Allene in der Münzmetall-Katalyse

Mechanistische Einblicke, Stereoselektive Reaktionsführung und die Anwendung in der Totalsynthese

DISSERTATION

zur Erlangung des Akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.)

vorgelegt

der Fakultät Chemie der Technischen Universität Dortmund

von

Helene Reeker

geb. Unger

Dortmund, 2013

Die vorliegende Arbeit entstand in der Zeit von März 2009 bis Januar 2013 am Lehrstuhl für Organische Chemie der Technischen Universität Dortmund unter der Leitung von Herr Prof. Dr. Norbert Krause.

Ein Teil dieser Arbeit wurde bereits veröffentlicht:

H. Reeker, P.-O. Norrby, N. Krause, Organometallics 2012, 31, 8024-8030.

Erstgutachter:	Prof. Dr. N. Krause
Zweitgutachter:	Prof. Dr. A. Fürstner

Eingereicht am:01.02.2013Tag der mündlichen Prüfung:28.02.2013

We must not forget that when radium was discovered no one knew that it would prove useful in hospitals. The work was one of pure science. And this is a proof that scientific work must not be considered from the point of view of the direct usefulness of it. It must be done for itself, for the beauty of science, and then there is always the chance that a scientific discovery may become like the radium a benefit for humanity."

Marie Curie (1867-1934), Vortrag am Vassar College, 14. Mai 1921

Danksagung

An erster Stelle möchte ich meinem Doktorvater Herrn Prof. Dr. Norbert Krause für die interessante Themenstellung, die gute Betreuung sowie die anregenden Diskussionen bei der Bearbeitung des Themas danken. Ganz besonders möchte ich mich für seine Hilfsbereitschaft, die persönlichen Gespräche, die aufmunternden Worte und das mir entgegengebrachte Vertrauen bei der Anfertigung der Arbeit bedanken.

Herrn Prof. Dr. Alois Fürstner danke ich herzlich für die bereitwillige Übernahme des Koreferats. Ebenso gilt mein Dank Dr. Alexandra Hölemann für Ihre Bereitschaft zum Prüfungsbeisitz, sowie für die wertvollen Anregungen bezüglich unseres Kooperationsprojekts, die persönlichen Gespräche und ihre offene, herzliche Art.

Herrn Prof. Dr. Per-Ola Norrby und seinem Team danke ich für die freundliche Aufnahme in seinen Arbeitskreis und die Betreuung während der beiden Forschungsaufenthalte in Schweden, aber auch für die Freiheit bei der Durchführung der theoretischen Berechnungen, die wertvollen Tipps und seine Geduld während der Vervollständigung der Arbeit in Deutschland.

Herrn Prof. Dr. Mathias Christmann und seinem Team möchte ich für die wie selbstverständliche Aufnahme in ihrem Arbeitskreis-Seminar und die vielen schönen "Problems" danken.

Unseren "guten Feen" Heidi Zimmermann und Kerstin Hammerschmidt-Assmann danke ich für die stets zügige und reibungslose Erledigung der organisatorischen Dinge, von denen ich wahrscheinlich nur die Spitze des Eisberges mitbekommen habe, und vor allem für ihre liebenswerte Art, die in den Räumlichkeiten des AKs stets Wärme ausstrahlt und alles noch ein bisschen schöner macht.

Für die spektroskopischen und spektrometrischen Messungen möchte ich mich bei den analytischen Abteilungen des Fachbereichs bedanken, insbesondere bei Benjamin Kissel, Mathias Hehn und Sylvia Marzian sowie bei Chantale Sevenich. Herrn Jonathan O. Bauer danke ich für die Ermittlung der Kristallstruktur. Auch den Mitarbeitern der Werkstätten gebührt mein Dank. Ein großes Dankeschön auch an Herrn Dr. Wolf Hiller für die Schulungen und das entgegengebrachte Vertrauen bei den selbständigen NMR-Messungen. Ebenfalls möchte ich meinen Praktikanten, insbesondere Soumya Zouhir, Barhiem Schickmous, Dilbar Yildiz, Michael Kubicki und Simon Egger, sowie der Bachelor-Studentin Bianca Schmid und den Chemielaboranten Malte Metz und Kim-Alexander Vogt für ihre Begeisterungsfähigkeit und engagierte Mitarbeit, sowie für die persönliche wie fachliche Bereicherung des Laboralltags danken.

Allen ehemaligen und aktuellen Mitgliedern des Arbeitskreises, darunter Bernd Wagner, Viola Breker, Eray Akpinar, Marcus Niehaus, Katrin Belger und Linda Lempke, danke ich für die herzliche Aufnahme in ihren Kreis, das allzeit angenehme und freundschaftliche Arbeitsklima, die gute Zusammenarbeit und die schöne gemeinsame Zeit. Vielen lieben Dank sage ich auch für das zügige, kritische Korrekturlesen meiner Arbeit.

Außerdem möchte ich mich bei vielen Mitgliedern anderer Arbeitskreise, insbesondere bei Daniel Könning, Philipp Winter, Florian Quentin, Andreas Schäfer, Stephan Koller, Jonathan O. Bauer, Daniel Kmoch, Matthias Tokarski, Michael Wagner, Rebecca Meyer, Tobias Jaschinski und Björn Nelson für den regen Austausch, die hilfreichen Ratschläge, Diskussionen und Anregungen und ihre Kollegialität bedanken. Danke auch für die unbezahlbaren dazugewonnenen Freundschaften.

Meinem Laborkollegen und Freund Stefan Minkler und meiner Freundin Jennifer Hesse bin ich besonders dankbar für ihre unvergleichliche, lustige Art und ihre Hilfsbereitschaft. Sie waren durch die vielen gemeinsamen Erlebnisse während des Laboralltags und in der Freizeit, ihre Fürsorge und ihre Freundschaft eine starke Stütze für mich und haben die Zeit für mich unendlich bereichert.

Zuletzt möchte ich es nicht versäumen, den wichtigsten Menschen in meinem Leben zu danken - meiner Familie für die immerwährende moralische Unterstützung in jeder Hinsicht und meinem Mann Andreas für den starken Halt, seine unermüdliche Geduld, die schlaflosen Nächte im Labor und seine Begleitung durch alle Höhen und Tiefen. Ich danke ihm auch für die wunderschöne Zeit abseits der Promotion, durch die ich Kraft für neue Ideen und stetige Aufmunterung erfahren habe.

Erläuterungen

Im Text bezeichnen hochgestellte arabische Ziffern in eckigen Klammern Literaturhinweise. Auf Versuche im experimentellen Teil wird durch V "xy" verwiesen. Die auf Verbindungsnummern folgenden Kleinbuchstaben a, b usw. werden zur Unterscheidung von Verbindungen desselben Stammgerüstes aber unterschiedlichem Substitutionsmuster benutzt. Die im experimentellen Teil benutzten Abkürzungen (HU...) bezeichnen Versuchsnummern im Laborjournal. Im Text und in den Formelzeichnungen wurden folgende Abkürzungen verwendet:

AAV	Allgemeine Arbeitsvorschrift	DMSO	Dimethylsulfoxid	
abs	absolut	dr	Diastereomerenverhältnis	
Ac	Acetyl	dt	Duplett von Triplett	
Äq.	Äquivalent(e)	ee	Enantiomerenüberschuss	
Ar	Aryl	ESI	Elektronenspray-Ionisation	
ber.	berechnet	Et	Ethyl	
Bn	Benzyl	ΕA	Ethylapotat	
bs	breites Singulett	EA	Ethylacetat	
Bu	Butyl	GC	Gaschromatographie	
Bz	Benzoyl	gef.	gefunden	
Ср	Cyclopentyl	ges.	gesättigt	
$CuBr\cdot SMe_2$	Kupfer(I)-Dimethylsulfid-	h	Stunde(n)	
	Komplex	HPLC	Hochleistungsflüssigkeits-	
CuTC	Kupferthiophencarboxylat		chromatographie	
d	Tage / Dublett (NMR)	HRMS	hochaufgelöste Massen-	
DC	Dünnschichtchromatographie		spektroskopie	
dd	Duplett von Duplett	HV	Hochvakuum	
DET	Diethyltartrat	Hz	Hertz	
DHP	3,4-Dihydro-2 <i>H</i> -pyran	<i>i</i> -Pr	Isopropyl	
(DHQ) ₂ -PHAL	1,4-bis(9-O-Dihydrochinin)	IR	Infrarot	
	phthalazin	J	Kopplungskonstante	
DIBAL-H	Diisobutylaluminiumhydrid	kat.	katalytisch	
DMAP	4-Dimethylaminopyridin	Lsg.	Lösung	
DME	1,2-Dimethoxyethan	М	molar	
DMF	N,N-Dimethylformamid	m	Multiplett (NMR), mittlere	
DMPU	1,3-Dimethyl-3,4,5,6-tetra-		Intensität (IR)	
	hydro-2(1H)-pyrimidinon	<i>m</i> -CPBA	meta-Chlorperbenzoesäure	

Me	Methyl	RT	Raumtemperatur
min	Minuten	S	Singulett (NMR), starke
MS	Massenspektroskopie	-	Intensität (IR)
n. b.	nicht bestimmt	Schmp.	Schmelzpunkt
NEt ₃	Triethylamin	Sdp.	Siedepunkt
NHC	N-Heterocyclisches Carben	SIMes	1,3-Bis(2,4,6-trimethylphenyl)-
NMR	Kernmagnetische Resonanz		4,5-dihydroimidazol
NOE	Kern-Overhauser-Effekt	t	tert
org.	organisch	t	Triplett (NMR)
OTf	Triflat	Т	Temperatur
$Pd_2(dba)_3$	Tris-(dibenzylidenaceton)-	TBAF	Tetra-n-butylammoniumfluorid
2())	dipalladium(0)	TBHP	t-Butylhydroperoxid
PG	Schutzgruppe	TBS	tert-Butyldimethylsilyl
Ph	Phenyl	THF	Tetrahydrofuran
PMHS	Polymethylhydridosiloxan	THP	Tetrahydropyranoyl
PPh ₃	Triphenylphosphin	TMS	Trimethylsilyl
ppm	parts per million	Ts	nara-Toluenesulfonyl
Ру	Pyridin	15	ungogättigt
q	Quartett (NMR)	unges.	ungesattigt
quant.	quantitativ	W	geringe Intensität (IR)
rac.	racemisch	wässr.	wässrig
R _f	Retentionsfaktor		

Inhaltsverzeichnis

1. Ei	nleitung - Ein Überblick über Allene	1				
1.1.	Grundlagen	2				
1.2.	Allenische Natur- und Wirkstoffe					
1.3.	Darstellung von Allenen	5				
1.4.	Verwendung von Allenen	9				
1.5.	Ziele dieser Arbeit					
2. M	echanistische Untersuchungen der CuH-katalysierten S _N 2'-Substitution					
2.1.	Motivation und Zielstellung					
2.2.	Ergebnisse und Diskussion					
2.3.	Zusammenfassung					
2.4.	Experimenteller Teil					
3. St	ereoselektive Synthese von α-Hydroxyallenen mittels chiraler NHCs					
3.1.	Motivation und Zielstellung					
3.2.	Ergebnisse und Diskussion					
3.3.	Zusammenfassung und Ausblick					
3.4.	Experimenteller Teil	67				
4. St	udien zur Synthese eines PGL-I-Analogons mittels Münzmetallkatalyse					
4.1.	Motivation und Zielstellung					
4.2.	Stand der Forschung					
4.3.	Syntheseplanung					
4.4.	Ergebnisse und Diskussion					
4.5.	Zusammenfassung und Ausblick					
4.6.	Experimenteller Teil					
5. Re	esümee					
6. A	nhang					
Α	Daten der berechneten Strukturen					
В	B Daten der Röntgenstrukturanalyse von 4.39					

Einleitung - Ein Überblick über Allene

1.1. Grundlagen

Allene stellen aufgrund ihrer chemisch-physikalischen Eigenschaften lange nicht mehr nur theoretische Kuriositäten, sondern vielmehr einzigartige Strukturelemente mit interessanten Eigenschaften und daher wertvolle Synthesebausteine in der organischen Chemie dar.^[1] Sie verfügen über zwei direkt benachbarte, also kumulierte Doppelbindungen, wobei die randständigen Kohlenstoffatome eine sp²-Hybridisierung aufweisen, während das mittlere C-Atom sp-hybridisiert vorliegt, was zu einem linearen Aufbau der C=C=C-Gruppe mit um 90° zueinander gedrehten Resten der randständigen C-Atome führt. Bereits zwei unterschiedliche Substituenten an den beiden allenischen Kohlenstoffatomen können zu axialer Chiralität führen (Abbildung 1.1).

Abbildung 1.1. Enantiomerenpaar eines axial chiralen Allens.^[2]

Aufgrund des Trugschlusses, es handle sich bei den Allenen um thermisch instabile Strukturmotive, wurden sie lange Zeit vernachlässigt. So wurde die erste Synthese eines Allens zwar bereits im Jahre 1887 von *Burton et al.* realisiert - zunächst mit der Absicht, die Nichtexistenz dieser Verbindungsklasse zu belegen. Seine Struktur konnte jedoch erst nach Einführung der IR- und Raman-Spektroskopie im Jahre 1954 nachgewiesen werden.^[3, 4] Das Interesse des Synthesechemikers an diesem Strukturelement wurde demnach erst spät geweckt. Heutzutage machen seine axiale Chiralität, charakteristische Reaktivität und die einzigartigen sterischen Eigenschaften das Allen besonders attraktiv für synthetische Transformationen und daher zu einem hochaktuellen Forschungsgebiet.

¹ Ausgewählte Übersichten: a) D. R. Taylor, *Chem. Rev.* 1967, 67, 317–359; b) D. J. Pasto, *Tetrahedron* 1984, 40, 2805–2827; c) H. F. Schuster, G. M. Coppola, *Allenes in Organic Synthesis*; Wiley & Sons: New York, 1984; d) J. A. Marshall, *Chem. Rev.* 1996, 96, 31–47; e) *Modern Allene Chemistry*, Eds.: N. Krause, A. S. K. Hashmi, Wiley-VCH: Weinheim, 2004.

² M. Ogasawara, *Tetrahedron: Asymmetry* **2009**, *20*, 259–271.

 ³ a) B. S. Burton, H. V. Pechmann, *Ber. Dtsch. Chem. Ges.* 1887, 20, 145–149; b) E. R. H. Jones, G. H. Mansfield, M. L. H. Whiting, *J. Chem. Soc.* 1954, 3208–3212.

⁴ A. Hoffmann-Röder, N. Krause, Angew. Chem. 2004, 116, 1216–1236; A. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 2004, 43, 1196–1216.

1.2. Allenische Natur- und Wirkstoffe

Die Suche nach effizienten Methoden zur Darstellung von Allenen wurde vor allem durch die Isolierung einer Vielzahl allenischer Natur- und Wirkstoffe angetrieben. Mittlerweile sind weit über 150 Naturstoffe mit Allen- oder Cumulen-Struktur bekannt, von denen eine kleine Auswahl in Abbildung 1.2 gezeigt ist. Die Unterteilung der meisten natürlichen Allene kann in etwa drei gleichgroße Klassen - lineare Allene, allenische Carotinoide und Terpene sowie Bromallene - vorgenommen werden.^[1, 4]

Abbildung 1.2. Auswahl allenischer Naturstoffe.

Den ersten nachgewiesenen allenischen Naturstoff stellt der im Jahre 1952 aus einem Schimmelpilz isolierte Pilzmetabolit *Mycomycin* (1.1)^[5] dar, welcher zur Klasse linearer Allene gehört und antibiotische Wirkung zeigt. Ebenfalls dieser Klasse zugehörig ist das Insektenpheromon 1.2, welches in großen Mengen aus dem männlichen Bohnenkäfer isoliert werden konnte und ihm als Sexualpheromon dient.^[6] Das *Fucoxanthin* (1.3) ist der Klasse der allenischen Carotinoide zuzuordnen und kommt in Braun- und Kieselalgen vor.^[7] Das "Heuschrecken-Keton" (1.4) wurde, wahrscheinlich als Abbauprodukt eines oder mehrerer allenischer Carotinoide, aus dem Abwehrsekret einer Heuschrecke isoliert und

⁵ W. D. Celmer, I. A. Solomons, J. Am. Chem. Soc. **1952**, 74, 1870–1871.

⁶ D. F. Horler, J. Chem. Soc. (C) **1970**, 859–862.

⁷ R. Willstätter, H. J. Page, *Liebigs Ann. Chem.* **1914**, 404, 237–271.

stellt eines der bekanntesten allenischen Naturstoffe dar.^[8] Das allenische Alkaloid *Isodihydrohistrionicotoxin* (1.5), welches aus der Haut von Pfeilgiftfröschen der Gattung *Dendrobates* isoliert werden konnte, führt durch Wechselwirkung mit den Ionenkanälen des Nicotin-Acetylcholinrezeptors zum Versagen des Nervensystems.^[9] Das zur Klasse der Bromallene gehörige *Laurallen* (1.6) ist schließlich ein Dioxabicyclus mit einer exocyclischen Bromallen-Gruppierung, welcher als Metabolit in *Laurencia nipponica* Yamada und anderen Rotalgen vorkommt.^[10]

Aufgrund der oftmals faszinierenden biologischen Eigenschaften allenischer Naturstoffe wurden mittlerweile verschiedene Allengruppierungen systematisch in das Rückgrat pharmakologisch aktiver Verbindungsklassen wie Steroide, Prostaglandine, Aminosäuren und Nucleoside eingebaut, um Enzym-inhibierende, cytostatische oder antivirale Eigenschaften zu verstärken (Abbildung 1.3).^[4]

Abbildung 1.3. Einige pharmakologisch aktive Allene.

Zu den bekannten, sowohl *in vivo* als auch *in vitro* pharmakologisch wirksamen Allenen zählt zum Beispiel das Steroid **1.7**, welches zur Inhibierung der Steroidbiosynthese bei Erregern der *Pneumocystis-carinii*-Pneumonie, der mit Abstand häufigsten Erkrankung bei AIDS-Patienten, eingesetzt wird.^[11] *Enprostil* (**1.8**) ist ein Prostaglandin-E-Analogon,

⁸ J. Meinwald, K. Erickson, M. Hartshorn, Y. C. Meinwald, T. Eisner, *Tetrahedron Lett.* **1968**, 2959–2962.

⁹ a) T. Tokuyama, K. Uenoyama, G. Brown, J. W. Daly, B. Witkop, *Helv. Chim. Acta* 1974, *57*, 2597–2604;
b) C. E. Spivak, M. A. Maleque, A. C. Oliveira, L. M. Masukawa, T. Tokuyama, J. W. Daly, E. X. Albuquerque, *Mol. Pharmacol.* 1982, *21*, 351–361.

 ¹⁰ a) A. Fukuzawa, E. Kurosawa, *Tetrahedron Lett.* **1979**, 2797–2800; b) A. D. Wright, G. M. Koenig, O. Sticher, *J. Nat. Prod.* **1991**, *54*, 1025–1033.

¹¹ D. H. Beach, F. Chen, M. T. Cushion, R. S. Macomber, G. A. Krudy, M. A. Wyder, E. S. Kaneshiro, *Antimicrob. Agents Chemother.* **1997**, *41*, 162–168.

welches 600-fach aktiver ist als das verwandte PGE₂, die Magensäuresekretion stark inhibiert und in den USA bei der Behandlung von Gastroenteritis zum Einsatz kommt.^[12]

Das hydrolysebeständige allenische Carbacyclin **1.9** hat sich als ein besonders vielversprechender Thrombosehemmer herausgestellt.^[13] Die allenische Aminosäure **1.10** als DOPA-Derivat zeigt weitaus höhere Aktivität bei der irreversiblen Mechanismusinhärenten Decarboxylase-Inhibierung verglichen mit ihren Vinyl- und Ethinyl-Analoga.^[14] Das *Cytallen* (**1.11**) ist schließlich ein allenisches Nucleosid-Analogon, welches besonders stark die Replikation des Hepatitis-B-Virus inhibiert.^[15]

1.3. Darstellung von Allenen

Die Synthese allenischer Verbindungen kann mittels einer Vielzahl von Methoden verwirklicht werden, wobei metallorganische Reagenzien für diesen Zweck am intensivsten erforscht worden sind. Darunter zählen beispielsweise Übergangsmetallkatalysierte Additions- und Substitutionsreaktionen und Isomerisierungen von Alkinen mittels metallorganischer Basen. Die grundlegenden Reaktionstypen in der Metall-vermittelten Synthese wie die nucleophile S_N2' -Substitution von Propargylelektrophilen, die 1,4-Addition an (unfunktionalisierte) Enine und die 1,6-Addition an Akzeptor-substituierte Enine sind in Schema 1.1 dargestellt.^[16] Hierbei sind Organocuprate durch ihre Chemo-, Regio- und Stereoselektivität der unbestrittene Favorit; andere Metalle wie Aluminium, Titan, Samarium, Eisen, Rhodium, Palladium oder Indium werden jedoch zunehmend erforscht.^[17]

¹² S. J. Sonntag, T. J. Schnell, E. Budimanmak, K. Adelman, R. Fleischmann, S. Cohen, S. H. Roth, D. Ipe, K. E. Schwartz, *Am. J. Gastroenerol.* **1994**, *89*, 1014–1020.

¹³ Übersicht: P. W. Collins, S. W. Djuric, *Chem. Rev.* **1993**, *93*, 1533–1564.

¹⁴ a) Castelhano, P. H. Pliura, G. J. Taylor, K. C. Hsich, A. Krantz, *J. Am. Chem. Soc.* 1984, *106*, 2734–2735;
b) A. Castellano, S. Horne, G. J. Taylor, R. Billedeau, A. Krantz, *Tetrahedron* 1988, *44*, 5451–5466.

 ¹⁵ a) S. Hayashi, S. Phadtare, J. Zemlicka, M. Matsukura, H. Mitsuya, S. Broder, *Proc. Natl. Acad. Sci. U.S.A* 1988, *85*, 6127–6131; b) S. Phadtare, J. Zemlicka, *J. Am. Chem. Soc.* 1989, *111*, 5925–5931; c) S. Phadtare, D. Kessel, T. H. Corbett, H. E. Renis, B. A. Court, J. Zemlicka, *J. Med. Chem.* 1991, *34*, 421–429.

¹⁶ N. Krause, A. Hoffmann-Röder, *Tetrahedron* **2004**, *60*, 11671–11694.

¹⁷ Ausgewählte Übersichten: a) B. H. Lipshutz, S. Sengupta, Org. React. 1992, 41, 135–631; b) Organocopper Reagents, Hrsg.: R. J. K. Taylor, Oxford University Press, Oxford, 1994. c) Modern Organocopper Chemistry, Hrsg.: N. Krause, Wiley-VCH, Weinheim, 2002.

Schema 1.1. Reaktionstypen in der metallvermittelten Synthese von Allenen.

Kupfer ist aufgrund der großen Kostenersparnis, seines großen Vorkommens, der leichten Zugänglichkeit gegenüber anderen Übergangsmetallen und seiner hohen Reaktivität das Metall der Wahl – nicht nur für stöchiometrische Umsetzungen, sondern auch für heterogene und homogene katalytische Verfahren. Es lässt sich zudem in Anwesenheit chiraler Liganden in der asymmetrischen Reaktionsführung einsetzen, darunter die 1,4-Addition an *Michael*-Akzeptoren oder Hydrierungen wie die Hydrosilylierung oder Transferhydrierung.^[17, 18]

Insbesondere die in den 50er Jahren entwickelten *Gilman*-Cuprate^[19] erfreuen sich durch ein ideales Zusammenspiel zwischen dem weichen, carbophilen Kupfer und dem harten, elektrophilen Lithium großer Beliebtheit. Die erste und heute gängigste Allensynthese mittels Kupfer-vermittelter S_N2'-Substitution wurde von *Rona* und *Crabbé* bereits im Jahre 1968 für die Reaktion von Propargylacetaten mit Lithiumdialkylcupraten publiziert (Schema 1.2).^[20]

Schema 1.2. Die erste Kupfer-vermittelte S_N2'-Substitution propargylischer Acetate.

¹⁸ H. Shimizu, I. Nagasaki, K. Matsumura, N. Sayo, T. Saito, Acc. Chem. Res. 2007, 40, 1385–1393.

¹⁹ H. Gilman, R. G. Jones, L. A. Woods, *J. Org Chem.* **1952**, *17*, 1630–1634.

²⁰ P. Rona, P. Crabbé, J. Am. Chem. Soc. **1968**, 90, 4733–4734.

Mittlerweile wurden auch Benzoate, Carbonate, propargylische Sulfonate, Ether, Acetale, Halogenide, Epoxide und sogar Aziridine als Substrate etabliert. Als Cuprate können heute auch ausgehend von Grignard-Verbindungen und Zinkorganylen generierte Derivate eingesetzt werden.^[21]

Der große Vorteil der Kupfer-vermittelten S_N2' -Substitution (insbesondere von Sulfonaten) liegt vor allem in dem häufig stark *anti*-stereoselektiven Verlauf, wobei der Zentrum-zu-Achse-Chiralitätstransfer bislang durch ein mechanistisches Modell erklärt wird, bei dem eine Wechselwirkung des d-Orbitals am Kupfer mit den σ^* - und π^* -Orbitalen des Substrates antiperiplanar zur Abgangsgruppe die Substitution einleitet, gefolgt von einer Ausbildung der σ -Kupfer(III)-Spezies, welche unter reduktiver Eliminierung eines Alkylcuprats das *anti*-substituierte Produkt zurücklässt (Schema 1.3).^[16]

Schema 1.3. Mechanistisches Modell für den *anti*-stereoselektiven Verlauf der S_N2'-Substitution.

Eine besonders interessante und vielseitige Gruppe unter den Allenen sind α-Hydroxyallene, die gleich zwei Funktionalitäten beinhalten und unter milden Bedingungen in 2,5-Dihydrofurane und andere Heterocyclen sowie heterosubstituierte Allene überführt werden können.^[22] Sie sind ebenfalls Kupfer-vermittelt aus propargylischen Epoxiden und Carbonaten zugänglich.^[23] Dieses Verfahren ist nicht nur auf die C-C-Bindungsknüpfung beschränkt; auch C-H-Bindungen können unter Ausbildung einer allenischen Verbindung generiert werden, wobei zum Beispiel Lithiumaluminiumhydrid zur Synthese endständiger Allene verwendet werden kann. Einen milderen, reduktiven Zugang ermöglichen hingegen Kupferhydride, die durch *Strykers*^[24] Arbeiten im Jahre 1988 in Form eines Phosphin-

 ²¹ a) T. L. MacDonald, D. R. Reagan, J. Org. Chem. 1980, 45, 4740–4747; b) A. Jansen, N. Krause, Synthesis 2002, 1987–1992.
 ²² a) N. Bargerer, N. Krause, August, Chem. Int. Ed. 2008, 47, 2178, 2181; b) N. Bargerer, N. Krause, August, August, Chem. 1980, 47, 2178, 2181; b) N. Bargerer, N. Krause, August, Chem. 1980, 47, 2178, 2181; b) N. Bargerer, N. Krause, August, Chem. 1980, 47, 2178, 2181; b) N. Bargerer, N. Krause, Synthesis 2002, 1987–1992.

²² a) N. Bongers, N. Krause, *Angew. Chem. Int. Ed.* **2008**, *47*, 2178–2181; b) N. Bongers, N. Krause, *Angew. Chem.* **2008**, *120*, 2208–2211.

²³ C. Deutsch, N. Krause, B. H. Lipshutz, Chem. Rev. 2008, 108, 2916–2927.

²⁴ a) D. M. Brestensky, D. E. Huseland, C. McGettigan, J. M. Stryker, *Tetrahedron Lett.* 1988, 29, 3749–3752;
b) W. S. Mahoney, D. M. Brestensky, J. M. Stryker, *J. Am. Chem. Soc.* 1988, 110, 291–293.

stabilisierten, hexameren Kupferhydrid-Komplexes [(Ph₃P)CuH]₆^[25] zugänglich gemacht und von ihm sowie *Brummond et al.*^[26] in der Allensynthese ausgehend von terminalen propargylischen Acetaten stöchiometrisch zum Einsatz gebracht wurden. Seitdem hielt Kupferhydrid in zahlreichen 1,2- und 1,4-Reduktionen diverser Carbonylverbindungen^[27] Einzug und konnte mit Hilfe von stabilisierenden Liganden wie zweizähnigen Phosphinen und N-Heterocyclischen Carbenen (NHCs) auch als Katalysator etabliert werden.^[23]

Eine wichtige Synthesemethode in Bezug auf Allene stellt dabei die von *N. Krause et al.*^[28] entwickelte *anti*-stereoselektive Kupferhydrid-katalysierte S_N2' -Reduktion von Propargylelektrophilen dar (Schema 1.4). Sie liefert in hohen Ausbeuten und mit exzellentem Chiralitätstransfer α -Hydroxyallene und toleriert eine Vielfalt funktioneller Gruppen wie Doppel- und Dreifachbindungen, Alkohole, Ester, Cyclopropane, CF₃-Gruppen, sowie elektronenreiche und -arme Arene.

Schema 1.4. CuH-katalysierte S_N2'-Reduktion von Propargyloxiranen.

Kupfer-Carben-Komplexe werden dabei als Präkatalysatoren mit symmetrischen NHCs verwendet, wobei die katalytisch aktive [(NHC)CuH]-Spezies aus den entsprechenden Carbenvorläufern wie zum Beispiel aus [SIMes·HCl] (1,3-Bis-(2,4,6-trimethyl-phenyl)imidazoliniumchlorid), *in situ* generiert wird. Als eine leicht handhabbare, günstige und ungiftige Hydridquelle wird dabei Polymethylhydridosiloxan (PMHS) verwendet.^[28] Diese Methode ermöglicht zudem einen schnellen Zugang zu enantiomerenreinen Allenen durch Verwendung chiraler Epoxide.^[29]

 ²⁵ a) A. Fatima, Synlett 2005, 1805–1806; b) P. Chiu, Z. Li, K. C. M. Fung, Tetrahedron Lett. 2003, 44, 455–457; c) D. W. Lee, J. Yun, Tetrahedron Lett. 2005, 46, 2037–2039.

²⁶ K. M. Brummond, J. Lu, J. Am. Chem. Soc. **1999**, 121, 5087–5088.

²⁷ a) S. Rendler, M. Oestreich, Angew. Chem. 2007, 119, 504–510; b) S. Rendler, M. Oestreich, Angew. Chem. Int. Ed. 2007, 46, 498–504.

 ²⁸ C. Deutsch, B. H. Lipshutz, N. Krause, Angew. Chem. 2007, 119, 1677–1681; C. Deutsch, B. H. Lipshutz, N. Krause, Angew. Chem. Int. Ed. 2007, 46, 1650–1653.

²⁹ C. Spino, S. Fréchette, *Tetrahedron Lett.* **2000**, *41*, 8033–8036.

Die Synthese optisch aktiver Allene erfordert für gewöhnlich stöchiometrische chirale Quellen wie Substrate oder Reagenzien; alternativ können einzelne Stereoisomere eines Allens durch geeignete Methoden wie die Racematspaltung aus dem Gemisch isoliert werden. Beispiele einer katalytischen asymmetrischen Synthese von Allenen sind selten und stellen ein bislang nur wenig entwickeltes Forschungsgebiet in der synthetischen organischen Chemie dar. Unter die bekannten Methoden fallen Übergangsmetallkatalysierte Reaktionen (vor allem mit Palladium), einige Beispiele organokatalytischer Reaktionen und enzymatische/ mikrobielle Systeme.^[30] Die Übergangsmetall-katalysierten Methoden zur Allensynthese beinhalten als Quelle der Chiralität hauptsächlich chirale einoder zweizähnige Phosphinliganden. Chirale NHCs werden in der Allensynthese bisher nicht verwendet.^[2, 30]

Eine direkte enantioselektive S_N2 '-Reduktion von Propargylepoxiden unter Verwendung eines chiralen Kupferhydrid-Katalysators als alternativer Zugang zu axial chiralen α -Hydroxyallenen hätte den Vorteil, nicht auf die Verfügbarkeit von enantiomerenreinen Substraten angewiesen zu sein und ist daher besonders erstrebenswert. Die Verwendung von NHCs in der Kupferhydrid-Katalyse beschränkt sich jedoch bisher auf achirale Liganden.^[23]

1.4. Verwendung von Allenen

Durch ihren Einsatz als Nucleophile, als Elektrophile und auch als Substrate für Cycloadditionsreaktionen ermöglichen Allene eine Vielzahl unterschiedlicher Transformationen mit effizientem Chiralitätstransfer und sind daher wertvolle Intermediate in der Zielmolekül-orientierten Synthese.^[23, 31] Sie finden in vielen verschiedenen Reaktionen wie beispielsweise Diels-Alder-Reaktionen, radikalischen Cyclisierungen, Pauson-Khand-Reaktionen Übergangsmetall-katalysierten Additionsund und Substitutionsreaktionen Anwendung.^[32]

³⁰ Übersicht: M. Ogasawara, *Tetrahedron: Asymmetry* **2009**, *20*, 259–271.

³¹ A. S. K. Hashmi, *Chem. Rev.* **2007**, *107*, 3180–3211.

³² Ausgewählte Übersichten: a) M. Murakami, T. Matsuda, in *Modern Allene Chemistry*, Hrsg.: N. Krause, A. S. K. Hashmi, Wiley-VCH, Weinheim, **2004**, Bd. 2, S. 727–815; b) Ma, *Chem. Rev.* **2005**, *105*, 2829–2871.

Die homogene Goldkatalyse stellt in der stereoselektiven Synthese ein hochaktuelles Gebiet dar. Eine äußerst erfolgreiche Strategie für den Chiralitätstransfer in der Allensynthese ist die Gold(I)- oder Gold(III)-katalysierte *endo*-Cycloisomerisierung von α - und β -hetero-substituierten Allenen zu den entsprechenden 5- oder 6-gliedrigen Heterocyclen unter vollständiger Atomökonomie (Schema 1.5).^[33]

Schema 1.5. Gold-katalysierte Cycloisomerisierung von α - und β -heterosubstituierten Allenen.

Dabei erfolgt der Ringschluss zu Fünfringen viel schneller als zu Sechsringen. Der intramolekulare Angriff des Heteroatoms kann durch Verwendung weniger reaktiver Gold(III)-Salze gesteuert werden, sodass zum Beispiel ein Alkohol den Ring schneller schließt als ein Thiol, ein freies Amin wiederum wesentlich langsamer als die anderen beiden Heteroatome cyclisiert. Im Gegensatz dazu weisen alle Heteroatome in Anwesenheit von Gold(I)-Salzen in etwa die gleichen Reaktivitäten auf.^[34]

Der postulierte Katalysecyclus beinhaltet die reversible π -Koordination des Gold-Katalysators an die Doppelbindung, gefolgt von einem intramolekularen nucleophilen Angriff des Heteroatoms und der Protodeaurierung als geschwindigkeits-bestimmendem Schritt.

 ³³ a) A. Hoffmann-Röder, N. Krause, Org. Lett. 2001, 3, 2537–2538; b) N. Morita, N. Krause, Org. Lett. 2004, 6, 4121–4123; c) A. Hoffmann-Röder, N. Krause, Org. Biomol. Chem. 2005, 3, 387–391; d) N. Morita, N. Krause, Angew. Chem. 2006, 118, 1930–1933; Angew. Chem. Int. Ed. 2006, 45, 1897–1899; e) N. Morita, N. Krause, Eur. J. Org. Chem. 2006, 20, 4634–4641.

 ³⁴ a) B. Gockel, N. Krause, Org. Lett. 2006, 8, 4485–4488; b) C. Deutsch, B. Gockel, A. Hoffmann-Röder, N. Krause, Synlett 2007, 11, 1790–1794; c) C. Winter, N. Krause, Angew. Chem. 2009, 121, 6457–6460; Angew. Chem. Int. Ed. 2009, 48, 6339–6342.d) C. Winter, N. Krause, Chem. Rev. 2011, 111, 1994–2009; e) N. Krause, Ö. Aksin-Artok, M. Asikainen, V. Breker, C. Deutsch, J. Erdsack, H.-T. Fan, B. Gockel, S. Minkler, M. Poonoth, Y. Sawama, Y. Sawama, T. Sun, F. Volz, C. Winter, J. Organomet. Chem. 2012, 704, 1–8.

Schema 1.6. Postulierter Mechanismus der Gold-katalysierten Cycloisomerisierung von Allenen.

Diese vielfältige Synthesemethode ermöglicht einen schnellen und effizienten Zugang zu hochsubstituierten Dihydrofuranen, -pyrrolen und –thiophenen, zu Dihydropyranen und Dihydrothiopyranen, Tetrahydropyridinen und – bei Verwendung von allenischen Hydroxylaminen – zu Dihydrooxazinen und Dihydroisoxazolen unter vollständigem Achsezu-Zentrum-Chiralitätstransfer (Schema 1.7).^[33, 34]

Schema 1.7. Diversität der Cycloisomerisierungsprodukte.

Die Anwendungsbreite dieser Heterocyclen in der Naturstoffsynthese und ihr Vorkommen in pharmazeutischen Substanzen sind enorm.^[35] Exemplarisch sollen die folgenden beiden Beispiele für Totalsynthesen komplexer Moleküle die Nützlichkeit des Gold-katalysierten Chiralitätstransfers für die Zielmolekül-orientierte Synthese verdeutlichen.

³⁵ Einige Beispiele: a) Y. Sawama, Y. Sawama, N. Krause, *Org. Biomol. Chem.* 2008, *6*, 3573–3579;
b) T. Miura, M. Shimada, P. de Mendoza, C. Deutsch, N. Krause, M Murakami, *J. Org. Chem.* 2009, *74*, 6050–6054; c) Z. Gao, Y. Li, J. P. Cooksey, T. N. Snaddon, S. Schunk, E. M. E. Viseux, S. M. McAteer, P. J. Kocienski, *Angew. Chem.* 2009, *121*, 5122–5125; *Angew. Chem. Int. Ed.* 2009, *48*, 5022–5025; d) T. Sun, C. Deutsch, N. Krause, *Org. Biomol. Chem.* 2012, *10*, 5965–5970.

Die Gold-katalysierte Cycloisomerisierung allenischer Alkohole nach *Krause et al.*^[36] konnte im Jahre 2007 unter vollständigem Chiralitätstransfer in den ersten enantioselektiven Synthesen der ß-Carbolin-Alkaloide *(-)-Isocyclocapitellin* (1.17) und *(-)-Isochryotricin* (1.18) zur Anwendung gebracht werden (Schema 1.8).

Schema 1.8. Synthese von (-)-Isocyclocapitellin und (-)-Isochryotricin mittels Gold(III)-Katalyse.

Nelson et al.^[37] publizierten im Jahre 2006 die Totalsynthese von *(-)-Rhazinilam* **(1.21)**, in der eine Gold(I)-katalysierte intramolekulare Addition des Pyrrols an das enantiomerenangereicherte Allen einen neuen Zugang zu chiralen vierfach substituierten Kohlenstoffzentren ermöglichte (Schema 1.9).

Schema 1.9. Synthese von (-)-Rhazinilam mittels Gold(I)-Katalyse.

³⁶ a) F. Volz, N. Krause, *Org. Biomol. Chem* **2007**, *5*, 1519–1521; b) F. Volz, S. H. Waldmann, A. Hoffmann-Röder, N. Krause, *Tetrahedron* **2009**, *65*, 1902–1910.

³⁷ Z. Liu, A. S. Wasmuth, S. G. Nelson, J. Am. Chem. Soc **2006**, 128, 10352–10353.

1.5. Ziele dieser Arbeit

Ziel meiner Promotion ist, in einem ersten Projekt (Kapitel 2) den vorgeschlagenen Mechanismus der Kupferhydrid-katalysierten S_N2' -Reduktion von Propargylepoxiden zur Synthese von *a*-Hydroxyallenen mittels computerchemischer Berechnungen und ergänzender kinetischer Untersuchungen zu stützen oder gegebenenfalls zu korrigieren.

In einem zweiten Projekt (Kapitel 3) sollen durch Verwendung chiraler N-Heterocyclischer Carbene neue Wege in der Kupferhydrid-Katalyse beschritten werden. Hierzu wird beabsichtigt, im Rahmen einer kinetischen Racematspaltung verschiedene chirale NHCs mit unterschiedlichen sterischen und elektronischen Eigenschaften in der Allensynthese durch Kupferhydrid-katalysierte S_N2'-Reduktion von Propargylelektrophilen einzusetzen. Auf der Basis der dabei gewonnenen Erkenntnisse ist es geplant, eine Optimierung der Reaktivität und Stereoselektivität durch "fine-tuning" der Ligandenstruktur vorzunehmen. Hierdurch soll das Repertoire der Allenchemie um neue Möglichkeiten der enantioselektiven Synthese erweitert werden.

Abschließend sollen (in Kapitel 4) die gewonnenen Erkenntnisse zur Kupfer-katalysierten S_N2 '-Reduktion und die Gold-katalysierte Cycloisomerisierung in Zusammenarbeit mit *A. Hölemann et al.* auf ihre Anwendbarkeit in der zielorientierten Synthese im Rahmen der Totalsynthese eines benzylischen *C*-Glycosid-Analogons des Phenolischen Glycolipids-I geprüft werden.

Mechanistische Untersuchungen der CuH-katalysierten $S_N 2'$ -Substitution

2.1. Motivation und Zielstellung

Allene spielen, wie in Kapitel 1 erläutert, aufgrund ihrer einzigartigen Eigenschaften und der Fähigkeit, eine Vielzahl unterschiedlicher Transformationen mit effizientem Chiralitätstransfer einzugehen, in der Zielmolekül-orientierten Synthese eine wichtige Rolle.^[1, 2] Eine wichtige Synthesemethode von α -Hydroxyallenen stellt die von *Krause et al.*^[2] entwickelte *anti*-stereoselektive Kupferhydrid-katalysierte S_N2'-Reduktion von Propargyloxiranen dar (Schema 2.1).

Schema 2.1. Die *anti*-stereoselektive CuH-katalysierte S_N2'-Reduktion von Propargylepoxiden.

Sie liefert in hohen Ausbeuten und mit exzellentem Chiralitätstransfer α -Hydroxyallene und toleriert eine Vielzahl funktioneller Gruppen. Als Katalysatoren werden Kupfer-Carben-Komplexe mit symmetrischen NHCs verwendet, wobei die katalytisch aktive [(NHC)CuH]-Spezies aus den entsprechenden Carbenvorläufern *in situ* generiert wird.^[2]

Die Gegenwart einer Alkohol-Funktionalität beschleunigt die Reaktion stark. In diesem Zusammenhang wurde eine interessante Beobachtung gemacht: einerseits beschleunigen stöchiometrische Mengen eines zusätzlichen Alkohols im Reaktionsgemisch die Reaktion um einen Faktor 10 und mehr, andererseits wird dieser Effekt von der Bildung signifikanter Mengen an *cis*-Vinylepoxid begleitet, welches durch Reduktion der Dreifachbindung im Substrat entsteht.^[2] Ein möglicher Erklärungsansatz für diese Beobachtung und zugleich für die hohe *anti*-Stereoselektivität konnte mit Hilfe des folgenden mechanistischen Modells gegeben werden (Schema 2.2).

 ¹ a) A. Hoffmann-Röder, N. Krause, *Angew. Chem.* 2004, *116*, 1216–1236; b) A. Hoffmann-Röder, N. Krause, *Angew. Chem. Int. Ed.* 2004, *43*, 1196–1216; c) *Modern Allene Chemistry*, Eds.: N. Krause, A. S. K. Hashmi, Wiley-VCH: Weinheim, 2004; d) A. S. K. Hashmi, *Chem. Rev.* 2007, *107*, 3180–3211.

 ² a) C. Deutsch, B. H. Lipshutz, N. Krause, Angew. Chem. 2007, 119, 1677–1681; b) Angew. Chem. Int. Ed. 2007, 46, 1650–1653; c) C. Deutsch, B. H. Lipshutz, N. Krause, Org. Lett. 2009, 11, 5034–5037.

Schema 2.2. Vorgeschlagenes Mechanistisches Modell der S_N2'-Reduktion.

Demzufolge kann die Bildung des Vinylepoxids **2.7** in Gegenwart eines Alkohols durch eine Hydrocuprierungs-Protodemetallierungs-Sequenz begründet werden, welche die *syn*-Addition des Kupferhydrids an die Dreifachbindung des Substrates **2.2** unter Ausbildung des vinylischen Kupferintermediates **2.4** beinhaltet.^[3] Der σ -Komplex **2.4** könnte durch β -Eliminierung zu dem α -Alkoxyallen **2.5** und durch anschließende Reaktion mit der stöchiometrisch vorliegenden Hydridquelle PMHS (Polymethylhydridosiloxan, ein preiswertes und ungiftiges Silan) in den Silylether **2.6** und die katalytisch aktive Kupferhydrid-Spezies [LCuH] überführt werden. Das α -Hydroxyallen ist schließlich durch Fluorid-vermittelte wässrige Aufarbeitung von **2.6** zugänglich.

Trotz offensichtlicher Ähnlichkeiten mit dem *syn-* oder *anti-*selektiven Additions-Eliminierungs-Verlauf, welcher von *Alexakis et al.*^[4] für die S_N2 '-Substitution von propargylischen Epoxiden mit Kohlenstoffnukleophilen vorgeschlagen wurde, erweist sich die Erklärung für die experimentell beobachtete hohe *anti-*Stereoselektivität mit diesem mechanistischen Modell als schwierig. Folglich wurde die Ausbildung des π -Komplexes **2.3**, welcher im Gleichgewicht mit der σ -Kupfer(III)-Spezies stehen könnte, als eine alternative *anti-*stereoselektive Route zum Allen **2.5** vorgeschlagen. Dieser Reaktionspfad beinhaltet eine starke Analogie zu dem allgemein akzeptierten Mechanismus für die Kupfer-

³ Röntgenkristallstruktur eines Produktes der Hydrokuprierung eines Alkins: N. P. Mankad, D. S. Laitar, J. P. Sadighi, *Organometallics* **2004**, *23*, 3369–3371.

⁴ A. Alexakis, *Pure Appl. Chem.* **1992**, 64, 387–392.

vermittelte $S_N 2$ '-Substitution allylischer Elektrophile.^[5] Die in einigen Fällen beobachtete herabgesetzte Diastereoselektivität könnte das Ergebnis einer Konkurrenzsituation unter den beiden angenommenen Reaktionspfaden zum Intermediat **2.5** darstellen.^[2]

Eine mögliche Erklärung für die Beschleunigung der Kupferhydrid-katalysierten S_N2 '-Reduktion durch Zugabe von Wasser oder Alkoholen könnte in der geringen Löslichkeit des Natrium-*tert*-butanolats in Toluol zu finden sein.^[6] Zudem hydrolysiert die Protonenquelle höchstwahrscheinlich schnell das Kupferalkoholat **2.5** und generiert so ein Kupferalkoxid, welches einen idealen Vorläufer für eine schnelle Rückbildung des aktiven Kupferhydrid-Katalysators in Gegenwart eines Silans darstellt. Ähnliche Beobachtungen konnten bereits bei der Kupfer-katalysierten Reduktion von Enonen gemacht werden.^[7]

Die Anwesenheit eines Alkohols im Reaktionsgemisch macht es möglich, einen langsamen, aber essentiellen Schritt für die Regenerierung des Kupferhydrid-Katalysators durch σ -Bindungsmetathese zwischen der Cu-O- und der Si-H-Bindung zu umgehen, was anhand eines Deuterierungsexperiments in der asymmetrischen Hydrosilylierung eines ungesättigten Lactons mittels *t*-BuOD belegt werden konnte (der fehlende Austausch zwischen PMHS und *t*-BuOD bewies ein schnelleres Protonieren des Kupferalkoholats durch den Alkohol als durch das Silan).^[8]

Für die Hydrocuprierung und die S_N2 '-Reduktion wurde ein ähnliches Verhalten vorhergesagt: wahrscheinlich ist der Schlüsselschritt nicht die Substitution selbst, sondern die Regenerierung des CuH-Katalysators durch Reaktion des Silans mit dem Kupfersalz, welches bei der Reduktion gebildet wird. Ein weiterer, noch wichtigerer Aspekt in Bezug auf die Verwendung von Alkoxiden ist die Milde der Transmetallierung des Cuprates mit der Hydridquelle bei der Verwendung ausreichend basischer Kupfersalze wie der Alkoxide. Die Verwendung anderer Abgangsgruppen wie des Acetats oder des Nitrobenzoats führen durch die Ausbildung von weniger basischen Kupfersalzen zu niedrigeren Umsatzgraden und damit verminderten Ausbeuten.^[7]

⁵ a) E. Nakamura, S. Mori, Angew. Chem. 2000, 112, 3902–3924; Angew. Chem. Int. Ed. 2000, 39, 3750–3771;
b) S. Mori, E. Nakamura, Mechanisms of Copper-mediated Addition and Substitution Reactions in Modern Organocopper Chemistry (Ed.: N. Krause), WILEY -VCH, Weinheim, 2002, pp. 315–346.

⁶ H. Kaur, F. Kauer Zinn, E. D. Stevens, S. P. Nolan, *Organometallics* **2004**, *23*, 1157–1160.

⁷ C. Deutsch, N. Krause, B. H. Lipshutz, *Chem. Rev.* **2008**, *108*, 2916–2927.

⁸ B. H. Lipshutz, J. M. Servesko, B. R. Taft, J. Am. Chem. Soc. 2004, 126, 8352-8353.

Das Ziel dieses Projektes ist es, den mechanistischen Vorschlag für die Kupferhydridkatalysierte $S_N 2$ '-Reduktion propargylischer Epoxide unter Verwendung kinetischer Untersuchungen und quantenmechanischer Berechnungen zu prüfen. Insbesondere wird beabsichtigt, die hohe *anti*-Selektivität der Allenbildung zu erklären und zu bestimmen, ob der Transmetallierungsschritt tatsächlich den geschwindigkeits-bestimmenden Schritt des Reaktionscyclus darstellt.

2.2. Ergebnisse und Diskussion

Der katalytische Cyclus der Kupferhydrid-katalysierten Synthese von α -Hydroxyallenen wurde mittels Kinetiken und DFT-Methoden genau untersucht. Die Berechnungen der freien Energien der geometrieoptimierten Intermediate erfolgten mit den folgenden vereinfachten Modell-Reagenzien: dem einfachsten Epoxyalkin (2-Ethinyloxiran), SiH₄ (stellvertretend für PMHS) und einem Kupfer-NHC-Komplex (ausgehend von einem stark vereinfachten Ligandvorläufer: 1,3-Dimethyl-2,3-dihydro-1*H*-imidazol). Alle *Gibbs*-Energien sind relativ zum energetischen Minimum des Systems aus Katalysator und Epoxid (1 + 2).

Die möglichen Kupferkomplexe: Sich mit Kupfer-katalysierten Reaktionen zu beschäftigen, bedeutet auch, sich die Frage zu stellen, ob Cluster eine Rolle im Mechanismus spielen. Vorangegangene experimentelle Untersuchungen wie auch theoretische Berechnungen von Umwandlungen, die durch Organocuprate vermittelt oder katalysiert werden, haben eine aktive Beteiligung von Cuprat-Clustern wie dem (R₂CuLi)₂-Dimer aufgezeigt (darunter auch die konjugierte Addition oder die Carbocuprierung von Alkinen und Olefinen).^[5] Bei dem Schritt von der Carbocuprierung hin zur Hydrocuprierung muss auch das "*Stryker*-Reagenz" genannt werden, welches die bekannteste Kupferhydrid-Spezies darstellt und als ein Phosphin-stabilisiertes Hexamer [(Ph₃P)CuH]₆ vorliegt.^[7]

NHCs unterscheiden sich erheblich von Phosphinen sowohl in ihrer elektronischen Natur durch eine stärkere Wechselwirkung mit dem Kupfer, als auch strukturell durch eine lineare zwischen dem Carben-Kohlenstoffatom, Kupfer Anordnung dem und dem Wasserstoffatom; ein direkter Vergleich mit dem "Stryker-Reagenz" wäre daher irreführend. Die mit der Familie der NHCs einhergehende, stark herabgesetzte Liganden-Dissoziation und der signifikante sterische Anspruch resultieren in Metall-NHC-Komplexen mit ganz anderen, einzigartigen katalytischen Eigenschaften im Vergleich zu ihren Phosphin-basierten Analoga.^[6]

In der Literatur lassen sich zwar Beispiele für [(NHC)Cu]X–Komplexe mit einem dimeren oder sogar trimeren Koordinationsmodus im kristallinen Zustand finden (mit sehr seltenen

NHC-Verbrückungen zwischen den Kupferatomen und den Cu₃X₃–Kernen), in Lösung wurde jedoch bisher nur von der Existenz von Monomeren berichtet. Zudem konnte in den NMR-Spektren der beschriebenen Komplexe lediglich ein einziger Signalsatz beobachtet werden, was darauf schließen lässt, dass die NHC-verbrückten Komplexe in Lösung deaggregieren.^[7, 9] Und schließlich beinhalten die oligomeren Strukturen die Beteiligung verbrückender Halogenide – ein für Hydride untypisches und noch nicht beobachtetes Verhalten.

Koordination an das Alkin und Hydrocuprierung: Die berechneten *Gibbs*-Energien für den experimentell ungünstigen *syn*-Angriff des Katalysators (s-Nomenklatur für *syn*) sind in Schema 2.3 aufgeführt.

Schema 2.3. Energieprofil der syn-selektiven Hydrocuprierung.

Die Koordination des Katalysators an das Alkin führt zum *syn*- π -Komplex **3s** und ist leicht endergonisch (+6 kJ/mol), was größtenteils auf den Verlust der Translationsentropie zurückzuführen ist. In Abhängigkeit von der Ausrichtung der Addition und dem Gleichgewicht zwischen den π -Komplexen **3s** und **3s'** gibt es zwei mögliche Reaktionspfade. Der π -Komplex **3s'**, welcher den Vorläufer des protodemetallierten Alkens **2.7** darstellt, ist um 6 kJ/mol energiereicher als der Komplex **3s**. Der Übergangszustand des

⁹ S. Díez-González, E. C. Escudero-Adán, J. Benet-Buchholz, E. D. Stevens, A. M. Z. Slawin, S. P. Nolan, *Dalton Trans.* 2010, 39, 7595–7606.

Hydridtransfers **TSs 1'** hat einen Vier-Zentren-Charakter vergleichbar mit dem bei Carbocuprierungen^[5] und ist um 45 kJ/mol energetisch reicher als **3s'**, was eine energetische Gesamtbarriere von 57 kJ/mol ergibt. Die Bildung des σ -Cu-Komplexes **4s'** ist stark exergonisch (–144 kJ/mol) und beinhaltet ein Sackgassen-Intermediat, dass ausschließlich durch Protodemetallierung zum Nebenprodukt **2.7** weiterreagieren kann. Der Reaktionspfad über den π -Komplex **3s** beinhaltet eine etwas niedrigere Energiebarriere (+46 kJ/mol) und führt ebenfalls stark exergonisch zu dem σ -Cu-Komplex **4s** (–158 kJ/mol). In **4s** positioniert sich der Kupferrest derart, dass die nachfolgende Ringöffnung zum beobachteten Nebenprodukt stattfinden kann.

Im experimentell favorisierten *anti*-selektiven S_N2' -Substitutions-Pfad (**a**-Nomenklatur für *anti*) liegen die energetischen Barrieren für den ersten irreversiblen Schritt etwas höher als die der *syn*-Route, was einen offensichtlichen Widerspruch zu den experimentell beobachteten Selektivitäten darstellt (Schema 2.4).

Schema 2.4. Energieprofil für den anti-selektiven Hydrocuprierungsschritt.

Die Energien der beiden π -Komplexe **3a** und **3a'** sind genau umgekehrt zum *syn*-Weg, wobei die Energiebarriere für die Allen-bildende Route *via* **TSa 1** jedoch immer noch

energetisch niedriger liegt als der Hydrocuprierungsschritt *via* **TSa 1'**. Wie auch schon im Falle der *syn*-Route sind beide Schritte stark exergonisch und daher praktisch irreversibel.

Die Ergebnisse der ersten Schritte für den *syn-* und den *anti-*Pfad stellen einen offensichtlichen Verstoß gegen die experimentellen Befunde dar. Um die hohe *anti-*Selektivität erklären zu können, müsste es eine effiziente Überschneidung zwischen den beiden Pfaden einhergehend mit einem alternativen energetisch günstigeren Pfad zum *anti-*Produkt geben. Die beiden denkbaren Kreuzungspunkte beinhalten lediglich Rotationen um Bindungen mit recht kleinen Energiebarrieren (Schema 2.5). Folglich können die experimentellen Befunde begründet werden, vorausgesetzt, der Weg zum *syn-*Produkt verläuft über eine höhere Energiebarriere als diese Rotationen und als die nachfolgende Reaktion zum *anti-*Produkt.

Schema 2.5. Energieprofil der möglichen Umwandlungen des syn- ins anti-Intermediat.

Allenbildung und Transmetallierung: Die Epoxidöffnung und Generierung des Allens aus dem *syn*-Intermediat durchläuft ein lokales energetisches Maximum **TSs 4**, in dem der Kupferrest mit dem Sauerstoffatom wechselwirkt und dadurch zur Epoxidöffnung über eine Energiebarriere von 69 kJ/mol unter Freisetzung von 57 kJ/mol beiträgt (Schema 2.6). Die nachfolgende Rückbildung des Kupferhydridkatalysators mittels einer σ -Bindungsmetathese verläuft über eine Energiebarriere von 65 kJ/mol (**TSs 5**) – energetisch vergleichbar mit der vorangegangenen Epoxidöffnung. Das Alkoxid wird auf das Siliziumatom übertragen, wobei ein Vier-Zentren-Übergangszustand mit einer trigonalbipyramidalen Geometrie am Silizium durchlaufen wird (Abbildung 2.1).

Schema 2.6. Energieprofil des syn-Pfades für die Epoxidöffnung und die Transmetallierung.

Der Übergangszustand ist leicht asynchron mit der dem Hydridtransfer etwas vorgelagerten Si-O-Bindungsbildung. Die Bildung des Silylethers **6s** ist exergonisch (-23 kJ/mol) bezüglich **5s**.

Abbildung 2.1. Übergangszustand TSs 5 der Transmetallierung.

Der Wert für die Energiebarriere der Transmetallierung unterscheidet sich deutlich von dem der von *Oestreich et al.*^[10] beschriebenen [CuH]-katalysierten diastereoselektiven Alkohol-Silvlierung, in der eine beinahe barrierefreie Umsetzung berechnet wurde. Dabei wurden und iedoch Monophosphin-Liganden verwendet konnte kein es definierter Übergangszustand gefunden werden. Zudem zeigen in Widerspruch zu Oestreichs Ergebnissen die Studien von Bellemin-Laponnaz et al.^[11] zur [CuH]-katalysierten Hydrosilylierung von Ketonen eine Energiebarriere von 155 kJ/mol, begründet durch eine Vier-Elektronen-Wechselwirkung destabilisierende zwischen dem dz^2 -Orbital des CuL₂(OCHR₂)-Fragments und einem Si-H-Bindungsorbital des Me₂SiH₂.

Da der Startpunkt in katalytischen Prozessen beliebig gesetzt werden kann, wurde in dieser Arbeit das "Energy Span Model" verwendet, um die Gesamtexergonizität und den geschwindigkeitsbestimmenden Schritt zu ermitteln.^[12] Im Falle des *syn*-Pfades sind drei Schritte (**TSs 1, TSs 4**, und **TSs 5**) praktisch irreversibel und daher selektivitätsbestimmend für jegliche Bindungen, die in dem entsprechenden Schritt gebildet werden. Der geschwindigkeitsbestimmende Schritt mit einer energetischen Barriere von 69 kJ/mol (lediglich 4 kJ/mol mehr als der nachfolgende Transmetallierungsschritt) ist die Allenbildung durch die Kupfer-gestützte Epoxidöffnung *via* **TSs 4**. Die vorgelagerte Alkenspezies **4s** ist folgerichtig der Ruhezustand und sollte experimentell beobachtbar sein, was durch die Detektion des Nebenproduktes **2.7** belegt wird. Der komplette *syn*-Pfad ist exergonisch mit –232 kJ/mol.

Im Gegensatz zum *syn*-Pfad, bei dem die Epoxidöffnung vermutlich erst durch die Nachbargruppenbeteiligung des Kupfers ermöglicht wurde, war der Übergangszustand für die *anti*-Allenbildung analog zu **TSs 4** (Schema 2.7) nicht zu ermitteln. Das Scannen der Koordinaten, sowohl in der Gasphase als auch in der Lösung, zeigte einen kontinuierlichen Energieanstieg bedingt durch die Entstehung einer negativen Ladung am Sauerstoffatom. Im Falle des *syn*-Pfades wurde eben diese negative Ladung durch das positiv geladene

¹⁰ S. Rendler, O. Plevka, B. Karatas, G. Auer, R. Fröhlich, C. Mück-Lichtenfeld, S. Grimme, M. Oestreich, *Chem. Eur. J.* 2008, 14, 11512–11528.

¹¹ J.-T. Issenhuth, F.-P. Notter, S. Dagorne, A. Dedieu, S. Bellemin-Laponnaz, *Chem. Eur. J.* 2010, 529–541.

 ¹² a) S. Kozuch, S. Shaik, Acc. Chem. Res. 2010, 44, 101–110; b) E. Clot, P.-O. Norrby, Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions (Ed: P. Andersson), WILEY-VCH, Weinheim, 2012, pp. 167–191.

Kupferatom stabilisiert. In Anwesenheit einer solchen Stabilisierung im *anti*-Fall war jedoch trotz der Ringspannung im Epoxid eine Ringöffnung nicht möglich. Daher war es naheliegend, dass eine Wechselwirkung mit einer *Lewis*-Säure von Nöten ist, um eine Ringöffnung im *anti*-Fall zu ermöglichen. Verschiedene mögliche *Lewis*-Säuren aus dem Reaktionsgemisch kämen dabei in Betracht. Daher wurde der Versuch unternommen, *Lewis*-Säuren in Form von vereinfachten Kandidaten in die Berechnungen zu integrieren. Neutrale *Lewis*-Säuren wie Wasser oder Silan stellten sich als ineffektiv heraus. Jegliche kationische *Lewis*-Säuren hingegen (H⁺, H₃O⁺, NH₄⁺, LCu⁺) verursachten eine spontane, barrierefreie Ringöffnung, sobald sie dem Epoxid angenähert wurden.

Dieses Verhaltensmuster ist charakteristisch für eine diffusionskontrollierte-Reaktion.^[13] Da Potentialhyperfläche gibt, das kein Maximum auf der kann Standardes Berechnungsverfahren zur Bestimmung der Energiebarriere nicht angewandt werden. Wie jedoch von Harvey et al.^[14] vorgeschlagen wurde, kann die Barriere für die Gibbs-Energie einer diffusionskontrollierten Reaktion mit 20 kJ/mol veranschlagt werden. Für den Barrieren Vergleich unimolekularer entlang des Reaktionspfades sollte eine Konzentrationskorrektur angewandt werden; da die Konzentration einer Lewis-Säure geringer ausfallen wird als der Standardzustand von 1 M, steigt die Barriere um ca. 6 kJ/mol für jede Größenordnung der Konzentrationsherabsetzung. So wird beispielsweise im Falle einer Lewis-Säuren-Konzentration von 1 mM die energetische Barriere um ca. 18 kJ/mol angehoben, was eine Gesamtbarriere für die Epoxidöffnung von ca. 40 kJ/mol ergibt.

Schema 2.7. Die Barriere für die *anti*-Epoxidöffnung kann nicht berechnet werden; stattdessen wird sie mit Hilfe des bekannten Verhaltens diffusionskontrollierter Reaktionen geschätzt.

¹³ Für einen vergleichbaren Fall siehe: F. Q. Shi, Org. Lett. **2011**, 13, 736–739.

¹⁴ C. L. McMullin, J. Jover, J. N. Harvey, N. Fey, *Dalton Trans.* **2010**, *39*, 10833–10836.
Kinetische Studien: Die theoretischen Berechnungen deuten zusammen mit der experimentellen Beobachtung des aus der *anti*-Epoxidöffnung resultierenden Produktes darauf hin, dass die Ringöffnung *Lewis*-Säure-vermittelt stattfinden muss. Von den im Reaktionsgemisch anwesenden Spezies käme dafür das Kupfersalz in Betracht. Daher lag die Vermutung nahe, dass ein zweites Kupferatom an der praktisch irreversiblen Epoxidöffnung beteiligt sein müsse, was eine Reaktion zweiter Ordnung bezüglich des Cu-Katalysators ergäbe.^[15] Diese Idee wurde zunächst experimentell geprüft (Schema 2.8).

Schema 2.8. Kinetische Studien mit Variation der Katalysatorbeladung und der Temperatur.

Tatsächlich resultierte die doppelt logarithmische Auftragung der Anfangsgeschwindigkeiten mehrerer Reaktionen gegen die jeweilige Konzentration des Kupferkatalysators in einer Geraden mit der Steigung von ca. 2 (Abbildung 2.2), was die Kinetik zweiter Ordnung bezüglich des Kupferkatalysators anzeigt.

Abbildung 2.2. Doppelt logarithmische Auftragung der Anfangsgeschwindigkeiten als Funktion der Kupferkonzentration bei -60 °C.

 ¹⁵ Vgl. a) K. Müther, R. Fröhlich, C. Mück-Lichtenfeld, S. Grimme, M. Oestreich, *J. Am. Chem. Soc.* 2011, *133*, 12442–12444; b) H. F. T. Klare, M. Oestreich, *Dalton Trans.* 2010, *39*, 9176–9184; E. T. T. Kumpulainen, A. M. P. Koskinen, *Chem. Eur. J.* 2009, *15*, 10901–10911.

Zudem wurde die Temperaturabhängigkeit der Reaktion für den Temperaturbereich zwischen -60 °C und -23 °C untersucht (Abbildung 2.3). Die *Eyring*-Auftragung ergab ein lineares Verhalten mit einer angenäherten Aktivierungsenthalpie von $\Delta H^{\neq} = 43$ kJ/mol.

Abbildung 2.3. Eyring-Auftragung der CuH-katalysierten S_N2'-Reduktion des Epoxids 2.2'.

Der große negative Wert für die Aktivierungsentropie von $\Delta S^{\neq} = -47$ J/mol/K (mit angenommenem Transmissionsfaktor $\kappa = 1$), der durch Verwendung der *Eyring*-Gleichung errechnet wurde, deutet auf einen stark geordneten Übergangszustand hin, was sehr gut mit einem ternären Übergangszustand, bestehend aus einem Substratmolekül und zwei Kupfereinheiten, übereinstimmt. Durch Verwendung der *Gibbs–Helmholtz*-Gleichung lässt sich schließlich der Wert für die freie Aktivierungsenergie von $\Delta G^{\neq} = 54$ kJ/mol bei 227 K erhalten, welcher die berechneten Werte des geschwindigkeitsbestimmenden Schritts annähernd untermauert, wie später gezeigt wird.

Computerchemische Untersuchungen mit zwei Kupfereinheiten: Unter der Annahme, dass die ausgehend von dem neutralen hin zum zwitterionischen Intermediat führende Epoxidöffnung in der Gasphase nicht gut beschrieben wird, taucht ein Problem auf: Die zugänglichen Methoden erlauben die Ermittlung der Energien in Lösung und der Schwingungsbeiträge in der Gasphase, jedoch keine verlässlichen Schwingungsbeiträge in Lösung. Daher werden die endgültigen freien Energien in Lösung durch Addition der Schwingungs- und Lösungsbeiträge für die Gasphasengeometrien hergeleitet. Für die Gültigkeit dieser Methode muss eine starke Übereinstimmung zwischen den in der Gasphase und den in Lösung optimierten Strukturen vorliegen.

Vergleichbare Berechnungen, gefolgt von der Überlagerung und Überprüfung, zeigten tatsächlich nur minimale Unterschiede an. Alle hier aufgeführten Ergebnisse beruhen daher auf der Kombination der in der Gasphase bestimmten Geometrien mit den anderen energetischen Beiträgen, die auf "single point"-Berechungen der anhand Gasphasengeometrien basieren. Es wurden sowohl die Koordination von kationischen als auch von neutralen Kupferspezies an das Epoxid untersucht. Das Ergebnis zeigte Analogien zu den früheren Untersuchungen: Wann auch immer ein neutraler Kupferkomplex an das Epoxid koordinierte, fand überhaupt keine Allenbildung statt. Eine kationische Kupferspezies in der Nähe des Epoxids verursachte hingegen eine spontane Allenbildung in einem diffusionskontrollierten Reaktionsschritt, wie es zuvor bereits mit allen Arten von schlüssigen aktiven (Lewis-) Säuren beobachtet werden konnte.

Eine denkbare *Lewis*-Säure in der *in-vitro*-Reaktion wäre das Silylkation aus dem PMHS. Es stellt keine gut charakterisierte Spezies dar, jedoch müsste nach erfolgter Abgabe eines Hydrids an das Kupfer aus dem Silan eine *Lewis*-Säure entstehen, sowie auch bei der Reaktion eines Alkohols mit PMHS unter Entstehung von H₂. Dreibindige Siliziumkationen stellen jedoch ausgesprochen starke Elektronenpaarakzeptoren dar und reagieren, beabsichtigt wie unbeabsichtigt, mit nahezu jedem σ - oder π -basischen Molekül.^[15] Daher ist ihre Existenz kontrovers, und sowohl kristallographische als auch spektroskopische Anzeichen deuten darauf hin, dass π -basische Solventien in das leere Orbital am Siliziumatom donieren. Sogar schwach σ -koordinierende Gegenionen und die Bildung von Drei-Zentren-Zwei-Elektronen-[Si^{...}H^{...}Si]⁺-Verbrückungen sind bekannt.^[15] Demzufolge wird in diesem speziellen Fall aufgrund der Anwesenheit von NaO*t*-Bu, Cl⁻ und Toluol voraussichtlich eine andere *Lewis*-Säure die entscheidende Rolle im Schlüsselschritt spielen – in Übereinstimmung mit den kinetischen Ergebnissen höchstwahrscheinlich eine [(NHC)Cu]⁺-Spezies. Berechungen der verschiedenen Komplexe **3s**, **3a**, **4s** und **4a** in Gegenwart einer zusätzlichen $[Cu]^+$ -Spezies ergaben, dass die Koordination von $[Cu]^+$ an das Sauerstoffatom des *syn*- π -Komplexes oder des *syn*- σ -Alkens die Epoxidöffnung nicht begünstigen. Die auch nur leichte Annäherung einer $[Cu]^+$ -Spezies an das Epoxid des *anti*-Alkinyl-Komplexes öffnet es hingegen selektiv zum erwünschten Allenkomplex. Dasselbe gilt für den *anti*- σ -Alken-Komplex (Schema 2.9).

Schema 2.9. Energieprofil für den anti-selektiven Pfad.

Folgerichtig öffnet sich der Ring spontan, sobald sowohl eine [Cu-H]-Spezies an das Alkin **3a** koordiniert als auch ein [Cu]⁺-Kation an das Epoxid. Dies erfolgt in einer diffusionskontrollierten Reaktion mit einer geschätzten Energiebarriere von ungefähr 40 kJ/mol ausgehend von dem Cu-H-Alkin-Koordinationskomplex **3a**. Der Schritt ist mit –198 kJ/mol stark exergonisch und führt direkt und selektiv zum *anti*-Produkt **5a**.

Nach einer anschließenden Annäherung des Silans und der Spaltung des π -Komplexes erfolgt die Transmetallierung von dem Kupfer auf das Silan über eine Energiebarriere von nur 42 kJ/mol und das finale Reaktionsprodukt **6a** wird freigesetzt. Die gesamte Transmetallierung ist mit –39 kJ/mol exergonisch. Die alternative Bildung des σ -Alken-Komplexes **4a** mit der anschließenden Umsetung zu **5a''** weist eine etwas höhere

Energiebarriere auf, verglichen mit der geschätzten Barriere für die Cu⁺-gestützte Öffnung von **3a**, könnte aber bei sehr niedrigen *Lewis*-Säure-Konzentrationen an Bedeutung erlangen. Wie jedoch bereits gezeigt werden konnte, würde die Reaktion über den σ -Komplex vermutlich das *syn*-Produkt begünstigen.

2.3. Zusammenfassung

Die Kupferhydrid-katalysierte S_N2' -Reduktion von Propargyloxiranen ist eine effiziente Methode für die diastereoselektive Synthese von α -Hydroxyallenen. Zusammenfassend lässt sich sagen, dass die detaillierten mechanistischen Untersuchungen dieser Reaktion mit Hilfe von kinetischen Experimenten und DFT-Berechnungen eine Konkurrenzsituation zwischen Diffusions- und kinetischer Kontrolle aufzeigen und die hohe *anti*-Selektivität der Reaktion erklären.

Schema 2.10 zeigt den energetisch günstigsten Pfad für den gesamten Katalysezyklus der Kupferhydrid-katalysierten S_N2'-Reduktion von Propargyloxiranen.

Schema 2.10. Energieprofil für den gesamten Reaktionsweg.

Während sowohl das Nebenprodukt **2.7** als auch das unerwünschte *syn*-Allen (links) über die anfangs vorgeschlagene Sequenz der π -Komplexierung, Hydrocuprierung, der geschwindigkeitsbestimmenden β -Eliminierung und der abschließenden Transmetallierung gebildet werden, beinhaltet der dominierende *anti*-Reaktionsweg (rechts) einen kompetitiven diffusionskontrollierten Mechanismus, gefolgt von der Transmetallierung analog zum *syn*-Fall.

Der zuvor postulierte Mechanismus konnte demnach größtenteils bestätigt werden und musste lediglich um eine zweite Kupfer-Einheit ergänzt werden, die mittels einer *Lewis*-Säure-Aktivierung des [Epoxid-CuH]-Komplexes an der Epoxidöffnung und simultanen Allenbildung im Rahmen eines diffusionskontrollierten Vorgangs beteiligt ist und auf diese Weise die hohe *anti*-Selektivität der Reaktion bewirkt.

2.4. Experimenteller Teil

2.4.1. Vorbemerkungen

Alle Berechnungen wurden mit dem Jaguar-Programmpaket^[16] auf DFT-Ebene mit dem B3LYP-Funktional^[17] durchgeführt. Die Geometrieoptimierungen wurden mit den vorgegebenen Konvergenzkriterien in der Gasphase mit dem Basissatz LACVP**^[18] vorgenommen. Dieser besteht aus dem $6-31G^{**}(d, p)$ -Standardbasissatz mit Berücksichtigung der leichten Atome (H, C, N und O) und aus dem LANL2DZ-Basissatz, der ein effektives Kernpotential mit "split valence" (double- ζ) für Kupfer beinhaltet.

Für die Überprüfung der Beschaffenheit der Sattelpunkte wurden Frequenzrechnungen herangezogen; mit null imaginären Frequenzen in der Hesse-Matrix konnte ein lokales energetisches Minimum identifiziert werden; genau ein negativer Eigenwert deutete auf einen Übergangszustand hin, wobei zusätzlich durch Animation der Schwingungsmodi die entsprechende Reaktionskoordinate verifiziert wurde. Zur Absicherung der Verbindung der stationären Punkte mit relevanten Übergangszuständen auf der Reaktionskoordinate wurden zudem IRC ("Intrinsic Reaction Coordinate")-Rechnungen herangezogen. Stationäre Punkte auf der Reaktionskoordinate wurden durch "relaxed" Scans der potentiellen Energiehyperfläche (PES) gefunden.

Die Frequenzrechnungen wurden zudem dazu verwendet, um Nullpunktsenergie-Korrekturen (ZPC) und thermodynamische Daten für 298.15 K zu erhalten. Durch "singlepoint"- Berechnungen anhand der optimierten Gasphasen-Strukturen unter Verwendung des in Jaguar integrierten polarisierbaren *Poisson-Boltzmann*-Kontinuummodells^[19] mit den Parametern für Toluol (Dielektrizitätskonstante: 2.284, Untersuchungsradius: 2.60 Å) wurden die potenziellen Energien in Lösung ermittelt.

¹⁶ Jaguar, Version 6.5, Schrodinger, LLC, New York, 2005. Für aktuelle Versionen vgl: http://www.schrodinger.com.

 ¹⁷ a) A. D. Becke, *Phys. Rev. A* 1988, *38*, 3098–3100; b) C. T. Lee, W. T. Yang, G. Parr, *Phys. Rev. B* 1988, *37*, 785–789; c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. J. Frisch, *Phys. Chem.* 1994, *98*, 11623-11627.

¹⁸ P. J. Hay, W. R. J. Wadt, Chem. Phys. **1985**, 82, 299–310.

 ¹⁹ a) D. J. Tannor, B. Marten, R. Murphy, R. A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda, W. A. Goddard III, B. Honig, *J. Am. Chem. Soc.* **1994**, *116*, 11875–11882; b) B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff, B. Honig, *J. Phys. Chem.* **1996**, *100*, 11775–11788.

Die freien *Gibbs*-Energien wurden schließlich durch Addition des thermodynamischen Gasphasenbeitrags zur Energie in Lösung erhalten. Um den Vergleich von Komplexen unterschiedlicher Molekularität zu ermöglichen, wurden die freien Energien aller möglichen Bestandteile im gedachten Reaktionsgemisch berechnet. Durch Addition der freien Energien der Bestandteile, die nicht Teil eines gegebenen Komplexes sind, zur freien Energie dieses Komplexes konnten die unterschiedlichen Komplexe miteinander verglichen werden.

2.4.2. Arbeitsvorschriften

Synthese des [LCuCl]-Präkatalysators^[20] (HU-141-A)

Es wurden 1,13 g des Imidazoliumsalzes **IBiox12·HOTf** (1.87 mmol) in 40 mL THF suspendiert, bei RT mit 179 mg NaOt-Bu (1.87 mmol, 1.0 Äq.) versetzt und 10 min gerührt. Nach der Zugabe von 203 mg Kupfer(I)-chlorid (2.05 mmol, 1.1 Äq.) wurde das Gemisch weitere 15.5 h gerührt. Die dunkelgrüne Lösung wurde bei Reaktionsende über Celite filtriert, mit Dichlormethan (3x 40 mL) nachgespült und von den Lösungsmitteln befreit. Versuche zur säulenchromatographischen Aufreinigung an Aluminiumoxid scheiterten durch mangelhafte Trennung. Die mehrfache schnelle säulenchromatographische Aufreinigung an Kieselgel (CH₂Cl₂ pur) lieferte neben dem (IBiox12)₂Cu(I)-Fragment und großen Mengen des Imidazoliumsalzes durch Zersetzung auf dem Kieselgel 185 mg des Kupferkomplexes (0.33 mmol, 18%).

DC: $R_f = 0.68 (CH_2Cl_2, nur UV).$

Schmp.: 216 °C.

²⁰ C. Deutsch, Dissertation, TU Dortmund, **2008**.

¹**H-NMR:** 500 MHz, Aceton-d₆; $\delta = 1.36$ -1.51 (m, 32H, Alkyl-H), 1.72-1.85 (m, 8H, Alkyl-H), 2.33 (t, J = 11.09 Hz, 4H, Alkyl-H), 4.72 (s, 4H, OCH₂).

¹³C-NMR: 126 MHz, Aceton-d₆; δ = 21.3 (Alkyl-C), 23.1 (Alkyl-C), 23.6 (Alkyl-C), 27.1 (Alkyl-C), 27.4 (Alkyl-C), 32.7 (Alkyl-C), 67.0 (NC_q), 88.4 (CH₂O), 125.5 (OCN).

IR: (Film) v = 2931 (s), 2857 (s), 1810 (w), 1759 (s), 1471 (s), 1442 (m), 1422 (m), 1329 (s), 1259 (m), 1242 (m), 1214 (s), 1161 (w), 1091 (m), 1021 (m), 970 (s), 949 (s), 903 (m), 853 (s), 802 (s), 743 (s), 722 (s), 697 (w), 668 (w), 618 (m), 590 (w), 513 (w).

Allgemeine Arbeitsvorschrift zur Durchführung der kinetischen Untersuchungen:

(IBiox12)CuCl (13 mol%, bzw. zwischen 6 und 44 mol%) wurde in einem Schlenkrohr unter Argon in trockenem, mehrfach entgastem Toluol (1.8 mL) suspendiert und 5 min lang mit einem Heißluftfön auf 100 °C erhitzt. Nach dem Abkühlen auf RT wurde PMHS (0.1 mL, 1.22 mmol) hinzugefügt und das Reaktionsgemisch 5 min lang bei RT gerührt, bevor es auf -60 °C (bzw. auf eine Temperatur zwischen -60 und -23 °C) abgekühlt wurde. Nach der Zugabe von trans-Decahydronaphthalin (1 Äq.) als internem Standard und dem Epoxid (0.124 mmol) in 1.2 mL Toluol wurde das Reaktionsgemisch mehrere Stunden lang bei dieser Temperatur gerührt. Währenddessen wurden Proben aus dem Reaktionsgemisch entnommen, um den Umsatz zu verfolgen. Zu diesem Zweck wurden jeweils ca. 10 µL der Reaktionslösung nach intensivem Schütteln entnommen und zu 0.5 mL einer eiskalten Lösung von *n*-Bu₄NF \cdot 3 H₂O (2 Äq.) in absolutem THF hinzugegeben. Das Gemisch wurde binnen einer Stunde auf RT erwärmt und mit 3 Tropfen einer wässrigen gesättigten NH₄Cl-Lösung versetzt. Nach der Zugabe einer Spatelspitze Na₂SO₄ und der Filtration über eine kurze Pipettensäule (Watte / Sand / 1.5 cm SiO₂ / 0.5 cm Celite; Laufmittelgemisch EtOAc/EtOH 4:1) wurde der Reaktionsumsatz mittels GC-Analyse bestimmt. Folgendes Of enprogramm wurde dabei verwendet: 90 °C, 0 min, 3 °C/min \rightarrow 208 °C, 0 min; 40 °C/min \rightarrow 220 °C, 5 min (ges. ca. 50 min).

2.4.3. Analytische Daten

Ergänzende Informationen zur Abbildung 2.2:

Tabelle 2.1. Korrelation zwischen Anfangsgeschwindigkeiten und Katalysatorkonzentrationmit 0.124 mmol Epoxid bei -60 °C.

Nr.	n _{LCuCl} [mol%]	$v_o \cdot 10^{-3}$
1	6	0.06
2	11	0.15
3	13	0.34
4	22	1.27
5	33	2.91
6	39	5.49
7	44	8.69

Ergänzende Informationen zur Abbildung 2.3:

Tabelle 2.2. Werte für den Eyring-Plot mit 0.124 mmol Epoxid bei Temperaturen zwischen –60 und –23 °C.

Nr.	n _{LCuCl} [mol%]	T [K]	v _o · 10 ⁻²	k · 10 ⁻³
1	13.1	213	0.38	0.29
2	12.9	219	1.86	1.44
3	13.0	224	3.23	2.48
4	12.9	227	4.67	3.62
5	13.0	229	11.3	8.66
6	12.9	235	8.45	6.55
7	13.1	240	18.6	14.2

3

Stereoselektive Synthese von *a*-Hydroxyallenen mittels chiraler NHCs

3.1. Motivation und Zielstellung

Die in Kapitel 2 untersuchte, von *N. Krause et al.*^[1] entwickelte *anti*-stereoselektive Kupferhydrid-katalysierte S_N2' -Reduktion propargylischer Elektrophile unter Verwendung achiraler NHCs stellt, wie bereits erläutert, aufgrund ihres exzellenten Chiralitätstransfers und einer breiten Toleranz gegenüber funktionellen Gruppen einen besonders leichten Zugang zu diastereomerenreinen Allenen dar.^[2] Der [(NHC)CuH]-Katalysator wird *in situ* aus dem Imidazoliumsalz, einer Kupfer-Quelle und der Base NaO*t*-Bu in Anwesenheit eines Silans generiert.^[3]

Eine direkte enantioselektive Synthese von Allenen mittels S_N2 '-Substitution aus achiralen Vorgängern unter Verwendung eines chiralen Übergangsmetall-Katalysators (Schema 3.1) als alternativer Zugang zur Verwendung chiraler Substrate hätte den Vorteil, nicht auf die Verfügbarkeit von enantiomerenreinen Substraten angewiesen zu sein und ist daher besonders erstrebenswert.

Schema 3.1. Kinetische Racematspaltung mit chiralen NHCs in der [CuH]-katalysierten S_N2'-Reduktion.

Die meisten Methoden zur katalytischen enantioselektiven Generierung von Allenen sind Übergangsmetall-katalysiert und beinhalten als Quelle der Chiralität hauptsächlich chirale ein- oder zweizähnige Phosphinliganden. Chirale NHCs wurden in der Allensynthese bisher nicht untersucht. In der Kupferhydrid-Katalyse beschränkt sich die Verwendung von NHCs bisher ebenfalls nur auf achirale Liganden.^[4]

 ¹ a) C. Deutsch, B. H. Lipshutz, N. Krause, *Angew. Chem.* 2007, *119*, 1677–1681; b) C. Deutsch, B. H. Lipshutz, N. Krause, *Angew. Chem. Int. Ed.* 2007, *46*, 1650–1653.

² C. Spino, S. Fréchette, *Tetrahedron Lett.* **2000**, *41*, 8033–8036.

³ C. Deutsch, N. Krause, B. H. Lipshutz, *Chem. Rev.* **2008**, *108*, 2916–2927.

 ⁴ a) M. Ogasawara, *Tetrahedron: Asymmetry* 2009, 20, 259–271; b) N. Krause, A. Hoffmann-Röder, *Tetrahedron* 2004, 60, 11671–11694.

Die Racematspaltung ist mit den Anfängen der Stereochemie eng verbunden und wurde von Louis Pasteur im Jahre 1848 durch manuelles Sortieren von enantiomeren Natrium-Ammonium-Tartrat-Kristallen begründet.^[5] Neben mechanischen Trennverfahren kann auch die Trennung der Enantiomere nach erfolgter Diastereomerenbildung mit anschließender fraktionierender Kristallisation, der chiralen Chromatographie oder auch der fermentativen Racematspaltung herangezogen werden. Dabei werden Wechselwirkungen wie Wasserstoffbrücken, Dipol-Dipol-Wechselwirkungen oder die Komplexierung durch chirale Metallkomplexe ausgenutzt.

Die kinetische Racematspaltung stellt eine weitere Methode dar. Hierbei wird das racemische Edukt mit einem enantiomerenreinen Reagenz umgesetzt, was unterschiedliche Reaktionsgeschwindigkeiten bei der Umwandlung der beiden Enantiomere des Edukts zur Folge hat. Ist die Geschwindigkeitsdifferenz ausreichend hoch, so kann bei einem Abbruch der Reaktion nach 50% Umsatz bestenfalls ein 1:1-Gemisch des enantiomerenreinen Produkts und des langsamer reagierenden, angereicherten Edukts isoliert werden. Dieses Trennprinzip findet in der enzymatischen Racematspaltung Anwendung. Die katalytische Racematspaltung stellt eine wichtige Alternative kinetische zur Gewinnung enantiomerenreiner Verbindungen dar, wobei ein chiraler synthetischer Katalysator gegenüber einem Enzym den Vorteil einer größeren Reaktions- und Substratbandbreite bietet.^[6]

N-Heterocyclische Carbene (NHCs) sind sehr elektronenreiche, neutrale σ -Donor-Liganden, die eine hervorragende Alternative zu den bisher gebräuchlichen Phosphinen darstellen. Durch eine sehr starke Bindung zum Metall erhöhen sie im Vergleich zu anderen Liganden die Lebenszeit des entsprechenden Metallkomplexes, sowie seine Robustheit gegenüber Hitze, Sauerstoff und Feuchtigkeit und verleihen ihm gleichzeitig eine erhöhte Reaktivität. Seit ihrer Entdeckung im Jahre 1968 durch *Öfele et al.*^[7] und *Wanzlick et al.*^[8]

⁵ M. L. Pasteur, C. R. Hebd. Seance Acad. Sci. Paris **1848**, 26, 535-538; **1858**, 46, 615–618.

⁶ a) H. B. Kagan, J. C. Fiaud, *Top. Stereochem.* **1988**, *18*, 249–330; b) R. F. Ismagilov, *J. Org. Chem.* **1998**, *63*, 3772–3774.

⁷ K. Öfele, J. Organomet. Chem. **1968**, 12, P42–P43.

⁸ H.-W. Wanzlick, H.-J. Schönherr, Angew. Chem. **1968**, 80, 154; J. Angew. Chem. Int. Ed., **1968**, 7, 141–142.

und ihrer ersten Isolierung im freien Zustand durch *Arduengo et al.*^[9] im Jahre 1991 ist das Interesse an NHCs vor allem seitens der Metallorganischen Chemie rapide gewachsen und resultiert noch heute in einem hochaktuellen Forschungsgebiet.^[10] Ihre Fähigkeit, die Katalysator-Aktivität in einer beachtlichen Anwendungsbreite chemischer Umsetzungen wie der Olefinmetathese, der C-C- und C-N-Kreuzkupplungs-Reaktionen, Hydrierungen und Hydrosilylierungen signifikant zu steigern, unterstreicht ihre besondere Bedeutung.^[11]

NHCs heben sich von den Phosphinliganden durch ihre viel stärkere σ -Donor-Eigenschaft, beruhend auf dem freien Elektronenpaar am Carben-Kohlenstoff, hervor. Zudem weisen sie durch die interne Rückbindung von den benachbarten N-Atomen ins leere p-Orbital des Carben-Kohlenstoffs nur eine schwache π -Akzeptor-Eigenschaft zum Metall auf. Dadurch kommen stärkere Wechselwirkungen mit dem Metall zustande.^[3, 12]

Auch in ihrer räumlichen Struktur weisen NHCs durch eine Art taschenförmige Gestalt erhebliche Unterschiede zu der kegelförmigen Geometrie der Phosphine auf, wie aus Abbildung 3.1 deutlich hervorgeht.^[13]

Abbildung 3.1. Räumliche Struktur von Phosphinen und NHCs im Vergleich.

Ihre Etablierung in der asymmetrischen Katalyse wird derzeit intensiv vorangetrieben.^[14] Im Design chiraler NHC-Liganden gibt es mehrere grundlegende strukturelle Motive: es wird unterschieden zwischen NHC-Liganden mit chiralen N-Substituenten, solchen mit stereogenen Zentren im N-Heterocyclus, Elementen axialer Chiralität (z. B. 1,1'-Binaph-

⁹ A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc **1991**, 113, 361–363.

¹⁰ a) J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya, W. S. Hwang, I. J. B. Lin, *Chem. Rev.* 2009, 109, 3661–3598; b) S. Díez-González, S. P. Nolan, *Chem. Rev.* 2009, 109, 3612–3676.

¹¹ *N-Heterocyclic Carbenes in Synthesis*, Ed.: S. P. Nolan, Wiley-VCH: Weinheim, **2006**.

¹² D. Richard E, Coord. Chem. Rev. 2007, 251, 702–717.

¹³ F. Glorius, in N-Heterocyclic Carbenes in Catalysis-An Introduction, Ed.: F. Glorius, Topics in Organometallic Chemistry, Springer-Verlag, Berlin, 2007, Vol. 21, 1–20.

 ¹⁴ a) M. Mauduit, H. Clavier, in *N-Heterocyclic Carbenes in Synthesis*, Ed.: S. P. Nolan, Wiley-VCH: Weinheim, 2006, 183–222; b) L. H. Gade, S. Bellemin-Laponnaz, in *N-Heterocyclic Carbenes in Transition Metal Catalysis*, Ed.: F. Glorius, *Topics in Organometallic Chemistry*, Springer-Verlag, Berlin, 2007, Vol. 21, 117–157.

thyl), Elementen planarer Chiralität (z. B. Ferrocenyl- oder Paracyclophan-Substituenten) und NHC-Liganden, die Oxazolin-Einheiten enthalten.^[11] Eine Vorhersage der für die meisten enantioselektiv katalysierten Reaktionen am besten geeigneten Liganden ist fast unmöglich, jedoch liefern die bisherigen Resultate aus der Entwicklung neuer NHC-Liganden eine gute Basis und lassen generelle Trends erkennen. Aus den bisher in der Literatur bekannten Untersuchungen haben sich einige chirale NHC-Vorläufer (Abbildung 3.2) in ihrer Anwendungsbreite und Effizienz besonders hervorgehoben, wobei sowohl C₂-symmetrische als auch unsymmetrische N-Heterocyclische Carbene in den jeweiligen Reaktionen exzellente Enantioselektivitäten induzieren konnten.^[11, 12]

Abbildung 3.2. Auswahl von Vorläufern für chirale N-Heterocyclische Carbene.

Die von Alexakis et al. entwickelten Carbenvorläufer L1 und L2 beinhalten die Chiralitätszentren an den N-Substituenten.^[15] Diese Liganden werden in der enantioselektiven Kupfer-katalysierten 1,4-Addition von Dialkylzink-Reagenzien an *Michael*-Akzeptoren verwendet. Das Imidazoliniumsalz L1 wird in drei Stufen aus (R)-1-Phenylethylamin und Glyoxal unter Reduktion des intermediär gebildeten Diimins

¹⁵ C. L. Winn, F. Guillen, J. Pytkowicz, S. Roland, P. Mangeney, A. Alexakis, J. Organomet. Chem. 2005, 690, 5672–5695.

generiert (Schema 3.2). Das Imidazoliumsalz **L2** wird in einer Eintopfsynthese aus (*S*)-(-)- α -(1-Naphthyl)ethylamin, Glyoxal und Paraformaldehyd synthetisiert.^[16]

Schema 3.2. Exemplarische Synthese für symmetrische NHC-Vorläufer mit chiralen N-Substituenten.

Kündig et al. entwickelten den Carbenvorläufer **L3**, der die chirale Information ebenfalls an den N-Substituenten trägt und in der asymmetrischen katalytischen Oxindol-Synthese Anwendung findet. Die Synthese erfolgt analog zu **L1** aus dem chiralen benzylischen Amin und Glyoxal.^[17]

Tomioka et al. publizierten den NHC-Vorläufer L4, welcher die Chiralitätszentren im Rückgrat aufweist und in der Gold-katalysierten asymmetrischen Cyclisierung von 1,6-Eninen^[18], sowie der Kupfer-katalysierten allylischen Arylierung^[19] eingesetzt wird. Das Imidazoliniumsalz L4 wird in zwei Stufen aus dem C₂-symmetrischen 1,2-Diphenylethylendiamin synthetisiert (Schema 3.3).

Schema 3.3. Exemplarische Synthese für symmetrische NHC-Vorläufer mit chiralem Rückgrat.

Der von *Grubbs et al.* entwickelte Carbenvorläufer L5 trägt die chirale Information ebenfalls im N-Heterocyclus. Durch die sterische Abstoßung zwischen den Phenylgruppen im Rückgrat und den *ortho*-Aryl-Substituenten wird die chirale Information auf die aktive

¹⁶ W. A. Herrmann, L. J. Goossen, C. Koecher, G. R. Artus, Angew. Chem. **1996**, 108, 2980–2982; J. Angew. Chem. Int. Ed., **1996**, 35, 2805–2807.

¹⁷ Y.-X. Jia, J. Mikael Hillgren, E. L. Watson, S. P. Marsden, E. P. Kündig, *Chem. Commun.* **2008**, 4040–4042.

¹⁸ Y. Matsumoto, K. B. Selim, H. Nakanishi, K. Yamada, Y. Yamamoto, K. Tomioka, *Tetrahedron Lett.* **2010**, *51*, 404–406.

¹⁹ K. B. Selim, H. Nakanishi, Y. Matsumoto, Y. Yamamoto, J. Org. Chem. 2011, 76, 1398–1408.

Seite des Katalysators übertragen.^[12] Der Ligand wird in der Ruthenium-katalysierten Desymmetrisierung von Olefinen durch Ringschluss-Metathese^[20] und der Kupferkatalysierten *Michael*-Addition von *Grignard*-Reagenzien^[21] verwendet. Der Vorläufer L5 wird analog zu L4 in zwei Stufen aus dem C₂-symmetrischen 1,2-Diphenylethylendiamin synthetisiert.

Hoveyda et al. entwickelten den chiralen, chelatisierenden Carben-Liganden aus dem Imidazoliumsalz L6. Sein weites Anwendungsgebiet beinhaltet die Kupfer-katalysierte allylische Alkylierung sowie die Ruthenium-katalysierte Ringschluss- und Kreuzmetathese. Der NHC-Vorläufer L6 ist in vier Stufen aus 1,2-Diphenylethylendiamin und einem Biphenylderivat zugänglich.^[12, 22]

Der Carbenvorläufer L7 wurde von *S. Watanabe* synthetisiert und weist die chirale Information ebenfalls an den N-Substituenten auf. Zur Synthese des Imidazoliniumsalzes L7 wurde L-(-)-Menthol hinzugezogen.

Der von *Mauduit et al.*^[23] entwickelte zweizähnige Alkoxy-NHC-Ligand aus dem Imidazoliumsalz **L8** blockiert durch seine nucleophile funktionelle Gruppe als zweite, komplementär ligierende Anker-Einheit die Rotation des chiralen Substituenten um die C-N-Achse. Dieser Ligand wird in der enantioselektiven Kupfer-katalysierten 1,4-Addition verwendet^[24] und ist in fünf Stufen aus dem β -Aminoalkohol des Leucins zugänglich.

Der von *Enders et al.* entwickelte einzähnige Ligand aus dem Triazoliumsalz L9 trägt das Chiralitätszentrum ebenfalls am N-Substituent, welches einer Oxazolidin-Einheit angehört und damit konformativ fixiert ist. Dieser Ligand kommt in der stereoselektiven Benzoin-

²⁰ T. J. Seiders, D. W. Ward, R. H. Grubbs, *Org. Lett.* **2001**, *3*, 3225–3228.

²¹ Y. Matsumoto, K.-i. Yamada, K. Tomioka, J. Org. Chem. 2008, 73, 4578–4581.

 ²² a) J. J. Van Veldhuizen, J. E. Campbell, R. E. Giudici, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 6877–6882; b) J. M. O'Brien, K.-S. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10630–10633.

²³ H. Clavier, L. Coutable, L. Toupet, J.-C. Guillemin, M. Mauduit, J. Organomet. Chem. 2005, 690, 5237–5254.

²⁴ D. Martin, S. Kehrli, M. d'Augustin, H. Clavier, M. Mauduit, A. Alexakis, J. Am. Chem. Soc 2006, 128, 8416–8417.

Kondensation zum Einsatz. Das Triazoliumsalz **L9** wird in drei Stufen aus dem (*S*)-4-(*tert*-Butyl)oxazolidinon synthetisiert.^[25, 26]

Glorius et al. publizierten schließlich den Bisoxazolin-basierten NHC-Vorläufer **L10**, der unter anderem in der Palladium-katalysierten intramolekularen α -Arylierung von Amiden Anwendung findet und in einer siebenstufigen Synthesesequenz ausgehend von (-)-Menthon hergestellt werden kann (Schema 3.4).^[27]

Schema 3.4. Synthese des Oxazolin-basierten NHC-Vorläufers L10.

Das Ziel dieses Projekts ist es, chirale N-Heterocyclischen Carbene in der kinetischen Racematspaltung racemischer Propargyloxirane durch die Kupferhydrid-katalysierte S_N2' -Reduktion zu etablieren. Dazu ist es geplant, die in Abbildung 3.2 gezeigten NHC-Vorläufer zu untersuchen. Dabei sollen sowohl der Einfluss der Reaktionsparameter als auch die verwendeten Reagenzien optimiert werden. Auch eine Modifikation des selektivsten NHCs zur weiteren Verbesserung der Enantioselektivitäten ist denkbar. Weitere Substratklassen wie Propargylcarbonate sind für diese Untersuchungen ebenfalls vorgesehen.

²⁵ a) D. Enders, U. Kallfass, Angew. Chem. 2002, 114, 1822–1824; b) D. Enders, U. Kallfass, Angew. Chem. Int. Ed. 2002, 41, 1743–1745.

²⁶ L. H. Gade, S. Bellemin-Laponnaz, *Coord. Chem. Rev.* 2007, 251, 718–725.

²⁷ S. Würtz, C. Lohre, R. Fröhlich, K. Bergander, F. Glorius, J. Am. Chem. Soc. **2009**, 131, 8344–8345.

3.2. Ergebnisse und Diskussion

3.2.1. Synthesen der Substrate

Das Testsubstrat **3.9** konnte in sieben Stufen mit insgesamt 11% Ausbeute dargestellt werden, wobei die Addition von Brom an das Alken **3.4** und die anschließende doppelte Eliminierung^[28] zum Alkin **3.5** mit einer mäßigen Ausbeute von 39% durchgeführt werden konnten. (V 3.1). Die Basen-vermittelte Formylierung und die *Horner-Wadsworth-Emmons*-Reaktion^[29] waren mit einer guten Ausbeute von 62% über zwei Stufen erfolgreich (V 3.2).^[30] Auch die Reduktion des Enins **3.7** zum primären Alkohol mittels Lithiumaluminiumhydrid und die anschließende Epoxidierung verliefen mit 65% Ausbeute über zwei Stufen problemlos (V 3.3). Abschließend wurde der primäre Alkohol **3.8** in einer *Williamsonschen* Ethersynthese^[31] geschützt (Schema 3.5, V 3.4).^[32]

Schema 3.5. Synthese des Akinyloxirans 3.9.

Ein weiteres Epoxid **3.11** konnte in einer dreistufigen Synthesesequenz mit einer Gesamtausbeute von 35% Ausbeute ausgehend von dem Alkin **3.10** dargestellt werden. Dabei wurde zunächst durch Eliminierung von Wasser das Enin generiert, welches nach

²⁸ L. Brandsma, *Preparative Acetylenic Chemistry*, 2. Auflage, Elsevier, Amsterdam, **1988**, 167, 195.

 ²⁹ a) W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc. 1961, 83, 1733–1738; b) Org. Synth. 1973, 5, 547; 1965, 45, 44; c) M. Geyer, J. Bauer, C. Burschka, P. Kraft, R. Tacke, Eur. J. Inorg. Chem. 2011, 2011, 2769–2776.

³⁰ L. Brandsma, *Preparative Acetylenic Chemistry*, 2. Auflage, Elsevier, Amsterdam, **1988**, 102; M. Journet, D. Cai, L. M. DiMichele, R. D. Larsen, *Tetrahedron Lett.* **1998**, *39*, 6427–6428; N. Krause, A. Hoffmann-Röder, *Synthesis* **2002**, *12*, 1759–1774.

³¹ H. M. Leicester, H. S. Klickstein: in Theory of Aetherification, *Phil. Magazine* **1850**, *37*, 350–356.

³² C. Deutsch, Dissertation, Technische Universität Dortmund, **2008**.

Methylierung an der terminalen Position des Alkins epoxidiert werden konnte (Schema 3.6, V 3.5).^[33]

Schema 3.6. Synthese des Akinyloxirans 3.11.

Das cyclische Carbonat **3.14** wurde ausgehend von dem Eninol **3.12** in einer dreistufigen Synthesesequenz mit 32% Gesamtausbeute gebildet (Schema 3.7). Dazu wurde das Eninol als Benzylether geschützt (V 3.6), nach modifizierten *Sharpless*-Bedingungen^[34] dihydroxyliert (V 3.7) und das gebildete Diol **3.13** mit Triphosgen in das cyclische Carbonat **3.14** überführt, wobei eine Ausbeute von 56% erreicht wurde (V 3.8).^[32]

Schema 3.7. Synthese des Akinylcarbonats 3.14.

 ³³ a) R. G. Carlson, W. W. Cox, *J. Org. Chem.* 1977, *42*, 2382–2386; b) M. Yoshida, M. Hayashi, K. Shishido, *Org. Lett.* 2007, 9, 1643–1646; c) C. Cao, Y. Li, Y. Shi, A. L. Odom, *Chem. Commun.* 2004, 2002–2003; d) Ö. Aksin-Artok, Dissertation, Technische Universität Dortmund, 2010.

 ³⁴ a) E. N. Jacobsen, I. Marko, W. S. Mungall, G. Schroeder, K. B. Sharpless, *J. Am. Chem. Soc.* 1988, *110*, 1968–1970; b) J. Gonzalez, C. Aurigemma, L. Truesdale, *Org. Synth.* 2004, *10*, 603; c) 2002, *79*, 93.

3.2.2. Synthesen der NHC-Vorläufer

Der NHC-Vorläufer **L8** konnte in einer fünfstufigen Synthesesequenz mit insgesamt 25% Ausbeute dargestellt werden (Schema 3.8).^[23]

Schema 3.8. Synthese des NHC-Vorläufers L8.

Dabei wurden Ethyloxalylchlorid (**3.15**) und Trimethylanilin mit 48% Ausbeute in das Carbamoylderivat **3.16** überführt (V 3.9). Das L-(+)-Leucinol konnte aus der entsprechenden Aminosäure durch Reduktion mittels Lithiumaluminiumhydrid mit 81% Ausbeute gewonnen werden (V 3.10). Die Umsetzung mit dem Carbamoylderivat **3.16** und die anschließende Reduktion des Oxalamids **3.17** zum Diamin **3.18** erfolgten aufgrund der mangelnden Stabilität auf Kieselgel ohne weitere Aufreinigung (V 3.11). Der Ringschluss erfolgte mittels eines Orthoesters in einer protisch-sauren Umgebung. Das Austauschen des Gegenions durch Tetrafluorborat (V 3.12) lieferte das Produkt nach einer schnellen säulenchromatographischen Aufreinigung mit 53% Ausbeute über vier Stufen.

Basierend auf der Idee einer nachträglichen Schützung der Hydroxyfunktion zur Untersuchung des Einflusses der Zweizähnigkeit auf die Stereoselektivität wurde ein Deuterierungsexperiment vorgenommen. Die Reaktion wurde nach der Deprotonierung mit genau einem Äquivalent *n*-BuLi mittels D_2O gestoppt, um zu ermitteln, ob das Hydroxyoder das Imidazolinium-Proton acider ist. Es stellte sich heraus, dass zunächst am Imidazoliniumsalz fast vollständig deprotoniert wird. Die daraus folgende Methylierung entsprechend der *Hauserschen* Regel nach der vermeintlich doppelten Deprotonierung mit zwei Äquivalenten *n*-BuLi lieferte anstelle des erwarteten Methoxyderivates eine Bandbreite an Zersetzungsprodukten. Daraus lässt sich schließen, dass die Schützung der Hydroxyfunktion zur Untersuchung des Effekts der Zweizähnigkeit des NHC-Liganden auf einer früheren Stufe vorgenommen werden sollte.

Beide Enantiomere des 1,2-Diphenylethylendiamins konnten mit einer Gesamtausbeute von 66% in einer zweistufigen Synthesesequenz mit anschließender Racematspaltung unter Verwendung der beiden Weinsäure-Enantiomere gewonnen werden (Schema 3.9).^[35]

Schema 3.9. Synthese des chiralen Diamins als Ausgangssubstanz für viele chirale NHCs.

Die Umsetzung des Benzils (**3.19**) mit Cyclohexanon zur Spiroverbindung **3.20** erfolgte mit einer sehr guten Ausbeute von 91% (V 3.13). Diese wurde im nächsten Schritt unter *Birch*-Bedingungen^[36] durch Einleiten von gasförmigem Ammoniak und Lösen von elementarem Lithium reduziert, gefolgt von einer Säure-Base-Extraktion des Aminals mit hervorragenden 91% Ausbeute (V 3.14). Das racemische Diamin **3.21** wurde schließlich durch Diastereomerenbildung mit chiraler Weinsäure und anschließender mehrfach wiederholter fraktionierter Kristallisation in die reinen Diatereomere getrennt und nach Abspaltung der jeweiligen chiralen Weinsäure enantiomerenrein mit einer Ausbeute von 32% für (+)-**3.21** und mit 49% für (-)-**3.21** isoliert (V 3.15, 3.16).

Das Imidazoliniumsalz L4 nach *Tomioka et al.* konnte ausgehend von p-Xylol und (*S*,*S*)-1,2-Diphenylethylendiamin **3.21** mit einer Gesamtausbeute von 9% synthetisiert werden (Schema 3.10).

³⁵ S. Pikul, E. J. Corey, Org. Synth. **1998**, *9*, 387; **1993**, *71*, 22.

³⁶ A. J. Birch: *Reduction by dissolving metals, Part I,* in: *Journal of the Chemical Society (Resumed),* **1944**, 430–436.

Schema 3.10. Synthese des NHC-Vorläufers L4.

Hierzu wurde im Rahmen einer *Friedel-Crafts*-Reaktion das *p*-Xylol (**3.22**) nach *Taber et al.*^[37] *Lewis*-Säure-vermittelt mit Oxalylchlorid in das Benzoylchlorid und *in situ* weiter in das Diarylketon **3.23** mit einer Ausbeute von 69% umgesetzt. Die Reduktion des Ketons konnte mittels Lithiumaluminiumhydrid mit einer zufriedenstellenden Ausbeute von 93% realisiert werden. Die Halogenierung zum Bromid **3.24** erfolgte mittels Bortribromid^[38] mit einer sehr guten Ausbeute von 95% (V 3.17). Allerdings zeigte sich, dass das Bromalkan, vermutlich basierend auf einer effizienten Stabilisierung des entstehenden Carbokations, stark hydrolyseempfindlich ist und frisch hergestellt werden sollte. Das durch Umsetzung mit Thionylchlorid erhaltene entsprechende sekundäre Chloralkan^[39] stellte sich als nicht reaktiv genug für die anschließende Umsetzung mit dem Diamin heraus.

Aufgrund der partiell bereits eingetretenen Hydrolyse des Bromids, welches in einer späteren Untersuchung festgestellt wurde, konnte in der anschließenden zweifachen Alkylierung des Diamins (-)-**3.21** nach *Seebach et al.*^[40] zum sekundären Diamin **3.25** nur eine Ausbeute von 20% erreicht werden (V 3.18), wobei sicherlich auch die sterische Hinderung die Reaktion erschwert. Der Ringschluss zum Imidazoliniumsalz **L4** mittels

³⁷ a) G. Olah, *Friedel-Crafts and Related Reactions*, Interscience Publishers: New York, **1964**, Vol. 3, 1259;
b) D. F. Taber, *J. Org. Chem.* **2000**, *65*, 254–255.

³⁸ A. Amrollah-Madjdabadi, T. N. Pham, E. C. Ashby, *Synthesis* **1989**, *8*, 614–616.

³⁹ S. S. Chaudhari, K. G. Akamanchi, *Synlett* **1999**, *11*, 1763–1765.

⁴⁰ E. Juaristi, P. Murer, D. Seebach, *Synthesis* **1993**, 1243–1246.

Ammoniumtetrafluorborat und einem Orthoester erfolgte nach *Saba et al.*^[41] mit einer Ausbeute von 70% (V 3.19).

Das bicyclische Triazoliumsalz **L9** konnte in einer dreistufigen Synthesesequenz ausgehend von einem Oxazolidinon gewonnen werden. Im Einzelnen handelt es sich dabei um eine Methylierung mittels *Meerwein*-Reagenz zum Iminoether, die Umsetzung zum Phenylhydrazon und die abschließende Cyclisierung unter Verwendung eines Orthoesters (Schema 3.11, V 3.20).

Schema 3.11. Synthese des NHC-Vorläufers L9.

Die Gesamtausbeute von nur 12%, verglichen mit 50% in der Literatur^[25] ist darauf zurückzuführen, dass das kommerziell erhaltene Oxazolidinon stark wasserhaltig geliefert wurde, was die Verwendung von Molsieb zur Folge hatte. Dieses ließ sich nach mehrtägigem Refluxieren nur schlecht abtrennen und erschwerte die Aufarbeitung. Zudem machte die letzte Stufe trotz deutlicher Anzeichen einer Zersetzung des Produkts auf Kieselgel eine säulenchromatographische Aufreinigung unabdingbar.

3.2.3. Kinetische Racematspaltung in der S_N2'-Substitution

Zur kinetischen Racematspaltung wurden zunächst verschiedene chirale Liganden in der *anti*-stereoselektiven Kupferhydrid-katalysierten S_N2' -Reduktion von Propargylepoxiden getestet (Schema 3.12). Dabei wurde versucht, die Reaktion bei ca. 50% Umsatz zu stoppen, um so ein 1:1-Gemisch des α -Hydroxyallens **3.27** und des weniger reaktiven Epoxid-Enantiomers **3.28** vorzufinden. Dazu wurden zunächst chirale Phosphine verschiedener Chiralitätsklassen verwendet (Tabelle 3.1).

⁴¹ S. Saba, A. M. Brescia, M. K. Kaloustian, *Tetrahedron Lett.* **1991**, *32*, 5031–5034.

Schema 3.12. Racematspaltung in der S_N2'-Substitution mittels chiraler Liganden.

Tab. 3.1. Chirale Phosphine in der S_N2'-Reduktion des Alkins **3.9** bei 0 °C mit CuCl in Toluol.

$\begin{array}{c} & t - Bu_2P^{t} \\ & PPh_2 \\ & PPh_2 \\ & t - Bu \end{array}$	Fe Fe Fe H L13	PPh ₂ Fe	MeO PPh Ph H N MeO	H Ph DMe L16
Ligand	t	Umsatz	dr (anti:syn)	ee (syn-3.27)
(<i>R</i>)-BINAP (L11)	8 h	60%	27:63	-8%
(R)-DTBM-SEGPHOS (L12)	8 h	54%	40:60	-18%
(R,S)-t-Bu-JOSIPHOS (L13)	18 h	68%	40:60	-21%
(R)- (S) -PPF-Pxyl ₂ (L14) ^[42]	2 h	61%	4:96	-8%
(R)- (R) -PPPhFCHCH ₃ PP (L15) ^[42]	38 h	74%	28:72	69%
(<i>R</i>)-(<i>S</i>)-MANDYPHOS (L16) ^[42]	2 h	84%	30:70	11%

Das rechtzeitige Abbrechen der Reaktion bei ca. 50% Umsatz bereitete bei allen Durchläufen Schwierigkeiten, da der Fortschritt der Reaktion anhand der Intensitäten der Spots auf den Dünnschichtchromatographie-Platten nicht abgeschätzt werden konnte und die Reaktionszeiten mit den unterschiedlichen Liganden sehr stark variierten.

Allgemein waren bei der Verwendung von chiralen Phosphinliganden, wie auch schon in Anwesenheit achiraler Analoga in der Literatur beobachtet,^[1] starke Einbußen bei der Diastereoselektivität zu verzeichnen. Dabei konnte für alle Liganden eine *syn*-Selektivität beobachtet werden.

⁴² In Zusammenarbeit mit B. Schmid; siehe auch: B. Schmid, Bachelorarbeit, TU Dortmund, **2011**.

Die Verwendung des BINAP-Liganden^[43] L11 mit axialer Chiralität zeichnete sich durch eine im Vergleich zu L12 und L13 etwas höhere Diastereoselektivität, jedoch schlechte Enantioselektivität aus. Die sehr ähnlichen Ergebnisse des axial chiralen SEGPHOS^[44]-Derivats L12 und des planar chiralen JOSIPHOS^[45]-Liganden L13 zeigten trotz Literaturpräzedenz^[46] (mit hervorragenden *ee's* in [CuH]-katalysierten Reduktionen von Carbonylverbindungen) in der untersuchten S_N2'-Reduktion kaum Diastereo- aber eine bessere Enantioselektivität von ca. 20%. Dabei wurde jedoch im Falle von L13 eine deutlich längere Reaktionszeit beobachtet. Zudem wurde die Reaktion erst bei 68% Umsatz gestoppt; der *ee* wäre bei 50% Umsatz vermutlich höher ausgefallen.

Aus diesem Grunde wurden Untersuchungen weiterer Phosphine mit Elementen planarer Chiralität durchgeführt. Sie ergaben jedoch sehr unterschiedliche Ergebnisse, so dass sich unweigerlich die Frage stellt, ob von dem Erfolg eines einzelnen Liganden auf die allgemeine Eignung seiner strukturellen Familie geschlossen werden kann. So bewirkte der Austausch der *t*-Bu₂P-Gruppe in **L13** durch eine Ph₂P-Gruppe in **L14** und die zusätzlichen Methyl-Substituenten an der ehemaligen PPh₂-Gruppe eine enorme Steigerung der Diastereoselektivität hin zum unerwarteten *syn*-Produkt (96:4). Zudem wurden eine starke Beschleunigung der Reaktion von 18 h (bei 68% Umsatz) auf nur 2 h (bei 61% Umsatz) und Einbußen in der Enantioselektivität beobachtet.

In Anwesenheit des WALPHOS-Liganden L15 verlängerte sich hingegen die Reaktionszeit stark auf 38 h bei 74% Umsatz, einhergehend mit einem *ee* von 69% (des anderen Enantiomers), allerdings mit Einbußen in der Diastereoselektivität. Die Verwendung des MANDYPHOS-Derivats L16 ermöglichte hingegen trotz des großen sterischen Anspruchs die schnellste Reaktionszeit von 2 h bei 84% Umsatz, jedoch mit deutlich schlechteren Selektivitäten (3:7 *dr*, 11% *ee*).

⁴³ A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, R. Noyori, *J. Am. Chem. Soc.* **1980**, *102*, 7932–7934.

⁴⁴ T. Saito, T. Yokozawa, T. Ishizaki, T. Moroi, N. Sayo, T. Miura, H. Kumobayashi, Adv. Synth. Catal. 2001, 343, 264–267.

 ⁴⁵ a) Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405-6406; b) A. Togni, Chimia 1996, 50, 86–93; c) A. Togni, T. Hayashi, Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science, Wiley-VCH, Weinheim, 1995.

⁴⁶ H. Shimizu, I. Nagasaki, T. Saito, *Tetrahedron* **2005**, *61*, 5405–5432.

Schlussfolgernd lassen sich nur schwer Trends feststellen. Das WALPHOS-Derivat L15 lieferte zwar die besten Ergebnisse bezüglich der Enantioselektivität, jedoch mit einer für Optimierungen zu geringen Reaktivität. Bezüglich der *syn*-selektiven Reaktionsführung in der S_N2' -Reduktion wäre es interessant, das System L14 weiter zu untersuchen und zu variieren.

Unter den chiralen N-Heterocyclischen Carbenen wurden zur Identifizierung der effizientesten Klasse zunächst diejenigen mit den chiralen Elementen an den N-Substituenten in der S_N2' -Reduktion des Alkins **3.9** untersucht (Schema 3.12, Tabelle 3.2). Dabei konnten zusätzlich zum synthetisierten zweizähnigen NHC-Vorläufer **L8** die beiden von *A. Alexakis* (**L1, L2**), der von *E. P. Kündig* (**L3**) und der von *S. Watanabe* (**L7**) zur Verfügung gestellten chiralen NHC-Vorläufer getestet werden. Sowohl gesättigte Imidazoliniumsalze als auch ungesättigte Imidazoliumsalze kamen zum Einsatz, wobei die Temperatur ebenfalls variiert wurde. Auch bei diesen Versuchen bereitete das rechtzeitige Abbrechen der Reaktion bei ca. 50% Umsatz aufgrund mangelnder Vorhersagbarkeit der Reaktionsgeschwindigkeiten Schwierigkeiten.

				$H \oplus BF_4$	$ \begin{array}{c} & & & \\ & & & \\$
Ligand	t	Т	Umsatz	dr (anti:syn)	ee (anti-3.27)
L1	24.5 h	0 °C	74%	94:6	-4%
L2	2.5 h	0 °C	63%	82:12	6%
L2	4.2 h	−20 °C	34%	94:6	8%
L3	26 h	−20 °C	61%	95:5	25%
L7	16 h	−60 °C	66%	56:44	-4%
L8	2 h	0 °C	76%	74:26	-5%
L8	10 d	−60 °C	58%	55:45	-22%

Tab. 3.2. NHC-Vorläufer mit chiralen N-Substituenten in der S_N2 '-Reduktion des Alkins **3.9** mit CuCl in Toluol.

Verglichen mit den Untersuchungen der Phosphinliganden macht sich bei den untersuchten NHC-Vorläufern bis auf wenige Ausnahmen die hohe *anti*-Selektivität bemerkbar. Allen gemeinsam sind ebenfalls die geringen Enantioselektivitäten. Das gesättigte System L1 stellte sich im Vergleich zum ungesättigten L2 als deutlich langsamer heraus. Beide ergaben einen sehr geringen *ee* von unter 10%; auch das Herabsenken der Reaktionstemperatur auf -20 °C im Falle von L2 brachte keine wesentliche Verbesserung.

In Übereinstimmung damit stellte sich auch das gesättigte System L3 als sehr langsam heraus, resultierte jedoch in einem deutlich besseren *ee* von 25% bei einer Reaktionstemperatur von -20 °C. Die vielversprechenden Enantiomerenüberschüsse bei der in der Literatur beschriebenen Cyclisierung von 1,6-Eninen mit dem analog zum Kupfer-Komplex ebenfalls linearen L3-Au-Cl-Komplex^[47] (bis zu 59% *ee* trotz der häufig problematischen freien Drehbarkeit um die C-Au-Achse), ließen zunächst größere Erfolge vermuten. In der S_N2'-Reduktion scheint der NHC-Vorläufer L3 jedoch trotz der besseren Enantioselektivität auf Grund der geringen Reaktionsgeschwindigkeit nur noch wenig Spielraum für Optimierungen zu bieten. Interessant wäre an dieser Stelle eine Untersuchung des ungesättigten Analogons, das auch schon in der Literatur bessere *ee's* und Umsätze lieferte.^[48]

ausreichend Imidazoliniumsalz erwies sich als Das L7 reaktiv für eine Temperaturabsenkung auf -60 °C, bei der jedoch ein fast vollständiger Verlust der Diastereo- und Enantioselektivität beobachtet wurde. Aus den bisherigen Ergebnissen lässt das einem Imidazoliumsalz ausgehende sich vermuten. dass von ungesättigte Katalysatorsystem im geschwindigkeits-bestimmenden Schritt (der Transmetallierung von Kupfer auf das Silan, wie in Kapitel 2 gezeigt werden konnte) wesentlich reaktiver wäre und damit mehr Optimierungsspielraum bieten könnte.

Der unsymmetrische zweizähnige Ligand L8 scheint neben den Einbußen im dr trotz des gesättigten Rückgrats die Reaktion zu beschleunigen, was im Einklang mit den Erfahrungen in Bezug auf die Anwesenheit protischer Zusätze in der Reaktion steht.^[3] Ein höherer *ee*, wie er in Folge des Einfrierens der freien internen Rotation um die N-C-Achse im

⁴⁷ D. Banerjee, A. K. Buzas, C. Besnard, E. P. Kündig, *Organometallics* **2012**, *31*, 8348–8354.

⁴⁸ M. Nakanishi, D. Katayev, C. Besnard, .E. P. Kündig, Angew. Chem. Int. Ed. **2011**, 50, 7438 –7441.

Kupferkomplex über die Koordination der Alkoxyfunktion zu erwarten wäre, bleibt jedoch aus. Das Herabsenken der Reaktionstemperatur auf -60 °C führt zu einer langen Reaktionszeit von 10 d, zwar begleitet von einem verbesserten *ee* von 22%, jedoch unter fast vollständigem Verlust der Diastereoselektivität. Wie in Kapitel 2 gezeigt werden konnte, stimmt dies mit der starken Temperaturabhängigkeit von diffusionskontrollierten Prozessen überein; der konkurrierende Fall des *syn*-selektiven Reaktionspfades scheint durch das Herabsenken der Temperatur zunehmend begünstigt zu werden.

Allen NHC-Vorläufern dieser Gruppe gemeinsam war die geringe chirale Induktion, wahrscheinlich aufgrund von schneller interner Rotation der chiralen Substituenten um die N-C-Achse und der Flexibilität der Substituenten.^[14]

Bei der Untersuchung der Gruppe der NHC-Vorläufer mit Chiralitätselementen im NHC-Rückgrat konnten ähnliche Tendenzen wie bei den zuvor untersuchten NHCs beobachtet werden (Tabelle 3.3).

$\begin{array}{c} Ph \\ Ph \\ N \\ N \\ H \\ H \\ L4 \end{array} \qquad Ph \\ Ph$								
Ligand	t	Т	Umsatz	dr (anti:syn)	ee (anti-3.27)			
L4	15 h	−20 °C	57%	94:6	11%			
L5	41 h	−60 °C	48%	66:34	2%			
L6	48 h	0 °C	64%	89:11	26%			

Tab. 3.3. Chirale NHCs mit Chiralitätszentren im N-Heterocyclus in der S_N2'-Reduktion des Alkins 3.9.

Der NHC-Vorläufer L4 sollte durch die π - π -Wechselwirkung der benzylischen Aromaten mit den Phenylsubstituenten im Rückgrat die chirale Information auf den aktiven Bereich des NHC-Komplexes im Vergleich zu anderen Liganden seiner Klasse effizienter übertragen können.^[18] Auch hier ließen die vielversprechenden Literaturbeispiele (mit Selektivitäten bis zu 56% *ee* bei der Cyclisierung von 1,6-Eninen) mit dem ebenfalls linearen L4-Au-Cl-Komplex^[18] zunächst weit bessere Enantioselektivitäten vermuten. Die später veröffentlichten Ergebnisse mit dem L4-Cu-Cl-Komplex^[19] (in einer S_N2'-Substitution von arylischen Grignard-Reagenzien an Doppelbindungen) zeigten hingegen nur schlechte Selektivitäten (4% ee), die mit den hier erzielten Ergebnissen in etwa übereinstimmen. Der Xylol-basierte NHC-Vorläufer L4 lieferte selbst bei einer auf -20 °C herabgesenkten Reaktionstemperatur zwar einen hervorragenden dr, jedoch lediglich einen ee von 11%.

Bei dem Einsatz des Imidazoliniumsalzes L5 waren im Gegensatz zu den guten Selektivitäten im Falle der Ruthenium-katalysierten Ringschlussmetathese^[20] (bis zu 90% ee) selbst bei -60 °C nur eine schlechte Diastereoselektivität und ein geringer ee bei einer langen Reaktionszeit von 41 h zu verzeichnen, was einen Hinweis darauf liefert, dass die chirale Induktion dieses Gerüsts für einen schmalen, linearen Komplex nicht ausreichend ist. Ein Verbesserungsansatz könnte in den asymmetrischen, sterisch anspruchsvolleren strukturellen Analoga zu finden sein,^[49] die von *Hoveyda et al.* weiterentwickelt und in der Kupfer-katalysierten konjugierten Addition mit Selektivitäten von bis zu 97% ee erfolgreich angewandt wurden.

Der zweizähnige NHC-Vorläufer L6, der aufgrund guter Selektivitäten in der Kupferkatalysierten allylischen Alkylierung^[22] (37% ee und bis zu 97% ee bei Einsatz des Silber-Präkatalysators) bekannt geworden ist, stellte einen vielversprechenden Kandidat unter den NHCs dar - nicht zuletzt aufgrund der jüngst publizierten, mit ihm verwandten unsymmetrischen zweizähnigen Systeme^[50] (in der Kupfer-freien allylischen Alkylierung mit ee's bis zu 91% und der Kupfer-katalysierten konjugierten Alkylierung mit ee's bis zu 97%). Er lieferte in der S_N2'-Reduktion zwar einen guten dr (89:11) und einen ee von 26%, jedoch lässt die lange Reaktionszeit von 48 h bei 0 °C kaum Spielraum für Optimierungen.

Bei einem Vergleich der Ergebnisse mit den zweizähnigen Liganden L6 und L8 lässt sich schlussfolgern, dass die Zweizähnigkeit keinen ausschlaggebenden Einfluss auf die Reaktionsgeschwindigkeit nimmt, die Diastereoselektivität negativ beeinflusst wird, jedoch

⁴⁹ K.-S. Lee, A. H. Hoveyda, J. Org. Chem. **2009**, 74, 4455–4462.

⁵⁰ a) O. Jackowski, A. Alexakis, Angew. Chem. **2010**, 122, 3418–3422; Angew. Chem. Int. Ed. **2010**, 49, 3346-3350; b) T. Uchida, T. Katsuki, Tetrahedron Lett. 2009, 50, 4741-4743; c) N. Shibata,

M. Yoshimura, H. Yamada, R. Arakawa, S. Sakaguchi, J. Org. Chem. 2012, 77, 4079–4086.

die Enantioselektivitäten etwas höher ausfallen, da die interne Rotation um die N-C-Achse durch Koordination der Alkoxyfunktion an Kupfer blockiert wird.

Ein Vergleich der Oxazolin-basierten NHC-Vorläufer L9 und L10 und die Verwendung von Kupfer-Präkatalysatoren sind in Tabelle 3.4 dargestellt.

Tab. 3.4. Chirale Liganden mit Oxazolineinheiten in der S_N2'-Reduktion des Alkins 3.9 mit CuCl in Toluol.

<i>t-</i> Bu		C C C C C C C C C C C C C C C C C C C	Cu Cl L10CuCl	$ \begin{array}{c} $	Bu
Ligand	t	Т	Umsatz	dr (anti:syn)	<i>ee</i> (<i>anti</i> -3.27)
L9	10 h	−20 °C	49%	89:11	2%
$L17-Cu-Cl_2$	41 h	−60 °C	0%	0%	0%
L10	1.5 h	0 °C	82%	94:6	15%
L10	3.7 h	−20 °C	65%	97:3	21%
L10-Cu-Cl	4.5 h	−60 °C	42%	94:6	29%
L10	31 h	-83−54 °C	38%	96:4	33%
L10-Cu-Cl ^a	26 h	0 °C	4%	n. b.	n. b.

a) ohne Zusatz von NaOt-Bu; n. b. = nicht bestimmt.

Die Untersuchung des Triazoliumsalzes L9 zeigt anhand eines nahezu racemischen Produkts, dass sich dieser Ligand zur Darstellung enantiomerenreiner Allene nicht eignet. Vermutlich reicht die chirale Induktion aufgrund der mangelnden Einflussnahme durch die geringere sterische Hinderung in der Koordinationssphäre des Kupfers nicht aus. Der Einsatz des von M. Hiersemann et al. zur Verfügung gestellten, Cu(II)-Bis(oxazolin)-Präkatalysators L17-Cu-Cl₂, welcher in *Diels-Alder*- und Carbonyl-En-Reaktionen^[51]

⁵¹ a) D. A. Evans, C. S. Burgey, N. A. Paras, T. Vojkovsky, S. W. Tregay, J. Am. Chem. Soc. 1998, 120,

^{5824-5825;} b) D. A. Evans, D. M. Barnes, J. S. Johnson, T. Lectka, P. von Matt, S. J. Miller, J. A. Murry, R. D. Norcross, E. A. Shaughnessy, K. R. Campos, J. Am. Chem. Soc. 1999, 121, 7582-7594.

hervorragende Selektivitäten erzielte, zeigt selbst nach 41 h bei –60 °C keinen Umsatz, was die Theorie untermauert, dass der aktive Katalysator ein Cu(I)-System ist.^[1]

Die Ergebnisse mit dem NHC-Vorläufer **L10** heben sich von den bisherigen Resultaten durch eine, zunächst im Widerspruch zu ihrem besonders hohen sterischen Anspruch^[27] stehende, sehr hohe Reaktionsgeschwindigkeit (82% Umsatz nach 1.5 h bei 0 °C) ab. Das Herabsetzen der Reaktionstemperatur auf -20 °C, -60 °C und schließlich -83 °C konnte im Gegensatz zu vorangehenden Temperaturvariationen in Verbindung mit anderen Liganden ohne Einbußen in der Diastereoselektivität und mit einem stetig steigenden *ee* verwirklicht werden, wobei die Reaktionsdauer bis -60 °C nur unwesentlich auf 4.5 h anstieg.

Berücksichtigt man jedoch die mechanistischen Erkenntnisse aus Kapitel 2, so wird deutlich, dass die Reaktionsgeschwindigkeit mit dem Dissoziationsvermögen der Kupfer-Alkoxid-Bindung bei der Transmetallierung auf das Silan zusammenhängt. Die elektronischen Eigenschaften des aus dem Vorläufer L10 resultierenden NHC-Ligands werden durch die 4,5-Dioxy-Substitution insofern beeinflusst, dass das Donor-Vermögen des Liganden in etwa dem von elektronenreichen Phosphinen wie Pt-Bu₃ entspricht, was den Liganden etwas weniger elektronenreich als andere Imidazolium-basierte NHCs macht.

Zudem sind die sterisch anspruchsvollen Cycloalkyl-Substituenten an dem charakteristischen starren, tricyclischen Rückgrat Konformations-flexibel und befinden sich in unmittelbarer Nähe zur Koordinationssphäre des Carben-gebundenen Metallzentrums, sodass sie je nach Struktur eine Dehnung oder Verkürzung der Carben-Metall-Bindung bewirken können.^[13, 52] Demnach ist der NHC-Ligand in der Lage, die Kupfer-Alkoxid-Bindung durch vergleichsweise schwächeren Elektronenschub und gleichzeitig stärkere sterische Abstoßung derart zu schwächen, dass die Reaktion sehr viel schneller ablaufen kann.

Mit diesem NHC-Vorläufer wurde neben der *in situ*-Generierung des aktiven NHC-Kupfer-Katalysator-Systems auch der Einsatz des isolierten Kupfer-Präkatalysators L10-Cu-Cl

 ⁵² a) G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, *Angew. Chem.* 2003, *115*, 3818–3821; *Angew. Chem. Int. Ed.* 2003, *42*, 3690–3693; b) G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, *J. Am. Chem. Soc.* 2004, *126*, 15195–15201.

untersucht. Hierbei konnte auch die Notwendigkeit der Base bei der Rückbildung des aktiven Katalysators nachgewiesen werden. Substöchiometrisch eingesetzt spielt sie in dieser Reaktion nicht nur bei der Deprotonierung des Imidazoliumsalzes eine entscheidende Rolle; sie bildet durch Generierung des [(NHC)CuO*t*-Bu]-Komplexes einen idealen Precursor für die schnelle Rückbildung des aktiven Kupferhydrid-Katalysators.^[53] Indem ein Ansatz mit dem Präkatalysator L10-Cu-Cl ohne zusätzliche Base durchgeführt wurde und nach einem einzigen Cyclus nicht weiter reagierte, konnte dieser Zusammenhang bestätigt werden.

Um das Katalysatorsystem mit dem NHC-Vorläufer **L10**, der in den Vorversuchen die besten Ergebnisse lieferte, weiter zu optimieren, wurden im nächsten Schritt die am besten geeigneten Reaktionsparameter gesucht.

Dazu wurden zunächst verschiedene Lösungsmittel unter Einsatz von Kupfer(I)-chlorid als Kupferquelle getestet (Tabelle 3.5).

		t-Bu 3.9	1. Cu-Salz, L [™] NaOt-Bu PMHS t-B 2. <i>n</i> -Bu₄NF+3 H ₂ O	H H HO OBn anti-3.27	<i>t-</i> Bu 3.28	
-	Solvent	t	Т	Umsatz	dr (anti:syn)	ee (anti-3.27)
	Toluol	3.7 h	−20 °C	65%	97:3	21%
	Et ₂ O	5.3 h	−23 °C	57%	96:4	24%
	CH_2Cl_2	12 h	−23 °C	4%	n. b.	n. b.
	CH ₃ CN	5 h	−23 °C	78%	98:2	5%
	$(CH_2Cl)_2$	7 h	−23 °C	43%	97:3	13%
	CHCl ₃	10 h	−23 °C	45%	99:1	3%
	C_6F_6	24 h	−23 °C	40%	94:6	6%
	c-C ₅ H ₉ OCH ₃	6 h	−23 °C	59%	93:7	4%

Tab. 3.5. Lösungsmittel-Screening mit NHC-Vorläufer L10 und CuCl in der S_N2'-Reduktion des Alkins 3.9.

⁵³ B. H. Lipshutz, J. M. Servesko, B. R. Taft, J. Am. Chem. Soc. 2004, 126, 8352–8353.

Ein Vergleich der Ergebnisse bei -23 °C zeigt eine starke Abhängigkeit der Reaktionsgeschwindigkeit und der Enantioselektivität von dem verwendeten Lösungsmittel. Während die Umsätze in Toluol und Diethylether nach 4 bis 5 h über 20% ee erzielten, lieferte der Ansatz in Dichlorethan nach 7 h nur 13% Acetonitril. ee. Cyclopentylmethylether und Chloroform ergaben nach Reaktionszeiten von bis zu 10 h (bei 45% Umsatz) nur geringe Enantioselektivitäten unter 5%, während Hexafluorbenzol bei noch längeren Reaktionszeiten von über 24 h einen vergleichbaren ee brachte und der Ansatz mit Dichlormethan nach 12 h mit nur 4% Umsatz ganz abgebrochen werden musste. Schlussfolgernd lässt sich mit CuCl als Kupferquelle die Verwendung von Diethylether mit dem besten ee von 24% bei einer zwar etwas erhöhten, jedoch für die rechtzeitige Probenentnahme gut geeigneten Reaktionszeit hervorheben.

Tabelle 3.6 stellt die Ergebnisse des Einsatzes verschiedener Kupferquellen in der S_N2' -Reduktion des Alkins **3.9** unter Verwendung von Diethylether dar, welches als das am besten geeignete Lösungsmittel ermittelt werden konnte.

[Cu]	t	Т	Umsatz	dr (anti:syn)	<i>ee</i> (P1)
CuCl	8.5 h	−23 °C	61%	97:3	31%
CuTC	20 h	−23 °C	60%	96:4	22%
Cu(OAc) ₂	54 h	−23 °C	38%	92:8	24%
CuTC ^a	11 h	−60 °C	47%	96:4	38%
CuCl ^b	12 h	−60 °C	44%	96:4	40%

Tab. 3.6. Screening der Kupfersalze mit NHC-Vorläufer L10 und Et₂O in der S_N2'-Reduktion des Alkins 3.9.

a) mit dreifacher Menge Toluol; b) mit dreifacher Menge Et₂O.

Der Vergleich von Kupfer(I)chlorid, Kupferthiophencarboxylat und Kupfer(II)acetat bei -23 °C in Diethylether untermauert durch sehr lange Reaktionszeiten von über 54 h im Falle des Kupfer(II)-Salzes erneut die Theorie, dass lediglich Kupfer(I) als Katalysator fungiert. Auch die Kupfer(I)-Salze CuCl und CuTC unterschieden sich vor allem in den Reaktionszeiten. Der *ee* zeigt bei der Verwendung von Kupferthiophencarboxylat trotz der wesentlich langsameren und daher vermeintlich selektiveren Reaktionsführung leichte Einbußen von 22% im Vergleich zu 31% *ee* im Falle von CuCl.

Bei einem weiteren Herabsenken der Temperatur, einhergehend mit der Verdünnung der Reaktion auf die dreifache Menge Lösungsmittel in Gegenwart von CuTC, wäre die stark erhöhte Reaktionszeit unpraktikabel. Deshalb sollte die Reaktion mit CuTC bei -60 °C durch Verwendung von Toluol, in dem die Reaktion schneller verläuft, etwas beschleunigt werden. Unter diesen Reaktionsbedingungen konnten im Falle des CuTC ein *ee* von 38% und mit CuCl in Et₂O sogar 40% *ee* erreicht werden. Beide Reaktionsbedingungen führten zu hervorragenden Diastereoselektivitäten von 96:4 bei etwa 12 h Reaktionszeit.

Zusammenfassend lässt sich sagen, dass sowohl die Kombination von CuTC mit Toluol als auch CuCl mit Diethylether sich am besten für die S_N2' -Reduktion unter Verwendung des NHC-Vorläufers **L10** eignen, wobei die erste Kombination eine etwas höhere Reaktionsgeschwindigkeit ermöglicht, die letztere hingegen einen etwas besseren *ee* erzielt.

Ein abschließender Vergleich unterschiedlicher Substrate in der S_N2 '-Reduktion unter Verwendung des vorläufig am besten geeigneten NHC-Vorläufers **L10** und der optimierten Reaktionsparameter mit CuTC und Toluol ist in Tabelle 3.7 abgebildet. (CuTC in Verbindung mit Toluol wurde aus Gründen der besseren Abwiegbarkeit und der höheren Reaktionsgeschwindigkeit dem CuCl vorgezogen.)

Nr.	Substrat	t	Т	Umsatz	dr (anti:syn)	ee (Allen) ^a
2.0	0	3.7 h ^b	−20 °C	65%	97:3	21%
3.9	t-Bu OBn	11 h	−60 °C	47%	96:4	38%
3.29	о t-Bu	4.3 h	−20 °C	61%	95:5	19%
3.11	~	53 h	−23 °C	31%	60:40	-34%
	Å	5 d	0 °C	19%	20:80	-61% (L13)
3.14	t-Bu OBn	5 d	0 °C	74%	94:6	17%
		9 d	−60 °C	28%	96:4	34%

Tab. 3.7. Einsatz verschiedener Substrate mit NHC-Vorläufer L10, CuTC und Toluol in der S_N2'-Reduktion.

a) das jeweilige Hauptdiastereomer; b) mit CuCl.

Das Benzylether-substituierte Epoxid **3.9** konnte bei –20 °C nach 4 h mit einem *ee* von 21% zu 65% in das Hydroxyallen überführt werden. Ganz ähnliche Ergebnisse ließen sich für den ungeschützten Alkohol **3.29** beobachten. Dies widerspricht den Erwartungen einer Wechselwirkung der Alkoxyfunktion mit dem Katalysator unter Einfrieren der Rotation um die lange, schlanke Alkinbindung. Zudem bleibt die Beschleunigung der Reaktion durch die Hydroxy-Funktionalität entgegen der Literaturpräzedenz aus.^[32]

Das Cyclohexylderivat **3.11**, welches in Et_2O umgesetzt wurde, ergab zwar einen - verglichen mit dem Alkin **3.9** bei -20 °C - besseren *ee* von 34%, jedoch unter extremen Einbußen in der Diastereoselektivität (60:40) bei einer erheblich verlängerten Reaktionszeit von 53 h bei 31% Umsatz.

Die Verwendung des analogen Carbonats **3.14** zeigte eine ähnliche Problematik: der Einsatz des Phosphinliganden **L13** führte zwar zu einem guten *ee* von 61% bei 0 °C, jedoch bei einer *syn*-Selektivität von 80:20 nach 5 Tagen. Unter den gleichen Bedingungen lieferte der NHC-Vorläufer **L10** bei 74% Umsatz einen *dr* von 94:6 und einen *ee* von lediglich 17%. Bei Herabsenken der Reaktionstemperatur auf -60 °C ließen sich nach 9 Tagen bei einem Umsatz von erst 28% ein hervorragender *dr* und ein relativ guter *ee* von 34% erzielen. Der Einsatz des NHC-Vorläufers **L2** bei -60 °C führte zu derart langsamen Reaktionszeiten, dass nach 9 Tagen abgebrochen werden musste.

Schlussfolgernd lässt sich sagen, dass das Epoxid 3.9 kein schwieriges Ausnahme-Substrat in Bezug auf die untersuchte Reaktion und die resultierende Enantioselektivität darstellt, wie anfangs aufgrund der schlechten, nur wenig optimierbaren ee's vermutet. Das sterisch weniger abgeschirmte Substrat 3.11 erwies sich als problematischer bezüglich der erhöhten Reaktionsdauer und schlechten Diastereoselektivität. Auch die Verwendung des Carbonats 3.14 bezüglich Reaktionszeiten scheint der langen unter den aktuellen Reaktionsbedingungen nicht praktikabel zu sein. Darauf aufbauend lässt sich vermuten, dass Epoxide auf Grund der höheren Reaktivität als Abgangsgruppen in der S_N2'-Reduktion besser geeignet sind.
3.3. Zusammenfassung und Ausblick

In diesem Kapitel wurde die kinetische Racematspaltung in der Kupferhydrid-katalysierten S_N2' -Reduktion von Propargylepoxiden und Propargylcarbonaten untersucht.

Schema 3.13. Optimierte Reaktionsbedingungen für die kinetische Racematspaltung in der S_N 2'-Reduktion.

Durch den Einsatz von sechs chiralen Phosphinliganden und zehn ein- oder zweizähnigen NHC-Vorläufern unterschiedlicher Chiralitäts-Klassen konnten dabei erste Tendenzen bezüglich der für diesen Reaktionstyp am besten geeigneten Ligand-Beschaffenheit ermittelt werden. Es konnte gezeigt werden, dass sich Phosphinliganden aufgrund der Begünstigung des syn-Produktes nicht für die anti-selektive Route eignen. Ungesättigte NHC-Vorläufer erwiesen sich als stärkere π -Akzeptoren als reaktiver verglichen mit den elektronenreicheren, gesättigten Liganden,^[54] was auf eine leichtere Dissoziation der Kupfer-Alkoxid-Bindung bei der Transmetallierung auf das Silan als dem geschwindigkeitsbestimmenden Schritt zurückgeführt werden konnte.

Ferner wurde der (-)-Menthon-basierte NHC-Vorläufer **L10** wegen seiner hervorragenden *anti*-Selektivität – basierend auf dem hohen sterischen Anspruch in der selektivitätsbestimmenden, diffusionskontrollierten Öffnung des Epoxids – verbunden mit seiner sehr hohen Reaktivität, basierend auf der stärkeren π -Akzeptor-Fähigkeit^[54], als der vorläufig am besten geeignete NHC-Vorläufer identifiziert (Abbildung 3.3).

Abbildung 3.3. Der in der S_N2'-Reduktion vorerst beste NHC-Vorläufer L10.

⁵⁴ M. Alcarazo, T. Stork, A. Anoop, W. Thiel, A. Fürstner, Angew. Chem. 2010, 122, 2596-2600; Angew. Chem. Int. Ed. 2010, 49, 2542-2546.

Bei weiteren Optimierungsarbeiten konnte eine Steigerung des Enantiomerenüberschusses auf bis zu 40% ee und ein sehr gutes Diastereomerenverhältnis von über 96:4 durch das Verwenden von Kupfer(I)chlorid als Kupferquelle und Diethylether als Lösungsmittel erzielt werden (Schema 3.13). Screenings zeigten dabei eine starke Lösungsmittelabhängigkeit der Enantioselektivitäten mit den besten Ergebnissen für Toluol bei Verwendung von Kupferthiophencarboxylat und für Diethylether mit Kupfer(I)chlorid. Der Einsatz eines L10-CuCl-Präkatalysators brachte keine sichtliche Verbesserung der Enantioselektivität, ermöglicht jedoch eine niedrigere und genauere Katalysatorbeladung. Durch das Herabsenken der Temperatur und das Verdünnen der Reaktionslösung konnte der ee ebenfalls gesteigert werden. Ein weiteres Epoxid und ein Carbonat wurden unter den vorerst optimierten Bedingungen getestet und zeigten ähnliche Enantioselektivitäten, jedoch mit deutlich längeren Reaktionszeiten.

Um die Stereoselektivität noch weiter zu steigern, sollten nun weitere NHC-Vorläufer untersucht werden, wobei das größte Augenmerk auf ihre Reaktivität zu richten ist. Vergleichbare elektronische Systeme mit ungesättigten NHCs in Verbindung mit fixierten Oxazolin-Einheiten sind ein guter Ausgangspunkt. Auch die Kombination mit einem zweizähnigen System wäre denkbar, wie es zum Beispiel durch eine Synthese ausgehend von (R)-Carvon zugänglich gemacht werden könnte (Schema 3.14).

 $\mathsf{R} = \mathsf{OR}, \mathsf{PR}_2, \mathsf{SO}_3\mathsf{R}, \mathsf{C}_6\mathsf{F}_5$

Schema 3.14. Möglicher chiraler, zweizähniger, Bisoxazolin-basierter NHC für die kinetische Racematspaltung.

Auch andere koordinierende Gruppen wie Amine, Phosphine und Sulfonate anstelle der Hydroxy-Funktion wären denkbar, wobei jedoch nucleophile Substituenten den Ligand elektronenreicher und damit im geschwindigkeitsbestimmenden Transmetallierungsschritt langsamer machen könnten. Elemente mit elektronenarmen aromatischen, π -koordinierenden Systemen wie Pentafluorobenzol-Reste an den Cycloalkylsubstituenten sind hingegen besonders vielversprechend: im Falle der enantioselektiven Gold(I)-Katalyse (von Tandem-Acetalisierungen-Cycloisomerisierungen von *o*-Alkinyl-benzaldehyden) mit der ebenfalls linearen, und daher für das Erzeugen einer chiralen Umgebung problematischen, Koordinationsgeometrie erzielte eine vergleichbare Herangehensweise unter Verwendung von acyclischen Diaminocarben-Liganden mit elektronenarmen Arylsubstituenten bemerkenswerte Erfolge.^[55]

Ebenfalls könnte die Ausweitung der N-Substituenten Oxazolin-basierter NHCs auf größere Cycloalkyl-Substituenten, wie sie im achiralen NHC-Vorläufer **IBiox 12·HOTf** (mit zwölfgliedrigen gesättigten Ringsystemen) vorkommen und hierbei sehr hohe Reaktionsgeschwindigkeiten mit sich bringen, eine Verbesserung der Stereoselektivität erzielen. Durch größere Nähe der N-Substituenten zur Koordinationssphäre des an das Carben gebundenen Kupfers und durch eine vermutlich stärkere Dehnung der Kupfer-Alkoxid-Bindung sollten auch die chiralen Analoga erhöhte Reaktionsgeschwindigkeiten nach sich ziehen, wodurch sich größere Spielräume in Bezug auf Verdünnung und Temperatur böten.

Auch die Untersuchung anderer NHC-Vorläufer mit erhöhten π -Akzeptor-Eigenschaften unter Berücksichtigung verschiedener Chiralitätselemente wäre interessant, so zum Beispiel das Triazoliumderivat **L19**,^[56] das axial chirale Triazolium **L20**^[57] oder das *para*-Cyclophan-basierte Imidazolium **L21** nach Überlegungen von *T. Stork*^[58], leicht modifiziert (Schema 3.15).

Schema 3.15. Weitere vielversprechende NHC-Vorläufer.

⁵⁵ S. Handa, L. M. Slaughter, Angew. Chem. 2012, 124, 2966-2969; Angew. Chem. Int. Ed. 2012, 51, 2912–2915.

⁵⁶ M. He, J. R. Struble, J. W. Bode, J. Am. Chem. Soc. **2006**, 128, 8418-8420.

⁵⁷ J. Francos, F. Grande-Carmona, H. Faustino, J. Iglesias-Sigüenza, E. Díez, I. Alonso, R. Fernández, J. M. Lassaletta, F. López, J. L. Mascareñas, J. Am. Chem. Soc. 2012, 134, 14322-14325.

⁵⁸ T. Stork, Dissertation, Mülheim an der Ruhr, **2010**.

Ein radikaler Wandel in der Familie der chiralen NHCs zum Beispiel hin zu Thiazol-Derivaten^[59] oder zu "abnormalen Carbenen", von denen effiziente achirale Kupfer(I)-Komplexe bereits bekannt sind^[60], wäre ebenfalls denkbar.

Nach der Identifizierung der vielversprechendsten chiralen Carbene sollten schließlich beide Stereoisomere dieser NHC-Vorläufer synthetisiert werden, um die Untersuchung von auftretenden "matched-" und "mismatched"-Fällen anzuschließen, sodass auf diese Weise die jeweiligen, am besten geeigneten Konfigurationen der chiralen Reste ermittelt werden können. Zur Optimierung können außer der Ermittlung des für diesen Reaktionstyp am besten geeigneten Liganden auch weitere verschiedene Parameter herangezogen werden: Die Variation des Kupfer/Ligand-, Substrat/Ligand- und des Substrat/Katalysator-Verhältnisses^[3, 61] sollte untersucht werden. Neben NaOt-Bu könnte auch die Verwendung von (-)-Spartein als chirale Base interessant sein.^[62, 63] Eventuell auftretende kooperative Effekte zwischen dem Katalysator und der Base, wie sie bereits bei der Verwendung chiraler Phophinliganden mit chiralen Phosphaten beobachtet werden konnten,^[64] könnten dabei der Chiralitätsinduktion zu Nutze gemacht werden. Auch in diesem Zusammenhang gilt es "matched"- und "mismatched"-Fälle zu untersuchen.

Silber-Carben-Komplexe haben sich als effiziente Reagenzien für den Ligandentransfer auf Kupfer(I) und Kupfer(II) herausgestellt^[65] und könnten bei der fortgeschrittenen Optimierungsarbeit ebenfalls untersucht werden. Die Silber-Komplexe sind isolierbar und stabil gegenüber Sauerstoff und Wasser.^[12] Neben der *in situ*-Generierung des aktiven Kupferhydrid-Katalysators könnten diese Katalysatorvorläufer nach erfolgter Isolierung eingesetzt werden, was eine präzise und vor allem niedrigere Katalysatorbeladung ermöglichen sollte.

⁵⁹ a) I. Piel, M. D. Pawelczyk, K. Hirano, R. Fröhlich, F. Glorius, *Eur. J. Org. Chem.* 2011, 5475–5484;
b) J. Pesch, K. Harms, T. Bach, *Eur. J. Org. Chem.* 2004, 2025–2035;
c) Simon Woodward, unpublished results.

⁶⁰ a) A. Krueger, M. Albrecht, *Austr. J. Chem.* **2011**, *64*, 1113–1117; b) S. Hohloch, C.-Y. Su, B. Sarkar, *Eur. J. Inorg. Chem.* **2011**, *20*, 3067–3075.

⁶¹ a) S. Rendler, M. Oestreich, *Angew. Chem.* **2007**, *119*, 504–510; b) S. Rendler, M. Oestreich, *Angew. Chem. Int. Ed.* **2007**, *46*, 498–504.

⁶² C. Schultz-Fademrecht, B. Wibbeling, R. Fröhlich, D. Hoppe, *Org. Lett.* **2001**, *3*, 1221–1224.

⁶³ a) D. R. Jensen, M. S. Sigman, Org. Lett. 2002, 5, 63–65; b) J. A. Müller, D. R. Jensen, M. S. Sigman, J. Am. Chem. Soc. 2002, 124, 8202–8203.

⁶⁴ G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, *Science* **2007**, *317*, 496–499.

⁶⁵ C. L. Winn, F. Guillen, J. Pytkowicz, S. Roland, P. Mangeney, A. Alexakis, J. Organomet. Chem. 2005, 690, 5672–5695.

3.4. Experimenteller Teil

3.4.1. Vorbemerkungen

Die analytischen Daten der im Folgenden aufgeführten Verbindungen wurden mit folgenden Materialien bzw. mithilfe nachstehender Geräte ermittelt:

Dünnschichtchromatographie: Die Reaktionskontrolle erfolgte auf DC-Fertigplatten Kieselgel 60 mit Fluoreszenzindikator F_{254} der Firma *Merck*. Neben der Detektion der Fluoreszenzauslöschung mit einer UV-Lampe ($\lambda = 254$ nm) wurden die Chromatogramme durch die Gegenwart von Ioddämpfen bzw. durch Eintauchen in eine der folgenden Lösungen und anschließendes Erwärmen (Heißluftfön) angefärbt.

Kaliumpermanganatlösung:	9 g KMnO ₄ , 12.6 g K_2CO_3 , 15 mL NaOH (5% ig in
	Wasser), 900 mL demineralisiertes Wasser.
Anisaldehydlösung:	12.8 mL Anisaldehyd, 4.8 mL Eisessig, 13.2 mL konz.
	H_2SO_4 , 440 mL Ethanol.
Ammoniummolybdatlösung:	2 g Ce(SO ₄) ₂ 4 H ₂ O, 4.2 g (NH ₄) ₆ Mo ₇ O ₂₄ · 4 H ₂ O, 20 mL
	konz. H ₂ SO ₄ , 200 mL demineraliertes Wasser.

Flashchromatographie: Die präparative säulenchromatographische Aufreinigung erfolgte auf Kieselgel der Firma *Macherey & Nagel* (Kieselgel 60M, Korngröße 0.04-0.063 mm) bzw. *Acros* (0.035-0.07 mm) oder auf Aluminiumoxid der Firma *Fluka* (Korngröße 0.05-0.15 mm, pH 7, Aktivität III). Für die Chromatographie wurden stets destillierte Lösungsmittel verwendet. Für die Filtration über Celite wurde *Hyflo Super Cel* der Firma *Fluka* verwendet.

Analytische GC und HPLC: Gaschromatographische Analysen wurden an einem Gaschromatographen GC 8000 TOP der Firma *CE Instruments* mit Helium als Trägergas (80 kPa) und der Kapillarsäule CP-SIL-5CB (30 m, 0.32 mm ID, DF 0.25 μ m) vorgenommen. Chirale Messungen fanden an einem Gaschromatographen GC 8000 TOP der Firma *CE Instruments* mit Wasserstoff als Trägergas (60 kPa) und der Kapillarsäule Hydrodex-beta-3P (25 m, 0.25 mm ID, DF 0.25 μ m) statt.

Die Bestimmung von Enantiomerenüberschüssen (oder Diastereomerenverhältnissen) erfolgte außerdem an einem HPLC System der Firma *Knauer* mit einem Solvent Organizer K-1500, einer HPLC-Pumpe K-1001 und einem UV-Detektor K-2600. Als Säule wurde eine Eurocel-0.15µm-Säule der Firma *Knauer* mit einer Dimension von 250 x 4.6 mm verwendet.

Physikalische Daten

Kernresonanzspektroskopie: Die Aufnahme der NMR-Spektren erfolgte, falls nicht anders angegeben, bei Raumtemperatur an den Spektrometern DPX 300, DRX 400 und DRX 500 der Firma *Bruker*. Die chemischen Verschiebungen δ sind in ppm angegeben, als interner Standard dienten die Restprotonensignale des jeweiligen Lösungsmittels [CDCl₃ (δ = 7.26 (¹H) und δ = 77.2 (¹³C)), C₆D₆ (δ = 7.16 (¹H) und δ = 128.0 (¹³C)), Aceton-d₆ (δ = 2.05 (¹H) und δ = 29.8 (¹³C)), MeOD (δ = 3.31 (¹H) und δ = 49.0 (¹³C))].

Die Kopplungskonstanten J sind, wenn nicht anders vermerkt, für 3JHH und in Hz angegeben. Für die Auflistung der Spinmultiplizitäten wurden folgende Abkürzungen verwendet:

s (Singulett)	d (Dublett)	t (Triplett)
q (Quartett)	dd (Dublett von Dublett)	td (Triplett von Dublett)
dt (Dublett von Triplett)	qd (Quartett von Dublett)	dq (Dublett von Quartett)
b (breit)	p (pseudo)	m (Multiplett)

Die Signale der Hauptkomponente in Produktgemischen wurden mit einem Stern (*) gekennzeichnet. Protonen von OH- und NH₂-Gruppen konnten aufgrund des Protonenaustauschs gelegentlich nicht detektiert werden und fehlen daher in einigen Spektren.

¹³C-NMR-Spektren wurden breitbandentkoppelt aufgenommen. Die Zuordnung der Signale in den ¹³C-Spektren erfolgte anhand des DEPT-Verfahrens und der 2D-Spektren.

Infrarotspektroskopie: Die Aufnahme der IR-Spektren erfolgte als Flüssigfilm zwischen KBr-Platten an einem Avatat 320 FT-IR Spektrometer der Firma *Nicolet* und als Flüssigfilm

an einem "Spectrum Two" der Firma *Perkin-Elmer*. Die Lage der Absorptionsbanden ist in Wellenzahlen (cm⁻¹) angegeben; die Intensitäten der Banden sind wie folgt abgekürzt: s = stark, m = mittel, w = schwach, bs = breites Signal.

Massenspektrometrie: Massenspektren wurden mithilfe folgender Spektrometer aufgenommen:

GC-MS-LR:	Agilent HP 5973 Massenspektrometer mit eingeschlossenem Agi		
	HP 6890 Gaschromatographen und einer HP-5MS-Säule		
	(25 m \times 0.2 mm \times 0.33 mm);		
EI-MS:	Finnigan MAT 8230 (70 eV)		
GC-MS-EI/CI:	Thermo Electron DFS (70 eV bzw. 120 eV) mit eingeschlossene		
	Trace GC Ultra 2000 Gaschromatographen und Agilent DB-5MS-Säu		
	$(30 \text{ m} \times 0.25 \text{ mm ID})$		
ESI-MS (LR):	Thermo TSQ		
HPLC-ESI-MS:	Thermo LTQ Orbitrap mit eingeschlossener Hypersil-Goldsäule		
	(50 mm \times 1 mm ID, Korngröße 1.9 μ m)		

Schmelzpunkte: Die Schmelzpunkte wurden an einem Schmelzpunktbestimmungsgerät der Firma *Büchi* B 540 in einer einseitig geschlossenen Kapillare bestimmt und sind nicht korrigiert.

Drehwerte: Die Drehwerte optisch aktiver Verbindungen wurden mit einem Polarimeter Modell 341 der Firma *Perkin-Elmer* und einem Polarimeter Modell P8000 der Firma *A.Krüss Optronic* bei $\lambda = 589$ nm in einer Küvette mit der Schichtdicke d = 1 cm gemessen und sind als spezifischer Drehwert $[\alpha]_{\overline{D}}^{20}$ angegeben.

Kugelrohr-Destillation: Zur Destillation kleiner Substanzmengen wurde eine Kugelrohr-Destillationsapparatur B-580 der Firma *Büchi* verwendet. Die angegebenen Siedepunkte entsprechen dabei der Temperatur des Kugelrohrofens.

Molmassen, Dichten: Alle Molmassen sind in $g \cdot mol^{-1}$ und alle Dichten in $g \cdot mL^{-1}$ angegeben.

Reagenzien und Lösungsmittel

Soweit nicht anders vermerkt wurden alle feuchtigkeits- und luftempfindliche Reaktionen in sorgfältig ausgeheizten Glasgeräten und unter einer Argon-Schutzatmosphäre durchgeführt. Die Zugabe von Lösungsmitteln und Reagenzien erfolgte entweder im Argongegenstrom oder mittels Injektion durch ein Septum. Es wurde eine Wechselhahnanlage mit einer Drehschiebervakuumpumpe (*Pfeiffer Vacuum*, Enddruck ca. $4 \cdot 10^{-2}$ bar) verwendet. Spritzen und Kanülen wurden vor Gebrauch mit Argon gespült. Die verwendeten Lösungsmittel wurden vor ihrer Benutzung von Feuchtigkeitsspuren befreit. Tetrahydrofuran, Dichlormethan, Diethylether, Toluol und Dimethylformamid wurden vor Verwendung mit der Lösungsmitteltrocknungsanlage MB-SPS 800 der Firma Braun getrocknet. Aceton wurde durch Lagerung über Molekularsieb (4 Å) getrocknet. Methanol wurde über Magnesium zum Sieden gebracht und frisch abdestilliert. Phosphatpuffer pH = 7 wurde durch Lösen von 156 g NaH₂PO₄·2H₂O und 178 g Na₂HPO₄·2H₂O in 1 L Wasser hergestellt. Die Lagerung der synthetisierten Verbindungen erfolgte bei -28 °C. Die Gehaltsbestimmungen der verwendeten Grignard-Reagenzien und n-Butyllithium-Lösung erfolgten nach Jones und Love durch Titration gegen Salicylaldehyd-Phenylhydrazin^[66] bzw. durch Titration gegen Diphenylessigsäure^[67].

Bezugsquellen: Soweit nicht anders angegeben, wurden die eingesetzten Reagenzien von den Firmen *Acros*, *Aldrich*, *AlfaAesar* (*Lancaster*) und *Fluka* bezogen. (*E*)-3-Methylpent-2-en-4-in-1-ol und (*Z*)-3-Methylpent-2-en-4-in-1-ol wurden von der Firma *DSM* zur Verfügung gestellt.

Entgasen von Lösungsmitteln: Das Toluol wurde von der SPS Anlage entnommen und unter Argon mit flüssigem Stickstoff auf –195 °C gekühlt. Sobald es eingefroren war, wurde die Kühlung entfernt und Vakuum angelegt. Es wurde mit Argon belüftet, sobald das Toluol wieder flüssig wurde. Die Freeze/Pump/Thaw-Cyclen wurden 4-5 Mal wiederholt.

⁶⁶ B. E. Love, E. G. Jones, J. Org. Chem. **1999**, 64, 3755–3756.

⁶⁷ W. G. Kofron, L. M. Baclawski, J. Org. Chem. **1976**, 41, 1879–1880.

3.4.2. Arbeitsvorschriften und analytische Daten

Synthesen der verschiedenen Testsubstrate

Synthese des Testsubstrates 3.9

3.4.2.1. 3,3-Dimethylbut-1-in (3.5)

V 3.1 (HU-1)

25.9 mL des Olefins **3.4** (ρ 0.65, 0.2 mol) wurden in 60 mL Et₂O gelöst und auf –40 °C gekühlt. Dann wurden 10.3 mL Brom (ρ 3.11, 0.20 mol, 1.0 Äq.) langsam hinzugetropft und die Reaktionslösung anschließend wieder auf Raumtemperatur erwärmt. Das Lösungsmittel wurde am Rotationsverdampfer größtenteils entfernt und das Gemisch mit dem 1,2-Dibrom-3,3-dimethylbutan 4 d im Kühlschrank aufbewahrt.

In einem Dreihalskolben mit aufgesetzter Destillationsapparatur wurden 56.1 g Kalium-*t*-butoxid (0.50 mol, 2.5 eq) in 140 mL Dimethylsulfoxid suspendiert. Das rohe 1,2-Dibrom-3,3-dimethylbutan wurde ebenfalls mit 20 mL DMSO verdünnt und unter Rühren zur Kaliumtertbutoxidlösung hinzugetropft. Das durch die Reaktionswärme abdestillierende Alkin **3.5** (Sdp: 39 °C) wurde in der auf -80 °C gekühlten Vorlage aufgefangen. Nach Beendigung des Siedens wurde die Reaktionsmischung noch weitere 30 min auf 100 °C erhitzt und die Destillation auf diese Weise vorangetrieben. Im Anschluss wurde auf Raumtemperatur abgekühlt und ein Membranpumpenvakuum von 200 mbar angelegt, um im Reaktionsgemisch noch vorhandenes Produkt in der auf -80 °C gekühlten Vorlage aufzufangen. Von einer wiederholten Destillation des mit etwas Et₂O verunreinigten Rohprodukts wurde abgesehen. Es konnten umgerechnet 39% (6.38 g, 0.08 mol) des Alkins **3.5** als gelbliches Öl gewonnen werden.

¹**H-NMR:** (400 MHz, CDCl₃) $\delta = 2.05$ (s, 1H, CH), 1.24 (s, 9H, C(CH₃)₃).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[28]

3.4.2.2. (*E*)-Ethyl-6,6-dimethylhept-2-en-4-inoat (3.7)

V 3.2 (HU-2, HU-3)

6.17 g des Alkins 3.5 (75.0 mmol) wurden in 50 mL Et₂O gelöst und auf -20 °C gekühlt. Nach dem Zutropfen von 28 mL n-BuLi (2.5 M, 0.95 Äq.) und 20 minütigem Rühren wurde das Reaktionsgemisch auf -70 °C gekühlt und 6.4 mL DMF (p 0.94, 1.1 Äq.) wurden langsam hinzugetropft, wobei die Innentemperatur -50 °C nicht übersteigen durfte. Im Anschluss daran wurde die Reaktionslösung auf 10 °C erwärmt und durch Zugabe zu einer Lösung aus 32.0 g NaH₂PO₄ in 280 mL H₂O/Et₂O (1:1) hydrolysiert. Die Phasen wurden getrennt und die wässrige 2 x mit ca. 50 mL Et₂O extrahiert. Die vereinigten organischen Phasen wurden mit 50 mL H₂O gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer bei max. 650 mbar eingeengt. Der instabile Aldehyd 3.6 wurde direkt weiter umgesetzt. Dazu wurden 2.85 g Natriumhydrid (71.3 mmol, 60%ig, 0.95 Äq.) bei RT in 50 mL THF suspendiert und der in weiteren 50 mL THF gelöste Phosphonoester hinzugetropft. Nach 30-minütigem Rühren und Kühlen auf 0 °C wurde das rohe, in 20 mL gelöste 4,4-Dimethylbutinal hinzugetropft und das Reaktionsgemisch 1 h lang bei RT gerührt. Nach der Hydrolyse mit 30 mL H₂O wurden die Phasen getrennt und die wässrige 4 x mit je 30 mL Et₂O extrahiert. Die organischen Phasen wurden mit jeweils 30 mL H₂O und gesättigter NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer vom Lösungsmittel befreit. Die anschließende Aufreinigung des Produktes mittels Kugelrohrdestillation (74 °C bei 0.32 mbar) lieferte 62% (8.34 g, 46.3 mmol) des Esters 3.7 als farbloses Öl über zwei Stufen.

DC:
$$R_f = 0.38 (CH/EA 30:1)$$

¹**H-NMR:** (400 MHz, CDCl₃) $\delta = 6.75$ (d, J = 15.7 Hz, 1H, -CH=CH-CO), 6.11 (d, J = 15.7 Hz, 1H, -CH=CH-CO), 4.19 (q, J = 7 Hz, 2H, OCH₂CH₃), 1.27 (t, J = 7 Hz, 3H, OCH₂CH₃), 1.25 (s, 9H, C(CH₃)₃).

Die spektroskopischen Daten stimmen mit der Literatur überein.^[30]

3.4.2.3. (3-(3,3-Dimethylbut-1-inyl)oxiran-2-yl)methanol (3.8)

V 3.3 (HU-4, HU-5A)

1.09 g LiAlH₄ (28.7 mmol, 1.8 Äq.) wurden langsam in 120 mL Et₂O suspendiert und auf -80 °C gekühlt. Anschließend wurden 2.88 g des Eninesters 3.7 (16.0 mmol) in weiteren 20 mL Et₂O gelöst und tropfenweise zur Suspension hinzugegeben. Nach weiterem 30-minütigem Rühren bis höchstens -60 °C wurde die Reaktion mit 6 mL gesättigter NH₄Cl-Lösung vorsichtig gestoppt und auf RT erwärmt. Schließlich wurde das Eninol über Celite filtriert, reichlich mit Et₂O nachgespült und nach dem Entfernen des Lösungsmittels am Rotationsverdampfer ohne weitere Aufreinigung weiter eingesetzt. Dazu wurden 2.18 g des in 250 mL CH₂Cl₂ wieder gelösten und auf 0 °C gekühlten Alkohols (15.8 mmol) portionsweise mit 3.53 g Na₂HPO₄ (24.9 mmol, 1.5 Äq.) und 4.99 g *m*-CPBA (20.3 mmol, 70% ig, 1.28 Äq.) versetzt und das Reaktionsgemisch über Nacht auf RT erwärmt. Nach 19.5 h wurde mit 150 mL gesättigter Na₂CO₃-Lösung hydrolysiert und nach der Phasentrennung die organische Phase 2 x mit je 50 mL gesättigter Na₂CO₃-Lösung sowie mit 50 mL gesättigter NaCl-Lösung gewaschen. Anschließendes Trocknen über MgSO₄, Einengen am Rotationsverdampfer und säulenchromatographische Aufreinigung an Kieselgel (100 g, CH/EA 4:1) lieferten 65% des Epoxids 3.8 (1.60 g, 10.0 mmol) als leicht gelbliches, klares Öl und weitere 573 mg des nicht umgesetzten Eduktes und der Mischfraktionen.

DC: Eninol $R_f = 0.10$ (CH/EA 10:1), 0.32 (CH/EA 4:1); Epoxid **3.8** $R_f = 0.24$ (CH/EA 4:1).

¹**H-NMR:** (400 MHz, CDCl₃) $\delta = 3.94$ (ddd, J = 12.5, 4.5, 2.5 Hz, 1H, -CH₂OH), 3.70 (ddd, J = 12.7, 8.2, 3.3 Hz, 1H, -CH₂OH), 3.43 (d, J = 2 Hz, 1H, -CCCH-), 3.25-3.27 (m, 1H, CH-CH₂OH), 1.68 (bs, 1H, -OH), 1.22 (s, 9H, -C(CH₃)₃).

73

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[32]

3.4.2.4. 2-((Benzyloxy)methyl)-3-(3,3-dimethylbut-1-in-1-yl)oxiran (3.9)

V 3.4 (HU-6A)

0.616 g Natriumhydrid (15.4 mmol, 60% ig, 1.5 Äq.) wurden in 80 mL THF suspendiert und auf 0 °C gekühlt. Dann wurden 1.583 g des Alkohols **3.8** (10.3 mmol) in weiteren 20 mL THF gelöst, langsam hinzugetropft und das Reaktionsgemisch 30 min bei 0 °C gerührt. Nach der anschließenden Zugabe von 1.84 mL des Benzylbromids (ρ 1.43, 15.4 mmol, 1.5 Äq.) wurde das Reaktionsgemisch weitere 48 h bei RT gerührt und schließlich durch die Zugabe von 10 mL gesättigter NH₄Cl-Lösung hydrolysiert. Die Phasen wurden getrennt, die wässrige 3 x mit je 20 mL Et₂O extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und das Rohprodukt am Rotationsverdampfer vom Lösungsmittel befreit. Die säulenchromatographische Aufreinigung an Kieselgel (CH/EA 30:1 \rightarrow 4:1) lieferte 70% des Benzylethers **3.9** (1.763 g,7.22 mmol) als klares Öl.

DC: $R_f = 0.68$ (CH/EA 4:1); 0.45 (CH/EA 10:1).

¹**H-NMR:** (400 MHz, CDCl₃) $\delta = 7.3$ 5-7.25 (m, 5H, Ar-H), 4.54 (d, J = 2.5 Hz, 2H, -OCH₂-Ph), 3.69 (dd, J = 11.5, 3.0 Hz, 1H, H-6), 3.50 (dd, J = 11.5, 4.5 Hz, 1H, H-6), 3.29 (d, J = 2 Hz, 1H, H-4), 3.25-3.27 (m, 1H, H-5), 1.22 (s, 9H, -C(CH₃)₃).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[32]

Synthese des Testsubstrates 3.11

3.4.2.5. 1-(Prop-1-in-1-yl)-7-oxabicyclo[4.1.0]heptan (3.11)

V 3.5 (HU 79-B2, 81-B)

Zu einer Lösung von 2.12 g des 1-Ethinylcyclohexanols (17.0 mmol) in 9.15 mL Pyridin wurden bei 0 °C langsam 2.42 mL POCl₃ (26.1 mmol, 1.5 Äq.) hinzugegeben und das Reaktionsgemisch 5 h bei RT gerührt. Dann wurde das Gemisch erneut auf 0 °C gebracht und mit Eis versetzt, bevor die Phasen getrennt und die wässrige 2 x mit jeweils 25 mL Et₂O extrahiert wurde. Die vereinigten organischen Phasen wurden 3 x mit jeweils 20 mL einer 10% igen HCl-Lösung, mit 20 mL einer ges. NaHCO₃-Lösung und mit 20 mL einer NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und bei 500 mbar weitestgehend vom Lösungsmittel befreit. Das Rohprodukt wurde direkt in der nächsten Stufe eingesetzt.

Dabei wurde das 1-Ethinylcyclohexen in 18 mL THF abs. gelöst und auf -78 °C gekühlt. 6.9 mL einer *n*-BuLi-Lösung (2.5 M in Hexan, 17.1 mmol, 1 Äq.) wurden langsam hinzugetropft und das Reaktionsgemisch 1 h bei dieser Temperatur gerührt. Dann wurden 1.08 mL Methyliodid (17.1 mmol, 1 Åq.) tropfenweise hinzugegeben und das Reaktionsgemisch unter Erwärmen auf RT weitere 3 h gerührt, bevor es mit einer Spatelspitze Na₂CO₃ und 2 mL Methanol versetzt wurde. Nach 30-minütigem Rühren wurden jeweils 10 mL Wasser und Et₂O hinzugegeben, die Phasen getrennt, die wässrige 2 x mit jeweils 10 mL Et₂O extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet und von den Lösungsmitteln befreit. Das Rohprodukt wurde bei 39 mbar (80 °C Ölbad) destilliert und lieferte 1.35 g des methylierten Enins (11.2 mmol, 66%).

Das 1-(Prop-1-in-1-yl)cyclohex-1-en wurde in 60 mL CH_2Cl_2 gelöst und bei 0 °C mit 5.86 g *m*-CPBA (25.5 mmol, 1.5 Äq.) und 2.90 g Na_2HPO_4 (20.5 mmol, 1.2 Äq.) versetzt und unter Erwärmen auf RT 16 h lang gerührt. Dann wurden gegen die überschüssige *m*-CPBA jeweils ca. 50 mL gesättigter Lösungen von Na_2SO_3 und $NaHCO_3$ hinzugegeben und das

Gemisch eine weitere Stunde gerührt, bevor 2 x mit jeweils 50 mL CH₂Cl₂ extrahiert wurde. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und vom Lösungsmittel befreit. Eine säulenchromatographische Aufreinigung an Kieselgel mit Pentan/Et₂O (100:1 \rightarrow 5:1) scheiterte. Bei Verwendung eines Laufmittelgemisches aus CH/EA (50:1 \rightarrow 30:1) mussten eine Zersetzung des Produktes auf der Säule und anschließenden Entfernen Produktverluste beim des Lösungsmittels am Rotationsverdampfer beobachtet werden. Die Aufreinigung lieferte 1.13 g des 1-(Prop-1-in-1-yl)-7-oxabicyclo[4.1.0]heptans (umgerechnet 5.96 mmol, 35%), etwas verunreinigt mit dem nicht-methylierten Epoxid als Nebenprodukt im Verhältnis 1:0.16, welches mit einem zum vorangegangenen methylierten Produkt quasi identischen Rf-Wert vorher nicht detektiert werden konnte. Aus diesem Grunde wurden 525 mg des Gemisches nochmals den Methylierungsbedingungen unterzogen. säulenchromatographischen Nach einer Aufreinigung an Aluminiumoxid (*iso*-Hexan/EA $1:0 \rightarrow 50:1$) konnten schließlich 387 mg des Produktes (umgerechnet 1.97 mmol, 75%, noch etwas Hexan enthalten) isoliert werden.

DC:
$$R_f = 0.36$$
 (CH/EA = 10:1, Anisaldehyd, rot, Produkt);
($R_f = 0.70$ (CH/EA = 10:1, Anisaldehyd, grün, Zwischenprodukt Enin).

¹**H-NMR:** 400 MHz, C_6D_6 ; $\delta = 0.76-0.91$ (m, 1H, 4-H/5-H), 0.92-1.03 (m, 1H, 4-H/5-H), 1.16-1.21 (m, 1H, 4-H/5-H), 1.22-1.28 (m, 1H, 4-H/5-H) 1.37-1.46 (m, 1H, 3-H) 1.44 (s, 1H, CH₃), 1.64 (dt, *J*=14.87, 7.25 Hz, 1H, 6-H), 1.91 (ddd, *J* = 14.05, 8.03, 5.77 Hz, 1H, 3-H), 2.17 (dt, *J* = 15.00, 5.93 Hz, 1H, 6-H), 3.23 (d, *J* = 3.51 Hz, 1H, 2-H).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[33]

Synthese des Testsubstrates 3.14

3.4.2.6. (*E*)-(((6,6-dimethylhept-2-en-4-in-1-yl)oxy)methyl)benzol

V 3.6 (HU-129C, D)

1.36 g Natriumhydrid (32.7 mmol, 1.5 Äq., 60%ig) wurden in ca. 100 mL THF abs. suspendiert und auf 0 °C gekühlt. 3.02 g des Alkohols **3.12** (21.8 mmol) wurden ebenfalls in THF (10 mL) gelöst und langsam zur Suspension hinzugetropft, bevor das Gemisch 30 min lang bei 0 °C gerührt wurde. 3.92 mL des Benzylbromids (32.7 mmol, 1.5 Äq.) wurden hinzugegeben und das Gemisch 48 h lang bei RT gerührt. Dann wurde es durch Zugabe von 20 mL gesättigter NH₄Cl-Lösung hydrolysiert, die Phasen wurden getrennt und die wässrige 2 x mit jeweils 30 mL Et₂O extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, am Rotationsverdampfer eingeengt und säulenchromatographisch an Kieselgel gereinigt (*i*-Hexan:EA 1:0 \rightarrow 30:1). Dabei konnten 3.35 g des Benzylethers (14.7 mmol, 67%) als reines Produkt und weitere 1.20 g einer etwas mit aliphatischen Resten verunreinigten Fraktion (max. 5.26 mmol, max. 24%) isoliert werden.

DC: $R_f = 0.22$ (CH/EA = 30:1, Anisaldehyd, braun-schwarz).

¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 1.17$ (s, 9H, C(CH₃)₃), 3.97 (dd, J = 5.77, 1.76 Hz, 2H, 1-H), 5.68 (dt, J = 15.87, 1.60 Hz, 1H, 3-H) 6.04 (dt, J = 15.81, 5.77 Hz, 1H, 2-H) 7.18-7.31 (m, 5H, Ar-H).

¹³C-NMR: 101 MHz, CDCl₃; $\delta = 28.1$ (*C*(CH₃)₃), 30.1 (C(*C*H₃)₃), 70.1 (OCH₂Ph), 72.2 (C1), 77.0 (C4), 99.6 (C5), 112.8 (C3), 127.8 (Ph), 127.8 (Ph), 128.5 (Ph), 137.8 (C2), 138.3 (Ph).

3.4.2.7. 1-(Benzyloxy)-6,6-dimethylhept-4-in-2,3-diol (3.13)

V 3.7 (HU-130-C)

1.01 g des Enins (4.43 mmol) wurden in einem 1:1-Gemisch aus jeweils 9.6 mL *tert*-Butanol und Wasser gelöst, bei RT mit 3.103 g AD-Mix α und 3.10 g AD-Mix $\beta^{[68]}$ versetzt und 60 h lang heftig gerührt, wobei sich das dickflüssige Gemisch von rot-orange zu gelb entfärbte. Zum Beenden der Reaktion wurden 80 mL einer ges. Na₂S₂O₃-Lösung bei 0 °C hinzugegeben und das Gemisch weitere 30 min gerührt, wobei ein erneuter Farbwechsel über grün und braun zu ocker zu beobachten war. Versuche, die wässrige Phase mit CH₂Cl₂ zu extrahieren, scheiterten durch das starke Auftreten eines schleimigen Niederschlages, woraufhin die gesamte Lösung 6 x mit jeweils 50 mL EA extrahiert wurde. Die vereinigten organischen Phasen wurden mit jeweils 100 mL einer ges. Na₂CO₃-Lösung und Wasser gewaschen, über Na₂SO₄ getrocknet und von den Lösungsmitteln befreit. Die säulenchromatographische Aufreinigung an Kieselgel (CH/EA 1:0 \rightarrow 1:1) lieferte 999 mg des Diols **3.13** (3.81 mmol, 86%) als klares Öl.

DC: $R_f = 0.23$ (CH/EA = 2:1, Anisaldehyd, schwarz).

- ¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 1.18$ (s, 9H, C(CH₃)₃), 2.61 (bs, 2H, OH), 3.60 (dd, J = 9.79, 5.52 Hz, 2H, 1-H), 3.69 (dd, J = 9.79, 3.76 Hz, 1H, 1-H), 3.78 (ddd, J = 6.53, 5.77, 4.02 Hz, 1H, 2-H), 4.39 (d, J = 6.53 Hz, 1H, 3-H), 4.55 (d, J = 12.05 Hz, 1H, OCH₂Ph), 4.60 (d, J = 12.05 Hz, 1H, OCH₂Ph), 7.27-7.38 (m, 5H, Ar-H).
- ¹³C-NMR: 101 MHz, $CDCl_3$; $\delta = 27.5 (C(CH_3)_3)$, 31.0 ($C(CH_3)_3$), 64.0 (C3), 70.7 (C1), 73.7 (OCH₂Ph), 74.0 (C2), 76.2 (C4), 95.7 (C5), 127.9 (Ph), 128.0 (Ph), 128.6 (Ph), 137.8 (Ph).

⁶⁸ H. C. Kolb, M. S. Van Nieuwenhze, K. B. Sharpless, *Chem. Rev.* **1994**, *94*, 2483–2547.

3.4.2.8. 4-((Benzyloxy)methyl)-5-(3,3-dimethylbut-1-in-1-yl)-1,3-dioxolan-2-on (3.14)

V 3.8 (HU-131-A)

Zunächst wurden 655 mg des Triphosgens (2.21 mmol, 1.0 Åq.) in 20 mL CH₂Cl₂ gelöst, auf -60 °C gekühlt und mit 1.79 mL trockenem Pyridin (22.1 mmol, 10 Äq.) versetzt. Anschließend wurden bei dieser Temperatur 965 mg des Diols **3.13** (3.68 mmol, 1.7 Äq.) hinzugegeben und das Reaktionsgemisch unter langsamem Erwärmen auf RT 16 h lang gerührt. Durch die Zugabe von 7 mL einer ges. NaHCO₃-Lösung unter starker Gasentwicklung wurde die Reaktion beendet. Die Phasen wurden getrennt und die organische mit 10 mL einer HCl-Lösung (1 N) gewaschen und über Na₂SO₄ getrocknet. Die säulenchromatographische Aufreinigung an Kieselgel (CH/EA 20:1 \rightarrow 2:1) lieferte neben 515 mg (max 1.55 mmol) einer leicht verunreinigten Fraktion (Prod:EA:NP: 1:0.12:0.06) als klares, leicht gelbliches Öl noch 364 mg des sauberen Carbonates **3.14** (1.24 mmol, 56%) als weißen Feststoff.

DC: $R_f = 0.43$ (CH/EA = 4:1, UV, Anisaldehyd, türkis).

Schmp.: 38 °C.

¹**H-NMR:** 400 MHz, C_6D_6 ; $\delta = 1.04$ (s, 9H, $C(CH_3)_3$), 2.78-2.89 (m, 1H, 1-H), 2.94-3.07 (m, 1H, 1-H), 4.02 (dd, J = 12.30, 3.01 Hz, 1H, OCH₂Ph), 4.09 (dd, J = 12.30, 2.76 Hz, 1H, OCH₂Ph), 4.12-4.13 (m, 1H, 3-H), 4.87 (dd, J = 5.77, 3.26 Hz, 1H, 2-H), 7.05-7.14 (m, 5H, Ar-H).

¹³C-NMR: 101 MHz, C_6D_6 ; $\delta = 27.6$ (*C*(CH₃)₃), 30.4 (C(*C*H₃)₃), 67.7 (C3), 68.0 (C1/ OCH₂Ph), 73.4 (C1/OCH₂Ph), 73.6 (C2), 81.0 (C4), 98.5 (C5), 127.8 (Ph), 128.1 (Ph), 128.4 (Ph), 128.7 (Ph), 153.6 (OCOO).

79

IR: (Film) v = 3063 (w), 2971 (m), 2925 (w), 2870 (w), 2253 (w), 1794 (s), 1782 (s), 1497 (w), 1475 (w), 1452 (m), 1363 (s), 1323 (m), 1293 (s), 1268 (m), 1206 (w), 1173 (s), 1140 (s), 1094 (s), 1063 (s), 1024 (s), 929 (w), 904 (w), 881 (w), 855 (w), 771 (s), 731 (s), 695 (s), 673 (w), 638 (m), 618 (w), 594 (w), 560 (w), 673 (m), 461 (m).

HRMS: (ESI) $C_{17}H_{21}O_4$ [M+H]⁺; ber.: 289.1434, gef.: 289.1431.

Die spektroskopischen Daten stimmen mit denen der Literatur nicht überein.^[32]

Synthesen der verschiedenen NHC-Vorläufer

Synthese des NHC-Vorläufers L8

3.4.2.9. Ethyl-2-(mesitylamino)-2-oxoacetat (3.16)

V 3.9 (HU-SZ-6)

1.64 mL des Oxalylethylchlorids (14.7 mmol, 1.2 Äq.) wurden bei 0 °C in eine Lösung aus 1.72 mL 2,4,6-Trimethylanilin (12.2 mmol) und 1.18 mL Pyridin (14.6 mmol, 1.2 Äq.) in 12 mL abs. CH_2Cl_2 hinzugetropft und 16 h bei RT gerührt. Daraufhin wurde das Reaktionsgemisch mit 10 mL CH_2Cl_2 verdünnt, die Phasen wurden getrennt und die organische 2 x mit jeweils 10 mL HCl (1M), mit ges. NaHCO₃-Lösung und mit ges. NaCl-Lösung gewaschen. Nach dem Trocknen über Na₂SO₄, Entfernen des Lösungsmittels am Rotationsverdampfer und Umkristallisation aus Cyclohexan wurden 1.64 g des Acetats **3.16** (6.98 mmol, 48%) als weißer Feststoff erhalten. **DC:** $R_f = 0.15 (CH/EA = 10:1).$

- ¹**H-NMR:** 400 MHz, $CDCl_3$; $\delta = 1.44$ (t, J = 7.03 Hz, 3H, CH_2CH_3), 2.19 (s, 6H, 2 ArCH₃, 5-H, 5'-H), 2.27 (s, 3H, 7-H), 4.41 (q, J = 7.53 Hz, 2H, CH_2CH_3), 6.91 (s, 2H, 6-H, 6'-H), 8.36 (s, 1H, NH).
- ¹³C-NMR: 101 MHz, $CDCl_3$; $\delta = 14.1$ (CH_2CH_3), 18.4 (C5, $C5^{\prime}$), 21.0 (C7), 63.6 (CH_2CH_3), 129.2 (C6, $C6^{\prime}$), 129.6 (C4), 134.8 (C5, $C5^{\prime}$), 137.8 (C7), 154.8 (C2), 161.0 (C1).

3.4.2.10. (S)-2-Amino-4-methylpentan-1-ol

V 3.10 (HU-SZ-3)

0.65 g LiAlH₄ (17.2 mmol, 1 Åq.) wurden in 25 mL THF gelöst und 15 min unter Rückfluss erhitzt. Danach wurde zu dieser Lösung 1.00 g Leucin (7.62 mmol) hinzugegeben. Nach einer Stunde des Erhitzens unter Rückfluss wurde die Reaktion durch Zugabe von 0.80 g KOH in 1.45 mL H₂O und durch weiteres 15 min langes Erhitzen beendet. Das Gemisch wurde heiß filtriert und mit viel heißem Et₂O nachgespült. Anschließend wurde der Niederschlag mit 15 mL THF erneut 15 min unter Reflux gerührt und dann ein weiteres Mal heiß filtriert. Die vereinigten Filtrate wurden mit Hilfe des Rotationsverdampfers von den Lösungsmitteln befreit. Anschließend wurde das Rohprodukt an Kieselgel adsorbiert und säulenchromatographisch (*n*-Pentan \rightarrow CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH (5:1) \rightarrow MeOH) gereinigt, wobei 719 mg des (*S*)-2-Amino-4-methylpentan-1-ols (6.14 mmol, 81%) als gelbe Flüssigkeit erhalten werden konnten.

DC:
$$R_f = 0.67$$
 (MeOH).

¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 0.89$ (d, J = 7.03 Hz, 3H, 5-H), 0.92 (d, J = 6.53 Hz, 3H, 5'-H), 1.22 (dd, J = 7.03, 7.03 Hz, 2H, 3-H), 1.69 (spt, J = 6.53 Hz, 1H, 4-H), 2.90-3.08 (m, 4H, 2-H, OH, NH₂), 3.28 (dd, J = 11.04, 8.03 Hz, 1H, 1-H), 3.60 (dd, J = 11.04, 4.02 Hz, 1H, 1-H).

¹³C-NMR: 101 MHz, CDCl₃; $\delta = 22.3$ (C5), 23.3 (C5'), 24.7 (C4), 43.1 (C3), 50.9 (C2), 66.4 (C1).

3.4.2.11. (S)-2-(2-(Mesitylamino)-ethylamino)-4-methylpentan-1-ol (3.18)

V 3.11 (HU-SZ-7, 8)

1.15 g des Ethyl-2-(mesitylamino)-2-oxoacetats (4.90 mmol) wurden in 12 mL abs. CH_2Cl_2 gelöst, mit 719 mg des (*S*)-2-Amino-4-methylpentan-1-ols (6.14 mmol, 1.3 Äq.) versetzt und 16 h unter Rückfluss erhitzt. Das Reaktionsgemisch wurde mit 20 mL Et₂O verdünnt, die organische Phase nach der Phasentrennung mit jeweils 10 mL einer HCl-Lösung (1 M) und einer ges. NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Nach dem Entfernen des Lösungsmittels am Rotationsverdampfer wurden 1.57 g des Alkohols **3.17** als milchige Flüssigkeit erhalten, welche ohne weitere Reinigung und Charakterisierung in der nachfolgenden Reduktion eingesetzt wurde.

1.57 g des rohen Alkohols **3.17** wurden bei 0°C zu einer Suspension von 744 mg LiAlH₄ (19.6 mmol, 4 Äq.) in 25 mL abs. THF zugegeben und 48 Stunden unter Rückfluss gerührt. Anschließend wurde die Lösung auf 0 °C abgekühlt und mit 5.3 mL einer 15%-igen NaOH-Lösung in H₂O versetzt. Nach dem Filtrieren über Celite und Entfernen des Lösungsmittels am Rotationsverdampfer wurden 1.44 g des Diamins **3.18** als leicht gelblicher, amorpher Feststoff isoliert und direkt weiter verwendet.

3.4.2.12. (S)-3-(1-Hydroxy-4-methylpentan-2-yl)-1-mesityl-4,5-dihydro-1*H*-imidazol-3ium-tetrafluoroborat (L8)

V 3.12 (HU-SZ-9)

Zu einer Lösung des Diamins **3.18** (max. 4.90 mmol) in 25 mL Et₂O wurden bei 0 °C 2.58 mL einer methanolischen HCl-Lösung (2 M) hinzugetropft, woraufhin sich zeitnah ein weißer Feststoff bildete. Nach zehn Minuten des Rührens wurde die Reaktionsmischung filtriert und das erhaltene Salz wieder in 10 ml abs. Toluol gelöst. Nach Zugabe von 2.74 mL Triethylorthoformiat (16.5 mmol, 3.4 Äq.) bei 0 °C wurde das Reaktionsgemisch bei 90 °C 16 h lang gerührt und nach dem Abkühlen vom Lösungsmittel befreit. Anschließend wurden 33 mL Wasser zugegeben, um das Imidazoliniumchlorid aufzulösen, und die wässrige Phase wurde mit Ethylacetat gewaschen. Dann wurden 724 mg Natriumtetrafluorborat (6.59 mmol, 1.3 Äq.) hinzugegeben und das Gemisch 2 h bei RT gerührt. Zuletzt wurde das Imidazoliniumsalz mit 50 mL DCM aus der wässrigen Phase extrahiert. Die organische Phase wurde mit Na₂SO₄ getrocknet, von dem Lösungsmittel befreit und säulenchromatographisch aufgereinigt (CH₂Cl₂/MeOH 1:0 \rightarrow 5:1), wobei 985 mg des Produktes L7 (2.62 mmol, 53%) als gelbliches Salz erhalten werden konnten.

DC: $R_f = 0.59 (CH_2Cl_2/MeOH 20:1; UV, KMnO_4, schmierte stark).$

Schmp.: 116 °C.

¹**H-NMR:** 400 MHz, $CDCl_3$; $\delta = 0.97$ (d, J = 6.53 Hz, 3H, 6'-H), 1.00 (d, J = 6.53 Hz, 3H, 6'-H), 1.35 (ddd, J = 14.05, 8.28, 5.02 Hz, 1H, 3'-H), 1.53 (ddd, J = 14.31, 9.29, 5.52 Hz, 1H, 3'-H), 1.62 (spt, J = 6.27 Hz, 1H, 4'-H), 2.21-2.33 (m, 9H, ArCH₃), 3.56 (dd, J = 12.05, 10.04 Hz, 1H, 1'-H),

3.79 (dd, *J* = 12.30, 3.76 Hz, 1H, 1'-H), 4.03-4.28 (m, 5H, 4-H, 5-H, 2'-H), 6.94 (s, 2H, ArH), 8.07 (s, 1H, 2-H).

IR (Film) v = 3849(w), 3793(w), 3729(w), 3666(w), 3644(w), 3540(sb), 2962(m), 1666(w), 1632(w), 1537(wb), 1469(wb), 1384(m), 1260(s), 1090(s), 1021(s), 864(w), 799(s).

Spez. Drehung: $[\alpha]_D^{20} = +27.0 \ (c = 1, \text{CHCl}_3).$

HRMS: (ESI) $C_{18}H_{29}N_2O[M+H]^+$; ber.: 289.2274, gef.: 289.2266.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[23]

Synthese des NHC-Vorläufers L4

Darstellung des chiralen Diamins

3.4.2.13. 2,2-Spirocyclohexan-4,5-diphenyl-2*H*-imidazol (3.20) V 3.13 (HU-23)

158 g des Benzils (**3.19**) (0.75 mol) und 400 g Ammoniumacetat (5.19 mol, 6.9 Äq.) wurden in 1 L Eisessig gelöst, mit 80 mL Cyclohexanon (0.77 mol, 1.0 Äq.) versetzt und 2 h lang mit Hilfe eines Heizpilzes und eines KPG-Rührers unter Reflux stark gerührt. Die von gelblich zu dunkelgrün verfärbte Reaktionslösung wurde dann noch heiß und unter starkem Rühren in 3 L Wasser gegossen, nach 16 h filtriert, 6 x mit jeweils 200 mL Wasser gewaschen, an der HV getrocknet und fein zermörsert. Das hellbraune Pulver wurde nochmals 16 h an der HV und unter Zuhilfenahme eines warmen Wasserbades getrocknet und ergab 131 g des gewünschten Diimins **3.20** (umgerechnet 0.68 mol, 91%), wobei eine leichte Verunreinigung durch Benzil (0.05 mmol, 6%) anhand des NMRs und des Schmelzpunktes festgestellt wurde.

Schmp.: 99 °C (vgl. 105-106 °C laut Literatur^[35]).

- ¹**H-NMR:** 400 MHz, CDCl₃; δ = 1.69-1.78 (m, 2H, Cy-H), 1.78-1.86 (m, 4H, Cy-H), 1.92-2.01 (m, 4H, Cy-H), 7.32-7.39 (m, 4H, Ar-H), 7.40-7.46 (m, 2H, Ar-H), 7.47-7.53 (m, 4H, Ph-H).
- ¹³C-NMR: 101 MHz, CDCl₃; $\delta = 24.2$ (Cy-C), 25.8 (Cy-C), 34.8 (Cy-C), 104.2 (C2), 128.4 (Ar-C), 129.0(Ar-C), 130.1 (Ar-C), 133.2 (Ar-C), 164.2 (C4, C5).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[35]

3.4.2.14. 1,2-Diphenylethan-1,2-diamin (3.21) V 3.14 (HU-30, 31)

In einem 2L-4-Hals-Kolben, ausgestattet mit KPG-Rührer, Thermometer und Trockeneiskühler, wurden 72.0 g des Diimins **3.20** (0.25 mol) in 400 mL THF gelöst und auf -78 °C gekühlt. Dann wurde Ammoniakgas mittels einer Glaskanüle so lange in die Lösung eingeleitet, bis sich deren Volumen verdoppelt hatte. Zu dem Reaktionsgemisch wurden in starkem Argongegenstrom 6.94 g Lithium (1.00 mol, 4 Äq.) portionsweise zugegeben, wobei die Temperatur unterhalb von -65 °C gehalten wurde. Nach 30-minütigem Rühren wurden zudem 30 mL frisch getrocknetes Ethanol (1.00 mol, 4 Äq.) langsam hinzugegeben und das Gemisch weitere 20 min gerührt. Die Reaktion wurde durch die Zugabe von 70.0 g Ammoniumchlorid (1.30 mol, 5.2 Äq.) bei -65 °C gestoppt und durch Entfernen des Kühlbades auf 0 °C gebracht. Nach der vorsichtigen Zugabe von 400 mL Wasser wurden die Phasen getrennt, die wässrige 3 x mit jeweils 300 mL Et₂O gewaschen, die vereinigten organischen Phasen dann mit 200 mL NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer auf 200 mL eingeengt.

Nach dem Überführen der Lösung in einen 1L-2H-Kolben wurde sie auf 0 °C gekühlt, unter starkem Rühren mit 300 mL einer wässrigen HCl-Lösung (2N) versetzt und 1 h lang bei RT stark gerührt. Anschließend wurden 500 mL Wasser hinzugegeben, die Phasen getrennt, die organische mit 150 mL Wasser extrahiert und die vereinigten wässrigen Phasen mit 300 mL CH_2Cl_2 gewaschen, bevor sie dann vorsichtig mit 300 mL einer wässrigen NaOH-Lösung (2N) versetzt und 4 x mit jeweils 150 mL CH_2Cl_2 extrahiert wurden. Das derart in die organische Phase überführte Produkt wurde mit 200 mL einer NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und von den Lösungsmitteln befreit. Auf diese Weise konnten 48.7 g des racemischen Diamins **3.21** (0.23 mol, 91%) als ein ocker-farbener Feststoff isoliert werden.

Schmp.: $75 \,^{\circ}C \,(\text{vgl. 81-82 }^{\circ}C \,\text{laut Literatur}^{[35]}).$

3.4.2.15. (1*R*,2*R*)- und (1*S*,2*S*)-1,2-Diphenylethan-1,2-diamin

(*S*,*S*)-(-)-Diamin: V 3.15 (HU-32)

Eine Lösung von 42.5 g des racemischen Diamins **3.21** (0.20 mol) in 230 mL des frisch getrockneten Ethanols wurde auf 70 °C erhitzt, wobei die Temperatur aufgrund des Schmelzpunktes des Diamins (bei 82 °C) recht genau eingehalten wurde. Nach der Zugabe einer 70 °C-heißen, homogenen Lösung von 30.0 g (L)-(+)-Weinsäure (0.20 mol, 1.0 Äq.) in 230 mL des absoluten Ethanols fiel das Tartrat umgehend aus. Das Gemisch wurde unter ständigem Rühren langsam auf RT abgekühlt, um die Bildung eines einzigen großen Klumpens zu vermeiden. Dann wurde filtriert, 2 x mit jeweils 60 mL abs. Ethanol gewaschen und an der HV getrocknet.

Zur Umkristallisation wurde das Tartrat in 230 mL siedendem Wasser wieder aufgelöst, mit der gleichen Menge Ethanol versetzt und ganz langsam im Ölbad auf RT erwärmt (16 h). Die Kristalle wurden filtriert, mit 40 mL Ethanol gewaschen und erneut an der HV getrocknet. Das Umkristallisationsverfahren wurde 2 x mit jeweils 230 mL Ethanol und 230 mL Wasser wiederholt und abschließend lange an der HV getrocknet (Fritte als Zwischenstück zur Vermeidung von Stäuben in der Pumpe notwendig).

Zur Spaltung des Tartrat-Salzes wurde der Feststoff in 300 mL Wasser suspendiert und unter starkem Rühren auf 4 °C gekühlt. 23 mL einer 50%-igen wässrigen NAOH-Lösung wurden tropfenweise hinzugegeben, gefolgt von 150 mL CH₂Cl₂. Das Reaktionsgemisch wurde 30 min lang gerührt, bevor die Phasen getrennt und die wässrige 2 x mit jeweils 50 mL CH₂Cl₂ extrahiert wurde. Die vereinigten organischen Phasen wurden mit 50 mL einer gesättigten NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und vom Lösungsmittel befreit. Der leicht gelbliche Feststoff wurde aus sehr viel Cyclohexan umkristallisiert, wobei die Temperatur bis max. 70 °C ansteigen durfte. Das Umkristallisieren wurde zwei Mal wiederholt. Nach ausgiebigem Trocknen an der HV konnten 10.4 g des (*S*,*S*)-(-)-Diamins (49.1 mmol, 49%) in Form von langen, weißen Nadeln gewonnen werden. **Schmp.:** 81 °C (vgl. Lit.^[35]: 81-82 °C).

¹**H-NMR:** 500 MHz, CDCl₃; δ = 1.53 (s, 4H, NH), 4.08 (s, 2H, 1-H, 2-H), 7.18-7.22 (m, 2H, Ar-H), 7.24-7.28 (m, 8H, Ar-H). (→ Signalsatz identisch für das (*R*,*R*)-(+)-Diamin)

Spez. Drehung: $[\alpha]_{D}^{23} = -106.0^{\circ} (c = 1.1, CH_3OH; vgl. Lit.^{[35]}: -106.5^{\circ}).$

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[35]

Isolierung des (*R*,*R*)-(+)-**Diamins: V 3.16** (HU-33)

Die Mutterlaugen aller Umkristallisationen und alle Filtrate wurden vereinigt und bei 100 mbar, 60 °C und unter Eiskühlung am Rotationsverdampfer eingeengt. Der zurückgebliebene schmierige, rot-braune Feststoff wurde in 250 mL Wasser suspendiert und unter starkem Rühren mit 25 mL einer wässrigen 50%-igen NaOH-Lösung, gefolgt von 200 mL CH₂Cl₂ versetzt. Nach 30-minütigem Rühren wurden die Phasen getrennt, die wässrige 2 x mit jeweils 50 mL CH₂Cl₂ extrahiert, die vereinigten organischen Phasen mit 50 mL einer gesättigten NH₄Cl-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Der so erhaltene ocker-farbene Feststoff wurde, analog zum beschriebenen Verfahren bezüglich des (*S*,*S*)-(-)-Diamins, mit (*D*)-(-)-Weinsäure umgesetzt. Nach mehrfacher Umkristallisation und anschließender Umsetzung mit NaOH analog zum Verfahren bei dem Enantiomer konnten 11.1 g des Rohproduktes als gelbliche Kristalle isoliert werden. Nach viermaliger Umkristallisation konnten schließlich 6.86 g des (*R*,*R*)-(+)-Diamins (32.3 mmol, 32%) als farblose, lange, nadelförmige Kristalle erhalten werden. Zudem wurden die Mutterlaugen der Umkristallisationen eingeengt und für eine spätere Aufreinigung aufbewahrt.

Schmp.: 79-80 °C (vgl. Lit.^[35]: 81-82 °C).

Spez. Drehung: $[\alpha]_{D}^{23} = +106.1^{\circ} (c = 1.1, \text{CH}_{3}\text{OH}; \text{vgl. Lit.}^{[35]}: +106 \pm 1^{\circ}).$

3.4.2.16. 2,2'-(Brommethyl)di(1,4-dimethylbenzol) (3.24)

V 3.17 (HU-KV-279, 280, 283)

5.25 mL des Oxalylchlorids (61.0 mmol) wurden bei 5 °C langsam zu einer Lösung von 6.15 mL *p*-Xylol (**3.22**) (50.0 mmol, 0.8 Äq.) in 250 mL CH_2Cl_2 zugetropft. Anschließend wurde das Reaktionsgemisch portionsweise mit 6.65 g AlCl₃ (50.0 mmol, 0.8 Äq.) versetzt und 1 h bei RT gerührt. Nach einer erneuten Zugabe von 6.15 mL *p*-Xylol (50.0 mmol, 0.8 Äq.) wurde nochmals 13 h bei RT gerührt, bevor die Reaktion durch die Zugabe in 100 mL Wasser bei 5 °C gestoppt wurde. Nach weiteren 10 min wurden die Phasen getrennt, die wässrige mit 50 mL CH_2Cl_2 extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet und vom Lösungsmittel befreit, sodass insgesamt 10.0 g des Di-(2,5-dimethylphenyl)methanons (42.0 mmol, 69%) als farbloses Öl isoliert werden konnten.

- ¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 2.49$ (s, 6H, CH₃), 2.60 (s, 6H, CH₃), 7.35-7.40 (m, 6H, Ar-H).
- ¹³C-NMR: 101 MHz, CDCl₃; $\delta = 20.2$ (C1-*C*H₃), 20.8 (C4-*C*H₃), 130.6 (C3), 131.3 (C6), 131.8 (C5), 134.9 (C2), 134.9 (C1), 139.1 (C4), 201.1 (CO).

Zur Reduktion des Ketons wurden 2.50 g LiAlH₄ (65.8 mmol, 1.6 Åq.) in 100 mL Et₂O gelöst und auf -60 °C gekühlt. Nach dem Zutropfen des Eduktes wurde das Reaktionsgemisch 30 min bei dieser Temperatur gerührt und innerhalb von 2.5 h auf RT erwärmt. Die Reaktion wurde durch Zugabe von 10 mL einer gesättigten NH₄Cl-Lösung gestoppt und über Celite filtriert. Nach dem Einengen am Rotationsverdampfer konnten 9.40 g des Di-(2,5-dimethylphenyl)methanols (39.0 mmol, 93%) als weißer Feststoff erhalten werden.

¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 2.24$ (s, 6H, CH₃), 2.29 (s, 6H, CH₃), 6.09 (s, 1H, CHOH), 7.00 -7.07 (m, 4H, 5-H, 6-H), 7.12 (s, 2H, 3-H).

¹³C-NMR: 101 MHz, CDCl₃; $\delta = 18.8$ (C1-*C*H₃), 21.4 (C4-*C*H₃), 70.3 (COH), 127.2 (C5), 128.3 (C3), 130.5 (C6), 132.7 (C1), 135.6 (C2), 140.7 (C4).

2.00 g des Di-(2,5-dimethylphenyl)methanols (8.32 mmol) wurden in 50 mL Et₂O gelöst und auf -30 °C gekühlt. 8.12 g BBr₃ (32.4 mmol, 3.9 Äq.) wurden hinzugegeben und das Reaktionsgemisch auf RT erwärmt. Dann wurde es in 20 mL Eiswasser geschüttet, die Phasen wurden getrennt und die wässrige mit 20 mL Et₂O extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt; dabei konnten 3.46 g des sekundären Bromids **3.24** (10.4 mmol, 95%) als weißer Feststoff isoliert werden.

¹**H-NMR:** 400 MHz, $CDCl_3$; $\delta = 2.27$ (s, 6H, CH_3), 2.31 (s, 6H, CH_3), 6.53 (s, 1H, CHBr), 6.99 -7.04 (m, 4H, 5-H, 6-H), 7.31 (s, 3H, 3-H).

¹³C-NMR: 101 MHz, CDCl₃; $\delta = 18.9$ (C1-*C*H₃), 21.3 (C4-*C*H₃), 51.5 (CHBr), 129.0 (C5), 130.3 (C3), 130.5 (C6), 133.9 (C1), 136.0 (C2), 138.4 (C4).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[18,37]

3.4.2.17. (15,2S)-N,N-Di(di(2,5-dimethylphenyl)methyl)-1,2-diphenylethan-1,2-diamin

V 3.18 (HU 49)

Zunächst wurde DMPU über sehr gut ausgeheiztem Molsieb für 2 h getrocknet. Dann wurden 210 mg des Diamins (-)-**3.21** (0.99 mmol) und 500 mg Na₂CO₃ (4.72 mmol, 4.0 Äq.) in 2.5 mL des DMPU für 15 min rühren gelassen. Etwa 600 mg des Bromids **3.24** (1.97 mmol, 2.0 Äq.) wurden sorgfältig unter Argon abgewogen, in weiteren 1 mL DMPU gelöst und zum Reaktionsgemisch hinzugetropft, woraufhin das Gemisch 3 h auf 120 °C erwärmt wurde. Nach dem Abkühlen wurden jeweils 10 mL H₂O und Et₂O hinzugegeben, die Phasen getrennt und die wässrige Phase 3 x mit je 10 mL extrahiert. Die vereinigten organischen Phasen wurden 2 x mit je 4 mL NaCl-Lösung und H₂O gewaschen, über MgSO₄ getrocknet und nach dem Entfernen des Lösungsmittels säulenchromatographisch schnell an Kieselgel gereinigt (CH/EA, $30:1 \rightarrow 15:1 \rightarrow 0:1 \rightarrow CH_2Cl_2 \rightarrow CH_2Cl_2/MeOH$ 5:1). Es konnten 200 mg des Diamins **3.25** (Lösungsmittel rausgerechnet; 0.19 mmol, 20%) als klares Öl isoliert werden.

DC:	Alkohol 3.23	$R_{\rm f} = 0.06$ (CH/EA 30:1, gelb mit Anisaldehyd);
	Diamin 3.25	$R_{\rm f}$ = 0.63 (CH/EA 30:1, gelb mit Anisaldehyd).

¹**H-NMR:** (300 MHz, CDCl₃) $\delta = 1.96$ (s, 6H, CH₃), 2.01 (s, 6H, CH₃), 2.35 (s, 12 H, 2x CH₃), 3.86 (s, 2H, 1-H), 4.95 (s, 2H, 3-H) 6.99-7.11 (m, 15H, Ar-H), 7.18-7.26 (m, 7H, Ar-H), 7.75 (s, 2H, 2-H).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[18]

3.4.2.18. (4*S*,5*S*)-1,3-Di(di(2,5-dimethylphenyl)methyl)-4,5-diphenyl-4,5-dihydro-1*H*imidazol-3-ium-tetrafluoroborat (L4)

V 3.19 (HU-61)

877 mg des Diamins **3.25** (1.34 mmol), 168 mg NH₄BF₄ (1.60 mmol, 1.2 Äq.) und 3.3 mL HC(OEt)₃ (20.0 mmol, 15 Äq.) wurden zusammengegeben und für 1.5 h auf 120 °C erhitzt. Dabei bildete sich ein weißer Niederschlag in einer gelben Mutterlauge. Das Gemisch wurde am Rotationsverdampfer und später am Hochvakuum (3 h) von dem übrigen Orthoester befreit. Die säulenchromatographische Aufreinigung an Kieselgel (CH/CH₂Cl₂ 1:1 \rightarrow CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH 25:1) lieferte 506 mg des NHC-Vorläufers L4 (umgerechnet 0.64 mmol, 70%) als leuchtend gelben Feststoff ohne erkennbare Verunreinigungen, außer etwas CH₂Cl₂ im NMR. Eine Umkristallisation aus Ethanol mit sehr langsamem Ausfällen und Abdekantieren des Filtrats bei 0 °C, gefolgt von mehrfachem Waschen mit kaltem Ethanol und erneutem Abdekantieren lieferte schließlich saubere weiße Kristalle.

DC: $R_f = 0.22 (CH_2Cl_2/MeOH 20:1).$

Schmp.: 254 °C (vgl. Lit.^[18]: 255-257 °C).

¹**H-NMR:** (400 MHz, CDCl₃) $\delta = 1.79$ (s, 6H, CH₃), 2.14 (s, 6H, CH₃), 2.15 (s, 6H, CH₃), 2.57 (s, 6H, CH₃), 5.24 (s, 2H, 1-H), 5.73 (s, 2H, 3-H), 6.67 (s, 2H, Ar-H), 6.82 (s, 1H, 4-H), 6.99-7.05 (m, 4H, Ar-H), 7.10-7.17 (m, 6H, Ar-H), 7.22-7.25 (m, 4H, Ar-H), 7.47-7.51 (m, 6H, Ar-H).

¹³C-NMR: 101 MHz, CDCl₃; $\delta = 18.4$ (CH₃), 21.5 (CH₃), 58.2 (C1/C3), 73.1 (C1/C3), 121.1 (Ar-C), 128.3 (Ar-C), 129.1 (Ar-C), 130.0 (Ar-C), 130.1 (Ar-C), 130.5 (Ar-C), 131.1 (Ar-C), 131.6 (Ar-C), 131.8 (Ar-C), 132.0 (Ar-C), 133.6 (Ar-C), 136.6 (Ar-C), 137.0 (Ar-C), 154.8 (C4).

Spez. Drehung: $[\alpha]_{D}^{25} = -442^{\circ} (c = 1.04, \text{CHCl}_{3}; \text{vgl. Lit.}^{[18]}: -442^{\circ}).$

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[18]

Synthese des NHC-Vorläufers L9

3.4.2.19. (S)-5-(tert-Butyl)-2-phenyl-5,6-dihydrooxazolo[2,3-c][1,2,4]triazol-2-iumtetrafluoroborat (L9)

Eine Spatelspitze Molsieb (4 Å) wurde im Schlenkrohr aktiviert und dazu verwendet, eine Lösung von 206 mg des sehr nass gelieferten, kommerziell erhältlichen Oxazolidin-2-ons **3.26** (1.44 mmol) in 2.2 mL abs. CH_2Cl_2 1 h lang gut zu trocknen. Parallel wurden 296 mg des Meerweinsalzes (2.00 mmol, 1.4 Äq.) in 5 mL CH_2Cl_2 gelöst. Nach dem Abkühlen beider Ansätze auf 0 °C wurde das Oxazolidinon zum Meerweinsalz hinzugetropft, wobei das verbliebene Molsieb mehrfach mit insgesamt 1.8 mL CH_2Cl_2 nachgespült wurde. Das Reaktionsgemisch wurde 25 h bei RT gerührt, erneut auf 0 °C gekühlt und 3 x mit jeweils 4 mL einer eisgekühlten, gesättigten NaHCO₃-Lösung gewaschen, wobei zum Spülen der Glasgefäße ebenfalls eiskaltes CH_2Cl_2 verwendet wurde. Die wässrigen Phasen wurden 2 x mit jeweils 5 mL CH_2Cl_2 extrahiert und die vereinigten organischen Phasen über MgSO₄ getrocknet und am Rotationsverdampfer von dem Lösungsmittel befreit. Das gelbe, dünnflüssige Öl wurde direkt weiter umgesetzt. (DC: $R_f = 0.16$ (CH/EA 1:1, grau; Edukt: $R_f = 0.51$ rosa-orange, nicht UV; Produkt zersetzte sich bei der wässrigen Aufarbeitung teilweise wieder zum Edukt).

Dazu wurden die knapp 229 mg des Iminoethers (max. 1.44 mmol) in 1 mL THF gelöst und 2 h über Molsieb gerührt. 0.20 mL des Triethylamins (1.44 mmol, 1.0 Äq.) und 0.14 mL des Phenylhydrazins (1.44 mmol, 1.0 Äq.) wurden ebenfalls in jeweils 1 mL THF gelöst und 16 h über Molsieb getrocknet. Das Triethylamin und das Phenylhydrazin wurden zum Iminoether zugegeben. Nach dem Nachspülen mit 0.5 mL THF wurde das hellbraune Reaktionsgemisch 7 d lang bei 80 °C gerührt. Anschließend wurde das Rohprodukt im Vakuum aufkonzentriert und 8 x mit jeweils 7 mL eines Petrolether/Et₂O-Gemisches (4:1) gewaschen. Die Abtrennung von dem pulverisierten verbliebenen Molsieb erwies sich jedoch trotz der Versuche, das Produkt mittels CH₂Cl₂ aus dem Molsieb herauszulösen und es so von jenem abzutrennen, als schwierig. Das Rohprodukt wurde am Vakuum gut getrocknet und direkt im nächsten Schritt eingesetzt.

Dazu wurde das gesamte Phenylhydrazon in 14 mL CH₂Cl₂ gelöst, mit 0.20 mL eines HBF₄·Et₂O-Komplexes (1.44 mmol, 1.0 Äq.) versetzt, 30 min bei RT gerührt und aufgrund stark hygroskopischer Eigenschaften unter Argon am Rotationsverdampfer eingeengt. Bei dem erneuten Lösen des Salzes in einem Gemisch aus 2.4 mL abs. Methanols (14.4 mmol, 10 Äq.) und 4.80 mL des Orthoesters HC(OEt)₃ (28.8 mmol, 20 Äq.) färbte sich die Lösung dunkelrosa. Das Reaktionsgemisch wurde in einem *pyrex*-Schlenkrohr 18 h lang bei 80 °C gerührt, abgekühlt, eingeengt und 2 h im Vakuum getrocknet. Es konnten 258 mg des dem NMR zufolge verunreinigten Rohproduktes als brauner Feststoff isoliert werden, wobei sich die Substanz kaum in CHCl₃, CH₂Cl₂, D₂O oder Methanol lösen ließ, was vermuten ließ, dass es sich teilweise um Molsieb handelte. Daraufhin wurde der Feststoff in Methanol 30 min bis zum Sieden erhitzt und heiß filtriert. Das eingeengte Filtrat wurde schnell säulenchromatographisch (SiO₂, CH₂Cl₂/MeOH 40:1 → 0:1) aufgereinigt und lieferte 59.0 mg des Triazoliumsalzes **L9** (0.18 mmol, 12%) als beige-farbenen, in CH₂Cl₂ löslichen Feststoff.

DC:
$$R_f = 0.34$$
 (CH₂Cl₂/MeOH 10:1, nur UV).

Schmp.: 139 °C (vgl. Lit.^[69]: 141 °C).

¹**H-NMR:** (500 MHz, CDCl₃) $\delta = 1.03$ (s, 9H, C(CH₃)₃), 4.00 (dd, J = 11.92, 3.19 Hz, 1H, CH₂), 4.06-4.16 (m, 1H, CHC(CH₃)₃), 4.27 (dd, J = 7.81, 3.44 Hz, 1H, CH₂), 7.29-7.34 (m, 1H, Ph-H), 7.38 (dd, J = 7.64, 7.64 Hz, 2H, Ph-H), 7.67 (d, J = 7.72 Hz, 2H, Ph-H), 9.00 (s, 1H, 1-H).

Spez. Drehung: $[\alpha]_{D}^{25} = +11.0^{\circ} (c = 0.99, \text{CH}_{3}\text{OH}; \text{vgl. Lit.}^{[69]}: +11.1^{\circ}).$

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[69]

S_N2'-Substitution

AAV 3.1: Allgemeine Arbeitsvorschrift zur $S_N 2$ '-Reduktion von propargylischen Elektrophilen mit racemischen Kupfer-Carben-Komplexen (zur Kalibration)

Sowohl Toluol als auch PMHS wurden aufgrund der starken Sauerstoffempfindlichkeit von Kupferhydriden durch mehrfaches sorgfältiges Einfrieren unter Argon und Auftauen im Hochvakuum entgast. 3 mol% CuCl, 9 mol% NaOt-Bu und 3 mol% des Imidazoliumsalzes wurden in absolutem, entgastem Toluol suspendiert und für 1 h bei 40 °C gerührt oder alternativ in einem 100 °C warmem Wasserbad binnen 40 min abkühlen gelassen, gefolgt von der Zugabe von 2 Äq. PMHS bei RT und 5-minütigem Rühren. Anschließend wurde das Alkin hinzugegeben und die Reaktion bis zur Vollendung (Reaktionskontrolle mittels DC) gerührt. Das Reaktionsgemisch wurde daraufhin langsam und vorsichtig in eine eiskalte Lösung von 2 Äq. TBAF $^{+}$ 3 H₂O in THF abs. (20 mL/mmol) gegossen und 1 h lang gerührt. Nach dem Beenden der Reaktion mittels Zugabe von ges. NH₄Cl-Lösung (5 mL/mmol) und der Filtration über eine Schicht Kieselgel/Celite (je ca. 20 g) und gründlichem Nachspülen mit Et₂O (250 mL/mmol) wurde das Lösungsmittel am

⁶⁹ U. Kallfass, Dissertation, RWTH Aachen, **2002**.

Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch an Kieselgel gereinigt (CH/EA 10:1 \rightarrow 4:1).

AAV 3.2: Allgemeine Arbeitsvorschrift zur stereoselektiven $S_N 2$ '-Reduktion von propargylischen Elektrophilen mit chiralen Kupfer-Carben-Komplexen

3 mol% des Kupfersalzes, 9 mol% NaOt-Bu und 3 mol% des chiralen NHC-Vorläufers wurden in einem Schlenkrohr unter Argon in trockenem, mehrfach entgastem Toluol (1.8 mL) suspendiert und 5 min lang mit einem Heißluftfön auf 100 °C erhitzt. Nach dem Abkühlen auf RT wurde PMHS (0.1 mL, 1.22 mmol, 2.0 Äq.) hinzugefügt und das Reaktionsgemisch 5 min lang bei RT gerührt, bevor es mittels eines Kryostates auf eine bestimmte Temperatur zwischen -60 °C und 0 °C abgekühlt wurde. Nach der Zugabe von trans-Decahydro-naphthalin (0.25 Äq.) als internem Standard und dem propargylischen Elektrophil (0.61 mmol) in 1.2 mL Toluol wurde das Reaktionsgemisch bei dieser Temperatur gerührt und mittels DC-Kontrolle beobachtet. Währenddessen wurden in immer längeren Abständen Proben aus dem Reaktionsgemisch entnommen, um den Umsatz zu verfolgen. Zu diesem Zweck wurden jeweils ca. 10 µL der Reaktionslösung nach intensivem Schütteln entnommen und zu 0.5 mL einer auf 0 °C bzw. -30 °C gekühlten Lösung von *n*-Bu₄NF \cdot 3 H₂O (2 Äq.) in absolutem THF hinzugegeben. Das Gemisch wurde binnen einer Stunde auf RT erwärmt und mit 3 Tropfen einer wässrigen gesättigten NH₄Cl-Lösung versetzt. Nach der Zugabe einer Spatelspitze Na₂SO₄ und der Filtration über eine kurze Pipettensäule (Watte / Sand / 1.5 cm SiO₂ / 0.5 cm Celite; Laufmittelgemisch EtOAc/EtOH 4:1) wurde der Reaktionsumsatz durch Injektion von 3 µL der aufgefangenen Lösung mittels GC-Analyse bestimmt. Hierzu wurde vorab durch Messen unterschiedlicher Epoxid/Allenol/Interner Standard-Gemische (im Verhältnis 3:3:1, 1:3:1, 3:1:1, 2:2:1 und 1:1:1) eine Calibrationskurve erstellt und ein Korrekturfaktor (RF) aus der Steigung bestimmt. Der jeweilige Umsatz wurde mit Hilfe der folgenden Gleichung ermittelt:

$$Umsatz \ [\%] = 100 - \frac{100 \cdot m(Std.) \cdot Fläche(Std.)}{Fläche \ (Edukt) \cdot M(Edukt) \cdot n(Edukt)} \cdot RF$$

Die folgenden Ofenprogramme wurden für die Umsetzung des Epoxids **3.9** verwendet: achiral: 60 °C, 0 min, 3 °C/min \rightarrow 180 °C (40 min insgesamt; Peaks: Edukt **3.9** bei 37.63 min, Produkt-Diastereomere **3.27**: 37.33 und 37.24 min); chirale GC: 60 °C, 0 min, 0.5 °C/min \rightarrow 170 °C, 0 min (220 min insgesamt, Peaks: Edukt-Enantiomere **3.9** bei 206.63 und 207.42 min, Produkt-Enantiomere des Hauptdiastereomers **3.27**: 208.50 und 209.20 min).

Für den freien Epoxyalkohol **3.29** (HU-26-B, HU-112) wurden die folgenden Ofenprogramme verwendet: achiral: 40 °C, 0 min, 10 °C/min \rightarrow 280 °C (25 min insgesamt; Peaks: Edukt bei 8.85 min, Produkt-Diastereomer: 15.41 und 15.44 min, interner Standard Decalin: 6.78 min); chirale GC: 40 °C, 0 min, 1 °C/min \rightarrow 220 °C, 10 min (180 min insgesamt, Peaks: Edukt-Enantiomere bei 77.22 und 77.56 min, Produkt-Enantiomere des Hauptdiastereomers: 129.77 und 130.88 min).

Für das Carbonat 3.14 wurden die folgenden Ofenprogramme optimiert: achiral: 60 °C, 0 min, 3 °C/min \rightarrow 220 °C (Peaks: Edukt 3.14 bei 47.78 min, Produkt-Diastereomere: 37.38 min, trans-Decalin als interner Standard:7.76 min); chirale GC: 60 °C, 0 min, $3 \text{°C/min} \rightarrow 220 \text{°C}, 20 \text{ min}$ (73 min insgesamt, Peaks: Edukt 3.14 bei 63.32 min, Produkt-Enantiomere des Hauptdiastereomers: 47.65 und 47.89 min, trans-Decalin als interner Standard: 13.17 min); chirale GC: 55 °C, 0 min, 0.5 °C/min \rightarrow 220 °C, 0 min (330 min) insgesamt, Peaks: Edukt 3.14 bei 278.14 min, Produkt-Enantiomere des Hauptdiastereomers: 207.54 und 208.23 min, trans-Decalin als interner Standard: 26.53 min).

3.4.2.20. Darstellung des racemischen Allens 3.27 mit IBiox12 ⁻ HOTf zur Kalibration

V 3.21 (HU 7)

Gemäß AAV 3.1 wurden 3.0 mg CuCl (0.03 mmol, 5 mol%), 6.0 mg NaOt-Bu (0.06 mmol, 10 mol%) und 12.0 mg Biox12⁻ HOTf (0.03 mmol, 3 mol%) in 2 mL Toluol suspendiert und für 5 min auf 100 °C erhitzt. Da die charakteristische Gelbfärbung der vermeintlich aktiven Katalysatorspezies ausblieb, wurden nochmals 3.0 mg CuCl und nach Ausbleiben der Färbung weitere 10.0 mg NaOt-Bu einer anderen Charge hinzugegeben. Die hellgelbe Reaktionslösung wurde binnen 45 min im anfangs 100 °C heißen Wasserbad abkühlen gelassen. Nach dem Zutropfen von 0.1 mL PMHS bei RT wechselte die Lösungsfarbe zu gelb-braun. Nach weiteren 7 min wurde das Epoxid 3.9 langsam zugegeben. Nach 16 h des 3.1 Rührens und DC-Kontrolle wurde gemäß AAV aufgearbeitet. Die säulenchromatographische Aufreinigung lieferte 148 mg des noch Cyclohexan enthaltenden Allens **3.27** (umgerechnet 0.55 mmol, 91%) in Form eines klaren Öles mit einem dr > 95:5laut NMR-Untersuchungen.

DC: $R_f = 0.16 (CH/EA \ 10.1).$

- ¹**H-NMR:** (400 MHz, CDCl₃) $\delta = 7.39-7.29$ (m, 5H, Ar-H), 5.34-5.28 (m, 2H, H-1), 4.60 (d, J = 2 Hz, 2H, -OCH₂Ph), 4.39-4.33 (m, 1H, H-2), 3.57 (dd, J = 9.5, 3.5 Hz, 1H, H-5), 3.57 (dd, J = 9.5, 7.5 Hz, 1H, H-3), 2.33 (d, J = 4 Hz, 1H, -OH), 1.05 (s, 9H, -C(CH₃)₃).
- ¹³C-NMR: (101 MHz, CDCl₃) $\delta = 200.2$ (x, C-4), 137.9 (x, C_{Ar}-1), 128.4 (+, C_{Ar}-3, C_{Ar}-5), 127.8 (+, C_{Ar}-2, C_{Ar}-4, C_{Ar}-6), 106.3 (+, C-5), 93.5 (+, C-3), 74.1 (-, OCH₂Ph), 73.4 (-, C-1), 68.6 (+, C-2), 31.8 (x, C-6), 30.1 (+,-C(CH₃)₃).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[32]
4

Studien zur Synthese eines PGL-I-Analogons mittels Münzmetallkatalyse

4.1. Motivation und Zielstellung

Glycolipide kommen in allen Geweben auf der Außenseite der Plasmamembran vor und dienen als Rezeptoren für Zell-Zell-Erkennung und Zelladhäsion. Abbildung 4.1 zeigt exemplarisch ein solches Glycolipid auf einer Zellmembran mit seinem lipophilen Fettsäure-Teil, durch den hydrophoben Effekt und schwache *Van der Waals*-Kräfte innerhalb der Zellmembran verankert, während sich der hydrophile Oligosaccharid-Rest außerhalb der Membran befindet.^[1]

Abbildung 4.1. Glycolipide auf eukaryotischer Zelloberfläche.

Das Phenolische Glycolipid I (PGL-I) wurde ausschließlich auf der Zelloberfläche des *Mycobacterium leprae* entdeckt, welches die Infektionskrankheit Lepra, eine chronische Erkrankung der Haut, der peripheren Nerven und selten auch anderer Organe auslöst. Lepra wurde im Jahre 1873 von dem norwegischen Arzt *G. Armauer Hansen* bakteriologisch nachgewiesen. Ihre Übertragung erfolgt höchstwahrscheinlich *via* Tröpfcheninfektion und die Inkubationszeit liegt zwischen wenigen Monaten und 30 Jahren. Aufgrund der fortschreitenden und permanenten Schädigung der Haut, Nerven, Gliedmaßen und Augen ist Lepra eine verstümmelnde Krankheit; sie tritt heutzutage hauptsächlich in den Dritte-Welt-Ländern wie Indien und Brasilien auf.^[2, 3, 4]

¹ D. Voet, J. G. Voet, C. W. Pratt, *Lehrbuch der Biochemie*, Ed. A. G. Beck–Sickinger, U. Hahn, Wiley-VCH, Weinheim **2002**.

² G. J. Blaauw, B. J. Appelmelk, *Protein-Carbohydrate Interactions in Infectious Diseases*, Ed. C. A. Bewley, RSC, Cambridge **2006**, 6–20.

Ob eine Infektion zur Erkrankung führt und wie stark diese ausgeprägt wird, hängt von der Immunkompentenz des Infizierten ab, die sowohl durch genetische als auch durch Umweltfaktoren wie Hygiene und Ernährung geprägt ist. Es wird angenommen, dass zwei Millionen Menschen weltweit an Behinderungen aufgrund von Lepra leiden. Allein im Jahr 2010 sind laut Weltgesundheitsorganisation (WHO) 228.474 Menschen neu erkrankt.^[5] Problematisch ist dabei vor allem, dass Lepra bislang nicht früh genug diagnostiziert werden kann, um der Schädigung von Nerven zuvorzukommen.

Zur Vermeidung starker Resistenzentwicklung erfolgt die Therapie von Lepra häufig mittels einer Dreierkombination von Antibiotika. Diese besteht aus dem antibiotischen Sulfonamid *Dapson*, welches die Folsäuresynthese des Mykobakteriums unterdrückt, kombiniert mit dem bakteriziden *Rifampicin*, das die bakterielle DNA-abhängige RNA-Polymerase hemmt, und dem *Clofazimin*, welches zu der Gruppe der kationisch amphiphilen Medikamente gehört und als funktioneller Hemmer der sauren Sphingomyelinase fungiert.^[6, 7, 8]

Das *M. leprae* gehört zu den obligaten Parasiten und kann außerhalb des menschlichen Körpers bis zu 10 Tage überleben. Seine Anzüchtung ist auf keinem bekannten Nährboden, wohl aber im neunbändigen Gürteltier und in der Pfote der Maus möglich. Dabei sind die betroffenen Körperregionen durch eine vergleichsweise niedrige Temperatur gekennzeichnet, welche das Wachstum von *M. leprae* begünstigt. Die Keimteilung erfolgt ohne Sporenbildung und nur etwa alle 12 Tage. Im Jahre 2000 konnte das Genom von *M. leprae* entschlüsselt werden, was Hoffnung auf neue Informationen über die Biologie des nicht-kultivierbaren Bakteriums eröffnet.^[9]

³ A. Rambukkana, *Curr. Opin. Microbiol.* **2001**, *4*, 21–27.

⁴ J. S. Spencer, P. J. Brennan, *Lepr. Rev.* **2011**, *82*, 344–357.

⁵ Jahresbericht **2011** der Deutschen Lepra- und Tuberkulosehilfe e.V. (DAHW).

⁶ http://www.dahw.de/lepra-tuberkulose-buruli/lepra, Stand: 12.11.2012.

⁷ J. Kornhuber, M. Muehlbacher, S. Trapp, S. Pechmann, A. Friedl, M. Reichel, C. Mühle, L. Terfloth, T.

Groemer, G. Spitzer, K. Liedl, E. Gulbins, P. Tripal, *PLoS ONE*. **2011**, *6*, e23852.

⁸ The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, Ed. M. J. O'Neil, 14. Auflage, Merck & Co., Inc., Whitehouse Station, NJ, 2009.

⁹ R. Brosch, S. V. Gordon, K. Eiglmeier, T. Garnier, S. T. Cole, *Res. Microbiol.* 2000, 151, 135–142.

Bislang konnte gezeigt werden, dass *M. leprae* hauptsächlich die Schwannschen Zellen des menschlichen peripheren Nervensystems angreift. Ein solches Nervensystem mit seinen charakteristischen Bestandteilen ist in Abbildung 4.2^[10] und Abbildung 4.3^[3] verdeutlicht.

Abbildung 4.2. Aufbau von Nervenzellen.

Die Membran der Schwannschen Zelle ist komplett von einer Basalschicht umhüllt, deren Komponenten mit den Zellmembran-Rezeptoren wechselwirken, so die Signaltransduktionswege öffnen und die Aktivität der Zellen regeln.^[11] Aus diesem Grunde scheint die Basalschicht bei der Wechselwirkung mit *M. leprae* nicht als eine schützende Barriere zu fungieren sondern vielmehr die bakterielle Invasion zu fördern.^[3]

Das verschafft dem Bakterium einen signifikanten Überlebensvorteil. Fehlen Das eines antimikrobiellen zellulären Mechanismus in der Zelle ermöglicht Schwannschen zudem die permanente Replikation des Bakteriums. Des Weiteren wird das Eindringen von Medikamenten durch die Blut-Nerv-Schranke limitiert, sodass die bakterielle Vermehrung quasi ungehemmt stattfinden kann.^[3, 4]

¹⁰ J. Koolmann, K.-H. Röhm, *Taschenatlas der Biochemie*, 3. Auflage, Thieme, Stuttgart 2003.

¹¹ G. M. Edwards, F. H. Wilford, X. W. Liu, L. Henninghausen, J. Djiane, C. H. Streuli, *J. Biol. Chem.* **1998**, 273, 9495–9500.

Als Folge der Zellinvasion durch das *M. leprae* wird der Myelinmantel in der Schwannschen Zelle beschädigt; es tritt ein fortschreitender Verlust der Empfindlichkeit von dem betroffenen Nerv abwärts ein. Zudem geben biologische Untersuchungen Grund zu der Annahme, dass das Glycoprotein an T-Lymphozyten bindet und damit die Lymphozyten-Proliferation hemmt.^[2, 12]

PGL-I spielt bei der ersten, entscheidenden Wechselwirkung mit der menschlichen Schwannschen Zelle als spezifisches Antigen auf der Zellmembran des *M. leprae* eine wichtige Rolle in der Pathogenese. Es bindet, wie in Abbildung 4.4 gezeigt ist, nach dem Schlüssel-Schloss-Prinzip an das spezifische Glycoprotein *Laminin-* α 2 auf der Basalschicht

(BL), welches eine Brücke zwischen den Bazillen und dem Laminin-Rezeptor auf der Oberfläche der Schwannschen Zelle darstellt. Das Laminin- $\alpha 2$ besteht aus drei Polypeptidketten, $\alpha 2$, $\beta 1$ und $\gamma 1$, wobei die hauptverantwortlich für $\alpha 2$ -Kette die Wechselwirkung mit dem Bakterium zu sein scheint. Als eine stark divergente Region der α 2-Kette spielen dabei die LG 1-5 *Laminin-Typ-G*-Module am Carboxylende der Polypeptidkette eine entscheidende Rolle.^[4, 13]

Abbildung 4.4. Interaktion des *M. Leprae* mit dem Glycoprotein *Laminin-\alpha2* auf der Schwannschen Zelle.

Der Laminin-Rezeptor auf der Schwannschen Zellmembran, das *Dystroglycan*, ist eine hoch-glycosylierte Komponente des *Dystrophin*-Glycoprotein-Komplexes. Dabei bindet das Transmembranprotein β -Dystroglycan wahrscheinlich an Dystrophin-enthaltende Zytoskelettproteine in dem Nerv, während das periphere Membranprotein α -Dystroglycan

¹² a) R. B. Oliveira, M. T. Ochoa, P. A. Sieling, T. H. Rea, A. Rambukkana, E. N. Sarno, R. L. Modlin, *Infection and Immunity* **2003**, *71*, 1427–1433; b) N. Tapinos, M. Ohnishi, A. Rambukkana, *Nat. Med.* **2006**, *12*, 961–966.

¹³ a) A. Rambukkana, J. L. Salzer, P. D. Yurchenco, E. I. Tuomanen, *Cell* 1997, 88, 811–821;
b) A. Rambukkana, H. Yamada, G. Zanazzi, T. Mathus, J. L. Salzer, P. D. Yurchenco, K. P. Campbell, V. A. Fischetti, *Science* 1998, 282, 2076–2079.

mit den $\alpha 2LG$ -Modulen wechselwirkt. Über die Kohlenhydrateinheiten wird das α -Dystroglycan vermutlich in Abhängigkeit von zweiwertigen Kationen an das *M. leprae* gebunden.^[3, 13]

Bei der den pathogenen Prozess einleitenden Interaktion des *M. leprae* mit den $\alpha 2LG$ -Modulen spielt die spezifische interaktive Trisaccharid-Einheit des PGL-I auf der bakteriellen Zellwand eine zentrale Rolle, die bisher jedoch noch nicht geklärt werden konnte. Fest steht, dass das PGL-I andere Bindungsstellen ansteuert als die zelleigenen Liganden und Rezeptoren. Dabei bietet die G-Domäne des Laminins dem PGL-I drei Bindungsstellen auf den individuellen Modulen $\alpha 2LG1$, $\alpha 2LG4$ und $\alpha 2LG5$ mit steigender Affinität und schleust es darüber ins Zellinnere.^[3]

Die allgemeine Struktur von PGL-I beinhaltet die erwähnte charakteristische Trisaccharideinheit, bestehend aus zwei Rhamnose- und einem Glucopyranosederivat, über einen phenolischen Linker mit einem stark lipophilen Phthiocerol-Lipidschwanz verbunden. Dieser Lipidschwanz ist ein langkettiges β -Diol, zweifach verestert mit je einer Polymethylverzweigten Fettsäure (Abbildung 4.5).^[4]

Abbildung 4.5. Die Struktur des PGL-I.

Der molekulare Wirkungsmechanismus und vor allem die Beschaffenheit der Rezeptoren sind noch nicht vollständig erschlossen. PGL-I-Analoga würden durch biologische Untersuchungen zu Struktur-Aktivitäts-Beziehungen weiteres Verständnis darüber ermöglichen und damit einen Weg eröffnen, die Krankheit frühzeitiger zu diagnostizieren. Damit ließen sich die irreparable Schädigung von Nerven verhindern und effiziente Methoden zur kompletten Auslöschung von Lepra entwickeln.^[3] Aus diesem Grunde beschäftigen sich *A. Hölemann et al.* mit der Synthese von fluorierten PGL-I-Analoga, welche in biologischen Untersuchungen dazu verhelfen sollen, die an der Bindung zum Glycoprotein beteiligten Hydroxyfunktionen zu identifizieren.^[14] Ein weiterer interessanter Ansatz wäre die Kombination der fluorierten PGL-I-Analoga mit Enzym- und Säurestabilen *C*-Glycosiden, die sich bereits bei anderen biologisch relevanten Problemstellungen bewähren konnten.

C-Glycoside, Pharmakophore der *O*-Glycoside mit einem C-Atom anstelle des glycosidischen Sauerstoffes, kommen gehäuft in biologisch wichtigen Naturstoffen und pharmazeutisch relevanten Substanzklassen vor.^[15] Beispielsweise besitzen die arylischen *C*-Glycopyranoside *Galtamycinon*, *Medermycin* und *Kidamycin* (Abbildung 4.6) antibiotische und teils Antitumor-Eigenschaften.^[16] Auch benzylische *C*-Glycoside von pharmakologischem Interesse mit Krebs-vorbeugendem oder antibakteriellem Potential sind bekannt. Das Amid $5ZFH49^{[17]}$ zeigt beispielsweise eine Aktivität gegen bakterielle Infektionen in den Harnwegen. Die C-glycosidische Säure II konnte als Selectin-Inhibitor identifiziert werden.^[18]

Abbildung 4.6. C-Glycoside mit wichtigen biologischen Eigenschaften.

¹⁴ Matthias Tokarski, Daniel Kmoch und Jennifer Hesse, unveröffentlichte Ergebnisse.

¹⁵ a) F. Nicotra, *Top. Curr. Chem.* **1997**, *187*, 55–83; b) J. M. Beau, T. Gallagher, *Top. Curr. Chem.* **1997**, *187*, 1–54.

¹⁶ T. Bililign, B. R. Griffith, J. A. Thorson, *Nat. Prod. Rep.* **2005**, *22*, 742–760.

¹⁷ J. W. Janetka, Z. Han, S. Hultgren, J. Pinkner, C. Cusumano, *PCT Int. Appl.* **2012**, WO 2012109263 A1 20120816.

¹⁸ S. Sato, T. Shinozuka, K. Ito, *Jpn. Kokai Tokkyo Koho* **1999**, JP 11302272 A 19991102.

C-Glycoside sind zudem als stabile Mimetika der O- und N-Glycoside von großer der Ähnlichkeit ihrer physikalischen Eigenschaften Bedeutung. was auf wie Van-der-Waals-Radien sowie Rotationsbarrieren basiert. Bindungslängen, Größere Unterschiede stellen hingegen das geringere Dipolmoment und die entfallenden Wasserstoff-brückenbindungen über das exo-anomere O-Atom dar, das sich in einer wesentlich höheren Konfigurationsstabilität bei fast identischer Vorzugskonformation widerspiegelt.^[19, 20] C-Glycoside weisen deshalb im Regelfall identische oder nur leicht veränderte biochemische Eigenschaften im Vergleich zu den natürlichen O-Glycosiden auf und können dazu verwendet werden, sowohl das Konformations- als auch das biologische Profil von O-Glycokonjugaten zu imitieren. Biologische Prozesse, die zum Abbau des Zuckers führen, sind davon ausgenommen, da die C-Glycoside den entscheidenden Vorteil einer Resistenz gegenüber hydrolytischer und enzymatischer Spaltung mit sich bringen.^[21] Auch die Prüfung ihres Nutzens als Inhibitoren von Saccharid-verarbeitenden Enzymen ist interessant, da aus Erfahrung kleinere synthetische Oligosaccharide und Mimetika bei der Inhibition von Glycosidasen oftmals die gleiche oder sogar verbesserte Wirkung im Vergleich zu einem komplexen Biomolekül zeigen.^[22, 23]

Zielstellung

Aus diesen Gründen sind *C*-Glycosid-Derivate der von *A. Hölemann et al.* synthetisierten fluorierten PGL-I-Analoga für die angestrebten mechanistischen Untersuchungen von besonders großem Interesse. Der im Folgenden beschriebene Teil der Arbeit widmet sich daher der Synthese eines entsprechenden *C*-Glycopyranosid-Analogons, repräsentativ für einen komplett neuen, hoch stereoselektiven Zugang zu der Substanzklasse der *C*-Nucleoside, *C*-Glycopyranoside und –furanoside mit stark variablen Substitutionsmustern.

¹⁹ T. C. Wu, P. G. Goekjian, Y. Kishi, J. Org. Chem. 1987, 52, 4819–4823.

²⁰ W. Yuan, P. G. Goekjian, D. M. Ryckman, W. H. Miller, S. A. Babirad, Y. Kishi, *J. Org. Chem.* **1992**, *57*, 482–489.

²¹ D.J. Candy, *Biological Functions of Carbohydrates*, Blackie & Son Ltd., Glasgow - London, **1980**.

²² H.-H. Li, X.-S. Ye, Org. Biomol. Chem. **2009**, 7, 3855–3861.

²³ C. Bertozzi, M. Bednarski, *Carbohydr. Res.* **1992**, 223, 243–253.

4.2. Stand der Forschung

Wegen ihrer biologischen Bedeutung stellen *C*-Glycoside, wie bereits geschildert, wertvolle Strukturen dar, die sich jedoch aufgrund der hohen Funktionalitätsdichte als schwierige Syntheseziele für die klassische Kohlenhydratchemie erweisen.^[24] Inzwischen wurden viele synthetische Zugänge zu *C*-Glycopyranosiden untersucht, wobei die meisten von natürlichen Zuckern wie Glycalen ausgehen und so den "chiral pool" nutzen, sodass die lohnenswerte Variation der Substituenten beschränkt bleibt. Nur wenige Beispiele ausgehend von nicht-Kohlenhydrat-verwandten Startmaterialien sind bekannt, wie beispielsweise der Zugang unter Anwendung der *Diels–Alder*-Reaktion^[25] oder der Ringschlussmetathese.^[26] Vor allem der stereoselektive Zugang zu *C*-Glycosiden bleibt noch immer eine Herausforderung.

Im Falle von natürlichen Zuckern als Startmaterialien lässt sich die Polarität am anomeren Zentrum stark variieren und ermöglicht eine stereoinduktive C-C-Verknüpfung. Darunter fällt z. B. die elektrophile Substitution am anomeren C-Atom über metallorganische Glycosylanionen mittels Umsetzung von Glycalen und 1-Stannyl-Glycalen mit Alkyllithium-Verbindungen,^[27] so auch die *Stille*-Kupplung mit Vinylstannanen.^[15] Auch die Nutzung elektronenreicher anomerer Glycosylradikale zur elektronisch gesteuerten Addition an elektronenarme ungesättigte Kohlenstoffatome stellt eine Zugangsmöglichkeit dar.^[28]

Die kinetisch gesteuerte nucleophile Substitution an der Aldehydform, dem Halogenid oder an dem *Lewis*-Säure-aktivierten anomeren Zentrum ist am stärksten verbreitet.^[15, 29] Als Nucleophile werden unter anderem Allylsilane, Stannane, Aromaten und metallorganische Verbindungen eingesetzt. Darüber hinaus gibt es noch zahlreiche andere Möglichkeiten des Zugangs zu *C*-Glycosiden wie über metallorganische Intermediate oder Carbene,^[30] durch

²⁴ D.E. Levy, C. Tang, *The Chemistry of C-Glycosides*, Pergamon, Oxford, **1995**.

²⁵ a) N. Q. Vu, S. Leconte, E. Brown, D. Grée, G. Dujardin, J. Org. Chem. **2005**, 70, 2641–2650; b) F. M. Hauser, X. Hu, Org. Lett. **2002**, *3*, 2977–2980.

²⁶ a) D. Calimente, M. H. D. J. Org. Chem. **1999**, 64, 1770–1771; b) B. Schmidt, Org. Lett. **2000**, 2, 791–794.

²⁷ P. Lesimple, J. M. Beau, G. Jaurand, P. Sinay, *Tetrahedron Lett.* **1986**, 27, 6201–6204.

²⁸ a) B. Giese, J. Dupuis, Angew. Chem. 1983, 95, 633–634; Angew. Chem., Int. Ed. 1983, 22, 622–623;
b) H. D. Junker, W. D. Fessner, Tetrahedron Lett. 1998, 39, 269–272.

²⁹ D. E. Levy, F. Dasgupta, P. C. Tang, *Tetrahedron: Asymmetry* **1994**, *5*, 2265–2268.

³⁰ K. H. Dötz, R. Ehlenz, *Chem.-Eur. J.* **1997**, *3*, 1751–1756.

Umlagerungsreaktionen wie die *Claisen*-Umlagerung^[31] oder durch die offenkettige *Wittig*analoge Kettenverlängerung.^[32]

Im Folgenden werden nur einige Beispiele zur besseren Veranschaulichung gezeigt. Unter den verschiedenen Routen ist die moderne Methode der Wahl für die Synthese von arylischen *C*-Glycosiden die Palladium-katalysierte Kreuzkupplung, wie in Schema 4.1 exemplarisch gezeigt wird. Die Stereoselektivität basiert auf der sterischen Abschirmung eines Halbraums durch die TBS-Gruppe.^[33]

Schema 4.1. Synthese eines arylischen C-Glycosids nach X.-S. Ye, 2009.

Die Anwendung einer S_N2 -Substitution an einem nicht-isolierbaren, *in situ* erzeugten Vinyloxiran erlaubte es *Crotti et al.* in einer mehrstufigen Sequenz ausgehend vom Glycal nicht nur Aryl-, sondern auch Alkylsubstituenten über Lithiumorganyle β -selektiv einzuführen (Schema 4.2).^[34]

Schema 4.2. Zugang zu Alkyl-C-Glycosiden nach P. Crotti, 2003.

Für die Synthese benzylischer *C*-Glycoside gibt es bislang nur sehr wenige Beispiele. So wurde von *Franck et al.* im Jahre 1998 die *Ramberg–Bäcklund*-Methode mit guter Ausbeute und ausgezeichneter β -Selektivität verwendet (Schema 4.3).^[35]

³¹ H. Y. Godage, A. J. Fairbanks, *Tetrahedron Lett.* **2003**, *44*, 3631–3635.

³² A. Giannis, K. Sandhoff, *Carbohydr. Res.* **1987**, *171*, 201–210.

³³ a) H.-H. Li, X.-S. Ye, Org. Biomol. Chem. 2009, 7, 3855-3861; b) M. Lei, L. Gao, J.-S. Yang, Tetrahedron Lett. 2009, 50, 5135–5138.

³⁴ V. Di Bussolo, M. Caselli, M. Pineschi, P. Crotti, Org. Lett. 2003, 5, 2173–2176.

³⁵ P. S. Belicka, R. W. Franck, *Tet. Lett.* **1998**, *39*, 8225–8228.

Schema 4.3. Zugang zu Benzyl-C-Glycosiden nach R. W. Franck, 1998.

Gallagher et al. wählten, wie in Schema 4.4 verdeutlicht wird, die S_N2 -Substitution an einem Glycal unter Verwendung einer benzylischen Zink-Verbindung und einer *Lewis*-Säure – leider mit einer nur mäßigen Ausbeute und geringen α/β -Selektivität, jedoch am nächsten verwandt mit dem von uns angestrebten Substitutionsmuster, dem Reaktionstyp und den entsprechenden Chiralitätszentren.^[36]

Schema 4.4. Zugang zu benzylischen C-Glycosiden nach T. Gallagher, 1999.

4.3. Syntheseplanung

Vergleicht man das als Syntheseziel erfasste α -*C*-Glycopyranosid mit dem entsprechenden *O*-Glycosid, einem vereinfachten PGL-I-Analogon (Abbildung 4.7), so wird deutlich, dass der fehlende anomere Effekt zusammen mit dem sterischen Anspruch des axial positionierten benzylischen Restes im abgebildeten ${}^{1}C_{4}$ -Konformer der sterischen Hinderung der axial stehenden Methyl-, Methoxy- und Benzoylgruppe bei der ${}^{4}C_{1}$ -Konformation gegenübersteht und so leicht einer Ringinversion unterliegen könnte.

³⁶ A. J. Pearce, S. Ramaya, S. N. Thorn, G. B. Bloomberg, D. S. Walter, T. Gallagher, J. Org. Chem. **1999**, 64, 5453–5462.

Abbildung 4.7. Unterschiede zwischen einem C- und einem O-Glycosid.

Trotz der Vermutung, es handle sich bei dem abgebildeten Konformer um das thermodynamisch stabilere, ist bei der synthetischen Planung, Durchführung und Stabilisierung des Moleküls Aufmerksamkeit geboten, um gezielt das gewünschte Produktkonformer erzeugen und eine unerwünschte Ringinversion^[37] vermeiden zu können.

Retrosynthetische Überlegungen ergeben einen synthetischen Zugang zum *C*-Glycopyranosid **4.1** mittels stereoselektiver Dihydroxylierung und regioselektiver Methylierung des Dihydropyrans **4.3**, welches über den ersten Schlüsselschritt, eine homogene Gold-katalysierte *endo*-Cycloisomerisierung des entsprechenden β -heterosubstituierten Allens **4.4** mit vollständigem Chiralitätstransfer erfolgen kann (Schema 4.5). Die stark *anti*-selektive Kupfer-katalysierte S_N2'-Substitution stellt den zweiten Schlüsselschritt aus zwei möglichen Synthonen **4.5** und **4.6** dar.^[38]

Schema 4.5. Retrosynthetische Betrachtung.

³⁷ P. Allevi, M. Anastasia, P. Ciuffreda, A. Fiecchi, A. Scala, J. Chem. Soc.-Perkin Trans. I 1989, 1275–1280.

 ³⁸ a) M. Purpura, N. Krause, *Eur. J. Org. Chem.* 1999, 267–275; b) H. Kuroda, E. Hanaki, H. Izawa, M. Kano, H. Itahashi, *Tetrahedron* 2004, 60, 1913–1920; c) T. Jeffery, *Chem. Commun.* 1987, 70–71; F. Volz, S. H. Waldmann, A. Hoffmann-Röder, N. Krause, *Tetrahedron* 2009, 65, 1902–1910.

Genauer betrachtet ermöglicht zum einen der *anti*-selektive Kupfer-katalysierte Hydridtransfer ausgehend vom benzylischen Alkin **4.6b** den Zugang zum Allen **4.7**, wobei in diesem Fall im Anschluss eine Inversion des Chiralitätszentrums an C3 mittels *Mitsunobu*-Reaktion erforderlich wird. Zum anderen wäre analog ein *syn*-selektiver Eisen^[39] oder Kupfer-katalysierter Hydridtransfer (mit chiralen Phosphinliganden, vgl. Kapitel 3) an das benzylische Alkin **4.6a** denkbar, wobei diese Methode jedoch bislang noch nicht entwickelt worden ist.

Die beiden entsprechenden Epoxide **4.6a** und **4.6b** sollten durch stereoselektive *CBS*-Reduktion und eine austauschbare Schützungs-Epoxidierungs-Sequenz aus dem benzylischen Eninon **4.8** zugänglich sein, wobei die Konfiguration des Epoxids durch die Wahl der *Katsuki–Sharpless-*^[40] oder der *Shi-*Epoxidierung^[41] bzw. alternativ dazu der Epoxidierung mittels des Keton-Oxon-Systems nach *M. Kurihara et al.*^[42] festgelegt werden kann (Schema 4.6).

Schema 4.6. Zugang über das benzylische Alkin.

Das terminale Alkin **4.5** stellt ein weiteres Substrat für den Zugang zu dem Allen **4.7** unter Verwendung benzylischer Grignards dar und müsste durch Oxidation, Alkylierung, Epoxidierung und Schützung des Alkohols **4.9** zugänglich sein. Eine denkbare Alternative

³⁹ H. Nakazawa, M. Itazaki, *Top. Organomet. Chem.* **2011**, *33*, 27–81.

 ⁴⁰ a) T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. **1980**, 102, 5974–5976; b) J. G. Hill, K. B. Sharpless, C. M. Exon, R. Regenye, Org. Synth. **1990**, 7, 461–467; **1985**, 63, 66; c) T. Katsuki, V. S. Martin, Org. React. **1996**, 48, 1–300.

⁴¹ a) Z.-X. Wang, Y. Tu, M. Frohn, J.-R. Zhang, Y. Shi, J. Am. Chem. Soc. 1997, 119, 11224–11235;
b) M. Frohn, Y. Shi, Synthesis 2000, 14, 1979–2000.

⁴² M. Kurihara, K. Ishii, Y. Kasahara, M. Kameda, A. K. Pathak, N. Miyata, *Chem. Lett.* **1997**, 1015–1016.

ist der Zugang aus dem entsprechenden Eninon **4.10** mittels Reduktion, Epoxidierung und Schützung (Schema 4.7).

Schema 4.7. Zugang über das terminale Alkin.

4.4. Ergebnisse und Diskussion

Trotz der scheinbaren Simplizität des Eninons **4.8** stellten sich Bemühungen um eine effiziente Syntheseroute aufgrund dessen Reaktivität und teils geringer molarer Masse der Reagenzien als schwierig heraus. Die Route *via* eines sehr reaktiven Alkinals mit einem *Wittig*-Reagenz^[38b] oder auch die Palladium-katalysierte Vinylierung eines Iodalkins^[43] konnten nicht zufriedenstellend umgesetzt werden. Auch die *Sonogashira*-Reaktion^[44] des Silyl-substituierten Alkins mit einem Vinyliodid verlief wenig erfolgreich. Alle Ansätze eröffneten unter anderem unerwartete Probleme basierend auf der Isomerisierung der Dreifachbindung im Eninon **4.8** unter basischen Bedingungen. Die Bildung des arylischen Allen-Derivates und dessen schwierige Abtrennung von dem gewünschten Produkt^[45] hatten starke Einbußen bezüglich der Ausbeute zu Folge.

⁴³ T. Jeffery, *Synthesis* **1987**, *1*, 70–71.

 ⁴⁴ a) R. Chinchilla, C. Nájera, *Chem. Rev.* 2007, *107*, 874–922; b) V. Fiandanese, D. Bottalico, G. Marchese, A. Punzi, *Tetrahedron* 2006, *62*, 5126–5132.

⁴⁵ L. Brandsma, *Preparative Acetylenic Chemistry*, Elsevier, New York, 2. Auflage, **1988**.

Aus diesem Grunde wurde die Alternativroute ausgehend von dem terminalen Alkin **4.9** eingeschlagen. Eine Übersicht des Syntheseweges ist in Schema 4.8 und in Schema 4.8 abgebildet.

Schema 4.8. Übersicht der geplanten Syntheseroute I.

Dieser Syntheseplan beinhaltet zunächst die Oxidation des kommerziell erhältlichen Alkohols **4.9** mit Braunstein und eine stereoselektive *in situ*-Alkylierung des leichtflüchtigen Aldehyds mittels chiraler Titan-TADDOLate nach *Seebach et al.*.^[46] Anschließend ist eine stereoselektive *Katsuki–Sharpless*-Epoxidierung zum Epoxid **4.5'** als Alternative zu der in der Literatur bekannten unselektiven Alkylierung und anschließenden kinetischen Racematspaltung mittels *Katsuki–Sharpless*-Epoxidierung^[47] vorgesehen. Der benzylische Rest wird nach vorangegangener Silylierung über die Kupfer-vermittelte S_N2'-Substitution eingeführt. Der entstandene sekundäre Alkohol **4.7** wird benzoyliert und an der Position C2 entschützt, sodass das entstandene *β*-Hydroxyallen **4.4** Gold-katalysiert zum Dihydropyran **4.3** cycloisomerisiert werden kann. Das Alken **4.3** soll Substrat-kontrolliert mittels NMO und Osmiumoxid oder Reagenz-kontrolliert nach *Sharpless* zum Diol **4.2** dihydroxyliert werden. Die anschließende geplante regioselektive Methylierung zum

⁴⁶ a) D. Seebach, A. K. Beck, A. Heckel, Angew. Chem. **2001**, 113, 96–142; Angew. Chem. Int. Ed. **2001**, 40,

^{92–138;} b) D. Seebach, A. K. Beck, B. Schmidt, Y. M. Wang, *Tetrahedron* **1994**, *50*, 4363–4384.

⁴⁷ F. Volz, N. Krause, Org. Biomol. Chem. **2007**, *5*, 1519–1521.

Glycopyranosid **4.1** basiert auf dem Nachbargruppeneffekt des intermediär gebildeten Zinnesters.

Das benzylische *C*-Glycosid **4.1** wird schließlich in einem letzten Schritt mit dem Disaccharid **4.15**, welches von *A. Hölemann et al.* aus dem Glucosid **4.13** und dem Rhamnosid **4.14** in einer konvergenten, 15-stufigen längsten Synthesesequenz Nachbargruppen-gesteuert selektiv erzeugt wurde,^[48] zum gewünschten Produkt **4.16** glycosyliert (Schema 4.9).

Schema 4.9. Übersicht der geplanten Syntheseroute II.

Erste nicht-stereoselektive Untersuchungen an dem Testmolekül **4.17** deuten auf eine geringe Stabilität des terminalen Alkins hin. Es wird vermutet, dass zum einen der intermediär gebildete Aldehyd zu leichtflüchtig und instabil ist. Zum anderen scheint das Alkin unter den gewählten Reaktionsbedingungen zu Nebenreaktionen zu neigen, worauf der gelartige Bodensatz hindeutet. So konnte das Epoxid **4.19** trotz intensiver Optimierungsarbeiten lediglich mit einer Ausbeute von 28% über 3 Stufen gewonnen werden (Schema 4.10).

⁴⁸ Daniel Kmoch, unveröffentlichte Ergebnisse (voraussichtlich: Dissertation, TU Dortmund, **2013**).

Schema 4.10. Erste Untersuchungen am Testmolekül.

Im Einzelnen wurde dabei der *in situ* erzeugte Aldehyd nach dem Filtrieren in den ersten Versuchen am Rotationsverdampfer bei 30 °C und unter Eiskühlung etwas eingeengt. Alternativ wurde auch mit der gesamten Lösungsmittelmenge weitergearbeitet. Die anschließende Alkylierung zum sekundären Alkohol **4.18** mittels Methylmagnesium-chlorid^[38a] oder Methyllithium lieferte trotz starker Temperaturkontrolle und sehr langsamer Zugabe viele Nebenprodukte und Ausbeuten nicht höher als 44%. Für die nachfolgende Epoxidierung nach *Prileschajew et al.*^[49] wurden ähnliche Beobachtungen mit maximal 64% Ausbeute gemacht.

Das erhaltene Epoxid **4.19** wurde trotz der problematischen Zugänglichkeit für die ersten Ansätze im Kupfer-katalysierten Schlüsselschritt verwendet. Die S_N2' -Substitution zum Allen **4.21** verlief - wie erwartet - stark *anti*-selektiv mit einem Diastereomerenverhältnis von größer als 95:5 (laut GC- und NMR-Messungen) und einer Ausbeute von 77% (Schema 4.11). Die Benzoylierung zum Allen **4.22** konnte mit einer Ausbeute von 71% realisiert werden.

Schema 4.11. Erster Schlüsselschritt am Testmolekül.

Alternativ zur Silylierung an C2 und späteren Benzoylierung an C3 wurden auch eine THP-Schützung des Alkohols an C2 und eine Silylschützung des Alkohols an C3 mittels TIPSC1 im Anschluss an die Allenbildung durchgeführt. Der sperrige Silylether sollte im späteren Verlauf aufgrund von sterischen Wechselwirkungen die Selektivität der Dihydroxylierung

⁴⁹ N. Prileschajew, Ber. Dt. Chem. Ges. **1909**, 42, 4811–4815.

verstärken. Diese Schutzgruppenvariante lieferte jedoch schlechtere Ausbeuten im Schlüsselschritt und Probleme bei der Silylierung – aufgrund der Annahme, dass der sekundäre Alkohol an C3 für eine TIPS-Schützung zu abgeschirmt ist, wurde diese Alternative wieder verworfen.

Um die Ausbeuteverluste auf der Stufe des leichtflüchtigen Aldehyds zu umgehen, wurde die Reihenfolge in der Syntheseroute umgestellt. Die Oxidation des primären Alkohols sollte auf diese Weise erst unmittelbar vor der Cycloisomerisierung erfolgen, also an einem Molekül mit wesentlich höherer molarer Masse und unter Umgehung der reaktiven konjugierten Eninal-Funktion (Schema 4.12).

Im Einzelnen wurde der primäre Alkohol **4.17** zunächst mittels *m*-CPBA epoxidiert und mit TBSCl zum Silylether **4.23** geschützt. Dieser wurde der S_N2' -Substitution zum α -Hydroxyallen unterzogen, welches benzoyliert wurde und durch Desilylierung in den primären Alkohol **4.24** überführt werden sollte. Eine anschließende Oxidation mittels DMP^[50] oder die Kupfer(I)/TEMPO-katalysierte aerobe Oxidation nach *Stahl et al.*^[51] sollte einen stabileren Aldehyd liefern, der mittels Alkylierung zum gewünschten sekundären Alkohol **4.25** umgesetzt werden sollte (Schema 4.12).

Schema 4.12. Testsystem mit vertauschter Reihenfolge.

Auf der Stufe der Entschützung trat jedoch eine Umlagerung durch Wanderung der Benzoylgruppe auf die primäre Hydroxyfunktion, vermutlich bedingt durch die Triebkraft der geringeren sterischen Wechselwirkungen, statt. Eine derartige Umlagerung konnte bereits bei einer Acetylschutzgruppe im Verlauf einer Cycloisomerisierung beobachtet werden.^[52]

⁵⁰ a) D. B. Dess, J. C. Martin, J. Org. Chem. **1983**, 48, 4155–4156; b) J. Am. Chem. Soc. **1991**, 113, 7277–7287.

⁵¹ J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. **2011**, 133, 16901–16910.

⁵² B. Gockel, N. Krause, Org. Lett. **2006**, *8*, 4485–4488.

Nach zahlreichen Optimierungsversuchen wurde die Route aufgrund der vielen Nebenprodukte und der zu geringen Ausbeuten, die unter anderem auf die Reaktivität der terminalen Alkinfunktion zurückgeführt wurden, erneut modifiziert.

Stattdessen wurde ein Silylalkin verwendet^[53] und der Syntheseweg über den leichtflüchtigen Aldehyd durch Verwendung der Eninon-Route umgangen (Schema 4.13). Damit ließ sich der kommerziell erhältliche Aldehyd **4.26**, der auch aus Propargylalkohol mittels doppelter Silylierung, regioselektiver Silylspaltung und anschließender Braunsteinoxidation zugänglich ist,^[54] mit Diethyl-(2-oxopropyl)-phosphonat in einer *Horner–Wadsworth–Emmons*-Reaktion^[38b, 55] mit einer guten Ausbeute von 83% *E*-selektiv zum Eninon **4.27** umsetzen (V 4.3).

Die anschließende stereoselektive *Corey–Bakshi–Shibata*-Reduktion^[56] zum chiralen Alkohol **4.28** verlief nach einigen Optimierungen ebenfalls mit einer guten Ausbeute von 77% und einem Enantiomerenüberschuss von 90% (laut chiraler GC; V 4.4).

Schema 4.13. Erste Syntheseschritte der modifizierten Syntheseroute.

Die Epoxidierung wurde zunächst substratkontrolliert mit *m*-CPBA nach *Prileschajew* und mit Vanadylacetylacetonat nach *Zajacek et al.*^[57] untersucht, lieferte jedoch in beiden Fällen unter verschiedenen Bedingungen keine zufriedenstellenden Selektivitäten. Die Methode nach *Katsuki–Sharpless* bewirkte schließlich ein Diastereomerenverhältnis von 98:2 und eine gute Ausbeute des Epoxids **4.29** von 79% (Schema 4.14; V 4.5).

 ⁵³ a) F. Babudri, V. Fiandanese, G. Marchese, A. Punzi, *Tetrahedron* 2000, *56*, 327–331; b) C. F. Thompson, T. F. Jamison, E. N. Jacobsen, *J. Am. Chem. Soc.* 2001, *123*, 9974–9983.

⁵⁴ M. Hu, J. Li, S. Q. Yao, Org. Lett. **2008**, 10, 5529–5531.

⁵⁵ a) W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc. 1961, 83, 1733–1738; b) Org. Synth. 1973, 5, 547; 1965, 45, 44; c) M. Geyer, J. Bauer, C. Burschka, P. Kraft, R. Tacke, Eur. J. Inorg. Chem. 2011, 2011, 2769–2776.

 ⁵⁶ a) E. J. Corey , R. K. Bakshi , S. Shibata, J. Am. Chem. Soc. 1987, 109, 5551–5553; b) A. Hirao, S. Itsuno, S. Nakahama, N. Yamazaki, J. Chem. Soc., Chem. Commun. 1981, 315–317.

⁵⁷ a) M. N. Sheng, J. G. Zajacek, J. Org. Chem. **1970**, 35, 1839–1843; b) T. Itoh, K. Jitsukawa, K. Kaneda, S.Teranishi, J. Am. Chem. Soc. **1979**, 101, 159–169.

Schema 4.14. Katsuki-Sharpless-Epoxidierung.

Die relative Konfiguration wurde anhand der *Sharpless*-Regel vorhergesagt.^[40] Zudem konnte durch Überführung des Epoxids in den (*S*)- und den (*R*)-*Mosher*-Ester nach *Kahisawa et al.*^[58] anhand der relativen Verschiebungen in den NMR-Spektren die absolute Konfiguration von **4.29** belegt werden (V 4.6).

Bei der TBS-Schützung erbrachte ein Ausweichen von TBSCl auf frisch hergestelltes TBSOTf den nötigen Erfolg mit 94% Ausbeute (V 4.7, Schema 4.15). Leider erwies sich das Epoxyalkin **4.30** wider Erwarten aufgrund vergleichbarer Literaturpräzedenz^[59] als vermutlich sterisch zu abgeschirmt, sodass die S_N2' -Substitution nicht erfolgreich war. Ein vorangehender Desilylierungsschritt zum terminalen Alkin mittels Kaliumcarbonat und Methanol^[60] mit 95% Ausbeute (V 4.8) ermöglichte schließlich die Allenbildung. Das α -Hydroxyallen **4.32** konnte unter Verwendung von Benzylmagnesiumchlorid mit 81% Ausbeute und einem Diastereomerenverhältnis von größer als 95:5 (laut NMR-Messungen) hergestellt werden (V 4.9). Die anschließende Benzoylierung (V 4.10) konnte mit einer sehr guten Ausbeute von 94% realisiert werden.

Schema 4.15. S_N2'-Substitution der Alternativroute.

 ⁵⁸ a) I. Ohtani, T. Kusumi, Y. Kashman, H. Kahisawa, J. Am. Chem. Soc. 1991, 113, 4092–4096; b) D. R. Williams, M. J. Walsh, N. A. Miller, J. Am. Chem. Soc. 2009, 131, 9038–9045.

⁵⁹ a) A. Padwa, K. E. Krumpe, L. W. Terry, M. W. Wannamaker, *J. Org. Chem.* **1989**, *54*, 1635–1642;
b) L. Caroll, M. C. Pacheco, L. Garcia, V. Gouverneur, *Chem. Commun.* **2006**, 4113–4115; c) C.
Rameshkumar, R. P. Hsung, *Angew. Chem.* **2004**, *116*, 625–628; *Angew. Chem. Int. Ed.* **2004**, *43*, 615–618.

⁶⁰ C. Cai, A. Vasella, *Helv. Chim. Acta* **1995**, 78, 732–757.

Allerdings fand bei der anschließenden Silylentschützung mittels TBAF (V 4.11) ohne ersichtliche Triebkraft erneut eine unerwünschte Wanderung der Benzoyl-Gruppe auf die benachbarte sekundäre Hydroxyfunktion an C2 statt (Schema 4.16).

Schema 4.16. Problematische Desilylierung.

Bemühungen, die basischen Bedingungen des TBAF/THF-Gemisches und auch die sauren Bedingungen der wässrigen Aufarbeitung abzupuffern, zeigten schließlich die besten Erfolge bei der Verwendung eines mit Pyridin gepufferten Flusssäure-Pyridin-Systems nach *Trost et al.*^[61] mit 79% Ausbeute (V 4.15, Tabelle 4.1).

Nr.	Bedingungen	Ausbeute (4.34)	Ausbeute (4.35)
1	TBAF, THF, RT	28%	72%
2	TBAF, NH ₄ F, THF, 0 °C	26%	52%
3	HF·Py, Py, THF, RT	79%	12%

 Tabelle 4.1. Optimierung der Desilylierung.

Das unerwünschte, umgelagerte Regioisomer des Allens **4.35** konnte ebenfalls zur Cycloisomerisierung herangezogen werden und lieferte das *C*-Furanosylderivat **4.36** mit einer Ausbeute von 88% (V 4.12) und einem vollständigen Achsen-zu-Zentrum-Chiralitätstransfer laut NMR-Untersuchungen (Schema 4.17). Eine nachfolgende Osmiumtetroxid-katalysierte Dihydroxylierung^[62] der Doppelbindung zum Tetrahydrofuranderivat **4.37** zeigte bei -4 °C nur eine geringe Substrat-kontrollierte Stereoselektivität (V 4.13).

⁶¹ a) B. M. Trost, C. G. Caldwell, E. Murayama, D. Heissler, J. Org. Chem. 1983, 48, 3252–3265;
b) J. D. White, R. G. Carter, Science of Synthesis 2002, 4, 392.

⁶² a) H.-Y. L. Wang, G. A. O'Doherty, *Chem. Commun.* 2011, 47, 10251–10253; b) X.Gao, D. G. Hall, *J. Am. Chem. Soc.* 2005, *127*, 1628–1629.

Schema 4.17. Cycloisomerisierung und Dihydroxylierung des Furan-Derivats.

Die Zuordnung der relativen Konfiguration der Diastereomere wurde durch NOE-Experimente vorgenommen, wobei ein starker NOE zwischen den Protonen H4 und H5 einhergehend mit einem sehr schwachen NOE zwischen H2 und H3 des Dihydropyrans **4.37** beobachtet wurde, während im Falle des Diols **4.38** ein sehr starker NOE für H5 und 4-OH sowie für H2 und H3 gemessen wurde, wie in Abbildung 4.8 dargestellt ist.

Abbildung 4.8. Bestimmung der relativen Konfiguration mittels NOE-Experimenten.

Verschiedene Kristallisationsversuche zum eindeutigen Nachweis der absoluten Konfiguration von **4.37** und damit indirekt des gewünschten Allens **4.34** schlugen fehl, darunter die Veresterung mit L-(+)-O-Acetyl-Mandelsäure und 3,5-Dinitro-benzoylchlorid und das Ausfällen mit Zinkbromid oder Natriumhydrid. Aus diesem Grunde wurde die regioselektive Methylierung des verbleibenden unerwünschten stereoisomeren Diols **4.38** durchgeführt (V 4.14) und lieferte eine gute Ausbeute von 82% (Schema 4.18).

Schema 4.18. Regioselektive Methylierung des Tetrahydrofuranderivates.

Die isolierten weißen, nadelförmigen Kristalle des Hauptproduktes wurden einer Röntgenkristallstrukturanalyse unterzogen und konnten so dazu verhelfen, indirekt die korrekte Konfiguration des erwünschten Allens **4.34** zu verifizieren (Abbildung 4.9).

Abbildung 4.9. Kristallstruktur des Methylethers 4.39.

Die *para***-Funktionalisierung** des Arylrestes sollte über die Einführung der entsprechenden Grignard-Reagenzien während der S_N2' -Substitution erfolgen.

Die Herstellung benzylischer Magnesiumverbindungen ist durch direkte Insertion von Magnesium in Benzylhalogenide möglich, allerdings in Begleitung von nicht unerheblichen Mengen an *Wurtz*-Homokupplungsprodukten. Neben der bei elektronenarmen benzylischen Reagenzien besonders stark auftretenden *Wurtz*-Kupplung^[63, 64] mussten zahlreiche weitere Herausforderungen, wie die unerwünschte S_N 2-Substitution und der Mangel an Reaktivität von Organozink-Verbindungen, bewältigt werden.

Im Einzelnen wurden unterschiedliche elektronenschiebende und -ziehende *para*-Substituenten (-Ar-CH₂-O-THP, -Ar-CH₂-O-TBS, -Ar-CN, Ar-COOMe), Benzylhalogenide (-Cl, -Br und -I) und zahlreiche Metallierungsvarianten getestet. Darunter fielen die oxidative Insertion mit aktiviertem Magnesium mittels "Dry Stir"-Methode,^[65] Ultraschall-Aktivierung^[66] und mit *Rieke*-Magnesium,^[67] welches robuste funktionelle Gruppen an arylischen Grignard-Reagenzien wie Nitrile oder *tert*-Butylester tolerieren sollte.

⁶³ N. Krause, A. Hoffmann-Röder, *Tetrahedron* **2004**, *60*, 11671–11694.

⁶⁴ B. Bogdanovic, N. Janke, H.-G. Kinzelmann, *Chem. Ber.* **1990**, *123*, 1507–1515.

⁶⁵ K. V. Baker, J. M. Brown, N. Hughes, A. J. Skarnulis, A. Sexton, J. Org. Chem. **1991**, 56, 698–703.

⁶⁶ J. P. Lorimer, J. T. Mason, *Chem. Soc. Rev.* **1987**, *16*, 239–274.

Ferner wurde der Magnesium-Anthracen-Komplex,^[64] welcher Reaktionstemperaturen von bis zu –78 °C ermöglichen sollte, getestet. Auch der Einsatz von elementarem Lithium^[68] und Lithium-Naphthalenid^[67d], die Verwendung von Quecksilbersalzen^[69] und Versuche zu Transmetallierungen von Lithiumorganylen^[70] und zum Halogen-Metall-Austausch^[71] wurden unternommen, erzielten jedoch keinen Erfolg.

Die weniger reaktive, dafür aber selektivere Organozink-Chemie nach *Knochel et al.*^[72] wurde intensiv untersucht und zeigte schließlich den ersten Durchbruch. Nach umfangreichen Studien und zahlreichen Versuchen konnte das entsprechende Allen mit vorerst 8% Ausbeute isoliert werden (Schema 4.19, V 4.16).

Schema 4.19. para-Funktionalisierung im ersten Schlüsselschritt.

Die vollständige Generierung der Organozink-Spezies wurde durch Probenentnahmen und gaschromatographische Untersuchungen zur Kontrolle des Reaktionsverlaufs verifiziert. Dabei wurden die Bedingungen derart optimiert, dass nur noch 2-3% des Homokupplungsproduktes auftraten. Bei der daran anschließenden Kupferchemie wurde jedoch verstärkt wieder Homokupplungsprodukt detektiert, was die Vermutung nahelegt, dass diese Nebenreaktion auch bei der Transmetallierung von Zink auf Kupfer auftritt.

⁶⁷ a) R. D. Rieke, S. E. Bales, *J. Am. Chem. Soc.* **1974**, *96*, 1775–1781; b) R. D. Rieke, *Science* **1989**, *246*, 1260–1264; c) R. D. Rieke, M. V. Hanson, *Tetrahedron* **1997**, *53*, 1925–1956; d) R. D. Rieke, S. E. Bales, P. M. Hudnall, T. P. Burns, G. S. Poindexter, Org. Synth. **1988**, *6*, 845; **1979**, *59*, 85.

 ⁶⁸ T. P. Burns, R. D. Rieke J. Org. Chem. **1987**, *52*, 3674–3680.

⁶⁹ a) M. Kira, T. Taki, H. Sakurai, J. Org. Chem. **1989**, 54, 5647–5648; b) P. Le Menez, V. Fargeas, I. Berque, J. Poisson, J. Ardisson, J.-Y. Lallemand, A. Pancrazi, J. Org. Chem. **1995**, 60, 3592–3599.

⁷⁰ K. Oshima, in *Main Group Metals in Organic Synthesis*; H. Yamamoto, K. Oshima, Eds.; Wiley-VCH, Weinheim, **2004**.

⁷¹ a) A. Eeg Jensen, F. Kneisel, P. Knochel, Org. Synth. 2002, 79, 35; 2004, 10, 391; b) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. Anh Vu, Angew. Chem. 2003, 115, 4438–4456; Angew. Chem. Int. Ed. 2003, 42, 4302–4320; c) C. Deutsch, A. Hoffmann-Röder, A. Domke, N. Krause, Synlett 2007, 5, 737–740.

 ⁷² a) A. Metzger, M. A. Schade, P. Knochel, *Org. Lett.* 2008, *10*, 1107–1110; b) M. A. Schade, S. Yamada, P. Knochel, *Chem. Eur. J.* 2011, *17*, 4232–4237.

Diesen Reaktionsschritt gilt es in weiteren Arbeiten zu optimieren, wobei an verschiedenen Parametern angesetzt werden kann. Zum einen soll die Konzentrationsabhängigkeit der Transmetallierung von Zink auf Kupfer untersucht werden, um so kontrolliert bei tieferen Temperaturen das Cuprat erzeugen und die Homokupplung damit vermeiden zu können. Zudem können Aminobasen wie Triethylamin und Dimethylpyridin zum Abfangen des Lithium-Kations dienen, welches vermutlich durch Koordination ans Epoxid und den Silylether die konkurriende S_N 2-Substitution am Epoxid begünstigt. Aus diesem Grunde soll auch der komplette Verzicht auf das Lithiumchlorid untersucht werden, wobei die Löslichkeit des Zinkorganyls voraussichtlich stark herabgesetzt wird.

Als eine alternative Kupferquelle kann das reaktivere CuCN·2 LiCl untersucht werden, um die Cupratbildung zu beschleunigen und damit ebenfalls der S_N 2-Substitution entgegenzuwirken. Auch CuBr·SBu₂ wäre als Kupferquelle interessant, da es die Löslichkeit des Kupferbromids erhöht und somit eine Aussicht auf den Verzicht von Lithiumbromid bietet.

Im Falle einer erreichten beschleunigten Cupratbildung könnte auch der gezielte Einsatz einer *Lewis*-Säure wie $BF_3 \cdot OEt_2$ zur Aktivierung des Epoxids getestet werden, wie er bei der von *Gallagher et al.* ^[36] durchgeführten S_N2'-Substitution mit Organozink-Reagenzien an einem Glycal zum Einsatz kam. Schließlich wäre auch der Zusatz von NMP oder DMPU als Cosolventien zur Beschleunigung der Reaktion und der damit ermöglichten Herabsetzung der Reaktionstemperatur zur Unterdrückung der Homokupplung und anderer Nebenreaktionen von besonderem Interesse.

Die Gold-katalysierte Cycloisomerisierung des β -Hydroxyallens 4.34 zum Dihydropyran-Derivat 4.42 verlief, wie in Schema 4.22 gezeigt ist, mit einer guten Ausbeute von 74% (V 4.17) und einem exzellenten Diatereomerenverhältnis von über 95:5 (laut NMR). Demnach konnte im Gegensatz zu den bisher bekannten Literaturbeispielen ausgehend von Glycalen selektiv das gewünschte α -Isomer generiert werden, wie aus der Definition von Anomeren bei Kohlenhydraten unter Zuhilfenahme der CIP-Nomenklatur hervorgeht (Abbildung 4.10).^[73]

Abbildung 4.10. Bestimmung der Konfiguration analog zu Anomeren.

Zudem zeigten vorab durchgeführte theoretische Berechnungen^[74] zur Einschätzung der Gleichgewichtslage, dass das erstrebte Konformer um 9.5 kcal/mol energetisch günstiger sein müsste (Schema 4.20). Dabei nimmt der Phenylrest der Benzylgruppe eine antiperiplanare Anordnung zum Ringsauerstoff ein, während die Benzoylgruppe senkrecht zum Sechsring steht.

Schema 4.20. Berechnete Gleichgewichtslage der beiden Konformere von 4.42.

NOE-Experimente schlugen zwar fehl, sodass die gesicherte Überprüfung der relativen Konfiguration und der vorliegenden Konformation erst auf der nächsten Stufe erfolgen mussten. Allerdings deutet der *Karplus*-Gleichung^[75] zu Folge die Kopplungskonstante zwischen H2 und H3 mit einem Wert von 5.5 Hz auf ein in Lösung vorliegendes

⁷³ Olaf Kühl: Organische Chemie, Wiley-VCH, Weinheim, **2012**, S. 222; IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), Conformational nomenclature for five- and six-membered ring forms of monosaccharides and their derivatives (Recommendations 1980), *Eur. J. Biochem.* **1980**, *111*, 295–298; *Arch. Biochem. Biophys.* **1981**, 207, 469–472; *Pure Appl. Chem.* **1981**, *53*, 1901–1905; Ref. 2, pp. 158–161.

⁷⁴ Jaguar, DFT, B3LYP, 6-31G**; Optimierung der Konformere in Gasphase, Schwingungsenergien und Solvatationsenergien wurden an den energetischen Minima bestimmt, die freien *Gibbs*-Energien setzen sich additiv aus dem thermodynamischen Gasphasenbeitrag und der Energie in Lösung zusammen (Vorgehensweise vgl. Kapitel 2).

⁷⁵ a) M. Minch, Conc. Magn. Res. **1994**, 6, 41–56; b) M. Karplus, J. Am. Chem. Soc. **1963**, 85, 2870–2871.

Gleichgewicht der beiden Konformere hin, wie es in der Literatur bereits beobachtet werden konnte (Schema 4.21).^[76]

Schema 4.21. NOE-Experiment am Dihydrofuran 4.42.

Die stereoselektive Sharpless-Dihydroxylierung^[77] und deren katalytische Variante^[78] wurden ebenfalls untersucht (Schema 4.22). Es stellte sich heraus, dass die Substratkontrollierte Dihydroxylierung mittels Osmiumtetroxid^[62, 79] bessere Ergebnisse lieferte. So bei Syntheseschritt −20 °C mit konnte dieser 82% Ausbeute und einem Diastereomerenverhältnis von größer als 95:5 (laut NMR) realisiert werden (V 4.18). Kristallisationsversuche des Diols zum Nachweis der absoluten Konfiguration auf dieser Stufe brachten noch keinen Erfolg.

Schema 4.22. Cycloisomerisierung und Dihydroxylierung des Allens 4.34.

Eine Wanderung der Benzoylgruppe konnte mittels NMR-Untersuchungen ausgeschlossen werden. Der Vergleich der Kopplungskonstanten zeigte zudem für die ³*J*-Kopplung zwischen H5 und H6 einen Wert von 2.2 Hz, was ein eindeutiges Indiz dafür ist, dass die beiden Protonen *gauche* zueinander stehen. Für die Wechselwirkung von H3 mit H4 konnte eine Kopplungskonstante von 8.4 Hz ermittelt werden, was der *Karplus*-Gleichung zufolge^[75] auf eine antiperiplanare Anordnung der beiden Protonen schließen lässt. Das

 ⁷⁶ a) C. A. G. Haasnoot, F. A. A. M. de Leuw, C. Altona, *Tetrahedron* 1980, *36*, 2783–2792; b) F. J. Mpez-Herrera, M. S. Pino-Gonzhlez, F. Planas-Ruiz, *Tetrahedron Asymmetry* 1990, *1*, 465–475; c) E. Mikros, G. Labrididis, S. Pérez, *J. Carbohydr. Chem.* 2003, *22*, 407–421.

⁷⁷ E. N. Jacobsen, I. Marko, W. S. Mungall, G. Schroeder, K. B. Sharpless, J. Am. Chem. Soc. **1988**, 110, 1968–1970; J. Gonzalez, C. Aurigemma, L. Truesdale, Org. Synth. **2004**, 10, 603; **2002**, 79, 93.

 ⁷⁸ H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, *Chem. Rev.* **1994**, *94*, 2483–2547.

⁷⁹ S. H. Yu, M. J. Ferguson, R. McDonald, D. G. Hall, J. Am. Chem. Soc. 2005, 127, 1628–1629.

NOE-Experiment stützte diese Erkenntnisse durch entsprechende Wechselwirkungen der Methylengruppe des Benzyls mit H2 und H4, welche in dem Konformer mit dem benzylischen Rest in äquatorialer Position bei einer Distanz von mehr als 4.3 bzw. 4.8 Å komplett fehlen müssten (Schema 4.23).

Schema 4.23. Konformationsanalyse mittels NMR am Diol 4.43.

Theoretische Berechnungen untermauerten dieses Ergebnis noch zusätzlich. Die als energetisch günstiger angenommene Dihydroxylierung *anti* zu der Benzyl- und der Benzoylgruppe spiegelte sich in einer Energiedifferenz von mindestens 6.1 kcal/mol wider. Das erstrebte Konformer ist den Berechnungen zu Folge das um 11 kcal/mol thermodynamisch stabilere Produkt (Schema 4.24).

Schema 4.24. Berechneter energetischer Vergleich der möglichen Dihydroxylierungsprodukte.

Abschließend lieferte die regioselektive Methylierung der äquatorialen Hydroxyfunktion 74% Ausbeute (V 4.19, Schema 4.25).

Schema 4.25. Regioselektive Methylierung des Diols 4.43.

Die Regioselektivität wird dabei durch einen Nachbargruppeneffekt gesteuert; der intramolekular gebildete Zinnester öffnet durch die Wechselwirkung mit Fluorid selektiv zum axialen Derivat, sodass die äquatorial gelegene Hydroxyfunktion selektiv methyliert werden kann (Schema 4.26).

Schema 4.26. Mechanismus der regioselektiven Methylierung.

Auch auf dieser Stufe schlugen jedoch alle Kristallisationsversuche zum ergänzenden Nachweis der Konfiguration und Konformation, auch nach chemischen Umwandlungen wie der Veresterung mit L-(+)-O-Acetyl-Mandelsäure und 3,5-Dinitro-benzoylchlorid und dem Ausfällen mit Zinkbromid oder Natriumhydrid, fehl.

Theoretische Berechnungen lieferten in diesem Fall erneut als Vorzugskonformation das um 9.4 kcal/mol energetisch günstigere gewünschte Isomer (Schema 4.27).

Schema 4.27. Berechnete Gleichgewichtslage der beiden Konformere von 4.44.

NMR-Untersuchungen zeigten jedoch mit ³*J*-Kopplungskonstanten von 6.4 Hz für die Kopplung zwischen H5 und H6, 5.4 Hz zwischen H2 und H3 und 5.7 Hz zwischen H3 und H4, dass ein Gleichgewicht zwischen den beiden Konformeren in Lösung vorliegen muss, wie es in der Literatur für andere *C*-Glycoside bereits erwähnt wird.^[76] Auch das NOE-Experiment bestärkt diese Annahme durch detektierte NOEs zwischen H3 und H4 sowie zwischen H5 und H6 (Schema 4.28).

Schema 4.28. NOE-Experiment am C-Glycosid 4.44.

4.5. Zusammenfassung und Ausblick

Zusammenfassend liefern die derzeitigen Ergebnisse einen neuen, hochgradig stereoselektiven Zugang zu multisubstituierten benzylischen α -*C*-Glycopyranosiden mittels Kupfer- und Goldkatalyse mit der Synthese eines PGL-I-Analogons als reizvolles Anwendungsbeispiel. Die Gesamtausbeute der bisherigen Syntheseroute ausgehend vom kommerziell erhältlichen Aldehyd beträgt 14% über 11 Stufen mit exzellenten Stereoselektivitäten (Schema 4.29).

Schema 4.29. Übersicht - finale Route.

Als Ausblick für die Fortführung des Projektes bleiben die weitere Optimierung der Ausbeuten, die Realisierung der letzten Stufen mit verschiedenen *para*-substituierten Arylresten, die Kopplung des *C*-Glycosids an das von *A. Hölemann et al.* synthetisierte Disaccharid **4.15** (Schema 4.30) und die ausstehenden Bioessays zur Aufschlüsselung des Mechanismus.

Schema 4.30. Kopplung mit dem Disaccharid.

4.6. Experimenteller Teil

4.6.1. Vorbemerkungen: siehe Seite 64.

4.6.2. Arbeitsvorschriften und analytische Daten

4.6.2.1. 3-(Trimethylsilyl)prop-2-in-1-ol

V 4.1 (HU 226)

Der Propargylalkohol wurde vor Gebrauch frisch destilliert (1 atm, Vigreux-Kolonne, 114 °C Kopftemperatur, Ölbad: 140 °C), bevor 3.00 g des Propargylalkohols (53.5 mmol) in 100 mL THF abs. gelöst und auf -68 °C gekühlt wurden. 53 mL n-BuLi (133 mmol, 2.5 Äq.) wurden mittels Tropftrichter bei dieser Temperatur hinzugegeben. Nach beendeter Zugabe wurde das Reaktionsgemisch weitere 20 min bei -60 °C gelassen und musste zusätzlich wiederholt mechanisch von außen gerührt werden (Supermagnet), da das Gemisch immer wieder erstarrte. Anschließend wurde die Reaktionslösung mit 17 mL TMSCl (133 mmol, 2.5 Äq.) versetzt - wobei immer wieder zusätzlich gerührt werden musste - und innerhalb von 3 h langsam erwärmt. Durch Zugabe von 27 mL HCl (2N, 54 mmol, 1.0 Äq.) bei –10 °C wurde die Reaktion gestoppt; die milchige Trübung löste sich und die Lösung färbte sich leuchtend gelb. Nach einer weiteren Zugabe von 10 mL HCl (2N) wurden die Phasen getrennt und die organische Phase wurde 2 x mit HCl (1N, jeweils 30 mL) gewaschen. Die vereinigten wässrigen Phasen wurden mit Et₂O (50 mL) extrahiert und die vereinigten organischen Phasen über Na_2SO_4 getrocknet und am Rotationsverdampfer von den Lösungsmitteln befreit, wobei nachträglich durch Kontrolle des Auffangkolbens Produktverlust festgestellt wurde. Das zähflüssige, orange-farbene Öl wurde zwei Mal mittels Kugelrohrdestillation (4.9 mbar, 103 °C) gereinigt. Es konnten 68% (4.69 g, 36.6 mol) des Trimethylsilylpropinols als gelbliches Öl gewonnen

werden.

DC:
$$R_f = 0.61 (CH/EA = 4:1, KMnO_4).$$

130

Sdp.: 103 °C (4.9 mbar).

¹**H-NMR:** 300 MHz, CDCl₃; $\delta = 0.17$ (s, 9H, Si(CH₃)₃), 3.00 (bs, 1H, OH), 4.27 (s, 2H, 1-H).

¹³C-NMR: 101 MHz, $CDCl_3$; $\delta = 0.1$ (Si(CH₃)₃), 51.8 (C1), 90.9 (C3), 103.8 (C2).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[54]

4.6.2.2. (*E*)-6-(Trimethylsilyl)hex-3-en-5-in-2-on (4.27)

V 4.2 (HU 270)

7.87 g des silylierten Propargylalkohols (57.9 mmol) wurden in 60 mL THF gelöst und auf 0 °C gekühlt, bevor portionsweise langsam 102 g MnO₂ (1.17 mol, 20 Äq.) hinzugegeben wurden. Dabei wurde anfangs ein leichtes Sieden der Reaktionslösung beobachtet. Nach beendeter Zugabe wurde das Eisbad entfernt und das Gemisch 6 h bei RT gerührt. Anschließend wurde die Reaktionslösung unter Argon und mit gut getrockneten Glasgeräten über Celite (ca. 0.5 cm hoch) filtriert, mit 2 mL THF abs. nachgespült und unter Verzicht auf das Einengen der Lösung direkt weiter umgesetzt.

Hierzu wurde die Lösung erneut auf 0 °C gekühlt, mit 20.3 g (Acetylmethyl)triphenylphosphoran (63.7 mmol, 1.1 Äq.) versetzt und 4 h gerührt, woraufhin es am Rotationsverdampfer auf ca. 20 mL eingeengt wurde. Nach dem Versetzten der Lösung mit 80 mL eines Gemisches aus Pentan/Et₂O (3:1) wurde über eine Fritte mit SiO₂ (160 g) filtriert, mit 800 mL des Pentan/Et₂O-Gemisches nachgespült und das Rohprodukt am Rotationsverdampfer vom Lösungsmittel befreit. Die anschließende säulenchromatographische Aufreinigung an Kieselgel (Pentan/Et₂O 100:1 \rightarrow 15:1) lieferte 2.05 g des Eninons **4.27** (umgerechnet 28.3 mmol, 17%; Et₂O enthalten).

DC:	$R_f = 0.71$ (CH/EA = 4:1, Anisaldehyd, rot \rightarrow schwarz).	
¹ H-NMR:	400 MHz, CDCl ₃ ; $\delta = 0.20$ (s, 9H, Si(CH ₃) ₃), 2.24 (s, 3H, 1-H), 6.48 (d, $J = 16.1$ Hz, 1H, 4-H), 6.58 (d, $J = 16.1$ Hz, 1H, 3-H).	
¹³ C-NMR:	101 MHz, CDCl ₃ ; $\delta = 0.3$ (Si(CH ₃) ₃), 27.8 (C1), 104.3 (C6), 106.6 (C5), 123.7 (C4), 138.9 (C3), 197.2 (C2).	
IR:	(Film) v = 2961 (w), 1695 (m), 1676 (s), 1592 (s), 1422 (w), 1359 (w), 1296 (w), 1250 (s), 1175 (w), 1084 (m), 1070 (m), 1021 (w), 959 (s), 839 (s), 759 (s), 701 (w), 648 (s), 615 (w), 598 (w), 473 (w).	
HRMS:	(ESI) C ₉ H ₁₅ OSi [M+H] ⁺ ; ber.: 167.0887, gef.: 167.0886.	

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[55c]

V 4.3 (HU 235)

0.6 mL des Aldehyds **4.26** (0.52 g, 4.09 mmol) wurden in 20 mL THF vorgelegt, auf 0 °C gekühlt und mit 1.43 g (Acetylmethyl)triphenylphosphoran (4.50 mmol, 1.1 Äq.) versetzt. Nach 90-minütigem Rühren wurde das Reaktionsgemisch eingeengt, mit 6 mL eines Lösungsmittelgemisches aus CH/EA (10:1) verdünnt, über 11 g SiO₂ filtriert, mit 55 mL des Lösungsmittelgemisches nachgespült und am Rotationsverdampfer vom Lösungsmittel befreit. Eine weitere Aufreinigung war nicht erforderlich; es konnten 642 mg (umgerechnet 3.39 mmol, 83%; noch etwas CH enthalten) des Eninons **4.27** isoliert werden.

¹**H-NMR:** 400 MHz,
$$C_6D_6$$
; $\delta = 0.15$ (s, 9H, Si(CH₃)₃), 1.60 (s, 3H, 1-H), 6.28 (d, $J = 16.1$ Hz, 1H, 4-H), 6.40 (d, $J = 16.1$ Hz, 1H, 3-H).

Die spektroskopischen Daten stimmen mit denen von V 4.2 überein.

4.6.2.3. (*S*,*E*)-6-(Trimethylsilyl)hex-3-en-5-in-2-ol (4.28)

V 4.4 (HU 242-B)

182 mg des Oxazaborolidins (0.66 mmol, 0.3 Äq.) wurden in 30 mL THF gelöst, mit 0.06 mL Boran (0.66 mmol, 0.3 Äq.) versetzt und auf −30 °C gekühlt. Bei dieser Temperatur wurden weitere 0.14 mL Boran (1.53 mmol, 0.7 Äq.) in 4 Portionen innerhalb von 20 Minuten hinzugegeben, wobei gleichzeitig eine Lösung aus 364 mg des Eninons **4.27** (2.19 mmol) in 5 mL THF innerhalb von 1 h zum Reaktionsgemisch hinzugetropft wurde. Nach weiteren 3.5 h bei dieser Temperatur konnte trotz kleiner verbliebener Mengen an Edukt kein weiterer Umsatz beobachtet werden, woraufhin die Reaktion durch Zugabe von 5 mL Methanol gestoppt wurde. Das Reaktionsgemisch wurde auf RT erwärmt, am Rotationsverdampfer von den Lösungsmitteln befreit und ohne vorheriges Filtrieren säulenchromatographisch an Kieselgel aufgereinigt (CH/EA 10:1 → 7:1). Dabei konnten 376 mg des Alkohols **4.28** (umgerechnet 1.68 mmol, 77%; noch etwas Lösungsmittel enthalten) als leicht gelbliches Öl isoliert werden. Der Enantiomerenüberschuss betrug chiralen gaschromatographischen Untersuchungen zufolge 90%. Folgende Ofenprogramme wurden dabei benutzt: achiral: 40 °C, 0 min, 5 °C/min → 125 °C, 0 min (Peak: 13.55 min); chiral: 60 °C, 0 min, 0.1 °C/min → 82 °C, 0 min (Peaks: 197.5 min und 199.25 min).

DC:
$$R_f = 0.30$$
 (CH/EA = 4:1, Anisaldehyd, braun).

¹ H-NMR:	300 MHz, CDCl ₃ ; $\delta = 0.19$ (s, 9H, Si(CH ₃) ₃), 1.28 (d, $J = 6.2$ Hz, 3H,
	1-H), 4.35 (dq, $J = 6.1$ Hz, 1H, 2-H), 5.72 (d, $J = 15.73$ Hz, 1H, 4-H),
	6.24 (dd, <i>J</i> = 15.73, 5.85 Hz, 1H, 3-H).
¹³ C-NMR:	126 MHz, CDCl ₃ ; δ = 0.0 (Si(CH ₃) ₃), 23.1 (C1), 68.3 (C2), 95.4 (C6), 103.2 (C5), 109.3 (C4), 147.9 (C3).
IR:	(Film) v = 3384 (bs), 2962 (w), 2901 (w), 2172 (w), 2141 (w), 1678 (w), 1592 (w), 1363 (w), 1250 (m), 1068 (m), 958 (s), 839 (s), 759 (m), 700 (w), 649 (m).

Spez. Drehung: $[\alpha]_{D}^{22} = -8.3 \ (c = 1, \text{CHCl}_{3}).$

HRMS: (ESI) $C_9H_{17}OSi [M+H]^+$; ber.: 169.1043, gef.: 169.1040.

4.6.2.4. (*S*)-1-((2*S*,3*S*)-3-((Trimethylsilyl)ethinyl)oxiran-2-yl)ethanol (4.29)

V 4.5 (HU 260)

Das Titan(IV)-isopropylat wurde unmittelbar vor der Reaktion frisch destilliert (1.1 mbar, 75 °C Kopftemperatur, 105 °C Ölbad). Davon wurden 0.18 mL (0.59 mmol, 0.9 Äq.) in 1.6 mL CH₂Cl₂ abs. (zusätzlich über Molsieb getrocknet) vorgelegt, bei –30 °C langsam mit 0.12 mL L-(+)-DET (0.71 mmol, 1.1 Äq.) versetzt und 30 min gerührt, bevor 111 mg des in 0.2 mL CH₂Cl₂ abs. gelösten Alkohols **4.28** (0.66 mmol) langsam hinzugetropft wurden. Nach 1 h weiteren Rührens wurden 64.0 mg des zuvor über Molsieb (3Å) getrockneten TBHP (0.71 mmol, 1.1 Äq.) bei –30 °C hinzugetropft, und es wurde eine weitere Stunde gerührt, bevor das Reaktionsgemisch für 2 d bei –21 °C stehen gelassen wurde. Zur
wässrigen Aufarbeitung wurde es dann auf RT erwärmt und mit einer wässrigen Lösung aus 392 mg FeSO₄ ⁺ 7 H₂O (2.61 mol, 4.0 Äq.) und 319 mg Weinsäure (2.07 mol, 3.1 Äq.) versetzt, wobei der pH-Wert des Zweiphasensystems mittels ges. NaHCO₃-Lösung von 2 auf 4-5 eingestellt wurde. Das Gemisch wurde dann mit CH₂Cl₂ (10 mL) verdünnt, und die wässrige Phase nach der Phasentrennung 2 x mit CH₂Cl₂ (jeweils 10 mL) extrahiert. Nach dem Trocknen über Na₂SO₄, dem Einengen am Rotationsverdampfer und der säulenchromatographischen Aufreinigung an Kieselgel (CH/EA 20:1 \rightarrow 4:1) konnten 104 mg des Epoxids **4.30** (umgerechnet 0.46 mmol, 81%; noch etwas Lösungsmittel enthalten) als farbloses Öl isoliert werden. Die Diastereomerenreinheit betrug 98% (laut GC). Folgende gaschromatographische Ofenprogramme wurden dabei benutzt: achiral: 40 °C, 0 min, 5 °C/min \rightarrow 125 °C, 0 min (Peak: 13.55 min Edukt, 14.9 min Produkt; Diastereomere: 14.81 min und 14.96 min); chiral: 55 °C, 0 min, 0.1 °C/min \rightarrow 89 °C, 0 min (Edukt-Enantiomere: 235.9 und 238.03 min; Produkte: Diast. 1: 269,55 und 272.91 min; Diast. 2: 299.84 und 300.09 min).

DC: $R_f = 0.30$ (CH/EA = 4:1, Anisaldehyd, schwarz-braun).

- ¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 0.18$ (s, 9H, Si(CH₃)₃), 1.29 (d, J = 6.53 Hz, 3H, Me), 3.20 (dd, J = 2.57, 2.57 Hz, 1H, 2-H), 3.44 (d, J = 2.3 Hz, 1H, 3-H), 4.01 (qd, J = 6.43, 2.69 Hz, 1H, 1-H).
- ¹³C-NMR: 101 MHz, $CDCl_3$; $\delta = -0.2$ (Si(CH₃)₃), 18.6 (Me), 42.1 (C3), 63.4 (C1), 64.2 (C2), 90.3 (C5), 101.3 (C4).
- IR: (Film) v = 3419 (bs), 2963 (w), 2900 (w), 2181 (w), 1430 (w), 1372 (w), 1343 (w), 1305 (w), 1250 (m), 1147 (w), 1088 (w), 1061 (m), 1028 (m), 1004 (m), 945 (w), 839 (s), 759 (m), 734 (m), 700 (m), 666 (m), 590 (w), 534 (w), 512 (m).

Spez. Drehung: $[\alpha]_{D}^{25} = +0.83 \ (c = 1, \text{CHCl}_{3}).$

HRMS: (ESI) $C_9H_{17}O_2Si [M+H]^+$; ber.: 185.0990, gef.: 185.0992.

4.6.2.1. (*R*)-(*S*)-1-((2*S*,3*S*)-3-((Trimethylsilyl)ethinyl)oxiran-2-yl)ethyl-3,3,3-trifluor-2-methoxy-2-phenylpropanoat und (*S*)-(*S*)-1-((2*S*,3*S*)-3-((Trimethylsilyl)ethinyl)oxiran-2-yl)ethyl-3,3,3-trifluor-2-methoxy-2-phenylpropanoat

V 4.6 (HU 248-A, 249-A)

In zwei getrennten Ansätzen wurden 9.40 mg und 6.40 mg des in 5 mL bzw. 3 mL CH₂Cl₂ abs. gelösten Alkohols 4.29 (0.05 mmol und 0.04 mmol) bei RT im ersten Fall mit 0.03 mL (R)-Moshersäurechlorid (0.14 mmol, 2.5 Äq.) und 40.2 mg DMAP (0.33 mmol, 6 Äq.) und im zweiten Fall mit 0.02 mL (S)-Moshersäurechlorid (0.09 mmol, 2.5 Äq.) und 36.1 mg DMAP (0.29 mmol, 8 Äq.) versetzt und 12 h lang gerührt. Dann wurden die Reaktionsgemische mit jeweils 2 mL H₂O und 2 mL CH₂Cl₂ verdünnt, die Phasen getrennt, die wässrigen 3 x mit jeweils 2 mL CH₂Cl₂ extrahiert und die organischen Phasen nach dem Trocknen über Na_2SO_4 vom Lösungsmittel befreit. Eine jeweilige erste säulenchromatographische Aufreinigung an Kieselgel (CH/EA 1:0 \rightarrow 10:1) lieferte die für die NMR-Analysen benötigten (S)- und (R)-Mosherester in einem noch nicht vollständig sauberen, jedoch für die Analyse ausreichenden Zustand.

(S)-Mosherester (HU-248-A):

¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 0.17$ (s, 9H, Si(CH₃)₃), 1.35 (d, J = 6.53 Hz, 3H, Me), 3.26 (dd, J = 3.51, 2.01 Hz, 1H, 2-H), 3.37 (d, J = 2.01 Hz, 1H, 3-H), 3.54 (s, 3H, OMe), 5.23 (qd, J = 6.78, 4.02 Hz, 1H, 1-H). (*R*)-Mosherester (HU-249-A):

¹**H-NMR:** 400 MHz, $CDCl_3$; $\delta = 0.17$ (s, 9H, Si($CH_3)_3$), 1.43 (d, J = 6.53 Hz, 3H, Me), 3.14 (dd, J = 4.27, 2.01 Hz, 1H, 2-H), 3.30 (d, J = 2.01 Hz, 1H, 3-H), 3.56 (s, 3H, OMe), 5.14 (qd, J = 6.57, 4.64 Hz, 1H, 1-H).

→ Nach *Kahisawa et al.*^[58] wird die vorhergesagte relative Konfiguration bestätigt.

4.6.2.2. *tert*-Butyldimethyl((*S*)-1-((2*R*,3*S*)-3-((trimethylsilyl)ethinyl)oxiran-2-yl)ethoxy)silan (4.30)

V 4.7 (HU 267-B)

Bei 0 °C wurde eine Lösung von 783 mg des Epoxids **4.29** (4.25 mmol) in 7 mL CH_2Cl_2 mit 0.99 mL TBSOTf (1.14 g, 4.31 mmol, 1.0 Äq.), 365 mg Imidazol (5.36 mmol, 1.3 Äq.) und 44.2 mg DMAP (0.36 mmol, 0.1 Äq.) versetzt und für 16 h unter Rühren langsam auf RT kommen gelassen. Zum Beenden der Reaktion wurden 5 mL H_2O hinzugegeben. Nach dem Versetzen des Reaktionsgemisches mit 5 mL CH_2Cl_2 wurden die Phasen getrennt, die

wässrige 3 x mit je 5 mL CH₂Cl₂ extrahiert und die vereinigten organischen Phasen mit 10 mL H₂O gewaschen. Das Rohprodukt wurde über Na₂SO₄ getrocknet, filtriert und am Rotationsverdampfer vom Lösungsmittel befreit. Die säulenchromatographische Aufreinigung an Kieselgel (CH/EA 300:1 \rightarrow 200:1) lieferte 1.027 g des Silylethers **4.30** (3.44 mmol, 94%) als farbloses Öl.

DC: $R_f = 0.57$ (CH/EA = 30:1, Anisaldehyd, Schwarz, nicht UV).

- ¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 0.04$ (s, 6H, Si(CH₃)₂), 0.17 (s, 9H, Si(CH₃)₃), 0.86 (s, 9H, SiC(CH₃)₃), 1.23 (d, J = 6.53 Hz, 3H, Me), 3.06 (dd, J = 3.01, 2.26 Hz, 1H, 2-H), 3.34 (d, J = 2.26 Hz, 1H, 3-H), 3.85 (qd, J = 6.32, 3.14 Hz, 1H, 1-H).
- ¹³C-NMR: 101 MHz, CDCl₃; $\delta = -4.8$ (Si(CH₃)₂), -0.2 (Si(CH₃)₃), 18.3 (Me), 20.7 (SiC(CH₃)₃), 25.9 (SiC(CH₃)₃), 42.4 (C3), 63.7 (C1), 66.0 (C2), 89.5 (C5), 102.1 (C4).
- IR: (Film) v = 2957 (m), 2930 (m), 2897 (w), 2858 (m), 2183 (w), 1472 (w), 1463 (w), 1374 (w), 1361 (w), 1300 (w), 1250 (s), 1151 (m), 1101 (m), 1070 (s), 1042 (m), 1019 (m), 988 (w), 959 (m), 907 (w), 881 (m), 835 (s), 811 (s), 776 (s), 760 (s), 700 (m), 670 (m), 656 (m), 608 (w), 588 (w), 566 (w), 540 (w), 486 (m).

Spez. Drehung: $[\alpha]_{D}^{25} = -18.1 \ (c = 1, \text{CHCl}_{3}).$

HRMS: (ESI) $C_{15}H_{31}O_2Si_2[M+H]^+$; ber.: 299.1857, gef.: 299.1858.

4.6.2.3. *tert*-Butyl((S)-1-((2R,3S)-3-ethinyloxiran-2-yl)ethoxy)dimethylsilan

V 4.8 (HU 271)

Etwa 4 mL einer gesättigten Lösung von K_2CO_3 in MeOH wurden zu 1.03 g des Silylethers **4.30** (3.34 mmol) hinzugegeben und 1.5 h lang bei RT gerührt. Nach der Zugabe des Reaktionsgemisches zu ca. 50 mL einer gesättigten NH₄Cl-Lösung und dem Versetzen mit 20 mL CH₂Cl₂ wurden die Phasen getrennt, die wässrige 2 x mit je 20 mL CH₂Cl₂ extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet und vom Lösungsmittel befreit. Eine abschließende säulenchromatographische Aufreinigung an Kieselgel (CH/EA 30:1) lieferte 755 mg des terminalen Alkins (umgerechnet 3.19 mmol, 95%; noch etwas EA enthalten) als farbloses Öl.

DC:
$$R_f = 0.36$$
 (CH/EA = 30:1, Anisaldehyd, Schwarz, nicht UV).

- ¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 0.04$ (s, 6H, Si(CH₃)₂), 0.86 (s, 9H, SiC(CH₃)₃), 1.23 (d, J = 6.27 Hz, 3H, Me), 2.30 (d, J = 1.51 Hz, 1H, 5-H), 3.07 (dd, J = 3.26, 2.26 Hz, 1H, 2-H), 3.33 (dd, J = 1.76, 1.76 Hz, 1H, 3-H), 3.84 (qd, J = 6.36, 3.26 Hz, 1H, 1-H).
- ¹³C-NMR: 101 MHz, CDCl₃; $\delta = -4.8$ (Si(CH₃)₂), 18.3 (Me), 20.8 (SiC(CH₃)₃), 25.9 (SiC(CH₃)₃), 42.0 (C3), 63.3 (C1), 66.0 (C2), 72.0 (C5), 80.6 (C4).
- IR: (Film) v = 3311 (bw), 2955 (w), 2930 (w), 2888 (w), 2858 (w), 1473 (w), 1463 (w), 1376 (w), 1361 (w), 1253 (m), 1151 (m), 1101 (s), 1057 (m), 1006 (w), 992 (w), 951 (m), 905 (w), 828 (s), 811 (s), 776 (s), 740 (m), 665 (s), 629 (m), 550 (w).

Spez. Drehung: $[\alpha]_{D}^{22} = -0.88 \ (c = 1, \text{CHCl}_3).$

HRMS: (ESI) $C_{12}H_{23}O_2Si [M+H]^+$; ber.: 227.1462, gef.: 227.1461.

4.6.2.4. (2S,3R,5S)-2-(*tert*-Butyldimethylsilyloxy)-7-phenylhepta-4,5-dien-3-ol (4.32)

V 4.9 (HU 272-C)

154 mg LiBr (1.78 mmol, 2.1 Äq.) wurden 5 min bei 300 °C ausgeheizt, ebenso gepulvertes Molsieb (Spatelspitze, 3 Å). Nach dem Abkühlen wurden 366 mg CuBr · SMe₂ (1.78 mmol, 2.1 Äq.) und 10 mL THF hinzugegeben und das Gemisch 10 min lang gerührt, woraufhin sich die Lösung dunkelgrün färbte. Nach dem Kühlen auf -20 °C (Farbänderung zu orangebraun) wurden langsam 1.19 mL Benzylmagnesiumchlorid (1.5 M, 1.78 mmol, 2.1 Äq.) hinzugetropft (Entfärbung zu grau) und das Reaktionsgemisch 1 h bei dieser Temperatur gerührt, bevor es auf -70 °C gebracht wurde. 190 mg des terminalen Alkins (0.84 mmol) wurden in 2 mL THF gelöst und langsam zum Reaktionsgemisch hinzugetropft, wobei 2 x mit jeweils 0.5 mL THF nachgespült wurde. Die Reaktion wurde binnen 4 h auf -10 °C erwärmt und mittels 10 mL gesättigter NH₄Cl-Lösung gestoppt. Zur wässrigen Aufarbeitung wurden 20 mL CH₂Cl₂ hinzugegeben, die Phasen getrennt, die wässrige Phase 2 x mit CH_2Cl_2 (je 10 mL) extrahiert und die vereinigten organischen Phasen über Na_2SO_4 getrocknet und am Rotationsverdampfer von den Lösungsmitteln befreit. Die säulenchromatographische Aufreinigung an Kieselgel (CH/EA 30:1) lieferte 221 mg des Allens 4.32 (umgerechnet 0.68 mmol, 81%; noch etwas EA enthalten) als farbloses Öl. Das Diastereomerenverhältnis betrug den NMR-Messungen zufolge > 95:5.

DC: $R_f = 0.24$ (CH/EA = 10:1, Anisaldehyd, schwarz, UV) (Edukt: $R_f = 0.48$).

- ¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 0.07$ (s, 6H, Si(CH₃)₂), 0.89 (s, 9H, SiC(CH₃)₃), 1.03 (d, J = 6.27 Hz, 3H, 1-H), 3.35 (ddd, J = 6.78, 2.51, 1.76 Hz, 2H, 7-H), 3.70 (qd, J = 6.19, 3.76 Hz, 1H, 2-H), 3.97 (ddd, J = 7.03, 3.76, 1.76 Hz, 1H, 3-H), 5.20 (ddd, J = 9.29, 6.02, 3.01 Hz, 1H, 4-H), 5.46 (dtd, J = 6.67, 6.67, 1.76 Hz, 1H, 6-H), 7.18-7.20 (m, 3H, Ar-H), 7.25-7.31 (m, 2H, Ar-H).
- ¹³C-NMR: 101 MHz, CDCl₃; $\delta = -4.7$ (Si(CH₃)₂), 18.2 (C1), 26.0 (SiC(CH₃)₃), 35.4 (C7), 71.8 (C2), 74.3 (C3), 92.0 (C6), 92.9 (C4), 126.4 (C10, C10'), 128.5 (C9, C9'), 128.7 (C11), 140.0 (C8), 204.3 (C5).
- IR: (Film) v = 3432 (bw), 2955 (m), 2929 (m), 2886 (w), 2857 (m), 1964 (w), 1728 (w), 1604 (w), 1496 (w), 1472 (w), 1454 (w), 1376 (w), 1253 (m), 1083 (s), 1005 (m), 968 (m), 832 (s), 811 (s), 776 (s), 745 (m), 698 (s), 668 (m).
- **Spez. Drehung:** $[\alpha]_D^{23} = +19.5 \ (c = 1, \text{CHCl}_3).$
- **HRMS:** (ESI) $C_{19}H_{31}O_2Si [M+H]^+$; ber.: 319.2088, gef.: 319.2089.

4.6.2.5. (2*S*,3*R*,5*S*)-2-(*tert*-Butyldimethylsilyloxy)-7-phenylhepta-4,5-dien-3ylbenzoat (4.33)

V 4.10 (HU 294)

559 mg des Alkohols **4.32** (1.76 mmol) wurden in 3.5 mL Pyridin (0.5 M) gelöst, auf 0 °C gekühlt und mit 0.41 mL Benzoylchlorid (3.51 mmol, 2.0 Äq.) versetzt. Nach dreistündigem Rühren wurden 20 mL H₂O hinzugegeben, die Phasen getrennt, die wässrige Phase 3 x mit jeweils 20 mL Et₂O extrahiert und die vereinigten organischen Phasen 5 x mit HCl-Lösung (1 M), 3 x mit NaHCO₃-Lösung und 1 x mit NaCl-Lösung (jeweils 10 mL) gewaschen. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch an Kieselgel gereinigt (CH/EA 50:1 \rightarrow 30:1). Es konnten 727 mg des Allens **4.33** (1.72 mmol, 98%) als farbloses Öl isoliert werden.

DC:
$$R_f = 0.41$$
 (CH/EA = 10:1, Anisaldehyd, braun, UV)

- ¹**H-NMR:** 300 MHz, CDCl₃; $\delta = 0.03$ (d, J = 3.29 Hz, 6H, Si(CH₃)₂), 0.88 (s, 9H, SiC(CH₃)₃), 1.12 (d, J = 6.22 Hz, 3H, 1-H), 3.32 (dd, J = 4.03, 5.85 Hz, 2H, 7-H), 4.04 (qd, J = 6.22, 3.66 Hz, 1H, 2-H), 5.31-5.35 (m, 1H, 3-H), 5.38-5.45 (m, 2H, 4-H, 6-H), 7.13-7.25 (m, 5H, Ar-H), 7.42 (dd, J = 7.68, 7.68 Hz, 2H, 14-H, 14'-H), 7.54 (dd, J = 6.83, 6.83 Hz, 1H, 15-H), 8.05 (d, J = 8.05 Hz, 2H, 13-H, 13'-H).
- ¹³C-NMR: 75 MHz, CDCl₃; $\delta = -4.7$ (Si(CH₃)₂), 18.2 (SiC(CH₃)₃), 19.9 (C1), 25.9 (SiC(CH₃)₃), 35.3 (C7), 69.9 (C2), 77.3 (C3), 88.3 (C6), 92.6 (C4), 126.3 (C11), 128.4 (C14, C14'), 128.5 (C10, C10'), 128.6 (C9, C9'), 129.0 (C12), 129.8 (C13, C13'), 133.0 (C15), 139.9 (C8), 165.9 (CO₂-), 205.6 (C5).
- IR: (Film) v = 2955 (m), 2930 (m), 2891 (w), 2856 (m), 1967 (w), 1791 (w), 1720 (s), 1601 (w), 1452 (m), 1376 (w), 1314 (w), 1269 (s), 1212 (m), 1174 (m), 1112 (s), 1069 (s), 1026 (m), 953 (m), 835 (s), 809 (m), 775 (s), 744 (m), 709 (s), 698 (s), 670 (m).

Spez. Drehung: $[\alpha]_{p}^{20} = +81.0 \ (c = 1, \text{CHCl}_{3}).$

HRMS: (ESI) $C_{26}H_{35}O_3Si [M+H]^+$; ber.: 423.2350, gef.: 423.2350.

142

4.6.2.6. (2*S*,3*R*,5*S*)-3-Hydroxy-7-phenylhepta-4,5-dien-2-ylbenzoat (4.35)

V 4.11 (HU 274-B, -C)

260 mg des Allens 4.33 (0.62 mmol) wurden in 7 mL THF gelöst, auf 0 °C gekühlt und mit 388 mg TBAF (1.23 mmol, 2.0 Äq.) versetzt. Nach zweistündigem Rühren wurden nochmals 100 mg TBAF (0.32 mmol, 0.5 Äq.) hinzugegeben und das Reaktionsgemisch eine weitere Stunde gerührt, bevor es durch Zugabe von 10 mL einer gesättigten NH₄Cl-Lösung gestoppt wurde. Die Feststoffe wurden durch Zugabe von H₂O wieder in Lösung gebracht, die Phasen getrennt und die wässrige 3 x mit jeweils 10 mL Et₂O extrahiert. Das vom Lösungsmittel befreite Rohprodukt lieferte nach abschließender säulenchromatographischer Aufreinigung an Kieselgel (CH/EA $30:1 \rightarrow 10:1$) 137 mg (0.44 mmol, 72%) des Regioisomers 4.35 mit der Benzoylgruppe an C2 und 53.2 mg (0.17 mmol, 28%) des gewünschten Alkohols **4.34** als farblose Öle.

DC: $R_f = 0.21$ (NP) und 0.26 (P) (CH/EA = 4:1, Anisaldehyd, grau-braun)

Analytik Regioisomer:

¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 1.31$ (d, J = 6.53 Hz, 3H, 1-H), 3.35 (dd, J = 6.78, 2.76 Hz, 2H, 7-H), 4.31 (ddd, J = 6.27, 3.89, 2.13 Hz, 1H, 3-H), 5.16 (qd, J = 6.44, 4.02 Hz, 1H, 2-H), 5.33 (ddd, J = 9.29, 6.24, 2.92 Hz, 1H, 4-H), 5.54 (ddd, J = 13.55, 6.78, 2.01 Hz, 1H, 6-H), 7.20-7.23 (m, 3H, Ar-H), 7.29-7.33 (m, 2H, Ar-H), 7.43 (dd, J = 7.65, 7.65 Hz, 2H, 14-H, 14'-H), 7.56 (dd, J = 7.40, 7.40 Hz, 1H, 15-H), 8.04 (d, J = 7.03 Hz, 2H, 13-H, 13'-H).

¹³C-NMR: 126 MHz, CDCl₃; $\delta = 15.3$ (C1), 35.4 (C7), 72.4 (C2), 74.2 (C3), 92.0 (C6), 94.2 (C4), 126.5 (C11), 128.5 (C14, C14'), 128.6 (C10, C10'), 128.7 (C9, C9'), 129.8 (C13, C13'), 130.5 (C12), 133.2 (C15), 139.7 (C8), 166.3 (CO₂-), 204.2 (C5). HRMS: (ESI) C₂₀H₂₁O₃ [M+H]⁺; ber.: 309.1485, gef.: 309.1487.

4.6.2.7. (*S*)-1-((2*R*,5*S*)-5-Benzyl-2,5-dihydrofuran-2-yl)ethylbenzoat (4.36)

V 4.12 (HU 278-A)

99 mg des Alkohols **4.35** (0.32 mmol) wurden in 5 mL Dichlorethan gelöst, auf 0 °C gekühlt und mit 8.20 mg Triphenylphosphingold(I)chlorid (0.02 mmol, 5 mol%) und 3.10 mg Silbertetrafluoroborat (0.02 mmol, 5 mol%) versetzt. Da nach 2 h kaum Umsatz zu beobachten war, wurden 6.20 mg Silbertriflat (0.02 mmol, 5 mol%) und weitere 11.3 mg Triphenylphosphingold(I)chlorid (0.02 mmol, 5 mol%) hinzugegeben, woraufhin die Reaktion nach 0.5 h beendet war. Das Reaktionsgemisch wurde mit 1 mL H₂O versetzt, über Celite filtriert, mit 70 mL CH₂Cl₂ nachgespült und vom Lösungsmittel befreit. Eine säulenchromatographische Aufreinigung an Kieselgel (CH/EA $30:1 \rightarrow 10:1$) lieferte 87.3 mg des Dihydrofurans **4.36** (0.28 mmol, 88%) als zähflüssiges gelbes Öl mit einem *dr* von > 95:5 laut NMR.

DC:
$$R_f = 0.44$$
 (CH/EA = 4:1, Anisaldehyd, türkis, UV)

- ¹**H-NMR:** 500 MHz, CDCl₃; $\delta = 1.34$ (d, J = 6.50 Hz, 3H, Me), 2.83 (dd, J = 13.38, 7.27 Hz, 2H, 6-H), 4.95 (dddd, J = 5.74, 3.82, 2.10, 2.10 Hz, 1H, 2-H), 5.10-5.14 (m, 1H, 5-H), 5.17 (qd, J = 6.50, 3.82 Hz, 1H, 1-H), 5.84 (ddd, J = 6.12, 1.72, 1.72 Hz, 1H, 4-H), 5.93 (ddd, J = 6.12, 1.72, 1.72 Hz, 1H, 4-H), 5.93 (ddd, J = 6.12, 1.72, 1.72 Hz, 1H, 3-H), 7.20-7.24 (m, 3H, Ar-H), 7.28-7.30 (m, 2H, Ar-H), 7.43 (dd, J = 7.84, 7.84 Hz, 2H, 13-H, 13'-H), 7.55 (dd, J = 7.46, 7.46 Hz, 1H, 14-H), 8.04 (d, J = 8.41 Hz, 2H, 12-H, 12'-H).
- ¹³C-NMR: 126 MHz, CDCl₃; $\delta = 15.3$ (Me), 42.8 (C6), 73.1 (C1), 87.8 (C5), 88.2 (C2), 126.4 (C10), 126.5 (C4), 128.4 (C8, C8'), 128.4 (C13, C13'), 129.7 (C9, C9'), 129.8 (C12, C12'), 130.7 (C11), 131.9 (C3), 133.0 (C14), 137.8 (C7), 166.1 (CO₂-).
- IR: (Film) v = 3084 (w), 3064 (w), 3029 (w), 2977 (w), 2935 (w), 2856 (w), 1714 (s), 1604 (w), 1584 (w), 1495 (w), 1451 (m), 1354 (w), 1314 (m), 1270 (s), 1176 (w), 1110 (m), 1097 (m), 1069 (s), 1056 (s), 1026 (m), 938 (w), 842 (w), 794 (w), 710 (s), 699 (s), 676 (w), 639 (w).

Spez. Drehung:	$\left[\alpha\right]_{D}^{20} = +155.1 \ (c = 1, \text{CHCl}_3).$
HRMS:	(ESI) C ₂₀ H ₂₁ O ₃ [M+H] ⁺ ; ber.: 309.1485, gef.: 309.1492.

4.6.2.8. (S)-1-((2R,5S)-5-Benzyl-3,4-dihydroxytetrahydrofuran-2-yl)ethylbenzoat (4.37)

V 4.13 (HU 286-B, -C)

Zu einem *t*-BuOH/Aceton-Gemisch (je 0.28 mL) wurden 51.2 mg des Dihydrofurans **4.36** (0.17 mmol) hinzugegeben und die Lösung mittels Kryostat auf -4 °C gekühlt. Dann wurden 45.0 mg des *N*-Methylmorpholin-*N*-oxid · H₂O -Komplexes (0.33 mmol, 2.0 Äq.) und 0.17 mL einer OsO₄-Lösung (in *t*-BuOH, 2.5wt%, 0.02 mmol, 0.1 Äq.) hinzugegeben und die Reaktion 20 h lang bei dieser Temperatur gerührt. Anschließend wurde das Reaktionsgemisch direkt eingeengt und säulenchromatographisch an Kieselgel (CH/EA 2:1) gereinigt. Es konnten 16.1 mg des Diols **4.37** (0.05 mmol, 28%) als bräunlicher Feststoff und 24.0 mg des Diastereomers **4.38** (umgerechnet 0.06 mmol, 36%; noch etwas Lösungsmittel enthalten) als zähflüssiges bräunliches Öl isoliert werden.

Diol 4.37:

DC: $R_f = 0.49$ (CH/EA = 1:1, Anisaldehyd, schwach grau, UV).

¹**H-NMR:** 500 MHz, CDCl₃; $\delta = 1.50$ (d, J = 6.21 Hz, 3H, Me), 2.65 (bs, 1H, -OH), 2.86 (dd, J = 14.10, 6.55 Hz, 1H, 6-H), 3.06 (dd, J = 14.27, 4.20 Hz, 1H, 6-H), 3.66 (dd, J = 8.98, 2.27 Hz, 1H, 2-H), 3.91-3.94 (m, 1H, 4-H), 3.95-3.97 (m, 1H, 3-H), 4.10 (ddd, J = 7.89, 6.71, 4.20 Hz, 1H, 5-H), 5.30 (qd, J = 8.90, 6.38 Hz, 1H, 1-H), 7.21-7.25 (m, 1H, Ar-H), 7.30 (d, J = 4.36, 4H, Ar-H), 7.44 (dd, J = 7.72, 7.72 Hz, 2H, 13-H, 13'-H), 7.58 (dd, J = 7.47, 7.47 Hz, 1H, 14-H), 8.02 (d, J = 7.89 Hz, 2H, 12-H, 12'-H).

¹³C-NMR: 126 MHz, CDCl₃; $\delta = 17.6$ (Me), 39.2 (C6), 69.6 (C1), 71.0 (C3), 76.1 (C5), 82.2 (C4), 82.3 (C2), 126.4 (C10), 128.4 (C8, C8'), 128.6 (C9, C9'), 129.7 (C11), 129.9 (C13, C13'), 130.0 (C12, C12'), 133.7 (C14), 138.1 (C7), 167.5 (CO₂-).

Diastereomer 4.38:

DC: $R_f = 0.34$ (CH/EA = 1:1, Anisaldehyd, schwach grau, UV).

- ¹**H-NMR:** 500 MHz, CDCl₃; $\delta = 1.43$ (d, J = 6.55 Hz, 3H, Me), 2.73 (bs, 1H, -OH), 2.98 (dd, J = 13.77, 6.38 Hz, 1H, 6-H), 3.08 (dd, J = 13.68, 8.14 Hz, 1H, 6-H), 3.99-4.02 (m, 2H, 5-H, 2-H), 4.17 (td, J = 5.67, 3.27 Hz, 1H, 5-H), 4.38 (dd, J = 7.22, 4.70 Hz, 1H, 3-H), 5.33 (qd, J = 6.55, 5.04 Hz, 1H, 1-H), 7.19-7.27 (m, 5H, Ar-H), 7.43 (dd, J = 7.72, 7.72 Hz, 2H, 13-H, 13'-H), 7.56 (dd, J = 7.47, 7.47 Hz, 1H, 14-H), 8.03 (d, J = 7.22 Hz, 2H, 12-H, 12'-H).
- ¹³C-NMR: 126 MHz, CDCl₃; $\delta = 16.3$ (Me), 35.5 (C6), 72.1 (C1), 72.5 (C3), 74.5 (C5), 82.4 (C4), 83.6 (C2), 126.5 (C10), 128.6 (C8, C8'), 128.6 (C9, C9'), 129.3 (C13, C13'), 129.7 (C12, C12'), 130.5 (C11), 133.2 (C14), 138.0 (C7), 166.2 (CO₂-).

4.6.2.9. (S)-1-((2R,3R,4S,5S)-5-Benzyl-3-hydroxy-4-methoxytetrahydrofuran-2yl)ethylbenzoat (4.39)

V 4.14 (HU 288-A)

24.0 mg des Diols 4.38 (0.07 mmol) wurden in 1.2 mL Toluol abs. gelöst, mit 28.1 mg Dibutylzinnoxid (0.11 mmol, 1.6 Äq.) und Molsieb (3Å) versetzt und 5 h lang unter Reflux gerührt. Dann wurde das Lösungsmittel am Rotationsverdampfer entfernt und der feste Rückstand in 1.2 mL absolutem Dimethylformamid gelöst. 16.1 mg Methyliodid (0.11 mmol, 1.6 Äq.) und 13.7 mg Caesiumfluorid (0.09 mmol, 1.3 Äq.) wurden hinzugegeben und das Gemisch 4 h bei 60 °C gerührt. Nach Beenden der Reaktion durch Zugabe von 1 mL H₂O wurden die Phasen getrennt, die wässrige 3 x mit CH₂Cl₂ (jeweils 5 mL) extrahiert und schließlich die vereinigten organischen Phasen mit einer gesättigten (20 mL) NaCl-Lösung gewaschen und über Na_2SO_4 getrocknet. Die säulenchromatographische Aufreinigung an Kieselgel (CH/EA 10:1 \rightarrow 4:1) lieferte 22.2 mg des Methylethers 4.39 (0.06 mmol, 82%) als weiße Kristalle und 2.50 mg anderweitig methylierten Regioisomers (0.01 mmol, 10%) als gelbliches Öl.

- **DC:** $R_f = 0.14$ (CH/EA = 4:1, Anisaldehyd, grün, UV); NP: $R_f = 0.09$ (CH/EA = 4:1, Anisaldehyd, grau \rightarrow bordeaux, UV).
- ¹**H-NMR:** 500 MHz, CDCl₃; $\delta = 1.41$ (d, J = 6.12 Hz, 3H, Me), 2.54 (bs, 1H, -OH), 2.95 (dd, J = 13.38, 5.74 Hz, 1H, 6-H), 3.15 (dd, J = 13.38, 8.03 Hz, 1H, 6-H), 3.37 (s, 3H, OCH₃), 3.96 (dd, J = 6.88, 4.59 Hz, 1H, 3-H), 4.03 (dd, J = 6.88, 5.74 Hz, 1H, 2-H), 4.07-4.11 (m, 2H, 4-H, 5-H), 5.31 (qd, J = 6.12, 5.74 Hz, 1H, 1-H), 7.19-7.23 (m, 1H, Ar-H), 7.27 (d, J = 4.21 Hz, 4H, Ar-H), 7.45 (dd, J = 7.65, 7.65 Hz, 2H, 13-H, 13'-H), 7.58 (dd, J = 7.65, 7.65 Hz, 1H, 14-H), 8.03 (dd, J = 8.41, 1.15 Hz, 2H, 12-H, 12'-H).
- ¹³C-NMR: 126 MHz, CDCl₃; $\delta = 16.6$ (Me), 35.4 (C6), 58.3 (OCH₃), 69.4 (C1), 71.8 (C4), 82.0 (C5), 83.3 (C2), 83.8 (C3), 126.4 (C10), 128.5 (C8, C8'), 128.5 (C9, C9'), 129.5 (C13, C13'), 129.7 (C12, C12'), 130.6 (C11), 133.1 (C14), 138.3 (C7), 166.1 (CO₂-).

IR: (Film) v = 3495 (bs), 3062 (w), 3029 (w), 2983 (w), 2934 (w), 1714 (s), 1602 (w), 1584 (w), 1495 (w), 1452 (m), 1379 (w), 1336 (w), 1314 (m), 1272 (s), 1206 (w), 1177 (w), 1112 (s), 1070 (s), 1026 (m), 1000 (w), 967 (w), 937 (w), 889 (w), 850 (w), 767 (w), 749 (w), 712 (s).

Spez. Drehung: $[\alpha]_{D}^{22} = +4.9 \ (c = 1, \text{CHCl}_{3}).$

HRMS: (ESI) $C_{21}H_{25}O_5$ [M+H]⁺; ber.: 357.1697, gef.: 357.1704.

4.6.2.10. Methyl-4-((3*S*,5*R*,6*R*)-6-((*tert*-butyldimethylsilyl)oxy)-5-hydroxyhepta-2,3dien-1-yl)benzoat (4.41)

V 4.15 (HU 384-K)

$$\begin{array}{c} 1.) Zn, LiCl, (CH_2Br)_2, TMSCl, THF, 0 \ ^C\\ 2.) LiBr, CuBr \cdot SMe_2, THF, -30 \ ^C\\ 3.) TMSCl, -40 \ ^C, 0 \ ^O\\ 0 \ ^O\ 0 \ ^O\\ 0 \ ^O\ 0 \ ^$$

211 mg LiCl (4.98 mmol, 5.5 Äq.) wurden 10 min lang bei 400 °C ausgeheizt und unter Argon mit 310 mg Zink (4.74 mmol, 5.3 Äq.), 1 mL THF und 0.01 mL 1,2-Dibromethan (0.12 mmol, 0.15 Äq.) versetzt. Das Gemisch wurde 3 x kurz bis ca. 70 °C (mittels Heißluftfön) erhitzt und nach dem Abkühlen mit 3.00 μ L TMSCl versetzt (0.02 mmol, 0.03 Äq.; ausgehend von einer Stammlösung aus 0.03 mL TMSCl in 0.27 mL THF, davon 0.03 mL entnommen). Dann wurde es erneut 3 x bis zum Rückfluss erhitzt und auf 0 °C gekühlt. Daraufhin wurden langsam (innerhalb von 2 h) 499 mg des *para*-substituierten Benzylchlorids **4.40** (2.70 mmol, 3 Äq.), gelöst in 1 mL THF, bei 0 °C hinzugetropft (+ 0.3 mL zum Nachspülen), das Reaktionsgemisch weitere zwei Stunden bei RT gerührt und anschließend noch eine Stunde zum Absetzen der festen Partikel stehen gelassen. Parallel wurden 235 mg des Lithiumbromids (2.70 mmol, 3 Äq.) 10 min lang bei 300 °C ausgeheizt und nach dem Abkühlen unter Argon mit 556 mg CuBr · SMe₂ (2.70 mmol,

3 Äq.) und 1 mL THF versetzt. Dieses Gemisch wurde 10 min lang bei RT gerührt, woraufhin sich die Lösung dunkelgrün färbte. Nach dem Kühlen auf -25 °C (Farbänderung zu orange-braun) wurde langsam (1 h) die ebenfalls auf -30 °C gekühlte, abgestandene intensiv grün-gelbe Zink-Grignard-Lösung (in kleineren Portionen zur Vermeidung des Erwärmens in der Spritze) hinzugetropft, woraufhin sich das Reaktionsgemisch zu einem neon-grün-gelben Farbton veränderte. Das Grignard-Gefäß wurde anschließend mit 1 mL THF gespült, welches ebenfalls nach dem Abkühlen zur Reaktionslösung hinzugegeben wurde. HPLC-Filter verstopften bei dem Versuch, das Stehenlassen des Grignards zum Absetzen der Feststoffe zu umgehen. Nach 20-minütigem Rühren bei -25 °C wurde das zuvor in 0.3 mL THF gelöste und 2 h lang über Molsieb (3 Å) gerührte Epoxid (204 mg, 0.90 mmol) bei -40 °C langsam (40 min) zum vermeintlich entstandenen Cuprat hinzugegeben. Das Reaktionsgemisch wurde über Nacht (8 h) auf 16 °C erwärmt und mit 10 mL gesättigter NH₄Cl-Lösung versetzt. Zur wässrigen Aufarbeitung wurden 20 mL Et₂O hinzugegeben, die Phasen getrennt, die wässrige Phase 2 x mit Et₂O (je 10 mL) extrahiert die organischen und vereinigten Phasen über Na₂SO₄ getrocknet und am Rotationsverdampfer von den Lösungsmitteln befreit. Die säulenchromatographische Aufreinigung an Kieselgel (CH/EA 30:1 → 10:1) lieferte 30.1 mg des Allens 4.41 (umgerechnet 0.07 mmol, 8%; abzüglich Wurtzkupplungsprodukt, gequenchten Grignard und Lösungsmittel) als farbloses Öl. Das Diastereomerenverhältnis betrug der NMR-Messung zufolge > 95:5. Zudem konnten 23% des eingesetzten Epoxids reisoliert, sowie große Mengen des zum Toluol-Derivat protonierten Grignards und mindestens 7% des Homokupplungsproduktes identifiziert werden.

Diverse andere Nebenprodukte konnten beobachtet werden; bei dem wiederholten Versuchsansatz mit etwas schnellerer Zugabe des Epoxids zur Cupratlösung und anschließend leicht höheren Temperaturen konnte hingegen 38% des S_N 2-Produktes und lediglich 5% des gewünschten S_N 2'-Produktes **4.41** isoliert werden.

DC: $R_f = 0.59$ (CH/EA = 4:1, Anisaldehyd, grau); S_N 2-NP: $R_f = 0.34$ (türkis beim Erhitzen, dann braun); Edukt: $R_f = 0.48$.

- ¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 0.07$ (s, 6H, Si(CH₃)₂), 0.89 (s, 9H, SiC(CH₃)₃), 1.00 (d, J = 6.27 Hz, 3H, 1-H), 2.25 (bs, 1H, OH), 3.40 (ddd, J = 6.78, 2.51, 2.51 Hz, 2H, 7-H), 3.69 (qd, J = 6.27, 3.76 Hz, 1H, 2-H), 3.91 (s, 3H, OCH₃), 3.95-3.99 (m, 1H, 3-H), 5.22 (ddd, J = 9.50, 6.30, 3.00 Hz, 1H, 4-H), 5.46 (ddd, J = 13.30, 7.03, 2.01 Hz, 1H, 6-H), 7.28 (d, J = 8.53 Hz, 2H, 9-H, 9-H'), 7.97 (d, J = 8.53 Hz, 2H, 10-H, 10-H').
- ¹³C-NMR: 101 MHz, CDCl₃; $\delta = -4.7$ (Si(CH₃)₂), 18.2 (C1), 25.9 (SiC(CH₃)₃), 35.4 (C7), 52.2 (OCH₃), 71.7 (C2), 74.2 (C3), 92.1 (C6), 92.3 (C4), 128.4 (C11), 128.8 (C9, C9'), 129.9 (C10, C10'), 145.4 (C8), 167.1 (COO), 204.5 (C5).
- IR: (Film) v = 3504 (bw), 2953 (m), 2929 (m), 2886 (w), 2856 (m), 1964 (w), 1722 (s), 1611 (m), 1472 (w), 1462 (w), 1436 (m), 1414 (w), 1374 (w), 1278 (s), 1253 (s), 1179 (m), 1104 (s), 1020 (m), 968 (m), 834 (s), 811 (m), 777 (s), 761 (m), 704 (w), 671 (w).

Spez. Drehung: $[\alpha]_{p}^{25} = +34.8 \ (c = 1, \text{CHCl}_{3}).$

HRMS: (ESI) $C_{21}H_{33}O_4Si [M+H]^+$; ber.: 377.2143, gef.: 377.2143.

4.6.2.11. (2*S*,3*R*,5*S*)-2-Hydroxy-7-phenylhepta-4,5-dien-3-ylbenzoat (4.34)

V 4.16 (HU 297-C)

500 mg des Silylethers **4.33** (1.18 mmol) wurden in 1.43 mL THF gelöst und bei RT mit 7.13 mL einer HF · Py-Lösung versetzt (Lösung angesetzt aus: 1.27 mL HF · Py (60-75%, ca. 10 Äq.), 2.17 mL Py und 7 mL THF). Nach 16-stündigem Rühren wurde die Reaktionslösung in 15 mL einer gesättigten NaHCO₃-Lösung geschüttet, die Phasen wurden getrennt, die wässrige 3 x mit Et₂O (je 30 mL) extrahiert, und die vereinigten organischen Phasen schließlich 2 x mit HCl (1N) und 1 x mit gesättigter NaCl-Lösung (je 10 mL) gewaschen und über Na₂SO₄ getrocknet. Eine abschließende säulenchromatographische Aufreinigung an Kieselgel (CH/EA $30:1 \rightarrow 10:1$) des am Rotationsverdampfer vom Lösungsmittel befreiten Rohproduktes lieferte 43 mg (0.14 mmol, 12%) des isomerisierten Alkohols **4.35** und 371 mg (umgerechnet 0.93 mmol, 79%; noch etwas EA enthalten) des gewünschten Alkohols **4.34** als farblose Öle.

DC: $R_f = 0.25$ (CH/EA = 4:1, Anisaldehyd, lila-braun).

- ¹**H-NMR:** 400 MHz, CDCl₃; $\delta = 1.19$ (d, J = 6.53 Hz, 3H, 1-H), 3.34 (dd, J = 6.65, 2.89 Hz, 2H, 7-H), 3.99 (qd, J = 6.27, 4.02, Hz, 1H, 2-H), 5.32 (ddd, J = 10.04, 6.02, 3.01 Hz, 1H, 4-H), 5.38 (ddd, J = 7.28, 4.02, 1.25 Hz, 1H, 3-H), 5.54 (ddd, J = 6.78, 6.02, 1.25 Hz, 1H, 6-H), 7.13-7.25 (m, 5H, Ar-H), 7.44 (dd, J = 7.65, 7.65 Hz, 2H, 14-H, 14'-H), 7.58 (dd, J = 7.40, 7.40 Hz, 1H, 15-H), 8.04 (d, J = 7.03 Hz, 2H, 13-H, 13'-H).
- ¹³C-NMR: 101 MHz, CDCl₃; $\delta = 18.3$ (C1), 35.1 (C7), 69.4 (C2), 76.5 (C3), 88.3 (C6), 93.5 (C4), 126.5 (C11), 128.5 (C14, C14'), 128.5 (C10, C10'), 128.7 (C9, C9'), 129.8 (C13, C13'), 130.3 (C12), 133.3 (C15), 139.5 (C8), 165.9 (CO₂-), 205.8 (C5).

IR: (Film) v = 3440 (bs), 3062 (w), 3029 (w), 2978 (w), 2932 (w), 1967 (w), 1716 (s), 1601 (w), 1584 (w), 1494 (w), 1451 (m), 1315 (m), 1267 (s), 1177 (w), 1110 (s), 1097 (s), 1069 (s), 1026 (m), 956 (w), 872 (w), 744 (w), 709 (s), 698 (s), 536 (w).

Spez. Drehung: $[\alpha]_{D}^{25} = +99.8 \ (c = 1, \text{CHCl}_{3}).$

HRMS: (ESI) $C_{20}H_{21}O_3$ [M+H]⁺; ber.: 309.1485, gef.: 309.1487.

4.6.2.12. (2S,3R,6S)-6-Benzyl-2-methyl-3,6-dihydro-2H-pyran-3-ylbenzoat (4.42)

V 4.17 (HU 300-C)

191 mg des Alkohols **4.34** (0.54 mmol) wurden in 10 mL Et₂O gelöst und mit 16.1 mg Triphenylphosphingold(I)chlorid (0.03 mmol, 5 mol%) und 8.20 mg Silbertriflat (0.03 mmol, 5 mol%) versetzt. Nach 3.5-stündigem Rühren wurde die Reaktion mittels Zugabe von 2 mL H₂O beendet, das Gemisch über Celite filtriert (ca. 2 cm hoch), mit 70 mL CH₂Cl₂ nachgespült und vom Lösungsmittel befreit. Eine säulenchromatographische Aufreinigung an Kieselgel (CH/EA 30:1) lieferte 126 mg des Dihydropyrans **4.42** (umgerechnet 0.40 mmol, 74%; noch EA enthalten) als leicht gelbliches Öl mit einem *dr* von > 95:5 laut NMR.

DC: $R_f = 0.56$ (CH/EA = 4:1, Anisaldehyd, brombeerfarben, UV).

¹**H-NMR:** 500 MHz, CDCl₃; $\delta = 1.31$ (d, J = 6.53 Hz, 3H, 1-H), 2.87 (dd, J = 13.55, 6.78 Hz, 2H, 7-H), 3.07 (dd, J = 13.55, 7.28 Hz, 2H, 7-H), 4.13 (dq, J = 6.53, 5.52 Hz, 1H, 2-H), 4.44 (td, J = 7.03, 3.20, 1.76 Hz,

153

1H, 6-H), 5.17 (ddd, 1H, J = 5.27, 2.51, 2.01 Hz, 3-H), 5.88 (ddd, 1H, J = 10.29, 2.51, 1.76 Hz, 4-H), 5.93 (ddd, 1H, J = 10.54, 2.01, 1.00 Hz, 5-H), 7.29-7.30 (m, 3H, Ar-H), 7.34-7.37 (m, 2H, Ar-H), 7.50 (dd, J = 7.84, 7.84 Hz, 2H, 14-H, 14'-H), 7.62 (dd, J = 7.65, 7.27 Hz, 1H, 15-H), 8.10 (dd, J = 8.03, 1.15 Hz, 2H, 13-H, 13'-H).

- ¹³C-NMR: 126 MHz, CDCl₃; $\delta = 17.5$ (C1), 40.4 (C7), 68.5 (C2), 70.5 (C3), 72.2 (C6), 123.9 (C5), 126.6 (C11), 128.5 (C9, C9'), 128.6 (C14, C14'), 129.5 (C10, C10'), 129.9 (C13, C13'), 130.4 (C12), 133.2 (C4), 133.2 (C15), 138.1 (C8), 166.4 (CO₂-).
- IR: (Film) v = 3062 (w), 3029 (w), 2977 (w), 2933 (w), 1713 (s), 1602 (w), 1584 (w), 1495 (w), 1451 (m), 1394 (w), 1370 (w), 1315 (m), 1261 (s), 1177 (w), 1108 (s), 1098 (s), 1068 (s), 1025 (s), 989 (m), 956 (m), 916 (w), 828 (w), 709 (s), 698 (s), 677 (m), 615 (w), 583 (w), 538 (w).
- **Spez. Drehung:** $[\alpha]_D^{25} = -79.4 \ (c = 1, \text{CHCl}_3).$
- **HRMS:** (ESI) $C_{20}H_{21}O_3$ [M+H]⁺; ber.: 309.1485, gef.: 309.1487.

4.6.2.13. (2*S*,3*R*,4*S*,5*R*,6*S*)-6-Benzyl-4,5-dihydroxy-2-methyltetrahydro-2H-pyran-3ylbenzoat (4.43)

V 4.18 (HU 303)

Zu einem *t*-BuOH/Aceton-Gemisch (0.1 mL / 0.3 mL) wurden 31.0 mg des Dihydropyrans **4.42** (0.10 mmol) hinzugegeben und die Lösung auf -25 °C gekühlt. Dann wurden 28.1 mg

des N-Methylmorpholin-N-oxid · H₂O -Komplexes (0.21 mmol, 2.1 Äq.), 96.0 mg einer OsO₄-Lösung (in *t*-BuOH, 2.5wt%, 9.44 µmol, 0.1 Äq.) und aufgrund einer auftretenden Trübung weitere 0.1 mL Aceton hinzugegeben und die Reaktion 75 h lang bei -21 °C im Gefrierfach stehen gelassen. Aufgrund des unvollständigen Umsatzes wurden dann weitere *N*-Methylmorpholin-*N*-oxid · H₂O -Komplexes (0.13 mmol, 1.3 Äq.) 18 mg des hinzugegeben und das Reaktionsgemisch weitere 6 d im Gefrierfach gelassen. Dann wurde die Reaktion durch Zugabe einer gesättigten Na₂SO₃-Lösung (5 mL) und starkes Schütteln (15 min) gestoppt und mittels Et₂O (5 mL) verdünnt. Die Phasen wurden getrennt und die farbige wässrige 2 x mit Et₂O (je 5 mL) extrahiert. Die farblosen vereinigten organischen Phasen wurden schließlich 2 x mit einer gesättigten NH₄Cl-Lösung (je 5 mL) gewaschen und über Na₂SO₄ getrocknet. Es konnten 60.1 mg des isomerenreinen Diols 4.43 (umgerechnet 0.08 mmol, 82%; noch etwas Lösungsmittel enthalten) als weißer, amorpher Feststoff isoliert werden. Folgendes achirales GC-Ofenprogramm wurde dabei benutzt: 40 °C, 0 min, 5 °C/min \rightarrow 280 °C, (Peaks: 39.5 min Dihydropyran; 45.4 min Diol).

DC: $R_f = 0.48$ (CH/EA = 1:1, Anisaldehyd, schwach grau-lila, UV).

- ¹**H-NMR:** 500 MHz, CDCl₃; $\delta = 1.30$ (d, J = 6.38 Hz, 3H, 1-H), 2.96 (dd, J = 13.93, 7.05 Hz, 1H, 7-H), 3.07 (dd, J = 14.02, 7.81 Hz, 1H, 7-H), 3.93 (dd, J = 2.69, 2.69 Hz, 1H, 5-H), 4.02 (dq, J = 789, 6.38 Hz, 1H, 2-H), 4.11 (dd, J = 8.39, 3.19 Hz, 1H, 4-H), 4.26 (td, J = 7.55, 2.18 Hz, 1H, 6-H), 5.10 (ddd, J = 8.31, 8.31, 3.19 Hz, 1H, 3-H), 7.22-7.28 (m, 3H, Ar-H), 7.29-7.35 (m, 2H, Ar-H), 7.46 (dd, J = 7.89, 7.89, Hz, 2H, 14-H, 14'-H), 7.60 (ddd, J = 7.55, 7.55, 1.18 Hz, 1H, 15-H), 8.06 (dd, J = 8.31, 1.09 Hz, 2H, 13-H, 13'-H).
- ¹³C-NMR: 126 MHz, CDCl₃; $\delta = 17.9$ (C1), 35.9 (C7), 68.1 (C2), 70.5 (C4), 70.7 (C5), 76.7 (C3), 77.5 (C6), 126.8 (C11), 128.6 (C14, C14'), 128.8 (C9, C9'), 129.1 (C10, C10'), 129.6 (C12), 130.0 (C13, C13'), 133.7 (C15), 137.4 (C8), 167.4 (CO₂-).

IR: (Film) v = 3413 (bs), 3087 (w), 3062 (w), 3030 (w), 2977 (w), 2928 (w), 1718 (s), 1602 (w), 1582 (w), 1496 (w), 1452 (m), 1373 (w), 1316 (m), 1269 (s), 1178 (w), 1117 (s), 1095 (s), 1070 (s), 1027 (m), 820 (w), 803 (w), 746 (w), 711 (s), 700 (m), 561 (w), 504 (w).

Spez. Drehung: $[\alpha]_{D}^{25} = -38.0 \ (c = 1, \text{CHCl}_{3}).$

HRMS: (ESI) $C_{20}H_{23}O_5$ [M+H]⁺; ber.: 343.1540, gef.: 309.1546.

4.6.2.14. (2*S*,3*S*,4*S*,5*S*,6*S*)-6-Benzyl-5-hydroxy-4-methoxy-2-methyltetrahydro-2Hpyran-3-yl benzoat (4.44)

V 4.19 (HU 304-A)

27.0 mg des Diols **4.43** (0.08 mmol) wurden in 1.2 mL Toluol abs. gelöst, mit 29.5 mg Dibutylzinnoxid (0.12 mmol, 1.5 Äq.) und Molsieb (3Å) versetzt und 5 h lang unter Reflux gerührt. Dann wurde das Lösungsmittel am Rotationsverdampfer entfernt und der feste Rückstand in 1.2 mL DMF abs. gelöst. 0.01 mL Methyliodid (0.12 mmol, 1.5 Äq.) und 14.4 mg Caesiumfluorid (0.09 mmol, 1.2 Äq.) wurden hinzugegeben und das Gemisch 4 h bei 60 °C gerührt. Nach Beenden der Reaktion durch Zugabe von 1 mL H₂O wurden die Phasen getrennt, die wässrige 3 x mit CH₂Cl₂ (jeweils 5 mL) extrahiert und schließlich die vereinigten organischen Phasen mit einer gesättigten NaCl-Lösung (20 mL) gewaschen und über Na₂SO₄ getrocknet. Die säulenchromatographische Aufreinigung an Kieselgel (CH/EA $10:1 \rightarrow 4:1$) lieferte 23.0 mg des Methylethers **4.44** (umgerechnet 0.05 mmol, 64%) als milchiges Öl und 3.10 mg des anderweitig methylierten Regioisomers (0.01 mmol, 9%) als gelbliches Öl.

- **DC:** $R_f = 0.53$ (CH/EA = 2:1, Anisaldehyd, schwarz \rightarrow gelb-grau, UV); Ed.: $R_f = 0.24$ (CH/EA = 2:1, Anisaldehyd, schwach rosa, kaum UV).
- ¹**H-NMR:** 500 MHz, CDCl₃; $\delta = 1.32$ (d, J = 6.88 Hz, 3H, 1-H), 2.49 (bs, 1H, -OH), 2.95 (dd, J = 14.27, 8.06 Hz, 1H, 7-H), 3.10 (dd, J = 14.27, 5.04 Hz, 1H, 7-H), 3.51 (s, 3H, OCH₃), 3.69 (dd, J = 5.71, 3.53 Hz, 1H, 4-H), 3.84 (dd, J = 6.38, 3.69 Hz, 1H, 5-H), 4.04 (dq, , J = 6.71, 5.20 Hz, 1H, 2-H), 4.12 (ddd, , J = 7.89, 6.04, 5.37 Hz, 1H, 6-H), 5.27 (dd, J = 5.37, 5.37 Hz, 1H, 3-H), 7.21-7.25 (m, 1H, Ar-H), 7.27-7.35 (m, 4H, Ar-H), 7.45 (dd, J = 7.72, 7.72 Hz, 2H, 14-H, 14'-H), 7.59 (dd, J = 7.55, 7.55 Hz, 1H, 15-H), 8.02 (dd, J = 8.39, 1.34 Hz, 2H, 13-H), 13'-H).
- ¹³C-NMR: 126 MHz, CDCl₃; $\delta = 16.8$ (C1), 36.9 (C7), 58.2 (OCH₃), 68.0 (C5), 69.8 (C2), 72.1 (C3), 73.6 (C6), 78.9 (C4), 126.4 (C11), 128.5 (C9, C9'), 128.6 (C14, C14'), 129.4 (C10, C10'), 129.9 (C13, C13'), 130.0 (C12), 133.4 (C15), 138.5 (C8), 165.9 (CO₂-).
- IR: (Film) v = 3473 (bs), 3063 (w), 3029 (w), 2980 (w), 2933 (w), 1716 (s), 1602 (w), 1584 (w), 1452 (m), 1373 (w), 1349 (w), 1315 (m), 1265 (s), 1205 (w), 1177 (w), 1095 (s), 1069 (s), 1026 (s), 1011 (m), 1000 (m), 983 (w), 910 (m), 876 (w), 839 (w), 820 (w), 774 (w), 731 (m), 710 (s), 700 (s), 647 (w), 588 (w), 560 (w), 547 (w).

Spez. Drehung: $[\alpha]_{D}^{25} = -17.1 \ (c = 1, \text{CHCl}_{3}).$

HRMS: (ESI) $C_{21}H_{25}O_5$ [M+H]⁺; ber.: 357.1697, gef.: 357.1705.

Experimenteller Teil zu den computerchemischen Berechnungen von 4.42, 4.43 und 4.44:

Allgemeine Details:

Alle Berechnungen wurden mit dem Jaguar^[80] Programmpaket auf DFT-Ebene mit dem B3LYP Funktional^[81] durchgeführt. Die Geometrieoptimierungen wurden ohne Einschränkung und mit den vorgegebenen Konvergenzkriterien in der Gasphase mit dem 6-31G^{**} (d, p) Basissatz zur Berücksichtigung der leichten Atome vorgenommen. Die Überprüfung der energetischen Minima fand mittels Frequenzrechnungen statt (Null imaginäre Frequenzen in energetische der Hesse-Matrix für Minima). Die Frequenzrechnungen wurden zudem dazu verwendet, um Nullpunktsenergie-Korrekturen (ZPC) und thermodynamische Daten für 298.15 K zu erhalten. Durch einschneidige Berechnungen anhand der Gasphasen-Struktur unter Verwendung des in Jaguar integrierten Poisson–Boltzmann-Kontinuum-Lösungs-Modells^[82] mit den Parametern für Dichlormethan (dielektrische Konstante: 8.93; Untersuchungsradius: 2.33 Å) wurden die potenziellen Energien in Lösung ermittelt. Die freien Gibbs-Energien wurden schließlich durch Addition des thermodynamischen Gasphasen-Beitrags zur Energie in Lösung bestimmt.

⁸⁰ Jaguar, version 6.5, Schrodinger, LLC, New York, 2005. For current versions, see: http://www.schrodinger.com.

 ⁸¹ a) Becke, A. D. *Phys. Rev. A* 1988, *38*, 3098–3100; b) Lee, C. T.;W. T. Yang, W. T.;. Parr, G. *Phys. Rev. B* 1988, *37*, 785–789; c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. *J. Phys. Chem.* 1994, 98, 11623–11627.

 ⁸² a) Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M.; Goddard III, W. A.; Honig, B. *J. Am. Chem. Soc.* **1994**, *116*, 11875–11882; b) Marten, B.; Kim, K.; Cortis, C. Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. *J. Phys. Chem.* **1996**, *100*, 11775–11788.

Resümee

Allene in der Münzmetall-Katalyse

Aufgrund der oftmals faszinierenden biologischen Eigenschaften allenischer Naturstoffe auch Allen-substituierter, pharmakologisch aktiver Verbindungsklassen aber mit beachtlichen Enzym-inhibierenden, cytostatischen oder antiviralen Eigenschaften sind Allene längst weitaus mehr als nur theoretische Kuriositäten. Für die Zielmolekül-Synthesechemie sie ihre orientierte spielen zudem durch Anwendung als Schlüsselintermediate mit effizientem Chiralitätstransfer in der Synthese von komplexen Natur- und Wirkstoffen eine nicht mehr wegzudenkende Rolle.

Eine besonders interessante und vielseitige Gruppe unter den Allenen stellen α -Hydroxyallene dar. Sie beinhalten gleich zwei Funktionalitäten und können unter milden Bedingungen in 2,5-Dihydrofurane und andere Heterocyclen sowie heterosubstituierte Allene überführt werden. Die von *Krause et al.* entwickelte, *anti*-stereoselektive Kupferhydrid-katalysierte S_N2'-Reduktion von Propargylelektrophilen ermöglicht einen wichtigen Zugang zu α -Hydroxyallenen (Schema 1.4) in hohen Ausbeuten und mit exzellentem Chiralitätstransfer und toleriert dabei eine Vielfalt funktioneller Gruppen wie Doppel- und Dreifachbindungen, Alkohole, Ester, Cyclopropane, CF₃-Gruppen, sowie elektronenreiche und -arme Arene.

Schema 1.4. Die anti-stereoselektive CuH-katalysierte S_N2'-Reduktion von Propargyloxiranen.

Bei dieser Synthesemethode werden Kupfer-Carben-Komplexe mit symmetrischen NHCs als Präkatalysatoren verwendet, wobei die katalytisch aktive [(NHC)CuH]-Spezies aus den entsprechenden Carbenvorläufern *in situ* generiert wird. Als eine leicht handhabbare, günstige und ungiftige Hydridquelle wird Polymethylhydridosiloxan (PMHS) eingesetzt. Durch Verwendung chiraler Epoxide kann zudem ein Zugang zu enantiomerenreinen Allenen ermöglicht werden.

Mechanistische Einblicke

Zur Erklärung der beobachteten hohen *anti*-Stereoselektivität einhergehend mit dem Reduktionsprodukt **2.7** bei der S_N2' -Reduktion wurde der in Schema 2.2 dargestellte Katalysecyclus von *Krause et al.* postuliert. Das Ziel des in **Kapitel 2** behandelten Projektes war es den mechanistischen Vorschlag unter Verwendung kinetischer Untersuchungen und quantenmechanischer Berechnungen zu stützen oder zu widerlegen, die hohe *anti-*Selektivität der Allenbildung zu erklären und zu ermitteln, ob der Transmetallierungsschritt tatsächlich den geschwindigkeitsbestimmenden Schritt des Reaktionscyclus darstellt.

Schema 2.2. Vorgeschlagenes Mechanistisches Modell der S_N2'-Reduktion.

Die detaillierten mechanistischen Untersuchungen dieser Reaktion mit Hilfe von kinetischen Experimenten und theoretischen Berechnungen ergaben eine Konkurrenzsituation zwischen kinetischer Kontrolle und Diffusionskontrolle, mit der sich die hohe anti-Selektivität der Reaktion erklären lässt. Dabei belegen die kinetischen Untersuchungen durch Messung der Reaktionsgeschwindigkeiten der S_N2'-Reduktion in Abhängigkeit von der Konzentration des Kupferpräkatalysators eine Reaktionsabhängigkeit zweiter Ordnung von Kupfer und zeigen, dass die Epoxidringöffnung Lewis-Säurevermittelt über eine zweite Kupfereinheit stattfinden kann. Ferner konnte der Aspekt der Diffusionskontrolle durch die Analyse der Temperaturabhängigkeit der Reaktionsgeschwindigkeiten und Heranziehen der Evring-Gleichung gestützt werden. Ein großer negativer Wert für die Aktivierungsentropie deutet auf einen stark geordneten Übergangszustand hin. Schema 2.10 zeigt den schließlich mittels theoretischer Berechnungen ermittelten, energetisch günstigsten Pfad für den gesamten Katalysezyklus der Kupferhydrid-katalysierten S_N2' -Reduktion von Propargyloxiranen.

Schema 2.10. Energieprofil für den gesamten Reaktionsweg.

Den Berechnungen zufolge können sowohl das Nebenprodukt **2.7** als auch das unerwünschte *syn*-Allen (links) über die anfangs vorgeschlagene Sequenz der π -Komplexierung, Hydrocuprierung, der geschwindigkeitsbestimmenden β -Eliminierung und der abschließenden Transmetallierung gebildet werden.

Der energetisch günstigere und daher dominierende *anti*-Reaktionsweg (rechts) verläuft jedoch über einen kompetitiven diffusionskontrollierten Mechanismus, bei dem eine zusätzliche $[Cu]^+$ -Spezies gleichzeitig an das Epoxid des *anti*- π -Komplexes koordiniert und es unmittelbar selektiv zum erwünschten, stark exergonischen Allenkomplex öffnet. Die anschließende Transmetallierung des Alkoxids vom Kupfer auf das Siliziumatom ist somit der geschwindigkeitsbestimmende Schritt. Der gefundene Übergangszustand für die Transmetallierung stellt durch bisherige Kontroversen in der Literatur einen Durchbruch dar. Dabei ist der vier-Zentren-Übergangszustand mit einer trigonal-biyramidalen Geometrie am Silizium leicht asynchron mit der dem Hydridtransfer etwas vorgelagerten Si-O-Bindungsbildung.

Der zuvor postulierte Mechanismus konnte demnach größtenteils bestätigt werden und muss lediglich um eine zweite Kupfer-Einheit ergänzt werden, die mittels einer *Lewis*-Säure-Aktivierung des [Epoxid-CuH]-Komplexes an der Epoxidöffnung und der simultanen Allenbildung im Rahmen eines diffusionskontrollierten Vorgangs beteiligt ist und auf diese Weise die hohe *anti*-Selektivität der Reaktion bewirkt.

Stereoselektive Reaktionsführung

Eine direkte enantioselektive Synthese von Allenen mittels S_N2' -Substitution aus achiralen Vorgängern unter Verwendung eines chiralen Übergangsmetall-Katalysators als alternativer Zugang zur Verwendung chiraler Substrate bietet den Vorteil, nicht auf die Verfügbarkeit von enantiomerenreinen Derivaten angewiesen zu sein und ist daher besonders erstrebenswert. Das Ziel des in **Kapitel 3** behandelten Projekts war es deshalb, chirale N-Heterocyclische Carbene in der kinetischen Racematspaltung racemischer Propargyloxirane durch die Kupferhydrid-katalysierte S_N2' -Reduktion zu etablieren (Schema 3.1).

Schema 3.1. Kinetische Racematspaltung in der S_N2'-Reduktion des Alkins 3.9.

Durch den Einsatz der in Schema 5.1 gezeigten verschiedenen ein- und zweizähnigen NHC-Vorläufer **L1-10** und der chiralen Phosphinliganden **L11-L16** unterschiedlicher Chiralitäts-Klassen konnten dabei erste Tendenzen bezüglich der für diesen Reaktionstyp am besten geeigneten Ligand-Beschaffenheit ermittelt werden. Es konnte gezeigt werden, dass sich Phosphinliganden aufgrund der Begünstigung des *syn*-Produktes nicht für die *anti*-selektive Route eignen. Ungesättigte NHC-Vorläufer erwiesen sich als reaktiver verglichen mit den elektronenreicheren, gesättigten Liganden, was auf eine leichtere Dissoziation der Kupfer-Alkoxid-Bindung bei der Transmetallierung auf das Silan als dem geschwindigkeitsbestimmenden Schritt zurückgeführt werden konnte.

Abbildung 5.1. Auswahl von Vorläufern für chirale N-Heterocyclische Carbene.

Der (-)-Menthon-basierte NHC-Vorläufer **L10** wurde durch seine hohe Reaktivität, verbunden mit der hervorragenden *anti*-Selektivität als der am besten geeignete NHC-Vorläufer identifiziert, was vermutlich auf seinen hohen sterischen Anspruch und die herabgesenkte Elektronendonor-Fähigkeit zurückzuführen ist (Abbildung 3.3).

Abbildung 3.3. Der in der S_N2'-Reduktion vorerst beste NHC-Vorläufer L10.

Bei weiteren Optimierungsarbeiten konnten Steigerungen des Enantiomerenüberschusses auf bis zu 40% *ee* und ein sehr gutes Diastereomerenverhältnis von über 96:4 erzielt werden. Screenings zeigten dabei eine starke Lösungsmittelabhängigkeit der Enantioselektivitäten mit den besten Ergebnissen für Toluol bei Verwendung von Kupferthiophencarboxylat und für Diethylether mit Kupfer(I)chlorid. Der Einsatz eines L10-CuCl-Präkatalysators ermöglicht eine niedrigere und genauere Katalysatorbeladung. Durch das Herabsenken der Temperatur und das Verdünnen der Reaktionslösung konnte der *ee* weiter gesteigert werden. Ein weiteres Epoxid und ein Carbonat wurden unter den vorerst optimierten Bedingungen getestet und zeigten ähnliche Enantioselektivitäten, jedoch mit deutlich längeren Reaktionszeiten.

Anwendung in der Totalsynthese

C-Glycoside sind Pharmakophore der *O*-Glycoside mit einem *C*-Atom anstelle des glycosidischen Sauerstoffes und kommen gehäuft in biologisch wichtigen Naturstoffen und pharmazeutisch relevanten Substanzklassen vor. Sie sind zudem als stabile Mimetika der *O*- und *N*-Glycoside mit identischen oder nur leicht veränderten biochemischen Eigenschaften von großer Bedeutung. Dabei bringen sie den entscheidenden Vorteil einer Resistenz gegenüber hydrolytischer und enzymatischer Spaltung mit sich.

Aus diesen Gründen sind *C*-Glycosid-Derivate der von *A. Hölemann et al.* synthetisierten fluorierten PGL-I-Analoga für die angestrebten mechanistischen Untersuchungen von besonders großem Interesse. Das in **Kapitel 4** behandelte Anwendungs-Projekt widmet sich daher der Synthese eines entsprechenden *C*-Glycopyranosid-Analogons, repräsentativ für einen komplett neuen, hoch stereoselektiven Zugang zu der Substanzklasse der *C*-Nucleoside, *C*-Glycopyranoside und -furanoside mit stark variablen Substitutionsmustern.

Der synthetische Zugang konnte nach intensiven Untersuchungen ausgehend von dem kommerziell erhältlichen Aldehyd **4.26** ermöglicht werden, wie aus Schema hervorgeht. Dazu wurde in einer *Horner-Wadsworth-Emmons*-Reaktion *E*-selektiv das Eninon erzeugt und nach *Corey-Bakshi-Shibata* stereoselektiv zum chiralen Alkohol **4.28** reduziert. Eine anschließende Epoxidierung nach *Katsuki-Sharpless* lieferte ein weiter angereichertes, hervorragendes Diastereomerenverhältnis. Die TBS-Schützung zum Silylether **4.30** gelang mittels frisch hergestelltem TBSOTf. Ein anschließender Desilylierungsschritt zum terminalen Alkin mittels Kaliumcarbonat und Methanol ermöglichte als ersten Schlüsselschritt der Syntheseroute die Kupfer-katalysierte S_N2'-Substitution zum α -Hydroxyallen **4.32** unter Verwendung von Benzylmagnesiumchlorid mit guten Ausbeuten

und einem hervorragenden Diastereomerenverhältnis. Nach erfolgreicher Benzoylierung konnte die Benzoylwanderung während der Desilylierung zum β -Hydroxyallen **4.34** mit Hilfe eines gepufferten Flusssäure-Pyridin-Systems unterbunden werden.

Die Gold-katalysierte Cycloisomerisierung des β -Hydroxyallens zum Dihydropyran-Derivat 4.42 als zweiter Schlüsselschritt dieser Syntheseroute konnte mit einer guten Ausbeute und einem exzellenten Diatereomerenverhältnis verwirklicht werden. Demnach konnte im Gegensatz zu den bisher bekannten Literaturbeispielen ausgehend von Glycalen selektiv das gewünschte α -Isomer generiert werden.

Schema 5.2. Finale Synthesesequenz zur Darstellung von C-Glycosiden mittels Münzmetall-Katalyse.

Abschließend lieferte die Substrat-kontrollierte Dihydroxylierung mittels Osmiumtetroxid stereoselektiv das cyclische Diol, welches mittels Dibutylzinnoxid regioselektiv zum Tetrahydropyran **4.44** methyliert werden konnte.

Zusammenfassend liefern die derzeitigen Ergebnisse einen neuen, hochgradig stereoselektiven Zugang zu multisubstituierten benzylischen α -*C*-Glycopyranosiden mittels Kupfer- und Goldkatalyse. Die Gesamtausbeute der bisherigen Syntheseroute ausgehend vom kommerziell erhältlichen Aldehyd beträgt 14% über 11 Stufen mit exzellenten Stereoselektivitäten.

6. Anhang

A Daten der berechneten Strukturen

Strukturen zu Kapitel 2

3s

2HU 123.01.mae

Gasphase: E_scf = -810.176899 a.u.

G(T)-E(0) = 0.211845 a.u. Kleinste Frequenz: 54.04 cm⁻¹

In Lösung (Toluol): E_sol = -810.188824 a.u.

&zmat			
C1	1.4965265081	3.2775965218	1.2048248534
N2	0.4619813950	2.7140793909	0.4740450517
C3	0.1708148783	1.4532646351	0.9047199093
N4	1.0540414744	1.2450720334	1.9210877799
C5	1.8660786191	2.3506154700	2.1252771882
C6	-0.2518448699	3.3826227448	-0.6068626811
C7	1.0778865405	0.0413316027	2.7466657153
Н8	-1.2667531557	2.9774654483	-0.6400276298
Н9	0.8874837012	-0.8278415890	2.1151008803
CulO	-1.4323344137	0.4064297091	0.3182047316
H11	-2.6968668822	1.3561073280	0.4050604567
C12	-1.1237070382	-1.5547156655	-0.2765594860
C13	-2.3376869714	-1.2534324777	-0.3698565978
H14	2.6217866750	2.3807673529	2.8944925322
Н15	1.8757197584	4.2680164964	1.0072439766
H16	2.0659884975	-0.0565411375	3.2027762103
H17	0.3243689253	0.1032088273	3.5379009879
H18	-0.2913553917	4.4559648651	-0.4045717995
Н19	0.2452825180	3.2165080727	-1.5679302889
H20	-0.2389170398	-3.4665902805	-0.7494056505
C21	0.0133216247	-2.4454174155	-0.4543959096
H22	1.4637386662	-0.8716194163	-0.9032426597
C23	1.3578376514	-1.9549130861	-0.8232687713
024	1.0912831121	-2.4004443107	0.5139595172
C25	-3.7774476390	-1.4238971048	-0.6439445123
H26	-3.9855851122	-2.4315639907	-1.0262597984
Н27	-4.3578221778	-1.2636118387	0.2690296726
H28	-4.1196627429	-0.6843675799	-1.3730685595
C29	2.3240761940	-2.7808642261	-1.6325678674
H30	3.3544140743	-2.5922793302	-1.3116708227
H31	2.1202212489	-3.8486935102	-1.5137267101
H32	2.2498848217	-2.5249903227	-2.6954203578
&			

3s'

Gasphase: E_scf = -810.171744 a.u.

G(T)-E(0) = 0.210115 a.u. Kleinste Frequenz: 25.65 cm⁻¹

In Lösung (Toluol): E_sol = -810.184951 a.u.

2HU_159.01.mae

168

&zmat.			
C1	0.2918811344	-3,4022963819	0.6454751206
N2	-0.8381378972	-2.6659026462	0.9675282088
C3	-1.1842688887	-1.8114030911	-0.0352126213
N4	-0.2375757802	-2.0336815372	-0.9912565036
C5	0.6702725298	-3.0078082186	-0.5964590057
C6	-1.5902038675	-2.7902211551	2.2110647834
C7	-0.2232318758	-1.3814653822	-2.2913053703
Н8	-2.6306722886	-2.5273767161	2.0022534467
Н9	-0.9768251171	-0.5940261926	-2.2825839864
Cu10	-2.8931663249	-0.7694080651	-0.0785790555
H11	-4.0552432242	-1.8194546989	0.1416341837
C12	-2.6473900219	1.2766833483	-0.3873338376
C13	-3.8558341560	0.9786791255	-0.2389231784
H14	0.7201898984	-4.1312557579	1.3155931279
H15	1.4853449050	-3.3327950492	-1.2240398452
H16	-1.5369484380	-3.8228810325	2.5645720407
H17	-1.1874669462	-2.1242578695	2.9804015390
H18	0.7606123755	-0.9444519313	-2.4871566482
H19	-0.4626895848	-2.0956434102	-3.0855274976
H20	-5.5454073110	2.2808826009	-0.4923288167
C21	-5.2881915817	1.2685812495	-0.1693679273
H22	-5.9645116754	-0.7919036239	-0.3546166739
C23	-6.3328290122	0.2310086620	-0.2670080308
024	-6.0109623312	0.8341360156	0.9958690639
C25	-1.4705780690	2.1509478985	-0.5622587934
H26	-1.7663493686	3.2055389621	-0.6345203988
H27	-0.7802908422	2.0479436805	0.2815044405
H28	-0.9102320728	1.8949554650	-1.4683077794
C29	-7.6999188838	0.5284129984	-0.8285578838
Н30	-8.4625658958	-0.0593487551	-0.3059438738
Н31	-7.9525416414	1.5873154269	-0.7192459509
Н32	-7.7439890986	0.2641165849	-1.8913492859
&			

TSs 1

Gasphase: E_scf = -810.164514 a.u.

G(T)-E(0) = 0.211253 a.u. Kleinste Frequenz: -713.15 cm⁻¹ (nächste: 17.00 cm⁻¹)

In Lösung (Toluol): E_sol = -810.173149 a.u.

2HU_125a_Ts.01.mae

azmat			
C1	10.4226262226	4.1664019188	0.2708094358
N2	9.5547648195	3.2362489421	-0.2778884379
C3	9.7192479232	2.0048341389	0.2862620291
N4	10.7118248603	2.1930128897	1.2023917569
C5	11.1484923285	3.5073422607	1.2104399371
C6	8.6051447010	3.5262249998	-1.3441118382
C7	11.2281681940	1.1560108347	2.0940522390
H8	7.9251992531	2.6763532597	-1.4251920994
Н9	11.1077848605	0.1764819952	1.6267632821
Cu10	8.7991248797	0.3526382737	-0.1396869840
H11	7.3497483984	0.0104394363	-0.7207625111
C12	9.3392512204	-1.5933606534	-0.0027850393
C13	8.1487961239	-1.5270106448	-0.4859871184
H14	11.9253309226	3.8546931921	1.8734648863
H15	10.4530116868	5.1951998526	-0.0522351665
H16	12.2895917887	1.3415066427	2.2771531750
H17	10.6929089270	1.1708109078	3.0484086061
H18	8.0395284497	4.4304710879	-1.1024393526
H19	9.1253967764	3.6699342460	-2.2963053760
H20	9.9805792204	-3.5679759581	0.6897521269
C21	10.3355182485	-2.5842332376	0.3710015366
H22	11.9495140283	-1.7001166774	-0.8216055013
C23	11.7181756415	-2.5356170087	-0.1571042540
024	11.4649400567	-2.1426741942	1.1918606746
C25	7.0046414120	-2.3276062944	-1.0025655585
H26	7.2386782079	-3.3979574248	-0.9397652194
H27	6.0940962898	-2.1321241437	-0.4263624708
H28	6.7874275517	-2.0788309818	-2.0470425830
C29	12.5557277648	-3.7747249741	-0.3558068092
Н30	13.6116403702	-3.5602138117	-0.1547526577
H31	12.2372514432	-4.5726899639	0.3208478378
Н32	12.4765813205	-4.1354430906	-1.3876311428
æ			

TSs 1'

2HU_161_Ts.01.mae

Gasphase: E_scf = -810.157609 a.u.

G(T)-E(0) = 0.209493 a.u.Kleinste Frequenz: -675.89 cm⁻¹ (nächste: 12.80 cm⁻¹)

In Lösung (Toluol): E_sol = -810.167046 a.u.

&zmat			
C1	0.2510931388	-3.8116213380	0.7952928554
N2	-0.8579934337	-3.0312661482	1.0818443980
C3	-1.0846845101	-2.1074953324	0.1051448454
N4	-0.0898005400	-2.3363649440	-0.7998176289
C5	0.7328353559	-3.3772371566	-0.3974061733
C6	-1.6702914204	-3.1566908144	2.2856173773
C7	0.0713555450	-1.5891776978	-2.0400393937
Н8	-2.6118951334	-2.6325583467	2.1105017313
Н9	-0.5593972328	-0.7005228218	-1.9780570405
Cu10	-2.5028735752	-0.7937002423	0.0226832186
Н11	-4.0097366249	-1.0175503729	0.4778503347
C12	-2.7244201476	1.1410834280	-0.5643070569
C13	-3.8364786921	0.6580395987	-0.1285214704
H14	0.5966308379	-4.5936073591	1.4531449737
Н15	1.5723144384	-3.7147992272	-0.9849606109
Н16	-1.8686472129	-4.2125101293	2.4886356594
H17	-1.1599856497	-2.7125375362	3.1457556479
H18	1.1162902518	-1.2897406484	-2.1611068551
H19	-0.2326168025	-2.1939324872	-2.9001778484
H20	-5.4473829958	2.0702262711	-0.1295332388
C21	-5.2510591273	1.0121023072	0.0660428446
H22	-6.1035558117	-0.9597100585	-0.3292485170
C23	-6.3747457936	0.0741878261	-0.1049894699
024	-5.9630314617	0.4946136178	1.2031578895
C25	-2.2002353911	2.4327745136	-1.0899967285
H26	-2.9543582453	3.2336738211	-1.1240928259
H27	-1.3628252574	2.7860708999	-0.4770981331
H28	-1.8017705276	2.3069141487	-2.1039718244
C29	-7.7401749467	0.5205720117	-0.5640251725
Н30	-8.5227598189	-0.0677409529	-0.0718935942
H31	-7.9079807418	1.5749482540	-0.3260930063
Н32	-7.8474836406	0.3836496258	-1.6462064254
&			
4s

&zmat C1

N2

C3

N4

C5

C6

C7

Н8 Н9

Cu10

H11

C12 C13

H14

H15

H16

H17

H18

H19

H20

C21

Н22

C23

024

C25

H26

H27

H28 C29

Н30 H31 -1.6865763479

-3.1850738982

-3.2503830896

2HU-31.01.mae 0.3967876119 -3.6180374227 0.7060814516 -0.9083691637 -3.2177393228 0.9497257849 -1.9790109721 0.4375148672 -1.1547199456 0.0296887917 -0.1297109542 -1.6161905216 0.9887244970 -2.6046128524 0.0227168248 -1.8942103545 -4.0151188116 1.6673759638 0.2496570057 -0.3492907913 -0.8252391760 -2.8111123337 -3.4303588390 1.7437876012 -0.6213222265 0.2933561818 -0.6780795787 -2.7588416228 -0.8793068068 0.4638320169 -5.8228601983 -0.9304243920 0.8266565170 -4.2300905748 0.3704565915 0.4073807604 -5.5412528310 0.0964380133 0.5819743873 1.9928163139 -2.5028903751 -0.3585943915 0.7851752526 -4.5685189250 1.0371855566 1.1376992233 0.1446765461 -0.42100207470.3923031397 -0.5256668689 -1.8955885552 -2.1016310525 -4.9447070759 1.1289209603 -1.5329341458 -4.2526728731 2.6723226788 -4.4633860356 2.3889283260 -0.5164233622 1.7507349918 -3.79324415450.0654964644 -2.3623305733 1.9406693084 1.7156624806 -2.7747106737 2.4756283399 0.8559868165 -2.4069027956 1.9003964164 -0.4042717584 -6.7264360294 1.0335105777 0.5087063052 -6.4587332265 2.0409240069 0.1779814275 -7.4960627555 0.6490826243 -0.1748292742 -7.2111556104 1.1341312354 1.4905021470 -2.7232481151 3.9807712312 0.9482170179

4.3325814347

4.4401358257

4.3311215998

1.0105692326

0.0694115095

1.8433534105

Н32 &

Gasphase: $E_scf = -810.244592$ a.u.

G(T)-E(0) = 0.216542 a.u. Kleinste Frequenz: 15.60 cm⁻¹

In Lösung (Toluol): $E_{sol} = -810.253792 a.u.$

2HU_151.01.mae

Gasphase: E_scf = -810.235920 a.u.

G(T)-E(0) = 0.217630 a.u.Kleinste Frequenz: 7.11 cm⁻¹

In Lösung (Toluol): E_sol = -810.247314 a.u.

&zmat			
C1	2.1207626607	-2.7129554435	0.2370270049
N2	1.1047199456	-1.9116873032	0.7341686143
C3	0.2801804839	-1.4729526150	-0.2586919098
N4	0.8109450143	-2.0215838660	-1.3878868859
C5	1.9348412440	-2.7828520539	-1.1061049704
C6	0.9356208998	-1.5821111511	2.1449209636
C7	0.2640556058	-1.8294892380	-2.7260196978
H8	0.0618005531	-0.9371829073	2.2407012210
Н9	-0.6054897978	-1.1767218095	-2.6464910131
CulO	-1.2904339865	-0.3139474611	-0.0917225460
H11	-4.1316085814	-0.8802813659	-0.0625808208
C12	-2.8496463744	0.7986774338	0.0932183333
C13	-4.0649247553	0.2036975946	0.0592429512
H14	2.8743569061	-3.1563648210	0.8690766308
Н15	2.4950678618	-3.2984628512	-1.8706183200
H16	0.7791643487	-2.4916528195	2.7320189960
H17	1.8178361633	-1.0556999810	2.5206464590
H18	1.0086574255	-1.3625643179	-3.3772566708
Н19	-0.0409667802	-2.7886330428	-3.1544433189
H20	-5.4509395691	1.8899377024	0.4030738136
C21	-5.4069921086	0.8291725036	0.1588780381
H22	-6.4073211003	-0.6123734860	-1.1674029019
C23	-6.5781525265	0.2794533443	-0.5564501511
024	-6.4325791299	0.0518694677	0.8464545294
C25	-2.7027137633	2.3015725034	0.2620196968
H26	-3.6365212199	2.8490160838	0.4511956050
H27	-2.0184239039	2.5323318937	1.0886832800
H28	-2.2462324507	2.7445145738	-0.6335890167
C29	-7.7449642161	1.1347004798	-0.9865512153
Н30	-8.6850002813	0.5754191786	-0.9140823820
H31	-7.8282496578	2.0205943254	-0.3501192079
H32	-7.6263697029	1.4607339489	-2.0265016791
&			

3a

Gasphase: E_scf = -810.174078 a.u.

G(T)-E(0) = 0.210059 a.u. Kleinste Frequenz: 20.31cm⁻¹

In Lösung (Toluol): E_sol = -810.187374 a.u.

2HU_143.01.mae

&zmat			
C1	10.0345398995	-0.5114964515	-3.3779856820
N2	9.8461231961	-0.9694560298	-2.0831749842
C3	10.2548778556	-0.0533855531	-1.1608450417
N4	10.7042979123	0.9888783692	-1.9179948722
C5	10.5719224895	0.7305150307	-3.2754406733
C6	9.2735200202	-2.2655121658	-1.7357473974
C7	11.1977171227	2.2434534969	-1.3701926627
Н8	8.8247983278	-2.1770311813	-0.7427972301
Н9	11.3830464475	2.0994229265	-0.3058291817
Cu10	9.9600981496	-0.2257078839	0.8157455147
H11	8.4761678941	-0.7124780883	1.0754739931
C12	11.5933490826	0.2062863706	2.0150922795
C13	10.6068599619	-0.1176970198	2.7177338278
H14	10.8615206617	1.4403806827	-4.0344705627
H15	9.7751926827	-1.0989970988	-4.2448768674
H16	12.1291715597	2.5297717653	-1.8674697830
H17	10.4607780965	3.0419208737	-1.5022786582
H18	8.5045756011	-2.5291874537	-2.4664490808
Н19	10.0440575420	-3.0426163226	-1.7268561701
H20	13.4552697841	0.1179677058	0.9146581666
C21	12.9628394006	0.6183636443	1.7490512024
H22	12.7386930561	2.6282345839	2.6080585227
C23	13.4518010444	1.9717995870	2.1034369969
024	13.8385656357	0.8379459058	2.8830730439
C25	9.8423050388	-0.4082525052	3.9456658487
H26	10.4781305130	-0.2804474037	4.8305247793
H27	8.9785105476	0.2578521364	4.0268016574
H28	9.4576443741	-1.4315284996	3.9254269478
C29	14.5450236170	2.6661187866	1.3302234672
Н30	15.1741017718	3.2572486426	2.0045107012
Н31	15.1832183763	1.9381136501	0.8213225077
Н32	14.1229428196	3.3482831666	0.5831327705
&			

2HU-47.01.mae

Gasphase: E_scf = -810.173871 a.u.

G(T)-E(0) = 0.209251 a.u. Kleinste Frequenz: 25.86 cm⁻¹

In Lösung (Toluol): E_sol = -810.187467 a.u.

&zmat			
C1	0.4571779249	-3.2495593173	0.6584492264
N2	-0.6649142374	-2.5392046119	1.0581201149
C3	-1.1559716909	-1.7651912347	0.0498722570
N4	-0.3084222850	-2.0123105703	-0.9895067455
C5	0.6809676647	-2.9214097859	-0.6390496245
C6	-1.2690967597	-2.6111632322	2.3831518036
C7	-0.4631846278	-1.4439088436	-2.3199357354
Н8	-2.3293284933	-2.3654073940	2.2816254134
Н9	-1.2600455370	-0.7014247109	-2.2796135024
Cu10	-2.8890603700	-0.7697395828	0.1265355302
H11	-4.0514269031	-1.7483292677	0.5896075457
C12	-2.7386443153	1.2689680772	-0.3720939057
C13	-3.9150712742	0.9375058062	-0.1077563305
H14	0.9883825044	-3.9165731057	1.3194018212
H15	1.4377863745	-3.2540107740	-1.3321760265
H16	-1.1653262412	-3.6260584374	2.7751626374
H17	-0.7889980727	-1.9082399137	3.0711899561
H18	0.4671289976	-0.9651218363	-2.6401944217
Н19	-0.7345521320	-2.2196825634	-3.0426670318
H20	-5.9502277217	0.2466258290	-0.3040406358
C21	-5.3538402615	1.0649421598	0.0948732647
H22	-5.1739269284	2.2936835392	1.9044799685
C23	-5.9000115813	1.8161519705	1.2427609868
024	-5.9317752473	2.3793717063	-0.0762335512
C25	-1.6224590288	2.1601788842	-0.7423169783
Н26	-1.9809835638	3.1838736849	-0.9064140725
H27	-0.8595590796	2.1856305127	0.0429399323
H28	-1.1282661794	1.8248800582	-1.6605712519
C29	-7.2257796151	1.4668750318	1.8684357532
Н30	-7.7375245157	2.3706435123	2.2173854659
Н31	-7.8739733910	0.9632758085	1.1459068726
H32	-7.0806298616	0.8042998952	2.7286740813
&			

TSa 1

2HU_146b_Ts.01.mae

&zmat

Gasphase: E_scf = -810.161225 a.u.

G(T)-E(0) = 0.212881 a.u. Kleinste Frequenz: -666.49 cm⁻¹ (nächste: 6.04 cm⁻¹)

In Lösung (Toluol): E_sol = -810.171050 a.u.

C1	0.1267089554	-3.7243339593	0.6324485047
N2	-1.1763577368	-3.3252247619	0.8817123273
C3	-1.4312971275	-2.0915090488	0.3591047691
N4	-0.2503234639	-1.7347051648	-0.2245523930
С5	0.7111082827	-2.7201080351	-0.0699189572
C6	-2.1503505886	-4.1194942009	1.6210750961
C7	-0.0275823422	-0.4788173204	-0.9310568099
Н8	-3.1241899011	-3.6396962901	1.5093018907
Н9	-0.9041611622	0.1517763770	-0.7731967517
Cu10	-3.0867168646	-1.0673971157	0.4362447800
H11	-4.5750912113	-1.5799970340	0.6423269803
C12	-3.5569879096	0.8967043334	0.2487682462
C13	-4.6290710737	0.2123360777	0.4491970223
H14	1.7092470180	-2.6251788868	-0.4680208166
H15	0.5197168880	-4.6701963287	0.9712475265
H16	0.8618387252	0.0195761775	-0.5345645909
H17	0.1073605581	-0.6601562176	-2.0017842730
H18	-2.1884974748	-5.1336763218	1.2136045966
Н19	-1.8827249337	-4.1652700974	2.6811342663
H20	-2.3717330634	2.6790181520	0.6071233870
C21	-3.2147970692	2.2976422269	0.0276696097
H22	-4.0001570899	2.3902419193	-2.0186971958
C23	-3.4760739981	2.9769909264	-1.2593730858
024	-4.2783652978	3.2921737601	-0.1187492354
C25	-6.1019299649	0.3203148280	0.6176374925
H26	-6.3874462263	1.3731996533	0.5112541868
H27	-6.6334015744	-0.2745667120	-0.1328772196
H28	-6.4172077491	-0.0393054500	1.6029418234
C29	-2.5949894212	4.0805071613	-1.7921839609
Н30	-3.1929080851	4.8246685102	-2.3303040589
H31	-2.0755967312	4.5898363915	-0.9751615085
Н32	-1.8484052634	3.6829608669	-2.4897986612
&			

TSa 1'

2HU_162_Ts.01.mae

Gasphase: E_scf = -810.157203 a.u.

G(T)-E(0) = 0.212190 a.u. Kleinste Frequenz: -696.70 cm⁻¹ (nächste: 9.68 cm⁻¹)

In Lösung (Toluol): E_sol = -810.166829 a.u.

&zmat			
C1	0.5090471284	-3.7192268983	0.5963230907
N2	-0.7692305012	-3.1848034220	0.6309247693
C3	-0.8498749650	-2.0352471063	-0.0982504469
N4	0.4118690183	-1.8718467879	-0.5916555286
C5	1.2542945376	-2.8920447645	-0.1807759249
C6	-1.8854830270	-3.7664153452	1.3663865306
C7	0.8165955179	-0.7675756111	-1.4528043515
Н8	-2.7983272691	-3.2667449191	1.0368449955
Н9	0.0156973557	-0.0260114072	-1.4393531869
Cu10	-2.3787035084	-0.8761085594	-0.3661461354
H11	-3.9370760738	-1.2540610326	-0.3757083073
C12	-2.7006021620	1.1000840603	-0.7242144022
C13	-3.8187110431	0.4625293207	-0.6746475022
H14	0.7742029987	-4.6246259408	1.1194785646
H15	2.2914559730	-2.9424004028	-0.4734466355
H16	-1.9533811062	-4.8367712616	1.1525449466
H17	-1.7564373108	-3.6206578833	2.4433459061
H18	1.7398358403	-0.3200124933	-1.0738175180
H19	0.9774989781	-1.1162269495	-2.4775436137
H20	-5.8138388441	-0.1669235779	-1.2890451042
C21	-5.2781101753	0.6284795725	-0.7678033490
H22	-5.4399097960	1.8635473310	1.0373503554
C23	-6.0289031506	1.4119229759	0.2360703045
024	-5.7448785946	1.9600484686	-1.0607968228
C25	-2.2662031806	2.5078311402	-0.9625821363
H26	-3.1124719781	3.1814087710	-1.1481236054
H27	-1.7006462111	2.8872501363	-0.1028460374
H28	-1.5867563709	2.5663864312	-1.8217208623
C29	-7.4785662259	1.1486233702	0.5529588193
Н30	-8.0051992287	2.0867864637	0.7608491231
Н31	-7.9759140222	0.6577793390	-0.2884747217
Н32	-7.5701110967	0.5071675357	1.4367567131
&			

4a

Gasphase: E_scf = -810.237144 a.u.

G(T)-E(0) = 0.217973 a.u.Kleinste Frequenz: 4.34 cm⁻¹

In Lösung (Toluol): E_sol = -810.247799 a.u.

2нц-	32.	01	mae
2110	52.	0 1	• mac

£ 7m a t			
C1	0 2832074741	-3 6808355121	0 9273075222
N2	-0 8013204541	-2 8872338392	1 2667611140
C3	-1 1313281727	-2 0309820888	0 25901/9117
NA	-0 2222070621	-2 3116585726	-0 717101/883
C5	0.6/99313297	-3 3163275496	-0 3280785966
CG	-1 5078261475	-2 9624629173	2 5406291145
C7	_0 17//102053	-1 6370650170	-2 0000310324
U 9	-0.17441900000	-2 2049336757	2 5300956599
10 10	-2.2910333003	-0.0132000411	-2 0434590907
Cu10	-0.9009000234	-0.7314674099	0 215/976/91
U11	-2.3920211072	-1 1162566059	-0 2602654004
C1 2	_4 1000140249	0 4736035072	0.1706510491
C12 C12	-4.1009140240 5.2262227602	0.4/30033972	0.1700319401
UI3 111 4	-3.3203337003	-0.0407110330	-0.0752526019
п14 u15	0 6027061409	-1 4225720071	1 5051/05310
HLJ HLC	0.092/901490	1 1157040510	2 1210607400
H10 H17	0.2000246550	2 2602599664	-2.131009/400
П1 / U1 0	1 0500050520	-2.300330004	-2.0199009729
HL8 HL0	-1.9599959539	-3.9503494047	2.0080140037
HI9 H20	-0.8192453791	-2.7699090392	3.3083080000
HZU C21	-3.2522454550	2.103003381/	1.3422300070
U21 U22	-3.8228//301/	1.91230/2880	0.4282963125
HZZ COO	-3.8104544050	2.5544886150	-1.00/2040/05
023	-3.0142441008	2.9009162902	-0.6491705272
024	-4./83/692015	2.9895228771	0.1693038827
025	-6.6776498824	0.6382728936	-0.1120042783
HZ6	-6.5992180977	1./14385932/	0.0333003414
HZ /	-7.1782997530	0.4508804957	-1.0/30839951
H28	-7.3392022032	0.2210153989	0.6611/3/328
C29	-2.6340801303	4.0438040630	-0.5424557563
H30	-3.0170228203	4.9351817470	-1.0531221851
HJL	-2.4585156588	4.3032782575	0.5059558047
H32	-1.6/40552625	3.7806215142	-1.0030880847
&			

Gasphase: E_scf = -810.231346 a.u.

G(T)-E(0) = 0.215092 a.u. Kleinste Frequenz: 11.18 cm⁻¹

In Lösung (Toluol): E_sol = -810.242492 a.u.

2HU	1	60	a.	01	.mae

&zmat			
C1	1.9982595299	-2.8855641251	0.3405763686
N2	1.0372490097	-1.9864861298	0.7767486512
C3	0.2537058953	-1.5512911331	-0.2502733923
N4	0.7520207398	-2.2043876622	-1.3379417568
C5	1.8173053958	-3.0238468170	-0.9978437620
C6	0.8867352520	-1.5518742527	2.1605845364
C7	0.2252127088	-2.0613921456	-2.6904163598
Н8	0.0408516779	-0.8656217599	2.2097801822
Н9	-0.5836642481	-1.3307574292	-2.6640177882
Cu10	-1.2321739690	-0.2737902327	-0.1856161890
H11	-4.0854920013	-0.6184144801	-0.1089631200
C12	-2.7030233468	0.9679297678	-0.1419898395
C13	-3.9608254202	0.4683676140	-0.1090847248
H14	2.7148903015	-3.3401946374	1.0067248742
H15	2.3447628367	-3.6235153559	-1.7232483306
H16	0.6944670600	-2.4110190421	2.8097360085
H17	1.7906654679	-1.0371654701	2.4993157834
H18	1.0088751877	-1.7099128203	-3.3676524686
H19	-0.1628815014	-3.0183489118	-3.0514911981
H20	-6.1106404674	0.4958013720	-0.4307070732
C21	-5.3023322492	1.1274521835	-0.0471561563
H22	-4.9409019790	2.4594009945	1.6591309222
C23	-5.7192671385	2.1188694748	0.9715271577
024	-5.4986718845	2.5215935244	-0.3856955441
C25	-2.4241385385	2.4629402157	-0.1608600907
H26	-3.3204260321	3.0870923921	-0.2124075750
H27	-1.8437558776	2.7505786513	0.7273238194
H28	-1.7884713571	2.7181261835	-1.0193751284
C29	-7.1345645551	2.2265075239	1.4811643938
Н30	-7.4019670176	3.2723536350	1.6719476785
H31	-7.8403381714	1.8244574499	0.7480011250
Н32	-7.2526060485	1.6729250011	2.4201379690
æ			

TS 2

Gasphase: E_scf = -810.170896 a.u.

G(T)-E(0) = 0.211084 a.u.Kleinste Frequenz: -44.46 cm⁻¹ (nächste: 20.80 cm⁻¹)

In Lösung (Toluol): E_sol = -810.185030 a.u.

2HU_235_QST.01.mae

&zmat			
C1	1.5540821161	3.2591393946	1.1958188972
N2	0.5536192611	2.6408619207	0.4596170108
C3	0.1537100343	1.4732544348	1.0356514564
N4	0.9325799907	1.3778490882	2.1504773162
C5	1.7916786936	2.4633325898	2.2686035673
C6	-0.0327642219	3.1669276927	-0.7664575168
C7	0.8159175311	0.3154768521	3.1383891324
Н8	-1.0728590857	2.8352545744	-0.8148605913
Н9	0.1313740344	-0.4388161669	2.7502750434
Cu10	-1.4367535090	0.4074703738	0.4641673625
H11	-2.7340898303	1.2882736306	0.6851697085
C12	-1.0503494868	-1.4798911805	-0.3241879025
C13	-2.2827026774	-1.2537950477	-0.2803934965
H14	2.4772991262	2.5754559102	3.0939236076
H15	1.9999623370	4.1955482969	0.8989535332
H16	1.7926164292	-0.1412739368	3.3253839428
H17	0.4167987465	0.7062031806	4.0795140297
H18	-0.0020418244	4.2589059530	-0.7446567310
H19	0.5091054924	2.8090852511	-1.6475449502
H20	0.2297869343	-2.4085974372	-1.7781903274
C21	0.1295375693	-2.2540423234	-0.7005175625
H22	1.3684056597	-1.7703688037	1.0369641851
C23	1.3660752724	-2.3227169313	0.0955309485
024	0.4522267190	-3.4298465805	0.0804926051
C25	-3.7253757414	-1.5247115198	-0.4336607456
H26	-3.8895235820	-2.5213764664	-0.8618416598
H27	-4.2298207846	-1.4651154377	0.5347502694
H28	-4.1871198184	-0.7737972138	-1.0807301247
C29	2.7186233157	-2.5538877867	-0.5291222453
Н30	3.3485635178	-3.1646901720	0.1267586032
Н31	2.6193960350	-3.0752305551	-1.4855995147
Н32	3.2330406039	-1.6014647241	-0.7010756264
&			

2HU_234_LST.01

Gasphase: E_scf = -810.235478 a.u.

G(T)-E(0) = 0.218986 a.u.Kleinste Frequenz: -39.35 cm⁻¹ (nächste: 9.43 cm⁻¹)

In Lösung (Toluol): E_sol = -810.247128 a.u.

&zmat			
C1	0.3433865037	-3.5128571045	1.0058669208
N2	-0.8699892515	-2.8992589118	1.2758363201
C3	-1.1175461723	-1.8753252955	0.4108479477
N4	-0.0255470255	-1.8668637077	-0.4045514411
C5	0.8779913312	-2.8591524166	-0.0572924094
C6	-1.7734855350	-3.3002512934	2.3481025656
С7	0.1661215423	-0.9272231660	-1.5035477940
Н8	-2.6231149071	-2.6168998542	2.3484518960
Н9	-0.7026554255	-0.2695946280	-1.5432517284
Cu10	-2.6699444053	-0.6880867321	0.3575801587
H11	-5.4747563121	-0.9683886330	-0.5483640506
C12	-4.2013570773	0.4740668000	0.3103121286
C13	-5.3911049801	0.0561062746	-0.1759974253
H14	1.8064768854	-3.0113162299	-0.5851954977
Н15	0.7152607206	-4.3454892253	1.5823816070
H16	1.0670446240	-0.3287449739	-1.3399639782
H17	0.2555216205	-1.4646400946	-2.4519257512
H18	-2.1302300449	-4.3214573802	2.1849525132
H19	-1.2636933411	-3.2447550484	3.3142254883
H20	-4.7600051026	2.1005967768	1.6979590664
C21	-4.1105268648	1.8742372034	0.8437174004
H22	-2.0674213038	2.2860124728	0.1814572170
C23	-2.9128298900	2.7184886251	0.7270900314
024	-4.0510364648	2.9900574546	-0.1003499155
C25	-6.6703342575	0.8503680925	-0.3025449721
H26	-6.5690059837	1.8703257592	0.0754956914
H27	-6.9826186815	0.9202003331	-1.3536419447
H28	-7.4967738992	0.3609945069	0.2324798427
C29	-2.5492734793	3.7829403896	1.7337569208
Н30	-2.0916658055	4.6484196472	1.2404120830
Н31	-3.4409312856	4.1292170612	2.2651126696
Н32	-1.8328656584	3.3979228916	2.4697294360
&			

TSs 4

Gasphase: E_scf = -810.218470 a.u.

G(T)-E(0) = 0.215909 a.u. Kleinste Frequenz: -217.57 cm⁻¹ (nächste: 18.38 cm⁻¹)

In Lösung (Toluol): E_sol = -810.226933 a.u.

2HU_126_Ts.01.mae

&zmat			
C1	-4.1098744496	-0.9300363287	1.2769601233
N2	-3.2003040122	0.0079352307	0.8139039477
C3	-1.9716073446	-0.5462955063	0.6014954965
N4	-2.1401706800	-1.8546228885	0.9458423531
C5	-3.4366043031	-2.1055816248	1.3624905197
C6	-3.5251829989	1.4055554611	0.5682478300
C7	-1.0844770459	-2.8695858323	0.9213974183
Н8	-2.6071225557	1.9194428171	0.2820622678
Н9	-0.2382449083	-2.4903554967	0.3369399429
Cu10	-0.3185713471	0.2675078283	-0.0532201681
H11	1.1061035015	3.1054388669	0.3890428088
C12	1.3665907959	1.2379239836	-0.5290497381
C13	1.7599392355	2.4762110914	-0.2161753208
H14	-3.7627998897	-3.0854162969	1.6752965370
H15	-5.1380182604	-0.6865797329	1.4947129017
H16	-0.7692449511	-3.1030044122	1.9437160933
H17	-1.4726536082	-3.7781318309	0.4525805404
H18	-4.2575262208	1.4931225190	-0.2401746147
Н19	-3.9320541047	1.8639501117	1.4744019178
H20	1.7880995550	0.1918780074	-2.3731156544
C21	1.8806826207	0.1828462727	-1.2857887134
H22	2.5758699410	-1.0949688226	0.3188819676
C23	2.2938539698	-1.1439728008	-0.7483798800
024	0.9865385685	-1.5652860944	-0.9797915825
C25	3.0727712841	3.1126324967	-0.6059987816
H26	3.6804861256	2.4347858706	-1.2129234152
H27	2.9129723716	4.0368181576	-1.1785940072
H28	3.6589107322	3.3933900221	0.2797188776
C29	3.3506225741	-1.9149517734	-1.5304466635
Н30	3.3458154864	-2.9603088966	-1.2023989449
Н31	3.1196819956	-1.9002541231	-2.6008855143
Н32	4.3569796081	-1.5075335572	-1.3743474127
&			

5s

Gasphase: E_scf = -810.261852 a.u.

G(T)-E(0) = 0.237510 a.u. Kleinste Frequenz: 14.29 cm⁻¹

In Lösung (Toluol): $E_{sol} = -810.274110$ a.u.

2HU_122.01.mae

&zmat			
C1	2.1964209691	-2.5316404869	0.3717182640
N2	0.9660982961	-1.8963273825	0.4433143914
C3	1.0987008495	-0.5436429929	0.3484003651
N4	2.4421237403	-0.3515096543	0.2131022032
C5	3.1286681416	-1.5558252143	0.2253910006
C6	-0.3098661084	-2.5825285167	0.6094364813
С7	3.0731232417	0.9550672292	0.0688100477
Н8	-1.1060667817	-1.8388916861	0.5619120944
Н9	2.2924136691	1.7156827682	0.0986292274
Cu10	-0.2681525250	0.7836125296	0.3983344951
H11	-4.6514989162	-1.4586287397	1.9107162719
C12	-4.3089543980	0.2483743560	0.7824235174
C13	-5.0834668559	-0.5567493177	1.4705733179
H14	4.2016516667	-1.6128824434	0.1290870529
Н15	2.3002821452	-3.6037820281	0.4290171855
H16	3.7779958206	1.1298283684	0.8867862005
H17	3.6025855152	1.0191122472	-0.8862393999
H18	-0.4513136810	-3.3149765743	-0.1902552119
H19	-0.3470994892	-3.0903009481	1.5776819269
H20	-3.4179877063	0.9516271303	-0.9644699143
C21	-3.5419730867	1.0734102286	0.1146460380
H22	-2.9058386738	2.2024306631	1.8118180913
C23	-2.7537219431	2.2405509314	0.7160302921
024	-1.4070693717	2.1776604595	0.3803729572
C25	-6.5592631019	-0.3358296107	1.7118578078
Н26	-6.9029156159	0.5828469123	1.2296578375
Н27	-7.1545509986	-1.1717924058	1.3219071615
H28	-6.7778660772	-0.2615775365	2.7849934241
C29	-3.3359955497	3.5717157166	0.2089128673
Н30	-2.7508336985	4.4012336676	0.6192812264
Н31	-3.2684452618	3.6191235859	-0.8840259585
Н32	-4.3846963037	3.6962691518	0.5030451026
&			

Gasphase: E_scf = -1102.143896 a.u.

G(T)-E(0) = 0.246152 a.u.Kleinste Frequenz: -189.60 cm⁻¹ (nächste: 7.93 cm⁻¹)

In Lösung (Toluol): E_sol = -1102.155307 a.u.

2HU_245f3.01.mae

&zmat			
C1	6.9892487311	4.1595528997	-1.0738202351
N2	7.9418744760	3.3730789776	-0.4456660185
C3	7.9754586320	2.1164483370	-0.9717484291
N4	7.0199945887	2.1389306455	-1.9431245484
C5	6.4099878147	3.3813456830	-2.0237788913
C6	8.7799383353	3.8167738960	0.6634742171
C7	6.7183836461	1.0146941546	-2.8213345842
Н8	9.5672711409	3.0774871123	0.8158437801
Н9	7.1158419524	0.1053873742	-2.3685725044
CulO	9.1701929404	0.6977205966	-0.4692530556
H11	5.5787911731	-4.2506937634	-0.5153692791
C12	7.1190691203	-2.8902641039	-0.7264664388
C13	5.8501011952	-3.1979274624	-0.6171011345
H14	5.6323096815	3.6009761826	-2.7383670629
H15	6.8066520461	5.1850256391	-0.7932312612
H16	5.6358479763	0.9155676495	-2.9369867868
H17	7.1744779184	1.1586649025	-3.8056308467
H18	9.2344647011	4.7811854260	0.4226850439
Н19	8.1887508728	3.9127437425	1.5791492571
H20	8.8581275687	-2.5748886376	-1.8170171183
C21	8.3956155569	-2.6091820381	-0.8286193388
H22	10.1536622151	-3.0394011439	0.2968416996
C23	9.3401181157	-2.2983773279	0.3176075691
024	9.9343647384	-1.0234887391	0.0606814503
C25	4.7085870644	-2.2084834074	-0.6132683396
H26	5.0746484781	-1.1813388150	-0.6895126159
H27	4.0205230774	-2.3956150077	-1.4477001796
H28	4.1210154448	-2.2929039134	0.3092786309
C29	8.6864973600	-2.3191167238	1.6959961932
Н30	9.4366607190	-2.0981428058	2.4602219491
Н31	7.8960301653	-1.5632214132	1.7561311677
Н32	8.2447127944	-3.2973432294	1.9122425149
Н33	11.9840900794	-2.0486909229	0.4851582512
si34	11.7160489749	-0.5487832339	0.4202671477
Н35	13.0138536481	-0.2047995358	-0.2878368705
Н36	11.8877152015	-0.1296371609	1.8501169660
Н37	11.0752834035	0.8285778701	-0.1183210796
&			

6s

(2HU_246c + 2HU_250c)

2HU_246c.01.mae

&zmat	
C1	-3.4356719512
N2	-3.1736052796
C3	-4.2431810634
N4	-5.1786583537
C5	-4.7051102740
C6	-1.9125286237
C7	-6.5109617157
Н8	-1.9884278320
Н9	-6.6040811869
Cu10	-4.3988620087
H11	-5.2998575991
H12	-2.7109442610
H13	-7.2755587744
H14	-6.6533333211
H15	-1.0877885295
H16	-1.7187514474
H17	-4.5176442747
£	

2HU 250c.01.mae

&zmat			
C11	4.8120913840	-2.0446563084	-0.5221072583
C12	6.9890965973	-3.2823853345	-0.5401485887
C13	5.7046022082	-3.2400455550	-0.2887374715
H20	8.6037848827	-3.6642587630	-1.7888755241
C21	8.2704416953	-3.3395865774	-0.8026163124
H22	9.9036630666	-3.9450375291	0.4176209103
C23	9.3920834174	-3.0014222913	0.1606117114
024	10.3129042034	-2.1615768695	-0.5534039953
H25	5.2271646155	-4.1335033511	0.1183493404
C26	8.9245960899	-2.3217533214	1.4441705781
H27	9.7723805382	-2.1255838577	2.1071250347
H28	8.4394521686	-1.3709100791	1.2077289363
H29	8.2082392410	-2.9540955470	1.9762505243
Н30	12.5441563547	-3.4553878938	-0.2439487993
si31	11.9459894106	-2.0883385128	-0.2590049970
Н32	12.5300959112	-1.2909123701	-1.3623610193
Н33	12.2749104124	-1.4363395541	1.0404961857
Н36	4.3455942819	-1.7168552525	0.4149262847
Н37	5.3730262691	-1.2058849675	-0.9402942635
Н38	3.9990786017	-2.2968260456	-1.2137585038
æ			

Gasphase: E_scf = -501.593929 a.u.

G(T)-E(0) = 0.099522 a.u. Kleinste Frequenz: 97.32 cm⁻¹

In Lösung (Toluol): $E_{sol} = -501.609212$ a.u.

1.2790864339	-3.0270082977
0.5086878519	-1.9044200681
-0.2646985075	-1.5646013518
0.0442486798	-2.5063525713
0.9848821974	-3.4082481132
0.5241175068	-1.1722993946
-0.5464518451	-2.5573887842
-0.1892209240	-0.3512434131
-1.2453923692	-1.7258128347
-1.5374945897	-0.0558566751
1.3563934778	-4.2281283508
1.9572314508	-3.4498956234
0.2302205023	-2.4648189003
-1.0839801164	-3.4993491069
0.2335342328	-1.8293502192
1.5217951384	-0.7677944204
-2.5155918717	1.1039973993

Gasphase: E_scf (250c) = -600.554539 a.u.

G(T)-E(0) = 0.123383 a.u. Kleinste Frequenz: 31.18 cm⁻¹

In Lösung (Toluol): E_sol = -600.556621 a.u.

2HU_245n7.01.mae

&zmat

a Brita o			
C1	-0.6429997500	2.1054377316	2.7354590697
N2	0.2261604429	1.8836890752	1.6815239425
C3	0.3889968828	0.5528629381	1.4516217712
N4	-0.3977618519	-0.0515440102	2.3814048947
C5	-1.0382621458	0.8830694140	3.1765193248
C6	0.8931637048	2.9541510115	0.9442569078
C7	-0.5722398026	-1.4949278660	2.5289331341
Н8	1.4316989449	2.5180122190	0.1030105986
Н9	0.0923666900	-2.0024659012	1.8300205753
Cu10	1.5220793461	-0.2799649994	0.1001000214
H11	0.3050694675	-2.0419290049	-2.0681011860
C12	2.2166690504	-1.3445943844	-1.6018245346
C13	1.3620497209	-2.0314572915	-2.3328358773
H14	-1.7106504590	0.6039090668	3.9726815950
H15	-0.9012840592	3.0960774887	3.0759572597
H16	-0.3197911269	-1.7994480371	3.5475709743
H17	-1.6062335292	-1.7750624421	2.3116437989
H18	0.1532205571	3.6630501984	0.5650635351
H19	1.6001107219	3.4788816941	1.5924654055
H20	3.6510363271	0.1763619255	-1.3720225148
C21	3.3123197264	-0.8104659167	-1.0402504231
H22	3.8954690495	-2.5572340296	0.0647034386
C23	4.3528320485	-1.5846048949	-0.1955354351
02.4	5,4201499961	-1.7694368775	-1.0340224962
C2.5	1.7605288692	-2.8162394859	-3.5603202191
H26	1.2306319192	-2.4395719509	-4.4429241598
H27	2.8358284994	-2.7559567509	-3.7389032044
H28	1.4841798577	-3.8701321141	-3.4410115987
C29	4.6859056285	-0.8465500855	1.1091092145
Н30	5.4746583214	-1.3905017155	1.6380537520
Н31	5.0519136971	0.1657042864	0.8961784217
Н32	3.8173959186	-0.7730929143	1.7787388535
Cu38	6.8824947304	-0.7606935352	-1.4533047171
C39	8.4850536608	0.1356702495	-1.9849642837
N40	9.6453284635	0.2486875091	-1.2818998883
C41	10.6041402222	0.9419565635	-2.0023740986
C42	10.0332676233	1.2741990984	-3.1885055206
N43	8.7414184251	0.7746200869	-3.1594907985
C44	9.8629903718	-0.2987354668	0.0535516110
H45	11.5934381182	1.1332000056	-1.6171181429
H46	10.4289317390	1.8109610819	-4.0364644318
C47	7.7880312289	0.9098275884	-4.2555647222
H48	10.1030498732	0.5026993164	0.7574725863
Н49	8.9480170988	-0.7981354860	0.3723205315
Н50	10.6808739776	-1.0238068562	0.0359469136
Н51	8.1748200311	0.4254945795	-5.1560819087
Н52	6.8566152450	0.4262530224	-3.9606458414
Н5З	7.5981615406	1.9660599707	-4.4651454751
&			

Gasphase: E_scf = -1311.135607 a.u.

G(T)-E(0) = 0.372133 a.u.Kleinste Frequenz: 11.99 cm⁻¹

In Lösung (Toluol): E_sol = -1311.173520 a.u.

TSa 5

Gasphase: E_scf = -1102.144509 a.u.

G(T)-E(0) = 0.243258 a.u.Kleinste Frequenz: -183.14 cm⁻¹ (nächste: 10.74 cm⁻¹) In Lösung (Toluol): E_sol = -1102.155350 a.u.

2HU_233d.01.mae

&zmat.			
C1	7.3291602878	4.3551324492	-1.3155839661
N2	8.3112487007	3.5475487131	-0.7661500201
C3	8.0065365360	2.2270596503	-0.9109616933
N4	6.8115978076	2.2318168845	-1.5657464789
C5	6.3819054455	3.5243207902	-1.8223213771
C6	9.5136274162	4.0454088573	-0.1032253003
C7	6.0805944097	1.0308955445	-1.9535667865
H8	10.1551271208	3.1939656451	0.1292998528
H9	6.6484445895	0.1602234098	-1.6235313749
Cu10	9.0846343039	0.7486265031	-0.3286049219
H11	5.2223325896	-3.0063307509	-1.1993974323
C12	7.2857696356	-3.1129790667	-1.0499749560
C13	6.0971140564	-3.6576366653	-1.1438866992
H14	5.4580635692	3.7377971458	-2.3366951559
H15	7.3889259512	5.4321453788	-1.3009792595
H16	5.0936663422	1.0197211805	-1.4819137551
H17	5.9622660079	0.9934075768	-3.0403265612
H18	10.0488064100	4.7308982748	-0.7658524399
H19	9.2502514168	4.5661363683	0.8220102133
H20	9.0535505501	-2.4001193258	-1.8728592337
C21	8.4920385357	-2.6066715783	-0.9596788698
H22	10.0784940076	-2.9972669138	0.4047130345
C23	9.2430032497	-2.2852865204	0.3202947345
024	9.8249595652	-0.9871474925	0.1874937322
C25	5.8288976972	-5.1445290318	-1.1825910813
H26	6.7579941169	-5.7161509160	-1.1204201380
H27	5.1809962020	-5.4476851703	-0.3507285451
H28	5.3130035823	-5.4254047941	-2.1094067522
C29	8.3945020871	-2.3680440426	1.5852501486
Н30	9.0141627075	-2.1491206337	2.4589562314
Н31	7.5773804920	-1.6392059834	1.5469857162
Н32	7.9594231680	-3.3652812045	1.7055589380
Н33	11.8480374674	-2.0144360149	0.7106596724
si34	11.5705875513	-0.5152153614	0.6965211117
Н35	12.9131014052	-0.1318983827	0.0989805653
Н36	11.6371544435	-0.1624578426	2.1522632498
Н37	10.9545300600	0.8806447173	0.1770702865

&

6a

(2HU_246c + 2HU_250e)

2HU_246c.01.mae

&zmat	
C1	-3.4356719512
N2	-3.1736052796
C3	-4.2431810634
N4	-5.1786583537
C5	-4.7051102740
C6	-1.9125286237
C7	-6.5109617157
H8	-1.9884278320
Н9	-6.6040811869
Cu10	-4.3988620087
H11	-5.2998575991
H12	-2.7109442610
Н13	-7.2755587744
H14	-6.6533333211
Н15	-1.0877885295
H16	-1.7187514474
H17	-4.5176442747
8	

2HU_250e.01.mae

&zmat	
H11	5.1930266379
C12	7.0873340785
C13	5.7870353700
H20	8.9911632885
C21	8.3892209182
H22	9.7436909502
C23	9.1892581488
024	10.1388678161
C25	5.0271256310
H26	5.7015206091
Н27	4.3042540631
H28	4.4572907970
C29	8.3376151119
Н30	8.9626135859
Н31	7.8041733191
Н32	7.6020855589
Н33	12.3295596325
Si34	11.6061374581
Н35	12.3780137522
Н36	11.4829966729
&	

Gasphase: E_scf = -501.593929 a.u.

G(T)-E(0) = 0.099522 a.u. Kleinste Frequenz: 97.32 cm⁻¹

In Lösung (Toluol): E_sol = -501.609212 a.u.

1.2790864339	-3.0270082977
0.5086878519	-1.9044200681
-0.2646985075	-1.5646013518
0.0442486798	-2.5063525713
0.9848821974	-3.4082481132
0.5241175068	-1.1722993946
-0.5464518451	-2.5573887842
-0.1892209240	-0.3512434131
-1.2453923692	-1.7258128347
-1.5374945897	-0.0558566751
1.3563934778	-4.2281283508
1.9572314508	-3.4498956234
0.2302205023	-2.4648189003
-1.0839801164	-3.4993491069
0.2335342328	-1.8293502192
1.5217951384	-0.7677944204
-2.5155918717	1.1039973993

Gasphase: E_scf = -600.554447 a.u.

G(T)-E(0) = 0.123501 a.u. Kleinste Frequenz: 31.19 cm⁻¹

In Lösung (Toluol): $E_{sol} = -600.556710$ a.u.

-2.2285399937	-1.3646563349
-2.9253059060	-0.9357932661
-3.0681098060	-0.9989490504
-3.0680523794	-1.7532819551
-2.7953703124	-0.8857534692
-3.1449613412	0.7191889725
-2.2881910079	0.2991666391
-1.3419990713	-0.2190402292
4.3139796545	-0.6106940666
-5.0994427457	-0.2618345874
4.0987856664	0.1856644158
-4.7023398643	-1.4636645065
-1.6577342007	1.3966985175
-1.3337724397	2.2340696051
-0.7888465431	1.0023654051
-2.3743617549	1.7726137762
-2.2677351604	0.8218472070
-1.0069330890	0.4850575681
-0.2266169143	-0.5102283287
-0.2058306701	1.7359799447

5a''

2HU 231a7.01.mae

&zmat

2.5381225708 -2.0556952930 -0.6427843895 C1 N2 -2.4929490886 1.4536229505 0.0974477863 C3 -3.7174322472 1.0350540471 -0.3220444840 1.8783001912 -1.3405747431 N4 -4.0342879846 C5 -3.0283531333 2.8051743200 -1.5523964307 С6 -1.7352047640 0.8703934067 1.2018531943 C7 -5.2602445420 1.8200966759 -2.1336849794 -2.2431755054 Н8 -0.0336851762 1.5371581709 Н9 -5.9159838023 1.0586547609 -1.7118038445 Cu10 -4.7717166221 -0.4380270981 0.4025213413 -5.6127858647 -2.7590606811 -1.3939732726 H11 C12 -5.8134427559 -2.2792072425 0.6274873015 C13 -6.0009034304 -3.0563376249 -0.4200831111 H14 -3.0882355299 3.5610647244 -2.3198627155 3.0193566278 -1.1071836853 -0.4619466642 H15 H16 -5.7694888430 2.7862823267 -2.1042760956 H17 -5.0286526368 1.5629114264 -3.1705934508 H18 -0.7284645596 0.6102571151 0.8665410208 H19 -1.6699081409 1.5772286214 2.0333183260 H20 -5.0424602470 -1.9203626793 2.5502781369 C21 -1.6942740360 -5.8399388655 1.8349668452 Н22 -7.7912338903 -0.8180156348 1.6392500720 C23 -7.0654459676 -0.9826300636 2.4572292588 024 -7.5668327973 -1.8758845719 3.3661904014 C25 -6.7235213523 -4.3809074575 -0.3547562222 H2.6 -7.5796541596 -4.3780659935 -1.0390263132 H27 -6.0587939021 -5.1937458691 -0.6694562945 H28 -7.0844404491 -4.5874568544 0.6546092770 -6.6874328625 C29 0.3843974940 3.0456570278 H30 -7.56343044110.8184174393 3.5376421962 0.2745828081 Н31 -5.8935973306 3.7951014326 Н32 -6.3480445512 1.0899894087 2.2740599653 Cu38 -7.2170513650 -2.2264649956 5.1228062496 C39 -7.0155874475 -2.7024433772 6.9625471774 N40 -6.3365390779 -3.75704065397.4916785117 C41 -6.4467278659 -3.7837809558 8.8724488325 C42 -7.2135071103 -2.7187403508 9.2208381877 N43 -7.5507366251 -2.0715374066 8.0435207855 -5.9813398471 -4.5464031860 9.4769503924 H44 H45 -7.5449742907 -2.3738234879 10.1877394342 C46 -5.5993502145 -4.7444520134 6.7106101215 -6.0271608937 -5.7398297582 H47 6.8567400619 H48 -5.6749212691-4.4730042053 5.6575196281 Н49 -4.5472584445 -4.7547388611 7.0082790228 C50 -8.3836677124 -0.8748030426 7.9769974362 -7.9133319844 -0.0539256214 8.5250153285 Н51 Н52 -8.4956316105 -0.5933667327 6.9298792841 H53 -9.3702112231 -1.07715875338.4021111171

Gasphase:

E scf = -1311.135581 a.u.

G(T)-E(0) = 0.372794 a.u. Kleinste Frequenz: 15.24 cm⁻¹

E sol = -1311.173237 a.u.

In Lösung (Toluol):

&

Strukturen zu Kapitel 4

Zu 4.42, β -Konformer:

Job HU3-M-gas1

Optimierte Geometrie (in Å):

∆+om	v	77	7
∩1	-1 1898952759	2 1307710726	-1 5936866139
C2	-2 5695245367	2 2546065644	-1 9/16158117
C2	-3 4330521763	2 4210510035	_0 6700062030
C3	-3 0/11575719	1 4252479250	0 3729405660
C4 C5	1 9690104657	1.4252478250	0.3720495009
C5	-1.0009104037	1 0206246475	0.3204044141
	-0.0333237002	2 10000346473	-0.7558947817
H /	-2.0100412576	3.1906646611	-2.506/305050
08	-3.22/068/203	3./001/38185	-0.1526306043
H9 1110	-4.4889344460	2.3057001853	-0.9455057246
HIU 111	-3.7440554146	1.2305/50630	1.1/851405//
H11 H12	-1.000//90902	0.0522480601	1.0788407971
HIZ G10	-0.7735460448	0.1068/66884	-1.3582283425
C13 014	0.5510016149	1.3493996601	-0.1943193083
C14	-3.060/216811	1.1058/11689	-2.8298552064
HI5	-4.0582515884	1.32511/5556	-3.2243958000
HI6	-2.3/98519518	0.9782135109	-3.6/55/21094
HI7	-3.1174144008	0.1596753744	-2.2832450178
C18	-4.1719033019	4.7389720041	-0.3024751216
C19	2.1/112/4021	-1.8780202790	2.1961052365
C20	1.7233943758	-0.7072351938	2.8076210608
C21	1.2114480877	0.3358966512	2.0346863120
C22	1.1388727353	0.2320512683	0.6396225012
C23	1.5984625792	-0.9481457320	0.0377294099
C24	2.1077161935	-1.9941550850	0.8064124866
H25	2.5688200940	-2.6915509161	2.7957280107
H26	1.7726729433	-0.6032640631	3.8879704137
H27	0.8637656994	1.2452225142	2.5186727766
H28	1.5618022006	-1.0459893033	-1.0448920980
H29	2.4590530527	-2.8997538729	0.3197381821
C30	-8.3059538389	3.9251557732	0.5267624485
C31	-7.9432773907	4.8464614569	-0.4583336695
C32	-6.5988615899	5.0871688270	-0.7262128635
C33	-5.6043939097	4.3876547485	-0.0298927135
C34	-5.9734251723	3.4697910068	0.9620896699
C35	-7.3201680773	3.2453373299	1.2429653890
H36	-9.3551965631	3.7444689626	0.7419194049
Н37	-8.7094588980	5.3828437666	-1.0101562404
Н38	-6.2994104531	5.8202080306	-1.4680232885
Н39	-5.2059615475	2.9588197236	1.5337562094
H40	-7.5998879961	2.5439980654	2.0235194041
041	-3.8312200012	5.8665331947	-0.5789829762
H42	1.1913958197	1.5666360722	-1.0563392104
H43	0.4746010705	2.2712711818	0.3900602761

Gasphase: $E_scf = -999.849307 \text{ a.u.}$ G(T)-E(0) = 0.328857 a.u.In Lösung (CH₂Cl₂): $E_sol = -999.867242 \text{ a.u.}$

Zu 4.42, α-Konformer

Gasphase:

 $E_scf = -999.870966$ a.u. G(T)-E(0) = 0.330087 a.u. In Lösung (CH₂Cl₂): $E_sol = -999.869933$ a.u.

Job 3HU_N2

Optimierte Geometrie (in Å):

Atom	X	У	Z
C1	-2.8422941777	1.6355556893	-1.2225707482
02	-4.1732215965	1.4154080930	-1.6942434908
C3	-5.1993853077	1.5432730122	-0.7111904224
C4	-5.0043648075	0.4674227373	0.3667786008
С5	-3.5736455295	0.4260614625	0.8259203486
C6	-2.5961530165	0.9827306708	0.1110459488
C7	-2.5028755941	3.1523374889	-1.2405978967
Н8	-2.2011169755	1.1464247769	-1.9683379451
Н9	-5.1294652958	2.5199097941	-0.2076982237
010	-5.8688123807	0.8567905959	1.4712316189
Н11	-5.3316039710	-0.5162667222	0.0133223458
H12	-3.3719113893	-0.0798463892	1.7653446798
Н13	-1.5695789790	0.9666410378	0.4657201267
C14	1.6066787601	3.9460024569	-0.1379475606
C15	0.5797702370	4.1639817777	0.7803186521
C16	-0.7451800117	3.9188310622	0.4199010915
C17	-1.0698805567	3.4550811350	-0.8616600656
C18	-0.0281223505	3.2441410397	-1.7755084923
C19	1.2981436961	3.4850631126	-1.4183578629
Н20	2.6391169784	4.1363635513	0.1408188258
H21	0.8091556606	4.5267954810	1.7784238913
H22	-1.5403091597	4.0887800567	1.1416519755
Н23	-0.2593609518	2.8925752172	-2.7784995062
H24	2.0912155590	3.3166321760	-2.1415369881
C25	-6.5305919465	1.4358148475	-1.4368907787
Н26	-7.3573491237	1.4941654119	-0.7239148065
Н27	-6.6328214031	2.2458040792	-2.1638083224
H28	-6.5924020814	0.4834454721	-1.9725270524
C29	-6.2168875338	-0.1145412288	2.3487742848
030	-5.8560709822	-1.2717948894	2.2466929026
C31	-8.6929166821	1.2619037366	5.5600258205
C32	-8.3152206984	-0.0798581184	5.4733529193
C33	-7.5120092642	-0.5096466860	4.4212575852
C34	-7.0820999245	0.4015596051	3.4480167980
C35	-7.4614606816	1.7472199457	3.5381063952
C36	-8.2654053340	2.1732013851	4.5927328289
Н37	-9.3192644520	1.5975992575	6.3817509842
Н38	-8.6465108589	-0.7884004820	6.2266198337
Н39	-7.2038074525	-1.5459905163	4.3334975685
H40	-7.1231350813	2.4493679651	2.7856180207
H41	-8.5581835507	3.2167325690	4.6612046611
H42	-2.7165805694	3.5122636088	-2.2528656516
Н43	-3.1833788057	3.6735792782	-0.5592435798

Zu 4.43, β-Konformer:

Gasphase:

 $E_scf = -1151.516241$ a.u.

G(T)-E(0) = 0.359137 a.u.

In Lösung (CH₂Cl₂):

$$E_{sol} = -1151.537181$$
 a.u.

Job HU3-B-gas1

Atom	X	У	Z
01	-1.8793510072	2.1429599331	-0.9141395532
C2	-3.2936228936	2.0444998781	-1.0903593463
C3	-4.0016907313	1.8586243435	0.2641534086
C4	-3.3738201120	0.7505593339	1.1159268980
C5	-1.8426814049	0.8858261858	1.1737078315
C.6	-1.2424563794	1.0573003797	-0.2367626427
н7	-3 5712353100	3 0313043596	-1 4772740089
08	-3 8454200854	3 0377908829	1 0919034000
но	-5 0575452266	1 6296856097	0 1008359284
H10	-3 7627715045	0 8460769308	2 1406032611
011	-3 7420768515	-0 5026989389	0 550763/353
1110	1 5026222272	1 7702422407	1 775600007
012	1 4155705001	1.7703432407	1 0002574622
013	-1.4155725881	-0.3191633568	1.8083374622
H14 015	-1.38/9293528	0.1132413774	-0.7823460348
C15	0.2498852537	1.4404/43251	-0.2483802975
C16	-3.6960116098	0.9990820705	-2.136361/389
HI/	-4.7585629823	1.1036760398	-2.3802001133
H18	-3.1177785090	1.1666696969	-3.0495009206
H19	-3.5359087979	-0.0194575079	-1.7816419800
C20	-4.3410127950	4.2618705114	0.7520885791
C21	2.9162580256	-1.4802266078	1.5209632709
C22	2.6272724386	-0.2959038158	2.1964315023
C23	1.7728875167	0.6484551871	1.6209923328
C24	1.1903521261	0.4247475539	0.3642057540
C25	1.4971295325	-0.7703359436	-0.3051054803
C26	2.3495558327	-1.7129645082	0.2658446713
H27	3.5797933449	-2.2157231913	1.9660607462
H28	3.0675604900	-0.1010095683	3.1701164825
H29	1.5611625940	1.5755369050	2.1482626462
Н30	1.0626302448	-0.9599772679	-1.2834947913
Н31	2.5735468520	-2.6314961476	-0.2690752892
C32	-8.1138201489	4.6641375537	-1.2527744842
C33	-7.0356083862	5.4864181921	-1.5864030597
C34	-5.8159598571	5.3343905389	-0.9329230109
C35	-5.6556192160	4.3367309673	0.0378828810
C36	-6.7424339983	3.5197121780	0.3755165809
C37	-7.9693818499	3.6904719556	-0.2637147444
Н38	-9 0679486769	4 7885578272	-1 7565949184
H39	-7 1490858681	6 2518443354	-2 3483218900
H40	-4 9771366587	5 9848700540	-1 1586161088
H41	-6 6392426530	2 7763020521	1 1597975647
H42	-8 8129329329	3 0650131468	0 0124018936
043	-3 7350225049	5 253/061521	1 0863/57793
U43 UAA	-3 1220666074	_1 1387/05097	T.00003401100
1144 U/5		_0 3265221121	1 954440394
п4Ј ЦЛБ	-U.4491900080 0 5107507140	1 6150/00000	1.0J4444212U/
1140 1147	0.2166007170	1.01J049U0U3	-1.2303033133
n4/	0.040070/1/8	Z., 4U.J.J.U.J.O./ 10	0./040.04.39/

Zu 4.43, α -Konformer:

Gasphase:

 $E_scf = -1151.531051$ a.u.

G(T)-E(0) = 0.359886 a.u.

In Lösung (CH₂Cl₂):

E_sol = -1151.555417 a.u.

Job 3HU_A2_gas

Atom	X	У	Z
C1	-2.7555788397	1.7732198023	-1.1160561896
02	-4.1347401293	1.5420705740	-1.4055866008
C3	-4.9899528492	1.3503725643	-0.2798834591
C4	-4.4966212540	0.1521547764	0.5518239677
C5	-3.0443849224	0.3406815350	0.9717471189
C6	-2.1668256940	0.6455114529	-0.2559928455
C7	-2.5296927687	3.1954994000	-0.5449360822
н8	-2.2617795167	1.7100857099	-2.0908755727
H 9	-4 9791757156	2 2406468810	0 3704237385
010	-5 2918030136	0 0701932146	1 7526626717
U11	-1 6043585587	-0 7722252230	-0 0175500797
u12	-2 9925631060	1 1660406132	1 6040602300
013	-2 6103015251	_0 9906190215	1 5903770265
013	2 0722172461	0.5140122465	1.0652677600
U14 U15	1 1670274454	-0.5149123403	-1.0032077000
пі J 01 С	-1.10/02/4434	0.9540007059	0.0929424092
C10 c17	1.64/5415686	4.31843/6981	-0.3611400146
C17	0.9304278581	4.0969584195	0.813/1848/9
C18	-0.41/9156/26	3.7428611622	0.7533501347
C19	-1.0/36895256	3.6031914043	-0.4763542592
C20	-0.3416646776	3.8361001063	-1.6491643151
C21	1.0055485038	4.1884361442	-1.5937639823
H22	2.6974019056	4.5931873802	-0.3177941047
Н23	1.4186987003	4.2013220351	1.7786757745
H24	-0.9718327817	3.5780124524	1.6749778503
H25	-0.8335552083	3.7446571395	-2.6146110796
H26	1.5550447985	4.3643252980	-2.5141674199
C27	-6.3959589824	1.1519994134	-0.8270279919
H28	-7.1151034341	1.0357975386	-0.0126207095
H29	-6.6836961268	2.0200510677	-1.4256569756
Н30	-6.4348410576	0.2628938586	-1.4624950735
C31	-6.0238913552	-1.0563057215	1.9558682232
032	-6.1094839721	-1.9639447807	1.1546684316
C33	-8.0756498226	-1.1117477125	5.7135907149
C34	-8.2196119450	-2.1615048513	4.8039181454
C35	-7.5448426162	-2.1246023919	3.5875311916
C36	-6.7218919359	-1.0355781087	3.2729070327
C37	-6.5794095353	0.0163769610	4.1869165868
C38	-7.2558984563	-0.0249212842	5.4039607289
Н39	-8.6019489130	-1.1409151957	6.6635107552
H40	-8.8571258065	-3.0071541965	5.0441363416
H41	-7 6391547629	-2 9281923694	2 8650655420
H42	-5 9410946993	0 8563779305	3 9393388905
н43	-7 1437190197	0 7906360079	6 1122685722
н44	-1 8197381951	-0 6929586811	2 1038648774
H45	-2 0163095256	-1 2596407016	-0 4453500528
H46	-3 0840766467	3 8780131389	-1 10010/0217
11-10 U/7	-2 9772182106	3 2863248550	0 1501116666
11 1 /	2 · J / / Z ± U Z ± U U	J. ZU UJZIU JJJ	0.10011100000

Zum syn-Diastereomer von 4.43, β-Konformer:

Gasphase:

E_scf = -1151.525122 a.u.

G(T)-E(0) = 0.359849 a.u.

In Lösung (CH₂Cl₂):

E_sol = -1151.545657 a.u.

Job HU3-D-gas1

Atom	x	v	Z
01	-1.3452046079	2.1582370192	-1.2889881945
C2	-2.7415508964	2.1034268280	-1.5869099744
C3	-3.5776112214	2,2227961352	-0.2981084221
C 4	-3 1199579126	1 2188162349	0 7784205738
C 5	_1 5915783/52	1 2804877849	0 97306892/1
C6	-0.8664092192	1 1628175570	-0 3773071577
U7	-2 0202132437	3 0000020200	-2 1764454593
09	-2.9202132437	3 5491307534	-2.1/04404000
110	-5.5004092515	2 0026425056	0 5001700670
п9 1110	-4.0309100021	2.0020423030	-0.5251/020/0
ПIU 011	-3.3903074922	0.2132423942	0.4400093373
011	-3.//94/36945	1.43//626963	2.0119709684
HIZ 012	-1.28/4//3430	0.451/0262/3	1.6189315883
013	-1.2469020438	2.4657081229	1.6900352724
HI4	-1.0609622692	0.1538348879	-0.7753713601
C15	0.6527625256	1.3737540491	-0.2872121807
C16	-3.1240025057	0.8903308173	-2.4441912580
H17	-4.1575944524	0.9834196072	-2.7927991721
H18	-2.4703571451	0.8467401122	-3.3194858848
H19	-3.0387459855	-0.0601071004	-1.9098020345
C20	-4.2256403734	4.5986768148	0.0778227467
C21	2.6012451011	-1.6004637516	2.1780256292
C22	2.1881093848	-0.3891831179	2.7336038223
C23	1.5690161857	0.5737251434	1.9367626657
C24	1.3530687140	0.3426161629	0.5711240715
C25	1.7744123675	-0.8768465607	0.0251448387
C26	2.3924498156	-1.8420487803	0.8199706780
H27	2.3476251847	-0.1923715661	3.7901883697
H28	1.2345904913	1.5108246425	2.3731355092
Н29	1.6224712057	-1.0687707613	-1.0347743812
Н30	2.7145518720	-2.7809274857	0.3781273028
C31	-8.4773142656	4.0610015312	0.0789877176
C32	-7.8780889533	5.0450095913	-0.7106955826
C33	-6.4945452328	5,1904753547	-0.7075495404
C34	-5,6971697400	4,3329921633	0.0637357740
C35	-6 3003143355	3 3492165091	0 8613366565
C36	-7 6893226632	3 2238059431	0 8694851375
U37	-9 5581917628	3 9527772700	0 0833448134
ц38 1137	-8 4900848037	5 703/385183	-1 3198823694
п30 П30	-6 0137296255	5 0602500767	-1 2015076733
1110	-0.0157200255 5 6002401204	2 6007406020	1 4007654157
П40 1141	-3.0003401394	2.099/400939	1 4074120004
H41	-8.155954/429	2.4/06636181	1.49/4130894
U4Z	-3./030609/13	5./1290055/0	-0.0012816509
H43	-1.4864333249	3.2195966158	1.1246//4804
H44	1.0410004752	1.3490804417	-1.3105806950
H45	0.8283618697	2.3/97526053	0.1031556275
H46	3.0836452207	-2.3503422999	2./985466666
H47	-3.2413083046	2.1127615233	2.4599654510

Zum syn-Diastereomer von 4.43, α -Konformer:

Gasphase: $E_scf = -1151.516332$ a.u. G(T)-E(0) = 0.359118 a.u. In Lösung (CH₂Cl₂): $E_sol = -1151.538200$ a.u.

Job 3HU_C_gas4

Atom	X	У	Z
C1	-2.5387491227	1.4226349646	-1.0760402231
02	-3.8859938077	1.0668360484	-1.4304536131
C3	-4.8805114881	1.3309562647	-0.4353505395
C4	-4.5641652127	0.4848404895	0.8117871573
C5	-3,1375271418	0.7316311485	1,3134061961
C6	-2.1370102543	0.5797661537	0.1620244557
C7	-2.3778406885	2.9614105198	-1.0090157630
н8	-1 9343106013	1 0588356931	-1 9136337019
H 9	-4 8655563422	2 3869726634	-0 1370945577
010	-5 4472517685	0 8755177559	1 8934672306
н11	-4 6934579051	-0 5736472424	0 5683549458
н12	-2 8871242683	-0 0149039890	2 0836689843
013	-3 0035246128	2 0414234256	1 8580324378
014	_0 0010030210	0 7610042692	0 5000524570
U14 U15	2 1002660014	0.7019042002	0.1650060001
п15 с16	1 6746020172	-0.4055019502	-0.1039900001
C10 C17	1.0/400201/3	4.4000303002	-0.5094171910
C1 /	0.7510756233	4.5314182674	0.52/4192161
C18 C10	-0.5544928724	4.0648037793	0.36204/3393
C19 200	-0.95/92200/1	3.4034234381	-0.8388931494
C20	-0.0210553809	3.3549850635	-1.8/5434/051
C21	1.2823841675	3.8203887244	-1./130/8519/
HZZ	2.6906947465	4.//13//6931	-0.3834161488
H23	1.0430160947	4.9940096680	1.4662363381
H24	-1.2726201683	4.1617267253	1.1722779913
H25	-0.3164629952	2.9048125026	-2.8202853513
H26	1.9940913404	3.7260037962	-2.5285199444
C27	-6.2267223470	1.0051777530	-1.0650282713
H28	-7.0449698669	1.2294469104	-0.3757353927
H29	-6.3626527814	1.6071546677	-1.9671385840
Н30	-6.2757057087	-0.0508417332	-1.3503838774
C31	-6.6012512269	0.1987631980	2.1997815329
032	-7.5812175693	0.8314089095	2.5161368742
C33	-6.6760250619	-4.0877368950	2.2828779284
C34	-7.8092439107	-3.3585984380	1.9161770507
C35	-7.7625204431	-1.9681698644	1.8849780664
C36	-6.5722739318	-1.2959322780	2.1941269201
C37	-5.4401768229	-2.0315632485	2.5690474837
C38	-5.4960718832	-3.4230494220	2.6192399310
Н39	-6.7147291625	-5.1727120471	2.3132998111
H40	-8.7300371044	-3.8745091162	1.6613188241
H41	-8.6399799204	-1.3852171996	1.6255349790
H42	-4.5262802233	-1.5168750580	2.8474467939
H43	-4.6196472682	-3.9875921695	2.9225949780
H44	-3.7304736037	2.1596601768	2.4870110410
H45	-0.7268274780	1.6594814385	0.9434070028
H46	-2.7883751071	3.3393310739	-1.9534687084
H47	-2,9897034796	3.3635559717	-0.2009659380

Zu 4.44, β-Konformer:

Gasphase:

E_scf = -1190.815752 a.u.

G(T)-E(0) = 0.385137 a.u.

In Lösung (CH₂Cl₂):

E_sol = -1190.836947 a.u.

Job HU3-H-gas1

Atom	Х	У	Z
01	-1.8238664442	2.1834763942	-0.7424500484
C2	-3.2286615960	1.9505999100	-0.8028288154
C3	-3.8617068469	1.9662472982	0.6035612431
C4	-3.0728376929	1.1118577111	1.6162908907
С5	-1.5658563596	1.3980817209	1.5297124645
C6	-1.0721559032	1.2740438618	0.0762454011
Н7	-3.6129009489	2.8184727326	-1.3492108713
08	-3.8052704828	3.2890010559	1.1925986223
Н9	-4.8978695110	1.6210402203	0.5401864592
H10	-3.4189441594	1.3602982016	2.6288090920
011	-3.2434716406	-0.2871491281	1.3779485967
H12	-1.4000605959	2.4304826712	1.8517426204
013	-0.8625969385	0.5660044135	2.4323001796
H14	-1.2208899681	0.2404505816	-0.2703449794
C15	0.4047050203	1.6582907135	-0.1177030113
C16	-3.5961762116	0.6969325244	-1.6080128350
H17	-4.6741793126	0.6764711196	-1.8014978628
H18	-3.0781675341	0.7277689895	-2.5705488558
Н19	-3.3300834123	-0.2245528499	-1.0878428918
C20	-4.3788682217	4.3918218760	0.6278263315
C21	3.2389282811	-1.4937644233	0.7662782653
C22	3.0839486406	-0.4251444633	1.6494531665
C23	2.1688575131	0.5894538842	1.3706935148
C24	1.3959913357	0.5594727229	0.2045822495
C25	1.5648588288	-0.5170002689	-0.6768412980
C26	2.4741727812	-1.5372944498	-0.3997923118
H27	3.6753620436	-0.3813966686	2.5599035317
H28	2.0417094464	1.4095690893	2.0709937718
Н29	0.9822383336	-0.5518074216	-1.5951315903
Н30	2.5905831331	-2.3620236582	-1.0977636768
C31	-8.0819954220	4.1283543296	-1.5263682344
C32	-7.0420384523	4.9375315567	-1.9884610734
C33	-5.8443441653	5.0037856092	-1.2820677510
C34	-5.6651968221	4.2347760527	-0.1244661451
C35	-6.7141781358	3.4312884495	0.3404283615
C36	-7.9213997554	3.3864431446	-0.3555715647
Н37	-9.0195256666	4.0838478076	-2.0728342717
Н38	-7.1688049294	5.5240338580	-2.8935182562
Н39	-5.0378410049	5.6507861831	-1.6116219050
H40	-6.5999091563	2.8715857908	1.2637664605
H41	-8.7377711542	2.7757446999	0.0182893445
042	-3.8619368601	5.4707609545	0.7960215092
H43	-1.1393844664	-0.3405840576	2.2306955704
H44	0.5032458259	1.9404556999	-1.1717554941
H45	0.6220725107	2.5568937115	0.4698444653
C46	-4.3622054040	-0.8644268412	2.0327041464
H47	-4.3521094542	-1.9314887290	1.8001457023
H48	-4.2995079214	-0.7327587427	3.1219378587
H49	-5.3131684059	-0.4391421015	1.6828117160
Н50	3.9515383043	-2.2845860185	0.9832824768

Zu 4.44, α -Konformer:

:

Gasphase:

E_scf = -1190.833682 a.u.

G(T)-E(0) = 0.386901 a.u.

In Lösung (CH₂Cl₂):

E_sol = -1190.853705 a.u.

Job 3HU G2			
Optimierte	Geometrie	(in	Å)

Atom	Х	У	Z
C1	-2.6897115279	1.4911394185	-1.0569060997
02	-3.9966972174	1.0369857192	-1.4430223454
C3	-4.9877990387	1.0949107127	-0.4080328353
C4	-4.5515823432	0.2357485557	0.7948307667
C5	-3.1182173677	0.5217402678	1.2463051547
C6	-2.1573546101	0.5469857314	0.0335086560
C7	-2.6577314790	3.0038084203	-0.7418501151
Н8	-2.0747846860	1.3175793004	-1.9461649003
Н9	-5.1062616899	2.1306448368	-0.0580344146
010	-5.4223729797	0.5434772032	1.9035013824
H11	-4.6472050109	-0.8270670687	0.5602705020
Н12	-3.0931901334	1.5151707696	1.7289625111
013	-2.8095993869	-0.4761134791	2.1993387751
014	-1.9688229338	-0.7507456297	-0.5122221240
H15	-1.1682964894	0.8844406678	0.3567623185
C16	1.3729262279	4.4941253437	-0.2222650525
C17	0.5241226497	4.3727239040	0.8769674429
C18	-0.7774843167	3.8997487925	0.7065575402
C19	-1.2534543689	3.5401995345	-0.5604768521
C20	-0.3909959201	3.6724255111	-1.6575676300
C21	0.9101956689	4.1434575873	-1.4915000603
H22	2.3864455010	4.8622100423	-0.0924674771
Н23	0.8727051337	4.6483462395	1.8683076831
H24	-1.4353107701	3.8138740263	1.5684041578
H25	-0.7444649520	3.4097762158	-2.6519355501
H26	1.5631652788	4.2401674229	-2.3542235998
C27	-6.2955058755	0.6270979114	-1.0295124049
H28	-7.1077805854	0.6688210698	-0.3001373305
Н29	-6.5527490630	1.2681234212	-1.8766165858
Н30	-6.2034128717	-0.4027143477	-1.3860072087
C31	-6.2705965182	-0.4239001762	2.3387158110
032	-6.4071874371	-1.5003145770	1.7939818673
C33	-8.5090209029	0.6991764582	5.8114390650
C34	-8.7129698152	-0.5388105163	5.1982606848
C35	-7.9750805601	-0.8859328343	4.0707705794
C36	-7.0280148178	0.0046039155	3.5489252339
C37	-6.8244138767	1.2455216094	4.1664121112
C38	-7.5650150501	1.5887603432	5.2952001431
Н39	-9.0850826104	0.9703842442	6.6916605657
H40	-9.4464784669	-1.2315197191	5.5998880652
H41	-8.1142300413	-1.8418857925	3.5774269835
H42	-6.0886719799	1.9299248864	3.7607758085
H43	-7.4057816431	2.5505895068	5.7736813518
H44	-2.7587022288	-0.9473081600	-1.0375333179
C45	-1.5585179454	-0.3310051652	2.8431501041
H46	-1.5367012792	-1.0647913846	3.6521601640
H47	-0.7168029197	-0.5316666041	2.1674480149
H48	-1.4353124100	0.6744982914	3.2756666412
H49	-3.1513699553	3.5069987759	-1.5817314167
H50	-3.2462512116	3.2331503646	0.1510999289

B Daten der Röntgenstrukturanalyse

Kristallstruktur des Tetrahydrofurans 4.39

Table 1. Crystal data and structure refinement for 22	208.	
Identification code	2208	
Empirical formula	C21 H24 O5	
Formula weight	356.40	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$C_{2}(5)$	
Unit cell dimensions	a = 34.778(3) Å	$\alpha = 90^{\circ}$.
	b = 4.7519(3) Å	$\beta = 108.765(8)^{\circ}.$
	c = 11.7149(8) Å	$\gamma = 90^{\circ}$.
Volume	1833.1(2) Å ³	
Z	4	
Density (calculated)	1.291 Mg/m ³	
Absorption coefficient	0.091 mm ⁻¹	
F(000)	760	
Crystal size	0.30 x 0.10 x 0.10 mm ³	
Theta range for data collection	2.47 to 26.00°.	
Index ranges	-42<=h<=42, -5<=k<=5, -14<=	l<=14
Reflections collected	9655	
Independent reflections	3598 [R(int) = 0.0334]	
Completeness to theta = 26.00°	99.9 %	
Max. and min. transmission	0.9909 and 0.9731	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3598 / 1 / 238	
Goodness-of-fit on F ²	1.002	

Final R indices [I>2sigma(I)]	R1 = 0.0335, wR2 = 0.0537
R indices (all data)	R1 = 0.0521, wR2 = 0.0556
Absolute structure parameter	-0.4(8)
Largest diff. peak and hole	0.117 and -0.167 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for 2208. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
C(1)	668(1)	10571(4)	-1393(2)	25(1)
C(2)	371(1)	9306(4)	-1025(2)	37(1)
C(3)	94(1)	7481(4)	-1772(2)	49(1)
C(4)	110(1)	6885(5)	-2899(2)	53(1)
C(5)	403(1)	8118(5)	-3275(2)	51(1)
C(6)	680(1)	9944(4)	-2530(2)	40(1)
C(7)	977(1)	12506(3)	-575(2)	26(1)
C(8)	1343(1)	10913(4)	213(1)	22(1)
C(9)	1628(1)	9626(4)	-386(1)	23(1)
C(10)	2004(1)	9148(4)	710(1)	23(1)
C(11)	1993(1)	11588(4)	1557(1)	20(1)
C(12)	2074(1)	10846(4)	2873(1)	24(1)
C(13)	1682(1)	8597(4)	3947(2)	27(1)
C(14)	1361(1)	6472(4)	3873(1)	25(1)
C(15)	1271(1)	5862(4)	4912(2)	38(1)
C(16)	981(1)	3885(5)	4898(2)	46(1)
C(17)	777(1)	2491(4)	3848(2)	44(1)
C(18)	864(1)	3094(4)	2815(2)	35(1)
C(19)	1154(1)	5086(4)	2819(2)	27(1)
C(20)	1791(1)	10396(5)	-2182(2)	52(1)
C(21)	2495(1)	9650(4)	3458(2)	34(1)
O(1)	1598(1)	12843(2)	1078(1)	22(1)
O(2)	1704(1)	11622(3)	-1185(1)	30(1)
O(3)	2376(1)	8967(2)	454(1)	25(1)
O(4)	1767(1)	8798(2)	2900(1)	24(1)
O(5)	1850(1)	9964(3)	4832(1)	35(1)

Table 3. Selected bond lengths [Å] and angles $[\circ]$ for 2208.

Symmetry transformations used to generate equivalent atoms:

Table 4. Bond lengths [Å] and angles $[\circ]$ for 2208.

C(1)-C(6)	1.378(2)	
C(1)-C(2)	1.380(2)	
C(1)-C(7)	1.503(2)	
C(2)-C(3)	1.379(3)	
C(3)-C(4)	1.370(3)	
C(4)-C(5)	1.363(3)	
C(5)-C(6)	1.379(3)	
C(7)-C(8)	1.512(2)	
C(8)-O(1)	1.4411(17)	
C(8)-C(9)	1.515(2)	
C(9)-O(2)	1.4161(19)	
C(9)-C(10)	1.527(2)	
C(10)-O(3)	1.4212(17)	
C(10)-C(11)	1.536(2)	
C(11)-O(1)	1.4341(18)	
C(11)-C(12)	1.516(2)	
C(12)-O(4)	1.4529(19)	
C(12)-C(21)	1.511(2)	
C(13)-O(5)	1.2036(18)	
C(13)-O(4)	1.3537(18)	
C(13)-C(14)	1.488(2)	
C(14)-C(19)	1.380(2)	
C(14)-C(15)	1.381(2)	
C(15)-C(16)	1.376(3)	
C(16)-C(17)	1.377(3)	
C(17)-C(18)	1.369(2)	
C(18)-C(19)	1.383(2)	
C(20)-O(2)	1.423(2)	
C(6)-C(1)-C(2)	117.81(17)	

C(6)-C(1)-C(7)	120.74(17)
C(2)-C(1)-C(7)	121.43(16)
C(3)-C(2)-C(1)	121.03(18)
C(4)-C(3)-C(2)	120.3(2)
C(5)-C(4)-C(3)	119.3(2)
C(4)-C(5)-C(6)	120.6(2)
C(1)-C(6)-C(5)	121.01(19)
C(1)-C(7)-C(8)	111.85(13)
O(1)-C(8)-C(7)	108.52(13)
O(1)-C(8)-C(9)	103.60(12)
C(7)-C(8)-C(9)	117.79(13)
O(2)-C(9)-C(8)	108.95(14)
O(2)-C(9)-C(10)	111.35(13)
C(8)-C(9)-C(10)	100.52(12)
O(3)-C(10)-C(9)	115.07(13)
O(3)-C(10)-C(11)	113.41(13)
C(9)-C(10)-C(11)	103.71(13)
O(1)-C(11)-C(12)	109.75(13)
O(1)-C(11)-C(10)	106.36(12)
C(12)-C(11)-C(10)	116.50(14)
O(4)-C(12)-C(21)	110.44(13)
O(4)-C(12)-C(11)	106.22(12)
C(21)-C(12)-C(11)	112.69(14)
O(5)-C(13)-O(4)	123.76(17)
O(5)-C(13)-C(14)	124.31(16)
O(4)-C(13)-C(14)	111.93(15)
C(19)-C(14)-C(15)	119.14(17)
C(19)-C(14)-C(13)	122.81(15)
C(15)-C(14)-C(13)	118.05(15)
C(16)-C(15)-C(14)	120.47(17)
C(15)-C(16)-C(17)	120.23(18)
C(18)-C(17)-C(16)	119.54(19)
C(17)-C(18)-C(19)	120.61(18)
C(14)-C(19)-C(18)	120.00(17)
C(11)-O(1)-C(8)	107.83(11)
C(9)-O(2)-C(20)	113.76(14)
C(13)-O(4)-C(12)	116.27(13)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	19(1)	25(1)	28(1)	8(1)	2(1)	5(1)
C(2)	26(1)	43(1)	42(1)	-2(1)	12(1)	-6(1)
C(3)	29(1)	49(2)	67(2)	1(1)	14(1)	-14(1)
C(4)	31(1)	45(2)	68(2)	-14(1)	-6(1)	-3(1)
C(5)	41(1)	68(2)	35(1)	-13(1)	-2(1)	2(1)
C(6)	29(1)	60(2)	30(1)	6(1)	5(1)	-2(1)
C(7)	23(1)	24(1)	32(1)	1(1)	8(1)	1(1)
C(8)	19(1)	20(1)	26(1)	2(1)	6(1)	-4(1)
C(9)	23(1)	18(1)	30(1)	-1(1)	9(1)	-4(1)
C(10)	22(1)	17(1)	32(1)	2(1)	13(1)	-4(1)
C(11)	14(1)	15(1)	30(1)	0(1)	6(1)	0(1)
C(12)	24(1)	21(1)	27(1)	-2(1)	7(1)	-2(1)
C(13)	30(1)	27(1)	24(1)	5(1)	9(1)	9(1)
C(14)	29(1)	22(1)	26(1)	5(1)	14(1)	8(1)
C(15)	51(1)	38(1)	29(1)	4(1)	19(1)	4(1)
C(16)	59(1)	46(1)	46(1)	19(1)	36(1)	6(1)
C(17)	36(1)	32(1)	71(2)	12(1)	28(1)	2(1)
C(18)	30(1)	30(1)	47(1)	-3(1)	16(1)	1(1)
C(19)	28(1)	27(1)	31(1)	2(1)	15(1)	4(1)
C(20)	38(1)	95(2)	26(1)	-12(1)	13(1)	-7(1)
C(21)	27(1)	36(1)	36(1)	5(1)	5(1)	0(1)
O(1)	20(1)	19(1)	26(1)	-3(1)	5(1)	2(1)
O(2)	28(1)	42(1)	26(1)	5(1)	14(1)	-1(1)
O(3)	22(1)	20(1)	38(1)	1(1)	15(1)	1(1)
O(4)	27(1)	23(1)	24(1)	-1(1)	10(1)	-3(1)
O(5)	43(1)	38(1)	21(1)	-7(1)	6(1)	-3(1)

Table 5. Anisotropic displacement parameters (Å²x 10³)for 2208. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	Х	У	Z	U(eq)
H(2)	356	9698	-244	44
H(3)	-109	6635	-1504	59
H(4)	-80	5624	-3413	64
H(5)	415	7717	-4056	61
H(6)	882	10782	-2805	49
H(7A)	851	13551	-58	32
H(7B)	1067	13893	-1068	32
H(8)	1249	9403	655	26
H(9)	1519	7822	-804	28
H(10)	1966	7351	1105	27
H(11)	2199	13014	1512	24
H(12)	2041	12570	3321	29
H(15)	1411	6813	5640	45
H(16)	920	3482	5617	55
H(17)	577	1119	3839	53
H(18)	724	2134	2089	42
H(19)	1211	5501	2096	33
H(20A)	2053	9414	-1896	79
H(20B)	1805	11876	-2751	79
H(20C)	1577	9053	-2586	79
H(21A)	2530	9169	4299	51
H(21B)	2698	11052	3430	51
H(21C)	2528	7955	3023	51
H(3A)	2422	10506	168	38

Table 6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for 2208.