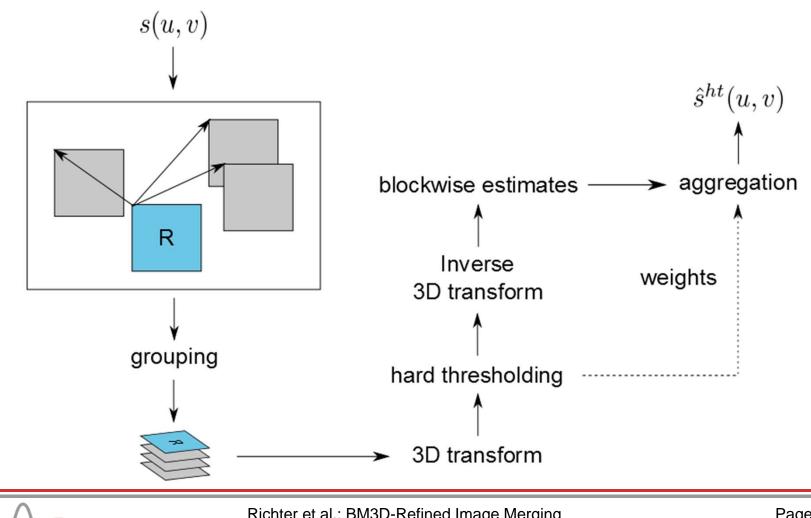
Refinement:


Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing Page 11 2013-02-26

BM3D-Refined Image Merging

- BM3D [1]:
 - State-of-the-art for image denoising
 - 2 iterations: grouping, 3D transformation, filtering, aggregation
- Goal:

Refine a pixel inserted from the low-resolution reference and adapt it to its high-resolution surrounding.



[1]: K. Dabov, A. Foi, V.Katkovnik, K. Egiazarian: "Image Denoising by Sparse 3D Transform-domain Collaborative Filtering", IEEE Trans. On Image Processing, vol. 16, no. 8, 2080-2095, 2007

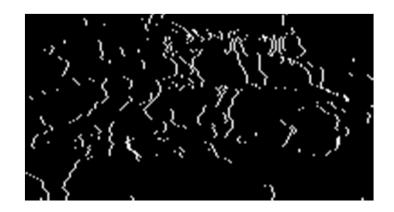
Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing Page 12

1st iteration:

Richter et al.: BM3D-Refined Image Merging

2013-02-26

2nd iteration: Take result from 1st iteration as initial estimation $\hat{s}^{ht}(u,v)$ $\hat{s}^{wie}(u,v)$ → aggregation blockwise estimates -R Inverse weights 3D transform grouping Wiener filtering 3D transform s(u,v)


2013-02-26

BM3D-Refined Image Merging

 Take refined pixel values only at positions which were inserted from the low-resolution reference.

$$s^{BM3D}(u,v) = \begin{cases} s(u,v), & \text{if}(u,v) \in \overline{\mathcal{H}}_l \\ \hat{s}^{wie}(u,v), & \text{if}(u,v) \in \mathcal{H}_l \end{cases}$$

Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing Page 15 2013-02-26

- Simulation Setup:
 - Multiview test-sequences: alt_moabit, book-arrival, pantomime, kendo
 - Generation of low-resolution view:
 - Filtering, downsampling, upsampling via bicubic interpolation
 - Used downsampling-factors: 2,4,6

Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing Page 16 2013-02-26

	\downarrow	book-arrival	alt_moabit	kendo	pantomime
$PSNR_{FR}$	-	32,99	29,82	34,48	33,89
$\Delta PSNR_u$	2	-0,04	-0,07	-0,05	0,00
$\Delta PSNR_{NLM}$	2	0,03	-0,03	0,00	0,02
$\Delta PSNR_{BM3D}$	2	0,04	-0,03	0,01	0,03
$\Delta PSNR_u$	4	-0,33	-0,37	-0,31	-0,07
$\Delta PSNR_{NLM}$	4	-0,16	-0,14	-0,18	-0,03
$\Delta PSNR_{BM3D}$	4	-0,09	-0,07	-0,10	0,01
$\Delta PSNR_u$	6	-0,60	-0,62	-0,59	-0,15
$\Delta PSNR_{NLM}$	6	-0,34	-0,25	-0,39	-0,08
$\Delta PSNR_{BM3D}$	6	-0,25	-0,11	-0,24	-0,02

book-arrival

alt_moabit

kendo

PSNR evaluated over the whole synthesized image

pantomime

Page 17 2013-02-26

	\downarrow	book-arrival	alt_moabit	kendo	pantomime
$PSNR_{FR}$	-	31,82	29,65	32,48	28,63
$\Delta PSNR_u$	2	-0,71	-2,30	-1,33	0,47
$\Delta PSNR_{NLM}$	2	-0,51	-1,15	-0,12	2,54
$\Delta PSNR_{BM3D}$	2	-0,30	-1,08	0,22	3,93
$\Delta PSNR_u$	4	-3,58	-6,73	-5,36	-3,12
$\Delta PSNR_{NLM}$	4	-2,04	-3,79	-3,86	-1,19
$\Delta PSNR_{BM3D}$	4	-1,30	-2,09	-2,57	1,53
$\Delta PSNR_u$	6	-5,28	-8,75	-7,68	-5,46
$\Delta PSNR_{NLM}$	6	-3,65	-5,48	-6,17	-3,51
$\Delta PSNR_{BM3D}$	6	-2,82	-3,06	-4,60	-0,32

book-arrival

alt_moabit

kendo

PSNR evaluated over refined pixels

Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing pantomime

Page 18 2013-02-26

unrefined detail of *alt_moabit* sequence and a downsampling-factor of 6

Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing Page 19

NLM-refined detail of *alt_moabit* sequence and a downsampling-factor of 6

Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing Page 20

BM3D-refined detail of *alt_moabit* sequence and a downsampling-factor of 6

Richter et al.: BM3D-Refined Image Merging Chair of Multimedia Communications and Signal Processing Page 21

- A desired intermediate camera perspective is synthesized by two adjacent reference views with different spatial resolutions.
- Some of the information in the synthesized view can only be seen from the low-resolution view.
- Introducing interpolated and hence blurred regions from the lowresolution reference leads to annoying visual artifacts.
- BM3D refinement is an effective method for increasing image sharpness in those low-resolution areas.
- BM3D refinement achieves PSNR gains of up to 0.51 dB with respect to an unrefined MR setup.

