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Abstract

This article proposes nonparametric tests for tail monotonicity of bivariate random vec-
tors. The test statistic is based on a Kolmogorov-Smirnov-type functional of the empirical
copula. Depending on the serial dependence features of the data, we propose two multiplier
bootstrap techniques to approximate the critical values. We show that the test is able to
detect local alternatives converging to the null hypothesis at rate n−1/2 with a non-trivial
power. A simulation study is performed to investigate the finite-sample performance and
finally the procedure is illustrated by testing intergenerational income mobility.
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1 Introduction

Let X and Y be random variables. The following concepts of tail monotonicity between X and

Y date back to Lehmann (1966) and Esary and Proschan (1972). We say that

• Y is left tail decreasing in X if the function x 7→ Pr(Y ≤ y | X ≤ x) is non-increasing for

all y ∈ R. Notation: LTD(Y |X).

• Y is right tail increasing in X if the function x 7→ Pr(Y > y | X > x) is a non-decreasing

function for all y ∈ R. Notation: RTI(Y |X).
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It is well-known that all these concepts imply positive quadrant-dependence of X and Y , i.e.,

LTD(Y |X),LTD(X|Y ),RTI(Y |X) or RTI(X|Y ) implies that

Pr(X ≤ x, Y ≤ y) ≥ Pr(X ≤ x) Pr(Y ≤ y).

For example, under LTD(Y |X), we have Pr(Y ≤ y | X ≤ x) ≥ Pr(Y ≤ y | X ≤ ∞) =

Pr(Y ≤ y). In other words, tail monotonicity between X and Y as defined above implies

positive dependence between X and Y and similar negative dependence properties known as

left tail increasingness and right tail decreasingness are defined analogously by exchanging the

words non-increasing and non-decreasing.

On the other hand, tail monotonicity is weaker than regression dependence or stochastic

monotonicity, which is defined analogously to tail monotonicity by replacing the condition X ≤ x

by X = x hence yielding

• Y is positively regression dependent on X if the function x 7→ Pr(Y ≤ y | X = x) is

non-increasing for all y ∈ R.

While testing for the latter hypothesis, i.e., that Y is positively regression dependent on X,

or testing for positive quadrant dependence has recently drawn some attention in the literature,

see Delgado and Escanciano (2012); Lee et al. (2009); Denuit and Scaillet (2004); Scaillet (2005);

Gijbels et al. (2010), there does not exist an omnibus test for the hypothesis of any of the tail

monotonicity concepts defined above, at least to the best of our knowledge. It is the purpose of

this paper to fill this gap.

Testing for tail monotonicity is interesting for several reasons. First of all, the hypothesis

can be of interest in several applied settings. As for instance summarized in Lee et al. (2009),

one might wish to test for tail monotonicity in well-known economic relationships such as ex-

penditures (Y ) versus income (X) at household levels or wages (Y ) versus cognitive skills (X)

using individual data.

Additionally, there are some theoretical reasons which demand for a test for tail monotonicty:

Genest and Segers (2010) showed that, under both LTD(Y |X) and LTD(X|Y ), estimation of

the copula of (X, Y ) by means of the empirical copula is more efficient if contingent additional

knowledge of the marginal distribution function is completely ignored. This surprising result

transfers to several attached statistics like the sample version of Spearman’s rho. Hence, a posi-

tive testing result on the question of tail decreasingness may result in a more efficient subsequent

data-analysis.

Finally, our research is motivated by a recent paper by Kojadinovic and Yan (2012). These

authors propose two nonparametric tests of exchangeability of a random vector which only work

for left tail decreasing random vectors. Hence, prescience of left tail decreasingness is essential

for their approach.

For the sake of a clear exposition we only consider the concept of left tail decreasingness in

this paper. We propose a simple nonparametric test for the hypothesis

H0 : Y is left tail decreasing in X.
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The construction of variants for the increasing case or for the right tail is straight-forward.

For continuous random variables, the property LTD(Y |X) is closely related to some shape

constraint on the copula of (X, Y ). To see this, let F and G denote the (continuous) cumulative

distribution function (cdf) of X and Y , respectively. Then Sklar’s Theorem, see Sklar (1959),

allows to decompose the joint cdf H(x, y) = Pr(X ≤ x, Y ≤ y) into

H(x, y) = C{F (x), G(y)}

where C(u, v) = Pr{F (X) ≤ u,G(Y ) ≤ v} denotes the unique copula associated with H.

Sklar’s identity is usually interpreted in the way that the dependence structure between X and

Y is completely summarized by C. Due to the fact that univariate distribution functions are

non-decreasing we immediately obtain that Y is left tail decreasing in X if and only if

H0 : u 7→ C(u, v)/u = Pr(G(Y ) ≤ v | F (X) ≤ u)

is a non-increasing function for each v ∈ [0, 1]. (1.1)

Set ∆ = {(s, t) ∈ [0, 1]2 | s ≤ t} and denote by T : `∞([0, 1]2) → `∞([0, 1] × ∆) the operator

which maps a function H : [0, 1]2 → R to the function T (H) : [0, 1]×∆→ R defined by

T (H)(u, s, t) = sH(t, u)− tH(s, u).

Here, `∞(T ) is defined as the set of all real-valued bounded functions on a set T . Now, non-

increasingness of the function in (1.1) is obviously equivalent to the fact that

H0 : T (C)(u, s, t) ≤ 0 for all u ∈ [0, 1], (s, t) ∈ ∆.

This is the property we test for in this paper. Our approach is based on the fact that the

copula C, and therefore also T (C), can be estimated by its sample analog Cn, the empirical

copula. We check if a suitable functional of T (Cn) is sufficiently small in a certain way. Basing

the test on the empirical copula results in invariance of the test with respect to strictly increas-

ing transformations of the marginals which should be a minimal requirement for any test of

monotonicity.

Some of the afore-mentioned tests on regression dependence and positive quadrant depen-

dence are based on the assumption of i.i.d. data sets (e.g. Delgado and Escanciano (2012);

Scaillet (2005); Gijbels et al. (2010)). Exploiting a recent block multiplier bootstrap method,

see Bücher and Ruppert (2012), our proposed test on tail monotonicity goes beyond this and can

also be applied to serially dependent, strongly mixing data sets. By doing this, we also outline

a direction on how to adopt other tests to the serially dependent setting, as long as they are

based on the empirical copula.

The remaining part of this article is organized as follows. In Section 2 we define the test for

tail monotonicity and propose two multiplier bootstrap procedures for deriving critical values.

We begin with the easier setting of serial independent data sets and proceed with a (block)

multiplier bootstrap to deal with data sets descending from a strictly stationary, strongly mixing

time series. In Section 3 we investigate the finite-sample performance of the test by means of

a simulation study. The approach is illustrated by testing intergenerational income mobility in

Section 4, and finally, all proofs are deferred to Section 5.
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2 Testing tail monotonicity

Suppose (X1, Y1), . . . , (Xn, Yn) is a sample of a strictly stationary stochastic process (Xi, Yi)i∈Z

with continuous marginal cumulative distribution functions F and G, respectively. According

to Sklar’s Theorem there exists a unique copula C such that the joint cdf H of (Xi, Yi) satisfies

H(x, y) = C(F (x), G(y)) for all x, y ∈ R. Moreover, suppose that the process (Xi, Yi)i∈Z is

strongly mixing with α-mixing coefficient α(r) = O(r−a) for r →∞ and some a > 1, where

α(r) = sup
s≥0

sup
A∈Fs,B∈Fs+r

|Pr(A ∩B)− Pr(A) Pr(B)|

and Fs = σ{(Xi, Yi) : i ≤ s} and F t = σ{(Xi, Yi) : i ≥ t}. Note that for an i.i.d. sequence

(Xi, Yi)i∈Z we have α(r) = 0 for all r ≥ 1.

To estimate the copula C we first transform the random variables Xi and Yi to pseudo-

observations of the copula by defining

Ûi =
n

n+ 1
Fn(Xi), V̂i =

n

n+ 1
Gn(Yi),

where Fn(x) = n−1
∑n

i=1 1(Xi ≤ x) and Gn(y) = n−1
∑n

i=1 1(Yi ≤ y) denote the sample analogs

of F and G, respectively. The empirical copula dating back to Rüschendorf (1976); Deheuvels

(1979) as the most-natural nonparametric estimator for C is defined as

Cn(u, v) =
1

n

n∑
i=1

1(Ûi ≤ u, V̂i ≤ v).

The asymptotic behavior of the corresponding empirical copula process Cn =
√
n(Cn − C)

has been investigated, under slightly different assumptions, by Rüschendorf (1976); Gaenssler

and Stute (1987); Fermanian et al. (2004); Doukhan et al. (2009) among others. The weakest

smoothness assumption on C which is necessary for weak convergence of Cn was given by Segers

(2012).

Condition 2.1. The copula C possesses continuous first-order partial derivatives C [1](u, v) =
∂
∂u
C(u, v) and C [2](u, v) = ∂

∂v
C(u, v) on the sets U1 = (0, 1) × [0, 1] and U2 = [0, 1] × (0, 1),

respectively.

Bücher and Volgushev (2011) transferred the result from Segers (2012), who worked in the

i.i.d. case, to the case of a serially dependent sample. Under Condition 2.1 and under suitable

assumptions on the mixing rate, i.e., on the speed of convergence of α(r) to 0, Cn weakly

converges in the space (`∞([0, 1]2), ‖·‖∞) to a process CC . Defining C [1](u, v) = 0 on {0, 1}×[0, 1]

(resp. C [2](u, v) = 0 on [0, 1]× {0, 1}), the limiting field CC can be expressed as

CC(u, v) = BC(u, v)− C [1](u, v)BC(u, 1)− C [2](u, v)BC(1, v),

where BC is a tight centered Gaussian process on [0, 1]2 with covariance function
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r((u, v), (u′, v′)) = Cov{BC(u, v),BC(u′, v′)}

=
∑
i∈Z

Cov{1(U0 ≤ u, V0 ≤ v),1(Ui ≤ u′, Vi ≤ v′)}

and where Ui = F (Xi) and Vi = G(Yi). Note that for serially uncorrelated time series this

expression reduces to C(u∧ u′, v ∧ v′)−C(u, v)C(u′, v′), with ∧ denoting the minimum between

two numbers.

Omnibus tests for H0 can be based on suitable functionals of the process

√
nT (Cn)(u, s, t) =

√
n{sCn(t, u)− tCn(s, u)}, u ∈ [0, 1], (s, t) ∈ ∆.

Under H0 this process should take small values for all u ∈ [0, 1] and (s, t) ∈ ∆. Hence, we

propose using the uniform norm, i.e., a Kolmogorov-Smirnov type criteria, and define the test

statistic

τn = sup
(u,s,t)∈[0,1]×∆

√
nT (Cn).

Note that other choices are possible; for instance, one could use the statistic

τ̃n =

∫
[0,1]×∆

nmax{T (Cn)(u, s, t), 0}2 d(u, s, t).

It can be easily seen that

τn = max
1≤k≤n

max
1≤i≤n

max
1≤j≤i

n−1/2{jCn(i/n, k/n)− iCn(j/n, k/n)}+O(n−1/2)

Hence, for the computation of τn we only need the elements Cn(i/n, j/n) for i, j = 1, . . . , n.

Their computation is straightforward and can be done recursively.

We propose to test for H0 by rejecting the null hypothesis for large values of τn and for

that purpose we need to derive critical values for τn. In the remaining part of this section we

suggest a multiplier bootstrap based method to approximate these critical values. We prove that

the resulting test is consistent and asymptotically holds the significance level, both for serially

independent as well as for serial dependent data sets.

2.1 Critical values for τn for serial independent data

In this section we restrict ourselves to the simple case of a serially independent sample, i.e.,

to the i.i.d. setting. The basic idea of our proposal to obtain a consistent and asymptotically

level-α test is as follows: linearity of T implies that the process
√
n{T (Cn) − T (C)} weakly

converges to T (CC), whose distribution depends in a complicated way on C. If we knew the

(1− α)-quantile, say qC,α, of the associated distribution of

τC := sup
(u,s,t)∈[0,1]×∆

T (CC)(u, s, t)
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and if we rejected H0 for τn > qC,α, then we would clearly have

Pr(τn > qC,α) ≤ Pr
(

sup
(u,s,t)∈[0,1]×∆

√
n{T (Cn)(u, s, t)− T (C)(u, s, t)} > qC,α

)
→ Pr

(
sup

(u,s,t)∈[0,1]×∆

T (CC)(u, s, t) > qC,α

)
= α (2.1)

under the null hypothesis by the Portmanteau Theorem. On the other hand, under the alterna-

tive τn would converge to infinity in probability resulting in consistency of the test. Hence, the

only problem consists of getting access to the quantiles qC,α.

For that purpose we use the multiplier bootstrap technique invented by Rémillard and Scaillet

(2009) in the i.i.d. time series case and further investigated in Bücher and Dette (2010). Let

(ξi)i=1,...,n be an independent sequence of random variables satisfying E[ξi] = Var(ξi) = 1 for all

i = 1, . . . , n and let ξ̄n denote the sample mean of ξ1, . . . , ξn. Define the process B̂n by

B̂n(u, v) =
√
n

{
1

n

n∑
i=1

ξi
ξ̄n

1(Ûi ≤ u, V̂i ≤ v)− Cn(u, v)

}
, (u, v) ∈ [0, 1]2. (2.2)

From Theorem 2.3 in Bücher et al. (2012) it follows that B̂n weakly converges to BC , conditional

on the data in probability (see Remark 5.1 for details on that type of convergence). Note that an

unconditional version of this and of the following results can be found in Rémillard and Scaillet

(2009) and Segers (2012). Let h = hn → 0 be a bandwidth such that infn∈N hn
√
n > 0 and set

C [1]
n (u, v) =


Cn(u+h,v)−Cn(u−h,v)

2h
for all (u, v) ∈ [h, 1− h]× [0, 1]

Cn(2h,v)
2h

for all (u, v) ∈ [0, h)× [0, 1]
Cn(1,v)−Cn(1−2h,v)

2h
for all (u, v) ∈ (1− h, 1]× [0, 1]

C [2]
n (u, v) =


Cn(u,v+h)−Cn(u,v−h)

2h
for all (u, v) ∈ [0, 1]× [h, 1− h]

Cn(u,2h)
2h

for all (u, v) ∈ [0, 1]× [0, h)
Cn(u,1)−Cn(u,1−2h)

2h
for all (u, v) ∈ [0, 1]× (1− h, 1]

It follows that Ĉn weakly converges to CC , conditional on the data in probability, where

Ĉn(u, v) = B̂n(u, v)− C [1]
n (u, v)B̂n(u, 1)− C [2]

n (u, v)B̂n(1, v), (2.3)

see Bücher et al. (2012); Bücher and Ruppert (2012). Continuity of the sup-norm implies that

τ̂n = sup
(u,s,t)∈[0,1]×∆

T (Ĉn)(u, s, t)

weakly converges to τC , conditionally. Let q̂n,α denote the (1 − α)-quantile of the conditional

distribution of τ̂n. The following Theorem establishes that a test which rejects H0 for τn > q̂n,α
is a consistent test which asymptotically holds the significance level.
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Theorem 2.2. Suppose that (Xi, Yi)i=1,...,n is an i.i.d. sequence of random vectors with con-

tinuous marginal distribution functions F and G and whose copula C satisfies Condition 2.1.

Then

lim sup
n→∞

Pr(τn > q̂n,α) ≤ α under H0,

whereas

lim
n→∞

Pr(τn > q̂n,α) = 1 under H1.

In practice, we get approximate access to the quantiles q̂n,α as follows: let B be some rea-

sonable large integer and for each b = 1, . . . , B simulate a sample ξ
(b)
1 , . . . , ξ

(b)
n as described

above. For each b calculate the statistic τ̂
(b)
n following the indicated steps. Finally, use the the

(1− α)-sample quantile of τ̂
(1)
n , . . . , τ̂

(B)
n as an approximation for q̂n,α.

Remark 2.3. In the context of testing for the similar hypothesis of quadrant dependence,

Gijbels et al. (2010) proposed to approximate critical values of their corresponding test statistic

by simulating from the least favorable copula under H0. In our context the least favorable copula,

i.e., the copula which is closest to the alternative, is that of a constant function u 7→ C(u, v)/u

for all v ∈ [0, 1]. In that case, there exists some constant κv such that C(u, v) = κvu and due to

the fact that C(1, v) = v we obtain κv = v. Hence, C(u, v) = Π(u, v) = uv is least favorable in

which case we immediately calculate that T (Π) ≡ 0. The latter fact, together with the reasoning

at the beginning of Section 2.1 implies weak convergence of τn = τn(Π) under C = Π to the

limiting variable

τΠ = sup
u∈[0,1](s,t)∈∆

sCΠ(t, u)− tCΠ(s, u).

It seems reasonable to use the quantiles of τΠ as critical values for the test, which can be

approximated by Monte Carlo simulation as accurately as desired. Unfortunately, we were not

able to prove that this method results in a test which asymptotically holds the significance level.

Difficulties arise from the fact there do not exist sufficiently strong results on the stochastic

ordering of random variables that are suprema of Gaussian processes, such as

τC = sup
u∈[0,1](s,t)∈∆

sCC(t, u)− tCC(s, u).

For that reason, we do not follow this approach in the present paper. Moreover, note that the

method would not be adoptable to the case to of serial dependent data sets as considered in the

subsequent Section 2.2.

2.1.1 Local alternatives

As n → ∞, the power of any consistent testing procedure converges to 1 under any fixed

alternative. In this paragraph we show that our proposed test is able to detect local alternatives

converging to the null hypothesis at rate n−1/2 with a non-trivial power. To this end, we consider
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copulas which depend on the sample size defined as

C(n)(u, v) = Π(u, v) + min
{ δ√

n
, 1
}
× {C(u, v)− Π(u, v)}, (2.4)

where C is a copula that is not LTD(Y |X) and where δ > 0 is a constant. This copula converges

to the independence copula for n→∞, but on the other hand we have

lim
n→∞

√
n sup

[0,1]×∆

T (C(n)) = δ sup
[0,1]×∆

T (C) > 0.

Let (Xi,n, Yi,n)i=1,...,n be a triangular array of row-wise i.i.d. random vectors with continuous

marginal cdf’s F (n) and G(n), respectively, and with copula C(n). To derive the asymptotic dis-

tribution of the associated empirical copula process it is necessary to suppose that the law Pn of

(F (n)(Xi,n), G(n)(Yi,n))i=1,...,n is contiguous with respect to the law Qn induced by an i.i.d. sam-

ple of size n from the independence copula. More precisely, we need to suppose that for any

sequence An of measurable sets, Qn(An) → 0 as n → ∞ implies Pn(An) → 0 as n → ∞. A

general criterion for a sequence of probability measures to be contiguous with respect to another

is given in Van der Vaart and Wellner (1996). Berg and Quessy (2009) transferred this criterion

to our empirical copula setting which results in the following condition on the copula density c.

Condition 2.4. The copula C in (2.4) is absolutely continuous with square-integrable density

c and

lim
n→∞

∫ 1

0

∫ 1

0

[√
n

(√
c(n)(u, v)− 1

)
− δ{c(u, v)− 1}

2

]2

du dv = 0,

where c(n)(u, v) = 1 + δ√
n
{c(u, v)− 1} denotes the density of the copula C(n).

For fixed η > 0, let Mη denote the set of all pairs (C, δ), where C is a copula and δ > 0 is a

constant, that satisfy Condition 2.4 with δ sup[0,1]×∆ T (C) ≥ η. Note that this set is non-empty

for any η > 0, because every copula with bounded density fulfills Condition 2.4 for any δ > 0.

The following theorem states that the test is able to detect local alternatives converging to the

null hypothesis at rate n−1/2.

Theorem 2.5. For any β ∈ (0, 1) there exist η > 0 such that, for any sequence of local

alternatives C(n) as defined in (2.4) with (C, δ) ∈Mη,

lim inf
n→∞

Pr(τn > q̂n,α) ≥ β. (2.5)

2.2 Critical values for τn for serial dependent data

In this section we propose an adaptation of the methodology in the previous section which allows

for the simulation of valid critical values if we drop the assumption of serial independence of

the time series (Xi, Yi)i=1,...,n. Note that the i.i.d. multiplier approach of the previous section
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would not work in this setting since it cannot take care of the serial dependence features of the

time series. Therefore we make use of a refinement of this technique, called the tapered block

multiplier bootstrap, which has been recently proposed by Bücher and Ruppert (2012) and which

is based on earlier work by Bühlmann (1993) and Paparoditis and Politis (2001). Analogously

to the i.i.d. setting, this method allows to obtain approximate samples of CC and therefore of

τC under suitable alpha-mixing conditions on the strictly stationary time series (Xi, Yi)i=1,...,n.

The basic idea is to replace the i.i.d. multipliers ξ1, . . . , ξn in the definition of B̂n in (2.2)

by appropriate dependent block multipliers ξ1,n, . . . , ξn,n. We follow the approach of Example 4

in Bücher and Ruppert (2012) which was found to give the most reasonable approximations in

that reference. Precisely, let l = ln → ∞ be a sequence of integer-valued parameters (the block

length) and for h ∈ Z denote by

κ(h) = max{0, (1− |h|/ln)/ln}

a Kernel-function which is symmetric around 0 and satisfies
∑

h∈Z κ(h) = 1. Let (wi)i∈Z denote

an i.i.d. sequence of Gamma(q, q) distributed random variables, where q = 2/3 l−1
n + 1/3 l−3

n , and

define ξi,n as

ξi,n =
∑
h∈Z

κ(h)wi+n, i = 1, . . . , n.

It follows that (ξi,n)i=1,...,n is a (2 ln)-dependent sequence of random variables satisfying E[ξi,n] =

Var(ξi,n) = 1 for all i = 1, . . . , n, see also Section 6.2 in Bühlmann (1993). Let ξ̄n denote the

sample mean of ξ1,n, . . . , ξn,n and define the process B̂n as in (2.2) with ξi replaced by ξi,n. Under

suitable assumptions on the mixing rate and on the choice of ln it follows from the results in

Bücher and Ruppert (2012) that B̂n weakly converges to BC , conditional on the data. The

precise assumptions are given in Theorem 2.2 below.

Similar as in Section 2.1 and following Bücher and Ruppert (2012) we conclude that Ĉn

weakly converges to CC , conditional on the data, where Ĉn is defined in the same way as in the

case of serial independent data, see (2.3). As before, continuity of the sup-norm implies that

τ̂n = sup[0,1]×∆ T (Ĉn) weakly converges to τC , conditionally on the data. Let q̂n,α again denote

the (1 − α)-quantile of the conditional distribution of τ̂n. The following Theorem, which is an

analogue of Theorem 2.2, establishes that a test which rejects H0 for τ̂n > q̂n,α is consistent and

asymptotically holds the significance level.

Theorem 2.6. Let the process Ĉn be constructed as described above with block length ln =

O(n1/2−ε) for some ε ∈ (0, 1/2). Suppose F and G are continuous and that the copula C

satisfies Condition 2.1. Additionally, assume that the alpha-mixing coefficients satisfy
∑∞

r=1(r+

1)c
√
α(r) <∞, where c = max{8d+ 12, b2/εc+ 1}. Then

lim sup
n→∞

Pr(τn > q̂n,α) ≤ α under H0,

whereas

lim
n→∞

Pr(τn > q̂n,α) = 1 under H1.
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In practice, the approximation of the quantiles q̂n,α can be done by the same procedure as

in the case of serial independence by repeating the procedure reasonably often and using the

corresponding sample quantiles.

Remark 2.7.

a) According to the remark following Theorem 2 in Bücher and Ruppert (2012) the conditions on

the mixing rate are far from being optimal. It is beyond the scope of the present paper to improve

upon general results on the block multiplier method though. Note however that popular models

like ARMA- or GARCH-type processes have alpha-mixing coefficients that decay exponentially

fast, hence satisfying the conditions of Theorem 2.6 with much to spare.

b) The construction of the multiplier random variables described above stems from one

specific example in Bücher and Ruppert (2012) which was found to yield very reasonable results

in that reference. Of course, there are different possible choices which we do not investigate in

this paper.

3 Finite-sample performance

This section is devoted to a simulation study in order to investigate the finite-sample performance

of the proposed tests for left tail decreasingness. To this end, we will simulate the rejection rates

of the test under the null hypothesis and the alternative, both for serially independent and

dependent data sets. The data generating processes are as followed.

• In the i.i.d. case, we simulate the rejection rates under the null hypothesis for the Gumbel-

Hougaard, the independence and the Gaussian copula, whereas under the alternative we

use the Plackett and again the Gaussian copula.

• In the case of serially dependent data sets, we consider the class of strictly stationary

Markovian copula models as introduced in Rémillard et al. (2012). Within this class, the

4-dimensional copula Q of the vector (Xt−1, Xt, Yt−1, Yt) is modeled in such a way that

the bivariate marginal copulas Q(u, v, 1, 1) and Q(1, 1, u, v) of (Xt−1, Yt−1) and (Xt, Yt),

respectively, are equal, i.e., C(u, v) = Q(u, v, 1, 1) = Q(1, 1, u, v) is constant over time.

Rémillard et al. (2012) propose algorithms that allow for the simulation of samples from

Markovian copula models both for meta-elliptical copulas and for Archimedean copulas.

In the latter case of Archimedean copulas, the required conditions on the corresponding

generator enforce the copula to be left tail decreasing. For this reason we cannot simulate

non-LTD copulas within this class, whence we restrict ourselves to the case of the Gaussian

copula lying in the class of meta-elliptical copulas.

Under the null hypothesis we choose the parameters of the copula in such a way that Spear-

man’s rho varies in the set {0, 0.05, 0.1, 0.2}, both for serially independent as well as for seri-

ally dependent data sets. Under the alternative we choose Spearman’s rho varying in the set

{−0.05,−0.1,−0.2,−0.4}. For each scenario described above, we simulated 1000 samples of

10



Copula ρ n = 50 n = 100 n = 200 n = 500

Gumbel 0.2 0.001 0 0 0

0.1 0.020 0.005 0.001 0.001

0.05 0.041 0.033 0.009 0.001

Independence 0 0.109 0.079 0.050 0.033

Plackett -0.05 0.165 0.143 0.129 0.189

-0.1 0.196 0.279 0.252 0.417

-0.2 0.414 0.547 0.673 0.940

-0.4 0.987 0.999 1 1

Table 1: Simulated rejection probabilities of the test for the null hypothesis of a copula that is

LTD for serially indepentent data, where the level of the test is 5%.

size n ∈ {50, 100, 200, 500}. Regarding the choice of the parameters ln and hn in the bootstrap

procedure we follow Bücher and Ruppert (2012) and set ln = b1.1n1/4c and hn = n−1/4.

The results for independent data samples are stated in Table 1 (Gumbel-Hougaard and

Plackett copula) and Figure 1 (Gaussian copula), whereas the results for dependent data samples

are presented in Figure 2. The main findings are as follows.

• In the least-favorable model under the null hypothesis, i.e., the copula being equal to the

independence copula, the test adapts its level. If we stay under the null hypothesis, but

move away from independence, the test is globally conservative. This can be explained by

the fact that only for the independence copula we have equality in (2.1). Note that similar

observations have been made in Delgado and Escanciano (2012) for testing for stochastic

monotonicity.

• Concerning the power, the test detects alternatives with reasonable rejection rates, where

the power increases with the sample size and stronger dependence of the random variables,

as expected.

• In terms of power, the test provides better results for serially independent data samples,

whereas the approximation of the nominal level seems to be better for the serially depen-

dent case.

4 Illustration

In this section, we apply the test for left tail decreasingness to a data set from the Panel Study

of Income Dynamics (PSID), in particular the data extract presented in Minicozzi (2003), that

is available on the Journal of Applied Econometrics website. The sample-size of this data set

is n = 616. Lee et al. (2009) and Delgado and Escanciano (2012) use this data set to test for
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ρ n = 50 n = 100 n = 200 n = 500

0.2 0.006 0 0 0

0.1 0.027 0.013 0.002 0

0.05 0.057 0.020 0.007 0

0 0.109 0.079 0.050 0.033

-0.05 0.190 0.185 0.164 0.243

-0.1 0.293 0.355 0.386 0.681

-0.2 0.594 0.767 0.888 0.998

-0.4 0.958 0.999 1 1
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Figure 1: Simulated rejection probabilities of the test for the Gaussian copula for serially inde-

pendent data, where the level of the test is 5%.

ρ n = 50 n = 100 n = 200 n = 500

0.2 0.013 0.010 0.001 0

0.1 0.035 0.026 0.005 0.001

0.05 0.065 0.063 0.020 0.008

0 0.064 0.081 0.049 0.052

-0.05 0.136 0.168 0.111 0.145

-0.1 0.188 0.225 0.189 0.371

-0.2 0.341 0.477 0.530 0.816

-0.4 0.824 0.912 0.933 0.998
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Figure 2: Simulated rejection probabilities of the test for the Gaussian copula for serially de-

pendent data, where the level of the test is 5%.

stochastic monotonicity of the variables Y being the logarithm of sons’ averaged full-time real

labor income at ages 28 and 29 and X being the logarithm of parental predicted permanent

income. Both tests weren’t able to reject the hypothesis of stochastic monotonicity.

We applied our test for the hypothesis that Y is LTD in X to the same data set and obtained

a test statistic of τn = 0.38. For the levels α = 0.05 and 0.1 the bootstrap procedure yields
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the critical values 0.93 and 0.80, respectively. Thus, we fail to reject the hypothesis of tail

monotonicity between sons’ and parental income, i.e., the hypothesis that a higher parental

income implies a higher sons’ income in the sense of the definition of left tail decreasingness.

This is in line with the findings of Lee et al. (2009) and Delgado and Escanciano (2012), since

stochastic monotonicity would imply tail monotonicity.

Furthermore, we test for tail monotonicity when the random variable Y represents mothers’

predicted permanent income. At first, we test with X being the parental predicted permanent

income and obtained a test statistic of τn = 0.64, which corresponds to the p-value 0.19 and thus,

we cannot reject the hypothesis of tail monotonicity in this case. However, if X represents the

fathers’ predicted permanent income, the test yields a test statistic of τn = 1.27. As in this case

the maximum of the bootstrap test statistics τ
(1)
n , . . . , τ

(500)
n attains the value 1.03 < 1.27 = τn,

we reject the hypothesis of tail monotonicity for mothers’ and fathers’ predicted permanent

income.

5 Proofs

Remark 5.1. Weak convergence conditional on the data in probability is to be understood

in the Hoffmann-Jørgensen-sense, see Kosorok (2008). More precisely, for some (possibly non-

measurable) map α̂n taking values in some metric space D and being dependent on both the

data (X1, Y1), . . . , (Xn, Yn) and on the multipliers ξ1, . . . , ξn, we use the notation α̂n
P
 
ξ

α to

mean that

sup
h∈BL1(D)

|Eξh(α̂n)− Eh(α)| P→ 0

and

Eξh(α̂n)? − Eξh(α̂n)?
P→ 0 for each h ∈ BL1(D).

Here, BL1(D) denotes the set of all Lipschitz-continuous functions h : D→ R that are bounded

by1 with Lipschitz-constant not exceeding 1. Moreover, Eξ denotes the conditional expectation

over the multipliers given the data and h(α̂n)? and h(α̂n)? denote measurable majorants and

minorants with respect to the joint data, including the multipliers.

Proof of Theorem 2.2. Let us first prove that the test asymptotically holds the significance

level. For copulas C that are left tail decreasing and satisfy the assumptions of the Theorem,

the argumentation preceding (2.1) shows that

lim sup
n→∞

Pr(τn > qC,α) ≤ α.

Hence, it suffices to show that

lim
n→∞

|Pr(τn > q̂n,α)− Pr(τn > qC,α)| = 0.
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From the fact that Ĉn weakly converges to CC in `∞([0, 1]2), conditional on the data in prob-

ability, and from the continuous mapping theorem for the bootstrap, see Proposition 10.7 in

Kosorok (2008), we obtain

τ̂n = sup
(s,t,u)∈∆×[0,1]

sĈn(t, u)− tĈn(s, u)
P
 
ξ

sup
(s,t,u)∈∆×[0,1]

sCC(t, u)− tCC(s, u) = τC .

As a consequence of Lemma 10.11 in Kosorok (2008) and the results in (van der Vaart, 1998, p.

329) we see that the conditional quantile q̂n,α converges in probability to the quantile q̂C,α. Due to

the fact that τC is a continuous random variable this implies |Pr(τC > q̂n,α)−Pr(τC > qC,α)| → 0.

Finally, the estimation

|Pr(τn > q̂n,α)− Pr(τn > qC,α)|
≤ |Pr(τn > q̂n,α)− Pr(τC > q̂n,α)|

+ |Pr(τC > q̂n,α)− Pr(τC > qC,α)|+ |Pr(τC > qC,α)− Pr(τn > qC,α)|
≤ 2 sup

x∈R
|Pr(τn ≤ x)− Pr(τC ≤ x)|+ o(1)

proves the assertion about the level of the test. Under the alternative we first notice that there

exists at least one (u0, s0, t0) ∈ [0, 1] ×∆ with T (C)(u0, s0, t0) > 0. Without loss of generality

we may assume that (Xi, Yi) ∼ C, i.e., that F (x) = G(x) = x for all x ∈ [0, 1]. Defining

C̃n(u, v) = n−1
∑n

i=1 1{Xi ≤ F−1
n (u), Yi ≤ G−1

n (v)}, we have

‖Cn − C‖∞ ≤ ‖Cn − C̃n‖∞ + sup
(u,v)∈[0,1]2

|C̃n(u, v)− C(F−1
n (u), G−1

n (v))|

+ sup
(u,v)∈[0,1]2

|C(F−1
n (u), G−1

n (v))− C(u, v)|.

The first summand on the right-hand side is bounded by 2n−1. By the Glivenko-Cantelli Theorem

the second summand converges to 0 almost surely. Finally, uniform continuity of C and ‖F−1
n −

F‖∞ = o(1) almost surely, implies that ‖Cn−C‖∞ → 0, almost surely. Therefore, the estimation

τn ≥
√
nT (Cn)(u0, s0, t0) =

√
nT (C)(u0, s0, t0) + o(

√
n), a.s.,

shows that τn converges to infinity in probability. The fact that B̂n = OP (1) and hence Ĉn =

OP (1) and q̂n,α = OP (1) implies consistency of the test.

Proof of Theorem 2.5. Following Berg and Quessy (2009) and Van der Vaart and Wellner

(1996) we have

C(n)
n =

√
n(Cn − Π) CΠ + δ(C − Π),

which implies

τn  sup
[0,1]×∆

(T (CΠ) + δT (C)).
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Let us verify that the conditional quantiles q̂n,α converge to qΠ,α in probability. Define unob-

servable random variables (Ui,n, Vi,n) = (F (n)(Xi,n), G(n)(Yi,n)) ∼ C(n) and set

B̃n(u, v) =
√
n

{
1

n

n∑
i=1

ξi,n
ξ̄n

1(Ui,n ≤ u, Vi,n ≤ v)− Cn(u, v)

}
, (u, v) ∈ [0, 1]2.

By Theorem 11.13 in Kosorok (2008) we have B̃n  BΠ, conditional on the data in probability.

The same proof as the one of Theorem 2.3 in Bücher et al. (2012) shows that also B̂n  BΠ,

conditional on the data in probability. In order to show conditional weak convergence of Ĉn to

CΠ, let us first prove that, for any δ ∈ (0, 1/2) and j = 1, 2,

sup
(u1,u2)∈Bδj

|C [j]
n (u1, u2)− Π[j](u1, u2)| = op(1) (5.1)

as n→∞, where Bδ
j = {(u1, u2) ∈ [0, 1]2 : uj ∈ [δ, 1− δ]}. To this end, we only consider j = 1

and estimate

sup
(u1,u2)∈Bδ1

|C [1]
n (u1, u2)− Π[1](u1, u2)|

≤ sup
(u1,u2)∈Bδ1

∣∣∣∣Π(u1 + hn, u2)− Π(u1 − hn, u2)

2hn
− Π[1](u)

∣∣∣∣
+

1

2hn
√
n

sup
(u1,u2)∈Bδ1

∣∣C(n)
n (u1 + hn, u2)− C(n)

n (u1 − hn, u2)
∣∣ .

The first term on the right of the previous inequality is equal to zero. Under consideration

of infn∈N hn
√
n > 0, asymptotic uniform equicontinuity of C(n)

n implies that the second term

converges to zero in probability. This proves (5.1).

Now, a similar argumentation as in the proof of Theorem 2.5 in Bücher et al. (2012) and

an application of Lemma B.1 in that reference allows to conclude that Ĉn  CΠ and hence

τ̂n  τΠ, conditional on the data in probability. As in the proof of Theorem 2.2 this implies

convergence of q̂n,α to qΠ,α in probability. Therefore, again by the same arguments as in the

proof of Theorem 2.2, it is sufficient to prove (2.5) with q̂n,α replaced by qΠ,α.

Now, due to the fact that T (C) : [0, 1]×∆→ R is continuous, we may choose an (u0, s0, t0) ∈
[0, 1]×∆ such that T (C)(u0, s0, t0) = sup[0,1]×∆ T (C) > 0. This implies

sup
[0,1]×∆

(δT (C) + T (CΠ)) ≥ δT (C)(u0, s0, t0) + T (CΠ)(u0, s0, t0).

Hence, for any ε > 0 we can find n0 large enough such that

Pr(τn > qΠ,α) ≥ Pr( sup
[0,1]×∆

(δT (C) + T (CΠ)) > qΠ,α)− ε

≥ Pr(δT (C)(u0, s0, t0) + T (CΠ)(u0, s0, t0) > qΠ,α)− ε
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for all n ≥ n0. Moreover, for any γ ∈ (0, 1) we can choose η large enough such that, for any

(C, δ) ∈Mη, we have

Pr(δT (C)(u0, s0, t0) + T (CΠ)(s0, t0, u0) > qΠ,α) ≥ Pr(η + T (CΠ)(u0, s0, t0) > qΠ,α) > γ.

Finally, set γ = (β+ 1)/2 and ε = (1−β)/2 in the latter two inequalities to finish the proof.

Proof of Theorem 2.6. By the results in Bücher and Ruppert (2012) we have Ĉn
P
 
ξ

CC .

Hence, the assertion follows by the same arguments as in the proof of Theorem 2.2. The details

are omitted for the sake of brevity.
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Bühlmann, P. L. (1993). The blockwise bootstrap in time series and empirical processes. ProQuest

LLC, Ann Arbor, MI. Thesis (Dr.Sc.Math)–Eidgenoessische Technische Hochschule Zürich
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