
Student Research
Project Report

LocalChecker Plugin
for the jABC

July 2, 2007

Agile
Processes

Appli-
cations

Infra-
Structure

ServicesLoose Coupling

Choreography

Vi
rtu

al
iza

tio
n

Institution

University Dortmund
Department of Computer Science
Chair 5 of Programming Systems

Supervisors

Prof. Dr. Bernhard Steffen
Dipl. Inform. Ralf Nagel

Trainee

Johannes Neubauer

Contents

1 Introduction 1

2 Development 2
2.1 Concept . 2
2.2 Plugin Interface . 2
2.3 Check Modes . 4

2.3.1 Check of all SIBs . 4
2.3.2 Continuous Checking . 4

2.4 LocalCheck Interface . 4
2.4.1 Standard Checks . 5

2.5 Exception Handling . 7
2.6 Concurrency . 7

2.6.1 Heavy Weight Task Manager 7
2.6.2 CheckSIBs . 7
2.6.3 CheckObserver . 8

3 Manual 8
3.1 In the SIBGraph . 8
3.2 Plugin Inspector . 9
3.3 Info Window . 10

4 Conclusion 11

ii

1 Introduction

1 Introduction

Software engineering becomes more and more complex. SOA1[6] is one strategy to
cope with the growing scale of software systems. At Chair 5 for Programming Sys-
tems, Department for Computer Science at the University of Dortmund a tool called
jABC 2[3] is under development which takes the idea of SOA on and enhances it.
This programming or modeling paradigm is called lightweight process coordination.
The application expert models graphs, composed of nodes called SIBs3 and labeled
edges called branches connecting the SIBs. A SIB graph model can be used from
a first design to the point of a running system. Components of an application are
represented by SIB classes, implemented by a programmer. The outgoing branches
of a SIB are used as possible successors. The key idea is to integrate a new layer
into the three-tier-architecture[5]. This layer is situated between the component and
presentation layer and serves as a coordination tier.

SIB graphs are not constrained to executable models. The jABC consists of a
robust core, called Framework which providing basic functionalities and the Editor,
a GUI for the modeling process. More sophisticated features can be added with
plugins. SIB graph models can be interpreted as ER diagrams4 for the DBSchema[1]
plugin, for example.

Furthermore the verification of properties of a SIB graph model, whilst the whole
modeling process, is supported by the model checking plugin GEAR5[2]. This con-
cept does not afford the verification of local conditions to individual SIBs.

Therefore the task of this placement was to develope the LocalChecker plugin. It
has to facilitate that local constraints concerning the SIB and its direct successors
can be observed during the whole modeling process.

In short, the LocalChecker traverses a SIB graph model and executes the
checkSIB() method in every SIB it reaches. This method contains testing code
implemented by a SIB programmer called the SIB expert. In general the tests are
constrained to the SIB instance and its direct successors. Verifying, whether a URL

SIB parameter is reachable, would be a common test of a local check, for example.
For every check that fails a message of a particular severity level is generated and
attached to the SIB. These information can be accessed in the plugin inspector (see
3.2) or in the info window (see figure ”Info Window” on page 10). Programmers
of other plugins may access the messages via the getUserObject() method of the
respective SIB or via SIBUtilities.getMessage().

The next sections cover a short introduction to the LocalChecker, the design of
the implementation and how to use it.

1Service Oriented Architecture
2Java Application Builder Center
3Service Independent building Block
4Entity Relationship diagram
5Game-based, Easy And Reverse model-checking

1 Page 1 of 13

2 Development

2 Development

The LocalChecker plugin is closely connected to the jABC. The concept behind
the plugin is illustrated in chapter ”Concept” on the current page. The integration
into the jABC is introduced in chapter ”Plugin Interface” on this page. The plu-
gin checks local properties of SIB instances, so a SIB has to implement some test
code being executed when the instance is checked. This can be done by creating a
SIB that implements the LocalCheck interface. Chapter ”LocalCheck Interface” on
page 4 describes the usage of this interface and how to use standard checks being
provided by the plugin itself. Additionally chapter ”Exception Handling” on page 7
describes the mechanisms of exception handling are described. Especially excep-
tions thrown in the check code have to be caught and communicated. Hence, error
prone check code does not affect the robustness of the LocalChecker. Furthermore,
the user is informed and can take care of the problem. In particular permanent
checks (described in 2.3), but also complete checks with display of progress, need
concurrency of the checking process. The solution for this problem is presented in
chapter ”Concurrency” on page 7.

2.1 Concept

The LocalChecker plugin does not check any conditions by itself, but provides the
implementation of some standard checks. The actual checking code is up to the
SIB implementor. This is, because the LocalChecker plugin cannot choose which
checks are necessary for the respective SIB. Therefore a port defining how the test
code can communicate the results of a check is inevitable. As LocalChecker enabled
SIBs should be available even if the plugin is not present, the messages are simply
added to the user objects of a SIB. This feature is supported by the JavaABC. More
information on SIBs can be found in the documentation of the jABC[3]. The class
SIBUtilities in the JavaABC Framework offers methods for adding and retrieving
messages easily.

The LocalChecker gets a list of SIBs to test depending on the checking mode
(see 2.3). An instance of the class CheckSIBs iterates through the elements. For
every SIB, the messages of the last check are thrown away before the checkSIB()

containing the check code (see 2.4) method of the SIB is executed. Afterwards the
status of the SIB is evaluated. The status relates to the message with the highest
severity during this check. If no message is present, the status will be set to OK.
Figure 1 shows this procedure as an abstract SIB graph model.

2.2 Plugin Interface

Every plugin for the jABC has to implement the Plugin interface. The respective
implementing class for the LocalChecker is LocalCheckerPlugin. The interface

2 Page 2 of 13

2 Development

Figure 1: Checking Procedure

defines the following methods:

getPluginName() Returns the name of the plugin. It is displayed in the JavaABC
Editor.

getPluginInterface() Returns the plugin interface. SIBs will be able to use plugin
functionalities if they implement this interface. The respective class for the
LocalChecker is LocalCheck (see 2.4).

start() Initializes the plugin. This procedure includes:

• adding some menu items to the plugin menu

• adding the plugin inspector to the inspector pane (see [3])

• attaching a model listener to the GraphModelHandler (see 2.3).

stop() Removes the components initialized in the start() method.

getOverlayIcon() Returns a small icon shown in a corner of the appropriate SIB
icon in order to show the status of the respective plugin. It is possible to
see the status of up to four plugins at a time. The LocalChecker returns the
icon for the actual message level. The message level is as high as the message
with the highest severity for that SIB. That means, that if there are info and
warning messages, the status will be warning because a warning is more severe
than an info message.

3 Page 3 of 13

2 Development

2.3 Check Modes

A check can be evoked by different actions. The plugin inspector and the plugin
menu provide a button starting a complete check of the actual model. A toggle
button activates and deactivates continuous checking.

2.3.1 Check of all SIBs

If continous checking is disabled, every change to a SIB will result in a status change
to unchecked. This is done by the LocalCheckerGraphListener which is added to
the GraphModelHandler during the initialization of the plugin. More information
about the GraphModelHandler can be found in the developer documentation of the
JavaABC[3]. The model listener is called when a model or SIB event has occured.
If a check of all SIBs has been started, the class CheckSIBs is instantiated with a
list of all SIBs of the current model.

2.3.2 Continuous Checking

If continuous checking is activated, the model listener will start a check with a list
of all involved SIBs if an event is fired concerning the atual model or a SIB.

Example 1 Let two SIBs be connected with an edge. If the edge target is relocated
to a third SIB by the user, a branch change event is fired. There are three SIBs that
participate in this event, so they are checked.

As a result, there are never SIBs with status unchecked. This feature needs to check
SIBs while the user interacts with the GUI. Especially for long running checks this
would freeze the Editor. Thus a framework for concurrency was built (see 2.6).

2.4 LocalCheck Interface

All SIBs that should be checked from the LocalChecker have to implement the
LocalCheck interface. It defines the following methods:

checkSIB() contains the check code of the actual SIB.

type() returns an object representing the type of this SIB. This can be used in
the checksSIB() method of the predecessors in order to check if this SIB is
compatible to the predecessor.

The following example shows how a checking method might look like.

Example 2
public void checkSIB(SIB sib) {

//Check incoming branches for their type.

4 Page 4 of 13

2 Development

if(sib.getCell().getOutgoingBranches() != null) {

for(SIBGraphEdge edge: sib.getCell().getIncomingBranches()) {

SIB source = edge.getSourceCell().getSIB();

if(source instanceof LocalCheck) {

LocalCheck t = (LocalCheck)source;

Object type = t.type();

// If this SIB is of another type than TYPE_XY_SIB,

// add an Info Message.

if(type != null && !type.equals(TYPE_XY_SIB))

SIBUtilities.addInfo(sib, "Parent SIB\"" +

source.getName() + "\" is of type \"" +

type.toString() \"". Expected \"" +

TYPE_XY_SIB"\".);

}

}

}

//Check outgoing Branches if they are pointing to nirvana.

if(sib.getCell().getOutgoingBranches() != null)

for(SIBGraphEdge edge: sib.getCell().getOutgoingBranches())

if(edge.getTargetCell() == null)

SIBUtilities.addWarn(sib, "Outgoing Branch \"" +

edge.getBranch() + "\" has no Target.");

}

The example above is unnecessary, because these test cases are covered by the
standard checks. Chapter 2.4.1 describes the already implemented tests and how
they are used. Anyhow, the example shows that SIBUtilities offers methods like
addInfo() for adding info messages to the user objects of a SIB.

2.4.1 Standard Checks

Standard checks are already implemented, general checks that are delivered with
the LocalChecker. The following checks are available at the time of writing:

NO EDGES Checks whether the specified SIB has any incoming/outgoing edges.
If the SIB is entirely disconnected from other SIBs, a warning is issued.

UNASSIGNED BRANCHES Tests whether all branches of the specified SIB are
considered by the current model. An info message is reported for every branch
that is not assigned to an edge and not used as a model branch.

UNASSIGNED BRANCHES ERROR Checks whether all branches of the speci-
fied SIB are considered by the current model. An info is reported for every

5 Page 5 of 13

2 Development

branch that is not assigned to an edge and not used as a model branch. This
method needs a string array of errorbranches as second parameter. For the
errorbranches the check will produce an error message if the respective branch
is unassigned.

MISSING BRANCH LABELS Verifies whether all outgoing branches have labels.
This test produces warn messages.

MISSING SOURCES Checks whether all incoming edges of the specified SIB have
a source SIB. An error is reported for every incoming edge with a dangling
start.

MISSING TARGETS Checks whether all outgoing edges of the specified SIB have
a target SIB. An error is reported for every outgoing edge with a dangling end.

INCOMPATIBLE SOURCES Tests whether all source SIBs of the specified SIB
have the given type. Warnings are generated for all source SIBs not matching
the desired type.

INCOMPATIBLE TARGETS Checks whether all target SIBs of the specified SIB
have the given type. Warnings are generated for all target SIBs not matching
the desired type.

NOT DOCUMENTED Checks whether a SIB is documented. Reports info mes-
sages.

Every standard check has a second alternative called NAMEOFCHECK_CUSTOM_LVL ex-
pecting a second parameter setting the level of severity of messages generated by
this test. It overwrites the default setting described above.

The following example shows, how a standard check can be used.

Example 3
import static ...StandardCheck.*;

// ...

public void checkSIB(SIB sib) {

EnumSet<StandardCheck> eset = EnumSet.of(INCOMPATIBLE_SOURCES,

INCOMPATIBLE_TARGETS);

for (StandardCheck check : eset)

SIBUtilities.execute(check.getKey(), sib);

}

This method invokes the standard checks INCOMPATIBLE_SOURCES and
INCOMPATIBLE_TARGETS.

6 Page 6 of 13

2 Development

2.5 Exception Handling

Exceptions should not occur in check code. If an exception or error is thrown
nevertheless, this has to be communicated because the programmer has to be able
to correct the failure. This is done by catching every Throwable and generating
a fatal message as a wrapper around the exception or error. This message will be
handled as if it were a fatal error message from the checkSIB() method.

2.6 Concurrency

Local checks have to be executed in a concurrent thread to the AWT Event Dis-
patcher Thread in order to facilitate a non freezing GUI whilst modeling. This is
achieved by a second queue similar to the AWT Event Queue. The result is called
the Heavy Weight Task Manager.

2.6.1 Heavy Weight Task Manager

The Heavy Weight Task Manager processes HWTasks in a queued thread. The bene-
fit of separating complex tasks from the Event Dispatcher Thread is a performance
discharge for the GUI Event processing. In particular, tasks opening connections or
waiting for some input from external sources would affect the latency of GUI pro-
cessing. Especially continous checking is problematic in the case of the LocalChecker
plugin.

This tool can be used for any time consuming task that should be run in a separate
thread. The tasks are processed one after another, so there are no race conditions or
deadlocks between two tasks. An intelligent implementation of the equals method
in the HWTask can even prevent doubles in the task queue.

2.6.2 CheckSIBs

The LocalChecker uses the Heavy Weight Task Manager (HWTM) to process the
local checks. Hence for continous checking, the checks are put into the queue to be
executed one after another parallel to the GUI interactions of the user. For global
checks the queue is cleared before the check is added to the queue.

The HWTM expects a HWTask for the invokeLater() and invokeAndWait()

methods enqueueing a task either returning immediately after adding or waiting for
the result. The class CheckSIBs implements the abstract class AbstractHWTask.
This class can notify the observers when intermediate results are available. This is
more convenient than implementing HWTask from scratch. CheckSIBs adds only SIBs
that are not in the queue, so that no checks of a SIB are executed twice without
a change of the SIB between the execution of the tests. Therefore the equals()

method of CheckSIBs evaluates if the SIBs in its list are already in the queue. If no
SIB is new to the queue, the task will not even be added.

7 Page 7 of 13

3 Manual

2.6.3 CheckObserver

The HWTM offers the possibility to observe the progress of task execution in the
queue. For this purpose an Observer can be added to the task manager which is
notified when a new task is added, a task has finished or a task has intermediate
results. The CheckObserver extends the class HWTProgressMonitor which opens a
ProgressMonitor dialog (see [4]) in order to show the progress of a global check.
The HWTProgressMonitor extends Observer and can be added to the task manager.
Furthermore the status bar of the jABC shows the last checked SIBs.

3 Manual

The LocalChecker is responsible for testing local terms of SIBs. It visualizes mes-
sages about the results in the plugin inspector. There are four grades of messages
denoting the severity of a problem.

Message level:

Info Clues of this grade have an informative character.

Warning Warnings remark that there might be a problem in the SIB. In general,
they indicate that a parameter or branch deviates from the normal usage.

Error The SIB is used falsely. This can cause an unexpected behaviour of the graph.

Fatal Error The SIB is in an undefined state. The graph might be impaired by this
severe error.

3.1 In the SIBGraph

All SIBs implementing the LocalChecker interface are highlighted with a small over-
lay icon, which marks the actual state. The overlay icons can be deactivated by the
plugin menu or the respective button in the toolbar of the plugin inspector. Fur-
thermore a position for the icons can be chosen in the options dialog in the plugins
tab. Every LocalChecker enabled SIB is in one of six states.

States of a SIB:

Ok This SIB has been checked and there was nothing to report. Everything is fine.

Info There had been info messages only.

Warning At most warnings and info messages followed from the last check.

8 Page 8 of 13

3 Manual

Error The last check produced at least one or more errors.

Fatal Error This SIB has fatal errors.

Not Checked The component was not checked since the last change.

The corresponding overlay icons are shown in figure 2. They are printed in the
same order as the headwords above.

Figure 2: Overlay Icons

As ”Highlight SIBs” is activated in the inspector, the overlay icon of every SIB is
automatically updated when a check is performed or a SIB has altered.

3.2 Plugin Inspector

Figure 3: Plugin Inspector

The LocalChecker inspector (see figure 3) has a simple interface. It contains a
table showing the messages of the actual selection in the SIBGraph. At the bottom
of the inspector is a toolbar that enables the user to steer the plugin.

The button ”ignore warnings” controls whether only errors and fatal errors are
visible or warnings and infos, too. ”Highlight SIBs” decides whether the overlay
icons should be painted or not. If ”continous checking” is activated, a SIB will be
checked automatically if it has been changed. ”Check all SIBs” checks the complete

9 Page 9 of 13

3 Manual

SIBGraph and shows a dialog with statistics about the results. During the check a
progress dialog provides status information. Generally a check is too fast for the
dialog to pop up. In the case of a long running check, it can be canceled with the
”cancel”-button in the progress dialog. The Button ”info window” executes a test
of all SIBs and opens a window with more detailed information about the results.
The window contains the result of all SIBs, not only of the current selection as it is
in the inspector. These buttons are available in the plugin menu, too.

3.3 Info Window

Figure 4: Info Window

The info window (see figure 4) presents the check results of all SIBs of the actual
graph. The view can be constrained by filter methods. The filter text can embody
wildcards6. All SIBs that do not match this pattern are not visible in the table.
The ”level filter” facilitates a more specific filtering of shown message levels than
the ”ignore warnings”-button of the inspector toolbar. By selecting the ”error”
level all warnings and infos are hidden, for example. The ”select” button closes the

6”?” for an arbitrary character and ”*” for an arbitrary character sequence

10 Page 10 of 13

4 Conclusion

window and selects all SIBs in the SIBGraph owning messages that are selected in
the result table of the info window. Clicking ”ok” disposes the dialog without any
further actions.

4 Conclusion

The LocalChecker plugin is a robust tool informing the application expert about
incorrect usage of SIBs. In continous check mode, the plugin gives direct information
about the status of a SIB via the overlay icon. For the actual selection, more details
are available in the plugin inspector. The info window provides information about
the status of all SIBs in a model. The LocalChecker is a powerful and easy to use
addition to the model checking plugin GEAR.

11 Page 11 of 13

Index

AbstractHWTask, 7
AWT Event Dispatcher Thread, 7
AWT Event Queue, 7

CheckObserver, 8
CheckSIBs, 2, 4, 7

ER diagrams, 1
Exception Handling, 2, 7

GraphModelHandler, 3, 4
GUI, 1

Heavy Weight Task Manager, 7
HWTask, 7
HWTProgressMonitor, 8

jABC, 1
JavaABC Editor, 1, 3
JavaABC Framework, 1, 2

LocalCheck, 3, 4
LocalCheckerGraphListener, 4
LocalCheckerPlugin, 2

Model Checking, 1

Observer, 8

Plugin, 2
DBSchema, 1
GEAR, 1
LocalChecker, 1

ProgressMonitor, 8

SIB, 1
SIBGraph, 9, 10
SIBUtilities, 1, 2, 5
SOA, 1
Standard Checks, 2

12 Page 12 of 13

References

References

[1] Christian Winkler. DBSchema. http://jabc.cs.uni-dortmund.de:8002/

plugins/dbschema/index_en.html.

[2] Clemens Renner Marco Bakera. GEAR. http://jabc.cs.uni-dortmund.de:

8002/plugins/gear_en.html.

[3] Ralf Nagel et al. Java ABC Framework Homepage. http://www.jabc.de.

[4] SUN. JavaTM 2 platform standard edition 5.0 api specification. http://java.

sun.com/j2se/1.5.0/docs/api/.

[5] Wikipedia. Multitier architecture. http://en.wikipedia.org/wiki/Three_

layer_architecture.

[6] Wikipedia. Service Oriented Architecture. http://de.wikipedia.org/wiki/

Serviceorientierte_Architektur.

13 Page 13 of 13

http://jabc.cs.uni-dortmund.de:8002/plugins/dbschema/index_en.html
http://jabc.cs.uni-dortmund.de:8002/plugins/dbschema/index_en.html
http://jabc.cs.uni-dortmund.de:8002/plugins/gear_en.html
http://jabc.cs.uni-dortmund.de:8002/plugins/gear_en.html
http://www.jabc.de
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/
http://en.wikipedia.org/wiki/Three_layer_architecture
http://en.wikipedia.org/wiki/Three_layer_architecture
http://de.wikipedia.org/wiki/Serviceorientierte_Architektur
http://de.wikipedia.org/wiki/Serviceorientierte_Architektur

	Introduction
	Development
	Concept
	Plugin Interface
	Check Modes
	Check of all SIBs
	Continuous Checking

	LocalCheck Interface
	Standard Checks

	Exception Handling
	Concurrency
	Heavy Weight Task Manager
	CheckSIBs
	CheckObserver

	Manual
	In the SIBGraph
	Plugin Inspector
	Info Window

	Conclusion

