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POWER OF CHANGE-POINT TESTS FOR LONG-RANGE DEPENDENT
DATA

HEROLD DEHLING, AENEAS ROOCH, AND MURAD S. TAQQU

Abstract. We investigate the power of the CUSUM test and the Wilcoxon change-point
tests for a shift in the mean of a process with long-range dependent noise. We derive analytic
formulas for the power of these tests under local alternatives. These results enable us to
calculate the asymptotic relative efficiency (ARE) of the CUSUM test and the Wilcoxon
change point test. We obtain the surprising result that for Gaussian data, the ARE of these
two tests equals 1, in contrast to the case of i.i.d. noise when the ARE is known to be 3/π.
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1. Introduction

Statistical tests for the presence of changes in the structure of time series are of great
importance in a wide range of scientific discussions, e.g. regarding economic, technological
and climate data. Many procedures for detecting changes and for estimating change-points
have been proposed in the literature; see e.g. Csörgő and Horvath (1997) for a detailed
exposition. In the case of independent data, the theory is quite satisfactory. For various
types of change-point models, statistical procedures have been proposed and their properties
investigated. In constrast, the situation is different for dependent data, such as encountered
in time series models. For dependent data, most research has focused on linear procedures,
such as cumulative sum (CUSUM) tests, and there are many open problems when it comes
to other types of test procedures, e.g. those used in robust statistics.

In the present paper, we study the change-point problem for long-range dependent data.
Specifically, we will test the hypothesis that the process is stationary against the alternative
that there is a change in the mean. The classical test statistic for this problem is the CUSUM

Key words and phrases. Change-point problems, nonparametric change-point tests, Wilcoxon two-sample
rank test, power of test, local alternatives, asymptotic relative efficiency of tests, long-range dependent data,
long memory, functional limit theorem.
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statistic,

(1) max
1≤k≤n−1

∣∣∣∣∣
k∑
i=1

Xi −
k

n

n∑
i=1

Xi

∣∣∣∣∣ .
When the test statistic is large, one infers that there is a change in the mean. The CUSUM
test has good properties when the underlying process is Gaussian. However, this test is not
robust against possible outliers in the data and against heavy-tailed distributions. Recently,
Dehling, Rooch and Taqqu (2013) have proposed a robust alternative to the CUSUM test,
which is based on the Wilcoxon two-sample rank statistic. The corresponding ”Wilcoxon
change-point test” uses the test statistic

(2) max
1≤k≤n−1

∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣ .
One rejects the null hypothesis when this test statistic is large. In their paper, Dehling,
Rooch and Taqqu (2013) investigated the asymptotic distribution of the Wilcoxon change-
point test under the null hypothesis of no change. Moreover, they performed a simulation
study to compare the finite sample performance and the power of the CUSUM test based
on (1) and the Wilcoxon change-point test based on (2).1

In the present paper, we study the power of the CUSUM test and the Wilcoxon change-
point test for a shift in the mean of a long-range dependent process. We will calculate the
power under local alternatives, where the height of the shift decreases with the sample size
n in such a way that the tests have non-trivial limit power as n→∞. These results enable
us to compute the asymptotic relative efficiency (ARE) of the CUSUM and the Wilcoxon
change-point tests, which is defined as the limit of the ratio of the sample sizes required
to obtain a given power. We obtain the surprising result that the ARE of these two tests
equals 1 in the case of long-range dependent Gaussian data. This is in contrast with the
case of i.i.d. and short-range dependent data, where the ARE of the Wilcoxon change-point
test with respect to the CUSUM test is 3/π.

We consider a model where the observations are generated by a stochastic process (Xi)i≥1
of the type

(3) Xi = µi + εi,

where (εi)i≥1 is a long-range dependent stationary process with mean zero, finite variance and
where (µi)i≥1 are the unknown means. We focus on the case when (εi)i≥1 is an instantaneous
functional of a stationary Gaussian process (ξi)i≥1 with non-summable covariances, i.e.

εi = G(ξi), i ≥ 1.

We assume that (ξi)i≥1 is a long-range dependent (LRD), mean-zero Gaussian process with
variance E(ξ2i ) = 1 and autocovariance function

(4) ρ(k) = k−DL(k), k ≥ 1,

where 0 < D < 1, and where L(k) is a slowly varying function. Moreover, G : R → R is a
measurable function satisfying E(G(ξi)) = 0.

Based on observations X1, . . . , Xn, we wish to test the hypothesis

H : µ1 = . . . = µn

1Dehling et al. (2013) called the CUSUM test, the ”difference of means test”, and called the Wilcoxon
change-point test, the ”Wilcoxon-type” test.
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that there is no change in the means of the data against the alternative

(5) A : µ1 = . . . = µk 6= µk+1 = . . . = µn, for some k ∈ {1, . . . , n− 1}.
We shall refer to this test problem as (H,A).

Dehling, Rooch and Taqqu (2013) have studied two tests for this change-point problem,
namely the Wilcoxon change-point test which is based on the test statistic

(6) Wn =
1

n dn
max

1≤k≤n−1

∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣ .
and the CUSUM test which uses the test statistic

(7) Dn :=
1

n dn
max

1≤k≤n−1

∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(Xj −Xi)

∣∣∣∣∣ .
Observe that the normalization dn, which will be specified below, is the same for both tests.
These tests are similar in spirit. They compare the first part of the sample to the second
part. The Wilcoxon change-point test (6) involves the rank of the data whereas the CUSUM
test (7) involves their values. One rejects the null hypothesis of no change when these test
statistics are large.

Dehling, Rooch and Taqqu (2013) investigated the asymptotic distribution of these test
statistics under the null hypothesis H of no change in the means. In addition, they calculated
the power of these tests numerically via a Monte-Carlo simulation. In this paper, we will
compute the power of the above test statistics under a local alternative. More specifically,
we shall consider the following sequence of alternatives

(8) Aτ,hn(n) : µi =

{
µ for i = 1, . . . , [nτ ]
µ+ hn for i = [nτ ] + 1, . . . , n,

where 0 ≤ τ ≤ 1. Observe that the level shift hn depends on the sample size n.

2. Power of the CUSUM Test under Local Alternatives

We will first investigate the asymptotic distribution of the process

(9) Dn(λ) :=
1

n dn

[nλ]∑
i=1

n∑
j=[nλ]+1

(Xj −Xi), 0 ≤ λ ≤ 1.

To do so, we consider the Hermite expansion of G(ξi), namely

G(ξi) =
∞∑
q=1

aq
q!
Hq(ξi),

where Hq is the q-th order Hermite polynomial. We define the Hermite rank of the function
G as

m = min{q ≥ 1 : aq 6= 0}
and introduce the normalization constants

(10) d2n = Var

(
n∑
j=1

Hm(ξi)

)
.

We suppose 0 < D < 1
m

, in which case

(11) d2n ∼ κm n
2−mD Lm(n),
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where κm = 2(m!)/(1−Dm)(2−Dm). Here we use the symbol an ∼ bn to denote an/bn → 0
as n→∞.

Under the null hypothesis H of no level shift, we get that the process (Dn(λ))0≤λ≤1 in (9)
converges in distribution towards the process

(12)
am
m!

(λZm(1)− Zm(λ))0≤λ≤1,

where m denotes the Hermite rank of G and where

(13) am = E(Hm(ξ)G(ξ));

see Dehling, Rooch and Taqqu (2013), proof of Theorem 3. The process (Zm(λ))λ≥0 denotes
the m-th order Hermite process with Hurst parameter H = 1− Dm

2
∈ (1

2
, 1). It is Gaussian

(namely fractional Brownian motion) when m = 1, but it is non-Gaussian when m ≥ 2. For
various representations of the Hermite process (Zm(λ))λ≥0, see Pipiras and Taqqu (2010).

In view of (3), under the alternative A in (5), we need to consider

(14) Dn(λ) =
1

n dn

[nλ]∑
i=1

n∑
j=[nλ]+1

(G(ξj)−G(ξi)) +
1

n dn

[nλ]∑
i=1

n∑
j=[nλ]+1

(µj − µi).

Observe that the statistic Dn(λ) presumes that the jump occurs at time [nλ] + 1, whereas
the local alternative Aτ,hn(n) involves a jump at [nτ ]+1. There will therefore be an interplay
between λ and τ . In fact, under the local alternative Aτ,hn(n) in (8), we get

(15)
1

n dn

[nλ]∑
i=1

n∑
j=[nλ]+1

(µj − µi) =

{
hn
ndn

[λn](n− [τn]) for λ ≤ τ
hn
ndn

(n− [λn])[τn] for λ ≥ τ.

-

6

�
�
�
�
�
�
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τ(1− τ)

τ 1 λ

φτ (λ)

Figure 1. Graph of the function φτ ; see (16).

We introduce the function φτ : [0, 1]→ R by

(16) φτ (λ) =

{
λ(1− τ) for λ ≤ τ
(1− λ)τ for λ ≥ τ,

which takes its maximum value τ(1 − τ) at λ = τ ; see Figure 1. Note that for large n, we
get

(17)
1

n dn

[nλ]∑
i=1

n∑
j=[nλ]+1

(µj − µi) ∼
nhn
dn

φτ (λ).

Thus, in order for the second term in (14) to converge as n → ∞, we have to choose the
level shift hn ∼ c dn/n. When n is large, this is exactly the order of the level shift that can
be detected with a nontrivial power, that is with a power which is neither 0 nor 1.
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Theorem 2.1. Let (ξi)i≥1 be a stationary Gaussian process with mean zero, variance 1
and autocovariance function as in (4) with 0 < D < 1

m
. Moreover, let G : R → R be a

measurable function satisfying E(G2(ξ)) < ∞ and define Xi = µi + G(ξi). Then under the
local alternative Aτ,hn(n) with

(18) hn ∼
dn
n
c,

for an arbitrary constant c, the process (Dn(λ))0≤λ≤1 in (14) converges in distribution to the
process

(19)
(am
m!

(λZm(1)− Zm(λ)) + c φτ (λ)
)
0≤λ≤1

,

where (Zm(λ))λ≥0 denotes the m-th order Hermite process with Hurst parameter H = 1 −
Dm
2
∈ (1

2
, 1), where am is given by (13) and φτ (λ) by (16).

Proof. We use the decomposition (14). The first term on the right hand side has the
same distribution as Dn(λ) under the hypothesis, and thus converges in distribution to
am
m!

(λZm(1)− Zm(λ)). Regarding the second term, we observe that by (18) and (15) we get

1

n dn

[nλ]∑
i=1

n∑
j=[nλ]+1

(µj − µi) ∼
{

c
n2 [λn](n− [τn]) for λ ≤ τ
c
n2 (n− [λn])[τn] for λ ≥ τ.

→ c φτ (λ),

uniformly in λ ∈ [0, 1], as n→∞. �

Remark 2.2. (i) Observe that for c = 0 we recover the limit distribution under the null
hypothesis. Thus, Theorem 2.1 is a generalization of the results obtained previously under
the null hypothesis. The limit process is a fractional bridge process. When m = 1, this
process is a fractional Gaussian bridge. For m > 1, the process is non-Gaussian.

(ii) Under the local alternative, i.e. when c 6= 0, the limit process is the sum of a fractional
bridge process and the deterministic function c φτ .

As an application of the continuous mapping theorem, we obtain the following corollary.

Corollary 2.3. Under the alternative Aτ,hn(n) with hn ∼ dn
n
c, Dn as defined in (7) converges

in distribution to

(20) sup
0≤λ≤1

∣∣∣am
m!

(λZm(1)− Zm(λ)) + c φτ (λ)
∣∣∣ .

Remark 2.4. (i) The limit distribution (20) depends on the constant c. For c = 0, we
obtain the limit distribution under the null hypthesis. Quantiles of this limit distribution
were calculated numerically via a Monte-Carlo simulation by Dehling, Rooch and Taqqu
(2013), Table 1. Increasing the value of |c| leads to a shift of the distribution to the right.
If c = ∞, that is, if hn tends slower to zero than dn

n
c for any c > 0, then the correct

normalization for Dn(λ) should go to ∞ at a higher rate which would kill the random part
(λZm(1)− Zm(λ)) in (19), and hence the level shift could be detected precisely. The power
of the asymptotic test would be equal to 1 in this case.

(ii) For a given τ ∈ [0, 1], the function φτ (λ) takes its maximum value in λ = τ , and this
maximum value equals τ(1− τ). Thus, for values of τ close to 0 and close to 1, τ(1− τ) is
close to 0, and thus the effect of adding the term cφτ (λ) is rather small. As a result, the
power of the test is small at level shifts that occur very early or very late in the process.

(iii) The higher the level shift and the closer λ is to τ , the easier it is to detect the level shift.
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(iv) If the observations are short-range dependent, one can typically detect level shifts hn
of size

√
n
n

= 1√
n
, but here, because of long-range dependence, the level shifts that can be

detected are of smaller order dn
n
∼ cn1−Dm/2L(n)

n
= cn−Dm/2L(n); note that Dm < 1.

We will now apply Corollary 2.3 in order to make power calculations for the change-point
test that rejects for large values of Dn. Under the null hypothesis of no level shift,

Dn
D−→ sup

0≤λ≤1

|am|
m!
|λZm(1)− Zm(λ)|.

If we denote by qα the upper α-quantile of the distribution of sup0≤λ≤1 |λZm(1) − Zm(λ)|,
we obtain

lim
n→∞

PH

(
Dn ≥

|am|
m!

qα

)
= P

(
sup

0≤λ≤1

|am|
m!
|λZm(1)− Zm(λ)| ≥ |am|

m!
qα

)
= α,

where PH indicates the probability under the null hypothesis H. Thus, the test that rejects

the null hypothesis H when Dn ≥ |am|
m!
qα has asymptotic level α. If hn is chosen as in (18),

we obtain under the alternative Aτ,hn(n)
(21)

lim
n→∞

PAτ,hn (n)

(
Dn ≥

|am|
m!

qα

)
= P

(
sup

0≤λ≤1

∣∣∣am
m!

(λZm(1)− Zm(λ)) + c φτ (λ)
∣∣∣ ≥ |am|

m!
qα

)
.

Thus, for large n, the power of our test at the alternative Aτ,hn(n) is approximately given
by the right-hand side of (21).

We may also apply Corollary 2.3 in order to determine the size of a level shift at time [τn]
that can be detected with a given probability β. First, we calculate c = c(α, β) such that

(22) P

(
sup

0≤λ≤1

∣∣∣am
m!

(λZm(1)− Zm(λ)) + c φτ (λ)
∣∣∣ ≥ |am|

m!
qα

)
= β.

Thus, by (21), we get that the asymptotic power of the test at the alternative Aτ,hn(n) is
equal to β. Thus, given a sample size n, we can detect a level shift of size hn = dn

n
c(α, β) at

time [τn] with probability β with a level α test based on the test statistic Dn.

3. Power of the Wilcoxon Change-Point Test under Local Alternatives

In the context of the Wilcoxon change-point test, the Hermite rank is not that of the
function G, but of the class of functions

(23) 1{G(ξi)≤x} − F (x), x ∈ R,

where F (x) = E(1{G(ξi)≤x}) = P (G(ξi) ≤ x). We define the Hermite expansion of the class
of functions (23) as

1{G(ξi)≤x} − F (x) =
∞∑
q=1

Jq(x)

q!
Hq(ξi),

where Hq is again the q-th order Hermite polynomial and where the coefficients are

(24) Jq(x) = E
(
Hq(ξi)1{G(ξi)≤x}

)
.

We define the Hermite rank of the class of functions (23) as

m := min{q ≥ 1 : Jq(x) 6= 0 for some x ∈ R}.
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Theorem 3.1. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean zero, vari-
ance 1 and autocovariance function as in (4) with 0 ≤ D < 1

m
. Moreover, let G : R → R

be a measurable function, and assume that G(ξk) has continuous distribution function F (x).
Let m denote the Hermite rank of the class of functions (23), let dn be as in (11), and let
the level shift hn be as in (18). Then, under the sequence of alternatives Aτ,hn, defined in
(8), if hn → 0 as n→∞, the process

(25)

 1

n dn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
1{Xi≤Xj} −

1

2

)
− n

dn
φτ (λ)

∫
R
(F (x+ hn)− F (x))dF (x)


0≤λ≤1

converges in distribution towards the process

(26)

(∫
R Jm(x)dF (x)

m!

(
Zm(λ)− λZm(1)

))
0≤λ≤1

,

where (Zm(λ))λ≥0 denotes the m-th order Hermite process with Hurst parameter H = 1 −
Dm
2
∈ (1

2
, 1) and where Jm(x) is defined as in (24).

Remark 3.2. (i) The normalization dn and the processes (Zm(λ))λ≥0 in Theorem 2.1 and
Theorem 3.1 are the same.

(ii) Since, by assumption, the distribution F (x) ofG(ξk) is continuous, it follows from integra-
tion by parts that

∫
R F (x)dF (x) = 1

2
. This explains the 1/2 in (25) because

∫
R F (x)dF (x) =

E(1{X1≤X′1}), where X ′1 is an independent copy of X1. The independence assumption is rea-
sonable as the dependence between Xi and Xj vanishes asymptotically when |i− j| → ∞.

(iii) As noted at the beginning of the proof, the first part of (25) converges to (26) under
the null hypothesis. We show in the proof that the second part of (25) compensates for the
presence of the alternatives Aτ,hn .

(iv) We make no assumption about the exact order of the sequence (hn)n≥1. Theorem 3.1
holds under the very general assumption that hn → 0, as n→∞.

(v) If we choose (hn)n≥1 as in (18), the centering constants in (25) converge, provided some
technical assumptions are satisfied. To see this, observe that

n

dn
φτ (λ)

∫
R
(F (x+ hn)− F (x))dF (x) ∼ nhn

dn
φτ (λ)

∫
R

F (x+ hn)− F (x)

hn
dF (x)

→ c φτ (λ)

∫
R
f(x)dF (x)

= c φτ (λ)

∫
R
f 2(x)dx.

The convergence in the next to last step requires some justification – this holds, e.g. if F is
differentiable with bounded derivative f(x).

Corollary 3.3. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean zero, vari-
ance 1 and autocovariance function as in (4) with 0 ≤ D < 1

m
. Moreover, let G : R→ R be

a measurable function, and assume that G(ξk) has a distribution function F (x) with bounded
density f(x). Let m denote the Hermite rank of the class of functions 1{G(ξi)≤x} − F (x),

x ∈ R. Then, under the sequence of alternatives Aτ,hn, defined in (8), with hn ∼ cdn
n

we
obtain that

(27)

 1

n dn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
1{Xi≤Xj} −

1

2

)
0≤λ≤1
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converges in distribution to the process(∫
R Jm(x)dF (x)

m!
(Zm(λ)− λZm(1)) + cφτ (λ)

∫
R
f 2(x)dx

)
0≤λ≤1

.

Proof of Theorem 3.1. In our proof, we will make use of the limit theorem that was
derived in Dehling, Rooch and Taqqu (2013) under the null hypothesis. They showed (see
Theorem 1) that

(28)
1

n dn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
1{G(ξi)≤G(ξj)} −

1

2

)
→
∫
R Jm(x)dF (x)

m!
(Zm(λ)− λZm(1)).

In order to make use of this result, we will decompose the test statistic into a term whose
distribution is the same both under the null hypothesis as well as under the alternative, and
a second term which, after proper centering converges to zero. As in Dehling, Rooch and
Taqqu (2013), we will express the test statistic as a functional of the empirical distribution
function of the G(ξi), namely

Fk(x) =
1

k

k∑
i=1

1{G(ξi)≤x}.

Given integers k, l with k ≤ l we denote by Fk,l(x) the empirical distribution function based
on G(ξk), . . . , G(ξl), i.e.

(29) Fk,l(x) =
1

l − k + 1

l∑
i=k

1{G(ξi)≤x}.

Recall that under the local alternative, we have

Xi =

{
G(ξi) + µ for i = 1, . . . , [nτ ]
G(ξi) + µ+ hn for i = [nτ ] + 1, . . . , n.

Thus, we obtain for λ ≤ τ ,

[nλ]∑
i=1

n∑
j=[nλ]+1

1{Xi≤Xj} =

[nλ]∑
i=1

[nτ ]∑
j=[nλ]+1

1{G(ξi)+µ≤G(ξj)+µ} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξi)+µ≤G(ξj)+µ+hn}

=

[nλ]∑
i=1

[nτ ]∑
j=[nλ]+1

1{G(ξi)≤G(ξj)} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξi)≤G(ξj)+hn}

=

[nλ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

(
1{G(ξi)≤G(ξj)+hn} − 1{G(ξi)≤G(ξj)}

)
=

[nλ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn}.(30)
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In the same way, we obtain for λ ≥ τ ,

[nλ]∑
i=1

n∑
j=[nλ]+1

1{Xi≤Xj}

=

[nτ ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)+µ≤G(ξj)+µ+hn} +

[nλ]∑
i=[nτ ]+1

n∑
j=[nλ]+1

1{G(ξi)+µ+hn≤G(ξj)+µ+hn}

=

[nτ ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)+hn} +

[nλ]∑
i=[nτ ]+1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)}

=

[nλ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)} +

[nτ ]∑
i=1

n∑
j=[nλ]+1

(
1{G(ξi)≤G(ξj)+hn} − 1{G(ξi)≤G(ξj)}

)
=

[nλ]∑
i=1

n∑
j=[nλ]+1

1{G(ξi)≤G(ξj)} +

[nτ ]∑
i=1

n∑
j=[nλ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn}(31)

Thus, in order to prove Theorem 3.1, it suffices to show that the following two terms,

(32)
1

n dn
sup

0≤λ≤τ

∣∣∣∣∣∣
[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn} − n2λ(1−τ)

∫
R
(F (x+ hn)−F (x))dF (x)

∣∣∣∣∣∣
and

(33)
1

n dn
sup
τ≤λ≤1

∣∣∣∣∣∣
[nτ ]∑
i=1

n∑
j=[nλ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn} − n2τ(1−λ)

∫
R
(F (x+ hn)−F (x))dF (x)

∣∣∣∣∣∣
both converge to zero in probability. We first show this for (32). Observe that

[nλ]∑
i=1

n∑
j=[nτ ]+1

1{G(ξj)<G(ξi)≤G(ξj)+hn} − n2λ(1− τ)

∫
R

(F (x+ hn)− F (x)) dF (x)

= [nλ]
n∑

j=[nτ ]+1

(
F[nλ](G(ξi) + hn)− F[nλ](G(ξi))

)
−n2λ(1− τ)

∫
R

(F (x+ hn)− F (x)) dF (x)

= [nλ](n−[nτ ])

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
dF[nτ ]+1,n(x)

−n2λ(1− τ)

∫
R

(F (x+ hn)− F (x)) dF (x)

= [nλ](n−[nτ ])

(∫
R
(F[nλ](x+ hn)− F[nλ](x))dF[nτ ]+1,n(x)−

∫
R
(F (x+ hn)− F (x))dF (x)

)
+
(
[nλ](n− [nτ ])− n2λ(1− τ)

) ∫
R
(F (x+ hn)− F (x))dF (x)

Note that |[nλ](n− [nτ ])− n2λ(1− τ)| ≤ n and |
∫
R(F (x+ hn)− F (x))dF (x)| ≤ 1. Thus

1

n dn

(
[nλ](n− [nτ ])− n2λ(1− τ)

) ∫
R
(F (x+ hn)− F (x))dF (x) ≤ 1

dn
→ 0,
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as n→∞. Hence, in order to show that (32) converges to zero in probability, it suffices to
show that
(34)

1

n dn
[nλ](n−[nτ ])

(∫
R
(F[nλ](x+ hn)− F[nλ](x))dF[nτ ]+1,n(x)−

∫
R
(F (x+ hn)− F (x))dF (x)

)
converges to zero, in probability. In order to prove this, we rewrite the difference of the
integrals in (34) as∫

R

(
F[nλ](x+ hn)− F[nλ](x)

)
dF[nτ ]+1,n(x)−

∫
R

(F (x+ hn)− F (x)) dF (x)(35)

=

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
− (F (x+ hn)− F (x)) dF[nτ ]+1,n(x)

+

∫
R

(F (x+ hn)− F (x)) d(F[nτ ]+1,n − F )(x)

=

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
− (F (x+ hn)− F (x)) dF[nτ ]+1,n(x)

−
∫
R

(
F[nτ ]+1,n(x)− F (x)

)
d(F (x+ hn)− F (x)),

where we have used integration by parts in the final step. Thus, in order to prove that (34)
converges to zero, it suffices to show that the following two terms converge in probability, as
n→ 0,

1

dn
[nλ]

∫
R

(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
dF[nτ ]+1,n(x)→ 0(36)

1

dn
(n− [nτ ])

∫
R

(
F[nτ ]+1,n(x)− F (x)

)
d(F (x+ hn)− F (x))→ 0.(37)

In order to prove (36) and (37), we now apply the empirical process non-central limit theorem
of Dehling and Taqqu (1989) which states that(

d−1n [nλ](F[nλ](x)− F (x))
)
x∈[−∞,∞],λ∈[0,1]

D−→(J(x)Z(λ))x∈[−∞,∞],λ∈[0,1],

where

J(x) = Jm(x) = E
(
1{G(ξi)≤x}Hm(ξi)

)
and Z(λ) =

Zm(λ)

m!
.

By the Dudley-Wichura version of Skorohod’s representation theorem (see Shorack and Well-
ner (1986), Theorem 2.3.4) we may assume without loss of generality that convergence holds
almost surely with respect to the supremum norm on the function space D([0, 1]× [−∞,∞]),
i.e.

(38) sup
λ∈[0,1],x∈R

∣∣d−1n [nλ](F[nλ](x)− F (x))− J(x)Z(λ)
∣∣ −→ 0 a.s.

Note that by definition, for any λ ≤ τ

([nτ ]− [nλ])(F[nλ]+1,[nτ ](x)− F (x)) = [nτ ](F[nτ ](x)− F (x))− [nλ](F[nλ](x)− F (x)).

Hence, we may deduce from (38) the following limit theorem for the empirical distribution
of the observations X[nλ]+1, . . . , X[nτ ],

(39) sup
0≤λ≤τ,x∈R

∣∣d−1n ([nτ ]− [nλ])(F[nλ]+1,[nτ ](x)− F (x))− J(x)(Z(τ)− Z(λ))
∣∣→ 0,
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almost surely. In the same way, we obtain

(40) sup
0≤λ≤1,x∈R

∣∣d−1n (n− [nλ])(F[nλ]+1,n − F (x))− J(x)(Z(1)− Z(λ))
∣∣→ 0,

almost surely. Now we return to (36) and write∣∣∣∣∫
R

1

dn
[nλ]

(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
dF[nτ ]+1,n(x)

∣∣∣∣(41)

≤
∣∣∣∣∫

R
(J(x+ hn)− J(x))Z(λ)dF[nτ ]+1,n(x)

∣∣∣∣
+ sup

x∈R,0≤λ≤1

∣∣∣∣ 1

dn
[nλ]

(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
−(J(x+ hn)− J(x))Z(λ)

∣∣∣∣
≤
∣∣∣∣∫

R
(J(x+ hn)− J(x))dF[nτ ]+1,n(x)

∣∣∣∣ sup
0≤λ≤1

|Z(λ)|

+ sup
x∈R,0≤λ≤1

∣∣∣∣ 1

dn
[nλ]

(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
−(J(x+ hn)− J(x))Z(λ)

∣∣∣∣.
The second term on the right-hand side converges to zero by (38). Concerning the first term,
note that

(42) J(x) =

∫
R

1{G(y)≤x}Hm(y)φ(y)dy = −
∫
R

1{x≤G(y)}Hm(y)φ(y)dy,

where φ(y) = 1√
2π
e−y

2/2 denotes the standard normal density function. For the second

identity, we have used the fact that G(ξ), by assumption, has a continuous distribution, and
that

∫
RHm(y)φ(y)dy = 0, for m ≥ 1. Using (42) we thus obtain∫

R
J(x)dF[nτ ]+1,n(x) = −

∫
R

∫
R

1{x≤G(y)}Hm(y)φ(y)dydF[nτ ]+1,n(x)(43)

= −
∫
R

∫
R

1{x≤G(y)}dF[nτ ]+1,n(x)Hm(y)φ(y)dy

= −
∫
R
F[nτ ]+1,n(G(y))Hm(y)φ(y)dy,

and, using analogous arguments,

(44)

∫
R
J(x+ hn)dF[nτ ]+1,n(x) = −

∫
R
F[nτ ]+1,n(G(y)− hn)Hm(y)φ(y)dy.

By the Glivenko-Cantelli theorem, applied to the stationary, ergodic process (G(ξi))i≥1, we
get supx∈R |Fn(x)− F (x)| → 0, almost surely. Since

F[nτ ]+1,n(x) =
n

n− [nτ ]
Fn(x)− [nτ ]

n− [nτ ]
F[nτ ](x),

we get that, almost surely,

(45) sup
x∈R

∣∣F[nτ ]+1,n(x)− F (x)
∣∣→ 0.
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Returning to the first term on the right-hand side of (41), we obtain, using (43) and (44),∣∣∣∣∫
R

(J(x+ hn)− J(x)) dF[nτ ]+1,n(x)

∣∣∣∣
=

∣∣∣∣∫
R

(
F[nτ ]+1,n(G(y)− hn)− F[nτ ]+1,n(G(y))

)
Hm(y)φ(y)dy

∣∣∣∣
≤
∫
R
|F (G(y)− hn)− F (G(y))| |Hm(y)|φ(y)dy

+2 sup
x

∣∣F[nτ ]+1,n(x)− F (x)
∣∣ ∫

R
|Hm(y)|φ(y)dy.

Both terms on the right-hand-side converge to zero; the second one by (45), the first one by
continuity of F , the fact that hn → 0, and Lebesgue’s dominated convergence theorem. In
both cases, we have made use of the fact that

∫
|Hm(y)|φ(y)dy < ∞. Thus we have finally

established (36). In order to prove (37), we observe that

1

dn
(n− [nτ ])

∫
R

(
F[nτ ]+1,n(x)− F (x)

)
d(F (x+ hn)− F (x))

≤
∣∣∣∣∫

R
J(x)(Z(τ)− Z(1))d(F (x+ hn)− F (x))

∣∣∣∣
+ sup

x∈R

∣∣∣∣ 1

dn
(n− [nτ ])(F[nτ ]+1,n(x)− F (x))− J(x)(Z(τ)− Z(1))

∣∣∣∣
≤
∣∣∣∣∫

R
J(x)d(F (x+ hn)− F (x))

∣∣∣∣ |Z(τ)− Z(1)|

+ sup
x∈R

∣∣∣∣ 1

dn
(n− [nτ ])(F[nτ ]+1,n(x)− F (x))− J(x)(Z(τ)− Z(1))

∣∣∣∣ .
The second term on the right-hand side converges to zero, by (40). Concerning the first
term, note that∫

R
J(x)d(F (x+ hn)− F (x)) = E (J(G(ξi)− hn)− J(G(ξi))) .

Applying Lebesgue’s dominated convergence theorem and making use of the fact that, by
assumption, J is continuous, we obtain that

∫
R J(x)d(F (x + hn)− F (x))→ 0. In this way,

we have finally proved that (32) converges to zero, in probability. By similar arguments, we
can prove this for (33), which finally ends the proof of Theorem 3.1. �

4. ARE of the Wilcoxon Change-Point Test and the CUSUM Test for LRD
Data

In this section, we calculate the asymptotic relative efficiency (ARE) of the Wilcoxon
change-point test with respect to the CUSUM test. To do so, we calculate the number of
observations needed to detect a small level shift h at time [τ n] with a test of given level
α and given power β, both for the Wilcoxon change-point test and the CUSUM test, and
denote these numbers by nW and nC , respectively. We then define the asymptotic relative
efficiency of the Wilcoxon change-point test with respect to the CUSUM test by

(46) ARE(W,C) = lim
h→0

nC
nW

.

It will turn out that the limit (46) exists and that the asymptotic relative efficiency does not
depend on the choice of τ, α, β. If this limit is larger than 1, then the CUSUM test requires
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a larger sample size to detect the level shift, and hence the Wilcoxon change-point test is
(asymptotically) more efficient.

In the remaining part of this section, we will focus on the case when m = 1 both for the
CUSUM as well as the Wilcoxon change-point test, i.e. when the Hermite rank of G(ξ1) and
of the class of functions 1{G(ξ1)≤x} − F (x), x ∈ R, are both equal to 1. This is the case, for
example, when G is a strictly monotone function. In this case∫

R
J1(x)dF (x) = − 1

2
√
π
,

see Relation (20) in Dehling, Rooch and Taqqu (2013), showing that the Hermite rank of
the class of functions 1{G(ξ1)≤x} − F (x), x ∈ R equals 1. Focusing now on G(ξ1) and using
integration by parts, we get that the first order Hermite coefficient a1 of G equals

a1 = E(G(ξ1)ξ1) =

∫
R
G(x)xφ(x)dx = −

∫
R
G(x)φ′(x)dx =

∫
R
φ(x)dG(x) > 0,

where φ(x) = 1√
2π
e−x

2/2 denotes the standard normal density function. Thus, the Hermite

rank of G(ξi) equals 1, as well.
In this case, i.e. when m = 1, the Hermite process arising as limit in Theorem 2.1,

Theorem 3.1 and Corollary 3.3 is fractional Brownian motion (BH(λ))0≤λ≤1. Note that
fractional Brownian motion is symmetric, i.e. (−BH(λ))0≤λ≤1 has the same distribution as
(BH(λ))0≤λ≤1. Thus the limit processes in Theorem 2.1 and Corollary 3.1 can also be written
as

(47) (|a1|(BH(λ)− λBH(1)) + c φτ (λ))0≤λ≤1 ,

(48)

(∣∣∣∣∫
R
J1(x)dF (x)

∣∣∣∣ (BH(λ)− λBH(1)) + c φτ (λ)

∫
R
f 2(x)dx

)
0≤λ≤1

.

As preparation, we first calculate a quantity that is related to the asymptotic relative
efficiency, namely the ratio of the sizes of level shifts that can be detected by the two tests,
based on the same number of observations n, again for given values of τ, α, β. We denote the
corresponding level shifts by hW (n) and hC(n), respectively, assuming that these numbers
depend on n in the following way:

hW (n) = cW
dn
n

(49)

hC(n) = cC
dn
n
.(50)

In order to simplify the following considerations, we take a one-sided change-point test, thus
rejecting the hypothesis of no change-point for large values of

max
1≤k≤n−1

k∑
i=1

n∑
j=k+1

(Xj −Xi)

or

max
1≤k≤n−1

k∑
i=1

n∑
j=k+1

1{Xi≤Xj},

respectively. These are the appropriate tests when testing against the alternative of a non-
negative level shift. In order to obtain tests that have asymptotically level α, the CUSUM
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test and the Wilcoxon change-point test reject the null-hypothesis when

1

n dn |a1|
max

1≤k≤n−1

k∑
i=1

n∑
j=k+1

(Xj −Xi) ≥ qα,(51)

1

n dn |
∫
R J1(x)dF (x)|

max
k=1,...,n−1

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
≥ qα,(52)

where qα denotes the upper α quantile of the distribution of sup0≤λ≤1(BH(λ) − λBH(1)).
This follows from Theorem 2.1 and Corollary 3.3 after applying the continuous mapping
theorem. The constants a1 and the functions J1(x) are defined in (13) and (24), respectively,
and have just been computed. Under the sequence of alternatives Aτ,hC(n), the asymptotic
distribution of the test statistic in (51) is given by

sup
0≤λ≤1

(
BH(λ)− λBH(1) +

cC
|a1|

φτ (λ)

)
;

see Theorem 2.1. Under the sequence of alternatives Aτ,hW (n), the asymptotic distribution
of the test statistic in (52) is given by

sup
0≤λ≤1

(
BH(λ)− λBH(1) +

cW
∫
R f

2(x)dx

|
∫
R J1(x)dF (x)|

φτ (λ)

)
;

see Corollary 3.3. Thus, the asymptotic power of the CUSUM test is given by

lim
n→∞

PAτ,hC (n)

(
1

n dn |a1|
max

1≤k≤n−1

k∑
i=1

n∑
j=k+1

(Xj −Xi) ≥ qα

)

= P

(
sup

0≤λ≤1

(
BH(λ)− λBH(1) +

cC
|a1|

φτ (λ)

)
≥ qα

)
.(53)

In the same way, we obtain the power of the Wilcoxon change-point test

lim
n→∞

PAτ,hW (n)

(
1

n dn |
∫
R J1(x)dF (x)|

max
1≤k≤n−1

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
≥ qα

)

= P

(
sup

0≤λ≤1

(
BH(λ)− λBH(1) +

cW
∫
R f

2(x)dx

|
∫
R J1(x)dF (x)|

φτ (λ)

)
≥ qα

)
.(54)

Thus, if we want the two tests to have identical power, we have to choose cC and cW in such
a way that

cC
|a1|

φτ (λ) =
cW
∫
R f

2(x)dx

|
∫
R J1(x)dF (x)|

φτ (λ),

which again yields by (49) and (50),

(55)
hC(n)

hW (n)
=
cC
cW

=
|a1|

∫
R f

2(x)dx

|
∫
R J1(x)dF (x)|

.

This quantity gives the ratio of the height of a level shift that can be detected by a CUSUM
test over the height that can be detected by a Wilcoxon change-point test, when both tests
are assumed to have the same level α, the same power β and the shifts are taking place at
the same time [nτ ]. In addition, we assume that the tests are based on the same number of
observations n, which is supposed to be large.
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Example 4.1. In the case of Gaussian data, i.e. when G(ξ) = ξ, we have m = 1, a1 =

E(ξ1H1(ξ1)) = E(ξ21) = 1,
∫
R f

2(x)dx =
∫
R

1
2π
e−x

2
dx = 1

2
√
π

and
∫
R J1(x)dF (x) = − 1

2
√
π
; see

Dehling, Rooch and Taqqu (2013), Relation (20). Thus we obtain

(56)
cC
cW

=
1/2
√
π

1/2
√
π

= 1.

Hence, both tests can asymptotically, as n→∞, detect level shifts of the same height.

The level shifts can be expressed in terms of

ψ(t) := P

(
sup

0≤λ≤1
(BH(λ)− λBH(1) + t φτ (λ)) ≥ qα

)
,

viewed as a function of t, for fixed values of τ and α. The function ψ is monotonically
increasing. We define the generalized inverse,

ψ−(β) := inf{t ≥ 0 : ψ(t) ≥ β}.

Thus, we get

(57) P

(
sup

0≤λ≤1

(
BH(λ)− λBH(1) + ψ−(β)φτ (λ)

)
≥ qα

)
≥ β,

and, in fact, for given τ , α and β, ψ−(β) is the smallest number having this property.
We can now apply Theorem 2.1 and Theorem 3.1. By comparing (53) and (57), we can

detect a level shift of size h at time [nτ ] with a CUSUM test of level α and power β based
on n observations, if hC(n) ∼ dn

n
cC , where cC satisfies cC

|a1| = ψ−(β). Hence we obtain that

hC(n) has to satisfy

hC(n) =
dn
n
|a1|ψ−(β) = n−D/2L(n)|a1|ψ−(β).

Similarly, by comparing (54) and (57), we get for the Wilcoxon change-point test that n has
to satisfy

hW (n) = n−D/2L(n)
|
∫
R J1(x)dF (x)|∫
R f

2(x)dx
ψ−(β).

In the following theorem, we compute the asymptotic relative efficiency of the Wilcoxon
change point test with respect to the CUSUM test.

Theorem 4.2. Let (ξi)i≥1 be a stationary Gaussian process with mean zero, variance 1
and autocovariance function as in (4). Moreover, let G : R → R be a measurable function
satisfying E(G2(ξ1)) <∞, and such that G(ξ1) has a distribution function F (x) with bounded
density f(x). Assume that the Hermite rank of G(ξ1) as well as the Hermite rank of the class
of functions (1{G(ξ1)≤x} − F (x)), x ∈ R are equal to 1. Moreover assume that 0 < D < 1.
Then

(58) ARE(TW , TC) =

( |a1| ∫R f 2(x)dx

|
∫
R J1(x)dF (x)|

)2/D

,

where TC and TW denote the CUSUM test and the Wilcoxon change-point test, respectively.

Proof. For abbreviation, we define

(59) b =

( | ∫R J1(x)dF (x)|
|a1|

∫
R f

2(x)dx

)2/D

.
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We will show that the Wilcoxon change-point test based on b n observations has asymptot-
ically the same power as the CUSUM test based on n observations. We will consider the
local alternative

(60) ACn = Aτ,hCn = Aτ,c dn
n

(n)

for the CUSUM test, and the local alternative

(61) AWn = Aτ,hWn = Aτ,c b
n
dn/b

(n)

for the Wilcoxon change-point test. Note that under AWbn the level shift is the same as under
ACn . Further observe that, by (11),

hWn ∼ c
b

n
dn/b = c

b

n
κ
1/2
1 (n/b)1−D/2L1/2(n/b)

= c
b

n
κ
1/2
1 n1−D/2L1/2(n)bD/2−1

L1/2(n/b)

L1/2(n)

= c
dn
n
bD/2

(
L(n/b)

L(n)

)1/2

∼ c
dn
n
bD/2,(62)

where we have used the fact that L(n) is a slowly varying function.
For the CUSUM test, we can apply Corollary 2.3 and we obtain under the local alternative

ACn , that
1

|a1|
Dn

D−→ sup
0≤λ≤1

{(BH(λ)− λBH(1)) +
1

|a1|
cφτ (λ)}.

For the Wilcoxon change-point test, we apply Corollary 3.3 with c replaced by c bD/2, in
view of (62). We thus obtain under the local alternative AWn ,

1

|
∫
R J1(x)dF (x)|

Wn
D−→ sup

0≤λ≤1

{
(BH(λ)− λBH(1)) +

∫
R f

2(x)dx

|
∫
R J1(x)dF (x)|

c bD/2φτ (λ)

}
= sup

0≤λ≤1

{
(BH(λ)− λBH(1)) +

1

|a1|
c φτ (λ)

}
,

by (62). Let qα denote the upper α-quantile of the distribution of sup0≤λ≤1{BH(λ)−λBH(1)};
then the test that rejects the null hypothesis when 1

|a1|Dn ≥ qα or when 1
|
∫
R J1(x)dF (x)|Wn ≥ qα,

respectively, have asymptotically level α. The power of these tests at the alternatives ACn
and AWn , respectively, converges to

P

(
sup

0≤λ≤1

{
(BH(λ)− λBH(1)) +

1

|a1|
c φτ (λ)

}
≥ qα

)
.

Note that this also holds for the power along any other sequence, such as bn. Since the level
shift at the alternative ACn equals the level shift at the alternative AWbn, we have shown that
the Wilcoxon change-point test requires b n observations to yield the same performance as
the CUSUM test with n observations. Thus ARE(TW , TC) = 1/b, proving the theorem. �

5. ARE of the Wilcoxon Change-Point Test and the CUSUM Test for IID
Data

We have shown in Example 4.1 that in the case of LRD data, the ARE of the Wilcoxon
change-point test and the CUSUM test is 1 for Gaussian data. In this section, we will
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compare this surprising result with the case of i.i.d. Gaussian data. We will find that in this
case, the ARE is 3

π
, i.e. the Wilcoxon change-point test is less efficient than the CUSUM

test.
We consider i.i.d. observations X1, . . . , Xn with Xi ∼ N (0, 1) and the U -statistic

Uk =
k∑
i=1

n∑
j=k+1

h(Xi, Xj).

As kernel we will choose hC(x, y) = y − x and hW (x, y) = I{x≤y} − 1
2
, in other words we

consider

U
(C)
k =

k∑
i=1

n∑
j=k+1

hC(Xi, Xj) =
k∑
i=1

n∑
j=k+1

(Xj −Xi),

U
(W )
k =

k∑
i=1

n∑
j=k+1

hW (Xi, Xj) =
k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)
.

Both kernels hC , hW are antisymmetric, i.e. they satisfy h(x, y) = −h(y, x), so in order to

determine the limit behaviour of U
(C)
k and U

(W )
k , we can apply the limit theorems of Csörgő

and Horváth (1988).

Theorem 5.1. Let X1, . . . , Xn be i.i.d. random variables with Xi ∼ N (0, 1). Under the null
hypothesis of no change in the mean, one has

sup
0≤λ≤1

∣∣∣∣ 1

n3/2
U

(C)
[λn] − BB1,n(λ)

∣∣∣∣ = oP (1)(63)

and

sup
0≤λ≤1

∣∣∣∣∣∣ 1

n3/2

√
1
12

U
(W )
[λn] − BB2,n(λ)

∣∣∣∣∣∣ = oP (1),(64)

where (BBi,n(λ))0≤λ≤1, i = 1, 2, is a sequence of Brownian bridges with mean E[BBi,n(λ)] = 0
and auto-covariance E[BBi,n(s) BBi,n(t)] = min(s, t)− st.
Proof. By Theorem 4.1 of Csörgő and Horváth (1988), it holds under the null hypothesis H
that

sup
0≤λ≤1

∣∣∣∣ 1

n3/2σ
U[λn] − BBn(λ)

∣∣∣∣ = oP (1)

where (BBn(λ))0≤λ≤1 is a sequence of Brownian bridges like BB1,n and BB2,n above and where

σ2 = E[h̃2(X1)] with h̃(t) = E[h(t,X1)]. The kernel h has to fulfill E[h2(X1, X2)] <∞ which
is the case for hC(x, y) = y − x and hW (x, y) = I{x≤y} − 1

2
and Gaussian Xi. �

Theorem 5.2. Let X1, . . . , Xn be i.i.d. random variables with Xi ∼ N (0, 1). Under the
sequence of alternatives Aτ,hn(n) and with hn = 1√

n
c, where c is a constant, one has(

1

n3/2
U

(C)
[λn]

)
0≤λ≤1

→ (BB1(λ) + cφτ (λ))0≤λ≤1(65)

and  1

n3/2

√
1
12

U
(W )
[λn]


0≤λ≤1

→

BB2(λ) +
c

2
√
π ·
√

1
12

φτ (λ)


0≤λ≤1

(66)
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in distribution, where (BBi(λ))0≤λ≤1 is a Brownian bridge, i = 1, 2.

Proof. First, we prove (65). Like for the case of LRD observations, we decompose the
statistic, so that we obtain under the sequence of alternatives Aτ,hn(n)

1

n3/2
U

(C)
[λn] =

1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(εj − εi) +
1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(µj − µi).

By Theorem 5.1, the first term on the right-hand side converges to a Brownian bridge BB(λ).
For the second term we have like in the proof for LRD observations

1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(µj − µi) ∼
√
nhnφτ (λ),

and in order for the right-hand side to converge, we have to choose

(67) hn =
1√
n
c.

Now let us prove (66). Again like for LRD observations, we decompose the statistic into one
term that converges like under the null hypothesis and one term which converges to a con-
stant. Under the sequence of alternatives Aτ,hn(n) and for the case λ ≤ τ , this decomposition
is

(68)
1

n3/2
U

(W )
[λn] =

1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(
I{εi≤εj} −

1

2

)
+

1

n3/2

[λn]∑
i=1

n∑
j=[τn]+1

I{εj<εi≤εj+hn}.

The first term converges uniformly to a Brownian Bridge, like under the null hypothesis. We
will show that, if the observations εi = G(ξi) are i.i.d. with c.d.f. F which has two bounded
derivatives F ′ = f and F ′′, the second term converges uniformly to cλ(1 − τ)

∫
R f

2(x) dx,
which is cφτ (λ)

∫
R f

2(x) dx for the case λ ≤ τ . In the case of standard normally distributed
G(ξi), i.e. for F = Φ and f = ϕ, this function is c(2

√
π)−1φτ (λ). To this end, we consider

the following sequence of Hoeffding decompositions for the sequence of kernels hn(x, y) =
I{y<x≤y+hn}:

(69) hn(x, y) = ϑn + h1,n(x) + h2,n(y) + h3,n(x, y)

Let X, Y ∼ F be i.i.d. random variables. Then we define

ϑn := E[hn(X, Y )] = P (Y ≤ X ≤ Y + hn)

=

∫
R

(∫ y+hn

y

f(x) dx

)
f(y) dy

=

∫
R

(F (y + hn)− F (y)) f(y) dy

= hn

∫
R

F (y + hn)− F (y)

hn
f(y) dy

∼ hn

∫
R
f 2(y) dy,(70)

where in the last step we have used that (F (y + hn)− F (y))/hn → f(y) and the dominated
convergence theorem. Moreover, we set

h1,n(x) := E[hn(x, Y )]− ϑn = E[I{Y <x≤Y+hn}]− ϑn
= F (x)− F (x− hn)− ϑn(71)
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and

h2,n(y) := E[hn(X, y)]− ϑn = E[I{y<X≤y+hn}]− ϑn
= F (y + hn)− F (y)− ϑn

and

h3,n(x, y) := hn(x, y)− h1,n(x)− h2,n(y)− ϑn
= I{y<x≤y+hn} − F (x) + F (x− hn) + ϑn − F (y + hn) + F (y).

We will now show that

(72) sup
0≤λ≤τ

1

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[τn]+1

(h1,n(εi) + h2,n(εj) + h3,n(εi, εj))

∣∣∣∣∣∣→ 0

in probability, and from this it follows by the sequence of Hoeffding decompositions (69) that

sup
0≤λ≤τ

1

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[τn]+1

(hn(εi, εj)− ϑn)

∣∣∣∣∣∣→ 0

i.e. that the second term in (68) converges uniformly to

lim
n→∞

1

n3/2

[λn]∑
i=1

n∑
j=[τn]+1

θn = lim
n→∞

1

n3/2
[λn](n− [τn])ϑn = λ(1− τ)c

∫
R
f 2(x) dx

by (70) and (67).
We use the triangle inequality and show the uniform convergence to 0 for each of the three

terms in (72) seperately. Since the parameter λ occurs only in the floor function value [λn],
the supremum is in fact a maximum, and the h1,n(εi) are i.i.d. random variables, so we can
use Kolmogorov’s inequality. We obtain for the first term in (72)

(73) P

 sup
0≤λ≤τ

n− [τn]

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

h1,n(εi)

∣∣∣∣∣∣ > s

 ≤ 1

s2
n2(1− τ)2

n3

[τn]∑
i=1

Var[h1,n(εi)].

Now consider an independent copy ε of the εi and the Taylor expansion of F around the
value of ε,

F (ε+ hn) = F (ε) + F ′(ε)hn +
F ′′(ε+ δ)

2
h2n,

where the last term is the Lagrange remainder and thus ε+ δ is between ε and ε+ hn. Then
we obtain

1

h2n
Var[h1,n(ε)] = Var

[
F (ε)− F (ε− hn)

hn

]
= Var

[
f(ε) + F ′′(ε+ δ)

hn
2

]
= Var [f(ε)] + Var

[
F ′′(ε+ δ)

hn
2

]
+ 2 (E[f(ε)F ′′(ε+ δ)hn]− E[f(ε)]E[F ′′(ε+ δ)hn]) ,

and since f = F ′ and F ′′ are bounded by assumption, we get Var[h1,n(ε)] = O(h2n). Since
hn → 0, the right-hand side of (73) converges to 0 as n increases.
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In the same manner, we obtain

(74) P

 sup
0≤λ≤τ

[λn]

n3/2

∣∣∣∣∣∣
n∑

j=[τn]+1

h2,n(εj)

∣∣∣∣∣∣ > s

 ≤ 1

s2
n2λ2

n3

n∑
j=1

Var[h2,n(εj)]→ 0.

Finally, we have to show that

(75) sup
0≤λ≤τ

1

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[τn]+1

h3,n(εi, εj)

∣∣∣∣∣∣→ 0

in probability. We set temporarily l := [λn] and T := [τn] and obtain from Markov’s
inequality

P

(
max
0≤l≤T

1

n3/2

∣∣∣∣∣
l∑

i=1

n∑
j=T+1

h3,n(εi, εj)

∣∣∣∣∣ > s

)
≤ 1

s2
E

[
max
0≤l≤T

1

n3/2

l∑
i=1

n∑
j=T+1

h3,n(εi, εj)

]2
.

Now for any collection of random variables Y1, . . . , Yk, one hasE[max{Y 2
1 , . . . Y

2
k }] ≤

∑k
i=1EY

2
i ,

so that

1

s2
E

[
max
0≤l≤T

1

n3/2

l∑
i=1

n∑
j=T+1

h3,n(εi, εj)

]2
≤ 1

s2
1

n3

T∑
l=1

E

[
l∑

i=1

n∑
j=T+1

h3,n(εi, εj)

]2

=
1

s2
1

n3

T∑
l=1

l∑
i=1

n∑
j=T+1

Var [h3,n(εi, εj)] ,

where in the last step we have used that h3,n(εi, εj) are uncorrelated by Hoeffding’s decom-
position. Now for two i.i.d. random variables ε, η, we have, like above with the Taylor
expansion of F :

Var [h3,n(ε, η)] = Var
[
I{η<ε≤η+hn} − F (ε) + F (ε− hn) + ϑn − F (η + hn) + F (η)

]
= Var

[
I{η<ε≤η+hn} − hn (f(ε) +OP (hn)) + hn (f(η) +OP (hn))

]
= Var

[
I{η<ε≤η+hn}

]
+ Var [hn (f(ε) + f(η) +OP (hn))]

+ 2Cov
[
I{η<ε≤η+hn}, hn (f(ε) + f(η) +OP (hn))

]
≤ (ϑn − ϑ2

n) + h2nO(1) + 2
√

(ϑn − ϑ2
n) · h2nO(1)

= O(hn),

using (70). We have just shown that

P

(
max
0≤l≤T

1

n3/2

∣∣∣∣∣
l∑

i=1

n∑
j=T+1

h3,n(εi, εj)

∣∣∣∣∣ > s

)
≤ 1

s2
O(hn),

which proves (75). So we have proven (68) for the case λ ≤ τ . The proof for λ > τ is
similar. �

Now the stage is set to calculate the ARE of the Wilcoxon test based on U
(W )
[λn] and the

CUSUM test based on U
(C)
[λn], as defined in the section about the ARE in the LRD case. Let

qα denote the upper α-quantile of the distribution of sup0≤λ≤1 BB(λ). By Theorem 5.2, the
power of the tests is given respectively by

(76) P

(
sup

0≤λ≤1
(BB(λ) + cCφτ (λ)) ≥ qα

)
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and

(77) P

(
sup

0≤λ≤1

(
BB(λ) + cW

1

σ · 2
√
π
φτ (λ)

)
≥ qα

)
where σ2 = 1/12 and we assume that

hW (n) =
cW√
n
, hC(n) =

cC√
n
.

Thus if we want both tests to have identical power, we must ensure that cC = cW/(σ · 2
√
π),

in other words
hC(n)

hW (n)
=
cC
cW

=
1

σ · 2
√
π
.

Now we define, as in the proof for LRD observations, the probability

ψ(t) := P

(
sup

0≤λ≤1
(BB(λ) + t φτ (λ)) ≥ qα

)
,

for whose generalized inverse ψ− holds

(78) P

(
sup

0≤λ≤1

(
BB(λ) + ψ−(β)φτ (λ)

)
≥ qα

)
≥ β.

Now, comparing (78) and (76), we conclude that we can detect a level shift of size h at time
[nτ ] with the CUSUM test of (asymptotic) level α and power β based on n observations, if
hC(n) = cC√

n
and where cC satisfies cC = ψ−(β); hence we obtain that hC(n) has to satisfy

hC(n) =
1√
n
ψ−(β).

In the same manner, we get for the Wilcoxon test the conditions hW (n) = cW√
n

and cW/(σ2
√
π) =

ψ−(β) and thus

hW (n) =
σ2
√
π√
n
ψ−(β).

Solving these two equations for n again and denoting the resulting numbers of observations
by nC and nW , respectively, we obtain

nC =

(
1

hC
ψ−(β)

)2

nW =

(
2σ
√
π

hW
ψ−(β)

)2

.

To obtain ARE(TW , TC), we equate hW and hC . We then obtain the following theorem.

Theorem 5.3. Let X1, . . . , Xn be i.i.d. random variables with Xi ∼ N (0, 1). Then

ARE(TW , TC) = lim
h→0

nC
nW

= (2σ
√
π)−2 =

3

π
,(79)

where TC, TW denote the one-sided CUSUM-test, respectively the one-sided Wilcoxon test,
for the test problem (H,Aτ,hn).
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6. Simulation Results

We have proven that for Gaussian data, the CUSUM test and the Wilcoxon change-point
test show asymptotically the same performance, i.e. that their ARE is 1. For Pareto(3,1)
distributed data, we obtain, using (58) and numerical integration, an ARE of approximately
(2.68)2/D. Now we will illustrate these findings by a simulation study.

6.1. Gaussian data. We consider realizations ξ1, . . . , ξn of a fGn process with Hurst pa-
rameter H = 0.7 (D = 0.6), using the fArma package in R, and create observations

Xi =

{
G(ξi) for i = 1, . . . , [nλ]

G(ξi) + h for i = [nλ] + 1, . . . , n
,

by applying a transformation G which is (with respect to the standard normal measure)
normalized and square-integrable: E[G(ξ)] = 0, E[G2(ξ)] = 1 for ξ ∼ N (0, 1). As a first
step, we choose G(t) = t in order to obtain Gaussian observations X1, . . . , Xn (later we
will choose a function G such that we obtain Pareto distributed data). In other words, we
consider data which follow the local alternative

Aλ,h :

{
µ = E[Xi] = 0 for i = 1, . . . , [nτ ]

µ = E[Xi] = h for i = [nτ ] + 1, . . . , n,

as in (8). In contrast to the simulations by Dehling, Rooch and Taqqu (2013), we choose a
sample size n = 2, 000 instead of n = 500. We let both the break point k = [τn] and the level
shift h := µk+1 − µk vary; specifically, we choose k = 100, 200, 600, 1000 (which corresponds
to τ = 0.05, 0.1, 0.3, 0, 5) and we let h = 0.5, 1, 2. For each of these situations, we will
compare the power of the CUSUM test and the power of the Wilcoxon change-point test in
the test problem (H,Aλ,h): We have repeated each simulation 10, 000 times and counted,
how often the respective test (correctly) rejected the null hypothesis.

Since our theoretical considerations yield an ARE of 1, we expect that both tests detect
jumps equally well – that means that both tests, set on the same level, detect jumps of the
same height and at the same position in the same number of observations with the same
relative frequency. And indeed, we can clearly see in Table 1 that the power of both tests
approximately coincides at many points; differences can be spotted only when the break
occurs early in the data.

relative jump position τ
0.05 0.1 0.3 0.5

h=0.5 0.074 0.153 0.767 0.874
h=1 0.153 0.694 1.000 1.000
h=2 0.828 1.000 1.000 1.000

relative jump position τ
0.05 0.1 0.3 0.5

h=0.5 0.072 0.143 0.765 0.876
h=1 0.128 0.602 1.000 1.000
h=2 0.321 1.000 1.000 1.000

Table 1. Power of the CUSUM test (left) and of the Wilcoxon change-point
test (right), for n = 2000 observations of fGn with LRD parameter H =
0.7, different break points [τn] and different level shifts h. Both tests have
asymptotically level 5%. The calculations are based on 10,000 simulation runs.
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6.2. Heavy tailed data. We consider again realizations ξ1, . . . , ξn of a fGn process with
Hurst parameter H = 0.7 (D = 0.6) and create observations

Xi =

{
G(ξi) for i = 1, . . . , [nλ]

G(ξi) + h for i = [nλ] + 1, . . . , n
,

by applying the transformation

G(t) =
1√
3/4

(
(Φ(t))−1/3 − 3

2

)
.

In this case, the first Hermite coefficient of G, obtained by numerical integration, equals
a1 ≈ −0.6784. This transformation G produces observations Xi = G(ξi) which follow
a standardized Pareto(3, 1) distribution with mean zero and variance 1. The probability
density function of Xi is given by

f(x) =

3
√

3
4

(√
3
4
x+ 3

2

)−4
if x ≥ −

√
1
3

0 else.

To the second sample of observations, X[τn]+1, . . . , Xn, we again add a constant h, but this
time we choose

(80) h = hn = c
dn
n

= cn−D/2

as in (18). We let the break point k = [τn] vary; here, we choose τ = 0.05, 0.1, 0.3, 0.5. We
let also the sample size vary; we will give details below. To these data, we have applied
the CUSUM test and the Wilcoxon change-point test, and under 10, 000 simulation runs we
counted how often the respective test (rightly) rejected the null hypothesis.

Now our theoretical considerations, see (58), predict for this situation

ARE = lim
n→∞

nC
nW

=

( |a1| ∫R f 2(x) dx

|
∫
R J1(x)f(x) dx|

)2/D

≈ (2.67754)2/0.6 ≈ 26.655.

This means that the CUSUM test needs approximately 26.66 times as many observations
as the Wilcoxon test in order to detect the same jump on the same level with the same
probability. In order to find this behaviour, we have analysed the power of the Wilcoxon
test for nW = 10, 50, 100, 200 observations and the power of the CUSUM test for nC =
266, 1332, 2666, 5330 observations.

In order to be able to compare the two tests, we need to have identical level shifts when
applying the Wilcoxon test to a sample of size nW and the CUSUM test to a sample of
size nC = 26.655nW . This can be achieved by choosing the constants c in (80) accordingly,
namely taking cC = 2.67754 cW . In this way, we obtain

hCnC = cCn
−D/2
C = 2.67754cW (26.655nW )−D/2 = cWn

−D/2
W = hWnW .

We ran simulations for two different choices of cW , namely cW = 1 and cW = 2; see Table 3
and Table 4 for the results.

Here, we have to face a problem which was already encountered by Dehling, Rooch and
Taqqu (2013). For the heavy-tailed Pareto data, the convergence of the CUSUM test statistic
towards its limit is so slow that the asymptotic quantiles of the limit distribution are not
appropriate as critical values to define the domain of rejection of the test: In finite sample
situations, the observed level of the test is not 5% – as it should be when using the 5%-
quantile of the asymptotic limit distribution. In order to remedy this, we used as critical
value for the test, the finite sample 5% quantiles of the distribution of the CUSUM test
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statistic under the null hypothesis, using a Monte Carlo simulation; see Table 6 in Dehling,
Rooch and Taqqu (2013). Here, we have performed the same steps, but for sample sizes
n = nC = 266, 1332, 2666, 5330. The results are given in Table 2. Note that this problem does
not arise when using the Wilcoxon change-point test, since the Wilcoxon test is distribution
free under the null hypothesis.

n 266 1332 2666 5330 ∞
qemp,0.05 0.73 0.66 0.64 0.63 0.59

Table 2. 5%-quantiles of the finite sample distribution of the CUSUM test
under the null hypothesis for Pareto(3,1)-transformed fGn with LRD param-
eter H = 0.7 and different sample sizes n = nC .

The simulation results are shown in Table 3 (for cW = 1) and Table 4 (for cW = 2). Indeed,
for a fixed jump position τ , the power of the CUSUM test (for n = nC = 266, 1332, 2666, 5330
observations) and of the Wilcoxon test (for n = nW = 10, 50, 100, 200 observations) coincide.
They are not fully equal, but we conjecture this is due to the small sample size which conflicts
with the asymptotic character of our results. But it becomes clear: The CUSUM test needs
quite a number of observations more to detect the same jump on the same level with the
same probability – as predicted by our calculation around 25 times as many.

relative jump position τ
n h 0.05 0.1 0.3 0.5

266 0.50 0.049 0.049 0.066 0.088
1332 0.31 0.050 0.052 0.083 0.110
2666 0.25 0.052 0.055 0.092 0.127
5330 0.20 0.051 0.054 0.099 0.130

relative jump position τ
n h 0.05 0.1 0.3 0.5

10 0.50 0.036 0.025 0.033 0.079
50 0.31 0.049 0.051 0.093 0.120

100 0.25 0.050 0.053 0.102 0.134
200 0.20 0.051 0.055 0.103 0.134

Table 3. Power of the CUSUM test (left) and of the Wilcoxon change-point
test (right), at different break points [τn], different sample sizes n, and differ-
ent jump heights h, for Pareto(3,1) distributed data. Both tests have asymp-
totically level 5% (CUSUM test is performed with empirical quantiles). The
calculations are based on 10,000 simulation runs.

relative jump position τ
n h 0.05 0.1 0.3 0.5

266 1.00 0.049 0.054 0.162 0.259
1332 0.62 0.052 0.062 0.236 0.345
2666 0.50 0.055 0.069 0.272 0.390
5330 0.41 0.054 0.074 0.287 0.402

relative jump position τ
n h 0.05 0.1 0.3 0.5

10 1.00 0.033 0.024 0.039 0.197
50 0.62 0.049 0.055 0.199 0.283

100 0.50 0.051 0.063 0.225 0.316
200 0.41 0.054 0.066 0.242 0.338

Table 4. Power of the CUSUM test (left) and of the Wilcoxon change-point
test (right) at different break points [τn], different sample sizes n, and different
jump heights h, for Pareto(3,1) distributed data. Both tests have asymptot-
ically level 5% (CUSUM test is performed with empirical quantiles). The
calculations are based on 10,000 simulation runs.
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